TWI364112B - Nonvolatile memory having modified channel region interface - Google Patents
Nonvolatile memory having modified channel region interface Download PDFInfo
- Publication number
- TWI364112B TWI364112B TW096125135A TW96125135A TWI364112B TW I364112 B TWI364112 B TW I364112B TW 096125135 A TW096125135 A TW 096125135A TW 96125135 A TW96125135 A TW 96125135A TW I364112 B TWI364112 B TW I364112B
- Authority
- TW
- Taiwan
- Prior art keywords
- region
- volatile memory
- source
- memory cell
- circuit
- Prior art date
Links
- 238000000034 method Methods 0.000 claims description 49
- 239000000758 substrate Substances 0.000 claims description 42
- 239000000463 material Substances 0.000 claims description 27
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 239000002159 nanocrystal Substances 0.000 claims description 11
- 238000007654 immersion Methods 0.000 claims description 4
- 150000004767 nitrides Chemical class 0.000 claims description 4
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 4
- 239000004575 stone Substances 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 4
- 229910001925 ruthenium oxide Inorganic materials 0.000 claims 4
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims 4
- 238000002309 gasification Methods 0.000 claims 2
- 229910052757 nitrogen Inorganic materials 0.000 claims 2
- 241000251468 Actinopterygii Species 0.000 claims 1
- 235000003140 Panax quinquefolius Nutrition 0.000 claims 1
- 240000005373 Panax quinquefolius Species 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 210000000877 corpus callosum Anatomy 0.000 claims 1
- 229910052805 deuterium Inorganic materials 0.000 claims 1
- 239000002086 nanomaterial Substances 0.000 claims 1
- 150000002923 oximes Chemical class 0.000 claims 1
- APTZNLHMIGJTEW-UHFFFAOYSA-N pyraflufen-ethyl Chemical compound C1=C(Cl)C(OCC(=O)OCC)=CC(C=2C(=C(OC(F)F)N(C)N=2)Cl)=C1F APTZNLHMIGJTEW-UHFFFAOYSA-N 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 238000003860 storage Methods 0.000 description 74
- 238000010586 diagram Methods 0.000 description 37
- 238000002347 injection Methods 0.000 description 37
- 239000007924 injection Substances 0.000 description 37
- 210000000746 body region Anatomy 0.000 description 17
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 16
- 239000003989 dielectric material Substances 0.000 description 13
- 229910052732 germanium Inorganic materials 0.000 description 13
- 239000002784 hot electron Substances 0.000 description 12
- 125000006850 spacer group Chemical group 0.000 description 12
- 238000007667 floating Methods 0.000 description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 11
- 229920005591 polysilicon Polymers 0.000 description 11
- 229920002120 photoresistant polymer Polymers 0.000 description 7
- 238000005468 ion implantation Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000005381 potential energy Methods 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 241000220317 Rosa Species 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Description
13641121364112
' 三達編號:TW3135PA 气 九、發明說明: 【相關申請案之參考文獻】 • 本發明主張發明人廖意瑛於2006年7月1〇曰申請之 -美國專利臨時申請案號60/806,840之優先權,該案的名稱 為溝槽通道非揮發性記憶體單元結構、製造方法及操作方 法(Recess-Channel Non-Volatile Memory Cell Structure, Manufacturing Methods and Operating Methods)。 •【發明所屬之技術領域】 本發明是有關於非揮發性記憶體,且特別是有關於具 有一變化通道區介面之非揮發性記憶體,變化通道區介面 例如是一舉升之源極與汲極或一凹入之通道區。 【先前技術】 稱為EEPROM與快閃記憶體之電荷儲存結構的電性 可程式化與可抹除非揮發性記憶體技術,係被使用於各種 的現代化應用。複數個記憶體單元結構係為EEPR0M與 快閃記憶體所使用。當積體電路之尺寸縮小時,基於電荷 捕捉介電層之記憶體單元結構之重要性係逐漸興起,此乃 因為可調尺寸之能力與製程簡化之緣故。基於電荷捕捉介 電層之記憶體單元結構包含以譬如業界稱為PmNES, SONOS或NR0M之結構。這些記憶體單元結構係藉由在 一電荷捕捉介電層(例如氮化矽)中捕捉電荷來儲存資料。 當負電荷被捕捉時,記憶體單元之臨限電壓會增加。記憶 1364112'三达编号: TW3135PA 九九, invention description: [References in the relevant application] • The present invention claims the priority of the inventor of the inventor, Liao Yijun, July 1, 2006 - US Patent Provisional Application No. 60/806,840 The name of the case is Recess-Channel Non-Volatile Memory Cell Structure, Manufacturing Methods and Operating Methods. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to non-volatile memory, and more particularly to non-volatile memory having a varying channel region interface, such as a source and a threshold for varying channels. A pole or a recessed passage area. [Prior Art] The electrically programmable and erasable volatile memory technology, known as EEPROM and flash memory storage structures, is used in a variety of modern applications. A plurality of memory cell structures are used for EEPR0M and flash memory. When the size of the integrated circuit is reduced, the importance of the memory cell structure based on the charge trapping dielectric layer is gradually increasing because of the ability to adjust the size and the simplification of the process. The memory cell structure based on the charge trapping dielectric layer includes a structure called PmNES, SONOS or NR0M, for example, in the industry. These memory cell structures store data by trapping charge in a charge trapping dielectric layer such as tantalum nitride. When the negative charge is captured, the threshold voltage of the memory cell increases. Memory 1364112
-‘ 三達編號:TW3135PA 气.體單元之臨限電麼係藉由從電荷捕捉層移除負電荷而減 少 Ο 習知之非揮發性氮化物單元結構是平面的,以使氧化 ·· •物·氮化物-氧化物(ΟΝΟ)結構形成於基板之表面上。然 而,這種平面的結構係具有微縮尺寸之能力不佳、程式化 • 及抹除操作功率咼,以及咼片狀電阻值的性質。這種結構 係說明於YEH’C. C.等人,"PHINES:嶄新之低功率程式 化/抹除、小間隔、單s己憶胞雙位元之快閃記憶體(PHines: • A Novel Low Power Program/Erase, Small Pitch, 2-Bit per Cell Flash Memory)”,電子裝置會議,2〇〇2 年,IEDM,〇2-' Sanda number: TW3135PA gas. The power of the body unit is reduced by removing the negative charge from the charge trapping layer. The conventional non-volatile nitride unit structure is planar so that the oxidation··· A nitride-oxide structure is formed on the surface of the substrate. However, this planar structure has the ability to have a small size, stylized • and erase operating power, and the properties of the chip resistance. This structure is described in YEH'CC et al., "PHINES: A new low-power stylized/erased, small-interval, single-single-cell double-bit flash memory (PHines: • A Novel Low Power) Program/Erase, Small Pitch, 2-Bit per Cell Flash Memory)”, Electronic Device Conference, 2 〇〇 2 years, IEDM, 〇 2
Digest. International’8-11,2002 年 12 月,頁數:93i · 934。 因此,需要修改此習知之非揮發性氮化物單元結構之 平面結構,以處理上述一個或多個缺點。 【發明内容】Digest. International’8-11, December 2002, Pages: 93i · 934. Accordingly, there is a need to modify the planar structure of this conventional non-volatile nitride cell structure to address one or more of the above disadvantages. [Summary of the Invention]
本發明係有關於一種具有變化通道區介面之非揮發 9 性記憶體。 X 根據本發明之一第一方面,提出一種非揮發性記憶 單元積體電路,其包含一電荷捕捉結構、源極與汲極^, 以及介電結構。電荷捕捉結構儲存電荷以控制由非揮發性 記憶體單元積體電路儲存之一邏輯狀態。於各種不同的實 施例中,此電荷捕捉結構儲存一個位元或多重位元。源極 區與没極區係由-通道區分離,通道區係為經歷反轉以'電 連接源極與汲極區之電路之一部分^介電結構在缺乏一電 1364112The present invention relates to a non-volatile memory having a varying channel region interface. X In accordance with a first aspect of the present invention, a non-volatile memory cell integrated circuit is provided that includes a charge trapping structure, a source and a drain, and a dielectric structure. The charge trapping structure stores charge to control the logic state stored by the non-volatile memory cell integrated circuit. In various embodiments, the charge trapping structure stores one bit or multiple bits. The source region and the immersion region are separated by a channel region, which is a part of a circuit that undergoes inversion to 'electrically connect the source and the drain region. ^ The dielectric structure lacks a power 1364112
,、 三達編號:TW3135PA 場之情況下電性隔離此電路之複數個部分,以克服介電結 構。介電結構係至少部分位於電荷捕捉結構與通道區之 間,且係至少部分位於電荷捕捉結構與一閘極電壓源之 間。 一介面將所述一個或多個介電結構之一部分與此通 道區分離。此介面之一第一端結束於源極區之一中間部 分,而此介面之一第二端結束於汲極區之一中間部分。 為了實施此介面,一實施例將源極區與汲極區舉升離 I 非揮發性記憶體單元積體電路之一基板。於另一實施例 中,此通道區係凹入非揮發性記憶體單元積體電路之一基 板。 根據本發明之一第二方面,提出一種非揮發性記憶體 單元積體電路之製造方法,其包含以下步驟: 形成一電荷捕捉結構來儲存電荷以控制由非揮發性 記憶體單元積體電路儲存之一邏輯狀態,其中於各種不同 的實施例中,電荷捕捉結構儲存一個位元或多重位元; I 形成由一通道區分離之源極區與汲極區;及 形成介電結構,其至少部分位於電荷捕捉結構與通道 區之間,且至少部分位於電荷捕捉結構與一閘極電壓源之 間。 一介面分離一個或多個介電結構之一部分與通道 區,而此介面之一第一端結束於源極區之一中間部分,此 介面之一第二端結束於汲極區之一中間部分。 為了實施此介面,一實施例添加一層材料至此積體電,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The dielectric structure is at least partially located between the charge trapping structure and the channel region and at least partially between the charge trapping structure and a gate voltage source. An interface separates a portion of the one or more dielectric structures from the channel region. One of the first ends of the interface ends in an intermediate portion of one of the source regions, and one of the second ends of the interface ends in an intermediate portion of one of the drain regions. To implement this interface, an embodiment lifts the source and drain regions away from one of the substrates of the I non-volatile memory cell integrated circuit. In another embodiment, the channel region is recessed into one of the substrates of the non-volatile memory cell integrated circuit. According to a second aspect of the present invention, a method of fabricating a non-volatile memory cell integrated circuit includes the steps of: forming a charge trapping structure to store charge to control storage by a non-volatile memory cell integrated circuit a logic state, wherein in various embodiments, the charge trapping structure stores one bit or multiple bits; I forms a source region and a drain region separated by a channel region; and forms a dielectric structure, at least A portion is located between the charge trapping structure and the channel region and at least partially between the charge trapping structure and a gate voltage source. An interface separates one of the one or more dielectric structures from the channel region, and one of the first ends of the interface ends in an intermediate portion of the source region, and the second end of the interface ends in a middle portion of the drain region . In order to implement this interface, an embodiment adds a layer of material to the integrated body.
* TW3135PA 板,將源極區魏極區舉升離非揮發性記情體單 中,之一基板°另―實施例形成—溝槽於一基板 使电荷捕捉結構與介電結構形成於此溝槽中。 體結電荷奈米晶 ^ 兒何捕捉結構。 構與其他實施财,至少部分位於電荷捕捉結 ΟΝΟ結構。間之”電結構包含例如揭露於此之-種 實施ί讓之上述内容能更明顯易懂,下文特舉較佳 工配合所附圖式,作詳細說明如下: 【實施方式】 性記一非揮發性記憶體單元之示意圖,非揮發 閘極102,太夕奴虚A 凹入之通道。 閘極電壓Vg 其功函數大於Τ^、不艺貝%例中,閘極結構包含一材料 最好是大於約4型守之本徵功函數,或大於約M eV,且 材料包含p型夕2日5 eV,譬如大於約5 eV°代表性的閘極 材料。適人士夕晶矽、氮化鈦、鉑與其他高功函數金屬及 材料包含^ ^明之實施例之具有相當高的功函數之其他 與鈷(Co).金,其包含但不限於釕(Ru)、銥(⑺、鎳(Ni) 屬氮化物· r屬合金,其包含但不限於釕_鈦與鎳—鈦;金 (Ru〇2h古,以及金屬氧化物,其包含但不限於氧化釕 2间功函數閘極材料產生比典型的N型多晶矽閘極 電壓W 實^财為料之字元線,具有 丄允4112* TW3135PA board, lifting the source region Wei pole area away from the non-volatile symmetry body sheet, one of the substrates is formed by another embodiment - the groove is formed on a substrate to form the charge trapping structure and the dielectric structure In the slot. Body junction charge nanocrystals ^ How to capture the structure. The structure and other implementations are at least partially located in the charge trapping structure. The above-mentioned "electrical structure" includes, for example, the above-mentioned embodiments, which can be more clearly understood. The following detailed description is in accordance with the accompanying drawings, and the detailed description is as follows: [Embodiment] Schematic diagram of the volatile memory cell, the non-volatile gate 102, the channel of the Taixi slave virtual A recess. The gate voltage Vg has a work function greater than that of Τ^, 不艺贝%, the gate structure contains a best material. It is greater than about the eigenfunction function of the type 4 guard, or greater than about Me eV, and the material contains p-type eve 2 5 eV, for example, greater than about 5 eV ° representative gate material. Suitable for people, silicon nitride, titanium nitride , platinum and other high work function metals and materials include other cobalt (Co). gold having a relatively high work function in the examples, including but not limited to ruthenium (Ru), ruthenium ((7), nickel (Ni) Is a nitride · r alloy, including but not limited to 钌 _ titanium and nickel - titanium; gold (Ru 〇 2h ancient, and metal oxide, including but not limited to yttrium oxide 2 work function gate material production ratio The typical N-type polysilicon gate voltage W is the word line of the material, with 44112
三達編號:TW3135PA 較高的電子隨穿之注人阻障。具有二氧 之N型多㈣閘極之注人阻障係在3 15 /作為外介電層 本發明之實施例使用供閘極用與供外 左右。因此, 具有-注入阻障,其高於約3.15 eV,例:層用之材料,係 於r™有 日日矽閘極,其注入阻障大約是4.25 eV, P型 含二氧化料介電層之N型多晶石夕閉極之且相^於具有 生之收斂單元之閥值係被減少大約2伏特。疋而5 ’所產 介電結構104係位於閘極102與電 料’其包含譬其他類似的高介電常數材 電荷儲存結構應儲存電荷以控制由非揮㈣ 是;=存:邏輯狀態。較先之實施例之電荷儲存結構 荷儲存!槿=如是多晶♦,以使料電荷擴展遍及此電 盘夺米^i新的實施例之電荷儲存結構係為電荷捕捉 電行二t構。這種較新的實施例不像導電材料,會將 之電何儲存結構之狀位置,藉以啟動不同位置 捉往構包4構,存分㈣邏輯㈣。代純的電荷捕 、、’。構。4有大約3至9奈米之厚度之氮化矽。 令為部分之位/原極區11G與汲極區112在多數的實施例 70線’且其特徵為一接面深度120。本體區 1364112 三達編號:TW3135PA 122在多數的實施例中是一基板或一井,且具 壓vb。為因應被施加至閘極1〇2'源極11〇了 本體122之適當的偏壓配置,形成―通道ιΐ4 ’ , 110與汲極112 ^ 电連接源核Sanda number: TW3135PA The higher the electrons are worn by the person. The N-type multiple (four) gate with a dioxic barrier is used in the 3 15 / as the outer dielectric layer. The embodiment of the present invention uses the gate for the gate and the outside for the donor. Therefore, there is a -injection barrier, which is higher than about 3.15 eV. For example, the material used for the layer is that the rTM has a day-to-day gate, and the implantation barrier is about 4.25 eV, and the P type contains a dioxide dioxide dielectric. The N-type polycrystalline layer of the layer is closed and the threshold value of the unit with the convergence of the life is reduced by about 2 volts. The dielectric structure 104 produced by the 5' is located at the gate 102 and the electrical material. It contains other similar high dielectric constant materials. The charge storage structure should store charge to control the non-volatile (four) is; = stored: logic state. The charge storage structure of the prior embodiment is stored! 槿 = polycrystalline ♦ to spread the charge throughout the disk. The charge storage structure of the new embodiment is a charge trapping circuit. This newer embodiment is not like a conductive material, it will be used to store the position of the structure, so as to start different positions to capture the structure, and save (4) logic (4). Pure charge trapping, '. Structure. 4 has a thickness of about 3 to 9 nm of tantalum nitride. The partial/primary region 11G and the drain region 112 are in the majority of the embodiment 70 lines' and are characterized by a junction depth 120. Body Area 1364112 Sanda Number: TW3135PA 122 is a substrate or well in most embodiments and is pressure vb. In order to be applied to the gate 1〇2' source 11 and the appropriate biasing configuration of the body 122, a "channel ι4", 110 and a drain 112^ are electrically connected to the source core.
源極與没極d 116之上邊緣係高於在通道114盘八· 結構108之間的介面118。然*,在通道ιΐ4與介電= m之間的介面118維持在源極與祕區之下邊緣上=冓 因此,在通道114與介電結構1〇8之間之介面118妗^ 源極區110與汲極區112之中間區域。 Q ; 源極區110與汲極區112之上邊緣係與本體區122之 上邊緣排成-線。因此’第!圖之非揮發性記憶體 為凹入通道之實施例。 诉 第2圖係為一非揮發性記憶體單元之示意圖, 性記憶體單元具有舉升離半導體基板之源極區與汲極 區。第1圖與2之非揮發性記憶體單元實質上是類似的。 然而,源極區210與汲極區212之上邊緣係位於本體區122 之上邊緣的上方。因此,第2圖之非揮發性記憶體單元係 為牛升之源極與;及極之實施例。在通道214與介電結構208 之間之介面218仍然結束於源極區21〇與汲極區212之尹 間區域。源極區210與汲極區212之特徵為一接面深度 第3A圖係為在具有凹入通道之非揮發性記憶體單元 中’電子從’注人至電荷儲存結構之示意圖。 閘極區302具有-10V之閘極電壓Vg。源極區3〇4具 1364112The top edge of the source and the dipole d 116 is higher than the interface 118 between the channel 114 and the structure 108. However, the interface 118 between the channel ιΐ4 and the dielectric=m is maintained at the edge of the source and the sub-region = 冓 Therefore, the interface between the channel 114 and the dielectric structure 〇8 is 妗^ source The intermediate region between the region 110 and the bungee region 112. Q; the source region 110 and the upper edge of the drain region 112 are lined with the upper edge of the body region 122. So 'the first! The non-volatile memory of the figure is an embodiment of a recessed channel. Figure 2 is a schematic diagram of a non-volatile memory cell having a source region and a drain region lifted off the semiconductor substrate. The non-volatile memory cells of Figures 1 and 2 are substantially similar. However, the source region 210 and the upper edge of the drain region 212 are located above the upper edge of the body region 122. Therefore, the non-volatile memory cell of Figure 2 is the source of the Niu Sheng; and the polar embodiment. The interface 218 between the channel 214 and the dielectric structure 208 still ends in the inter-growth region of the source region 21A and the drain region 212. The source region 210 and the drain region 212 are characterized by a junction depth. Figure 3A is a schematic diagram of the 'electron from' injection to the charge storage structure in a non-volatile memory cell having a recessed channel. The gate region 302 has a gate voltage Vg of -10V. Source area 3〇4 with 1364112
' 三達編號:TW3135PA 、 有10V或浮動之源極電壓Vs。汲極區306具有10V或浮 動之汲極電壓Vd。本體區308具有10V之本體電壓Vb。 第3B圖係為在具有舉升之源極區與汲極區之非揮發 '•性記憶體單元中,電子從閘極注入至電荷儲存結構之示意 : 圖。第3B圖之偏壓配置係類似於第3A圖。 ' 第4A圖係為在具有凹入通道之非揮發性記憶體單元 中,電子從基板注入至電荷儲存結構之示意圖。 閘極區402具有10V之閘極電壓Vg。源極區404具 籲 有-1OV或浮動之源極電壓Vs。没極區406具有-10V或浮 動之汲極電壓Vd。本體區408具有-10V之本體電壓Vb。 第4B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體單元中,電子從基板注入至電荷儲存結構之示意 圖。第4B圖之偏壓配置係類似於第4A圖。 第5A圖係為在具有凹入通道之非揮發性記憶體單元 中,帶間(band-to-band)熱電子注入至電荷儲存結構之示意 圖。 ^ 閘極區502具有10V之閘極電壓Vg〇p+型源極區504 具有-5V之源極電壓Vs。p+型汲極區506具有0V或浮動 之汲極電壓Vd°N型本體區508具有0V之本體電壓Vb。 第5B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體單元中,帶間熱電子注入至電荷儲存結構之示意 圖。第5B圖之偏壓配置係類似於第5A圖。 第6A圖係為在具有凹入通道之非揮發性記憶體單元 中,通道熱電子注入至電荷儲存結構之示意圖。 1364112'Sanda number: TW3135PA, with 10V or floating source voltage Vs. The drain region 306 has a 10V or floating drain voltage Vd. The body region 308 has a body voltage Vb of 10V. Figure 3B is an illustration of electron injection from a gate to a charge storage structure in a non-volatile memory cell with raised source and drain regions: The bias configuration of Figure 3B is similar to Figure 3A. 'Fig. 4A is a schematic diagram of electrons injected from a substrate into a charge storage structure in a non-volatile memory cell having a recessed channel. The gate region 402 has a gate voltage Vg of 10V. The source region 404 has a -1 OV or floating source voltage Vs. The non-polar region 406 has a -10V or floating drain voltage Vd. The body region 408 has a body voltage Vb of -10V. Figure 4B is a schematic illustration of the injection of electrons from a substrate into a charge storage structure in a non-volatile memory cell having lifted source and drain regions. The bias configuration of Figure 4B is similar to Figure 4A. Figure 5A is a schematic illustration of band-to-band hot electron injection into a charge storage structure in a non-volatile memory cell having a recessed channel. ^ Gate region 502 has a gate voltage of 10V Vg〇p+ type source region 504 has a source voltage Vs of -5V. The p+ type drain region 506 has a 0V or floating drain voltage Vd. The N type body region 508 has a body voltage Vb of 0V. Fig. 5B is a schematic view showing the injection of hot electrons between the bands into the charge storage structure in the nonvolatile memory unit having the lifted source region and the drain region. The bias configuration of Figure 5B is similar to Figure 5A. Figure 6A is a schematic illustration of the channel hot electron injection into the charge storage structure in a non-volatile memory cell having a recessed channel. 1364112
三達編號:TW3135PA * 祕區602具有1 〇v之閘極電壓Vg。n+型源極區604 具有-5V之源極電壓Vs。n+型沒極區_具有〇v之及極 電壓Vd。P型本體區608具有0V之本體電壓vb。 ·. · 帛6B圖係為在具有舉升之源極區與没極區之非揮發 •性記憶體單元中,通道熱電子注入至電荷健存結構之示意 ' 圖。第圖之偏壓配置係類似於第6A圖。 第7A圖係為在具有凹入通道之非揮發性記憶體單元 中,基板熱電子注入至電荷儲存結構之示意圖。 • 閉極區7〇2具有1〇V之閘極電壓Vgf型源極區7〇4 具有0V之源極電塵Vs。n+型没極區7〇6具有〇v之没極 電壓W。N型本體區708具有_6V之本體電壓%。p型 井區7Π)具有-5V之井電壓Vwe源極區7〇4與沒極區7〇6 係位於此井區710中,而井區71〇位於本體區7〇8中。 第7B圖係為在具有舉升之源極區與及極區之非揮發 性記憶體單元中,基板熱電子注入至電荷儲存結構之示音 鲁 圖。第7B圖之偏壓配置係類似於第7A圖。 第8A圖係為在具有凹入通道之非揮發性記憶體單元 中’電洞從閘極注入至電荷健存結構之示意圖。 閘極區802具有10V之閑極電壓Vg。源極區_具 有-ιόν或浮動之源極電壓Vs。汲極區8〇6具有·猜或浮 動之没極電M 本㈣綱具有.謂之本體電壓%。 第8B圖係為在具有舉升之源極區舰極區之非揮發 性記憶體單元中,電洞從閘極注入至電荷儲存結構之示意 圖。第8B圖之偏壓配置係類似於第8A圖。 12 1364112Sanda number: TW3135PA * Secret area 602 has a gate voltage Vg of 1 〇v. The n+ type source region 604 has a source voltage Vs of -5V. The n+ type non-polar region _ has a voltage Vd of 〇v. The P-type body region 608 has a body voltage vb of 0V. · · 6B is a schematic diagram of the channel's hot electron injection into the charge-storing structure in a non-volatile memory cell with lifted source and immersed regions. The bias configuration of the Figure is similar to Figure 6A. Figure 7A is a schematic diagram of the substrate's hot electron injection into the charge storage structure in a non-volatile memory cell having a recessed channel. • The closed-pole region 7〇2 has a gate voltage of 1〇V. The Vgf-type source region 7〇4 has a source electric dust Vs of 0V. The n+ type non-polar region 7〇6 has a voltage V of 〇v. The N-type body region 708 has a body voltage % of _6V. The p-type well area 7Π) has a well voltage of -5V, the Vwe source area 7〇4 and the non-polar area 7〇6 are located in the well area 710, and the well area 71〇 is located in the body area 7〇8. Fig. 7B is a diagram showing the hot electron injection into the charge storage structure of the substrate in the non-volatile memory cell having the source region and the polar region of the lift. The bias configuration of Figure 7B is similar to Figure 7A. Figure 8A is a schematic illustration of the injection of a hole from a gate to a charge-storing structure in a non-volatile memory cell having a recessed channel. The gate region 802 has a idle voltage Vg of 10V. The source region _ has -ιόν or a floating source voltage Vs. The bungee area 8〇6 has the guessing or floating of the non-polar electric M (4), which has the body voltage %. Figure 8B is a schematic illustration of the injection of a hole from a gate to a charge storage structure in a non-volatile memory cell having a lifted source region. The bias configuration of Figure 8B is similar to Figure 8A. 12 1364112
三達編號:TW3135PA 第9Α'ϋ係為在具凹入通道之非揮發性記憶體單元 中’電洞從基板注入至電荷儲存結構之不意圖。 閘極區902具有-10V之閘極電壓Vg。源極區904具 有10V或浮動之源極電壓Vs。及極區906具有10V或浮 動之汲極電壓Vd。本體區908具有10V之本體電壓Vb。 第9B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體早元中’電洞從基板注入至電何儲存結構之不意 圖。第9B圖之偏壓配置係類似於第9A圖。 第10A圖係為在具有凹入通道之非揮發性記憶體單 元中,帶間熱電洞注入至電荷儲存結構之示意圖。 閘極區1002具有-10V之閘極電壓Vg。n+型源極區 1004具有5V之源極電壓Vs。n+型汲極區1006具有0V 或浮動之汲極電壓Vd。P型本體區1008具有0V之本體 電壓Vb。 第10B圖係為在具有舉升之源極區與汲極區之非揮 發性記憶體單元中,帶間熱電洞注入至電荷儲存結構之示 意圖。第10B圖之偏壓配置係類似於第10A圖。 第11A圖係為在具有凹入通道之非揮發性記憶體單 元中,通道熱電洞注入至電荷儲存結構之示意圖。 閘極區1102具有-10V之閘極電壓Vg。p+型源極區 1104具有0V之源極電壓Vs。p+型汲極區1106具有5V 之汲極電壓Vd〇N型本體區1108具有0V之本體電壓Vb。 第11B圖係為在具有舉升之源極區與汲極區之非揮 發性記憶體單元中,通道熱電洞注入至電荷儲存結構之示 13 i'364112Sanda number: TW3135PA The 9th 'Α is a non-volatile memory cell with a recessed channel'. The hole is injected from the substrate into the charge storage structure. The gate region 902 has a gate voltage Vg of -10V. Source region 904 has a 10V or floating source voltage Vs. The sum region 906 has a 10V or floating drain voltage Vd. The body region 908 has a body voltage Vb of 10V. Fig. 9B is an unintentional view of the injection of holes from the substrate into the electrical storage structure in the non-volatile memory of the source region with the lifted source region and the drain region. The bias configuration of Figure 9B is similar to Figure 9A. Figure 10A is a schematic illustration of the injection of inter-band thermoelectric holes into a charge storage structure in a non-volatile memory cell having recessed channels. The gate region 1002 has a gate voltage Vg of -10V. The n+ type source region 1004 has a source voltage Vs of 5V. The n+ type drain region 1006 has a 0V or floating drain voltage Vd. The P-type body region 1008 has a body voltage Vb of 0V. Fig. 10B is an illustration of the injection of inter-band thermoelectric holes into a charge storage structure in a non-volatile memory cell having a raised source region and a drain region. The bias configuration of Figure 10B is similar to Figure 10A. Figure 11A is a schematic illustration of the injection of channel thermowells into a charge storage structure in a non-volatile memory cell having recessed channels. The gate region 1102 has a gate voltage Vg of -10V. The p+ type source region 1104 has a source voltage Vs of 0V. The p+ type drain region 1106 has a 5V drain voltage Vd〇N type body region 1108 having a body voltage Vb of 0V. Figure 11B is a diagram showing the injection of a channel thermoelectric hole into a charge storage structure in a non-volatile memory cell having a lifted source region and a drain region. 13 i'364112
i達編號:TW3135PA % 意圖:第11B圖之偏壓配置係類似於第UA圖。 第12A圖係為在具有凹入通道之非揮發性記憶體單 疋中’基板熱電洞注人至電荷儲存結構之示意圖。 閘極區1202具有-ιόν之閘極電壓Vg。ρ+型源極區 1204具有〇V之源極電麼Vs。p+型没極區^施具有 之没極電麼Vd°P型本體區1薦具有6V之本體電歷Vb。 N型井區1210具冑5V之井電璧Vw。源極區腦斑及極 區1206係位於井區1210中,而井區Π10位於本體區謂 中。 第12B圖係為在具有舉升之源極區與沒極區之非揮 ^性記憶體單元中,基板熱電洞注人至電荷健存結構之示 忍圖。第12B圖之偏編&置係類似於第12八圖。 第13A圖係為在具有凹入通道之非揮發性記憶體單 几中’用以讀取儲存於電荷儲存結構之右側之資料之一反 向讀取操作之示意圖。 閘極區1302具有3V之閘極電壓Vgen+型源極區 具有uv之源極電壓VsL及極區13〇6具有〇v 之没極電壓Vd«P型本體區i观具有〇v之本體電壓、 第13B圖係為在具有舉升之源極區與汲極區之非 發性記憶體單元中,用以讀取儲存於電荷儲存結構之右側 之資料之反向讀取操作之示意圖。第13B圖之偏壓配置係 類似於第13A圖。 第14A圖係為在具有凹入通道之非揮發性記憶體單 疋中’用以儲存位於電荷儲存結構之左側之資料之反向讀 丄丄Ida number: TW3135PA% Intent: The bias configuration of Figure 11B is similar to the UA diagram. Figure 12A is a schematic illustration of a substrate thermowell injected into a charge storage structure in a non-volatile memory cell having a recessed channel. The gate region 1202 has a gate voltage Vg of -ιόν. The pn+ source region 1204 has a source of 〇V, Vs. The p+ type non-polar region has a non-polarity type. The Vd°P-type body region 1 has a body electrical clock Vb of 6V. The N-type well area 1210 has a well VV of 5V. The source region cerebral plaque and polar region 1206 are located in the well region 1210, while the well region Π10 is located in the body region. Fig. 12B is a diagram showing the substrate thermoelectric hole injection to the charge retention structure in the non-volatile memory cell having the lifted source region and the nonpolar region. The partial editing & setting of Fig. 12B is similar to that of Fig. 12A. Fig. 13A is a diagram showing an inverse reading operation for reading one of the data stored on the right side of the charge storage structure in a non-volatile memory cell having a recessed channel. The gate region 1302 has a gate voltage of 3V. The Vgen+ source region has a source voltage VsL of uv and the pole region 13〇6 has a gate voltage of 〇v. The Vd«P body region has a body voltage of 〇v, Figure 13B is a schematic illustration of a reverse read operation for reading data stored on the right side of the charge storage structure in a non-volatile memory cell having raised source and drain regions. The bias configuration of Figure 13B is similar to Figure 13A. Figure 14A is a reverse reading of the data stored on the left side of the charge storage structure in a non-volatile memory cell having a recessed channel.
i達編號:TW3135PA 取操作之示意圖。 閉極區MO2具有3V之閘極電屋Vg。#型源極巴 剛具有電^η+魏極區μ有^ 之汲極電壓Vd。?型本體區14Λ0曰士 ^ 發性有舉升之以 發f 4體早7G中’用以儲存位 資料之反向讀取操作之示咅R ㈣、、w構之左侧之 似於第14A圖。^H14B圖之偏壓配置係類 - Φ第田15t圖係為在具有凹人通道之非揮發性記憶體單 用以讀取儲存於電荷儲存結構之右側之㈣之體= 間讀取操作之示意圖。 帶 1504 區Γ。2具有_1〇V之閘極電壓Vg。n+型源極區 源極電壓VS。計型没極區具有2V 之〉及極電屢VdeP型太辦斤1ίΓΛ„ ^ /歪本體£ 1508具有〇v之本體電壓Vb。 性記憶體單二係舉升之源極與汲極區之非揮發 資料之-帶間讀取操二:取::於:荷儲存結⑽^^^ 類似於第15A圖/ 圖。第15B®之偏壓配置係 -由第m16A圖係為在具有凹人通道之非揮發性記憶體單 兀 卩儲存位於電荷儲存結構之左側之資料之帶間讀 取操作之示意圖。 閘極區1602具有·10v之閘極電壓乂。&型源極區 ’具有2 V之源極電愿%。n+型汲極區祕具有浮動 之没極電壓㈣型本體區職具有qv之本體電壓%。 15 1364112Ida number: TW3135PA take the operation diagram. The closed-pole area MO2 has a 3V gate electric house Vg. #型源巴 has just the electric ^η + Wei pole area μ has ^ the bungee voltage Vd. ? Type body area 14Λ0曰士^ The hair has lifted up to send f 4 body early 7G in the 'reverse reading operation for storing the bit data 咅R (four), the left side of the w structure is similar to the 14A Figure. ^H14B diagram of the bias configuration class - Φ field 15t diagram is a non-volatile memory with a concave channel for reading the body stored in the right side of the charge storage structure (four) = inter-read operation schematic diagram. With 1504 area Γ. 2 has a gate voltage Vg of _1 〇V. n+ type source region source voltage VS. The meter type immersed area has 2V> and the extreme electric VdeP type is too jin 1 ^ ^ / 歪 body £ 1508 has the body voltage Vb of 〇 v. The source and bungee area of the single-line lifting of the memory Non-volatile data - Inter-band read operation 2: Take::: Load storage junction (10) ^^^ Similar to Figure 15A / Figure. 15B® bias configuration system - by m16A system is concave The non-volatile memory of the human channel stores a schematic diagram of the inter-band read operation of the data located on the left side of the charge storage structure. The gate region 1602 has a gate voltage of ·10 V. The & source region has The source of 2 V is very likely to be %. The n+ type bungee zone has a floating immersed voltage (four) type body area with a body voltage of qv. 15 1364112
.、 三達編號:TW3135PA ; 第16B圖係為在具有舉升之源極區與汲極區之非揮 發性記憶體單元中,用以儲存位於電荷儲存結構之左側之 '資料之帶間讀取操作之示意圖。第16B圖之偏壓配置係類 •似於第16A圖。 ; 由於結合之垂直與横向電場之緣故,流經非揮發性記 • 憶體單元結構之帶間電流以高準確度決定電荷儲存結構 之特定部分之電荷儲存狀態。較大的垂直與橫向電場導致 較大的帶間電流。一種偏壓配置係被應用至各種不同的端 • 子,以使這些能帶彎曲到足以在非揮發性記憶體單元結構 中產生帶間電流,同時將在非揮發性記憶體單元節點之間 之電位差保持為足夠低,以使程式化或抹除不會產生。 於偏壓配置之例子中,非揮發性記憶體單元結構係相 對於主動源極區或汲極區與本體區被逆向偏壓,產生逆向 偏壓之接面。此外,閘極結構之電壓導致這些能帶彎曲成 足以使帶間隧穿經由非揮發性記憶體單元結構而產生。在 其中一個非揮發性記憶體單元結構節點(於多數的實施例, 达三号: TW3135PA; Figure 16B is for the inter-band reading of the data stored on the left side of the charge storage structure in the non-volatile memory unit with the raised source and drain regions. Take a schematic diagram of the operation. The bias configuration of Figure 16B is similar to Figure 16A. Due to the combination of the vertical and transverse electric fields, the current between the strips flowing through the non-volatile memory cell structure determines the charge storage state of a particular portion of the charge storage structure with high accuracy. Larger vertical and transverse electric fields result in larger currents between the bands. A biasing configuration is applied to a variety of different terminals to bend the bands sufficiently to create inter-band currents in the non-volatile memory cell structure while being between non-volatile memory cell nodes The potential difference is kept low enough so that stylization or erasure does not occur. In the bias configuration example, the non-volatile memory cell structure is reverse biased relative to the active source region or the drain region to the body region, creating a junction of the reverse bias. In addition, the voltage of the gate structure causes these bands to bend enough to cause interband tunneling through the non-volatile memory cell structure. In one of the non-volatile memory cell structure nodes (in most embodiments)
• 中是源極區或汲極區)中之高摻雜濃度。其中此結構節點具 有所產生之空間電荷區域之高電荷密度,以及此空間電荷 區域在短距離内之電壓改變,有助於產生急遽的能帶彎 曲。位於逆向偏壓之接面之一侧上之此價帶之電子經由被 禁止的間隙遂穿至在逆向偏壓之接面之另一側上之導 帶,並向下漂移至勢能丘(potential hill),更深入至逆向偏 壓之接面之N型節點。類似地,電洞漂移過勢能丘,遠離 逆向偏壓之接面之N型節點,並朝向逆向偏壓之接面之P 16 1364112• Medium is the high doping concentration in the source or drain region. The structure node has a high charge density in the space charge region generated, and the voltage change of the space charge region in a short distance helps to generate an acute band bend. The electrons of the valence band on one side of the junction of the reverse bias are punctured to the conduction band on the other side of the junction of the reverse bias via the forbidden gap and drift downward to the potential energy hill (potential) Hill), deeper into the N-type node of the junction of the reverse bias. Similarly, the hole drifts over the potential energy hill, away from the N-junction of the junction of the reverse bias, and faces the junction of the reverse bias P 16 1364112
三達編號:TW3135PA . 型節點。 閘極區之電壓控制位於電荷儲存結構附近之逆向偏 壓之接面之部分之電壓。當閘極結構之電壓變成更負時, •位於電荷儲存結構之附近之逆向偏壓之接面之此部分之 電壓變成更負,導致二極體結構中之更深的能帶彎曲。因 為以下(1)與(2)之至少某些組合之結果,更多帶間電流會流 動:(1)在彎曲能帶之一側之被佔據的電子能階與彎曲能帶 之另一側之未被佔據的電子能階之間漸增重疊量;以及(2) . 在被佔據的電子能階與未被佔據的電子能階之間之更狹 小之阻絕寬度(Sze,Physics of Semiconductor Devices, 1981)。 儲存於電荷儲存結構上之淨負或淨正電荷更進一步 影響能帶彎曲度。依據高斯定律,當負電壓相對於逆向偏 壓之接面被施加至閘極區時,較強電場係由靠近具有相當 高的淨負電荷之電荷儲存結構之部分之逆向偏壓之接面 之部分所經歷。類似地,當正電壓相對於逆向偏壓之接面 > 被施加至閘極區時,較強電場係由靠近具有相當高的淨正 電荷之電荷儲存結構之部分之逆向偏壓之接面之部分所 經歷。 關於讀取之不同的偏壓配置以及關於程式化與抹除 之偏壓配置顯示出慎重之平衡。關於讀取,在逆向偏壓之 接面節點之間之電位差不應導致載荷子之實質上的數目 通過一介電材料至電荷儲存結構並影響電荷儲存狀態(亦 即,程式化邏輯位準)。相較之下,關於程式化與抹除,在 17 1364112Sanda number: TW3135PA. Type node. The voltage in the gate region controls the voltage at the junction of the reverse bias voltages near the charge storage structure. When the voltage of the gate structure becomes more negative, the voltage at the portion of the junction of the reverse bias adjacent the charge storage structure becomes more negative, resulting in a deeper band bend in the diode structure. As a result of at least some of the following combinations of (1) and (2), more current between the bands will flow: (1) the occupied electron energy level on one side of the bending energy band and the other side of the bending energy band The increasing overlap between the unoccupied electron energy levels; and (2) the narrower barrier width between the occupied electron energy level and the unoccupied electron energy level (Sze, Physics of Semiconductor Devices , 1981). The net negative or net positive charge stored on the charge storage structure further affects the band curvature. According to Gauss's law, when the junction of the negative voltage and the reverse bias is applied to the gate region, the stronger electric field is connected by the reverse bias of the portion of the charge storage structure having a relatively high net negative charge. Partial experience. Similarly, when the junction of the positive voltage with respect to the reverse bias is applied to the gate region, the stronger electric field is connected by the reverse bias of the portion of the charge storage structure having a relatively high net positive charge. Part of what is experienced. The different bias configurations for reading and the biasing configuration for stylization and erasing show a careful balance. With respect to reading, the potential difference between the junction nodes of the reverse bias should not cause a substantial number of charge carriers to pass through a dielectric material to the charge storage structure and affect the charge storage state (ie, the programmed logic level). . In contrast, about stylization and erasing, at 17 1364112
三魏號:TW3135PA 逆向偏壓之接面節點之間之電位差足以導致載子之實質 上的數目通過一介電材料並藉由帶間熱載子注入來影響 電荷儲存狀態。 第17圖係具有一凹入通道之一非揮發性記憶體單元 陣列之製造流程圖,其顯示第19至23圖之製程步驟之各 種可能的組合。第Π圖揭露下述的處理流程組合:第19 與22圖;第19與23圖;第20與22圖;第20與23圖; 第21與22圖;以及第21與23圖。這些組合伴隨著後端 處理。 第18A與18B圖係為具有舉升之源極區與汲極區之 非揮發性記憶體單元陣列之製造流程圖。 第18A圖係具有舉升之源極區與汲極區之一 NOR非 揮發性記憶體單元陣列之製造流程圖,其顯示第24至27 圖之製程步驟之各種可能的組合。第18A圖揭露下述的處 理流程組合:第24、25與27圖;以及第24、26與27圖。 這些組合伴隨著後端處理。 第18B圖係具有舉升之源極區與汲極區之一 NAND 非揮發性記憶體單元陣列之製造流程圖,其顯示第28至 30圖之製程步驟之各種可能的組合。第18B圖揭露下述的 處理流程組合:第28與29圖;以及第28與30圖。這些 組合伴隨著後端處理。 第19A至19C圖係為在第22或23圖之前,在具有 刻有溝槽之通道之非揮發性記憶體單元中,用以形成一溝 槽之製程步驟。於第19A圖中,氧化物1910係沈積於基 18 1364112The three-week: TW3135PA potential difference between the junction nodes of the reverse bias is sufficient to cause the substantial number of carriers to pass through a dielectric material and affect the charge storage state by inter-band hot carrier injection. Figure 17 is a manufacturing flow diagram of a non-volatile memory cell array having a recessed channel showing various possible combinations of process steps of Figures 19-23. The figure illustrates the combination of process flows as follows: Figures 19 and 22; 19 and 23; 20 and 22; 20 and 23; 21 and 22; and 21 and 23. These combinations are accompanied by backend processing. 18A and 18B are manufacturing flow diagrams of a non-volatile memory cell array having lifted source and drain regions. Figure 18A is a manufacturing flow diagram of a NOR non-volatile memory cell array having one of the source and drain regions of the lift, showing various possible combinations of the process steps of Figures 24-27. Figure 18A discloses the following combination of process flows: Figures 24, 25 and 27; and Figures 24, 26 and 27. These combinations are accompanied by backend processing. Figure 18B is a manufacturing flow diagram of a NAND non-volatile memory cell array having one of the source and drain regions of the lift, showing various possible combinations of the process steps of Figures 28-30. Figure 18B discloses the following combination of process flows: Figures 28 and 29; and Figures 28 and 30. These combinations are accompanied by backend processing. 19A to 19C are process steps for forming a groove in a non-volatile memory cell having a grooved channel before the 22nd or 23rd. In Figure 19A, oxide 1910 is deposited on the base 18 1364112
' 三達編號:TW3135PA ^ 板1900上。光阻係被沈積並刻以m安 別以圖案,且被刻以圖案之 光阻係用以依據光阻圖案來移除氧化物之數個部分。於第 19B圖中,殘留的光阻助保護殘留的氧化物i9i2。殘 •留的光阻係被移除,且未被氧化物覆蓋的基板係被蝕刻。 • 於第19C圖中,溝槽丨930係被蝕刻至未被氧化物1912覆 蓋的基板1900中。 第20A至20E圖係為在第22或23圖以前,在非揮 發性§己憶體單元中形成一溝槽之前’用以縮小一間極長度 鲁 之製程步驟。第20A至20E圖係為在第22或23圖以前, 用以在一非揮發性記憶體單元中形成一溝槽之前縮小一 閘極長度之製程步驟。第20A至20C圖係類似於第19A 至19C圖。於第20D圖中,一間隙壁2040係沈積至此溝 槽中,殘留下一較小溝槽1932。於第20E圖中,溝槽之底 部旁之間隙壁部分係被姓刻,殘留下間隙壁2042。此種閘 極長度縮小可留下相較於第19圖之較小閘極長度。 第21A至21E圖係為在第22或23圖以前,在非揮 ® 發性記憶體單元中形成一溝槽之前,用以擴大一閘極長度 之製程步驟。第21A至21B圖係類似於第19A至19B圖。 於第21C圖中,殘留的被刻以圖案之光阻係被移除,露出 圖案化之氧化物1912。於第21D圖中,此圖案化之氧化 物係被姓刻,殘留下較小的圖案化之氧化物2112。於第 21E圖中,溝槽2132係被蝕刻凹入至未被氧化物2112覆 蓋的之基板1900中。此種閘極長度比例調整會留下相較 於第19圖之較長的閘極長度。 19 1364112'Sanda number: TW3135PA ^ board 1900. The photoresist is deposited and patterned in m, and the patterned photoresist is used to remove portions of the oxide in accordance with the photoresist pattern. In Figure 19B, the residual photoresist helps protect the residual oxide i9i2. The residual photoresist is removed and the substrate not covered by the oxide is etched. • In Figure 19C, trench 丨 930 is etched into substrate 1900 that is not covered by oxide 1912. 20A to 20E are process steps for reducing the length of one pole before forming a groove in the non-volatile § memory unit before the 22nd or 23rd. 20A to 20E are process steps for reducing the length of a gate before forming a trench in a non-volatile memory cell before the 22nd or 23rd. Figures 20A through 20C are similar to Figures 19A through 19C. In Fig. 20D, a spacer 2040 is deposited into the trench leaving the next smaller trench 1932. In Fig. 20E, the portion of the spacer next to the bottom of the groove is engraved by the surname, leaving the spacer 2042. This reduction in gate length can result in a smaller gate length than in Figure 19. 21A to 21E are process steps for expanding a gate length before forming a trench in the non-volatile memory cell unit before the 22nd or 23rd. Figures 21A through 21B are similar to Figures 19A through 19B. In Figure 21C, the remaining patterned photoresist is removed to expose the patterned oxide 1912. In Figure 21D, the patterned oxide is surnamed, leaving a smaller patterned oxide 2112. In Fig. 21E, the trench 2132 is etched into the substrate 1900 which is not covered by the oxide 2112. This gate length scaling will result in a longer gate length than in Figure 19. 19 1364112
三達編號:TW3135PA 第22A至22K圖係為在第19、2〇或21圖以後之結 束製程步驟’用以形成—NC)R _發性記賴單元陣列, 每個NOR非揮發性記憶體單元位於一溝槽中,以使每個 非揮發性記憶體單元具有1人通道。在第22A圖中,例 如0N0層之介電材料與電荷儲存結構225〇係形成於 中,從而殘留下較小溝槽2232。在帛22]311中,沈積例^ 多晶矽之閘極材料2260〇在第22C圖中,閘極材料係 刻,從而殘留下閘極材料2262在溝槽之内部。在第22β 圖中,例如SiN之介電材料227〇係沈積於閘極材料2262 上。在第22E圖中,此介電材料係被蝕刻,而殘留下介電 材料2272在溝槽之内部。在第22F圖中,殘留的圖案化 之氧化物係被移除。於此時點,閘極材料2262與氧化物 2272之堆疊上升高於基板之表面。在第22(}圖中,離子 植入法形成源極區2280與没極區2282。在第22H圖中, 沈積例如HDP氧化物之氧化物229〇。在第221圖中,例 如藉由CMP、回浸(dip-back)或回蝕來移除覆蓋氧化物 2272之過剩的氧化物。在第22J圖中,移除氧化物2272。 在第22K圖中,沈積額外閘極材料而形成閘極區2264 〇 第23A至23E圖係為在第19、2〇或21圖以後之結 束製程步驟,用以形成一 NAND非揮發性記憶體單元陣 列,每個NAND非揮發性記憶體單元位於一溝槽中,以使 每個非揮發性記憶體單元具有一凹入通道。在第23A圖 中,例如ΟΝΟ層之介電材料與電荷儲存結構225〇係形成 於溝槽中’從而殘留下較小溝槽2232 »在第23Β圖中,沈 1364112Sanda number: TW3135PA Figures 22A to 22K are the end of the 19th, 2nd or 21st drawing process step 'to form - NC) R _ hairline counting cell array, each NOR non-volatile memory The cells are located in a trench such that each non-volatile memory cell has a channel of one person. In Fig. 22A, a dielectric material such as a 0N0 layer is formed in the charge storage structure 225, thereby leaving a smaller trench 2232. In 帛22]311, the gate material 2260 of the deposition example is deposited in Fig. 22C, and the gate material is patterned, thereby leaving the lower gate material 2262 inside the trench. In the 22β-graph, a dielectric material 227 such as SiN is deposited on the gate material 2262. In Fig. 22E, the dielectric material is etched while the remaining dielectric material 2272 remains inside the trench. In Figure 22F, the residual patterned oxide is removed. At this point, the stack of gate material 2262 and oxide 2272 rises above the surface of the substrate. In the 22nd (Fig.), the ion implantation method forms the source region 2280 and the nonpolar region 2282. In the 22H image, for example, an oxide 229 HD of HDP oxide is deposited. In Fig. 221, for example, by CMP , dip-back or etch back to remove excess oxide overlying oxide 2272. In Figure 22J, oxide 2272 is removed. In Figure 22K, additional gate material is deposited to form a gate Polar regions 2264 〇 23A to 23E are process steps after the 19th, 2nd, or 21th drawing to form a NAND non-volatile memory cell array, each NAND non-volatile memory cell is located at In the trench, so that each non-volatile memory cell has a recessed channel. In FIG. 23A, for example, a dielectric material of a germanium layer and a charge storage structure 225 are formed in the trench, thereby remaining Small groove 2232 » In the 23rd picture, sink 1364112
: 三達編號:TW3135PA ' 積例如多晶矽之閘極材料2260。在第23C圖中,過剩的閘 -極材料係例如藉由CMP而被移除,從而暴露ΟΝΟ層。在 第23D圖中’殘留的圖案化之氧化物係被移除。於此時 , 點’閘極材料2262上升高於基板之表面。在第23Ε圖中, 離子植入法形成源極區2380與汲極區2382。 ·· 第24Α至24D圖係為在第25或26圖以前之開始製 程步驟,用以形成在一 N〇R陣列中之一非揮發性記憶體 單元之舉升之源極區與汲極區。在第24A圖中,例如〇N〇 ® 層之介電材料與電荷儲存結構2410係沈積於基板2400 上。在第24B圖中,沈積例如多晶矽之閘極材料,例如 SiN之氧化物材料係沈積於閘極材料上,而形成光刻 (photolithographic)結構,殘留下 SiN 2430、多晶矽 2420 與ΟΝΟ 2412之堆疊。在第24C圖中,形成間隙壁2440。 在第24D圖中,蝕刻間隙壁,而殘留下間隙壁側壁2442。 第25Α至25Β圖係為在第24圖以後且在第27圖以 刖之結束製程步驟’其使用羞晶石夕以形成在一 NOR陣列 • 中之一非揮發性記憶體單元之舉升之源極區與汲極區。在 第25A圖中’沈積轰晶石夕2550。在第25B圖中,離子植 入法形成源極區2560與汲極區2562。 第26Α至26C圖係在第24圖以後且在第27圖以前 之結束製程步驟,其使用多晶矽以形成在一 N〇R陣列中 之一非揮發性記憶體單元之舉升之源極區與没極區。在第 26A圖中,沈積多晶矽2650。在第26B圖中,回姓此多晶 矽以留下多晶矽2652。在第26C圖中,離子植入法形成源 21 1364112: Sanda number: TW3135PA 'Production such as polysilicon gate material 2260. In Fig. 23C, the excess gate-pole material is removed, for example by CMP, to expose the germanium layer. In Figure 23D, the residual patterned oxide is removed. At this point, the point ' gate material 2262 rises above the surface of the substrate. In the 23rd, ion implantation forms source region 2380 and drain region 2382. · 24th to 24D is the process step before the 25th or 26th figure to form the source and bungee regions of a non-volatile memory cell in an N〇R array. . In Fig. 24A, a dielectric material such as a 〇N〇 ® layer and a charge storage structure 2410 are deposited on the substrate 2400. In Fig. 24B, a gate material such as polysilicon is deposited, for example, an oxide material of SiN is deposited on the gate material to form a photolithographic structure, and a stack of SiN 2430, polysilicon 2420 and germanium 2412 remains. In Fig. 24C, a spacer 2440 is formed. In Fig. 24D, the spacer is etched while the lower spacer sidewall 2442 remains. The 25th to 25th drawings are the ones of the non-volatile memory cells in the NOR array after the 24th and 27th processes. Source area and bungee area. In Figure 25A, 'deposited blasting stone eve 2550. In Fig. 25B, ion implantation forms source region 2560 and drain region 2562. The 26th to 26thth drawings are the process steps after the 24th and before the 27th, which use polysilicon to form the lift source region of one of the non-volatile memory cells in an N〇R array and No pole area. In Figure 26A, polycrystalline germanium 2650 is deposited. In Figure 26B, the polysilicon is returned to leave polycrystalline germanium 2652. In Figure 26C, ion implantation forms the source 21 1364112
·' 三達編號:TW3135PA » 極區2660與及極區2662。 第27A至27D圖係在第25或26圖以前之結束製程 步驟,用以形成一 nor非揮發性記憶體單元陣列,每個 _ NOR非揮發性記憶體單元都具有舉升之源極區與汲極 區。在第27A圖中,沈積例如HDP氧化物之介電材料, 而覆蓋包含間隙壁側壁與氧化物2430之結構。在第27B 圖中,例如藉由CMP、回浸(dip-back)或回钱來移除覆蓋 氧化物2430之過剩的氧化物,而殘留下氧化物2772圍繞 ® 間隙壁側壁。在第27C圖中,移除氧化物2430。在第27D 圖中’沈積額外閘極材料以形成閘極區2722。 第28A至28D圖係為在第29或30圖以前之開始製 程步驟,用以形成一 NAND非揮發性記憶體單元陣列,每 個NAND非揮發性記憶體單元具有舉升之源極區與汲極 區。在第28A圖中,例如ΟΝΟ層之介電材料與電荷儲存 結構2810係沈積於基板2800上。在第28Β圖中,沈積例 _ 如多晶矽之閘極材料,形成光刻結構,而殘留下多晶矽 2820與ΟΝΟ 2812之堆疊。於第28C圖中,形成一間隙壁 2840。於第28D圖,蝕刻此間隙壁,而殘留下間隙壁側壁 2842 〇 第29Α至29Β圖係為在第28圖以後之結束製程步 驟’其使用磊晶矽以形成一 NAND非揮發性記憶體單元陣 列,每個NAND非揮發性記憶體單元都具有舉升之源極區 與汲極區。在第29A圖中,沈積磊晶矽2950。在第29B 圖中,離子植入法形成源極區2960與汲極區2962。 22 1364112· 'Sanda number: TW3135PA» Polar zone 2660 and polar zone 2662. 27A through 27D are process steps before the 25th or 26th drawing to form a nor non-volatile memory cell array, each _ NOR non-volatile memory cell having a source region for lifting Bungee area. In Fig. 27A, a dielectric material such as HDP oxide is deposited to cover the structure including the spacer sidewalls and oxide 2430. In Figure 27B, the excess oxide covering the oxide 2430 is removed, for example by CMP, dip-back or return money, while the remaining oxide 2772 surrounds the sidewalls of the spacer. In Figure 27C, oxide 2430 is removed. Additional gate material is deposited in Figure 27D to form gate region 2722. 28A to 28D are process steps starting before the 29th or 30th drawing to form a NAND non-volatile memory cell array, each NAND non-volatile memory cell having a source region and a lift Polar zone. In Fig. 28A, a dielectric material such as a germanium layer and a charge storage structure 2810 are deposited on the substrate 2800. In Fig. 28, a deposition example, such as a gate material of polysilicon, forms a lithographic structure, leaving a stack of polycrystalline germanium 2820 and germanium 2812 remaining. In Fig. 28C, a spacer 2840 is formed. In FIG. 28D, the spacer is etched, and the remaining spacer sidewalls 2842 〇 29th to 29th are the processing steps after the 28th drawing. The epitaxial enthalpy is used to form a NAND non-volatile memory unit. The array, each NAND non-volatile memory cell has a raised source region and a drain region. In Figure 29A, epitaxial germanium 2950 is deposited. In Figure 29B, ion implantation forms source region 2960 and drain region 2962. 22 1364112
- 三達編號:TW3135PA : 第3〇A至30C圖係為在第28圖以後之結束製程步 驟,其使用多晶矽以形成一 NAND非揮發性記憶體單元陣 列,每個NAND非揮發性記憶體單元都具有舉升之源極區 •.與汲極區。第30八至30C圖係為在第24圖以後且在第27 圖以前之結束製程步驟,其使用多晶矽以形成在一 NOR 陣列中之一非揮發性記憶體單元之舉升之源極區與汲極 區。在第30A圖中,沈積多晶矽3〇5〇〇在第30B圖中, 回蝕多晶矽以留下多晶矽3052。在第30C圖中,離子植入 鲁 法形成源極區3〇60與沒極區3062。 第31圖係為具有如揭露於此之變化通道區介面之例 示的非揮發性記憶體積體電路之方塊圖。 曰積體電珞3150包含位於半導體基板上之非揮發性記 ,體單元之一記憶體陣列31〇〇。陣列31〇〇之每個記憶體 單元具有一變化通道區介面,例如凹入通道區,或舉升之 ,極區與汲極區。陣列31〇〇之記憶體單元可能是個別的 • 單几,其互相連接成一陣列,或互相連接成多重陣列。列 解碼器31〇1係連接至複數條字線31〇2,其沿著記憶體陣 列3100之列配置。行解碼器31〇3係連接至複數條位元線 31〇4,其沿著記憶體陣列31〇〇之行配置❶於匯流排3ι〇5 上之位址係提供至行解碼器3103與列解碼器31〇1。感測 玫大器與資料輸入結構31〇6係經由資料匯流排31〇7而連 接至仃解碼器3103。資料係經由資料輸入線3111,而從 積體電路315〇上之輸入/輸出埠,或從在積體電路3⑼ 之内部或外部之其他資料源提供至方塊31〇6中之資料輸 23 ^〇〇4ΐΐ2- Canda No.: TW3135PA: Figures 3A to 30C are the process steps after the 28th drawing, which uses polysilicon to form a NAND non-volatile memory cell array, each NAND non-volatile memory cell. They all have the source area of lifting • and the bungee area. The 30th to 30thth drawings are the process steps after the 24th and the 27th, which use polysilicon to form the lift source region of one of the non-volatile memory cells in a NOR array. Bungee area. In Fig. 30A, polycrystalline germanium 3〇5〇〇 is deposited in Fig. 30B, and polycrystalline germanium is etched back to leave polycrystalline germanium 3052. In Fig. 30C, the ion implantation method forms a source region 3〇60 and a nonpolar region 3062. Figure 31 is a block diagram of a non-volatile memory volume circuit having an exemplary interface of the varying channel region as disclosed herein. The snubber body 3150 includes a memory array 31 非 of a non-volatile memory unit located on a semiconductor substrate. Each of the memory cells of array 31 has a varying channel region interface, such as a recessed channel region, or a lifted, pole and drain region. The memory cells of the array 31 may be individual ones that are connected to each other in an array or interconnected into multiple arrays. The column decoder 31〇1 is connected to a plurality of word lines 31〇2 which are arranged along the rank of the memory array 3100. The row decoder 31〇3 is connected to a plurality of bit lines 31〇4, which are arranged along the row of the memory array 31〇〇 on the bus bar 3 〇5 to provide the row decoder 3103 and the column. The decoder 31〇1. Sensing The rose and data input structures 31〇6 are connected to the 仃 decoder 3103 via the data bus 31〇7. The data is supplied to the data input in the block 31〇6 via the data input line 3111, from the input/output port on the integrated circuit 315, or from other sources inside or outside the integrated circuit 3(9). 〇4ΐΐ2
Ξ達編號:TW3135PA 入結構。資料係經由資料輸出線3115而從方塊]⑽上之 •感測放大器提供至積體電路315〇上之輪入/輸出淳,或提 .供至在積體電路3!50之内部或外部之其他資料目桿。一 、 ㈣配置狀態機聊控制偏壓配置供應電壓簡(例如抹 _認與程式化確認電壓)之施加,以及用以程式化、· 及讀取記憶體單元之配置。 第32圖係為在源極與汲極區之間具有一凹入通道之 φ 非揮發性圯憶體單元之示意圖,藉以使下介電結構具有 三層薄ΟΝΟ結構。此結構類似第丨圖之非揮發性記^體 單元,但是此介電結構108(在電荷儲存結構1〇8與通道區 114之間)係被二層薄ΟΝΟ結構3208所置換。ΟΝΟ結構 3208具有一小電洞隧穿阻絕位障,例如少於或等於大約 4.5eV,或最好是少於或等於大約l 9e^^〇N〇結構32〇8 之接近例示的厚度範圍係如下。關於下氧化物:< 2〇埃, 5-20埃,或< 15埃》關於中間的氮化物:〈2〇埃或ι〇·2〇 鲁 埃。關於上氧化物··< 20埃或15-20埃。第32圖之記憶 體單元之某些實施例係以SON〇N〇s或能帶隙工程 (bandgap engineered, BE)-SONOS 表示。三層薄 ΟΝΟ 結構 3208之各種不同的實施例之額外細節係揭露於美國專利 申請案號11/324,540,其於此併入作參考。 第33圖係為具有舉升離半導體基板之源極區與没極 區之非揮發性記憶體單元之示意圖,藉以使下介電結構具 有三層薄ΟΝΟ結構3208。 综上所述,雖然本發明已以一較佳實施例揭露如上,Ξ达号: TW3135PA into the structure. The data is supplied from the sense amplifier on the block (10) to the wheel input/output port on the integrated circuit 315 via the data output line 3115, or supplied to the inside or outside of the integrated circuit 3! Other information. 1. (4) Configuring the state machine to control the bias configuration supply voltage (for example, smearing and stylizing confirmation voltage), and for stylizing, and reading the configuration of the memory unit. Figure 32 is a schematic illustration of a φ non-volatile memory cell having a recessed channel between the source and drain regions, whereby the lower dielectric structure has a three-layer thin germanium structure. This structure is similar to the non-volatile memory cell of the figure, but the dielectric structure 108 (between the charge storage structure 1 and 8 and the channel region 114) is replaced by a two-layer thin structure 3208. The germanium structure 3208 has a small hole tunneling stop barrier, such as less than or equal to about 4.5 eV, or preferably less than or equal to about 1 9e^^〇N〇 structure 32〇8 close to the illustrated thickness range as follows. Regarding the lower oxide: < 2 angstrom, 5-20 angstroms, or <15 angstroms" about the intermediate nitride: <2 〇 or ι〇·2〇 鲁埃. Regarding the upper oxide ··< 20 angstroms or 15-20 angstroms. Some embodiments of the memory cell of Figure 32 are represented by SON〇N〇s or bandgap engineered (BE)-SONOS. Additional details of various embodiments of the three-layer thin crucible structure 3208 are disclosed in U.S. Patent Application Serial No. 11/324,540, the disclosure of which is incorporated herein by reference. Figure 33 is a schematic diagram of a non-volatile memory cell having a source region and a non-polar region lifted off the semiconductor substrate, whereby the lower dielectric structure has a three-layered thin structure 3208. In summary, although the present invention has been disclosed above in a preferred embodiment,
24 136411224 1364112
三達編號:TW3135PA - 然其並非用以限定本發明。本發明所屬技術領域中具有通 常知識者,在不脫離本發明之精神和範圍内,當可作各種 之更動與潤飾。因此,本發明之保護範圍當視後附之申請 ",'專利範圍所界定者為準。Sanda number: TW3135PA - It is not intended to limit the invention. It will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention is defined by the appended claims ", 'the scope of patents.
25 136411225 1364112
三達編號·· TW3135PA 【圖式簡單說明】 第1圖係為一非揮發性記憶體單元之示意圖,非揮發 性記憶體單元在源極區與汲極區之間具有一凹入通道。 第2圖係為一非揮發性記憶體單元之示意圖,非揮發 性記憶體單元具有舉升離半導體基板之源極區與汲極區。 第3A圖係為在具有凹入通道之非揮發性記憶體單元 中,電子從閘極注入至電荷儲存結構之示意圖。 第3B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體單元中,電子從閘極注入至電荷儲存結構之示意 圖。 第4A圖係為在具有凹入通道之非揮發性記憶體單元 中’電子從基板注入至電何儲存結構之不意圖。 第4B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體單元中,電子從基板注入至電荷儲存結構之示意 圖。 第5A圖係為在具有凹入通道之非揮發性記憶體單元 中,帶間熱電子注入至電荷儲存結構之示意圖。 第5B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體單元中,帶間熱電子注入至電荷儲存結構之示意 圖。 第6A圖係為在具有凹入通道之非揮發性記憶體單元 中,通道熱電子注入至電荷儲存結構之示意圖。 第6B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體單元中,通道熱電子注入至電荷儲存結構之示意 26 1364112达达编号·· TW3135PA [Simple description of the diagram] Figure 1 is a schematic diagram of a non-volatile memory unit with a concave channel between the source and drain regions. Figure 2 is a schematic illustration of a non-volatile memory cell having a source region and a drain region lifted off the semiconductor substrate. Figure 3A is a schematic illustration of the injection of electrons from a gate into a charge storage structure in a non-volatile memory cell having a recessed channel. Figure 3B is a schematic illustration of the injection of electrons from a gate into a charge storage structure in a non-volatile memory cell having raised source and drain regions. Figure 4A is a schematic illustration of the injection of electrons from a substrate into an electrical storage structure in a non-volatile memory cell having recessed channels. Figure 4B is a schematic illustration of the injection of electrons from a substrate into a charge storage structure in a non-volatile memory cell having lifted source and drain regions. Figure 5A is a schematic illustration of the injection of hot electrons between the strips into the charge storage structure in a non-volatile memory cell having recessed channels. Fig. 5B is a schematic view showing the injection of hot electrons between the bands into the charge storage structure in the nonvolatile memory unit having the lifted source region and the drain region. Figure 6A is a schematic illustration of the channel hot electron injection into the charge storage structure in a non-volatile memory cell having a recessed channel. Figure 6B is an illustration of the channel hot electron injection into the charge storage structure in a non-volatile memory cell having a source region and a drain region of lift 26 1364112
: 三達編號:TW3135PA 圖。 第7A圖係為在具有凹入通道之非揮發性記憶體單元 中,基板熱電子注入至電荷儲存結構之示意圖。 ·. · 第7B圖係為在具有舉升之源極區與汲極區之非揮發 ' 性記憶體單元中,基板熱電子注入至電荷儲存結構之示意 圖。 第8A圖係為在具有凹入通道之非揮發性記憶體單元 中,電洞從閘極注入至電荷儲存結構之示意圖。 • 第8B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體單元中,電洞從閘極注入至電荷儲存結構之示意 圖。 第9A圖係為在具有凹入通道之非揮發性記憶體單元 中,電洞從基板注入至電荷儲存結構之示意圖。 第9B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體早元中,電洞從基板注入至電何儲存結構之不意 圖。 • 第10A圖係為在具有凹入通道之非揮發性記憶體單 元中,帶間熱電洞注入至電何儲存結構之不意圖。 第10B圖係為在具有舉升之源極區與汲極區之非揮 發性記憶體單元中,帶間熱電洞注入至電荷儲存結構之示 意圖。 第11A圖係為在具有凹入通道之非揮發性記憶體單 元中,通道熱電洞注入至電荷儲存結構之示意圖。 第11B圖係為在具有舉升之源極區與汲極區之非揮 27 1364112 三達編號:TW3135PA 發性記憶體單元中 •意圖: ,通道熱電祠注入至電荷儲存結構之示 帛12A圖係為在 元中,基板熱電&& ζ =道之#揮發性記 第12Β圖係儲存結構之示音圖。 發性記憶體單元中 具有舉升之源極區应、及極 入至電荷儲存結構之示 第1M圖係為在 ’用以讀取儲存於電荷道之非揮發性記憶體單 向讀取操作之示意圖。電贿存結構之右側之資料之一反 第13B圖係為在I古斑 發:記憶體單元中,用源極區與汲極區之非揮 之資料之反向讀取操作之存於電荷儲存結構之右谢 篦14Δ向 不忍圖。 係、為在具有凹 ^ ,用以儲存位於電儲户& 、之非揮發性記憶體單 取操作之示意圖。電何錯存結構之左侧之資料之反向^ 第14Β圖係為在且右與 η = ::,,心a::,之非揮 料之反向讀取操作 於電何儲存結構之左側之 ^ 1 Λ 〜忍圓。 -第15Α圖係為在 、 70令’用以讀取储存於 人通31之非揮發性記憶體單 間讀取操作之示意I電赠存結構之右側之 資料之一帶 發性記憶體單元中為舉升之源極區與汲極區之非揮 °貝取館存於電荷錯存結構之右側 28: Sanda number: TW3135PA figure. Figure 7A is a schematic diagram of the substrate's hot electron injection into the charge storage structure in a non-volatile memory cell having a recessed channel. · Figure 7B is a schematic diagram of the substrate's hot electron injection into the charge storage structure in a non-volatile memory cell with lifted source and drain regions. Figure 8A is a schematic illustration of the injection of a hole from a gate to a charge storage structure in a non-volatile memory cell having a recessed channel. • Figure 8B is a schematic illustration of the injection of a hole from a gate into a charge storage structure in a non-volatile memory cell with lifted source and drain regions. Figure 9A is a schematic illustration of the injection of a hole from a substrate into a charge storage structure in a non-volatile memory cell having a recessed channel. Fig. 9B is an unintentional view of the injection of holes from the substrate into the electrical storage structure in the non-volatile memory of the non-volatile memory of the source region and the drain region. • Figure 10A is a schematic illustration of the injection of inter-band thermoelectric holes into an electrical storage structure in a non-volatile memory cell with recessed channels. Fig. 10B is an illustration of the injection of inter-band thermoelectric holes into a charge storage structure in a non-volatile memory cell having a raised source region and a drain region. Figure 11A is a schematic illustration of the injection of channel thermowells into a charge storage structure in a non-volatile memory cell having recessed channels. Figure 11B is a non-swing 27 1364112 three-numbered: TW3135PA hair memory unit with lift source and drain regions. • Intention:: Channel thermoelectric injection into the charge storage structure. It is a sound map of the storage structure of the substrate in the element, the substrate thermoelectric && The first MM image of the source memory cell having the source region of the lift and the pole into the charge storage structure is a one-way read operation for reading the non-volatile memory stored in the charge channel. Schematic diagram. One of the data on the right side of the electric bribe storage structure is the storage of the charge storage in the reverse reading operation of the non-volatile data of the source region and the bungee region. The structure of the right Xie 篦 14 Δ can not bear the picture. The system is a schematic diagram of a non-volatile memory single operation for storing the electric storage household & The reverse of the data on the left side of the electrical fault structure ^Fig. 14 is the right and η = ::,, the heart a::, the non-swept reverse reading operation in the electrical storage structure ^1 Λ on the left side ~ forbearance round. - Figure 15 is one of the data on the right side of the schematic I electric gift storage structure for reading the single-cell read operation of the non-volatile memory stored in the human channel 31. The source of the lift and the bungee area of the bungee area are stored on the right side of the charge-dissipating structure.
S 1364112S 1364112
三達編號:TW3135PA 之資料之一帶間讀取操作之示意圖。 第16A圖係為在具有凹入通道之非揮發性記憶體單 元中,用以儲存位於電荷儲存結構之左側之資料之帶間讀 取操作之示意圖。 第16B圖係為在具有舉升之源極區與汲極區之非揮 發性記憶體單元中,用以儲存位於電荷儲存結構之左側之 資料之帶間讀取操作之示意圖。 第17圖係具有一凹入通道之一非揮發性記憶體單元 陣列之製造流程圖,其顯示第19至23圖之製程步驟之各 種可能的組合。 第18A圖係具有舉升之源極區與汲極區之一 NOR非 揮發性記憶體單元陣列之製造流程圖,其顯示第24至27 圖之製程步驟之各種可能的組合。 第18B圖係具有舉升之源極區與汲極區之一 NAND 非揮發性記憶體單元陣列之製造流程圖,其顯示第28至 30圖之製程步驟之各種可能的組合。 第19A至19C圖係為在第22或23圖之前,在具有 凹入通道之非揮發性記憶體單元中,用以形成一溝槽之製 程步驟。 第20A至20E圖係為在第22或23圖以前,在非揮 發性記憶體單元中形成一溝槽之前,用以縮小一閘極長度 之製程步驟。 第21A至21E圖係為在第22或23圖以前,在非揮 發性記憶體單元中形成一溝槽之前,用以擴大一閘極長度 29 1364112Sanda number: A schematic diagram of the inter-band read operation of one of the TW3135PA data. Figure 16A is a schematic illustration of an inter-band read operation for storing data located to the left of the charge storage structure in a non-volatile memory cell having a recessed channel. Figure 16B is a schematic illustration of inter-band read operations for storing data located on the left side of the charge storage structure in a non-volatile memory cell having raised source and drain regions. Figure 17 is a manufacturing flow diagram of a non-volatile memory cell array having a recessed channel showing various possible combinations of process steps of Figures 19-23. Figure 18A is a manufacturing flow diagram of a NOR non-volatile memory cell array having one of the source and drain regions of the lift, showing various possible combinations of the process steps of Figures 24-27. Figure 18B is a manufacturing flow diagram of a NAND non-volatile memory cell array having one of the source and drain regions of the lift, showing various possible combinations of the process steps of Figures 28-30. 19A to 19C are process steps for forming a trench in a non-volatile memory cell having a recessed channel before the 22nd or 23rd. 20A to 20E are process steps for reducing the length of a gate before forming a trench in the non-volatile memory cell before the 22nd or 23rd. 21A to 21E are diagrams for expanding a gate length before forming a trench in a non-volatile memory cell before the 22 or 23 figure. 29 1364112
三達編號:TW3135PA 之製程步驟。 第22A至22K圖係為在第19、20或21圖以後之結 束製程步驟,用以形成一 N〇R非揮發性記憶體單元陣列, 母個NOR非揮發性§己憶體單元位於一溝槽中,以使每個 非揮發性記憶體單元具有一凹入通道。 第23A至23E圖係為在第19、20或21圖以後之結 束製,㈣’用㈣成—NAND非揮發性記憶體單元陣 列,每個NAND非揮發性記憶體單元位於一溝槽中,以使 每個非揮發性記憶體單元具有一凹入通道。 第24A至24D圖係為在第25或26圖以前之開始製 程步驟,用以形成在—職陣列中之—非揮發性記㈣ 單兀之舉升之源極區與汲極區。 第25A至25B圖係為在第24圖以後且在第27圖以 前之結束製程步驟,其使縣晶㈣形成在—n〇r陣列 甲之-非揮發性記,隨單元之舉升之雜區與汲極區。 第26AS26C圖係在第24圖以後且在第27圖以前 之結束製程步驟,其使用多㈣以形成在—n〇r陣列中 之-非揮發性記Μ單元之舉狀源極區該極區。 第27Α至27D圖係在第25 < 26圖以前之結束製程 步驟’用以形成-N〇R非揮發性記憶體單元陣列,每個 Ν Ο R非揮發性記憶n單元都具有料之源極區與没極區。 第28A至28D圖係為在第29或3〇圖以前之開始製 程步驟,用以形成- NAND非揮發性記憶體單元陣列,每 個NAND非揮發性㈣料元具轉权源㈣與沒極 30 1364112 三達編號:TW3135PA 區。 第29A至29B圖係為在第28圖以後之結束製程步 驟,其使用磊晶矽以形成一 NAND非揮發性記憶體單元陣 列,每個NAND非揮發性記憶體單元都具有舉升之源極區 與汲極區。 第30A至30C圖係為在第28圖以後之結束製程步 驟,其使用多晶矽以形成一 NAND非揮發性記憶體單元陣Sanda number: TW3135PA process steps. 22A to 22K are the process steps after the 19th, 20th or 21th step to form an N〇R non-volatile memory cell array, and the parent NOR non-volatile memory cell is located in a trench. In the slot, so that each non-volatile memory cell has a recessed channel. 23A to 23E are the end of the 19th, 20th or 21th, and (4) '(4) into NAND non-volatile memory cell array, each NAND non-volatile memory cell is located in a trench, So that each non-volatile memory cell has a recessed channel. Figures 24A through 24D are process steps beginning before the 25th or 26th drawing to form the source and drain regions of the non-volatile (four) single turn in the -on array. 25A to 25B are the process steps after the 24th drawing and before the 27th drawing, which causes the county crystal (4) to form a non-volatile record of the -n〇r array, which is lifted by the unit. District and bungee area. The 26AS26C diagram ends the process step after FIG. 24 and before the 27th figure, which uses multiple (four) to form the lift source region of the non-volatile memory cell in the -n〇r array. . The 27th to 27th drawings are completed at the end of the 25th < 26th drawing process step 'to form a -N〇R non-volatile memory cell array, and each Ν R non-volatile memory n unit has a source of material Polar zone and immersion zone. The 28A to 28D drawings are the process steps starting before the 29th or 3rd drawing to form a NAND non-volatile memory cell array, each NAND non-volatile (four) element has a transfer source (four) and a immersion 30 1364112 Sanda number: TW3135PA area. 29A to 29B are process steps after the 28th drawing, which use epitaxial germanium to form a NAND non-volatile memory cell array, each NAND non-volatile memory cell having a source of lift District and bungee area. The 30A to 30C are the process steps after the 28th drawing, which uses polysilicon to form a NAND non-volatile memory cell array.
列,每個NAND非揮發性記憶體單元都具有舉升之源極區 與汲極區。 第31圖係為具有如揭露於此之變化通道區介面之例 示的非揮發性記憶體積體電路之方塊圖。 第32圖係為在源極區與汲極區之間具有一凹入通道 之非揮發性§己憶體單元之示意圖,藉以使下介電結構具 有三層薄ΟΝΟ結構。 第33圖係為具有舉升離半導體基板之源極區斑沒極 區之非揮發性記單元之4圖,藉⑽下介電結構呈 有二層薄0Ν0結構。 八 31 1364112Columns, each NAND non-volatile memory cell has a raised source region and a drain region. Figure 31 is a block diagram of a non-volatile memory volume circuit having an exemplary interface of the varying channel region as disclosed herein. Figure 32 is a schematic illustration of a non-volatile § memory cell having a recessed channel between the source region and the drain region, whereby the lower dielectric structure has a three-layered germanium structure. Figure 33 is a diagram of a non-volatile cell having a raised region of the source region of the semiconductor substrate. The lower dielectric structure has a two-layer thin 0Ν0 structure. Eight 31 1364112
三達編號:TW3135PA 【主要元件符號說明】 102、302、402、502、602、702、802、902、1002、 1102 、 1202 、 1302 、 1402 、 1502 、 1602 、 2264 、 2722 :閘 極/閘極區 104 :介電結構 106 :電荷儲存結構 108 :電荷儲存結構/介電結構 110、210、304、404、804、904、1204、2280、2380、 2560、2660、2960、3060 :源極/源極區 112、212、306、406、806、906、1206、2282、2382、 2562、2662、2962、3062 :汲極區/汲極 114、214 :通道區/通道 116 :源極與汲極區 118 :介面 120 :接面深度 122 :本體/本體區 208 :介電結構 218 :介面 220 :接面深度 308、408、808、908、1208 :本體區 504、1104 : p+型源極區 506、1106 : p+型 j:及極區 508、708、1108 : N 型本體區 604、704、1004、1304、1404、1504、1604 : n+型源 32 1364112Sanda number: TW3135PA [Description of main component symbols] 102, 302, 402, 502, 602, 702, 802, 902, 1002, 1102, 1202, 1302, 1402, 1502, 1602, 2264, 2722: gate/gate Region 104: Dielectric Structure 106: Charge Storing Structure 108: Charge Storing Structure/Dielectric Structure 110, 210, 304, 404, 804, 904, 1204, 2280, 2380, 2560, 2660, 2960, 3060: Source/Source Polar regions 112, 212, 306, 406, 806, 906, 1206, 2282, 2382, 2562, 2662, 2962, 3062: drain region/drain 114, 214: channel region/channel 116: source and drain regions 118: interface 120: junction depth 122: body/body region 208: dielectric structure 218: interface 220: junction depth 308, 408, 808, 908, 1208: body region 504, 1104: p+ source region 506, 1106: p+ type j: and polar regions 508, 708, 1108: N-type body regions 604, 704, 1004, 1304, 1404, 1504, 1604: n+ type source 32 1364112
: 三達編號:TW3135PA 極區 606、706、1006、1306、1406、1506、1606 : n+型汲 極區 ' 608、1008、1308、1408、1508、1608 : P 型本體區 ' 710、1210 :井區 1900、2400、2800 :基板 1910、1912、2112、2290、2772 :氧化物 1922 :光阻 • 1930、1932、2232 :溝槽 2040、2042、2440、2840 :間隙壁 2250 .介電材料與電荷儲存結構 2260、2262 :閘極材料 2270、2272 :介電材料 2410 :介電材料與電荷儲存結構 2412 : ΟΝΟ 2420、2650、2652、2820、3050、3052 :多晶矽 9 2430 : SiN/氧化物 2442、2842 :間隙壁側壁 2550、2950 :磊晶石夕 2810 :電荷儲存結構 2812 : ΟΝΟ 3100 :記憶體陣列 3101 :列解碼器 3102 :字線 33 1364112: Sanda number: TW3135PA Polar zone 606, 706, 1006, 1306, 1406, 1506, 1606: n+ type bungee zone '608, 1008, 1308, 1408, 1508, 1608: P-type body zone '710, 1210: Well Zones 1900, 2400, 2800: Substrate 1910, 1912, 2112, 2290, 2772: Oxide 1922: Photoresist • 1930, 1932, 2232: Trench 2040, 2042, 2440, 2840: Clearance 2250. Dielectric material and charge Storage structure 2260, 2262: gate material 2270, 2272: dielectric material 2410: dielectric material and charge storage structure 2412: ΟΝΟ 2420, 2650, 2652, 2820, 3050, 3052: polysilicon 9 2430: SiN/oxide 2442 2842: spacer sidewalls 2550, 2950: epitaxial eve 2810: charge storage structure 2812: ΟΝΟ 3100: memory array 3101: column decoder 3102: word line 33 1364112
' 三達編號·· TW3135PA ; 3103 :行解碼器 3104 :位元線 3105 :匯流排 ' 3106 :感測放大器與資料輸入結構 \ 3107:資料匯流排 • 3108 :偏壓配置供應電壓 3109 :偏壓配置狀態機 3111 :資料輸入線 • 3115 :資料輸出線 3150 :積體電路 3208 : ΟΝΟ 結構 34'Sanda Number·· TW3135PA ; 3103 : Row Decoder 3104 : Bit Line 3105 : Bus Bar ' 3106 : Sense Amplifier and Data Input Structure \ 3107 : Data Bus • 3108 : Bias Configuration Supply Voltage 3109 : Bias Configuration state machine 3111: data input line • 3115: data output line 3150: integrated circuit 3208: ΟΝΟ structure 34
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80684006P | 2006-07-10 | 2006-07-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200807726A TW200807726A (en) | 2008-02-01 |
TWI364112B true TWI364112B (en) | 2012-05-11 |
Family
ID=38999941
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096125139A TWI349337B (en) | 2006-07-10 | 2007-07-10 | Operating method of nonvolatile memory having modified channel region interface |
TW100139194A TWI365512B (en) | 2006-07-10 | 2007-07-10 | Nonvolatile memory having raised source and drain regions |
TW096125136A TWI360201B (en) | 2006-07-10 | 2007-07-10 | Nonvolatile memory having raised source and drain |
TW096125135A TWI364112B (en) | 2006-07-10 | 2007-07-10 | Nonvolatile memory having modified channel region interface |
TW096125141A TWI336941B (en) | 2006-07-10 | 2007-07-10 | Nonvolatile memory array having modified channel region interface |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096125139A TWI349337B (en) | 2006-07-10 | 2007-07-10 | Operating method of nonvolatile memory having modified channel region interface |
TW100139194A TWI365512B (en) | 2006-07-10 | 2007-07-10 | Nonvolatile memory having raised source and drain regions |
TW096125136A TWI360201B (en) | 2006-07-10 | 2007-07-10 | Nonvolatile memory having raised source and drain |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096125141A TWI336941B (en) | 2006-07-10 | 2007-07-10 | Nonvolatile memory array having modified channel region interface |
Country Status (2)
Country | Link |
---|---|
CN (6) | CN101106139A (en) |
TW (5) | TWI349337B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102891184B (en) * | 2011-07-19 | 2017-03-01 | 联华电子股份有限公司 | Nonvolatile memory with and preparation method thereof |
CN103915483B (en) * | 2012-12-28 | 2019-06-14 | 瑞萨电子株式会社 | Field effect transistor and production method with the channel core for being modified to reduce leakage current |
TWI514551B (en) * | 2013-05-15 | 2015-12-21 | Toshiba Kk | Nonvolatile memory device |
CN109545792B (en) * | 2018-11-29 | 2022-01-04 | 上海华力微电子有限公司 | SONOS storage structure and manufacturing method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7355237B2 (en) * | 2004-02-13 | 2008-04-08 | Sandisk Corporation | Shield plate for limiting cross coupling between floating gates |
-
2007
- 2007-07-10 TW TW096125139A patent/TWI349337B/en active
- 2007-07-10 TW TW100139194A patent/TWI365512B/en active
- 2007-07-10 CN CNA2007101278974A patent/CN101106139A/en active Pending
- 2007-07-10 TW TW096125136A patent/TWI360201B/en active
- 2007-07-10 CN CNA2007101278940A patent/CN101106136A/en active Pending
- 2007-07-10 TW TW096125135A patent/TWI364112B/en active
- 2007-07-10 TW TW096125141A patent/TWI336941B/en active
- 2007-07-10 CN CNA200710127896XA patent/CN101106138A/en active Pending
- 2007-07-10 CN CNA2007101278955A patent/CN101106137A/en active Pending
- 2007-07-10 CN CN2010105216019A patent/CN102064198A/en active Pending
- 2007-07-10 CN CN201010521342XA patent/CN102097127A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TW200807726A (en) | 2008-02-01 |
TW200805575A (en) | 2008-01-16 |
CN101106139A (en) | 2008-01-16 |
TW201218320A (en) | 2012-05-01 |
CN101106137A (en) | 2008-01-16 |
CN102097127A (en) | 2011-06-15 |
TWI360201B (en) | 2012-03-11 |
TWI336941B (en) | 2011-02-01 |
TW200805637A (en) | 2008-01-16 |
TWI365512B (en) | 2012-06-01 |
TW200805583A (en) | 2008-01-16 |
CN101106138A (en) | 2008-01-16 |
CN101106136A (en) | 2008-01-16 |
CN102064198A (en) | 2011-05-18 |
TWI349337B (en) | 2011-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI306669B (en) | Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays | |
JP5069858B2 (en) | Multi-bit nonvolatile memory device using carbon nanotube channel and operation method thereof | |
TWI358834B (en) | ||
JP4646837B2 (en) | Manufacturing method of semiconductor device | |
US6191445B1 (en) | Nonvolatile semiconductor memory device and method of reading a data therefrom | |
TWI299562B (en) | Trap read only non-volatile memory | |
TWI297154B (en) | Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays | |
JP2016514371A (en) | Vertical memory floating gate memory cell | |
TW200935606A (en) | Memory cells, electronic systems, methods of forming memory cells, and methods of programming memory cells | |
US7646637B2 (en) | Nonvolatile memory having modified channel region interface | |
JP6454646B2 (en) | Charge trap split gate device and fabrication method thereof | |
JP2009076680A (en) | Non-volatile semiconductor storage device and its operating method | |
TWI364112B (en) | Nonvolatile memory having modified channel region interface | |
TWI473253B (en) | Nonvolatile memory array with continuous charge storage dielectric stack | |
TWI244165B (en) | Single bit nonvolatile memory cell and methods for programming and erasing thereof | |
JPWO2008146760A1 (en) | Storage element and reading method thereof | |
US8765553B2 (en) | Nonvolatile memory array having modified channel region interface | |
JP2008118040A (en) | Nonvolatile semiconductor storage device, manufacturing method thereof, and information writing method using the same | |
US20080006871A1 (en) | Nonvolatile Memory Having Raised Source and Drain Regions | |
US7348625B2 (en) | Semiconductor device and method of manufacturing the same | |
TW201042765A (en) | Memory device and methods for fabricating and operating the same | |
TWI506769B (en) | Silicon on insulator and thin film transistor bandgap engineered split gate memory | |
JP5214700B2 (en) | Semiconductor device | |
US20080123435A1 (en) | Operation of Nonvolatile Memory Having Modified Channel Region Interface | |
TWI325135B (en) | A nand non-volatile two-bit memory |