TWI374500B - Method to increase the compressive stress of pecvd dielectric films - Google Patents

Method to increase the compressive stress of pecvd dielectric films Download PDF

Info

Publication number
TWI374500B
TWI374500B TW096140625A TW96140625A TWI374500B TW I374500 B TWI374500 B TW I374500B TW 096140625 A TW096140625 A TW 096140625A TW 96140625 A TW96140625 A TW 96140625A TW I374500 B TWI374500 B TW I374500B
Authority
TW
Taiwan
Prior art keywords
layer
carbon
power
gas mixture
nitrogen
Prior art date
Application number
TW096140625A
Other languages
English (en)
Other versions
TW200830418A (en
Inventor
Mihaela Balseanu
Vicotr T Nguyen
Li-Qun Xia
Vladimir Zubkov
Derek R Witty
Saad Hichem M
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200830418A publication Critical patent/TW200830418A/zh
Application granted granted Critical
Publication of TWI374500B publication Critical patent/TWI374500B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3148Silicon Carbide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

1374500
九、發明說明: 【發明所屬之技術領域】 本發明的實施例一般涉及積體電 說,本發明的實施例涉及用於沉 (compressive stress) 的碳摻雜氣化梦 【先前技術】 積體電珞是由大量的(如數百萬値 體、電容器以及電阻器)組成。電晶患 場效電晶體(MOSFET)。 MOSFET包含設置在半導體基板4 汲極區之間的閘極結構。該閘極結構連 於閘極介電材料上的閘極電極。該閘相 和源極區之間形成的通道區中閉極介驾 子流,從而啟動或關閉電晶體。 MOSFET元件的效能可藉由幾種 如:降低供應電壓,降低閘極介電層纪 長度。然而,由於元件變得愈來愈小, 隔設置在半導體基板上,這些方法將變 如果採用極薄的閘極介電層,則來 (dopant)將可能穿透閘極介電層而违 極薄的閘極介電層還可能增加閘極漏1 極所消耗的功率量,且最终損壞電晶體
將元件_材料的原子晶格進行應I 路的製造。具體來 積具有壓缩應力 層之方法。 3 )元件(例如電晶 【可包括金氧半導體 ’所限定的源極區與 ί堆叠一般包含形成 k電極控制在汲極區 :層之下方的電荷載 方法進行改進,例 ]厚度,或縮短通道 且以更密集地而間 得更加困難。例如, 自閘極電極的摻質 L入其下的矽基板。 [流,而其會增加閘 〇 茫(straining)係為 5 1374500
提高元件效能之近期發展且替代性的方法。原子晶格之應 變係藉由提高半導體材料中的載體遷移率,來達到提高元 件效能的效果。元件的一層上之原子晶格可藉由在該層上 方沉積受應力(stressed )薄膜而使其應變。例如,可在閘 極電極上方沉積用作為蝕刻终止層的受應力氮化矽層,以 在電晶體的通道區中誘導應變。該受應力氮化矽層可具有 堡縮應力或拉伸應力(tensile stress)。壓縮應力層或拉伸 應力層的選擇係基於其下方元件的類型。通常,拉伸應力 層沉積在NMOS元件上方,而壓縮應力層沉積在PMOS元 件上方。觀測到Ρ Μ Ο S元件的效能隨著元件上方之氮化矽 接觸襯墊或蝕刻終止層的壓縮應力值而近似線性地提高。 儘管已經開發了具有高壓縮應力值的電漿輔助化學氣 相沉積(上旦QXDJU的氮化矽(SiN)層,但是還是需要具 有更高壓縮應力值的層,以進一步改善元件效能。 【發明内容】
本發明一般係提供形成壓縮應力氮化物層的方法。該 壓縮應力氮化物層包含矽、碳及氮,並可以是碳摻雜氮化 矽層。 在一個實施例中,提供一種沉積具有壓縮應力的雙層 薄膜之方法,其中該方法包括:在基板上沉積包含矽和碳, 並可選擇地包含氮和/或氧的初始層;以及在該初始層上沉 積包含矽、碳和氮的塊體層。該初始層是在RF功率存在 的情形下由第一氣體混合物所沉積,其中,該第一氣體混 6 1374500 合物包括:含發和碟的前堪物’並選擇性地包括氮源和/ 或氧源。該第一氣體混合物不包含氫氣。塊體層是在RF功 率存在的情形下由第二氣趙混合物所沉積,其中’該第二 氣體混合物包括一含梦及碟的前媒物、氮源以及氫氣。塊 體層之歷縮應力係介於約_0.1 GPa〜約· 1 0 GPa之間。
在另一實施例中,提供一種沉積具有壓縮應力的層之 方法,其中該方法包括:在基板上沉積包含矽、碳及氮的 初始層;以及在該初始層上沉積包含矽、碳和氮的塊體層。 該初始廣是在電菜存在的情況下’由包括—含妙及碳的前 驅物和氣源(且不包含氫氣)的第一氣體現合物所沉積。 在初始層沉積之後,電聚係持續提供,並且塊體層也是在 電裝存在的情況下進行沉積。塊體層係由包括〜 疋 含及碳 的前躁物、氮源和氫氣的第二氣體混合物所沉務 Z積。塊體層 之壓缩應力係介於約-0.1Gpa〜約·10 Gpa之間。 &另一實施例中,提供一種用於預清洗某h 社 暴板的方法。 氺包括:在電漿存在或不存在的情況下, 該方承 利用包含氮
和氫的氣體混合物以處理一基板,該基板包含〜具有化 物的上表面;以及接著在基板上沉積壓縮應力氮化物薄琪 或拉伸應力I化物薄膜。 【實施方式】 矽 約 本發明的實 、碳和氮的層 2 %到 95%之 施例提供了一 之方法。該層 間的碳摻雜氮 種沉積具有璺 可爲具有碳原 化矽層。該層 缩應力並包含 子百分比在大 的壓縮應力在 7 1374500 大約-0.1 GPa到-10 GPa之間。
該層可被用作阻障層或蝕刻终止層。第1圖是結構100 的實施例,其中該層係用作為蝕刻终止層 102。該層沉積 在位於PMOS基年區域103上方的一閘極堆疊結構上。該 閘極堆疊結構包括:一個可爲氧化物的閛極介電層 104; 位於閘極介電層104上的多晶矽層106;位於多晶矽層106 上的金屬矽化物 108 (如矽化鎳);以及位於閘極介電層 1 0 4、多晶矽層1 0 6以及金屬矽化物1 0 8側部上的間隙物 1 1 0。必須指出,該層可沉積在包含不同組成的多個層之閘 極堆疊結構上。該閘極堆疊結構位於源極1 1 2和汲極1 1 4 之間。金屬矽化物薄層 Π 6位於源極1 1 2和汲極1 1 4之頂 部上。通道區120形成於源極112和汲極114之間的PMOS 基板區域103中。該結構100還包括NMOS元件,其包括 藉由溝槽 124與PMOS基板區域103分離的NMOS基板 區域122。該NMOS元件在其上具有拉伸應力層126。
結構 100還包括位於蝕刻終止層 102和拉伸應力層 126上的前金屬介電層130。在接續的蝕刻步驟(未示出) 中,該前金屬介電層130會被蝕刻以在其中形成接觸孔, 其中蝕刻終止層1 02作為蝕刻終止之用。然後蝕刻終止層 102可被蝕刻以暴露其下的金屬矽化物,並且鎢插栓(plug ) 可被沉積在該接觸孔中。 如第1圖所示,蝕刻終止層102包含雙層:140和142。 層14 0是初始層,其厚度在大約5 A〜約5 0 0 A之間。層 142是塊體層,其厚度在大約Ι0Α〜約10000 A之間。 以下將描述一種沉積雙層薄膜的方法,如其上包含初 8 1374500 氣體混合物可進一步包括氮氣(N2)、載氣,諸如氬或 氦或氙。氣體混合物不包含添加的氫氣(只2)。氣體混合物 還可包括不含碳的矽前驅物,諸如矽烷。初始層提供阻止 氫氣或未鍵結氫滲透通過到基板的下層之層。氫氣或未鍵 結的氫滲透到作爲電晶體元件一部分的基板下層,則會使 電晶體效能下降。
在一實施例中’該含矽及碳的前驅物可爲包含矽·碳鍵 的有機矽化合物。該含矽及碳的前驅物可具有SiRiHb 結構’其中至少一個R’s是烷基,其他R,s是烷基或氫。 該含矽及碳的前驅物可是烷基矽烷、烷基胺基矽烷,或有 機珍氮院(organosilazane)。可使用的含梦及碳前驅物的 實例包括曱基矽烧(MS)、三甲基矽烧(TMS)以及四曱基 矽烷(4MS) »
該含矽及碳的前驅物還可包含氮。例如,該含矽及碳 的前驅物可爲例如烷基胺基矽炫的胺基矽烷,例如,六甲 基二矽氮烷(HMDS)、六甲基環三矽氮烷(HMCTZ)、參(二 甲胺基)矽烷(TDMAS)、肆(二甲胺基)矽烷(TDMAS) 或雙(第三丁胺基)矽烷(BTBAS)。 該含矽及碳的前驅物還可包含氧。例如,該含矽及碳 的前驅物可能包含八曱基環四矽氧烷(OMCTS)或甲基二 乙氧基矽烷(MDE0S)。 在另一實施例中,該含梦及碳的前驅物包含兩種或多 種化合物,其中至少一種化合物是含矽化合物’且其他化 合物的至少一種是含碳化合物。可使用的含碎化合物之例 子包括矽烷、二矽烷以及三甲矽烷基胺(TSA)。含碳化合 10 1374500 物可爲烷、烯或炔。可應用的含碳化合物之例子包括α -松 油稀(AT RP)、曱苯、檸檬稀(limonene)、略喃(pyran)、 環戊稀、1-甲基環戊稀以及二環庚二稀(norbornadiene)。
如上所述,初始層是在電漿存在的情況下由氣體混合 物沉積而成。電漿可藉由在該腔室施加RF功率來提供。 對於一個300 mm的基板,RF功率可在低頻(諸如如約350 kiLzJ下,而在約5 W至約 1 0 0 0 W之間的能量值下提供。 通常,該RF功率提供到腔室中的氣體分配組件或者“喷 氣頭”電極上。可選的或附加的,該RF功率可施加到腔 室中的基板支撐件上。該RF功率可以爲循環的或脈衝的, 以及連續的或非連續的。
該初始層可沉積在化學氣相沉積室或電漿辅助化學氣 相沉積腔室f ,其係藉由在RF功率存在的情形下,使包 含有機矽化合物的氣體混合物產生反應來進行。可用於沉 積該層的腔室實例包括具有 2個隔離的處理區域之 PRODUCER®腔室和DxZ®腔室,這兩個腔室都可以從加 州聖克拉拉的應用材料公司購得。此處提供的處理條件是 用於具有2個隔離處理區域的3 00mm之PRODUCER®腔 室。因此,每一個基板處理區域及基板所經歷的流速是進 入腔室的流速之一半。 爲了沉積初始層,該含矽及碳的前驅物可以約1 seem 至約50,000 seem之間的流速引入到腔室中。該氮源可以 約lsccm至約50,000 seem之間的流速引入腔室。載氣可 以約1 seem至約50,000 seem之間的流速引入腔室。氣氣 (N2)可以約1 seem至約50,000 seem之間的流速引入腔室。 11 1374500
在腔室内之基板上沉積初始層期間,該基板的溫度一 般係維持在約1 0 0° C至約5 8 0 ° C之間。在其中將初始層 沉積在基板的矽化鎳層上之實施例中,該基板的溫度一般 被維持在約480°C或更低的溫度下。然而,在其他實施例 中,該基板的溫度一般維持在約4 8 0 ° C至約5 8 0 ° C之間的 溫度下,如大於480°C直至約580°C。介於約481°C與約 580°C之間的基板溫度可藉由具有陶瓷加熱器的腔室提 供,如該PRODUCER®腔室,其可以由加州聖克拉拉的應 用材料公司購得。在任何實施例中,腔室内的壓力在約 5 mTorr (毫托)至約50Torr (托)之間。 該初始層的沉積持續足以提供厚度在約5 A至約5 0 0 A 之間的層之時間,如約15秒。 在特定的實施例中,以下處理條件可用於沉積初始 150 seem NH3' 60 seem TMS5 2000 seem Ar> 2000 seem N2,以及頻率爲350MHz的75 WRF功率,並進行15秒。
在初始層沉積以後,塊體層在同一腔室内而沉積於初 始層之上。因此,塊體層可在該腔室内而沉積在位於單一 基板支撐件上之基板的初始層上。其中在初始層沉積和塊 體層沉積之間,基板並未自基板支撐件上移除。由於初始 層以及塊體層都是在電漿存在的情況下進行沉積,並且腔 室内的電漿在初始層沉積與塊體層沉積之間並不關閉,故 對於初始層以及塊體層的沉積可以認爲是「背對背(back to back)」的電漿製程。 較佳的,在初始層沉積之後以及在塊體層沉積之前, 包括有一個過渡期,而該過渡期使電漿的不穩定性最小 12 1374500 化。在過渡期之期間,來自第一氣體混合物的氣體流持續 流到腔室中,但是可改變部分氣體的流速(如下所述)。將 在過渡期以及塊體層沉積過程中維持用於沉積初始層的基 板溫度以及腔室壓力。
該過渡期包含第一步驟,且在該第一步驟中,係在腔 室中開啟高頻RF功率。所提供之高頻RF功率在頻率13.56 MHz下爲約5 W至約3000 W之間,如約50 W。開啓該高 頻RF功率將增加腔室内之總RF功率。用於沉積初始層的 氣體混合物中之氣體流速和其他初始層處理條件(包括施 加低頻RF功率)在第一步驟中係維持之。該第一步驟可 持續約1秒。
該過渡期亦可包含一第二步驟,且在該第二步驟中, 係進一步增加高頻RF功率以及總RF功率。該高頻RF功 率係增加至約5 W到約3 0 0 0 W之間,如約1 0 5 W。該低頻 RF功率減小至約5 W到約1 000 W之間,如約30 W。在 第一氣體混合物中的一種或多種氣體之流速也在該第二步 驟中進行調整。例如:氮源流速可降低至約7 5 s c c m至約 200 seem之間,如約1 00 seem ;載氣流速可增加至約1 00 seem至約50, OOOseem之間,如約3500 seem;並且氣氣流 速可降低至約1 0 s c c m至約1 0,0 0 0 s c c m之間,如約1 0 0 0 seem »該第二步驟持續約1秒鐘。 塊體層在過渡期的第二步驟之後進行沉積。除了在塊 體層沉積過程中將氫氣引入到腔室以外,塊體層使用與該 第二步驟完結時達到的相同處理條件(包括流速與功率) 進行沉積。氫氣可以約5 s c c m至約2 0,0 0 0 s c c m之間的流 13 1374500
速引入。一般來說,塊體層由第二氣體混合物沉積形 該第二氣體混合物包括:含矽及碳前驅物、氮源、氫 以及惰性氣體(如氬、氙、氦或氮)。塊體層包含矽、 氮,並且可爲、碳摻雜的氮化矽。塊體層之沉積時間為 獲得厚度在約1 〇 A至約1 〇, 〇 〇 〇 A之間的層。 在特定實施例中,以下處理條件係用於沉積塊體 100 seem NH3 ' 60 seem TMS、3 5 00 seem H2、3 5 0 0 Ar、1 000 seem N2,頻率 13.56 kHz 下 105W 之 RF 功 以及頻率350 MHz下30 W之 RF功率,並進行156 塊體層在根據在上文描述之特定初始層沉積之後才進 積。 藉由使用含矽及碳前驅物(而非矽烷)來沉積塊® 使得塊體層除了包含碎和氣之外還包含、碳,塊體層中 鍵結氫的含量降低。第2圖示出了根據本發明之實施 從由矽烷沉積的氮化矽薄膜以及藉由使用含矽及碳的 物所沉積的碳摻雜氮化矽薄膜中去除非鍵結氫而提出 制。在碳摻雜氮化矽薄膜中,爲了從薄膜去除氫,含 碳前驅物與甲基基團的反應之活化能(Ea)相較於在 矽薄膜中用於從薄膜去除氫的矽烷與氫反應的活化能 得低。 ‘期望能減少塊體層中的非鍵結氫含量,原因在 果塊體層中的氫成分較少,則可使用較薄的初始層( 用於防止氫氣或非鍵結氫滲透至基板的下層之阻障層 薄的初始層係為期望的,因爲較薄的層允許塊體層的 應力穿過初始層而至基板的電晶體之下方通道的較 成, 氣, 碳和 足以 層: seem 率’ 秒。 行沉 【層, 之非 例, 前驅 的機 矽及 氮化 還來 於如 即, )。較 壓縮 佳傳 14 1374500 遞。 表 1示出了根據習知技術的矽烷系(SiH4-based)塊體 壓缩應力氮化物層之特性,與根據本發明之實施例的TMS 系(TMS-based)之塊體!縮應力氮化物層之特性的對比 關係。如表1所示,由包括含矽及碳前驅物的氣體混合物 所沉積的含矽、碳和氮的塊體層可形成而具有壓縮應力, 而此壓縮應力係可敵得上SiH4系氮化矽層之壓縮應力。表 1還示出與不含碳的氮化矽層相比,含矽、碳和氮的塊體 層具有期望的(即,更低的)濕式蝕刻速度(WER)。 表1 薄膜特性 SiH4系的 壓缩應力氮化物 TMS系的 壓缩應力氮化物 製程溫度(°c) 480 480 初始層厚度(A) 120 60 應力(GPa) -3.5 -3.4 沉積速度(A/min) 200 160 RI (折射率) 1.980 2.035 S i: N : H: C .; (RBS/HFS/XPS) 32:48:20:- 30:37:22:11 WER (A/min) (10 0:1 HF) 15 <3 k (介電常數) 7.5 9.0 漏電流(A / c m 在 2MV/cm) _ 1.5xlO'10 4x10-10 Vbd (MV/cm) 9.7 7.0 15 1374500
在階梯覆蓋率(step coverage )方面,該含碎、 氮之塊趙層也顯示出與 SiH4系氮化梦層可比較的階 蓋率。相對於由不含氮氣的氣體混合物以及SiH4系氮 層所沉積而成的含矽、碳和氮的層來說,將用於沉積4 碳和氮層的氣體混合物中加入氮氣可改善層的階梯 率。同時還發現在氣體混合物中加入氮氣改善了側壁 度。加入氮氣亦藉由增加該層中的NH含量以及減少 含量而降低了折射率。在氣體混合物中加入碎烧亦可 側壁粗糙度。 , 第 3圖示出用於沉積塊體層的氣體混合物之 N2/H2比率,其會導致該層中SiH和CHx含量降低以 致該層中NH含量增加。還發現用於沉積塊體層的氣 合物之 NH3/TMS 比率由 100 seem NH3/60 seem TMS 到200 seem NH3/60 seem TMS會導致該層中SiH含 低,並導致該層中NH含量增加。 此處描述的塊體層應力可藉由調節用於沉積該層 理條件而加以調整。例如,第4圖和第5圖示出了, 體層沉積期間使氫氣流速增加會提高該塊體層的壓 力。還發現氬氣流速之增加可改善薄膜均勻性,並減 塊體層的折射率。 第6圖和第》圖示出可以藉由降低分別以高頻功 級和總功率所測量的該塊體層之沉積電漿密度,而可 塊體層中得到較高的壓縮應力。 還發現將由包含 TMS的氣體混合物而沉積之塊 的沉積溫度從400°C升高至 480°C,可將該層的壓縮 礙和 梯覆 化矽 -碎、 覆蓋 粗糙 SiH 改善 升高 及導 體混 增加 量降 的處 在塊 縮應 小該 率層 以在 體層 應力 16 1374500 從·2·8 GPa增至- 3.3 GPa,而不會明顯改變塊體層的组成。 溫度的升高也可改善該側壁的粗糙度。
此處所提供的塊體層亦存在良好的熱阻。例如,由包 含TMS的氣體混合物所沉積之塊體層,且此塊體層沉積在 一基板上,而該基板在塊體層上沉積初始層之前係利用氨 水浸泡處理過,其在480°C進行退火3小時之後,未發現 塊體層與下面的梦或NiPtSi層起泡(blistering)或分層。 塊體層還顯示出對其下方的 NiPtSi層具有良好的附著 性,此可藉由膠帶測試(t a p e t e s t )加以測量,在該測試 過程中,係將膠帶貼到該層上,然後將膠帶自該層剝除, 可發現不會連同剝去該塊體層。 惟本發明雖以較佳實施例說明如上,然其並非用以限 定本發明,任何熟習此技術人員,在不脫離本發明的精神 和範圍内所作的更動與潤飾,仍應屬本發明的技術範疇。 【圖式簡單說明】
爲了使以上陳述的本發明之客個特點能夠被更加詳細 地加以理解,我們將參照實施例對以上的概述進行更加詳 細的描述,其中部分實施例在附圖中示出。然而,必須指 出,附圖只是描繪了本發明的典型實施例,因此不應被認 爲是對發明範圍的限制,本發明應承認其他等效實施例。 第1圖爲根據本發明之一實施例的具有壓縮應力層之 電晶體結構的示意性截面圊; 第2圖爲根據本發明之一實施例的在基板上沉積壓縮 應力層之示意圖以及根據習知技術沉積一層的示意圖; 17 1374500 第3圖爲紅外光譜示意圖,其示出了根據本發明之實 施例,不同N2/H2比率對壓縮應力層之組程的影響; 第4圖和第5圖爲示出了根據本發明之一實施例,不 同氫氣流速對各層之壓縮應力的影響之示意圖; 第6圖爲示出了根據本發明之實施例,不同的高頻RF 功率層級對各層之壓縮應力的影響之示意圖;
第7圖爲示出了根據本發明之實施例,包括高頻RF 功率以及低頻RF功率之總RF功率的不同層級對各層的壓 縮應力之影響的示意圖。
【主要元件符號說明】 100 結 構 102 蝕 刻 終 止 層 103 區 域 104 閘 極 介 電 層 106 多 晶 矽 層 108 金 屬 矽 化 物 110 間 隙 物 112 源 極 114 汲 極 116 金 屬 矽 化 物(薄)層 120 通 道 區 122 區 域 124 溝 槽 126 拉 伸 應 力 層 130 前 金 屬 介電層 140,142 層 18

Claims (1)

1374500 第"/ hr*"號專利案^^^月修正 十、申請專利範圍: 1. 一種沉積具有壓縮應力(compressive stress)的一雙層 薄膜之方法,包括: 在一腔室中,於一低頻射頻(RF)功率存在的情形下, 由一第一氣體混合物而在一基板上沉積包含梦和碳的一初 始層,其中該第一氣體混合物包括一含碎和碳的前驅物; 以及接著
開啟一高頻射頻功率,並於該高頻射頻功率存在的情 形下,在該初始層上由一第二氣體混合物而沉積包含矽、 碳和氮的一塊體層(bulk lay er ),其中該第二氣體混合物 包含該含矽和碳的前驅物、一氮源,以及氫氣,且該塊體 層的壓縮應力爲介於- 0.1 GPa〜-10 GPa之間。
2.如申請專利範圍第1項所述i方法,其中該含矽和碳的 前驅物係選自由烷基矽烷(alkyl silane )、烷基胺基矽烷 (alkylaminosilane)以及有機石夕氮烧(organosilazane)所 組成之群組。 3.如申請專利範圍第1項所述之方法,其中該含矽和碳的 前驅物包含一含$夕化合物,該含>5夕化合物係選自由石夕烧、 二石夕炫以及三曱石夕烧胺(trisilylamine; TSA)所組成之群 組0 19 1374500 碜的 、烯 4.如申請專利範圍第丨項所述之方法,其中該含$夕和 則驅物包含一含碟化合物,該含竣化合物係選自由户 以及炔所組成之群组。 5.如申請專利範圍第丨項所述之方法,其中該含矽和碳的 前驅物包含一含碳化合物,該含碳化合物係選自 α ·松油 烯(a-terpinene ; ATRP)、甲笨' 擰檬稀(lim〇ne 喃(pyran )、環戊烯、卜甲基環戊烯以及二環庚二烯 (norbornadiene )所組成之群組。 6.如申請專利範圍第丨項所述之方法,其中該含矽和碳的 前驅物更包含氮。 7. 如申請專利範圍第丨項所述之方法,其中該含矽和碳的 前驅物更包含氧。 8. 如申請專利範圍第丨項所述之方法,其中該含矽和碳的 前驅物包括:三甲基矽烷(TMS)、甲基矽烷(MS)、六甲 基二矽氮炫 (HMDS)、六曱基環三矽氮院(HMCTZ)、參 (二甲基胺基)石夕烧(TD.MAS )、肆(二曱基胺基)碎貌 (TDMAS )、雙(第三丁基胺基)矽烷(btBAS )或其組 合0 20 1374500 9. 如申請專利範圍第1項所述之方法,其中用於該塊體層 之沉積以及用於該初始層之沉積的該氮源包含:氨、聯胺 (n2h4)或二曱基聯胺(n2c2h8)。 10. 如申請專利範圍第1項所述之方法,其中該氧源包括: N 2 〇 或 〇 2。
11.如申請專利範圍第1項所述之方法,其中該含矽和碳的 前驅物包括:八曱基環四矽氧烷(OMCTS )或曱基二乙氧 基矽烷(MDEOS )。 1 2 ·如申請專利範圍第1項所述之方法,其中該第二氣體混 合物更包括一惰性氣體,該惰性氣體係選自由氬氣、氙氣、 氦氣和氮氣所組成之群組。
1 3.如申請專利範圍第1項所述之方法,其中該初始層之厚 度介於5 A〜500人之間。 14.如申請專利範圍第1項所述之方法,其中該塊體層之厚 度介於10A〜10,000 A之間。 15.如申請專利範圍第1項所述之方法,其中在該初始層和 該塊體層兩者的沉積過程中,該基板係設置在該腔室中的 21 1374500 一單一基板支撑件上。 16.如申請專利範圍第1項所述之方法,其中該第一氣體混 合物更包括一氮源或一氧源。 17.如申請專利範圍第1項所述之方法,其中該初始層更包 括氮或氧。
18.—種沉積具有一壓縮應力的一雙層薄膜之方法,包括: 在一腔室中,於一低頻射頻功率存在的情形下,由一 第一氣體混合物而在一基板上沉積包含梦、碟和氮的一初 始層,其中該第一氣體混合物包括一含石夕和破的前驅物以 及一氮源並且不包含氫氣; 持續該低頻射頻功率; 開啟一高頻射頻功率;以及接著
於該低頻射頻功率與該高頻射頻功率存在的情形下, 在該初始層上而由一第二氣體混合物沉積包含石夕、碳和氣 的一塊體層,其中該第二氣體混合物包含該含矽和碳的前 驅物、該氮源以及氫氣,並且該塊體層之壓縮應力係介於 -0.1 GPa 〜-10 GPa 之間。 19.如申請專利範圍第18項所述之方法,其中在該初始層 和該塊體層兩者的沉積過程中,該基板係設置在該腔室中 22 1374500 的一單一基板支撐件上。 20.如申請專利範圍第18項所述之方法,其中在該初始層 和該塊體層的沉積過程中,該基板的溫度爲 480°C或更 低。
21.如申請專利範圍第18項所述之方法,其中在該初始層 和該塊體層的沉積過程中,該基板的溫度係介於480 °C〜 5 8 0°C之間。 22.如申請專利範圍第18項所述之方法,其中該高頻射頻 功率係在該初始層的沉積和該塊體層的沉積之間開啟。 23.如申請專利範圍第18項所述之方法,其中該高頻射頻 功率於13.56MHz操作、該低頻射頻功率於350 kHz操作, 並且該射頻功率的功率層級係介於5 W〜3 0 0 0 W之間。
24.如申請專利範圍第18項所述之方法,其中該雙層薄膜 為一壓縮應力氮化物薄膜。 23
TW096140625A 2006-12-14 2007-10-29 Method to increase the compressive stress of pecvd dielectric films TWI374500B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/610,991 US7790635B2 (en) 2006-12-14 2006-12-14 Method to increase the compressive stress of PECVD dielectric films

Publications (2)

Publication Number Publication Date
TW200830418A TW200830418A (en) 2008-07-16
TWI374500B true TWI374500B (en) 2012-10-11

Family

ID=39527847

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096140625A TWI374500B (en) 2006-12-14 2007-10-29 Method to increase the compressive stress of pecvd dielectric films

Country Status (4)

Country Link
US (1) US7790635B2 (zh)
KR (1) KR100984922B1 (zh)
CN (1) CN101205607A (zh)
TW (1) TWI374500B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821082B1 (ko) * 2006-12-15 2008-04-08 동부일렉트로닉스 주식회사 반도체 소자 제조 방법
US20080293194A1 (en) * 2007-05-24 2008-11-27 Neng-Kuo Chen Method of making a P-type metal-oxide semiconductor transistor and method of making a complementary metal-oxide semiconductor transistor
US8580993B2 (en) * 2008-11-12 2013-11-12 Air Products And Chemicals, Inc. Amino vinylsilane precursors for stressed SiN films
US8242019B2 (en) * 2009-03-31 2012-08-14 Tokyo Electron Limited Selective deposition of metal-containing cap layers for semiconductor devices
US8889235B2 (en) * 2009-05-13 2014-11-18 Air Products And Chemicals, Inc. Dielectric barrier deposition using nitrogen containing precursor
US8178439B2 (en) * 2010-03-30 2012-05-15 Tokyo Electron Limited Surface cleaning and selective deposition of metal-containing cap layers for semiconductor devices
US8586487B2 (en) 2012-01-18 2013-11-19 Applied Materials, Inc. Low temperature plasma enhanced chemical vapor deposition of conformal silicon carbon nitride and silicon nitride films
CN102615068B (zh) * 2012-03-26 2015-05-20 中微半导体设备(上海)有限公司 Mocvd设备的清洁方法
US8759232B2 (en) * 2012-08-17 2014-06-24 Globalfoundries Inc. Compressive stress transfer in an interlayer dielectric of a semiconductor device by providing a bi-layer of superior adhesion and internal stress
US20160013049A1 (en) * 2013-03-14 2016-01-14 Applied Materials, Inc. Enhancing uv compatibility of low k barrier film
US9016837B2 (en) 2013-05-14 2015-04-28 Stmicroelectronics, Inc. Ink jet printhead device with compressive stressed dielectric layer
US9016836B2 (en) 2013-05-14 2015-04-28 Stmicroelectronics, Inc. Ink jet printhead with polarity-changing driver for thermal resistors
US9748093B2 (en) 2015-03-18 2017-08-29 Applied Materials, Inc. Pulsed nitride encapsulation
US9646818B2 (en) 2015-03-23 2017-05-09 Applied Materials, Inc. Method of forming planar carbon layer by applying plasma power to a combination of hydrocarbon precursor and hydrogen-containing precursor
CN106409765B (zh) * 2015-07-31 2020-03-10 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN111524788B (zh) * 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 氧化硅的拓扑选择性膜形成的方法
US11462397B2 (en) * 2019-07-31 2022-10-04 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method of forming the same
TWI819257B (zh) * 2019-12-20 2023-10-21 美商應用材料股份有限公司 具有可調整碳含量之碳氮化矽間隙填充

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW507015B (en) 1997-12-02 2002-10-21 Applied Materials Inc In-situ, preclean of wafers prior to a chemical vapor deposition titanium deposition step
US6417092B1 (en) * 2000-04-05 2002-07-09 Novellus Systems, Inc. Low dielectric constant etch stop films
ES2367422T3 (es) * 2001-10-09 2011-11-03 Amgen Inc. Derivados de imidazol como agentes antiinflamatorios.
JP2004193585A (ja) * 2002-11-29 2004-07-08 Fujitsu Ltd 半導体装置の製造方法と半導体装置
US20050287747A1 (en) * 2004-06-29 2005-12-29 International Business Machines Corporation Doped nitride film, doped oxide film and other doped films
US7488690B2 (en) * 2004-07-06 2009-02-10 Applied Materials, Inc. Silicon nitride film with stress control
US20060105106A1 (en) * 2004-11-16 2006-05-18 Applied Materials, Inc. Tensile and compressive stressed materials for semiconductors
KR100702006B1 (ko) 2005-01-03 2007-03-30 삼성전자주식회사 개선된 캐리어 이동도를 갖는 반도체 소자의 제조방법
US7732342B2 (en) * 2005-05-26 2010-06-08 Applied Materials, Inc. Method to increase the compressive stress of PECVD silicon nitride films
US8129290B2 (en) * 2005-05-26 2012-03-06 Applied Materials, Inc. Method to increase tensile stress of silicon nitride films using a post PECVD deposition UV cure
US7462527B2 (en) * 2005-07-06 2008-12-09 International Business Machines Corporation Method of forming nitride films with high compressive stress for improved PFET device performance

Also Published As

Publication number Publication date
US7790635B2 (en) 2010-09-07
KR20080055610A (ko) 2008-06-19
US20080146007A1 (en) 2008-06-19
TW200830418A (en) 2008-07-16
CN101205607A (zh) 2008-06-25
KR100984922B1 (ko) 2010-10-01

Similar Documents

Publication Publication Date Title
TWI374500B (en) Method to increase the compressive stress of pecvd dielectric films
JP4090740B2 (ja) 集積回路の作製方法および集積回路
US6762435B2 (en) Semiconductor device with boron containing carbon doped silicon oxide layer
KR101164688B1 (ko) 게이트 스택 측벽 스페이서들을 제조하기 위한 방법
US6365527B1 (en) Method for depositing silicon carbide in semiconductor devices
US7226876B2 (en) Method of modifying interlayer adhesion
US8586487B2 (en) Low temperature plasma enhanced chemical vapor deposition of conformal silicon carbon nitride and silicon nitride films
US7842604B1 (en) Low-k b-doped SiC copper diffusion barrier films
US8575033B2 (en) Carbosilane precursors for low temperature film deposition
US7521354B2 (en) Low k interlevel dielectric layer fabrication methods
TW201111540A (en) Boron film interface engineering
JP2011054968A (ja) PECVDによってSi−N結合を有するコンフォーマルな誘電体膜を形成する方法
WO2013109461A1 (en) Engineering dielectric films for cmp stop
US6436822B1 (en) Method for making a carbon doped oxide dielectric material
WO2001001472A1 (en) Method and apparatus for forming a film on a substrate
KR20050091780A (ko) 저-k 유전체 재료의 크랙 한계 및 기계적 특성 개선 방법및 장치
TW200913067A (en) Improved low k porous SiCOH dielectric and integration with post film formation treatment
EP3922750A2 (en) Method of deposition
KR20100042022A (ko) 저유전 상수를 갖는 절연막 및 이를 이용한 에어갭 제조 방법
TW589740B (en) Diffusion barrier
TW473828B (en) Deposition method of silicon carbide film on semiconductor device
CN115516129A (zh) 用于沉积具有高弹性模量的膜的新前体
KR20050015665A (ko) 반도체 소자의 식각 정지막 제조 방법
TW201316406A (zh) 用於低溫膜沉積之碳矽烷前驅物

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees