TWI374051B - Variable tangential flow filtration - Google Patents

Variable tangential flow filtration Download PDF

Info

Publication number
TWI374051B
TWI374051B TW097127008A TW97127008A TWI374051B TW I374051 B TWI374051 B TW I374051B TW 097127008 A TW097127008 A TW 097127008A TW 97127008 A TW97127008 A TW 97127008A TW I374051 B TWI374051 B TW I374051B
Authority
TW
Taiwan
Prior art keywords
immunoglobulin
bar
concentration
cells
solution
Prior art date
Application number
TW097127008A
Other languages
English (en)
Other versions
TW200914120A (en
Inventor
Stefan Hepbildikler
Wolfgang Kuhne
Eva Rosenberg
Gerhard Winter
Original Assignee
Hoffmann La Roche
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38562282&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI374051(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoffmann La Roche filed Critical Hoffmann La Roche
Publication of TW200914120A publication Critical patent/TW200914120A/zh
Application granted granted Critical
Publication of TWI374051B publication Critical patent/TWI374051B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

1374051 九、發明說明: 【發明所屬之技術領域】 本發明屬於蛋白質濃縮領域,更準確而言,其係關於使 用切向流過濾(TFF)來濃縮免疫球蛋白。 【先前技術】
蛋白質且尤其免疫球蛋白在當今醫學業務中起重要作 用。用於製造重組多肽之表現系統已為熟習此項技術者所 熟知且藉由(例如)Marino, M.H·,Biopharm. 2 (1989) 18-33 ; Goeddel,D.V.等人,Methods Enzymol. 185 (1990) 3-7 ; Wurm,F.及Bernard,A·,Curr. Opin. Biotechnol. 10 (1999) 156-159闡述。用於醫藥應用之多肽主要在諸如CHO細 胞、NS0細胞、Sp2/0細胞、COS細胞、HEK細胞、BHK細 胞、PER.C6®細胞或諸如此類等哺乳動物細胞中製造。 對於人類應用,各醫藥物質必須符合不同的標準。為確 保生物藥劑對人類之安全性,必須移除會造成嚴重傷害之 (例如)核酸、病毒及宿主細胞蛋白質。為符合質量管理規 格標準(regulatory speciHcation),在製造過程後需要有一 或多個純化步驟。其中,純度、通量及產率在確定合適純 化過程中起重要作用。 由於免疫球蛋白之化學及物理特性(例如分子量及結構 域構造(包括二級修飾)),其下游處理非常複雜。例如,不 僅對於經調配藥物而且對於中間體而言皆在下游處理 (DSP)中需要濃溶液以達成低體積以供進行經濟的運輸及 應用儲存。而且,短濃縮時間有利於確保平穩處理及短作 131891.doc i S1 1374051 業時間。在該情形下,不完美之TFF過程(尤其在最後純化 步驟後)可能造成持續損害’甚至影響藥物產品❶單株抗 體(mAb)中間體溶液切向流濃縮過程中剪應力與聚集之相 關性由 Ahrer,K.等人(J. Membr. Sci. 274 (2006) 108-115) 予以研究。檢測濃縮時間及所選流及壓力對過程特性及聚 集狀況之影響(參見例如Dosmar,M.等人,Bioprocess Int. 3 (2005) 40-50 ’ Luo,R.等人,Bioprocess Int. 4 (2006) 44- 46)。
Mahler, H.-C.等人(Eur. J. Pharmaceut. Biopharmaceut. 59 (2005) 407-417)報導藉由不同攪動應力方法形成之液體
IgGl-抗體調配物中聚集體之誘導及分析。美國專利第 6,252,055號中報導濃單株抗體製備品。美國專利第 2006/0182740號中報導製造濃抗體製備品之方法。美國專 利第2006/0051347號中報導包括超過濾、透析過濾及第二 超過濾順序之組合方法。歐洲專利第〇 9〇7 3 78號中報導使
用固定再循環速率為250 ml/min之橫向流超過濾濃縮抗體 製備品之方法。美國專利第2〇〇4/〇16732〇號中報導切向流 過濾方法及因此之裝置。w〇 97/4514〇中報導濃抗體溶 液。 【發明内容】 本發明提供濃縮含有經重組製造之免疫球蛋白之溶液的 方法。 更詳細而言,本發明之一個態樣係藉由其中所應用之透 膜壓力及橫向流可變之切向流過濾來濃縮免疫球蛋白溶液 13189I.doc ΐ S] 之方法,其中 a) 在兩達30 mg免疫球蛋白/mi待濃縮溶液之濃度範圍中 透膜壓力為1.4巴至1.6巴且橫向流為75 ml/min至9〇 ml/min » b) 在15 mg/ml至高達55 mg/ml之濃度範圍中透膜壓力為 0-8巴至〇·9巴且橫向流為14〇 mi/min至160 ml/min,及 c) 在大於45 mg/ml之濃度範圍中透膜壓力為〇 8巴至〇 9 巴且核向為 120 ml/min至 140 πιΐ/niin。 在一個實施例中,步驟C)中之濃度範圍係自5〇 mg/mi至 高達275 mg/ml。在較佳實施例中,步驟为中之濃度範圍係 自50 mg/ml至高達180 mg/ml。在更佳實施例中,步驟e)中 之濃度範圍係自50 mg/ml至高達13〇 mg/ml。在另一實施 例中,透膜壓力及橫向流在步驟a)中為j 5巴及8〇 ml/min、在步驟b)中為〇·85巴及150 mi/min及/或在步驟c) 中為0.85巴及130 ml/min。在另一實施例中,免疫球蛋白 溶液係緩衝水性免疫球蛋白溶液。 本發明之另一態樣係製造異源免疫球蛋白之方法,其包 含按此順序之以下步驟: a) 提供包含一或多種編碼異源免疫球蛋白之核酸的重組 哺乳動物細胞, b) 在適於表現異源免疫球蛋白之條件下培養步驟勾之細 胞, c) 自重組哺乳動物細胞或培養基回收異源免疫球蛋白, d) 使用透膜壓力及橫向流可變之切向流過濾來濃縮所 131891.doc 獲知之包含異源免疫球蛋白的水性緩衝溶液β 在一個實施例令,該方法之步驟d)包含使用透膜壓力及 橫向流可變之切向流過濾來濃縮所獲得之水性緩衝溶液, 其中 i)在高達30 mg免疫球蛋白/mi待濃縮溶液之濃度範圍 中透膜壓力為1.4巴至1.6巴且橫向流為75 mi/min至 90 ml/min, 11)在15 mg/ml至高達55 mg/ml之濃度範圍中透膜壓力 為0.8巴至〇.9巴且橫向流為14〇 ml/min至16〇 ml/min,及 iii)在大於45 mg/ml之濃度範圍中透膜壓力為〇8巴至 0.9 巴且橫向流為 120 ml/min至 140 ml/min。 在另一實施例中,該方法在步驟d)之前或在步驟d)之後 包含以下步驟: e)純化含有異源免疫球蛋白之水性緩衝溶液。 在另一實拖例中,異源免疫球蛋白係完整免疫球蛋白、 或免疫球蛋白片段或免疫球蛋白結合物。在一個實施例 中’哺乳動物細胞係CHO細胞、BHK細胞、NS0細胞、 Sp2/0細胞、COS細胞、HEK細胞或PER.C6®細胞。 【實施方式】 本發明報導將免疫球蛋白溶液濃縮至大於1〇〇 mg/m丨濃 度之方法。已令人驚奇地發現,用本發明方法此可在低聚 集體形成下及於短時間内達成。 術語"切向流過濾•,或"TFF"(其在本發明中可互換使用) 131891.doc IS1 表不其中含有多肽之待濃縮溶液沿(即切向)過濾膜表面流 動之過據方法。過遽膜之孔徑具有—定戴止值。在一個實 施例中,截止值係在2〇 kDa至5〇 kDa範圍内,較佳為 心。該過濾方法係一種超過濾方法。術語"橫向流"表示 待濃縮溶液之流動與膜相切(滲餘物流)。 術語"通量"或,•滲透物流量"(其在本發明中可互換使用) 表示透過膜(即通過膜孔)之流體流量。換言之,其表示通 過膜之滲透物的體積流速。其通常按照體積/單位膜面積/ 早位時間以公升/m2/h (LMH)給出。渗透物包含待濃縮溶 液之溶劑以及分子量低於所用膜截止值的分子(但非異源 免疫球蛋白)》 術》。透膜壓力"或"TMp"(其在本發明中可互換使用)表 不用以驅動溶劑及小於過濾膜截止值之組份通過過濾膜孔 之壓力〇透膜壓力係入口、出口及滲透物之平均壓力且可 如下計算:
TMP 2 ’ P滲遑物 術語,•免疫球蛋白"係指由一或多種基本上藉由免疫球蛋 白基因編碼之多肽組成之蛋白質。經識別之免疫球蛋白基 因包括不同恆定區基因以及無數免疫球蛋白可變區基因。 免疫球蛋白可以多種形式存在,包括(例如)FV、Fab及 F(ab)2以及單鏈(scFv)或雙特異抗體(例如Hust〇n,j s等 人 ’ Proc. Natl. Acad. Sci. USA 85 (1988) 5879-5883 ;
Bird, R.E.等人,Science 242 (1988) 423·426 ;通常而言, 131891.doc •10- 1374051
Hood 等人,Immunology,Benjamin Ν.Υ.,第 2版(1984); 及 Hunkapiller,Τ·及 Hood, L.,Nature 323 (1986) 15-16)。 術語”完整免疫球蛋白"表示包含兩條所謂輕免疫球蛋白 鏈多肽(輕鏈)及兩條所謂重免疫球蛋白鏈多肽(重鏈)之免 疫球蛋白。完整免疫球蛋白之各重及輕免疫球蛋白鏈多肽
皆含有包含能夠與抗原相互作用之結合區的可變結構域 (可變區)(通常為多肽鏈之胺基端部分)。完整免疫球蛋白 之各重及輕免疫球蛋白鏈多肽亦皆包含恆定區(通常為羧 基端部分)。重鍵之恆定區介導抗體與以下之結合:丨)具 有Fq受體(FcYR)之細胞,例如呑噬細胞,或丨〇具有新生 兒Fc受體(FcRn)(亦稱為Brambell受體)之細胞。其亦介導 與包括經典補體系統因子(例如組份(c丨q))在内之一些因子 的結合。免疫球蛋白輕鏈或重鏈之可變結構域又包含不同 區段,即四個框架區(FR)及三個超變區(CDR)。
術語"免疫球蛋白片段"表示包含重鏈之可變結構域、 CH1結構域、鉸鏈區、ch2結構域、Ch3結構域、Ch4結構 域、輕鏈之可變結構域或CL結構域中之至少一個結構域的 多肽。亦包含其衍生物及變體。例如,可能存在其中缺失 一或多個胺基酸或胺基酸區域之可變結構域。 術語"免疫球蛋白結合物,•表示包含經由肽鍵與其他多肽 結合之免疫球蛋白重鏈或輕鏈之至少一個結構域的多肽。 該其他多肽係非免疫球蛋白肽,例如激素、或生長受體、 或抗融合肽(antifusogenic peptide)、或補體因子或諸如 131891.doc 1374051 此類。
一般層析方法及其使用已為熟習此項技術者所習知。參 見,例如,Chromatography,第 5版,A部分:Fundamentals and Techniques, Heftmann, Ε·(編輯),Elsevier Science Publishing 公司,纽約(1992) ; Advanced Chromatographic and Electromigration Methods in Biosciences, Deyl, Z·(編 輯),Elsevier Science BV, Amsterdam, The Netherlands, (1998); Chromatography Today, Poole, C. F.及Poole, S. K·, Elsevier Science Publishing 公司,紐約(1991); Scopes, Protein Purification: Principles and Practice (1982); Sambrook, J.等人(編輯),Molecular Cloning: A Laboratory Manual,第2版,冷泉港實驗室出版社(Cold Spring Harbor Laboratory Press),冷泉港,N.Y.,1989 ;或 Current Protocols in Molecular Biology,Ausubel,F. M.等人(編 輯)John Wiley & Sons公司,紐約。
對於純化經重組製造之異源免疫球蛋白,通常使用不同 管柱層析步驟之組合。通常,蛋白質A親和層析後繼之以 一或兩個額外分離步驟。最後純化步驟係所謂"精純步驟", 其用於移除諸如聚集免疫球蛋白、殘留HCP(宿主細胞蛋白 質)、DNA(宿主細胞核酸)、病毒或内毒素等痕量雜質及污 染物。對於該精純步驟,通常使用呈流經形式之陰離子交 換材料。 不同方法已非常確實且廣泛用於蛋白質回收及純化,例 如用微生物蛋白質之親和層析(例如蛋白質A或蛋白質G親 -12- 131891.doc m 1374051 和層析)、離子交換層析(例如陽離子交換(羧基甲基樹 脂)、陰離子交換(胺基乙基樹脂)及混合形式交換)、嗜硫 菌吸附(例如用β-巯基乙醇及其他SH配體)、疏水性相互作 用或芳香族吸附層析(例如用苯基_瓊脂糖、氮雜-親芳烴 (arenophilic)樹脂、或間-胺基笨基硼酸)、金屬螯合親和層 析(例如用Ni(II)-及Cu(II)-親和性材料)、尺寸排除層析及 電泳方法(例如凝膠電泳、毛細管電泳)(Vijayalakshmi, Μ.A·,Appl. Biochem. Biotech. 75 (1998) 93-102)。 術語"異源免疫球蛋白"表示非藉由哺乳動物細胞天然製 造之免疫球蛋白。按照本發明方法製造之免疫球蛋白係藉 由重組手段製造。該等方法廣泛為熟習此項技術者所習知 且包含於真核細胞中表現蛋白質以及隨後回收及分離異源 免疫球蛋白及通常將其純化至醫藥上可接受之純度。對於 免疫球蛋白之製造(即表現),藉由標準方法將編碼輕鏈之 核酸及編碼重鏈之核酸各插入至表現盒中。可容易地使用 習用程序對編碼免疫球蛋白輕鏈及重鏈之核酸實施分離及 測序。雜交瘤細胞可用作該等核酸之來源。可將表現盒插 入至表現質粒中,隨後將表現質粒轉染至宿主細胞中,否 則宿主細胞不製造免疫球蛋白。表現係在合適原核或真核 宿主細胞中實施且自溶胞後之細胞或自培養物上清液回收 免疫球蛋白。 本申請案令所用之術語"免疫球蛋白溶液•,表示含有完整 免疫球蛋白、免疫球蛋白片段或免疫球蛋白結合物之水性 緩衝溶液。該溶液可為(例如)培養物上清液、《管柱層析 131891.doc 13· 1374051 溶析液或精純免疫球蛋白溶液。
"異源DNA”或"異源多肽"係指不在給定宿主細胞中天然 存在之DNA分子或多肽、或DNA分子群體或多肽群體。只 要宿主DNA與非宿主DNA(即外源DNA)組合,與特定宿主 細胞異源之DNA分子即可含有衍生自宿主細胞物種之 DNA(即内源DNA)。例如,含有編碼與包含啓動子之宿主 DNA片段可操作連接之多肽之非宿主DNA片段的DNA分子 視為異源DNA分子。相反,異源DNA分子可包含與外源啓 動子可操作連接之内源結構基因。藉由非宿主DNA分子編 碼之肽或多肽係"異源"肽或多肽。
術語"在適於表現異源免疫球蛋白之條件下"表示用於表 現免疫球蛋白之哺乳動物細胞之培養且已為熟習此項技術 者所習知或可容易地由熟習此項技術者所確定之條件。熟 習此項技術者亦習知該等條件可端視所培養之哺乳動物細 胞類型及所表現之免疫球蛋白類型而變化。通常而言,哺 乳動物細胞係在20°C至40°C溫度下培養且培養足以容許免 疫球蛋白之有效蛋白質製造的時間段,例如4天至28天。 術語"重組哺乳動物細胞”係指核酸(例如編碼異源多肽之 核酸)可或已經引入/轉染至其中之細胞。術語"細胞"包括 用於表現核酸之細胞。在一個實施例中,哺乳動物細胞係 CHO細胞(例如CHO Kl、CHO DG44)、或BHK細胞、或 NS0細胞、或SP2/0細胞、或HEK 293細胞、或HEK 293 EBNA細胞、或PER.C6®細胞或COS細胞。在較佳實施例 中,哺乳動物細胞係CHO細胞、或BHK細胞、或HEK細 14 131891.doc I S} 1374051 胞、或SP2/0細胞或PER.C6⑧細胞。本文所用之說法"細胞·, 包括標的細胞及其子代。因此,術語"重組細胞"包括最初 經轉染細胞及包括衍生自其之子代細胞的培養物(不考慮 傳代數量”亦應瞭解,所有子代之DNA含量可能由於特 意或無意的突變而不精確地相同。包括與最初轉化細胞具 有相同功能或生物活性之變異子代。 本申凊案中所用之術語"緩衝"表示藉由緩衝物質來平衡 由於添加或釋放酸性或驗性物質而引起之pH值變化的溶 液。可使用此達成該效果之任何緩衝物質。在一個實施例 中,使用醫藥上可接受之緩衝物質,例如磷酸或其鹽、乙 酸或其鹽、檸檬酸或其鹽、嗎琳或其鹽' 2 _(ν·嗎咐基)乙 磺酸或其鹽、組胺酸或其鹽、甘胺酸或其鹽、或卷(經基 甲基)胺基甲烷(TRIS)或其鹽。在較佳實施例中,緩衝物質 係磷酸或其鹽、乙酸或其鹽、或檸檬酸或其鹽、或組胺酸 或其鹽。視情況,緩衝溶液可包含額外鹽,例如氣化納、 及/或硫酸鈉、及/或氯化鉀、及/或硫酸鉀、及/或棒檬酸 鈉、及/或檸檬酸鉀。在本發明之一個實施例中,緩衝水 性溶液之pH值係自pH 3.0至pH 10.0,較佳自ρΗ 3.0至pH 7.0,更佳自pH 4·0至pH 6.0 ’且最佳自ΡΗ 4·5至pH 5.5。 現已令人驚奇地發現,以本發明切向流過據(TFF)方法 可在短時間内低聚集體形成下獲得濃免疫球蛋白溶液,其 中透膜壓力及橫向流在過濾過程期間可變且端視待濃缩溶 液中免疫球蛋白之實際濃度而應變。換言之,已令人驚奇 地發現,若使用本發明TFF方法(即過濾過程期間透膜壓力 131891.doc 15 1374051 可改變且隨抗體溶液之實際濃度而應變之方法),則切向 流過濾期間之聚集體形成較少。與熟習此項技術者所習知 之恆定方法相比’本發明方法係可變方法,恆定方法即在 過遽過程之前選定透膜壓力且在整個切向流過濾過程期間 保持恆定之方法。
本發明包含藉由切向流過濾濃縮免疫球蛋白溶液之方 法,其中所應用之透膜壓力及橫向流在過濾過程期間可變 且端視所濃縮免疫球蛋白溶液中之免疫球蛋白濃度而改 變,其中 a) 在高達30 mg免疫球蛋白/ml待濃縮溶液之濃度範圍中 應用1.4巴至1.6巴之透膜壓力及75 ml/min至90 ml/min之橫向流, b) 在15 mg/ml至高達55 mg/ml濃度範圍中應用0.8巴至 0.9巴之透膜壓力及140 ml/min至160 ml/min之橫向 流,及
c) 在大於45 mg/ml之濃度範圍中應用0.8巴至0.9巴之透 膜壓力及120 ml/min至140 ml/min之橫向流。 TFF中之剪應力與聚集體形成之間存在相關性。為評估 效果,基於Gerhart等人(Fundamentals of Fluid Mechanics, Addison-Wesley Publishing 公司(1993))及 Cheryan 等人 (Ultrafiltration and Microfiltration Handbook,第二版, CRC Press LLC (1998))用以下公式計算所用膜表面上之流 動誘導剪應力t:w : 16 131891.doc I S1 1374051 dH (Δρ) ~~4L~ 其中dH係‘ =4 ab 2(a + b) 在該公式中’ 4係水力直徑’ 〇係寬度,6係高度,且厶係 流動通道之長度。而且,△peprPo,其中尸,係所應用之入 口壓力,且/7。係出口壓力。在一個實例中,使用由再生纖
維素組成之Hydrosart™ 膜(Sartorius AG,G5ttingen,德國 之Sartocon Slice 200 Hydrosart™),其標稱分子量截止值 為30 kDa且膜面積為〇.〇2 m2。對於所用之膜盒,經計算水 力直彳f為1.08 mm。首先用標準TFF方法操作該膜,即在濃 縮過程期間不改變透膜壓力及橫向流。以預設恆定Δρ及預 設怪定透膜壓力(ΤΜΡ)為0.6巴分析三種不同恆定方法。 表1 :所應用壓力差及對應剪應力之概述。 △P [巴] xw [Pa] 1.2 216 1.8 324 3.0 541
藉由觀察通量與增長之蛋白質濃度之關係曲線,不同Δρ 下過程曲線無顯著差異存在。但是對於3巴方式,觀察到 由於高入口壓力使得終點濃度較低。與在較低恆定橫向流 (CF; 90 ml/min.)及較低平均Δρ(約〇·9巴)下實施之濃縮方式 相比’ 1.2-1.8巴之較高Δρ隨時間流逝促成獲改良之通量特 性及較高之終點濃度(ΤΜΡ始終為0.6巴)。 濃縮過程前及濃縮過程後之混濁度、不透光度(L〇)及動 態光散射(DLS)數據的比較顯示,隨剪應力增大聚集體形 •17- 131891.doc I S '] 1374051 成增強(圖2)。 基於TMP/CF-探測實驗(參見例如Lu〇,R等人,
Bi〇process Int. 4 (2006) 44_54),已研發出與應力高入口壓 力方式(Δρ=3巴)相比總過程時間相當之TFF方法。人們已 經對本發明方法實施研發以改良隨時間流逝之通量特性且 具有降低之免疫球蛋白聚集體形成,即,同時達成低聚集 體形成與短總濃縮時間。在本發明方法研發期間,端視待 濃縮免疫球蛋白溶液中之主要免疫球蛋白濃度實施ΤΜρ& CF探測。人們發現在給定濃度下端視最佳通量分佈具有適 應ΤΜΡ及CF之方法。由於在濃縮最終階段沒有高入口壓力 之缺點(參見例如Dosmar,Μ.等人,Biopr〇cess Im 3 (2005) 40-50) ’故本發明方法顯示所產生濃縮物具有較低 之混濁度、LO及DLS數據值(參見圖3及4)。另外用本發 明方法可達成較高之終點濃度。 在本發明方法中,透膜壓力及橫向流隨所濃縮免疫球蛋 白溶液之實際濃度而變化。在一個實施例中,本發明方法 係可變切向流過濾方法,其中待濃縮溶液中免疫球蛋白之 實際濃度決定所應用之透膜麼力及橫向流。因&,端視免 疫球蛋白之實際濃度調節透膜塵力及橫向流以減小所應用 之應力且因此減少聚集免疫球蛋白分子之形成並提供較短 之總濃縮時間。 在本發月方法#,界定三個濃度範圍m容液之第 :實際濃度範圍係自0 mg/m】至30 mg/nU,第二實際濃度 範圍糸自15 mg/mi至55 mg/mI,且第三實 13l891.doc 45 mg/ml至180 mg/ml。可以看出,該等濃度範圍係重疊 範圍。已發現’在自W mg/ml至30 mg/ml及自45 mg/ml至 5 5 mg/ml之重疊濃度範圍中,透臈壓力及橫向流之不同值 可用於本發明方法中。在該等重疊濃度範圍中可應用任 何兩個TMP及CF設定而不會顯著影響聚集形成或過程時 間。 因此,在本發明方法之一個實施例中,在重疊濃度範圍 中之任一濃度值下可自a)至b)及自b)至c)改變條件。 在一個實施例中,步驟c)中之濃度範圍係自5〇 mg/m丨至 高達275 mg/mi。在另一實施例中,透膜壓力及橫向流係 在步驟a)中1.5巴及8〇 mi/min、在步驟b)中〇85巴及15〇 ml/min及/或在步驟c)中0.S5巴及130 ml/min。在另一實施 例中,免疫球蛋白溶液係緩衝水性免疫球蛋白溶液。在一 個實施例中,濃度範圍在步驟a)中為5-25 mg/mi、在步驟 b)中為25-50 mg/mi及在步驟幻中為5〇_14〇 mg/ml。 本發明之另一態樣係製造異源免疫球蛋白之方法,其包 含按以下順序之以下步驟: a) &供包含一或多種編碼異源免疫球蛋白之核酸的重組 哺乳動物細胞, b) 在適於表現異源免疫球蛋白之條件下培養哺乳動物細 胞, 0自重組哺乳動物細胞或培養基回收呈水性緩衝溶液形 式之異源免疫球蛋白, d)使用具有可變之免疫球蛋白濃度依賴型透膜壓力及橫 131891.doc 1374051 向·流的切向流過濾來濃縮所獲得之包含異源免疫球蛋 白的水性緩衝溶液。 在一個實施例中,本發明製造方法包含步驟d),即使用 具有可變之兔疫球蛋白濃度依賴型透膜壓力及橫向流之切 向流過濾來濃縮所獲得之水性緩衝溶液,其中 i) 在高達30 mg免疫球蛋白/ml待濃縮溶液之濃度範圍 中透膜壓力為1.4巴至1.6巴且橫向流為75 ml/min至 90 ml/min »
ii) 在15 mg/ml至高達55 mg/ml之濃度範圍中透膜壓力 為0.8巴至〇·9巴且橫向流為140 ml/min至160 ml/min,及 in)在大於45 mg/ml之濃度範圍中透膜壓力為0.8巴至〇9 巴且松向流為120 ml/min至140 πιΐ/niin。 在另一實施例中,該方法在步驟d)之前或在步驟d)之後 包含以下步驟:
e)純化含有異源免疫球蛋白之水性緩衝溶液。 步驟e)中之純化可藉由不同方法及技術實施,例如層析 步驟或不同或類似層析步驟之組合、或沈澱、或鹽析、戍 超過濾、或透析過濾、或凍乾、或緩衝液交換、或其組合 或諸如此類。 在另一實施例中,異源免疫球蛋白係完整免疫球蛋白、 或免疫球蛋白片段或免疫球蛋白結合物。在一個實施例 中’哺乳動物細胞係CHO細胞、BHK細胞、NS0細胞、 Sp2/0細胞、COS細胞、HEK細胞或PER.C6®細胞。在較佳 -20· 131891.doc i S】 1374051 實施例中,哺乳動物細胞係CHO細胞、或BHK細胞、或 ΗΕΚ細胞、或Sp2/0細胞或PER.C6®細胞。 以下實例及圖係提供用於幫助理解本發明,本發明之真 實範圍於隨附專利申請範圍中闡明。應瞭解,可對所述程 序實施修改,此並不偏離本發明之精神。
在本發明之時我們實驗室中可足量獲得抗-IL-IR抗體(參 見例如WO 2005/023872)及抗-P-選擇蛋白抗體(參見例如 WO 2005/100402)且因此本發明以該兩種免疫球蛋白作為 例示。通常而言,本發明同樣適用於任何免疫球蛋白。該 所例示之闡述僅作為實例而非作為對本發明之限制。 實例1 分析方法 a) 混濁度量測。
在3 50 nm及550 nm處測定光度計吸光度,此處抗體溶液 中無固有生色團吸收(UV-VIS分光光度計Evolution 500, Thermo Fisher Scientific, Waltham, USA)。量測未經稀釋 之樣品。使用合適緩衝溶液作為參考介質。每一量測實施 三次。 b) 尺寸排除-HPLC。 層析係用 ASI-100 HPLC 系統(Dionex,Idstein,德國)上 之Tosoh Haas TSK 3000 SWXL管柱來實施。在280 nm處藉 由UV二極體陣列檢測器(Dionex)來檢測溶析峰。在將濃樣 品溶解至1 mg/ml之後,用由200 mM填酸二氫舒及250 mM 氯化鉀組成之pH值為7.0之緩衝液洗滌管柱直至獲得穩定 21 131891.doc I S3 1374051 基線。分析運行係在等度條件下使用0.5 ml/min流速於室 溫下實施30分鐘。用手將層析圖與Chromeleon (Dionex, Idstein,德國)整合。聚集(以%計)係藉由將高分子量形式 之曲線下的面積(AUC)與單體峰之AUC進行比較來測定。 c) 不透光度。
使用 SVSS-C 粒子分析器(PAMAS Partikelmess-und Analysesysteme,Rutesheim,德國)來檢測 1-200 μιη範圍内 之粒子負荷。按照美國藥典第24卷<788>之要求用近單一 粒度聚苯乙烯球體來校準該系統。對0.5 ml體積實施三次 量測,其中預沖洗體積為0.5 ml。結果係以平均值計算且 係指1 ·0 ml樣品體積。所計數之粒子數量在傳感器之濃度 限制内。 d) 動態光散射(DLS)。
DLS係用於量測粒徑(一般在亞微米尺寸範圍内)之非侵 襲性技術。在本發明中使用具有溫度控制石英比色池(25°C ) 之 Zetasizer Nano S裝置(Malvern Instruments,Worcestershire, UK)來檢測介於1 nm與6 μιη之間之尺寸範圍。在173°角度 檢測反向散射雷射光之強度。強度波動之速率依賴於粒子 擴散速度,粒子擴散速度又取決於粒徑。因此,粒徑數據 可自散射光強度之波動分析產生(Dahneke,Β.Ε.(編輯), Measurement of Suspended Particles by Quasielectric Light Scattering,Wiley公司(1983) ; Pecora,R.,Dynamic Light Scattering: Application of Photon Correlation Spectroscopy, Plenum Press (1985))。隨強度之粒徑分佈係使用DTS軟體 -22- 131891.doc
I SI 1374051 (Malvern)之多重狹窄方式(multiple narrow mode)來計算。 用未經稀釋之樣品實施實驗。 e)傅裏葉變換紅外光譜。
未經稀釋蛋白質溶液之FT-IR光譜係藉由使用Tensor 27 光譜儀(Bruker Optik,Ettlingen,德國)來記錄,其中流通 傳遞池(AquaSpec)與恒溫器連接。對於每一光譜,以單光 束方式用4 crrT1解析度採集120-掃描干涉圖。使用合適滲 透物作為參考介質。所採集之蛋白質及緩衝系統的干涉圖 係經傅裏葉變換的。而且,相對於對應緩衝系統光譜對蛋 白質光譜實施校正。 實例2 確定TMP及CF條件
藉由使用自動化TFF系統AKTAcrossflowTM (GE Healthcare, Amersham Bioscience AB,Uppsala,瑞典)藉由 使用可縮放平板盒(Sartorius,Gottingen,德國)用標稱分子 量截止值為30 kDa且膜面積為0.02 m2的再生纖維素 Hydrosart™膜將抗-IL-IR抗體之經條件化及過濾之檸檬酸 鹽緩衝水性溶液(pH 5.5)濃縮二十倍高達100 mg/ml。實施 藉由UNICORN軟體控制的AKTAcrossflow™產生之不同濃 縮方案。總膜負荷為約400 g/m2。 四個預設透膜壓力之通量及壓力性質係在於待濃縮免疫 球蛋白溶液中之不同免疫球蛋白濃度下對於不同橫向流來 測定。TMP設定為0.3巴、0.5巴、0.9巴或2.0巴。每一TMP 及蛋白質濃度之橫向流為50 ml/min、80 ml/min、130 -23- 131891.doc
I SI 1374051 ml/min(不在45 mg/ml蛋白質濃度下)及15〇 mi/min(僅在45 mg/ml蛋白質濃度下)。不同蛋白質濃度為5 3 丨、45 mg/ml、90 mg/ml、及 180 mg/ml。結果顯示於圖 5-8 中。 已在濃縮過程期間發現,高進料通量及高進料壓力達成 較佳透膜通量。但是在濃縮過程期間(尤其在結束時)形成 導致膜過壓以及通量(滲透物)減少之極化層。亦已發現, 較高之進料壓力可達成較高通量且因此達成快速濃縮過 程’但此加速伴隨聚集體形成增加(圖9至u)。 考慮到上文,認為免疫球蛋白濃縮之改良方法的範圍及 條件係: -在高達30 mg免疫球蛋白/mi待濃縮溶液之濃度範圍中 透膜壓力為1.4巴至1·6巴且橫向流為75 m丨/min至9〇 ml/min, -在15 mg/ml至高達55 mg/ml濃度範圍中透膜壓力為〇8 巴至0.9巴且橫向流為140 ml/min至160 ml/m in,及 •在大於45 mg/ml之濃度範圍中透膜壓力為〇8巴至〇9 巴且橫向流為120 ml/min至140 ml/min。 該等參數達成聚集體形成減少及濃縮時間較短之方法。 實例3 本發明可變方法與恆定方法之比較。 將本發明方法與用於製造濃免疫球蛋白溶液之不同恆定 參數方法進行比較。目標濃度設定為90 mg/ml。用實例2 之器件實施切向流過濾❶所比較方法(方法丨至4係恆定方 法’方法5係本發明可變方法)之不同參數如下· J31891.doc -24- 1374051 方法1 : 透膜壓力=0.6巴 橫向流=90 ml/min △ρ=0·7 巴 方法2 : 透膜壓力=0.6巴 △ ρ=1.2 巴 方法3 : 透膜壓力=0.6巴 Αρ=1.8 巴 方法4 : 透膜壓力=0.6巴
方法5 : a)透膜壓力=1.5巴,Δρ=0.5巴, b) 透膜壓力=0.85巴,Δρ=1.2巴, c) 透膜壓力=0.85巴。 不同參數及使免疫球蛋白溶液濃縮至免疫球蛋白濃度為 90 mg/ml所需要之時間顯示於表2中。 表2 :不同濃縮方法之參數比較。 方法 ΔΡ TMP 進料 壓力 滲餘物 壓力 進料流 渗餘物流 粒子 > 1 μηι / ml 時間 1 0.7巴 0.6巴 1.2巴 0.5巴 100 ml/min 90 ml/min 7321820 149 min. 2 1.2巴 0.6巴 1.4巴 0.2巴 170 ml/min 160 ml/min 15403850 126 min. 3 1.8巴 0.6巴 2.1巴 0.3巴 230 ml/min 215 ml/min 16989540 125 min. 4 3.0巴 0.6巴 2_8巴 0.2巴 300 ml/min 280 ml/min 19415180 116 min. 5 0.5巴 1.5巴 2.0巴 1.5巴 100 ml/min 80 ml/min 12182240 118 min. 1.2巴 0.85 巴 1.7巴 0.5巴 165 ml/min 150 ml/min — 0.85 巴 — 0.5巴 135 ml/min 130 ml/min
自不同方法之結果可以看出,與方法2至4相比,用方法 5(即可變方法)可獲得顯著減少之聚集體形成且因此具有改 131891.doc -25- 1374051 良特徵之免疫球蛋白濃縮物。與方法丨相比,可達成較快 速之濃縮過程。 實例4 抗-IL-IR抗想於不同緩衝系統中之濃缩 用檸檬酸鹽緩衝液或組胺酸緩衝液緩衝之抗·ILIR抗體 水性溶液之濃縮比較係用實例2之器件及本發明方法(實例 3之方法5)來實施。結果顯示於圖12及13中。自圖12及圖
1 3为別可以看出,所用緩衝液對本發明濃縮過程無影響。 實例5 抗選擇蛋白抗髏之濃缩 抗-P-選擇蛋白抗體之濃縮係按照實例2之方法實施且結 果顯示於圖14中。 實例6 濃溶液之過濾 在切向流過滤後用0.75巴壓力藉助Durapore (PVDF,
Millipore GmbH,Schwalbach ’ 德國)膜(4.52 cm2過據面積) 過濾按照實例2方法所獲得之濃溶液。 已發現,高度濃縮免疫球蛋白溶液之過濾性取決於所使 用之濃縮方法。進一步發現,與其他固定方法相比,用本 發明可變方法所獲得之濃免疫球蛋白溶液顯示降低之過濾 流下降(圖15)。 【圖式簡單說明】 圖1 不同恆·定ΔΡ方式及90 ml/min恆定CF下之濃縮方法 在膜沖洗之前通量與抗-IL-IR抗體溶液之蛋白質濃 131891.doc -26- 1374051 度的關係曲線。1 :恆定方法Δρ=1·2巴,2 :恆定方 法Δρ=1.8巴,3 :十亙定方法Δρ=3.0巴,4 :怪定方法 CF 90 ml/min 〇 圖2 用恆定方法濃縮抗-IL-IR抗體溶液前及後之粒子的 數量 0 1 :濃縮前,2 : tw=216,3 : t:w=324,4 : tw=541 〇 圖3 用不同方法濃縮前及後抗-IL-IR抗體溶液之粒子數
量的比較》1 :濃縮前,2:本發明可變方法,3 : 恆定方法 CF 90 ml/min,4 : tw=541。 圖4 通量與抗-IL-IR抗體溶液之蛋白質濃度的關係曲 線。1 :恆定方法 CF=90 ml/min,2 : tw=541,3 : 本發明可變方法。 圖5 透膜通量與蛋白質濃度為5.3 mg/ml之抗-IL-IR抗體 溶液之透膜壓力的關係曲線,橫向流為50
ml/min(填充圓形)、80 ml/min(填充三角形)及130 ml/min(填充正方形)。 圖6 透膜通量與蛋白質濃度為45 mg/ml之抗-IL-IR抗體 溶液之透臈壓力的關係曲線,橫向流為80 ml/min(填充圓形)、13〇 ml/min(填充三角形)及ι5〇 ml/min(填充正方形)。 圖7透膜通量與蛋白質濃度為90 mg/ml之抗-IL-IR抗體 溶液之透膜壓力的關係曲線,橫向流為50 ml/min(填充圓形)、80 ml/min(填充三角形)及130 ml/min(填充正方形)。 131891.doc I S1 •27- 1374051 圖8透膜通量與蛋白質濃度為180 mg/ml之抗-IL-IR抗體 溶液之透膜壓力的關係曲線,橫向流為50 ml/mm(填充圓形)、80 ml/min(填充三角形)及130 ml/min(填充正方形)。 圖9藉由不同方法獲得之於檸檬酸鹽緩衝液中之抗_IL_ IR抗體溶液濃縮物的粒子分析^ 1 :濃縮前,2 :本 發明可變方法’ 3 :恆定方法CF 90 ml/min,4 :恆 定方法Δρ=1·8巴,5 :恆定方法Δρ^.ο巴。 圖10藉由不同方法獲得之於檸檬酸鹽緩衝液中之抗·IL_ IR抗體溶液濃縮物的動態光散射分析。填充菱形: 濃縮前,填充正方形:本發明可變方法,填充三角 形.恆疋方法CF 90 ml/min,填充圓形:恆定方法 △P=1.8 巴。 圖11藉由不同方法獲得之於擰檬酸鹽緩衝液中之抗·IL· IR抗體溶液濃縮物的混濁度量測。1 :濃縮前,2 : 本發明可變方法,3 :恆定方法CF=9〇 ml/min,4 : 恆定方法Δρ=1.8巴,5 :恆定方法Δρ=3 〇巴。 圖12使用不同緩衝液用本發明方法及恆定方法獲得之 抗-IL-IR抗體溶液濃縮物的混濁度量測。1 :濃縮 前’於檸檬酸鹽緩衝液中,2:本發明可變方法, 用七樣酸鹽緩衝液’ 3 .怪定方法△py ·〇巴,用摔 檬酸鹽緩衝液,4 :濃縮前,於組胺酸緩衝液中, 5:本發明可變方法,用組胺酸緩衝液,6:值定方 法Δρ=3.0巴,用組胺酸緩衝液。 -28 · 131891.doc ί S3 丄374051 圖13 圖14
圖15 藉由不同方法獲得及於不同緩衝液中獲得之濃縮物 的動態光散射分析:a)抗-IL-IR抗體於檸檬酸鹽緩 衝液中(填充菱形:濃縮前,帛充正方形:用本發 明可變方法濃縮後’填充三角形:,口方法卸=18 巴)’ b)抗也職體於組胺酸緩衝液中(填充菱形: 濃縮:’填充正方形:用本發明可變方法濃縮後, 填充二角形:恆定方法Δρ=3 〇巴)。 酸緩衝液中之抗-Ρ-選擇蛋白抗體濃縮之混濁 η⑷及動態光散射⑻結果…濃縮前(填充菱 广本發明可變方法(填充正方形),3:恆定方 法Δρ=3.0巴(填充三角形)。 方 濃縮方式對濃免疫球蛋白溶液過渡性之影響。
131891.doc •29·

Claims (1)

  1. 十、申請專利範圍 第097127008號專利申請案 中文申請專利範圍替換太ΠΟ丨车___ 一種藉由切向流過遽濃縮免疫球蛋白溶液之方法,其特 徵在於透膜壓力及橫向流在過濾過程中係可變且視所濃 縮免疫球蛋白溶液中之免疫球蛋白濃度而改變,其中由 待濃縮溶液中該免疫球蛋白的實際濃度決定所應用之透 膜壓力及橫向流,藉此 Ο 在高達30 mg免疫球蛋白/ml待濃縮溶液之濃度範圍 時’透膜壓力為1.4巴至1.6巴且橫向流為75 ml/min 至 90 ml/min, ii)在15 mg/ml至高達55 mg/ml之濃度範圍時,透膜壓 力為0.8巴至〇.9巴且橫.向流為140 ml/min至160 ml/min,及 在50 mg/ml至高達275 mg/ml之濃度範圍時,透膜壓 力為0.8巴至〇.9巴且橫向流為120 ml/min至140 ml/min。 2. 如請求項1之方法,其特徵在於該透膜壓力及橫向流 _在步驟丨)中為1.5巴及80 ml/min, _在步驟ϋ)中為0.85巴及150ml/min,及/或 _在步驟ni)中為0.85巴及130ml/min。 3. 一種製造非藉由哺乳動物細胞天然製造之免疫球蛋白之 方法’其包含以下步驟: a) 提供包含一或多種編碼非藉由哺乳動物細胞天然製 造之免疫球蛋白之核酸的重組哺乳動物細胞’ b) 在適於表現該非藉由哺乳動物細胞天然製造之免疫 13189M010330.doc 1374051 球蛋白之條件下培養該細胞, c) 自該重組哺乳動物細胞或該培養基回收該非藉由哺 乳動物細胞天然製造之免疫球蛋白, d) 使用如請求項1之透膜壓力及橫向流可變之切向流過 渡來濃縮所獲得之包含該非藉由哺乳動物細胞天然 製造之免疫球蛋白的水性緩衝溶液。 4·如請求項3之方法,其特徵在於其在步驟d)之前或之後包 含以下步驟: e) 純化含有該非藉由哺乳動物細胞天然製造之免疫球蛋 白之該水性緩衝溶液。 5. 如請求項1至4中任一項之方法,其特徵在於該免疫球蛋 白係完整免疫球蛋白、或免疫球蛋白片段或免疫球蛋白 結合物。 6. 如請求項3或4之方法,其特徵在於該哺乳動物細胞係 CHO細胞、BHK細胞、HEK細胞或Sp2/〇細胞。 7. 如凊求項1至4中任一項之方法其特徵在於該切向流過 濾使用截止值在2〇 kDa至50 kDa分子量範圍内之膜。 8. 如吻求項1至4中任一項之方法,其特徵在於該免疫球蛋 白溶液之pH值為PH 3.0至PH 1〇.〇。 9. 如凊求項8之方法,其特徵在於該pH值係在3 〇至 7.0範圍内。 10. 如明求項1至4中任—項之方法其特徵在於在該等重疊 濃度範圍中之任一濃度值下,該透膜壓力及橫向流可以 改變。 13189M010330.doc 1374051 11.如請求項1或3之方法,其特徵在於該濃度範圍在步驟i) 中為5-25 mg/ml、在步驟ii)中為25-50 mg/ml及在步驟iii) 中為 50-140 mg/ml。
    131891-1010330.doc
TW097127008A 2007-07-17 2008-07-16 Variable tangential flow filtration TWI374051B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07013948 2007-07-17

Publications (2)

Publication Number Publication Date
TW200914120A TW200914120A (en) 2009-04-01
TWI374051B true TWI374051B (en) 2012-10-11

Family

ID=38562282

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097127008A TWI374051B (en) 2007-07-17 2008-07-16 Variable tangential flow filtration

Country Status (14)

Country Link
US (1) US8633302B2 (zh)
EP (1) EP2170949B1 (zh)
JP (1) JP5432137B2 (zh)
KR (1) KR101215740B1 (zh)
CN (1) CN101754977B (zh)
AU (1) AU2008277886B8 (zh)
BR (1) BRPI0813823B8 (zh)
CA (1) CA2693443C (zh)
ES (1) ES2401820T3 (zh)
IL (1) IL203338A (zh)
MX (1) MX2010000534A (zh)
RU (1) RU2504549C2 (zh)
TW (1) TWI374051B (zh)
WO (1) WO2009010269A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5697268B2 (ja) * 2009-09-29 2015-04-08 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft バッファー溶質のろ過前調整方法
AU2010302662B2 (en) 2009-10-01 2015-11-26 F. Hoffmann-La Roche Ag Multistep final filtration
EP2727643A1 (en) 2012-10-31 2014-05-07 Takeda GmbH Cross-flow ultrafiltration device and method for concentration of pharmaceutical compositions
US9439864B2 (en) * 2014-07-07 2016-09-13 Antriabio, Inc. Solvent extraction from biodegradable microparticles
GB201600287D0 (en) 2016-01-07 2016-02-24 Fujifilm Diosynth Biotechnologies Uk Ltd Process
WO2024012364A1 (en) * 2022-07-12 2024-01-18 Beigene Switzerland Gmbh Preparation methods for a highly concentrated pd1 antibody solution by ultrafiltration/diafiltration (uf/df)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256294A (en) * 1990-09-17 1993-10-26 Genentech, Inc. Tangential flow filtration process and apparatus
GB9610992D0 (en) 1996-05-24 1996-07-31 Glaxo Group Ltd Concentrated antibody preparation
US6365395B1 (en) * 2000-11-03 2002-04-02 Millipore Corporation Process for removing protein aggregates and virus from a protein solution
WO2004001007A2 (en) 2002-06-21 2003-12-31 Idec Pharmaceuticals Corporation Buffered formulations for concentrating antibodies and methods of use thereof
CN1226418C (zh) * 2002-07-12 2005-11-09 广东欧瑞卡生物工程有限公司 天然活性蛋白质和肽的分离纯化方法
CN1759189A (zh) * 2003-02-24 2006-04-12 Gtc生物治疗学公司 切向流过滤方法及其装置
AR045614A1 (es) 2003-09-10 2005-11-02 Hoffmann La Roche Anticuerpos contra el recepctor de la interleuquina- 1 y los usos de los mismos
US20050197496A1 (en) 2004-03-04 2005-09-08 Gtc Biotherapeutics, Inc. Methods of protein fractionation using high performance tangential flow filtration
ES2403055T3 (es) 2004-04-13 2013-05-13 F. Hoffmann-La Roche Ag Anticuerpos anti-P-selectina
US20060051347A1 (en) * 2004-09-09 2006-03-09 Winter Charles M Process for concentration of antibodies and therapeutic products thereof
TW200640443A (en) 2005-02-23 2006-12-01 Alcon Inc Methods for treating ocular angiogenesis, retinal edema, retinal ischemia, and diabetic retinopathy using selective RTK inhibitors

Also Published As

Publication number Publication date
CN101754977B (zh) 2013-07-17
EP2170949B1 (en) 2012-12-26
CA2693443C (en) 2018-02-13
ES2401820T3 (es) 2013-04-24
US8633302B2 (en) 2014-01-21
BRPI0813823B8 (pt) 2021-05-25
AU2008277886B8 (en) 2013-08-01
MX2010000534A (es) 2010-04-22
JP2010533663A (ja) 2010-10-28
RU2504549C2 (ru) 2014-01-20
AU2008277886B2 (en) 2013-03-14
EP2170949A1 (en) 2010-04-07
KR20100049066A (ko) 2010-05-11
CN101754977A (zh) 2010-06-23
CA2693443A1 (en) 2009-01-22
TW200914120A (en) 2009-04-01
WO2009010269A1 (en) 2009-01-22
BRPI0813823A2 (pt) 2015-01-06
BRPI0813823B1 (pt) 2018-08-07
RU2010105311A (ru) 2011-08-27
IL203338A (en) 2014-03-31
KR101215740B1 (ko) 2012-12-27
US20100196961A1 (en) 2010-08-05
AU2008277886A1 (en) 2009-01-22
JP5432137B2 (ja) 2014-03-05

Similar Documents

Publication Publication Date Title
TWI374051B (en) Variable tangential flow filtration
CA2497364C (en) Protein purification method
US20120282654A1 (en) Antibody purification
JP5732196B2 (ja) 低pHおよび二価カチオンを用いる生物高分子を単離する方法
WO2002072615A1 (fr) Methode de purification de proteines
JP5205470B2 (ja) 免疫グロブリン凝集物
DK2483304T3 (en) FOR-FILTER ADJUSTING THE BUFFER SOLUTIONS FOR HIGH-CONCENTRATION-immunoglobulin
WO2022041390A1 (zh) 包含高浓度抗人白介素23单克隆抗体的低粘度液体制剂及其制备方法
DK2483305T3 (en) MULTI-STEP-END FILTERING Immunoglobulin