TWI375310B - Semiconductor chip having bumps on chip backside, its manufacturing method and its applications - Google Patents
Semiconductor chip having bumps on chip backside, its manufacturing method and its applications Download PDFInfo
- Publication number
- TWI375310B TWI375310B TW097116953A TW97116953A TWI375310B TW I375310 B TWI375310 B TW I375310B TW 097116953 A TW097116953 A TW 097116953A TW 97116953 A TW97116953 A TW 97116953A TW I375310 B TWI375310 B TW I375310B
- Authority
- TW
- Taiwan
- Prior art keywords
- bump
- semiconductor wafer
- pads
- wafer structure
- conductive material
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16135—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/16145—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Wire Bonding (AREA)
Description
1-375310 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種半導體裝置,特別係有關於一 種凸塊在晶背之半導體晶片構造、其製造方法及其應 用〇 【先前技街】1-375310 IX. Description of the Invention: [Technical Field] The present invention relates to a semiconductor device, and more particularly to a semiconductor wafer structure in which a bump is on a crystal back, a method of manufacturing the same, and an application thereof. 】
按’目刚主要應用於半導體晶X至線路載板(或印刷 電路板)的電性連接方式大致有打線接合(wire bonding) 與覆晶接合(fliP chip bonding)二種,此二種方法均廣泛 地應用於半導體構裝之用,並各自佔有一席之地,但各 有其缺點及其限制。 打線接合是將晶片主動面朝上(遠離線路載板)的型 態設置於線路載板’再以一種可彎折之細金屬線(例如 金線、銅線或其合金線),使晶片上的銲墊和線路載板 上導電線路的連接墊相連接,藉以將晶片之電性訊號傳 輸到線路載板,再對外傳導。然而,此種接合方式有銲 墊數的限制,&法達到高1/〇數需求,並且也無法應用 於面矩陣排列(ai*ea a”ay)I/()之半導體日日日片。同時,由 於以細金屬線作連接及右妨且+u E + 疋丧及有較長之連接長度,會不利於高 頻之訊號傳輸。 而覆晶接合是預先在晶片 (bump),以晶片主動面翻轉(朝向線 於線路載板。然而’覆晶接合通常 主動面接合有金屬凸塊 路載板)的型態設置 會產生可靠性的問 題,由於晶片 與線路載板間的熱膨脹係數(CTE, 13^5310 coefficient of thermal expansion)不同會 件在熱循環後,因晶片與線路載板的擴張I異 凸塊承受應力而造成連接失效,稱之為 面According to the electrical connection method of the semiconductor crystal X to the line carrier (or printed circuit board), there are two types of wire bonding and fliP chip bonding. Widely used in semiconductor construction, and each has its own place, but each has its own shortcomings and limitations. Wire bonding is performed by placing the active side of the wafer face up (away from the line carrier) on the line carrier' and then by bending a thin metal wire (such as gold wire, copper wire or alloy wire thereof) onto the wafer. The solder pads are connected to the connection pads of the conductive lines on the line carrier board, so that the electrical signals of the chips are transmitted to the line carrier board and then transmitted to the outside. However, this type of bonding has a limitation on the number of pads, and the & method achieves a high 1/turn requirement, and cannot be applied to the semiconductor matrix of the face matrix arrangement (ai*ea a"ay I/(). At the same time, due to the connection of the thin metal wire and the right and +u E + 疋 and a long connection length, it will be detrimental to the high-frequency signal transmission. The flip-chip bonding is pre-slide on the The active surface of the wafer is flipped (toward the line to the line carrier. However, the type setting of the flip chip bonding usually has the metal bump carrier board attached to the active surface) creates reliability problems due to the thermal expansion coefficient between the wafer and the line carrier. (CTE, 13^5310 coefficient of thermal expansion) After the thermal cycling, the joints fail due to the expansion of the wafer and the line carrier.
裝配等製程,相對地設備投資很大,成本較高 凸塊主要是金凸塊與錫鉛凸塊,在製造方法與接_ 皆不相同,然皆為金屬材質’在長時間的應力作用 導致金屬疲勞進而造成凸塊斷裂的問題為不可避免 我國發明專利證書號第1293499號「立體式# 、对裝結 構及其製造方法」’揭示一種晶背具有凸塊之半導體曰Assembly and other processes, relatively large equipment investment, high cost bumps are mainly gold bumps and tin-lead bumps, in the manufacturing method and connection _ are not the same, but all of the metal material 'in the long-term stress caused The problem of metal fatigue and consequent bump rupture is inevitable. China Invention Patent No. 1293499 "Stereotype #, facing structure and its manufacturing method" reveals a semiconductor with bumps on the back.
得 巢 酉己 元 使 金 屬 係 數 片 < 主 動 欵 晶 片 的 含 形 成 鉾 成 型 及 〇 前 的 拯 合 方 式 作 用 下 5 片,可進行多晶片堆疊。晶片設有貫穿孔,孔壁依序形 成有一絕緣層以及一導電層,孔内並以銲料填滿,鮮料 更電性連接至晶片銲墊。移除晶片背面而使孔内複合金 屬露出’以形成貫穿晶片並突出於晶背之金屬凸塊。由 於晶片之半導體材質與金屬凸塊之銲料兩者在熱膨脹 係數上並不匹配,在高溫時金屬凸塊的體積膨脹遠大於 晶片孔的膨脹擴大,導致孔内產生擠壓的熱應力,一旦 造成絕緣層的裂痕則會有漏電流的風險,特別是金屬凸 塊貫穿晶片比起傳統僅突設晶片的金屬凸塊會有更大 的體積,晶片與凸塊之間的熱應力的問題會變成更加嚴It is possible to carry out multi-wafer stacking by using the 巢 主 酉 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The wafer is provided with through holes, and the walls of the holes are sequentially formed with an insulating layer and a conductive layer, and the holes are filled with solder, and the fresh materials are more electrically connected to the wafer pads. The back side of the wafer is removed to expose the composite metal in the hole to form a metal bump that penetrates the wafer and protrudes from the crystal back. Since the semiconductor material of the wafer and the solder of the metal bump do not match in thermal expansion coefficient, the volume expansion of the metal bump is much larger than the expansion and expansion of the wafer hole at a high temperature, resulting in thermal stress of extrusion in the hole, once caused Cracks in the insulating layer may have a risk of leakage current. In particular, the metal bumps penetrate the wafer and have a larger volume than the conventional metal bumps that only protrude from the wafer. The problem of thermal stress between the wafer and the bumps becomes More strict
6 1375310 【發明内容】 有鑒於此,本發明之主要目的係在於提供一種凸塊 在晶背之半導體晶片構造,能達成晶片與凸塊之間為零 應力並且避免外來應力直接作用於晶片主動面,具有電 性傳導路徑短以及晶片薄化之功效。 本發明之次一目的係在於提供一種凸塊在晶背之半 導體晶片構造之製造方法’凸塊的形成整合於晶圓製 程’具有節省凸塊之金屬用量與簡化凸塊製程的功效。 本發明之另一目的係在於提供一種凸塊在晶背之半 導體晶片構造之應用,能應用於高密度多晶片堆疊,防 止沖線並達成堆疊產品薄化的功效。 本發明的目的及解決其技術問題是採用以不技術方 案來實現的。依據本發明所揭示之一種凸塊在晶背之半 導體晶片構造,該晶片構造主要包含—半導體基板。該 半導體基板’其係具有一主動表面與—背面其特徵在 於,該背面上一體形成有複數個與該半導體基板相同材 質的凸塊主體’並在該些凸塊主體上形成導電材料。 本發明的目的及解決其技術問題還可採用以下技術 措施進一步實現》 在前述之凸塊在晶背之半導體晶片構造中,可另包 含有複數個銲墊,其係設置於該主動表面並電性連接至 該導電材料。 在前述之凸塊在晶背之半導體晶片構造中,該些銲 塾係可對準於該些凸塊主體。 7 1375310 在前述之凸塊在晶背之半導體晶片構造中,可另包 含有複數個導電柱,其係貫穿該半導體基板與該些凸塊 主體,以連接該些銲墊與該導電材料。 在前述之凸塊在晶背之半導體晶片構造中,可另包 含一鈍化層,其係形成於該主動表面上。 在前述之凸塊在晶背之半導體晶片構造中,該鈍化 層係可具有複數個開口,以顯露該些銲墊。 在前述之凸塊在晶背之半導體晶片構造中,可另包 含一介電層,其係形成在該些凸塊主體與該導電材料之 間。 在前述之凸塊在晶背之半導體晶片構造中,該導電 材料係可為一金屬層。 在前述之凸塊在晶背之半導體晶片構造中,該導電 材料之金屬層係可為金層,並在該些銲墊上形成一錫 層。 在前述之凸塊在晶背之半導體晶片構造中,可另包 含有一異方性導電膠膜,其係形成於該主動表面上。 在前述之凸塊在晶背之半導體晶片構造中,該導電 材料係可為銲料。 在前述之凸塊在晶背之半導體晶片構造中,該些凸 塊主體之高度係可概約等於或大於該半導體基板之厚 度。 在前述之凸塊在晶背之半導體晶片構造中,該些凸 塊主體係可具有一尺寸小於該些銲墊之凸起平面。 8 1375310 在前述之凸塊在晶背之半導體晶片構造中,可另包 a有複數個0日者銲塾,其係設置於該些凸塊主體之該凸起平 面與該導電材料之間並位置對應於該些銲墊。 本發明還揭示適用於前述的凸塊在晶背之半導體晶 片構造之製造方法,主要步驟包含:首先,提供一半導 體基板,其係具有一主動表面與一未薄化背面。接著, 選擇性蝕刻該半導體基板之該未薄化背面,以形成一使 該半導體基板厚度減少之薄化背面,並同時在該背面上 一體形成有複數個與該半導體基板相同材質的凸塊主 體。最後’形成導電材料於該些凸塊主體上。 本發明另還揭示適用於前述的凸塊在晶背之半導體 晶片構造之晶片堆疊組合構造,其係包含複數個上述凸塊 在晶背之半導體晶片構造以及一線路载板,其中該些 凸塊在BB 4之半導體晶片構造係相互堆疊並設置於該 線路載板上。 由以上技術方案可以看出,本發明之凸塊在晶背之 半導體晶片構造、其製造方法以及其應用,具有以下優 點與功效: 一、 藉由凸塊主體係與半導體基板相同材質並且突出於 晶片之背面’能達成晶片與凸塊之間為零應力並且 避免外來應力直接作用於晶片主動面’具有電性傳 導路徑短以及晶片薄化之功效° 二、 利用晶圓製程在晶片背面進行選擇性蝕刻以形成半 導體材質之凸塊主體,藉以遠成節省凸塊之金屬用 9 1-375310 重、凸塊製作整合於晶圓製程以簡化凸塊製程的功 效。 二、利用晶片之鮮墊係對準於半導體材質之凸塊主體並 '導電枚貫穿該半導體基板與該些凸塊主體,使得 塊在曰曰老之半導體晶片構造能應用於高密度多 b曰片堆疊,防止沖線並達成堆疊產品薄化的功效。 【實施方式]6 1375310 SUMMARY OF THE INVENTION In view of this, the main object of the present invention is to provide a semiconductor wafer structure in which a bump is formed on a crystal back, which can achieve zero stress between the wafer and the bump and prevent external stress from directly acting on the active surface of the wafer. It has the effect of short electrical conduction path and thinning of the wafer. A second object of the present invention is to provide a method for fabricating a semiconductor wafer structure in which a bump is formed on a crystal back. The formation of bumps integrated into a wafer process has the effect of saving the amount of metal of the bumps and simplifying the bump process. Another object of the present invention is to provide an application of a bump in a semiconductor wafer structure of a crystal back, which can be applied to high-density multi-wafer stacking, preventing punching and achieving the effect of thinning a stacked product. The object of the present invention and solving the technical problems thereof are achieved by using a non-technical solution. According to the present invention, a bump is formed on a semiconductor wafer of a crystal back, and the wafer structure mainly comprises a semiconductor substrate. The semiconductor substrate 'haves an active surface and a back surface characterized by integrally forming a plurality of bump bodies ' of the same material as the semiconductor substrate on the back surface and forming a conductive material on the bump bodies. The object of the present invention and the technical problem thereof can be further achieved by the following technical measures. In the foregoing semiconductor wafer structure of the bump in the crystal back, the plurality of solder pads may be further included on the active surface and electrically connected. Sexually connected to the conductive material. In the foregoing semiconductor wafer structure in which the bumps are in the crystal back, the solder bumps may be aligned to the bump bodies. 7 1375310 In the foregoing semiconductor wafer structure of the bump in the crystal back, a plurality of conductive pillars may be further included, which penetrate the semiconductor substrate and the bump bodies to connect the pads and the conductive material. In the foregoing semiconductor wafer structure in which the bump is in the crystal back, a passivation layer may be further included on the active surface. In the foregoing semiconductor wafer construction in which the bumps are in the crystal back, the passivation layer may have a plurality of openings to expose the pads. In the foregoing semiconductor wafer structure in which the bumps are in the crystal back, a dielectric layer may be further included between the bump bodies and the conductive material. In the foregoing semiconductor wafer structure in which the bump is in the crystal back, the conductive material may be a metal layer. In the foregoing semiconductor wafer structure in which the bumps are in the crystal back, the metal layer of the conductive material may be a gold layer, and a tin layer is formed on the pads. In the foregoing semiconductor wafer structure in which the bump is in the crystal back, an anisotropic conductive film may be further included on the active surface. In the foregoing semiconductor wafer construction in which the bumps are in the crystal back, the conductive material may be solder. In the foregoing semiconductor wafer structure in which the bumps are in the crystal back, the height of the bump bodies may be approximately equal to or greater than the thickness of the semiconductor substrate. In the foregoing semiconductor wafer structure in which the bumps are in the crystal back, the bump main systems may have a convex plane smaller than the pads. 8 1375310 In the foregoing semiconductor wafer structure of the bump in the crystal back, a plurality of 0-day soldering pads may be additionally provided, which are disposed between the convex plane of the bump main body and the conductive material. The locations correspond to the pads. The present invention also discloses a method of fabricating a semiconductor wafer structure suitable for use in the above-described bumps. The main steps include: first, providing a half-conductor substrate having an active surface and an unthinned back surface. Then, the unthinned back surface of the semiconductor substrate is selectively etched to form a thinned back surface for reducing the thickness of the semiconductor substrate, and at the same time, a plurality of bump bodies having the same material as the semiconductor substrate are integrally formed on the back surface. . Finally, a conductive material is formed on the bump bodies. The present invention further discloses a wafer stack assembly structure suitable for the aforementioned semiconductor wafer structure of a bump in a crystal back, which comprises a plurality of semiconductor wafer structures of the bumps on the crystal back and a line carrier, wherein the bumps The semiconductor wafer structures of BB 4 are stacked on each other and disposed on the line carrier. It can be seen from the above technical solutions that the bump of the present invention has the following advantages and effects in the semiconductor wafer structure of the crystal back, its manufacturing method and its application: 1. The main material of the bump is the same material as the semiconductor substrate and protrudes from The back side of the wafer can achieve zero stress between the wafer and the bump and prevent external stress from directly acting on the active surface of the wafer. The electrical conduction path is short and the wafer is thinned. 2. The wafer process is used to select the back side of the wafer. Etching to form the bump body of the semiconductor material, thereby making the bump-saving metal 9 1-375310 heavy, bump fabrication integrated into the wafer process to simplify the bump process. 2. The fresh pad of the wafer is aligned with the bump body of the semiconductor material and the conductive piece penetrates the semiconductor substrate and the bump body, so that the block can be applied to the high density multi-b曰 in the old semiconductor wafer structure. Stacking the sheets to prevent punching and achieve the effect of thinning the stacked products. [Embodiment]
具體貫施例 半導體晶片構造說明於第1圖之截面示意圖_ 如第1圖所示,該凸塊在晶背之半導體晶片構造1〇 主要包3 —半導體基板110。該半導體基板110係具琴 主動表面111與-背面112。通常該半導體基板11 在其主動表面1丨1 . 7¾ ^ _ 〇 上係S又有積體電路元件,如微控弟 、微處理器、命橋雜 一 °體、邏輯電路、特殊應用積體電與 (如顯示器驅動雷路 勃冤路)等或上述之組合。本發明之特點4DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A semiconductor wafer structure is illustrated in a cross-sectional view of Fig. 1. As shown in Fig. 1, the bump is in a semiconductor wafer structure of the crystal back. The semiconductor substrate 110 has a piano active surface 111 and a back surface 112. Generally, the semiconductor substrate 11 has an integrated circuit component on its active surface 1 丨1. 73⁄4 ^ _ 〇, such as a micro-controller, a microprocessor, a bridge, a logic circuit, a special application integrated body. The combination of electricity and (such as display drive Raymond Burgundy) or the like. Features of the invention 4
於,該背面 112 t— <8# π 、丄 體形成有複數個與該半導體基未 110相同材質的凸塊主驴 巩主體113,該些凸塊主體113的g 度可概約相同於該半導體其 干导體基板11〇之厚度,而該些凸为 主體113的形狀係可為圓 u方柱形或多角柱形。j 且,在該些凸塊主體113The back surface 112 t - < 8 # π , the body is formed with a plurality of bump main bodies 113 of the same material as the semiconductor base 110, and the g-degrees of the bump bodies 113 may be substantially the same as The semiconductor has a thickness of the dry conductor substrate 11 ,, and the convex portions of the main body 113 may have a circular u-square column shape or a polygonal column shape. j and, in the bump bodies 113
藉 t成一導電材料120,作J 積體電路對外電極。該 鈦層、銅層、銅/…:枓12°係可為鎳,金層 該導電锡紹等。在本實施例中 守冤材枓120係為鋼/鎳/金岸By using t as a conductive material 120, it is used as a J-integrated circuit external electrode. The titanium layer, the copper layer, the copper/...: 枓12° system may be nickel, a gold layer, the conductive tin, and the like. In this embodiment, the 冤 冤 枓 120 series is steel / nickel / gold shore
度以 g°該導電材料120的;E 又从不超過該些凸塊主體^Degrees of g of the conductive material 120; E never exceeds the bump body ^
13突出於該背面"2的高Z P375310 一分之一為限’通常其厚度應在該些凸塊主體113的高 度四分之一以下,而使該些凸塊主體113佔據整個凸塊 的體積在百分之六十以上,凸—塊一能一呈-現_半導體材質 的熱膨脹係數’達成晶片與凸塊之間為霎_應力的功效。 此外,與該半導體基板110相同材質的凸塊主體113 係突出於該半導體基板110之背面112,避免外來應力 直接作用於該半導體基板110之主動表面m,並具有 ^ 電性傳導路徑短以及晶片薄化之功效。 具體而言,再如第1圖所示,該凸塊在晶背之半導 體晶片構造100可另包含有複數個銲墊130,其係設置 - 於該主動表面111並電性連接至該導電材料12〇。該些 ~塾130係為導電金屬材質’例如銘、銅、紹合金或銅 合金之中的任一者所製成,其係為該主動表面U1上積 體電路之同一表面電極。在本實施例中,該些銲塾13〇 係對準於該些凸塊主體丨丨3。 φ 此外,如第1圖所示,該凸塊在晶背之半導體晶片 構造100可另包含有複數個導電柱丨40,其係貫穿該半 導體基板no與該些凸塊主體113,以連接該些銲墊13〇 與该導電材料120。該些導電柱140的形成可利用砂通 孔製作技術實現。該凸塊在晶背之半導體晶片構造1 〇〇 可另包含一鈍化層(passivation layer)150,其係形成於 該主動表面111上,用以保護在該主動表面lu的積體 電路’達到絕緣處理。具體而言,如第1圖所示,該凸 塊在晶背之半導體晶片構造100可另包含一介電層 11 1375310 (dielectric iayer)16〇’其係形成在該些凸塊主體113與 該導電材料120之間。該介電層160係可為一氧化層戒 一絕緣沉積層。 本發明進一步說明該凸塊在晶背之半導體晶片構造 100之製造方法,以彰顯本案的功效。第2A至2F圖係 為製程中元件截面示意圖。 首先,如第2A圖所示,提供一半導體基板n〇,其 係具有一主動表面111與一未薄化背面U2,。該半導體 基板1 1 0係一體形成於一晶圓内,利用積體電路製作的 晶圓製程’該半導體基板110之該主動表面U1係已設 有複數個銲墊1 3 0。在本實施例中,該些銲墊丨3 〇係玎 排列在該半導體基板Π 0之兩相對側邊或周邊,以避免 與積體電路形成區域產生重疊。但非限定地,該些銲墊 I 3 0亦可為矩陣排列。具體而言,該主動表面丨丨i上係 可形成一鈍化層150,其材質例如為氮化發或磷矽玻璃 (PSG),該鈍化層150係可具有複數個開口 151,以顯 露該些銲墊1 30。 接著,如第2B圖所示,選擇性蝕刻該半導體基板 之該未薄化背面112’,以形成一使該半導體基板 II 〇厚度減少之薄化背面11 2,並同時在該背面11 2上 一體形成有複數個與該半導體基板11〇相同材質的凸 塊主體II3。具體而言,如第2B圖所示,進行晶圓製 程的選擇性蝕刻技術使該半導體基板11()厚度滅少至 —適當厚度’一般約為30//m至l〇〇Mm,並同時選擇 12 Ϊ375310 性银刻形成該些凸塊主體11 3,故可省去習知 程之後的凸塊製作並節省凸塊的金屬使用量。 擇性蝕刻技術,係可為曝光顯影後的化學蝕刻 刻或是反應性離子蝕刻。此外,可以省略習知 磨步驟。此外,如第2B圖所示,由於該些銲 可對準於該些凸塊主體113,該些凸塊主體1 可概等於該些銲墊130之數量,不需要另外製 線路層(RDL),減少製作成本與流程。另外, 主體113係可具有一尺寸小於該些銲墊130之 113A,在進行多個半導體基板no堆疊時,該 113A可對位接合至在另一半導體基板11〇上 墊 130。 之後,如第2C圖所示,可利用雷射或微 (MEMS bulk machining)製程於每一凸塊主體 至少一孔洞11 3B。該些孔洞11 3B係可形成於 凸塊主體11 3之中心位置,以防止溫度上昇或 過程,形成不當裂痕或斷裂❶該些孔洞113B 些凸塊主體113以及該半導體基板110並連通 墊1 3 0。但不受限地,該些孔洞11 3B係可貫 貫穿該些銲墊130。 之後,如第2D圖所示,形成一介電層16〇 塊主體113與該導電材料120之間。在本實施 介電層160更形成在該半導體基板110之該背 該些凸塊主體113之該凸起平面113A及該孔 在晶圓製 其中,選 、電聚钮 的晶背研 墊130係 13之數量 作重配置 該些凸塊 凸起平面 凸起平面 之該些銲 機電加工 1 13形成 對應該些 溫度循環 係貫穿該 到該些銲 穿或不可 在該些凸 例中,該 ’面 1 1 2、 洞 11 3 B, 13 1-375310 藉此完成該半導體基板Π〇的表面絕緣處理。該介電層 1 60係為一絕緣材料,例如二氧化矽。該介電層1 60的 形成方法係可選自於晶圓製程的矽氧化處理或是化學 汽相沉積。 之後’如第2E圖所示,形成複數個導電柱140於該 孔洞11 3B中。該些導電柱丨4〇之一端係接合至該些銲 堅130。在本實施例中,係利用電鍍(plating)或塞孔沉 φ 積方式將銅或其它導電金屬填入該孔洞113B中,以形 成該些導電柱140,但也可以利用打線、針插接等方式 形成該些導電柱14〇。 • 最後’如第2F圖所示,形成導電材料! 20於該些凸 塊主體113之凸起平面113A上,並藉由該些導電柱140 電性連接該些銲墊130至該導電材料113,使該半導體 基板110具有雙面電性導通並貫穿凸塊之特性。具體而 言,該導電材料係可為單層或複合之金屬層。在本 • 實施例中’該導電材料120之最外表面層係可為一金 層並且較佳地,如第1圖所示,可在該些薛塾13〇上 形成一錫層1 70。在應用於多晶片堆疊產品時,複數個 凸塊在晶背之半導體晶片構造1 〇〇相互堆疊,該些Λ塊 主體U3上該導電材料120可對位接合至該些銲墊13〇 上的錫層170,以達成金錫共晶。(如第3圖所示) 因此,本發明之凸塊主體113的形成方法係整合於 晶圓製程,可達降低製程複雜度及增加量產速度之功 效。 又 14 1375310 第3圖係為運用複數個如第一具體實施例所述之凸 塊在晶背之半導體晶片構造1 00堆疊組成之一種晶片 堆疊組合構造。該晶片堆疊組合構造更係包含一線路載 板1 〇。其中該些凸塊在晶背之半導體晶片構造100係 相互堆疊並設置於該線路載板10上。該線路載板1〇係 可為印刷電路板、電路薄膜、陶瓷基板、玻璃基板或是 導線架等等。在本實施例中,該線路載板10係具有複 數個連接墊11以及複數個外接墊12。在本實施例中, 該些連接墊11係設於該線路載板10之複數個凹槽13 内。而位於底層之一凸塊在晶背之半導體晶片構造100 之該些凸塊主體113係嵌陷於該線路載板10之該些凹 槽13,並且該些凸塊主體U3上的導電材料120係接 合至該些連接墊11,可降低整體多晶片堆疊之高度並 具封裝薄化之功效。具體而言,如第3圖所示,該些凸 塊在晶背之半導體晶片構造1 00之間的堆疊係以該導 電材料120與該錫層17〇的結合達到電性互連。一半導 體晶片構造100之銲墊13〇係透過該些導電枉14〇與該 導電材料120電性連接至另一半導體晶片構造1〇〇之銲 墊130,以提供較佳的垂直電性傳導路徑。並且該些凸 塊在晶背之半導體晶片構造100母須另外設置外接凸 塊亦毋須打線形成銲線,即可完成多晶片之3D立體堆 疊。 此外,由於該些凸塊主體113與該半導體基板11〇 為相同材質且-體形成’故在溫度變化時或溫度循環過 15 1-375310 程,不會有膨脹係數不匹配之問題,而達到晶片與凸塊 之間為零應力或較低應力的組成。詳細而言,如第3圖 所不,該晶片堆疊組合構造可另包含一封膠體2〇,該 封膠體20係密封該些凸塊在晶背之半導體晶片構造 1〇〇以k供適當的封裝保護以防止電性短路與塵埃污 染。此外,該晶片堆疊組合構造可另包含有複數個外接 知子30該些外接端子30係包含銲球(s〇iderbaii),其 係設置於該些外接墊12上。在不同實施例中,可利用' 錫膏、金屬球或金屬針置換銲球而成該些外接端子3〇。 依據本發明之第二具體實施例,另一種凸塊在晶背 之半導體晶片構造說明於第4圖之截面示意圖。 如第4圖所示,該凸塊在晶背之半導體晶片構造2〇〇 主要包含一半導體基板210。該半導體基板21〇係具有 一主動表面211與一背面212,該背面212上一體形成 有複數個與該半導體基板210相同材質的凸塊主體 213,並在該些凸塊主體213上形成導電材料22〇。 具體而言,如第.4圖所示,該凸塊在晶背之半導體 晶片構造200可另包含有複數個銲墊23〇以及複數個位 置對應之晶背銲墊240,該些銲墊23〇係設置於該主動 表面211’該些晶背銲墊240係形成在該些凸塊主體213 之一凸起平面213A與該導電材料22〇之間。該些凸塊主 體213之凸起平面213A之尺寸概等於或小於該些銲墊 23 0。該些薛墊230與該些晶背銲墊240係可為導電金 屬材質,例如鋁、銅、鋁合金或銅合金之中的任一者所 16 1375310 製成。 該凸塊在晶背之半導體晶片構造200可另包含一鈍 化層250,其係形成於該主動表面211上並具有複數 個開口 25卜以顯露該些銲墊23〇。一介電層26〇係形 成在該些凸塊主體213與該導電材料22〇之間。更具體 而言,該介電層2 60係形成在該些凸塊主體213與該些 晶背銲墊24〇之間,該導電材料22〇係結合於該些晶^13 one-third of the high Z P375310 protruding from the back " 2 is limited to 'the thickness should be less than a quarter of the height of the bump main bodies 113, so that the bump main bodies 113 occupy the entire bump The volume is more than 60%, and the thermal expansion coefficient of the semiconductor material can achieve the effect of 霎_stress between the wafer and the bump. In addition, the bump main body 113 of the same material as the semiconductor substrate 110 protrudes from the back surface 112 of the semiconductor substrate 110 to prevent external stress from directly acting on the active surface m of the semiconductor substrate 110, and has a short conductive path and a wafer. The effect of thinning. Specifically, as shown in FIG. 1 , the bump in the crystal back semiconductor wafer structure 100 may further include a plurality of pads 130 disposed on the active surface 111 and electrically connected to the conductive material. 12〇. The 塾130 is made of any of a conductive metal material such as indium, copper, sinter alloy or copper alloy, which is the same surface electrode of the integrated circuit on the active surface U1. In this embodiment, the solder bumps 13 are aligned to the bump bodies 3 . In addition, as shown in FIG. 1 , the semiconductor wafer structure 100 of the bump in the crystal back may further include a plurality of conductive pillars 40 extending through the semiconductor substrate no and the bump bodies 113 to connect the semiconductor wafer structure 100. The pads 13 are bonded to the conductive material 120. The formation of the conductive pillars 140 can be accomplished using sand via fabrication techniques. The bump in the crystal back semiconductor wafer structure 1 may further include a passivation layer 150 formed on the active surface 111 to protect the integrated circuit on the active surface deal with. Specifically, as shown in FIG. 1 , the bump in the crystal back semiconductor wafer structure 100 may further include a dielectric layer 11 1375310 (dielectric iayer) 16 〇 ' formed in the bump body 113 and the Between the conductive materials 120. The dielectric layer 160 can be an oxide layer or an insulating deposition layer. The present invention further illustrates the method of fabricating the semiconductor wafer structure 100 of the bumps in the crystal back to demonstrate the efficacy of the present invention. Figures 2A through 2F are schematic cross-sectional views of the components in the process. First, as shown in Fig. 2A, a semiconductor substrate n is provided having an active surface 111 and an unthinned back surface U2. The semiconductor substrate 110 is integrally formed in a wafer, and the wafer process is performed by an integrated circuit. The active surface U1 of the semiconductor substrate 110 is provided with a plurality of pads 130. In this embodiment, the pads 3 are arranged on opposite sides or the periphery of the semiconductor substrate Π 0 to avoid overlapping with the integrated circuit formation region. However, the pads I 3 0 may also be arranged in a matrix. Specifically, the active surface 丨丨i can form a passivation layer 150, such as a nitrided or phosphoric bismuth glass (PSG), and the passivation layer 150 can have a plurality of openings 151 to reveal the Pad 1 30. Next, as shown in FIG. 2B, the unthinned back surface 112' of the semiconductor substrate is selectively etched to form a thinned back surface 11 2 which reduces the thickness of the semiconductor substrate II, and simultaneously on the back surface 11 2 A plurality of bump main bodies II3 of the same material as the semiconductor substrate 11 are integrally formed. Specifically, as shown in FIG. 2B, the selective etching technique of the wafer process is performed such that the thickness of the semiconductor substrate 11 is reduced to a proper thickness of about 30//m to 1 〇〇Mm, and simultaneously The 12 Ϊ 375310 silver is selected to form the bump main bodies 11 3 , so that the bump fabrication after the conventional process can be omitted and the metal usage of the bumps can be saved. The selective etching technique can be a chemical etching or a reactive ion etching after exposure and development. Further, the conventional grinding step can be omitted. In addition, as shown in FIG. 2B, since the solders can be aligned with the bump bodies 113, the bump bodies 1 can be substantially equal to the number of the pads 130, and no additional circuit layer (RDL) is required. Reduce production costs and processes. In addition, the main body 113 may have a size 113A smaller than the pads 130. When a plurality of semiconductor substrates are stacked, the 113A may be aligned to be bonded to the pad 130 on the other semiconductor substrate 11. Thereafter, as shown in Fig. 2C, at least one hole 11 3B may be formed in each of the bump bodies by a MEMS bulk machining process. The holes 11 3B may be formed at a central position of the bump main body 113 to prevent temperature rise or process, to form improper cracks or breaks, the holes 113B, the bump main bodies 113, and the semiconductor substrate 110 and the mats 13 0. However, without limitation, the holes 11 3B may extend through the pads 130. Thereafter, as shown in Fig. 2D, a dielectric layer 16 is formed between the block body 113 and the conductive material 120. In the present embodiment, the dielectric layer 160 is further formed on the convex plane 113A of the bump body 113 of the semiconductor substrate 110 and the hole is formed in the wafer. The number of 13 is used to reconfigure the bumps of the planar raised planes of the soldering electrical machining 1 13 to form a corresponding temperature cycling system through to the soldering or not in the convex examples, the 'face 1 1 2, hole 11 3 B, 13 1-375310 This completes the surface insulating treatment of the semiconductor substrate. The dielectric layer 160 is an insulating material such as hafnium oxide. The method of forming the dielectric layer 160 can be selected from the group consisting of a germanium oxidation process or a chemical vapor deposition process in a wafer process. Thereafter, as shown in Fig. 2E, a plurality of conductive pillars 140 are formed in the holes 11 3B. One of the conductive posts 〇4〇 is bonded to the solder pads 130. In this embodiment, copper or other conductive metal is filled into the hole 113B by means of plating or plugging, to form the conductive pillars 140, but wire bonding, needle insertion, etc. may also be utilized. The conductive pillars 14 are formed in a manner. • Finally, as shown in Figure 2F, form a conductive material! 20, on the convex plane 113A of the bump body 113, and electrically connecting the pads 130 to the conductive material 113 by the conductive pillars 140, so that the semiconductor substrate 110 has double-sided electrical conduction and through The characteristics of the bumps. In particular, the electrically conductive material can be a single layer or a composite metal layer. In the present embodiment, the outermost surface layer of the conductive material 120 may be a gold layer and, preferably, as shown in Fig. 1, a tin layer 170 may be formed on the plurality of ridges 13 。. When applied to a multi-wafer stack product, a plurality of bumps are stacked on each other in a semiconductor wafer structure 1 on the back of the wafer, and the conductive material 120 is alignably bonded to the pads 13 on the block body U3. Tin layer 170 to achieve gold tin eutectic. (As shown in Fig. 3) Therefore, the method of forming the bump main body 113 of the present invention is integrated into the wafer process, which can reduce the complexity of the process and increase the mass production speed. 14 1375310 FIG. 3 is a wafer stack assembly structure using a plurality of semiconductor wafer structures 100 stacked in a crystal back as described in the first embodiment. The wafer stack assembly structure further includes a line carrier 1 〇. The bumps are stacked on the back of the semiconductor wafer structure 100 and disposed on the line carrier 10. The line carrier 1 can be a printed circuit board, a circuit film, a ceramic substrate, a glass substrate or a lead frame, and the like. In the present embodiment, the line carrier 10 has a plurality of connection pads 11 and a plurality of external pads 12. In the embodiment, the connection pads 11 are disposed in the plurality of grooves 13 of the line carrier 10. The bump bodies 113 of the semiconductor wafer structure 100 of the underlying bumps are embedded in the recesses 13 of the line carrier 10, and the conductive material 120 on the bump bodies U3 are Bonding to the connection pads 11 can reduce the height of the overall multi-wafer stack and have the effect of thinning the package. Specifically, as shown in FIG. 3, the stack of the bumps between the wafer-backed semiconductor wafer structures 100 is electrically interconnected by the bonding of the conductive material 120 and the tin layer 17A. A solder pad 13 of a semiconductor wafer structure 100 is electrically connected to the conductive material 120 through the conductive pads 14 to bond pads 130 of another semiconductor wafer structure to provide a preferred vertical electrical conduction path. . Moreover, the bumps are formed on the back of the semiconductor wafer structure 100, and the external bumps are additionally provided, and the 3D stack of the multi-chips can be completed without forming wires. In addition, since the bump main body 113 and the semiconductor substrate 11 are made of the same material and formed into a body, when the temperature changes or the temperature is cyclically 15 1-375310, there is no problem that the expansion coefficient does not match. A composition of zero or lower stress between the wafer and the bump. In detail, as shown in FIG. 3, the wafer stack assembly structure may further comprise a glue body 2, which seals the bumps in the crystal back semiconductor wafer structure to provide appropriate Package protection to prevent electrical short circuits and dust pollution. In addition, the wafer stack assembly structure may further include a plurality of external quails 30. The external terminals 30 include solder balls disposed on the external pads 12. In various embodiments, the solder terminals may be replaced by solder paste, metal balls or metal pins to form the external terminals 3〇. In accordance with a second embodiment of the present invention, another type of bump in a crystal back semiconductor wafer configuration is illustrated in cross-section in FIG. As shown in Fig. 4, the semiconductor wafer structure 2 of the bump in the crystal back mainly comprises a semiconductor substrate 210. The semiconductor substrate 21 has an active surface 211 and a back surface 212. The back surface 212 is integrally formed with a plurality of bump bodies 213 of the same material as the semiconductor substrate 210, and conductive materials are formed on the bump bodies 213. 22〇. Specifically, as shown in FIG. 4, the semiconductor wafer structure 200 of the bump in the crystal back may further include a plurality of pads 23 〇 and a plurality of positions corresponding to the crystal back pads 240, the pads 23 The crystal back pads 240 are formed on the active surface 211 ′ between the convex planes 213A of the bump bodies 213 and the conductive material 22 。. The convex planes 213A of the bump main bodies 213 are substantially equal to or smaller than the pads 23 0 . The polishing pads 230 and the crystal back pads 240 may be made of a conductive metal material such as aluminum, copper, aluminum alloy or copper alloy 16 1375310. The semiconductor wafer structure 200 of the bump in the crystal back may further comprise a passivation layer 250 formed on the active surface 211 and having a plurality of openings 25 to expose the pads 23A. A dielectric layer 26 is formed between the bump bodies 213 and the conductive material 22A. More specifically, the dielectric layer 260 is formed between the bump body 213 and the back pads 24A, and the conductive material 22 is bonded to the crystals.
銲墊240。具體而言,該導電材料22〇係可為銲料 (solder) 〇 如第4圖所示,複數個孔洞213B係貫穿對應之該些 凸塊主體213與該半導體基板21〇。在本實施例中,該 孔洞213B係更貫穿該些銲墊23〇與該些晶背銲墊 24 〇。較佳地,該導電材料 % π竹22 0係除了形成於該些凸塊 主體213之凸起平面213α卜,审·όΓ搶亡 么1 j Α上,更可填充入該些孔洞 213B並附著於該些銲墊 ΰΐ* 丨田辟Solder pad 240. Specifically, the conductive material 22 may be a solder. As shown in Fig. 4, a plurality of holes 213B are formed through the corresponding bump bodies 213 and the semiconductor substrate 21A. In this embodiment, the holes 213B extend through the pads 23 and the back pads 24 . Preferably, the conductive material % π bamboo 22 0 is formed on the convex plane 213α of the bump main body 213, and can be filled into the holes 213B and attached. For these pads ΰΐ* 丨田辟
#纪230。可利用銲料射出(s〇lder jetting)或印刷(printin )劁 教程將該導電材料220注入該 孔洞 2 1 3 B ’達到錐而番l 主J又面電性導通並貫穿凸塊的型態,以 節省凸塊製程+ 片堆疊時’該導電材料220可藉 由回焊達到上下晶#的姑 曰月的接合,並且該些凸塊主體213的 形狀不會改變。 施例揭示另一種凸塊在晶背之 圖所示,該凸塊在晶背之半導 本發明之第三具體實 半導體晶片構造。如第<; 體晶片構造3〇〇 a 主要包含—半導體基板310。該半導體 基板310係具有一太私主 主動表面311與一背面312。該背面 17 1375310 3U上-體形成有複數個與該半導體基板η"目同材質 的凸塊主體3丨3’並在該些凸塊主體313上形成導電材 料32〇。該半導體基板310與導電材料32〇大致與第一 實施例相同的半導體基110與導電材料12〇,不再細加 贅述。#纪230. The conductive material 220 can be injected into the hole by using a solder jetting or printing (printin) tutorial to reach a cone, and the main J is electrically conductive and penetrates the shape of the bump. In order to save the bump process + sheet stacking, the conductive material 220 can be joined by the reflow to the abutment of the upper and lower crystals, and the shape of the bump bodies 213 does not change. The embodiment discloses another bump shown in the back of the crystal, which is semi-conductive at the back of the crystal. The third concrete semiconductor wafer construction of the present invention. For example, the <; bulk wafer structure 3 〇〇 a mainly includes a semiconductor substrate 310. The semiconductor substrate 310 has a too small active active surface 311 and a back surface 312. The back surface 17 1375310 3U is formed with a plurality of bump main bodies 3丨3' of the same material as the semiconductor substrate, and a conductive material 32 is formed on the bump main bodies 313. The semiconductor substrate 310 and the conductive material 32 are substantially the same as the semiconductor substrate 110 and the conductive material 12A of the first embodiment, and will not be further described.
如第5圖所示,該凸塊在晶背之半導體晶片構造3〇〇 可另包含有複數個鮮塾330,其係設置於該主動表面 3U並電性連接至該導電材料32(^在一具體結構中, 該些銲墊330係對準於該些凸塊主體313。該凸塊在晶 背之半導體晶片構造300可另包含有複數個導電柱 340’其係貫穿該半導體基板31〇與該些凸塊主體313, 以連接該些銲堅330與該導電材料32〇。一鈍化層35〇 係可形成於該主動表面311上,並具有複數個開口 351’以顯露該些銲墊330。一介電層36〇係形成在該 些凸塊主體313與該導電材料32〇之間。 再如第5圖所示,較佳地,一異方性導電膠膜370 係形成於該主動表面311上。該異方性導電膠膜37〇内 含有等球徑之導電粒子371。如第6圖所示,在進行複 數個上述凸塊在晶背之半導體晶片構造3〇〇堆疊時,該 異方性導電膠膜370係形成於該些凸塊在晶背之半導 體晶片構造300之間。該些凸塊主體313可經由導電粒 子371電性連接至§亥些輝塾330,可不與該此銲塾330 直接焊接。在本實施例中’該異方性導電膠膜370係預 先形成於該半導體基板310之該主動表面311的上方, 18 1375310 其係貼附於該鈍化層350並覆蓋該些銲墊330» 因此,如第6圖所示,在一種晶片堆疊組合構造中, 複數個如上所述之凸塊在晶背之半導體晶片構造300 係相互堆疊並設置於一線路載板40上。在本實施例 中’該線路載板40上表面係具有複數個連接塾41,以 供該導電材料3 20的電性連接。在本實施例中,最上層 之凸塊在晶背之半導體晶片構造300可不須形成該異 方性導電夥膜370’而最下層之該凸塊在晶背之半導體 晶片構造300與該線路載板40之間則另需形成一異方 性導電膠膜5 0。 具體而言,垂直的電性傳導路徑係由一半導體晶片 構造300的該些銲墊33〇經由其導電材料32〇電性連接 炱位於該些凸塊主體313與另一下方半導體晶片構造 3〇〇的銲墊330之間的導電粒子371,再到下層半導體 晶片構造300的銲墊33〇。該些凸塊在晶背之半導體晶 片構造300毋須另外設置外接凸塊與毋須形成銲線即 y究成多晶片之3D立體堆疊。 因此,由於該些凸塊主體313與該半導體基板31〇 為相同材質’故在溫度變化時或溫度循環過程,不會有 膨脹係數不匹配之問題,可達到零應力或較低之應力之 接合。 以上所述’僅是本發明的較佳實施例而已,並非對 本發明作任何形式上的限制,本發明技術方案範圍當依 戶斤附申明專利範圍為準。任何熟悉本專業的技術人員可 19 1375310 利用上述揭示的技術内容作出些許更動或修飾為等同 變化的等效實施例,但凡是未脫離本發明技術方案的内 容’依據本發明的技術實質對以上實施例 ^ 吓作的任何簡 單修改、等同變化與修飾,均仍屬於本發 |月技術方案的 【圖式簡單說明】 第1圖··為依據本發明第一具體實施例的一 I凸塊在晶 • 皮之半導體晶片構造之截面示意圖。 第2…F圖:為依據本發明第-具體實施例在兮凸 塊在晶背之半導體晶片構造的以_ 面示意圖》 m 第3圖 為依據本發明第—且體眘 矛/、體實施例的利用複數個凸 塊在晶背之半導體晶片構造組成的一種晶片 堆疊組合構造之截面示意圖。 •第4圓I/據本發明第二具體實施例的-種凸塊在晶 • •背之半導體晶片構造之截面示意圖。 為依據本發明第=& & 背之束道 施例的—種凸塊在晶 +導體晶片構造之截面示意圖。 為依據本發明第二 掄 八體實施例的利用複數個凸 塊在日日背之半導艚曰 组人椹、生 造組成的晶片堆疊 組合構造之截面示意圖。 I主要元件符號說明】As shown in FIG. 5, the bump in the back of the semiconductor wafer structure 3 can further include a plurality of fresh slabs 330 disposed on the active surface 3U and electrically connected to the conductive material 32. In a specific structure, the pads 330 are aligned with the bump bodies 313. The semiconductor wafer structure 300 of the bumps may further include a plurality of conductive pillars 340' extending through the semiconductor substrate 31. And the bump bodies 313 are connected to the solder pads 330 and the conductive material 32. A passivation layer 35 can be formed on the active surface 311 and has a plurality of openings 351' to expose the pads. 330. A dielectric layer 36 is formed between the bump bodies 313 and the conductive material 32. As shown in FIG. 5, preferably, an anisotropic conductive film 370 is formed thereon. On the active surface 311. The anisotropic conductive film 37 has conductive particles 371 of equal spherical diameter. As shown in FIG. 6, when a plurality of the above bumps are stacked on the back of the semiconductor wafer structure The anisotropic conductive film 370 is formed on the semiconductor wafer structure of the bumps in the crystal back The bump body 313 may be electrically connected to the radiant particles 330 via the conductive particles 371, and may not be directly soldered to the solder bump 330. In the embodiment, the anisotropic conductive film 370 Pre-formed on the active surface 311 of the semiconductor substrate 310, 18 1375310 is attached to the passivation layer 350 and covers the pads 330. Therefore, as shown in FIG. 6, in a wafer stack assembly structure The plurality of bumps as described above are stacked on the back of the semiconductor wafer structure 300 and disposed on a line carrier 40. In the present embodiment, the upper surface of the line carrier 40 has a plurality of ports. 41, for electrically connecting the conductive material 32. In this embodiment, the uppermost bump in the crystal back semiconductor wafer structure 300 may not need to form the anisotropic conductive film 370' and the lowermost layer The bump between the crystal back semiconductor wafer structure 300 and the line carrier 40 is further required to form an anisotropic conductive film 50. Specifically, the vertical electrical conduction path is formed by a semiconductor wafer structure 300. The pads 33 are electrically conductive via The material 32 is electrically connected to the conductive particles 371 between the bump bodies 313 and the pads 330 of the other lower semiconductor wafer structure 3, and then to the pads 33 of the lower semiconductor wafer structure 300. The semiconductor wafer structure 300 in which the bump is on the crystal back does not need to be separately provided with the external bump and the need to form a bonding wire, that is, a 3D three-dimensional stack of the multi-chip. Therefore, since the bump main body 313 and the semiconductor substrate 31 are the same material Therefore, there is no problem that the expansion coefficient does not match during temperature change or temperature cycling, and zero stress or lower stress bonding can be achieved. The above description is only a preferred embodiment of the present invention, not The invention is subject to any form of limitation, and the scope of the technical solution of the present invention is subject to the scope of the patent claimed by the household. Any one skilled in the art can make some modifications or modifications to the equivalent embodiments by using the technical content disclosed above, but the content without departing from the technical solution of the present invention is implemented according to the technical essence of the present invention. Example ^ Any simple modification, equivalent change, and modification of the scare still belong to the [simplified description of the schematic] of the present invention. FIG. 1 is an I bump according to the first embodiment of the present invention. A schematic cross-sectional view of a crystal wafer structure of a crystal. 2(F): is a schematic diagram of a semiconductor wafer structure of a germanium bump in a crystal back according to a first embodiment of the present invention. FIG. 3 is a third embodiment of the present invention. A cross-sectional view of a wafer stack assembly configuration of a semiconductor wafer structure using a plurality of bumps in a crystal back. • 4th circle I/ is a schematic cross-sectional view of a semiconductor wafer structure in accordance with a second embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2 is a schematic cross-sectional view showing a bump-on-crystal/conductor wafer structure according to the invention of the first &&& A cross-sectional view of a wafer stack assembly structure using a plurality of bumps in a semiconductor package according to a second embodiment of the present invention in accordance with a second embodiment of the present invention. I main component symbol description]
10線路載板 U 13凹样 12外接墊 9 20 封膠體 , 假 3〇外接端子 20 B75310 40 線路載板 41 連接墊 5〇異方性導電膠膜 100凸塊在晶背之半導體晶片構造10 line carrier U 13 concave sample 12 external pad 9 20 sealant, false 3〇 external terminal 20 B75310 40 line carrier 41 connection pad 5〇 anisotropic conductive film 100 bump in crystal back semiconductor wafer structure
110半導體基板 112 未薄化背面 113凸塊主體 120導電材料 150鈍化層 160介電層 200凸塊在晶 21〇半導體基板 2 1 3凸塊主體 220導電材料 250鈍化層110 semiconductor substrate 112 unthinned back surface 113 bump body 120 conductive material 150 passivation layer 160 dielectric layer 200 bump in crystal 21〇 semiconductor substrate 2 1 3 bump body 220 conductive material 250 passivation layer
330銲墊 351 開口 370異方性導電膠膜 1 7 0錫層 背之半導體晶片構造 251 開口 3〇〇凸塊在晶背之半導體晶片構造 31〇半導體基板 3 1 3凸塊主體 32〇導電材料 3 50鈍化層 111主動表面 113A凸起平面 130銲墊 151 開口 211主動表面 213A凸起平面 230銲墊 112背面 113 B孔洞 140導電柱 212背面 213B孔洞 240晶背鲜塾 260介電層 3 12背面 340導電柱 360介電層 371導電粒子 21330 pad 351 opening 370 anisotropic conductive film 1 70 tin layer back semiconductor wafer structure 251 opening 3 〇〇 bump in crystal back semiconductor wafer structure 31 〇 semiconductor substrate 3 1 3 bump body 32 〇 conductive material 3 50 passivation layer 111 active surface 113A raised plane 130 pad 151 opening 211 active surface 213A raised plane 230 pad 112 back 113 B hole 140 conductive post 212 back 213B hole 240 crystal back fresh 260 dielectric layer 3 12 back 340 conductive pillar 360 dielectric layer 371 conductive particles 21
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW097116953A TWI375310B (en) | 2008-05-08 | 2008-05-08 | Semiconductor chip having bumps on chip backside, its manufacturing method and its applications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW097116953A TWI375310B (en) | 2008-05-08 | 2008-05-08 | Semiconductor chip having bumps on chip backside, its manufacturing method and its applications |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200947649A TW200947649A (en) | 2009-11-16 |
TWI375310B true TWI375310B (en) | 2012-10-21 |
Family
ID=44870383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097116953A TWI375310B (en) | 2008-05-08 | 2008-05-08 | Semiconductor chip having bumps on chip backside, its manufacturing method and its applications |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI375310B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI512862B (en) * | 2013-03-25 | 2015-12-11 | Toshiba Kk | Manufacturing method of semiconductor device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI421990B (en) * | 2009-12-11 | 2014-01-01 | Alpha & Omega Semiconductor | Wafer level chip scale package with minimized substrate resistance and process of manufacture |
CN102403217B (en) * | 2011-11-11 | 2013-11-06 | 华中科技大学 | Preparation method for ultrathin chip |
TWI514531B (en) * | 2014-01-15 | 2015-12-21 | 矽品精密工業股份有限公司 | Semiconductor structure and manufacturing method thereof |
JP2016174101A (en) | 2015-03-17 | 2016-09-29 | 株式会社東芝 | Semiconductor device and manufacturing method of the same |
-
2008
- 2008-05-08 TW TW097116953A patent/TWI375310B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI512862B (en) * | 2013-03-25 | 2015-12-11 | Toshiba Kk | Manufacturing method of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
TW200947649A (en) | 2009-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3186941B2 (en) | Semiconductor chips and multi-chip semiconductor modules | |
TW546795B (en) | Multichip module and manufacturing method thereof | |
TWI425611B (en) | Microelectronic assembly and method of fabricating a stacked microelectronic assembly | |
US7683459B2 (en) | Bonding method for through-silicon-via based 3D wafer stacking | |
TWI331391B (en) | Stackable semiconductor device and fabrication method thereof | |
US7898086B2 (en) | Semiconductor device having a package base with at least one through electrode | |
US7880285B2 (en) | Semiconductor device comprising a semiconductor chip stack and method for producing the same | |
TW201222721A (en) | Method of manufacturing semiconductor device | |
CN106328632A (en) | Electronic package and manufacturing method thereof | |
TW201248812A (en) | Flip-chip, face-up and face-down centerbond memory wirebond assemblies | |
JP2006278817A (en) | Method for forming stack structure, and method for manufacturing semiconductor device by using the forming method | |
US8164189B2 (en) | Multi-chip semiconductor device | |
US20120252165A1 (en) | Method for manufacturing a semiconductor device | |
TWI375310B (en) | Semiconductor chip having bumps on chip backside, its manufacturing method and its applications | |
WO2009146587A1 (en) | Bongding method for through-silicon-via based 3d wafer stacking | |
CN101872757A (en) | Recess chip packaging structure and laminated packaging structure using same | |
TW201025532A (en) | Chip stacked package having single-sided pads on chips | |
TW200411891A (en) | High density multi-chip module structure and manufacturing method thereof | |
JP2013021058A (en) | Manufacturing method of semiconductor device | |
TW201209987A (en) | Chip structure having TSV connections and its stacking application | |
TWI377662B (en) | Multiple flip-chip package | |
TWI355731B (en) | Chips-between-substrates semiconductor package and | |
TW201108372A (en) | Wirebond structures | |
TW201117327A (en) | Flip chip package eliminating bump and its interposer | |
TWI435434B (en) | Semiconductor packaging method to save interposer and bottom chip utilized for the same |