TWI376996B - Printed circuit board and packaging structure having the same - Google Patents

Printed circuit board and packaging structure having the same Download PDF

Info

Publication number
TWI376996B
TWI376996B TW97135173A TW97135173A TWI376996B TW I376996 B TWI376996 B TW I376996B TW 97135173 A TW97135173 A TW 97135173A TW 97135173 A TW97135173 A TW 97135173A TW I376996 B TWI376996 B TW I376996B
Authority
TW
Taiwan
Prior art keywords
layer
circuit board
conductive
carbon nanotube
bundle
Prior art date
Application number
TW97135173A
Other languages
Chinese (zh)
Other versions
TW201012333A (en
Inventor
Chung Jen Tsai
Hung Yi Chang
Chia Cheng Chen
Meng Chieh Hsu
Cheng Hsien Lin
Original Assignee
Zhen Ding Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhen Ding Technology Co Ltd filed Critical Zhen Ding Technology Co Ltd
Priority to TW97135173A priority Critical patent/TWI376996B/en
Publication of TW201012333A publication Critical patent/TW201012333A/en
Application granted granted Critical
Publication of TWI376996B publication Critical patent/TWI376996B/en

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

1376996 1101年.02月15日按正 α ·1 六、發明說明: 【發明所屬之技術領域】 [0001]本發明涉及電路板技術領域,尤其涉及一種電路板以及 一種内埋式電路板封裝結構。 【先前技術】1376996 1101. February 15th, according to the positive α · 1 VI, the invention description: [Technical field of the invention] [0001] The present invention relates to the field of circuit board technology, in particular to a circuit board and a buried circuit board package structure . [Prior Art]

[_於資訊、通訊及消費性電子產#中,電路板制有電子 產品不可或缺之基本構成要件。隨著電子產品往小型化 、高速化方向發展,電路板亦從單面電路板往雙面電路 板、多層電路板方向發展。多層電路板由於具有較多佈 線面積與較高裝配密度而得到廣泛應用,請參見[_In information, communication and consumer electronics products#, circuit boards have essential components that are indispensable for electronic products. With the development of electronic products in the direction of miniaturization and high speed, circuit boards have also evolved from single-sided circuit boards to double-sided circuit boards and multilayer circuit boards. Multilayer boards are widely used due to their large wiring area and high assembly density, see

Takahashi,A·等人於 1992年發表於IEEE Trans. 〇Takahashi, A. et al., published in IEEE Trans. in 1992 〇

Components, Packaging, and ManufacturingComponents, Packaging, and Manufacturing

Technology 之文獻 High density multilayer printed circuit board for HITAC M~ 880” 。 闺佈線面積之增加、導電線路之細化使得電路板線路之線 寬與線間距愈來愈小,線路之電阻愈來愈大,產生之熱 ΐ亦愈來愈多^裝目己密度之増加使得電路板上之封裝元 件如集成W '電阻之數量極大増加,從而使得封農元 件產生之熱量亦極大增加。因此先前技術之電路板以 及電路板封裝結構產生較多熱量,但並*能較快散熱, 尤其係對於内埋式之電路板封裝結構來說。 [0004] 有鑑於此’提供—種具有較趙熱性能之電路板以及電 路板封裝結構實屬必要。 【發明内容】 [0005] 以下將以實施例說明一種電路板以及電路板封裂結構 09713517#單編號 A0101 g 3 頁 / 共 22 頁 1〇13〇557〇5~〇 1376996 .101年02月15日按正_頁 [0006] 一種電路板,其依次包括導電層、複合材料層以及絕緣 層,該絕緣層具有一收容孔,該複合材料層包括聚合物 基體以及至少一設置於聚合物基體中之奈米碳管束,該 奈米碳管束之一端與導電層接觸,另一端從絕緣層之收 容孔露出。 [0007] —種電路板封裝結構,其包括封裝元件以及如上該電路 板,該封裝元件該封裝元件設置於絕緣層之收容孔,並 藉由奈米碳管束與導電層電連接。 [0008] 與先前技術相較,本技術方案之電路板以及電路板封裝 結構中具有複合材料層,該複合材料層包括奈米碳管束 ,並且奈米碳管束之一端與導電層接觸,另一端從絕緣 層之收容孔露出,從而,複合材料層中之奈米碳管束可 電導通導電層與埋設於絕緣層收容孔之封裝元件,並可 將封裝元件之熱量較快地傳導至導電層以加快熱量之散 發速度。 【實施方式】 [0009] 下面將結合附圖及複數實施例,對本技術方案提供之電 路板及電路板封裝結構作進一步之詳細說明。 [0010] 請參閱圖1,本技術方案第一實施例提供之電路板10依次 包括導電層11、複合材料層12以及絕緣層13。該導電層 11可由銅、鋁、金等具有較佳導電性能之材料製成。導 電層11具有導電圖形111,該導電圖形111包括導電線路 1111與複數導電接點1112。該導電線路1111用於傳輸訊 號,該複數導電接點1112用於與封裝元件電連接以實現 訊號處理。該複合材料層12位於導電層11與絕緣層13之 1013055705-0 09713517#單编號A〇101 第4頁/共22頁 1376996 _The high-density multilayer printed circuit board for HITAC M~ 880”. The increase in the wiring area and the refinement of the conductive lines make the line width and line spacing of the circuit board lines smaller and smaller, and the resistance of the lines becomes larger and larger. The enthusiasm generated is also increasing. The density of the package has increased the number of package components such as integrated W' resistors on the board, so that the heat generated by the packaged components is greatly increased. Therefore, the circuit of the prior art The board and the circuit board package structure generate more heat, but can dissipate heat more quickly, especially for the embedded circuit board package structure. [0004] In view of this, a circuit with a higher thermal performance is provided. A board and a circuit board package structure are necessary. [0005] Hereinafter, a circuit board and a circuit board cracking structure 09713517# single number A0101 g 3 pages / total 22 pages 1〇13〇557〇 will be described by way of embodiments. 5~〇1376996 .February 15th, 2010, according to the positive page [0006] A circuit board, which in turn comprises a conductive layer, a composite material layer and an insulating layer, the insulating layer has a And the composite material layer comprises a polymer matrix and at least one bundle of carbon nanotubes disposed in the polymer matrix, one end of the bundle of carbon nanotubes being in contact with the conductive layer and the other end being exposed from the receiving hole of the insulating layer. [0007] A circuit board package structure comprising a package component and a circuit board as described above, the package component being disposed in a receiving hole of the insulating layer and electrically connected to the conductive layer by a bundle of carbon nanotubes. [0008] Compared with the prior art In comparison, the circuit board of the technical solution and the circuit board package structure have a composite material layer, the composite material layer includes a carbon nanotube bundle, and one end of the carbon nanotube bundle is in contact with the conductive layer, and the other end is exposed from the receiving hole of the insulating layer. Therefore, the carbon nanotube bundle in the composite layer can electrically conduct the conductive layer and the package component embedded in the receiving hole of the insulating layer, and can conduct heat of the package component to the conductive layer faster to accelerate the heat dissipation rate. Embodiments [0009] Hereinafter, the circuit board and the circuit board package structure provided by the technical solution are further combined with the accompanying drawings and the plurality of embodiments. DETAILED DESCRIPTION [0010] Referring to FIG. 1, a circuit board 10 according to a first embodiment of the present invention includes a conductive layer 11, a composite material layer 12, and an insulating layer 13. The conductive layer 11 may be made of copper, aluminum, gold, or the like. The conductive layer 11 has a conductive pattern 111, and the conductive pattern 111 includes a conductive line 1111 and a plurality of conductive contacts 1112. The conductive line 1111 is used for transmitting signals, and the plurality of conductive contacts 1112 are used for transmitting signals. Electrically connected to the package component for signal processing. The composite material layer 12 is located at the conductive layer 11 and the insulating layer 13 1013055705-0 09713517 #单号A〇101 Page 4 of 22 pages 1376996 _

[ϊ^ϊ年.02月15日梭正替換頁I 間’具有第一表面】20]與第二表面1 202。該第一表面 1201與導電層η相接觸,該第二表面12〇2與第一表面 1201平行相對,且與絕緣層13相接觸。該絕緣層13由絕 • 緣材料製成,用於絕緣以及支撐導電層11與複合材料層 12。絕緣層13具有一用於收容埋設封裝元件之收容孔13〇 。該收容孔130之開設位置與複數導電接點1112之位置相 對應’以便於實現封裝元件與複數導電接點1112之電連 接。 φ [0011] 具體地,該複合材料層12包括聚合物基體121與設置於聚 合物基體121中之奈米碳管束122。該聚合物基體121可 為環氧(Epoxy)、聚醯亞胺(p〇iyimide,ρι)、聚乙 烯對苯二甲酸乙二醇酯(P〇lyethylene Terephtalate,PET)、聚四氟乙烯 (Polytetrafluoroethylene,PTFE)、聚硫胺 (polyamide)、聚曱基丙烯酸甲酯 (Polymethylmethacrylate,PMMA)、聚碳酸酯 • (Polycarbonate)或聚醯亞胺-聚乙烯—對苯二曱酯共聚 物(Polyamide polyethylene-terephthalate copolymer)等絕緣樹脂。該奈米碳管束122包括一根奈 米碳管或多根平行排列之奈米碳管。奈米碳管束122之一 端與導電層11電連接,另一端從收容孔13〇露出,以便於 與設置於收容孔130之封裝元件接觸,從而實現導電層η 與封裝元件之電連接。奈米碳管束丨22之數量可為一個, 亦可為複數個,可視封裝元件之結構而定。 [0012]本實施例中,複合材料層12包括複數奈米碳管束122,複 1013055705-0 09713517#單編號Α0101 第5頁/共22頁 1376996 [0013] [0014] [0015] [0016] [0017] [0018] 101年02月15日核正替換頁 數奈米碳管束122成陣列狀彼此具有一定間隔地嵌置於聚 合物基體121中。亦即,該複數奈米碳管束122彼此絕緣 地設置於導電層11與絕緣層13之間。 該複數奈米碳管束122彼此平行排列。每個奈米碳管束. 122均包括多根平行排列之奈米碳管,該多根奈米碳管之 軸向即奈米碳管束122之延伸方向與第一表面1201之夾角 為80〜100度之間。亦即,每個奈米碳管束122均基本垂 直於第一表面1201與第二表面1 20 2。 並且,每個奈米碳管束122之長度均略大於或基本等於複 合材料層12之厚度,從而可使得每個奈米碳管束122之一 端略突出於第一表面1201或恰好與第一表面1201相齊平 ,另一端則略突出於第二表面1 202或恰好與第二表面 1202相齊平。從而,奈米碳管束122可電連接導電層11 凑埋設於絕緣層13之封裝元件,並可較快地將埋設於絕 緣層13之封裝元件之熱量傳導至第一表面1201與導電層 11,從而快速地將熱量散發至外界。 本技術方案第一實施例提供之電路板10可藉由如下步驟 製備: 第一步,請參閱圖2,提供基底100。基底100可為銅層、 鋁層或鎳層等金屬層。基底100之厚度可為2〜200微米之 間。 第二步,請參閱圖3,於基底100上形成催化劑層200。 該催化劑層200為鐵、鈷、鎳或其合金等可生長奈米碳管 之材料。並且,催化劑層200具有預定圖案。該預定圖案 單编號A_ 第6頁/共22頁[ϊ^ϊ年. On February 15th, the shuttle is replacing the page I with a first surface] 20] and a second surface 1 202. The first surface 1201 is in contact with the conductive layer η, and the second surface 12〇2 is parallel to the first surface 1201 and is in contact with the insulating layer 13. The insulating layer 13 is made of a material for insulating and supporting the conductive layer 11 and the composite layer 12. The insulating layer 13 has a receiving hole 13 收容 for accommodating the embedded package component. The opening position of the receiving hole 130 corresponds to the position of the plurality of conductive contacts 1112 to facilitate electrical connection between the package component and the plurality of conductive contacts 1112. Specifically, the composite material layer 12 includes a polymer matrix 121 and a carbon nanotube bundle 122 disposed in the polymer matrix 121. The polymer matrix 121 can be epoxy (Epoxy), polyfluorene (p〇iyimide, ρι), polyethylene terephthalate (PET), polytetrafluoroethylene (Polytetrafluoroethylene). , PTFE), polyamide, polymethylmethacrylate (PMMA), polycarbonate (Polycarbonate) or polyimine-polyethylene-terephthalate copolymer (Polyamide polyethylene- Terephthalate copolymer) and other insulating resin. The carbon nanotube bundle 122 comprises a carbon nanotube or a plurality of carbon nanotubes arranged in parallel. One end of the carbon nanotube bundle 122 is electrically connected to the conductive layer 11 and the other end is exposed from the receiving hole 13 so as to be in contact with the package member disposed in the receiving hole 130, thereby electrically connecting the conductive layer η to the package member. The number of carbon nanotube bundles 22 can be one, or plural, depending on the structure of the package components. [0012] In this embodiment, the composite material layer 12 includes a plurality of carbon nanotube bundles 122, a plurality of 1013055705-0 09713517# single number Α 0101 5th page / a total of 22 pages 1376996 [0014] [0015] [0016] [0018] [0018] On February 15, 101, the nuclear replacement number of carbon nanotube bundles 122 are embedded in the polymer matrix 121 at an interval from each other in an array. That is, the plurality of carbon nanotube bundles 122 are disposed between the conductive layer 11 and the insulating layer 13 in an insulated manner from each other. The plurality of carbon nanotube bundles 122 are arranged in parallel with each other. Each of the carbon nanotube bundles 122 includes a plurality of carbon nanotubes arranged in parallel, and the axial direction of the plurality of carbon nanotubes, that is, the extending direction of the carbon nanotube bundle 122 and the first surface 1201 is 80 to 100. Between degrees. That is, each of the carbon nanotube bundles 122 is substantially perpendicular to the first surface 1201 and the second surface 1202. Moreover, each of the nanotube bundles 122 has a length that is slightly greater than or substantially equal to the thickness of the composite layer 12 such that one end of each of the nanotube bundles 122 can protrude slightly from the first surface 1201 or just to the first surface 1201. The ends are flush and the other end protrudes slightly from the second surface 1 202 or just flush with the second surface 1202. Therefore, the carbon nanotube bundle 122 can electrically connect the conductive layer 11 to the package component of the insulating layer 13, and can quickly transfer the heat of the package component buried in the insulating layer 13 to the first surface 1201 and the conductive layer 11, Thereby quickly dissipating heat to the outside world. The circuit board 10 provided in the first embodiment of the present technical solution can be prepared by the following steps: First, referring to FIG. 2, a substrate 100 is provided. The substrate 100 may be a metal layer such as a copper layer, an aluminum layer or a nickel layer. The thickness of the substrate 100 can be between 2 and 200 microns. In the second step, referring to FIG. 3, a catalyst layer 200 is formed on the substrate 100. The catalyst layer 200 is a material of a growthable carbon nanotube such as iron, cobalt, nickel or an alloy thereof. Also, the catalyst layer 200 has a predetermined pattern. The predetermined pattern No. A_ Page 6 of 22

1013055705-0 1376996 «» t 101年02月15日按正替換頁 之形狀、分佈均不限,僅需使得生長出之複數奈米碳管 束具有預定排列分佈即可。本實施例中,該預定圖案為 陣列圖案,以使得生長出之複數奈米碳管束成陣列狀且 彼此具有一定間隔。該預定圖案之形成方法亦不限。例 如,可藉由先於基底100表面形成圖案化之光阻,再於基 底100表面電鍍催化劑材料形成;亦可藉由先以電鍍、蒸 鍍、濺鍍或者氣相沈積方法於基底100上形成整層之催化 劑層,再選擇性地姓刻催化劑層而形成。1013055705-0 1376996 «» t On February 15, 2011, the shape and distribution of the replacement page are not limited. It is only necessary to make the growing plurality of carbon nanotube bundles have a predetermined arrangement. In this embodiment, the predetermined pattern is an array pattern such that the plurality of carbon nanotube bundles grown are arrayed and spaced apart from each other. The method of forming the predetermined pattern is also not limited. For example, the patterned photoresist may be formed on the surface of the substrate 100, and the catalyst material may be formed on the surface of the substrate 100; or may be formed on the substrate 100 by electroplating, evaporation, sputtering or vapor deposition. The entire layer of the catalyst layer is formed by selectively engraving the catalyst layer.

[0019] 第三步,請參閱圖4,於催化劑層200上生長出複數奈米 碳管束122。 [0020] 由於催化劑層200具有預定之陣财圖案,因此,生長出之 複數奈米碳管束122亦按預定圖案呈陣列分佈,彼此具有 一定間隔,以可填充聚合物基體,從而確保複數奈米碳 管束122之間絕緣。 [0021] 該複數奈米碳管束122之生長方式不限。例如,以化學氣 相沈積法製備時,可將形成有催化劑層200之基底100放 入反應爐中,於700〜1 000攝氏度下,通入乙炔、乙烯等 碳源氣,從而於催化劑層200上生長出複數奈米碳管束 122。複數奈米碳管束122之生長高度可藉由生長時間來 控制,一般生長高度為1〜30微米。 [0022] 複數奈米碳管束122彼此平行排列,其延伸方向均基本垂 直於催化劑層2 00。每個奈米碳管束122均可包括一根奈 米碳管或多根平行排列之奈米碳管,亦即,每個奈米碳 管束122中之奈米碳管之轴向與催化劑層200之夾角均大 09713517^^ A0101 第7頁/共22頁 1013055705-0 1376996 101年.02月15日修正_頁· 致為80-1 00度之間。 [0023] 第四步,形成複合材料層12。 [0024] 首先,請參閱圖5,以塗佈、擠壓或其他方式將聚合物基 體121施加於複數奈米碳管束122之間,使得聚合物基體 121充分填充複數奈米碳管束122之空隙,並使得聚合物 基體121與複數奈米碳管束122遠離催化劑層200之一端 相齊平,從而形成平整之第一表面1201,使得聚合物基 體121起到連接並隔絕複數奈米碳管束122之作用,且並 不埋設複數奈米碳管束122遠離催化劑層200之一端。 Φ [0025] 另外,如果將聚合物基體121施加於複數奈米碳管束122 時聚合物基體121埋設複數奈米碳管束122遠離催化劑層 200之一端,使得複數奈米碳管束122整體均埋設於聚合 物基體121中時,可藉由機械切割、雷射燒蝕或其他方式 去除部分聚合物基體121,以形成平整之第一表面1201, 並露出複數奈米碳管束122遠離催化劑層200之一端。 [0026] 其次,請一併參閱圖5及圖6,去除基底100、催化劑層 φ 200以及部分填充於催化劑層200之間之聚合物基體121 * ,以形成平整之第二表面1202。 [0027] 去除基底100及催化劑層200之方法可為蝕刻法。例如當 基底100為銅、催化劑層200為三氧化二鐵時,可用三氣 化鐵溶液蝕刻去除基底100及催化劑層200。當然,採用 其他之基底材料及催化劑層材料時採用相應之蝕刻劑即 〇 [0028] 蝕刻去除基底100、催化劑層200後,還需要將部分填充 1013055705-0 09713517#單編號A〇101 第8頁/共22頁 1376996, I. » 101年.02月15日梭正替換頁 於催化劑層200之間之聚合物基體121去除,以使聚合物 基體121與複數奈米碳管束122靠近催化劑層200之一端 相齊平,從岛形成平整之第二表面1 202。即,形成複合 材料層12,如圖6所示。 [0029] 去除聚合物基體121之方法不限,可為機械切割、雷射燒 蝕或模具沖裁等。 [0030] 第五步,將導電層11壓合於複合材料層12之第一表面 1201,將絕緣層13壓合於第二表面1 202,從而獲得電路 ^ 板10,如圖1所示。 [0031] 導電層11與絕緣層13可同時壓合於複合材料層12,亦可 先後壓合於複合材料層12。 [0032] 將導電層11壓合於第一表面1201之前或之後,還包括於 導電層11形成導電圖形111之步驟。將導電層11形成導電 圖形111之步驟可藉由圖像轉移法以及蝕刻工序實現。 [0033] 將絕緣層13壓合於第二表面1202之前或之後,還可藉由 • 機械鑽孔、雷射燒孔或化學蝕孔等方式於絕緣層13之預 定位置形成收容孔130,以便於收容、埋設封裝元件。從 而,可使得奈米碳管束122之一端與導電層11電連接,另 一端從收容孔130露出,可方便地實現設置於收容孔130 之封裝元件與導電層11之電連接。 [0034] 請參閱圖7,本技術方案還提供一種電路板封裝結構1, 其包括封裝元件14、封裝樹脂15以及如圖1所示之電路板 10 ° 097135Π严編號删1 第9頁/共22頁 1013055705-0 1376996 1101年0Z月15日核正替換百 [0035] 該封裝元件14為用於實現特定處理功能之器件,其可為 積體電路晶片*亦可為電容電感元件*运可為記憶體或 其他器件。該封裝元件14具有複數導電端點141,該複數 導電端點141用於與其他電子元器件或電路板實現電連接 〇 [0036] 本實施例中,封裝元件14藉由封裝樹脂15埋設於絕緣層 13之收容孔130内,其複數導電端點141之形狀、數量均 與導電接點1112之形狀、數量相對應。每個導電端點141 均藉由一個或複數奈米碳管束122實現與一個導電接點 | 1112間之電連接。 [0037] 由於複數奈米碳管束122彼此絕緣,從而可使得複數導電 端點141與複數導電接點1112間之導通一一對應,而封裝 元件14除複數導電端點141外之其餘部位均被保護層覆蓋 而絕緣,從而保證了封裝元件14與電路板10之間訊號之 正確傳輸與處理。 [0038] 當然,如果封裝元件14僅具有一導電端點141,則複合材 g 料層12僅需包括一奈米碳管束122即可實現導電端點141 與導電層11之電連接。 [0039] 請參閱圖8,本技術方案第二實施例提供之電路板封裝結 構2與第一實施例提供之電路板封裝結構1大致相同,其 不同之處在於:該電路板封裝結構2還包括一導熱層26。 該導熱層26為具有較好導熱性能之材料薄層,其可為金 屬材料層,亦可為複合材料層,還可為其他材料層。本 實施例中,該導熱層26為與複合材料層22結構相同之薄 09713517#單编號 A〇101 第10頁/共22頁 1013055705-0 1376996 » · 年 02 月 15g_giE_g 層’設置於絕緣層23遠離複合材料層22之^且與& 緣層23接觸。從而,封裝元件24散發之熱量可藉由導熱 層26中之複數奈米碳管束262快速散發至外界。 [0040]請參閱圖9,本技術方案第三實施例提供之電路板封裝結 構3與第二實施例提供之電路板封裝結構2大致相同其 不同之處在於:該電路板封裝結構3還包括—金屬基板Μ 。該金屬基板37可由具有良好導熱性能之材料如銅、鋁 4衣成,設置於導熱層36遠離絕緣層33之一側,且與導 熱層36接觸。從而,封裝元件34散發之熱量可藉由導熱 層36中之複數奈米碳管束362快速傳導至金屬基板37,並 由金屬基板37快速散發至外界。亦即,金屬基板37可進 一步加快封裝元件34之熱量散發速度。 [0041] 請參閱圖1〇,本技術方案第四實施例提供之電路板封裝 結構4與第一實施例提供之電路板封裝結構1大致相同, 其不同之處在於:該電路板封裝結構4還包括一雙面電路 板48。該雙面電路板48設置於絕緣層43遠離複合材料層 42之一側,且與絕緣層43接觸。雙面電路板48包括第一 導電線路層481、第二導電線路層482以及設置於第一導 電線路層481與第二導電線路層482間之樹脂層483。 [0042] 該電路板封裝結構4還具有一導孔401,用於實現導電層 41與雙面電路板48之電導通。本實施例中,導孔401為貫 穿導電層41、複合材料層42、絕緣層43以及雙面電路板 48之導通孔。 [0043] 當然,電路板封裝結構4除如本實施例所示包括一個雙面 1013055705-0 09713517#單编號A0101 第11頁/共22頁 1376996 101年.02月15日核正替換頁· 電路板48外,亦可包括一單面電路板或者一多層電路板 ,同樣可藉由複合材料層42而更有效散發封裝元件44之 熱量,並實現封裝元件44與導電層41之電導通。 [0044] 與先前技術相較,本技術方案之電路板以及電路板封裝 結構中具有複合材料層,該複合材料層包括奈米碳管束 ,並且奈米碳管束之一端與導電層接觸,另一端從絕緣 層之收容孔露出,從而,複合材料層中之奈米碳管束可 電導通導電層與埋設於絕緣層收容孔之封裝元件,並可 將封裝元件之熱量較快地傳導至導電層以加快熱量之散 0 發速度。 [0045] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本 案技藝之人士援依本發明之精神所作之等效修飾或變化 ,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0046] 圖1為本技術方案第一實施例提供之電路板之示意圖。 ® [0047] 圖2為本技術方案第一實施例提供之基底之示意圖。 [0048] 圖3為本技術方案第一實施例提供之於基底上形成催化劑 層之示意圖。 [0049] 圖4為本技術方案第一實施例提供之於催化劑層上生長複 數奈米碳管束之示意圖。 [0050] 圖5為本技術方案第一實施例提供之聚合物基體填充複數 奈米碳管之間隙之示意圖。 1013055705-0 09713517^單編號A〇101 第12頁/共22頁 101年.02月15日核正替換頁 1376996[0019] In the third step, referring to FIG. 4, a plurality of carbon nanotube bundles 122 are grown on the catalyst layer 200. [0020] Since the catalyst layer 200 has a predetermined pattern, the grown plurality of carbon nanotube bundles 122 are also arranged in an array in a predetermined pattern with a certain interval therebetween to fill the polymer matrix, thereby ensuring a plurality of nanometers. The carbon tube bundles 122 are insulated from each other. [0021] The growth mode of the plurality of carbon nanotube bundles 122 is not limited. For example, when prepared by chemical vapor deposition, the substrate 100 on which the catalyst layer 200 is formed may be placed in a reaction furnace, and a carbon source gas such as acetylene or ethylene may be introduced at 700 to 1 000 degrees Celsius to thereby coat the catalyst layer 200. A plurality of carbon nanotube bundles 122 are grown thereon. The growth height of the plurality of carbon nanotube bundles 122 can be controlled by the growth time, and the growth height is generally 1 to 30 μm. [0022] The plurality of carbon nanotube bundles 122 are arranged in parallel with each other and extend in a direction substantially perpendicular to the catalyst layer 200. Each of the carbon nanotube bundles 122 may include one carbon nanotube or a plurality of carbon nanotubes arranged in parallel, that is, the axial direction of the carbon nanotubes in each of the carbon nanotube bundles 122 and the catalyst layer 200. The angle between the angles is 09713517^^ A0101 Page 7 / Total 22 pages 1013055705-0 1376996 101 years. February 15th revision _ page · To 80-1 00 degrees. [0023] In the fourth step, the composite material layer 12 is formed. [0024] First, referring to FIG. 5, the polymer matrix 121 is applied, sandwiched or otherwise applied between the plurality of carbon nanotube bundles 122 such that the polymer matrix 121 sufficiently fills the voids of the plurality of carbon nanotube bundles 122. And the polymer matrix 121 and the plurality of carbon nanotube bundles 122 are flush with one end of the catalyst layer 200 to form a flat first surface 1201, so that the polymer matrix 121 functions to connect and isolate the plurality of carbon nanotube bundles 122. The function is not to embed the plurality of carbon nanotube bundles 122 away from one end of the catalyst layer 200. [0025] In addition, if the polymer matrix 121 is applied to the plurality of carbon nanotube bundles 122, the polymer matrix 121 embeds the plurality of carbon nanotube bundles 122 away from one end of the catalyst layer 200, so that the plurality of carbon nanotube bundles 122 are entirely embedded in In the polymer matrix 121, a portion of the polymer matrix 121 may be removed by mechanical cutting, laser ablation or other means to form a flat first surface 1201, and the plurality of carbon nanotube bundles 122 are exposed away from one end of the catalyst layer 200. . Next, referring to FIG. 5 and FIG. 6, the substrate 100, the catalyst layer φ 200, and the polymer matrix 121* partially filled between the catalyst layers 200 are removed to form a flat second surface 1202. [0027] The method of removing the substrate 100 and the catalyst layer 200 may be an etching method. For example, when the substrate 100 is copper and the catalyst layer 200 is ferric oxide, the substrate 100 and the catalyst layer 200 may be removed by etching with a three-iron solution. Of course, when other base materials and catalyst layer materials are used, the corresponding etchant, that is, the ruthenium [0028] is used to remove the substrate 100 and the catalyst layer 200, and then the partial filling 1013055705-0 09713517# single number A 〇 101 page 8 / Total 22 pages 1376996, I. » 101. On February 15, the shuttle is replacing the polymer matrix 121 between the catalyst layers 200 to remove the polymer matrix 121 and the plurality of carbon nanotube bundles 122 from the catalyst layer 200. One end is flush and a flat second surface 1 202 is formed from the island. That is, the composite material layer 12 is formed as shown in Fig. 6. [0029] The method of removing the polymer matrix 121 is not limited and may be mechanical cutting, laser ablation, or die blanking. [0030] In the fifth step, the conductive layer 11 is pressed against the first surface 1201 of the composite material layer 12, and the insulating layer 13 is pressed against the second surface 1202, thereby obtaining the circuit board 10, as shown in FIG. [0031] The conductive layer 11 and the insulating layer 13 may be simultaneously pressed against the composite material layer 12, or may be laminated to the composite material layer 12 in sequence. [0032] Before or after the conductive layer 11 is pressed against the first surface 1201, a step of forming the conductive pattern 111 on the conductive layer 11 is further included. The step of forming the conductive layer 11 into the conductive pattern 111 can be realized by an image transfer method and an etching process. [0033] Before or after the insulating layer 13 is pressed against the second surface 1202, the receiving hole 130 may be formed at a predetermined position of the insulating layer 13 by mechanical drilling, laser hole burning or chemical etching. For housing and embedding package components. Therefore, one end of the carbon nanotube bundle 122 can be electrically connected to the conductive layer 11 and the other end can be exposed from the receiving hole 130, and the electrical connection between the package member disposed in the receiving hole 130 and the conductive layer 11 can be conveniently realized. [0034] Please refer to FIG. 7, the technical solution further provides a circuit board package structure 1, which comprises a package component 14, a package resin 15, and a circuit board as shown in FIG. 1 10 097 135 Π 编号 删 第 第 第 第22 pages 1013055705-0 1376996 1101 0Z 15th nuclear replacement 100 [0035] The package component 14 is a device for implementing a specific processing function, which can be an integrated circuit chip * can also be a capacitive inductance component * For memory or other devices. The package component 14 has a plurality of conductive terminals 141 for electrically connecting with other electronic components or circuit boards. [0036] In this embodiment, the package components 14 are buried in the insulation by the encapsulation resin 15. In the receiving hole 130 of the layer 13, the shape and the number of the plurality of conductive terminals 141 correspond to the shape and the number of the conductive contacts 1112. Each of the conductive terminals 141 is electrically connected to a conductive contact |1112 by one or a plurality of carbon nanotube bundles 122. [0037] Since the plurality of carbon nanotube bundles 122 are insulated from each other, the conduction between the plurality of conductive terminals 141 and the plurality of conductive contacts 1112 can be made one-to-one, and the remaining portions of the package component 14 except the plurality of conductive terminals 141 are The protective layer is covered and insulated to ensure proper transmission and processing of signals between the package component 14 and the circuit board 10. [0038] Of course, if the package component 14 has only one conductive terminal 141, the composite material layer 12 only needs to include a carbon nanotube bundle 122 to achieve electrical connection between the conductive terminal 141 and the conductive layer 11. Referring to FIG. 8 , the circuit board package structure 2 provided by the second embodiment of the present invention is substantially the same as the circuit board package structure 1 provided by the first embodiment, and the difference is that the circuit board package structure 2 is further A thermally conductive layer 26 is included. The heat conducting layer 26 is a thin layer of material having good thermal conductivity, which may be a metal material layer, a composite material layer, or other material layers. In this embodiment, the heat conducting layer 26 is of the same structure as the composite material layer 22, 09713517# single number A 〇 101 page 10 / total 22 pages 1013055705-0 1376996 » · year February 15g_giE_g layer 'set in the insulating layer 23 is away from the composite layer 22 and is in contact with the & edge layer 23. Thus, the heat dissipated by the package component 24 can be quickly dissipated to the outside by the plurality of carbon nanotube bundles 262 in the thermally conductive layer 26. Referring to FIG. 9, the circuit board package structure 3 provided by the third embodiment of the present invention is substantially the same as the circuit board package structure 2 provided by the second embodiment. The circuit board package structure 3 further includes - metal substrate Μ. The metal substrate 37 may be made of a material having good thermal conductivity such as copper or aluminum 4 and disposed on the side of the heat conducting layer 36 away from the insulating layer 33 and in contact with the heat conducting layer 36. Thereby, the heat radiated from the package member 34 can be quickly conducted to the metal substrate 37 by the plurality of carbon nanotube bundles 362 in the heat conduction layer 36, and is quickly dissipated to the outside by the metal substrate 37. That is, the metal substrate 37 can further accelerate the heat dissipation rate of the package member 34. [0041] Referring to FIG. 1 , the circuit board package structure 4 provided by the fourth embodiment of the present invention is substantially the same as the circuit board package structure 1 provided by the first embodiment, and the difference is that the circuit board package structure 4 A double-sided circuit board 48 is also included. The double-sided circuit board 48 is disposed on the side of the insulating layer 43 away from the composite material layer 42 and is in contact with the insulating layer 43. The double-sided circuit board 48 includes a first conductive wiring layer 481, a second conductive wiring layer 482, and a resin layer 483 disposed between the first conductive wiring layer 481 and the second conductive wiring layer 482. [0042] The circuit board package structure 4 further has a via hole 401 for electrically conducting the conductive layer 41 and the double-sided circuit board 48. In this embodiment, the via hole 401 is a via hole penetrating through the conductive layer 41, the composite material layer 42, the insulating layer 43, and the double-sided circuit board 48. [0043] Of course, the circuit board package structure 4 includes a double-sided 1013055705-0 09713517# single number A0101 page 11 / a total of 22 pages 1376996 101. February 15th nuclear replacement page as shown in this embodiment The circuit board 48 can also include a single-sided circuit board or a multi-layer circuit board. The heat of the package component 44 can be more effectively dissipated by the composite material layer 42 and the electrical conduction between the package component 44 and the conductive layer 41 can be realized. . [0044] Compared with the prior art, the circuit board and the circuit board package structure of the present technical solution have a composite material layer, the composite material layer includes a carbon nanotube bundle, and one end of the carbon nanotube bundle is in contact with the conductive layer, and the other end Exposed from the receiving hole of the insulating layer, the carbon nanotube bundle in the composite layer can electrically conduct the conductive layer and the package component embedded in the insulating layer receiving hole, and can conduct the heat of the package component to the conductive layer faster. Accelerate the dissipation of heat. [0045] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0046] FIG. 1 is a schematic diagram of a circuit board provided by a first embodiment of the present technical solution. [0047] FIG. 2 is a schematic view of a substrate provided by a first embodiment of the present technical solution. 3 is a schematic view showing the formation of a catalyst layer on a substrate according to a first embodiment of the present technical solution. 4 is a schematic view showing the growth of a plurality of carbon nanotube bundles on a catalyst layer according to a first embodiment of the present technical solution. 5 is a schematic view showing a gap between a polymer matrix filled with a plurality of carbon nanotubes according to a first embodiment of the present technical solution. 1013055705-0 09713517^Single number A〇101 Page 12 of 22 101. February 15th Nuclear replacement page 1376996

*. I*. I

[0051] 圖6為本技術方案第一實施例提供之去除基摩與催化劑層 之示意圖。 [0052] 圖7為本技術方案第一實施例提供之包括如圖1所示之電 路板之電路板封裝結構之示意圖。 [0053] 圖8為本技術方案第二實施例提供之電路板封裝結構之示 意圖® [0054] 圖9為本技術方案第三實施例提供之電路板封裝結構之示 意圖。 [0055] 圖10為本技術方案第四實施例提供之電路板封裝結構之 示意圖。 【主要元件符號說明】 [0056] 電路板:10 [0057] 導電層:11、41 [0058] 複合材料層:12、22、42 · φ [0059]絕緣層:13、23、33、43 [0060] 導電圖形:111 [0061] 導電線路:1111 [0062] 導電接點:1112 [0063] 第一表面:1201 [0064] 第二表面:1202 [0065]收容孔:130 1013055705-0 單編號A〇101 第13頁/共22頁 1376996 101年02月15日核正替換頁 [0066] 聚合物.基體:121 [0067] 奈米碳管束:122、262、362 [0068] 基底:100 [0069] 催化劑層:200 [0070] 封裝元.件:14、24、34、44 [0071] 導電端點:141 [0072] 封裝樹脂:156 is a schematic view showing the removal of a base and a catalyst layer according to a first embodiment of the present technical solution. FIG. 7 is a schematic diagram of a circuit board package structure including the circuit board shown in FIG. 1 according to the first embodiment of the present technical solution. 8 is a schematic diagram of a circuit board package structure according to a second embodiment of the present invention. [0054] FIG. 9 is a schematic diagram of a circuit board package structure according to a third embodiment of the present technology. 10 is a schematic diagram of a circuit board package structure according to a fourth embodiment of the present technology. [Main component symbol description] [0056] Circuit board: 10 [0057] Conductive layer: 11, 41 [0058] Composite material layer: 12, 22, 42 · φ [0059] Insulation layer: 13, 23, 33, 43 [ 0060] Conductive pattern: 111 [0061] Conductive line: 1111 [0062] Conductive contact: 1112 [0063] First surface: 1201 [0064] Second surface: 1202 [0065] Receiving hole: 130 1013055705-0 Single number A 〇101 Page 13 of 22 1376996 February 15, 2011 Nuclear replacement page [0066] Polymer. Substrate: 121 [0067] Nano carbon tube bundle: 122, 262, 362 [0068] Substrate: 100 [0069] Catalyst layer: 200 [0070] Package element. Pieces: 14, 24, 34, 44 [0071] Conductive end point: 141 [0072] Encapsulation resin: 15

[0073] 導熱層:26、36 [0074] 金屬基板:37 [0075] 雙面電路板:48 [0076] 第一導電線路層:481 [0077] 第二導電線路層:482 [0078] 樹脂層:483 [0079] 導孔:401 1013055705-0 第14頁/共22頁Thermal conductive layer: 26, 36 [0074] Metal substrate: 37 [0075] Double-sided circuit board: 48 [0076] First conductive wiring layer: 481 [0077] Second conductive wiring layer: 482 [0078] Resin layer :483 [0079] Guide hole: 401 1013055705-0 Page 14 of 22

Claims (1)

101年.02月15日核正替换頁 1376996 ♦ » 七、申請專利範圍: 1 . 一種電路板,其依次包括導電層、複合材料層以及絕緣層 ,該絕缘層具有一收容孔,該複合材料層包括聚合物基體 以及至少一設置於聚合物基體中之奈米碳管束,該奈米碳 管束包括一根奈米碳管或多根平行排列之奈米碳管,該奈. 米碳管束之一端與導電層電連接,另一端從絕缘層之收容 孔露出。 2. 如申請專利範圍第1項所述之電路板,其中,該複合材料 層具有相對之第一表面·與第二表面,該第一表面與導電層 接觸,該第二表面與絕緣層接觸,該奈米碳管束之延伸方 向與第一表面之夾角為80〜100度之間。 3. 如申請專利範圍第2項所述之電路板,其中,該奈米碳管 束之一端突出於第一表面或與第一表面相齊平,另一端突 出於第二表面或與第二表面相齊平。 4 .如申請專利範圍第1項所述之電路板,其中,該複合材料 層包括複數奈米碳管束,該複數奈米碳管束成陣列狀彼此 絕緣地設置於聚奋物基體中。 5 . —種電路板封裝結構,其包括封裝元件以及如申請專利範 圍第1項所述之電路板,該封裝元件設置於絕緣層之收容 孔,並藉由奈米碳管束與導電層電連接。 6. 如申請專利範圍第5項所述之電路板封裝結構,其中,該 導電層具有導電接點,該封裝元件具有導電端點,該導電 端點藉由奈米碳管束與導電接點對應連接。 7. 如申請專利範圍第5項所述之電路板封裝結構,其中,該 電路板封裝結構還包括一導熱層,該導熱層設置於絕緣層 09而1#單職删1 第15頁/共22頁 1013055705-0 1376996 101年02月15日核正替換頁> 遠離複合材料層之一側,且與絕緣層接觸。 8. 如申請專利範圍第7項所述之電路板封裝結構,其中,該 電路板封裝結構還包括一金屬基板,該金屬基板設置於導 熱層遠離絕緣層之一側,且與導熱層接觸。 9. 如申請專利範圍第5項所述之電路板封裝結構,其中,該 電路板封裝結構還包括一單面電路板、雙面電路板或多層 電路板,該單面電路板、雙面電路板或多層電路板設置於 絕緣層遠離複合材料層之一側,與絕緣層接觸,並藉由導 孔與導電層電導通。 10 . —種電路板,包括導電層、複合材料層以及絕緣層,所述 複合材料層具有相對之第一表面與第二表面,所述第一表 面與導電層接觸,所述第二表面與絕緣層接觸,複合材料 層包括聚合物基體以及設置於聚合物基體之奈米碳管束, 所述奈米碳管束包括一根奈米碳管或多根平行排列之奈米 碳管,所述奈米碳管束之一端與第一表面相齊平,另一端 與第二表面相齊平。 11 . 一種電路板封裝結構,包括封裝元件與電路板,所述封裝 φ 元件具有導電端點,所述電路板依次包括導電層、複合材 料層以及絕緣層,所述導電層具有導電接點,所述絕緣層 用於埋設封裝元件,所述複合材料層包括聚合物基體以及 設置於聚合物基體之奈米碳管束,所述奈米碳管束包括一 根奈米碳管或多根平行排列之奈米碳管,所述奈米碳管束 用於導通封裝元件之導電端點與導電層之導電接點。 0971351?#單编號 A〇101 第16頁/共22頁 1013055705-0101. February 15th, nuclear replacement page 1376996 ♦ » VII, the scope of application for patents: 1. A circuit board, which in turn comprises a conductive layer, a composite material layer and an insulating layer, the insulating layer has a receiving hole, the composite material The layer comprises a polymer matrix and at least one bundle of carbon nanotubes disposed in the polymer matrix, the bundle of carbon nanotubes comprising a carbon nanotube or a plurality of carbon nanotubes arranged in parallel, the carbon nanotube bundle One end is electrically connected to the conductive layer, and the other end is exposed from the receiving hole of the insulating layer. 2. The circuit board of claim 1, wherein the composite material layer has a first surface opposite to the second surface, the first surface is in contact with the conductive layer, and the second surface is in contact with the insulating layer The angle between the extending direction of the carbon nanotube bundle and the first surface is between 80 and 100 degrees. 3. The circuit board of claim 2, wherein one end of the carbon nanotube bundle protrudes from the first surface or is flush with the first surface, and the other end protrudes from the second surface or the second surface Straight together. 4. The circuit board of claim 1, wherein the composite layer comprises a plurality of carbon nanotube bundles, the plurality of carbon nanotube bundles being arranged in an array in insulation with each other in the matrix. A circuit board package structure comprising a package component and a circuit board as described in claim 1, wherein the package component is disposed in a receiving hole of the insulating layer and electrically connected to the conductive layer by a bundle of carbon nanotubes. 6. The circuit board package structure of claim 5, wherein the conductive layer has a conductive contact, the package component has a conductive end point, and the conductive end point is connected to the conductive contact by a carbon nanotube bundle . 7. The circuit board package structure of claim 5, wherein the circuit board package structure further comprises a heat conducting layer disposed on the insulating layer 09 and 1# single job deletion 1 page 15 / total 22 pages 1013055705-0 1376996 February 15, 2011 Nuclear replacement page > One side away from the composite layer and in contact with the insulation layer. 8. The circuit board package structure of claim 7, wherein the circuit board package structure further comprises a metal substrate disposed on a side of the heat conductive layer away from the insulating layer and in contact with the heat conductive layer. 9. The circuit board package structure of claim 5, wherein the circuit board package structure further comprises a single-sided circuit board, a double-sided circuit board or a multi-layer circuit board, the single-sided circuit board and the double-sided circuit The board or the multi-layer circuit board is disposed on a side of the insulating layer away from the composite material layer, is in contact with the insulating layer, and is electrically connected to the conductive layer through the via hole. 10 . A circuit board comprising a conductive layer, a composite material layer and an insulating layer, the composite material layer having opposite first and second surfaces, the first surface being in contact with the conductive layer, the second surface being In contact with the insulating layer, the composite layer comprises a polymer matrix and a bundle of carbon nanotubes disposed on the polymer matrix, the bundle of carbon nanotubes comprising a carbon nanotube or a plurality of carbon nanotubes arranged in parallel, the naphthalene One end of the carbon tube bundle is flush with the first surface, and the other end is flush with the second surface. 11. A circuit board package structure comprising a package component and a circuit board, the package φ component having conductive terminals, the circuit board comprising a conductive layer, a composite material layer and an insulating layer in sequence, the conductive layer having conductive contacts, The insulating layer is used for embedding a package component, the composite material layer comprising a polymer matrix and a bundle of carbon nanotubes disposed on the polymer matrix, the bundle of carbon nanotubes comprising a carbon nanotube or a plurality of parallel arrays The carbon nanotube tube is used to conduct conductive contacts of the conductive end of the package component and the conductive layer. 0971351?#单号 A〇101 Page 16 of 22 1013055705-0
TW97135173A 2008-09-12 2008-09-12 Printed circuit board and packaging structure having the same TWI376996B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97135173A TWI376996B (en) 2008-09-12 2008-09-12 Printed circuit board and packaging structure having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97135173A TWI376996B (en) 2008-09-12 2008-09-12 Printed circuit board and packaging structure having the same

Publications (2)

Publication Number Publication Date
TW201012333A TW201012333A (en) 2010-03-16
TWI376996B true TWI376996B (en) 2012-11-11

Family

ID=44828947

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97135173A TWI376996B (en) 2008-09-12 2008-09-12 Printed circuit board and packaging structure having the same

Country Status (1)

Country Link
TW (1) TWI376996B (en)

Also Published As

Publication number Publication date
TW201012333A (en) 2010-03-16

Similar Documents

Publication Publication Date Title
CN101662894B (en) Encapsulating base plate and encapsulating structure
CN101668383B (en) Circuit board and circuit board package structure
US11051391B2 (en) Thermally highly conductive coating on base structure accommodating a component
US20180158753A1 (en) Heat dissipating structure and manufacture
CN101360387B (en) Flexible circuit board base membrane, flexible circuit board substrate and flexible circuit board
JP6221221B2 (en) Electronic component built-in substrate and manufacturing method thereof
JP5293561B2 (en) Thermally conductive sheet and electronic device
WO2014204828A2 (en) Thermal interface nanocomposite
KR20120072689A (en) The radiant heat circuit board and the method for manufacturing the same
JP2009004584A (en) Module with built-in component and its manufacturing method
US20110214913A1 (en) Electro device embedded printed circuit board and manufacturng method thereof
KR100962369B1 (en) Printed Circuit Board and Manufacturing Method Thereof
CN102143652B (en) Circuit board
TWI376996B (en) Printed circuit board and packaging structure having the same
TWI331488B (en) Printed circuit board and fabrication method thereof
JP2008091603A (en) Buildup wiring board
CN111092023B (en) Package substrate and manufacturing method thereof
US20200329555A1 (en) Component Carrier Comprising a Double Layer Structure
CN107743341A (en) Improve the printed wiring board and its manufacture method of embedded resistors reliability
TWI419274B (en) Packaging substrate and packaging structure
US11553602B2 (en) Method for manufacturing circuit board with heat dissipation function
US11545412B2 (en) Package structure and manufacturing method thereof
JP2011166029A (en) Wiring board, electronic device using the wiring board, and method of manufacturing the wiring board
TWI381784B (en) Printed circuit board
CN211982206U (en) High heat conduction embedded resistance type printed circuit board

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees