TWI336941B - Nonvolatile memory array having modified channel region interface - Google Patents

Nonvolatile memory array having modified channel region interface Download PDF

Info

Publication number
TWI336941B
TWI336941B TW96125141A TW96125141A TWI336941B TW I336941 B TWI336941 B TW I336941B TW 96125141 A TW96125141 A TW 96125141A TW 96125141 A TW96125141 A TW 96125141A TW I336941 B TWI336941 B TW I336941B
Authority
TW
Taiwan
Prior art keywords
volatile memory
charge storage
storage structure
forming
angstroms
Prior art date
Application number
TW96125141A
Other languages
Chinese (zh)
Other versions
TW200805637A (en
Inventor
Yi Ying Liao
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Publication of TW200805637A publication Critical patent/TW200805637A/en
Application granted granted Critical
Publication of TWI336941B publication Critical patent/TWI336941B/en

Links

Description

13369411336941

f* 三達編號:TW3137PA ί 九、發明說明: 【相關申請案之參考文獻】 本發明主張發明人廖意瑛於2006年7月10日申請之 美國專利臨時申請案號60/806,840之優先權,該案的名稱 為溝槽通道非揮發性記憶體單元結構、製造方法及操作方 法(Recess-Channel Non-Volatile Memory Cell Structure, Manufacturing Methods and Operating Methods) ° φ 【發明所屬之技術領域】 本發明是有關於非揮發性記憶體,且特別是有關於具 有一變化通道區介面之非揮發性記憶體,變化通道區介面 例如是一舉升之源極與汲極或一凹入通道區。 【先前技術】 稱為EEPROM與快閃記憶體之電荷儲存結構的電性 可程式化與可抹除非揮發性記憶體技術,係被使用於各種 • 的現代化應用。複數個記憶體單元結構係為EEPR〇M與 快閃記憶體所使用。當積體電路之尺寸縮小時,基於電荷 捕捉介電層之記憶體單元結構之重要性係逐漸興起,此乃 因為可調尺寸之能力與製程簡化之緣故。基於電荷捕捉介 電層之§己憶體單元結構包含以譬如工業名稱PHines, SONOS或NROM之結構。這些記憶體單元結構係藉由在 一電荷捕捉介電層(例如氮化矽)中捕捉電荷來儲存資料。 當負電荷被捕捉時,記憶體單元之臨限電壓會增加。記憔 5 1336941f* 三达编号: TW3137PA ί 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九(Recess-Channel Non-Volatile Memory Cell Structure, Manufacturing Methods and Operating Methods) ° φ [Technical Field of the Invention] The present invention has With respect to non-volatile memory, and particularly non-volatile memory having a varying channel region interface, the varying channel region interface is, for example, a lifted source and drain or a recessed channel region. [Prior Art] The electrically programmable and erasable volatile memory technology, known as EEPROM and flash memory storage structures, is used in a variety of modern applications. A plurality of memory cell structures are used for EEPR〇M and flash memory. When the size of the integrated circuit is reduced, the importance of the memory cell structure based on the charge trapping dielectric layer is gradually increasing because of the ability to adjust the size and the simplification of the process. The structure of the CMOS structure based on the charge trapping dielectric layer includes structures such as the industrial name PHines, SONOS or NROM. These memory cell structures store data by trapping charge in a charge trapping dielectric layer such as tantalum nitride. When the negative charge is captured, the threshold voltage of the memory cell increases. Record 5 5336941

> 三達編號:TW3137PA V 體單元之臨限電壓係藉由從電荷捕捉層移除負電荷而減 〇 習知之非揮發性氮化物單元結構是平面的,以使氧化 物·氮化物·氧化物(ΟΝΟ)結構形成於基板之表面上。然 而’這種平面的結構係具有微縮尺寸之能力不佳、程式.化__ . 及抹除操作功率高,以及高片狀電阻值的性質。這種結構 係說明於ΥΕΗ,C. C.等人,"PHINES :嶄新之低功率程式 化/抹除、小間隔、單記憶胞雙位元之快閃記憶體(PHINES: φ A Novel Low Power Program/Erase, Small Pitch, 2-Bit per Cell Flash Memory)”,電子裝置會議,2002 年,IEDM 丨02. Digest. International,8-11,2002 年 12 月,頁數:931 - 934。 因此,需要修改此習知之非揮發性氮化物單元結構之 平面結構,以處理上述一個或多個缺點。 【發明内容】 本發明係有關於一種具有變化通道區介面之非揮發 • 性記憶體陣列。 根據本發明之一第一方面,提出一種非揮發性記憶體 單元積體電路,其包含一非揮發性記憶體陣列。 非揮發性記憶體陣列包含複數行,各行包含排列成一 串列之複數個非揮發性記憶體單元。在此串列中之此等非 揮發性記憶體單元之一子集合經由在此串列中之其他非 揮發性兄憶體單元而電連接至一位元線。此狀況之一例子 為NAND配置。 6> Sanda number: TW3137PA V The threshold voltage of the V body unit is reduced by removing the negative charge from the charge trapping layer. The conventional non-volatile nitride cell structure is planar to oxidize the oxide and nitride. A material (ΟΝΟ) structure is formed on the surface of the substrate. However, this planar structure has the ability to have a small size, a poorly programmed __. and a high erase operation power, and a high sheet resistance value. This structure is described in ΥΕΗ, CC et al., "PHINES: A new low-power stylized/erased, small-interval, single-cell dual-bit flash memory (PHINES: φ A Novel Low Power Program/ Erase, Small Pitch, 2-Bit per Cell Flash Memory), Electronic Device Conference, 2002, IEDM 丨 02. Digest. International, 8-11, December 2002, Pages: 931 - 934. Therefore, need to be modified The planar structure of the conventional non-volatile nitride cell structure to address one or more of the above disadvantages. SUMMARY OF THE INVENTION The present invention is directed to a non-volatile memory array having a varying channel region interface. In a first aspect, a non-volatile memory cell integrated circuit is provided, comprising a non-volatile memory array. The non-volatile memory array comprises a plurality of rows, each row comprising a plurality of non-volatile columns arranged in a series Memory unit. A subset of such non-volatile memory cells in the series is electrically connected to a bit line via other non-volatile block elements in the string One example of this situation is a NAND configuration. 6

三達編號:TW3137PA 各非揮發性記憶體單元包人 f汲極區以及一個或多個介電^梭電荷儲存結構,源極區 荷以控制甴非揮發性記憶體單_電荷儲存結構儲存電 狀%。於各種不同的實施例申,^^體电路館存之一邏輯 元或多重位元。於各種不同_ :何儲存結構錯存-個位 材料係為-電制捉結構或〜^例中,電荷儲存結構之 極區係由1道區分離,通源極區與没 極區與汲極區之電路一立係為鉍歷反轉以電連接源 構的情況下,八之一部分。在缺乏電場以克服介電結 至少部分位於雷4 °構電性隔離部分之電路。介電結構係 於電荷儲存“域存結構與通道區之間,且至少部分位 對於、、‘Q構與一閘極電壓源之間。 一個咬/ 車列之每個非揮發性記憶體單元,一介面分離 山 夕固’丨電結構之一部分與通道區。此介面之一第一 =二束H極區之中間部分,且此介面之一第二端結束於 〉及極區之φ pq 通、曾品/ 3 #分。為了實施此介面’在一實施例中之此 區係入至非揮發性記憶體單元積體電路之一基板。 某些實施例包含一閘極長度調整介電材料層,其至少 部分位於一其一 t 丞板與介電結構之間。 „ 根據本發明之一第二方面,提出一種非揮發性記憶體 早兀陣列積體電路之製造方法,包含以下步驟: 中 I先’形成複數行之非揮發性記憶體單元於此陣列 一 每行包含排列成一串列之複數個非揮發性記憶體單 匕狀/兄之〜例子係為NAND配置。此步驟包含以下子 步驟: 1336941Sanda number: TW3137PA non-volatile memory unit package human f-polar region and one or more dielectric shuttle charge storage structure, source region to control 甴 non-volatile memory single _ charge storage structure storage shape%. In various embodiments, the circuit library stores one logical element or multiple bits. In a variety of different _: What is the storage structure misplaced - the one-bit material is - electric capture structure or ~ ^, the polar storage of the charge storage structure is separated by 1 zone, the source zone and the immersion zone and 汲The circuit of the polar region is one of the eight parts in the case where the circuit is reversed to electrically connect the source structure. In the absence of an electric field to overcome the dielectric junction, the circuit is at least partially located in the electrically isolated portion of the Ray 4 °. The dielectric structure is between the charge storage "domain structure" and the channel region, and is at least partially located between the 'Q structure and a gate voltage source. Each bite/car column of each non-volatile memory cell One interface separates one part of the mountain eclipse's electrical structure from the channel region. One of the interfaces is the first = the middle part of the two H-pole regions, and one of the second ends of the interface ends at 〉 and the φ pq of the polar region To implement this interface, in this embodiment, the region is incorporated into one of the non-volatile memory cell integrated circuits. Some embodiments include a gate length adjustment dielectric. The material layer is at least partially located between the t-plate and the dielectric structure. According to a second aspect of the present invention, a method for manufacturing a non-volatile memory early-arc array integrated circuit is provided, comprising the following steps : The medium I first 'forms a plurality of non-volatile memory cells in this array. Each row contains a plurality of non-volatile memory cells arranged in a series. The example is a NAND configuration. This step contains the following substeps: 1336941

三達編號:TW3137PASanda number: TW3137PA

VV

从接著,對此陣列中之每個非揮發性 … 電荷儲存結構與一個或多個介带纟 早7^^形成一 電荷以控制由非揮發性記,庚 電何儲存結構儲存 輯狀態。於各種不同的實施财早;;=電路儲存之-邏 位元或多重位元。於各種不同的實施::存、=二個 之材料係為-電荷捕捉結構 τ:存結構 係υ至少料位於電荷儲娃構 下至::分位於電荷储存結構與-閉極電 包層,以提供間極電壓。 接著,形成多條位元線,以提供_電屋 至此率列中之各行之非揮發性記憶體單元 在二 之非揮發性記憶體單元之―子集合,經由在 == 非揮發性記憶體單元電連接至一位元線; 之其他 然後,形成 其中對於此陣列之每個非揮發性記㈣單元… 分離-個或多個介電結構之—部分與通道區。此介面2 第一端結束於第叫立元線之中間部分,且此介面之一 端結束於第H線之中間部分。為實施此介面,—個 施例形成一溝槽於一基板中,以使電荷捕捉結構與 構形成於此溝槽中。 ' 〜From then, each of the non-volatile ... charge storage structures in the array forms a charge with one or more of the dielectric layers to control the state of storage by the non-volatile memory. In a variety of different implementations; early =; circuit storage - logic bits or multiple bits. In various implementations:: storage, = two materials are - charge trapping structure τ: the storage structure system is at least under the charge storage structure to:: points in the charge storage structure and - closed pole electrical cladding, To provide the interpole voltage. Then, a plurality of bit lines are formed to provide a subset of the non-volatile memory cells of each row in the current row to the rate column, via the == non-volatile memory The cells are electrically connected to a single bit line; the other then forms a portion and channel region in which each non-volatile (four) cell of the array is ... separated from one or more dielectric structures. The first end of the interface 2 ends in the middle portion of the first vertical line, and one end of the interface ends in the middle portion of the H-th line. To implement this interface, an embodiment forms a trench in a substrate to form a charge trapping structure and structure in the trench. ' ~

某些實施例藉由形成一填料來調整閘極長度,此填 至少部分位於介電結構與一基板之間。在形成電荷儲2 構與介電結構之前,某些實施例包含:藉由形成—介带二 料層與移除介電材料層之複數個部分,來調整閘極長S 1336941Some embodiments adjust the gate length by forming a fill that is at least partially between the dielectric structure and a substrate. Prior to forming the charge reservoir structure and the dielectric structure, certain embodiments include: adjusting the gate length S 1336941 by forming a dielectric layer and removing a plurality of portions of the dielectric material layer

^ 三達編號:TW3137PA V 根據本發明之一第三方面,提出一種非揮發性記憶體 單元陣列積體電路之製造方法,包含: 首先,對此陣列之每個非揮發性記憶體單元形成一電 荷儲存結構與一個或多個介電結構。電荷儲存結構儲存電 * 荷以控制由非揮發性記憶體單元積體電路儲存之一邏輯 t 狀態。於各種不同的實施例中,電荷儲存結構儲存一個位 元或多重位元。於各種不同的實施例中,電荷儲存結構之 材料係為一電荷捕捉結構或一奈米晶體結構。一個或多個 • 介電結構係1)至少部分位於電荷儲存結構與一通道區之 間與2)至少部分位於電荷儲存結構與一閘極電壓源之間。 接著,形成用以提供閘極電壓之導電層之一第一部 分。 其中在形成用以提供閘極電壓之導電層之第一部分 之後,例如藉由添加摻質來形成多條位元線,以提供汲極 電壓與源極電壓至此陣列中之每個非揮發性記憶體單 元。在此陣列中之每個非揮發性記憶體單元之通道區係在 • 提供汲極電壓之此等位元線中之一第一位元線與提供源 極電壓之此等位元線中之一第二位元線之間延伸。此狀況 之一例子係為NOR配置。 在形成這些位元線之後,形成用以提供閘極電壓之導 電層之一第二部分。導電層之第一部分與第二部分係實體 上相連接。某些實施例包含形成用以分離這些位元線與導 電層之第二部分之一介電材料層。 對於此陣列之每個非揮發性記憶體單元,一介面分離 9 1336941^ 三达编号: TW3137PA V According to a third aspect of the present invention, a method of manufacturing a non-volatile memory cell array integrated circuit is provided, comprising: first, forming a non-volatile memory cell for each array of the array A charge storage structure and one or more dielectric structures. The charge storage structure stores electrical charge to control the logic t state stored by the non-volatile memory cell integrated circuit. In various embodiments, the charge storage structure stores one bit or multiple bits. In various embodiments, the material of the charge storage structure is a charge trapping structure or a nanocrystalline structure. One or more of the dielectric structures 1) are at least partially located between the charge storage structure and a channel region and 2) at least partially between the charge storage structure and a gate voltage source. Next, a first portion of one of the conductive layers for providing a gate voltage is formed. After forming a first portion of the conductive layer for providing a gate voltage, a plurality of bit lines are formed, for example, by adding dopants to provide a drain voltage and a source voltage to each of the non-volatile memories in the array. Body unit. The channel region of each non-volatile memory cell in the array is in the first bit line of the bit line providing the gate voltage and the bit line providing the source voltage A second bit line extends between. An example of this is a NOR configuration. After forming these bit lines, a second portion of one of the conductive layers for providing a gate voltage is formed. The first portion of the conductive layer is physically coupled to the second portion. Some embodiments include forming a layer of dielectric material to separate the bit lines from the second portion of the conductive layer. For each non-volatile memory cell of this array, an interface is separated 9 1336941

*' 三達編號:TW3137PA * 一個或多個介電結構之一部分與通道區。此介面之一第一 端結束於第一位元線之中間部分,而此介面之一第二端結 束於第二位元線之中間部分。為實施此介面,一實施例形 成一溝槽於一基板中,以使電荷捕捉結構與介電結構形成 * 於此溝槽中。 , 某些實施例藉由形成一填料來調整閘極長度,此填料 至少部分位於一個或多個介電結構與一基板之間。在形成 電荷儲存結構與介電結構之前,某些實施例包含:藉由形 • 成一介電材料層與移除部分介電材料層來縮小閘極長度。 於本發明之其他實施例中,至少部分位於電荷捕捉結 構與通道區之間之介電結構包含如揭露於此之一種ΟΝΟ 結構。 為讓本發明之上述内容能更明顯易懂,下文特舉較佳 實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 • 第1圖係為一非揮發性記憶體單元之示意圖,非揮發 性記憶體單元在源極與汲極區之間具有一凹入通道。 閘極102,在多數實施例中為部分之字元線,具有一 閘極電壓Vg。於某些實施例中,閘極結構包含一材料, 其功函數大於N型石夕之本徵功函數,或大於約4.1 eV,且 最好是大於約4.25 eV,包含譬如大於約5 eV。代表性的 閘極材料包含P型多晶矽、氧化鈦、鉑與其他高功函數金 屬及材料。適合本發明之實施例之具有相當高的功函數之 1336941*' Sanda number: TW3137PA * One or more dielectric structures are part of the channel area. One of the first ends of the interface ends in a middle portion of the first bit line, and one of the second ends of the interface ends in a middle portion of the second bit line. To implement this interface, an embodiment forms a trench in a substrate to form a charge trapping structure and a dielectric structure in the trench. Some embodiments adjust the gate length by forming a fill that is at least partially between one or more dielectric structures and a substrate. Prior to forming the charge storage structure and the dielectric structure, certain embodiments include reducing the gate length by forming a layer of dielectric material and removing a portion of the dielectric material layer. In other embodiments of the invention, the dielectric structure at least partially between the charge trapping structure and the channel region comprises a germanium structure as disclosed herein. In order to make the above description of the present invention more comprehensible, the preferred embodiments of the present invention are described in detail below with reference to the accompanying drawings. FIG. 1 is a non-volatile memory unit. In schematic, the non-volatile memory cell has a recessed channel between the source and drain regions. Gate 102, in most embodiments a partial word line, has a gate voltage Vg. In some embodiments, the gate structure comprises a material having a work function greater than an intrinsic work function of the N-type, or greater than about 4.1 eV, and preferably greater than about 4.25 eV, including, for example, greater than about 5 eV. Representative gate materials include P-type polysilicon, titanium oxide, platinum, and other high work function metals and materials. 1336941 having a relatively high work function suitable for embodiments of the present invention

三達編號:TW3137PA =材料包含:金屬,其包含但不限於釘( 金屬合金,其包含但不限於釕-鈦= :屬二物;以及金屬氧化物,其包含但不限於氧化針 U 2)。π功函數閘極材料產生比典 =的電子隨穿之注入阻障。具有二氣化上= 之Ν型多晶石夕閘極之注入阻障係在3 i5eV左 曰 =明之實施例制供閘㈣與供外介電層 年 約4ev。關於具有二氧切外介 夕日日矽閘極,其注入阻障大約是4 ^ 含二氧化料介電狀N型多⑽_之單m於2 生之收斂的單元之閥值係被減少大約2伏特。°, 介電結構104係位於閘極1〇2與電锉 :::::介:結構108係位於電荷儲存結構1:1:: 4之間。代表性介電材料包含具有大 : 度之二氧切與氮氧切,或其 ^未之尽 料,其包含譬如氧化雖l2〇3)。 ⑽向介電常數材 電荷儲存結構106儲存雷 體單元所儲存之邏輯狀態。較先:=由非揮發性記憶 ,的,譬如是多晶,夕,=:=储存結構 何儲存結構。㈣时 ^、展遍及此電 之電荷储存.一存= 1336941Sanda number: TW3137PA = material contains: metal, including but not limited to nails (metal alloys, including but not limited to 钌-titanium =: genus; and metal oxides, including but not limited to oxidized needle U 2) . The π work function gate material produces an implant barrier that is better than the code of the electron. The injection barrier of the bismuth-type polycrystalline slab gate with two gasifications is at 3 i5eV left 曰 = the embodiment of the thyristor (4) and the external dielectric layer is about 4 ev. Regarding the etched barrier with dioxo, the injection barrier is approximately 4 ^. The threshold of the unit containing the dioxide dielectric N-type multi (10)_ single m converging is reduced. 2 volts. °, the dielectric structure 104 is located at the gate 1〇2 and the electric 锉 ::::: interface 108 is located between the charge storage structure 1:1:: 4. Representative dielectric materials include dioxodere and oxynitrides having a large degree, or a non-existent amount thereof, including, for example, oxidation although l2〇3). (10) The dielectric constant material The charge storage structure 106 stores the logic state stored by the spheroid unit. First: = by non-volatile memory, such as polycrystalline, eve, =: = storage structure, storage structure. (4) Time ^, exhibition and charge storage of this electricity. One deposit = 1336941

♦、 三達編號:TW3137PA ,捉結構包含具有大約3至9奈米之厚^化#。 ,源極區110具有一源極電屋Vs,而沒極區112具有 及極包壓vd。源極區110與及極區112纟多數的實施例 中為4刀之位7L線’且其特徵為一接面深度。本體區 .122在多數的實施财是-基板或—井,且具有—本體電 ‘壓Vb。為因應被施加至閘極102、源極110、及極112及 本體122之適當的偏壓配署 裥坚配置,形成一通道1H電連接源极 110與汲極112。 • 練與〆及極區116之上邊緣係高於在通道114與介電 結構1〇8之間的介面118。然而,在通道114與介電結掩 108之間的;|面118維持在源極與沒極區之下邊緣上方。 因此’在通道114與介電結構1〇8之間之介面118結束於 源極區110與汲極區112之中間區域。 源極區110與汲極區112之上邊緣係與本體區122< 上邊緣排成一線。因此,第丨圖之非揮發性記憶體單元係 為凹入通道之實施例。 • 第2圖係為一非揮發性記憶體單元之示意圖,非揮蝥 性記憶體單元具有舉升離半導體基板之源極區與汲缒 區。第1圖與第2圖之非揮發性記憶體單元實質上是類似 的。然而,源極區210與汲極區212之上邊緣係位於本趙 區122之上邊緣的上方。因此,第2圖之非揮發性記憶趨 單元係為舉升之源極與沒極之實施例。在通道214與介電 結構208之間之介面218仍然結束於源極區210與汲極區 212之中間區域。源極區210與汲極區212之特徵為一接 12 1336941♦, Sanda number: TW3137PA, the catching structure contains a thickness of about 3 to 9 nm. The source region 110 has a source electric house Vs, and the non-polar region 112 has a pole voltage vd. In the embodiment where the source region 110 and the polar region 112 are mostly, the 4-pole line 7L line ' is characterized by a junction depth. The body area .122 is implemented in a majority of substrates - wells or wells - and has a body voltage 'Vb. A channel 1H is electrically connected to the source 110 and the drain 112 in response to a suitable biasing configuration applied to the gate 102, the source 110, and the pole 112 and the body 122. • The upper edge of the practice and 〆 and pole regions 116 is higher than the interface 118 between the channel 114 and the dielectric structure 〇8. However, the | face 118 between the channel 114 and the dielectric junction 108 is maintained above the lower edge of the source and the non-polar region. Thus, the interface 118 between the channel 114 and the dielectric structure 〇8 ends in the intermediate region between the source region 110 and the drain region 112. The upper edge region of the source region 110 and the drain region 112 is aligned with the upper portion of the body region 122 < Thus, the non-volatile memory cell of the first diagram is an embodiment of a recessed channel. • Figure 2 is a schematic diagram of a non-volatile memory cell with a source region and a germanium region lifted off the semiconductor substrate. The non-volatile memory cells of Figures 1 and 2 are substantially similar. However, the source region 210 and the upper edge of the drain region 212 are located above the upper edge of the present region 122. Therefore, the non-volatile memory unit of Fig. 2 is an example of the source and the immersion of the lift. The interface 218 between the channel 214 and the dielectric structure 208 still ends in the middle region of the source region 210 and the drain region 212. The source region 210 and the drain region 212 are characterized by a connection 12 1336941

*" 三達編號:TW3I37PA it*" Sanda number: TW3I37PA it

面深度220。 第Μ @係為在具有以通道之非揮發故憶體單元 中’電子從閘極注人至電荷儲存結構之示意圖。 閘極區3〇2具有-10ν之閘極電壓Vg。源極區綱具 有10V或浮動之源極電壓Vs。沒極區3〇6具有購或浮 動之;及極電壓Vd。本體區3G8具有1〇v之本體電壓。 第3B圖係為在具有舉升之源極區触極區之非揮發 ^記ί體單元中,電子從閘缝人至電荷儲存結構之示意 第3Β圖之偏壓配置係類似於第3Α圖。 第4Α圖係為在具有凹入通道之非揮發性記憶體單元 中’電子從基板注人至電荷儲存結構之示意圖。 問極區402具有1 〇ν之閘極電壓%。源極區刪具 有-10V或〉予動之源極電壓Vs。汲極區4⑽具有-Μ或浮 動之汲極電壓Vd。本體區408具有_1〇v之本體電壓vb。 第4B圖係為在具有舉升之祕區與没極區之非揮發 性冗憶體單元卜電子從基m至電荷儲存結構之示意 圖。第4B圖之偏壓配置係類似於第4A圖。 第SA圖係為在具有凹人通道之非揮發性記憶體單元 中’帶間(band-to-band)熱電?注入至電荷儲存結構之示意 閑極區502具有丨0V之閘極電壓vg。計型源極區5〇4 具有-5V之源極電壓Vs。时型汲極區5〇6具有或浮動 之汲極電壓V6N型本體區5〇8具有〇v之本體電壓vb。 第5B圖係為在具有舉升之源極區與汲極區之非揮發 13 1336941The depth of the surface is 220. The first Μ @ is a schematic diagram of electrons from the gate to the charge storage structure in a non-volatile memory unit having a channel. The gate region 3〇2 has a gate voltage Vg of -10 ν. The source region has a source voltage Vs of 10V or floating. The immersion zone 3〇6 has purchased or floated; and the pole voltage Vd. The body region 3G8 has a body voltage of 1 〇v. Figure 3B is a diagram showing the bias configuration of electrons from the gate gap to the charge storage structure in a non-volatile unit having a source region of the lifted source region, similar to the third diagram. . Figure 4 is a schematic illustration of the electrons being injected from the substrate to the charge storage structure in a non-volatile memory cell having a recessed channel. The polarity region 402 has a gate voltage % of 1 〇ν. The source region has a source voltage Vs of -10V or >pre-action. The drain region 4 (10) has a -Μ or floating drain voltage Vd. The body region 408 has a body voltage vb of _1 〇v. Fig. 4B is a schematic diagram of the electrons from the base m to the charge storage structure in the non-volatile memory unit having the lifted and the non-polar regions. The bias configuration of Figure 4B is similar to Figure 4A. Figure SA is a band-to-band thermoelectric in a non-volatile memory cell with a concave human channel. The illustrated dummy region 502 implanted into the charge storage structure has a gate voltage vg of 丨0V. The metering source region 5〇4 has a source voltage Vs of -5V. The time-type drain region 5〇6 has or floats the drain voltage V6N-type body region 5〇8 has a body voltage vb of 〇v. Figure 5B shows the non-volatile content in the source and bungee regions with lift 13 1336941

三達編號:TW3137PA 耆 性記憶體單元中’帶間熱電子注人至電荷儲存結構之示意 圖。第5B圖之偏壓配置係類似於第5八圖。 第6A圖係為在具有凹入通道之非揮發性記憶體單元 中,通道熱電子注入至電荷儲存結構之示意圖。 間極區602具有1〇V之間極電壓Vg。;^源㈣_ 具有-5V之源極電壓Vp n+敎極區_具有^之没極 電壓W。?型本體區_具有GV之本體電壓 第6B圖係為在具有舉升之源極區與没極區之非揮發 體單元巾,通賴電子注人至電荷儲存結構之示意 圖。第6B圖之偏壓配置係類似於第6A圖。 圖係為在具有凹入通道之非揮發性記憶體單元 中,基板熱電子注入至電荷儲存結構之示意圖。 閘極區702具有10V之間極㈣ν"+型源極區7〇4 2 〇V之源極電壓Vs。n+型祕區寫具有^之没極 p vd。·本體區708具有_6V之本體電壓vb。^ ^區7H)具有-5V之井電壓Vw。源極區谓與沒極區7〇6 係仅於此井區71〇中,而井區·位於本體區观令。 第7B圖係為在具有舉升之源極區與沒極區之非揮發 圖記J體單元中,基板熱電子注入至電荷儲存結構之示意 圖。第7B圖之偏壓配置係類似於第7八圖。 第8A圖係為在具有凹入通道之非揮發性記憶體單元 ,電洞從閘極注入至電荷儲存結構之示意圖。 閘極區802具有10V之閉極電壓Vg。源極區謝具 有-ιόν或浮動之源極電壓Vs。汲極區8〇6具有·⑽或浮 1336941Sanda number: TW3137PA A schematic diagram of the inter-band hot electron injection to charge storage structure in the 记忆3 memory. The bias configuration of Figure 5B is similar to Figure 5A. Figure 6A is a schematic illustration of the channel hot electron injection into the charge storage structure in a non-volatile memory cell having a recessed channel. The interpole region 602 has a pole voltage Vg between 1 〇V. ; ^ source (four) _ has a source voltage of -5V Vp n + drain region _ has ^ no pole voltage W. ? Type body region _ body voltage with GV Fig. 6B is a schematic view of a non-volatile body unit having a lifted source region and a non-polar region, which relies on an electron injection to a charge storage structure. The bias configuration of Figure 6B is similar to Figure 6A. The figure is a schematic diagram of the substrate hot electron injection into the charge storage structure in a non-volatile memory cell having a recessed channel. The gate region 702 has a source voltage Vs of a pole (4) ν "+ source region 7 〇 4 2 〇V between 10V. The n+ type secret area is written with the utmost p vd. The body region 708 has a body voltage vb of _6V. ^ ^ Zone 7H) has a well voltage Vw of -5V. The source area is said to be only in the 71没 of the well area, and the well area is located in the body area. Fig. 7B is a schematic view showing the injection of hot electrons into the charge storage structure of the substrate in the non-volatile J-body unit having the lifted source region and the non-polar region. The bias configuration of Figure 7B is similar to Figure 7A. Figure 8A is a schematic diagram of a non-volatile memory cell having a recessed channel into which a hole is injected from a gate to a charge storage structure. The gate region 802 has a closed-pole voltage Vg of 10V. The source region has a -mόν or floating source voltage Vs. Bungee area 8〇6 has ·(10) or float 1336941

’ 三達編號:TW3137PA , 動之汲極電壓Vd。本體區808具有-10V之本體電壓Vb。 第8B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體單元中,電洞從閘極注入至電荷儲存結構之示意 圖。第8B圖之偏壓配置係類似於第8A圖。 ‘ 第9A圖係為在具有凹入通道之非揮發性記憶體單元 t 中,電洞從基板注入至電荷儲存結構之示意圖。 閘極區902具有-10V之閘極電壓Vg。源極區904具 有10V或浮動之源極電壓Vs。汲極區906具有10V或浮 • 動之汲極電壓Vd。本體區908具有10V之本體電壓Vb。 第9B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體單元中,電洞從基板注入至電荷儲存結構之示意 圖。第9B圖之偏壓配置係類似於第9A圖。 第10A圖係為在具有凹入通道之非揮發性記憶體單 元中,帶間熱電洞注入至電荷儲存結構之示意圖。’ Sanda number: TW3137PA, moving bungee voltage Vd. The body region 808 has a body voltage Vb of -10V. Figure 8B is a schematic illustration of the injection of a hole from a gate into a charge storage structure in a non-volatile memory cell having a lifted source region and a drain region. The bias configuration of Figure 8B is similar to Figure 8A. ‘9A is a schematic diagram of a hole injected into a charge storage structure from a substrate in a non-volatile memory cell t having a recessed channel. The gate region 902 has a gate voltage Vg of -10V. Source region 904 has a 10V or floating source voltage Vs. The drain region 906 has a 10V or floating drain voltage Vd. The body region 908 has a body voltage Vb of 10V. Figure 9B is a schematic illustration of the injection of a hole from a substrate into a charge storage structure in a non-volatile memory cell having a lifted source region and a drain region. The bias configuration of Figure 9B is similar to Figure 9A. Figure 10A is a schematic illustration of the injection of inter-band thermoelectric holes into a charge storage structure in a non-volatile memory cell having recessed channels.

閘極區1002具有-10V之閘極電壓Vg。n+型源極區 1004具有5V之源極電壓Vs。n+型汲極區1006具有0V • 或浮動之汲極電壓Vd。P型本體區1008具有0V之本體 電壓Vb。 第10B圖係為在具有舉升之源極區與汲極區之非揮 發性記憶體單元中,帶間熱電洞注入至電荷儲存結構之示 意圖。第10B圖之偏壓配置係類似於第10A圖。 第11A圖係為在具有凹入通道之非揮發性記憶體單 元中,通道熱電洞注入至電荷儲存結構之示意圖。 閘極區1102具有-10V之閘極電壓Vg。p+型源極區 15 1336941The gate region 1002 has a gate voltage Vg of -10V. The n+ type source region 1004 has a source voltage Vs of 5V. The n+ type drain region 1006 has a 0V • or floating drain voltage Vd. The P-type body region 1008 has a body voltage Vb of 0V. Fig. 10B is an illustration of the injection of inter-band thermoelectric holes into a charge storage structure in a non-volatile memory cell having a raised source region and a drain region. The bias configuration of Figure 10B is similar to Figure 10A. Figure 11A is a schematic illustration of the injection of channel thermowells into a charge storage structure in a non-volatile memory cell having recessed channels. The gate region 1102 has a gate voltage Vg of -10V. p+ source region 15 1336941

i達編號:TW3137PA 1104具有ον之源極電壓Vsap+型汲極區11〇6具有 之没極電壓型本體區11〇8具有〇v之本體電壓%。 第11B ®係為在具有舉升之源極區與汲極區之非揮 =性記憶體單元中’通道熱電洞注人至電荷儲存結構之示 意圖。第11B圖之偏壓配置係類似於第UA圖。 第12A圖係為在具有凹入通道之非揮發性記憶體單 疋中’基板熱電洞注人至電荷儲存結構之示音圖。 ^極區·具有撕之問極錢型源極區 具有0V之源極電壓Vs。p+型没極區12〇6且有〇v =電壓樹型本體區1208具有6V之本體電壓Vb。 具有5V之井電壓Vw。源極區副與沒極 =讓係位於絲蘭中,而絲121G位於本體區麗 第12B圖係為在具有舉升之源 =記憶體單元中,基板熱電洞注入至電荷 元令,用1二在具有凹入通道之非揮發性記憶體單 兀Υ用以讀取儲存於電荷 干 向讀取操作之示意圖。Τ储存、,、。構之右側之資料之-反 13。二之閘極電",型源極區 之汲極電㈣。===_具請 第⑽胃係為在|有t有0V之本體電屢Vb。 發性記憶體單元中,用二二U源極區與沒極區之非揮 乂碩取儲存於電荷儲存結構之右側 1336941The i-number: TW3137PA 1104 has a source voltage of ον Vsap + type drain region 11〇6 has a gate voltage type body region 11〇8 having a body voltage % of 〇v. Section 11B® is intended to inject a channel thermowell into a charge storage structure in a non-volatile memory cell with lifted source and drain regions. The bias configuration of Figure 11B is similar to the UA diagram. Figure 12A is a sound map of a substrate thermowell injected into a charge storage structure in a non-volatile memory cell having a recessed channel. ^Polar area·There is a source of the source voltage with a source voltage Vs of 0V. The p+ type has no polarity region 12〇6 and has 〇v = voltage tree body region 1208 has a body voltage Vb of 6V. It has a well voltage Vw of 5V. The source region deputy and the immersion = the system is located in the yucca, and the wire 121G is located in the body region, the Li 12B diagram is in the source of the lifting = memory unit, the substrate thermoelectric hole is injected into the charge element, with 1 2. A non-volatile memory cell with a recessed channel for reading a picture stored in a charge dry direction read operation. ΤSave, ,,. On the right side of the structure - anti-13. The gate of the second pole is "electrical" (4). ===_ Have the first (10) stomach system is in | there is t 0V body power repeatedly Vb. In the memory unit, the non-volatile source of the two-two U source region and the non-polar region is stored on the right side of the charge storage structure. 1336941

逢編號:TW3137PA ,之資料:反向讀取操作之示意圖。第 類似於第13A圖。 鬩乙偈歷配置係 第14A圖係*> 元中,用以儲存位於道:非揮發性記憶體單 k取操作之示意圖。讀存、-構之左側之資料之反向讀Every number: TW3137PA, the data: schematic diagram of the reverse read operation. The first is similar to Figure 13A.阋 偈 偈 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第Reverse reading of the data on the left side of the memory

. 閘極區1402且古B 1404具有0V之源極、之閘極電屋Vg。η+型源極區 之沒極電壓购^^^+型没極區應具有1·〜 • * 14Β圖係為在丄4〇8具有0V之本體電壓外。 發性記憶體翠元中^舉升之源極區與沒極區之非揮 資料之反向讀取操作儲存結構之左側之 似於第14A圖。 不思圖。第14B圖之偏壓配置係類 第1SA圖係為在具有凹入通道之 ::取:電荷储存结構之•資料:帶 • 15〇4 ^ ΪΓ02具有^ 〇V之閉極電壓%…型源極區The gate region 1402 and the ancient B 1404 have a source of 0V and a gate electric house Vg. The no-polar voltage of the η+-type source region is purchased. The ^^^+-type non-polar region should have a 1·~•* 14Β graph system with a body voltage of 0V at 丄4〇8. The reverse reading operation of the source region and the non-polar region of the priming memory is similar to that on the left side of the storage structure. Do not think about it. The first SA diagram of the bias configuration type in Fig. 14B is in the case of a recessed channel:: take: charge storage structure • data: band • 15〇4 ^ ΪΓ02 has ^ 〇V closed-pole voltage %... type source Polar zone

1506 2V 本體& 1508具有〇v之本體電壓vb。 發性記恃體單在具有舉升之源_與_區之非揮 之資料^ *巾 讀㈣存於L存結構之右側 係2二操作之示意圖°第说圖之偏壓配置 元中第16A圖係為在具有凹人通道之非揮發性記憶體單 以儲存位於電倾存結構之左侧之資料之帶間讀 17 13369411506 2V Body & 1508 has a body voltage vb of 〇v. The 恃 恃 在 在 在 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 _ _ _ _ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四The figure is for reading between the strips of non-volatile memory with concave channels for storing data located on the left side of the electrical dump structure 17 1336941

^ 三達編號:TW3137PA 取才呆作之示意圖。 閘極區1602具有-1〇v之閘極 1604 9V ^ 電莹 Vg。n+型源極區 具有2V之源極電壓Vs。n+型沒極區⑽ 之汲極電壓V&P型本體區16〇8 /、有矛動 第_㈣為在且有兴升之Ίον之本體電麼I 心, 料有料H㈣與祕區之非揮 用以儲存位於電荷儲存結構之左側之 似示意圖。第16Β圖之偏壓配置係類 似於第16Α圖。^ Sanda number: TW3137PA Take a sketch of the work. The gate region 1602 has a gate of -1〇v 1604 9V ^ 莹Vg. The n+ type source region has a source voltage Vs of 2V. The n+ type non-polar region (10) has a bungee voltage V&P-type body region 16〇8/, and there is a spear-moving _(four) for the body of the Ίον I ν I I I I 之 之 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I A schematic representation of the storage on the left side of the charge storage structure. The bias configuration of Figure 16 is similar to the 16th diagram.

由於、,,《 口之垂直與橫向電場之緣故,流經非揮發 憶體^結構之”電心高準確度歧電荷儲存結構 ^特疋。P分之電何錯存狀態。較大的垂直與橫向電場導致 較大的τ間電流。-種偏壓配置係被應用至各種不同的端 子以使这些能帶彎曲到足以在非揮發性記憶體單元結構 中產生帶間電流,同時將在非揮發性記憶體單元節點之間 之電位差保持為足夠低,以使程式化或抹除不會產生。 於偏壓配置之例子中,非揮發性記憶體單元結構係相 對於主動源極區或没極區與本體區被逆向偏壓,產生逆向 偏壓之接面。此外,閘極結構之電壓導致這些能帶彎曲成 足以使帶間隧穿經由非揮發性記憶體單元結構而產生。在 其中一個非揮發性記憶體單元結構節點(於多數的實施例 中是源極區或汲極區)中之高摻雜濃度。其中此結構節點具 有所產生之空間電荷區域之高電荷密度,以及此空間電荷 區域在短距離内之電壓改變,有助於產生急遽的能帶弩 曲°位於逆向偏壓之接面之—側上之此價帶之電子經由被 1336941 — _ _ __________Because of,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The transverse electric field causes a large inter-τ current. The bias configuration is applied to a variety of different terminals to bend these bands sufficiently to produce inter-band currents in the non-volatile memory cell structure, while at the same time The potential difference between the volatile memory cell nodes is kept low enough that stylization or erasing does not occur. In the bias configuration example, the non-volatile memory cell structure is relative to the active source region or not. The polar region and the body region are reverse biased to create a junction of reverse bias. Furthermore, the voltage of the gate structure causes the energy bands to bend sufficiently to cause interband tunneling through the non-volatile memory cell structure. a highly doped concentration in a non-volatile memory cell structure node (in most embodiments, a source region or a drain region), wherein the structural node has a high charge of the generated space charge region Density, and the space charge region changes in voltage within a short distance, help produce sharply curved band crossbow ° junction of the reverse biased located - this electron valence band of the upper side via the 1336941-- __________ _ _

y 三達編號:TW3137PA v 禁止的間隙遂穿至在逆向偏壓之接面之另一侧上之導y Sanda number: TW3137PA v Prohibited gap traversing to the other side of the junction on the reverse bias

帶,並向下漂移至勢能丘(potential hill),更深入至逆向偏 壓之接面之N型節點。類似地,電洞漂移過勢能丘,遠離 逆向偏壓之接面之N型節點,並朝向逆向偏壓之接面之P . 型節點。 閘極區之電壓控制位於電荷儲存結構附近之逆向偏 b 壓之接面之部分之電壓。當閘極結構之電壓變成更負時, 位於電荷儲存結構之附近之逆向偏壓之接面之此部分之 • 電壓變成更負,導致二極體結構中之更深的能帶彎曲。因 為以下(1)與(2)之至少某些組合之結果,更多帶間電流會流 動:(1)在彎曲能帶之一側之被佔據的電子能階與彎曲能帶 之另一側之未被佔據的電子能階之間漸增重疊量;以及(2) 在被佔據的電子能階與未被佔據的電子能階之間之更狹 小之阻絕寬度(Sze, Physics of Semiconductor Devices, 1981)。 儲存於電荷儲存結構上之淨負或淨正電荷更進一步 • 影響能帶彎曲度。依據高斯定律,當負電壓相對於逆向偏 壓之接面被施加至閘極區時,較強電場係由靠近具有相當 高的淨負電荷之電荷儲存結構之部分之逆向偏壓之接面 之部分所經歷。類似地,當正電壓相對於逆向偏壓之接面 被施加至閘極區時,較強電場係由靠近具有相當高的淨正 電荷之電荷儲存結構之部分之逆向偏壓之接面之部分所 經歷。 關於讀取之不同的偏壓配置以及關於程式化與抹除 19 1336941Belt, and drift down to the potential hill, deeper into the N-node of the junction of the reverse bias. Similarly, the hole drifts over the potential energy hill, away from the N-junction of the junction of the reverse bias, and faces the P. node of the junction of the reverse bias. The voltage in the gate region controls the voltage at the junction of the reverse bias voltages near the charge storage structure. When the voltage of the gate structure becomes more negative, the voltage of the portion of the junction of the reverse bias located near the charge storage structure becomes more negative, resulting in a deeper band bend in the diode structure. As a result of at least some of the following combinations of (1) and (2), more current between the bands will flow: (1) the occupied electron energy level on one side of the bending energy band and the other side of the bending energy band The increasing overlap between the unoccupied electron energy levels; and (2) the narrower barrier width between the occupied electron energy level and the unoccupied electron energy level (Sze, Physics of Semiconductor Devices, 1981). The net negative or net positive charge stored on the charge storage structure goes further • Affects the band curvature. According to Gauss's law, when the junction of the negative voltage and the reverse bias is applied to the gate region, the stronger electric field is connected by the reverse bias of the portion of the charge storage structure having a relatively high net negative charge. Partial experience. Similarly, when a positive voltage is applied to the gate region with respect to the reverse bias, the stronger electric field is the portion of the junction of the reverse bias that is close to the portion of the charge storage structure having a relatively high net positive charge. Experienced. Different bias configurations for reading and about stylization and erasure 19 1336941

'' 三達編號:TW3137PA ^ 之偏壓配置顯示出慎重之平衡。關於讀取,在逆向偏壓之 接面節點之間之電位差不應導致載荷子之實質上的數目 通過一介電材料至電荷儲存結構並影響電荷儲存狀態(亦 即,程式化邏輯位準)。相較之下,關於程式化與抹除,在 . 逆向偏壓之接面節點之間之電位差足以導致載子之實質 上的數目通過一介電材料並藉由帶間熱載子注入來影響 v 電荷儲存狀態。 第17圖係具有一凹入通道之一非揮發性記憶體單元 φ 陣列之製造流程圖,其顯示第19至23圖之製程步驟之各 種可能的組合。第Π圖揭露下述的處理流程組合:第19 與22圖;第19與23圖;第20與22圖;第20與23圖; 第21與22圖;以及第21與23圖。這些組合伴隨著後端 處理。 第18A與18B圖係為具有舉升之源極區與汲極區之 非揮發性記憶體單元陣列之製造流程圖。 第18A圖係具有舉升之源極區與汲極區之一 NOR非 • 揮發性記憶體單元陣列之製造流程圖,其顯示第24至27 圖之製程步驟之各種可能的組合。第18A圖揭露下述的處 理流程組合:第24、25與27圖;以及第24、26與27圖。 這些組合伴隨著後端處理。 第18B圖係具有舉升之源極區與汲極區之一 NAND 非揮發性記憶體單元陣列之製造流程圖,其顯示第28至 30圖之製程步驟之各種可能的組合。第18B圖揭露下述的 處理流程組合:第28與29圖;以及第28與30圖。這些 20 1336941 二達編號:TW3137PA v 組合伴隨著後端處理。 第19A至19C圖係為在第22或23圖之前,在具有 凹入通道之非揮發性記憶體單元中’用以形成一溝槽之製 程步驟。於第19A圖中,氡化物1910係沈積於基板1900 上。光阻係被沈積並圖案化’且被圖案化之光阻係用以依 ‘ 據光阻圖案來移除氧化物之數個部分。於第19B圖中,殘 留的光阻1922保護殘留的氧化物1912。殘留的光阻係被 移除,且未被氧化物覆蓋的基板係被蝕刻。於第19C圖中, • 溝槽1930係被蝕刻至未被氧化物1912覆蓋的基板1900 中。 第20A至20E圖係為在第22或23圖以前,在非揮 發性記憶體單元中形成一溝槽之前,用以縮小一閘極長度 之製程步驟。第20A至20C圖係類似於第19A至19C圖。 於第20D圖令,一間隙壁2040係沈積至此溝槽中,殘留 下一較小溝槽1932 〇於第20E圖中,溝槽之底部旁之間隙 壁部分係被蝕刻,殘留下間隙壁2042。此種閘極長度比例 鲁 調整可留下相較於第19圖之較小閘極長度。 第21A至21E圖係為在第22或23圖以前,在非揮 發性記憶體單元中形成一溝槽之前,用以擴大一閘極長度 之製程步驟。第21A至21B圖係類似於第19A至19B圖。 於第21C圖中,殘留的被圖案化之光阻係被移除,露出圖 案化之氧化物1912。於第21D圖中,此圖案化之氧化物 係被蝕刻,殘留下較小的圖案化之氧化物2112。於第21E 圖中,溝槽2132係被蝕刻凹入至未被氧化物2112覆蓋的 21 1336941''Sanda's number: TW3137PA^'s bias configuration shows a careful balance. With respect to reading, the potential difference between the junction nodes of the reverse bias should not cause a substantial number of charge carriers to pass through a dielectric material to the charge storage structure and affect the charge storage state (ie, the programmed logic level). . In contrast, with regard to stylization and erasing, the potential difference between the junction nodes of the reverse bias is sufficient to cause the substantial number of carriers to pass through a dielectric material and be affected by inter-band thermal carrier injection. v Charge storage status. Figure 17 is a manufacturing flow diagram of a non-volatile memory cell φ array having a recessed channel showing various possible combinations of process steps of Figures 19-23. The figure illustrates the combination of process flows as follows: Figures 19 and 22; 19 and 23; 20 and 22; 20 and 23; 21 and 22; and 21 and 23. These combinations are accompanied by backend processing. 18A and 18B are manufacturing flow diagrams of a non-volatile memory cell array having lifted source and drain regions. Figure 18A is a manufacturing flow diagram of a NOR non-volatile memory cell array with one of the source and drain regions of the lift, showing various possible combinations of the process steps of Figures 24-27. Figure 18A discloses the following combination of process flows: Figures 24, 25 and 27; and Figures 24, 26 and 27. These combinations are accompanied by backend processing. Figure 18B is a manufacturing flow diagram of a NAND non-volatile memory cell array having one of the source and drain regions of the lift, showing various possible combinations of the process steps of Figures 28-30. Figure 18B discloses the following combination of process flows: Figures 28 and 29; and Figures 28 and 30. These 20 1336941 two-numbered: TW3137PA v combination is accompanied by back-end processing. 19A to 19C are process steps for forming a trench in a non-volatile memory cell having a recessed channel before the 22nd or 23rd. In Figure 19A, a telluride 1910 is deposited on substrate 1900. The photoresist is deposited and patterned' and the patterned photoresist is used to remove portions of the oxide in accordance with the photoresist pattern. In Figure 19B, the remaining photoresist 1922 protects the residual oxide 1912. The residual photoresist is removed and the substrate not covered by the oxide is etched. In Fig. 19C, the trench 1930 is etched into the substrate 1900 that is not covered by the oxide 1912. 20A to 20E are process steps for reducing the length of a gate before forming a trench in the non-volatile memory cell before the 22nd or 23rd. Figures 20A through 20C are similar to Figures 19A through 19C. In the 20th DD, a spacer 2040 is deposited into the trench, leaving a smaller trench 1932 in the 20E, the spacer portion beside the bottom of the trench is etched, leaving the spacer 2042 . This gate length ratio can be adjusted to leave a smaller gate length than in Figure 19. 21A to 21E are process steps for expanding a gate length before forming a trench in the non-volatile memory cell before the 22nd or 23rd. Figures 21A through 21B are similar to Figures 19A through 19B. In Figure 21C, the remaining patterned photoresist is removed to expose the patterned oxide 1912. In Figure 21D, the patterned oxide is etched leaving a smaller patterned oxide 2112. In FIG. 21E, the trench 2132 is etched and recessed to be covered by the oxide 2112. 21 1336941

令 三達編號:TW3137PA V之基板1900中。此種閘極長度比例調整會留下相較於第 19圖之較長的閘極長度。 ,第22A至22〖圖係為在第19、2〇或21圖以後之結 束製程步驟’用以形成一 N〇R非揮發性記憶體單元陣列, ‘每個歷非揮發性記憶體單元位於-溝射,以使每個 ‘非揮發性記憶體單元具有-凹入通道。在第22A圖中,例 如ΟΝΟ層之介電材料與電荷儲存結構225〇係形成於溝槽 中,從而殘留下較小溝槽2232。在第咖_中,沈積例如 •多晶石夕之閘極材料226〇。在第加圖中,閘極材料係被飯 刻,從而殘留下閘極材料2262在溝槽之内部。在第2犯 圖中’例如SiN之介電材料227〇係沈積於問極材料麗 上。在第22E圖令,此介電材料係被钱刻,而殘留下介電 材料2272在溝槽之内部。在第22F圖中,殘留的圖案化 之氧化物係被移除。於此時點,閘極材料2262與氧化物 2272之堆疊上升高於基板之表面。在第22g时,離子 植入法形成源極區2280與汲極區2282。在第22H圖中, # 沈積例如騰氧化物之氧化物2290。在第221圖中,例 如藉由CMP、回浸(dip_back)或回蝕來移除覆蓋氧化物 2272之過剩的氧化物。在第22J圖中,移除氧化物η”。 在第22K圖中,沈積額外閘極材料而形成閘極區2264。 第23A至23E圖係為在第19、20或21圖以後之結 束製程步驟,用以形成一 NAND非揮發性記憶體單元陣 列,每個NAND非揮發性記憶體單元位於一溝槽中,以使 每個非揮發性記憶體單元具有一凹入通道。在第23A圖 22 1336941Order Sanda number: TW3137PA V substrate 1900. This gate length scaling will result in a longer gate length than in Figure 19. , 22A to 22, the figure is the end of the process of the 19th, 2nd or 21th process, to form an N〇R non-volatile memory cell array, 'each calendar non-volatile memory cell is located - Ditching so that each 'non-volatile memory cell has a - recessed channel. In Fig. 22A, a dielectric material such as a germanium layer and a charge storage structure 225 are formed in the trench, thereby leaving a smaller trench 2232. In the first coffee, for example, a polycrystalline stone gate material 226 沉积 is deposited. In the first figure, the gate material is annealed so that the lower gate material 2262 remains inside the trench. In the second figure, for example, a dielectric material 227 of SiN is deposited on the material. In Figure 22E, the dielectric material is engraved and the remaining dielectric material 2272 is inside the trench. In Figure 22F, the residual patterned oxide is removed. At this point, the stack of gate material 2262 and oxide 2272 rises above the surface of the substrate. At 22g, ion implantation forms source region 2280 and drain region 2282. In Fig. 22H, #deposited oxide 2290 such as oxidized oxide. In Fig. 221, the excess oxide covering the oxide 2272 is removed, for example, by CMP, dip_back or etch back. In Figure 22J, the oxide η" is removed. In Figure 22K, an additional gate material is deposited to form the gate region 2264. Figures 23A through 23E are the end of the process after the 19th, 20th or 21th a step of forming a NAND non-volatile memory cell array, each NAND non-volatile memory cell being located in a trench such that each non-volatile memory cell has a recessed channel. 22 1336941

^ 三顏號:TW3137PA V中’例如0N0層之介電材料與電荷儲存結構2250係形成 於溝槽中,從而殘留下較小溝槽2232。在第23]B圖中,沈 積例如多晶矽之閘極材料2260。在第23C圖中,過剩的閘 極材料係例如藉由CMP而被移除,從而暴露〇N〇層。在 ‘ 第23D圖中,殘留的圖案化之氧化物係被移除。於此時 . 點,閘極材料2262上升高於基板之表面。在第23E圖中, 離子植入法形成源極區2380與汲極區2382。 第24A至24D圖係為在第25或26圖以前之開始製 • 程步驟,用以形成在一 NOR陣列中之一非揮發性記憶體 單元之舉升之源極區與汲極區。在第24A圖中,例如〇N〇 層之介電材料與電荷儲存結構2410係沈積於基板2400 上。在第24B圖中,沈積例如多晶矽之閘極材料,例如 SiN之氧化物材料係沈積於閘極材料上,而形成光刻 (photolithographic)結構’殘留下 SiN 243〇、多晶矽 242〇 與0N0 2412之堆疊。在第24C圖中,形成間隙壁2440。 在第24D圖中,蝕刻間隙壁,而殘留下間隙壁側壁2442。 ^ 第25Α至25Β圖係為在第24圖以後且在第27圖以 前之結束製程步驟,其使用磊晶矽以形成在一 N〇R陣列 中之一非揮發性§己憶體單元之舉升之源極區與汲極區。在 第25A圖中,沈積磊晶矽255〇。在第25B圖中,離子植 入法形成源極區2560與沒極區2562。 第26A至26C圖係在第24圖以後且在第27圖以前 之結束製程步驟,其使用多晶矽以形成在一 N〇R陣列中 之一非揮發性§己憶體單元之舉升之源極區與沒極區。在第 23 1336941^ Sanyan: TW3137PA V ', for example, a dielectric material of 0N0 layer and a charge storage structure 2250 are formed in the trench, thereby leaving a smaller trench 2232. In Fig. 23], a gate material 2260 such as polysilicon is deposited. In Fig. 23C, the excess gate material is removed, for example by CMP, to expose the 〇N 〇 layer. In 'FIG. 23D', the residual patterned oxide is removed. At this point, the gate material 2262 rises above the surface of the substrate. In Fig. 23E, ion implantation forms source region 2380 and drain region 2382. Figures 24A through 24D are process steps beginning at the beginning of Figure 25 or 26 to form the lifted source and drain regions of a non-volatile memory cell in a NOR array. In Fig. 24A, a dielectric material such as a 〇N 层 layer and a charge storage structure 2410 are deposited on the substrate 2400. In Fig. 24B, a gate material such as polysilicon is deposited, for example, an oxide material of SiN is deposited on the gate material to form a photolithographic structure 'residual SiN 243 〇, poly 矽 242 〇 and 0N0 2412 Stacking. In Fig. 24C, a spacer 2440 is formed. In Fig. 24D, the spacer is etched while the lower spacer sidewall 2442 remains. ^ 25th to 25th is a process step after the 24th and before the 27th, which uses epitaxy to form a non-volatile § memory unit in an N〇R array. The source area and the bungee area. In Fig. 25A, an epitaxial 矽 255 沉积 is deposited. In Fig. 25B, ion implantation forms source region 2560 and non-polar region 2562. 26A to 26C are process steps after Fig. 24 and before Fig. 27, which use polysilicon to form a source of lift for a nonvolatile § memory element in an N〇R array District and Wuji District. In the 23rd 1336941

〜 三達編號:TW3137PA v 26A圖中,沈積多晶矽2650。在第26B圖中,回蝕此多晶 矽以留下多晶矽2652。在第26C圖中,離子植入法形成源 極區2660與汲極區2662。 第27A至27D圖係在第25或26圖以前之結束製程 ‘ 步驟’用以形成一 NOR非揮發性記憶體單元陣列,每個 . N0R非揮發性記憶體單元都具有舉升之源極區與汲極 區。在第27A圖中,沈積例如HDP氧化物之介電材料, 而覆蓋包含間隙壁側壁與氧化物2430之結構。在第27B φ 圖中’例如藉由CMP、回浸(dip-back)或回姓來移除覆蓋 氧化物2430之過剩的氧化物,而殘留下氧化物2772圍繞 間隙壁側壁。在第27C圖中,移除氧化物2430。在第27D 圖中,沈積額外閘極材料以形成閘極區2722。 第28A至28D圖係為在第29或30圖以前之開始製 程步驟,用以形成一 NAND非揮發性記憶體單元陣列,每 個NAND非揮發性記憶體單元具有舉升之源極區與汲極 區。在第28A圖中,例如ΟΝΟ層之介電材料與電荷儲存 # 結構281〇係沈積於基板2800上。在第28Β圖中,沈積例 如多晶矽之閘極材料’形成光刻結構,而殘留下多晶矽 2820與ΟΝΟ 2812之堆疊。於第28C圖中,形成一間隙壁 2840。於第28D圖,蝕刻此間隙壁,而殘留下間隙壁側壁 2842。 第29Α至29Β圖係為在第28圖以後之结束製裎步 驟,其使用磊晶矽以形成一 NAND非揮發性記憶體單元陣 列,每個NAND非揮發性記憶體單元都具有舉升之源極區 24 丄336941~ Sanda number: TW3137PA v 26A, deposited polycrystalline germanium 2650. In Figure 26B, the polysilicon is etched back to leave polysilicon 2652. In Figure 26C, ion implantation forms source region 2660 and drain region 2662. The 27A to 27D diagram ends the process 'step' before the 25th or 26th figure to form a NOR non-volatile memory cell array, and each of the N0R non-volatile memory cells has a source region for lifting. With the bungee area. In Fig. 27A, a dielectric material such as HDP oxide is deposited to cover the structure including the spacer sidewalls and oxide 2430. In the 27B φ diagram, the excess oxide covering the oxide 2430 is removed, for example, by CMP, dip-back or back-to-back, while the remaining oxide 2772 surrounds the sidewall of the spacer. In Figure 27C, oxide 2430 is removed. In Figure 27D, additional gate material is deposited to form gate region 2722. 28A to 28D are process steps starting before the 29th or 30th drawing to form a NAND non-volatile memory cell array, each NAND non-volatile memory cell having a source region and a lift Polar zone. In Fig. 28A, a dielectric material such as a germanium layer and a charge storage structure 281 are deposited on the substrate 2800. In Fig. 28, a gate material such as polysilicon is deposited to form a photolithographic structure, and a stack of polycrystalline germanium 2820 and germanium 2812 remains. In Fig. 28C, a spacer 2840 is formed. In Fig. 28D, the spacer is etched while the spacer sidewall 2842 remains. The 29th to 29th drawings are the steps of the finishing process after the 28th drawing, which uses the epitaxial germanium to form a NAND non-volatile memory cell array, and each NAND non-volatile memory cell has a source of lifting. Polar zone 24 丄336941

三達編號:TW3137PA 與汲極區。在第29A圖中,沈積磊晶矽2950。在第29B 圖中’離子植入法形成源極區2960與汲極區2962。Sanda number: TW3137PA and bungee area. In Figure 29A, epitaxial germanium 2950 is deposited. In the FIG. 29B diagram, the ion implantation method forms the source region 2960 and the drain region 2962.

第30A至30C圖係為在第28圖以後之結束製程步 驟,其使用多晶矽以形成一 NAND非揮發性記憶體單元陣 列,每個NAND非揮發性記憶體單元都具有舉升之源極區 與汲極區。第30A至30C圖係為在第24圖以後且在第27 圖以前之結束製程步驟,其使用多晶矽以形成在一 n〇r 陣列中之一非揮發性記憶體單元之舉升之源極區與汲極 區。在第30A圖中,沈積多晶矽3〇5〇。在第3〇B圖中, 回蝕多晶矽以留下多晶矽3052。在第30C圖中,離子植入 法形成源極區3060與汲極區3062。 _第31圖係為具有如揭露於此之變化通道區介面之例 示的非揮發性記憶體積體電路之方塊圖。 積體電路315G包含絲半導縣板上轉揮發性記 =體=之-記憶體陣列3lGGe陣列3⑽之每個記憶體 一變化通道區介面,例如凹入通道區,或舉升之 :碼器咖係連接至複數條字元線秦其 列3刚之舰置。行解碼器31 : 線3HM,其沿著記憶體陣列遍 接^數條位凡 上之位址係提供至行解如⑽與列二 接至行解㈣伽Υ係_#龍流排3107而連 接仃解碼盗3103。資料係經由資料輸入^⑴而從 25 133694130A to 30C are process steps ending after FIG. 28, which use polysilicon to form a NAND non-volatile memory cell array, each NAND non-volatile memory cell having a source region of lift Bungee area. 30A to 30C are process steps after FIG. 24 and before the 27th drawing, which use polysilicon to form a lift source region of one of the non-volatile memory cells in an n〇r array. With the bungee area. In Fig. 30A, polycrystalline germanium 3〇5〇 is deposited. In the third panel, the polysilicon is etched back to leave the polysilicon 3052. In Fig. 30C, the ion implantation method forms source region 3060 and drain region 3062. Figure 31 is a block diagram of a non-volatile memory volume circuit having an exemplary channel region as disclosed herein. The integrated circuit 315G includes a memory channel, a memory channel, a memory channel, a memory channel, a memory channel, a memory channel, a memory channel, a memory channel, a memory channel, a memory channel, a channel region, such as a recessed channel region, or a lifting device: The coffee department is connected to a plurality of character lines. Line decoder 31: line 3HM, which is provided along the memory array by a number of bits, and the address is provided to the line solution as (10) and column 2 to line solution (4) gamma system _# dragon row 3107 Connect 仃 Decrypt 3103. The data is entered via data entry ^(1) from 25 1336941

^ 二達編號:TW3137PA 積體電路3150上之輸人/輸出蟑,或從在積 之内部或外部之其他資料源提供至方塊 入社娃3106中之資料輸 、目。構。-貝料係經由資料輸出'線3115而從方塊侧上之 2放大器提供至積體電路315〇上之輪人/輪出埠,或提 偏^在積體電路315G之内部或外部之其他資料目標。— =配置狀態機器遍控制偏壓配置供應電壓3⑽(例如 '于、確認與程式化確認電壓)之施加,以及用以程式化、抹 除及讀取記憶體單元之配置。^ Erda number: TW3137PA The input/output port on the integrated circuit 3150, or from other sources inside or outside the product, to the data input and output in the box 3106. Structure. - The material is supplied from the 2 amplifiers on the block side to the wheel/wheel exit on the integrated circuit 315 via the data output 'line 3115, or other information inside or outside the integrated circuit 315G. aims. — = Configuration State Machine Controls the configuration of the bias supply supply voltage 3(10) (eg 'Yes, acknowledgment and stylized acknowledgment voltage'), and the configuration used to program, erase and read the memory cells.

第32圖係為在源極區與汲極區之間具有一凹入通曾 之—非揮發性記憶體單元之示意圖’藉以使下介電結 有三層薄ΟΝΟ結構。此結構類似第丨圖之非揮發=記憶 體單元,但是此介電結構1 〇8(在電荷儲存結構1 與通道 區Π4之間)係被三層薄ΟΝΟ結構3208所置換。〇Ν〇 ^ 構3208具有一小電洞随穿阻絕位障,例如少於戋等於大 約4.5 eV,或最好是少於或等於大約1.9 eV。ΟΝΟ纟士構 3208之接近例示的厚度範圍係如下。關於下氧化物:<2〇 埃,5-20埃,或< 15埃。關於中間的氮化物:< 2〇埃咬 10-20埃。關於上氧化物:<20埃或15-20埃。第32圖之 記憶體單元之某些實施例係以SONONOS或能帶間隙工^^ (BE)-SONOS表示。三層薄ΟΝΟ結構3208之各種不同的 實施例之額外細節係揭露於美國專利申請案號 11/324,540,其於此併入作參考。 〜 第33圖係為具有舉升離半導體基板之源極區與及極 區之非揮發性記憶體單元之示意圖,藉以使下介電結構具 26 1336941Figure 32 is a schematic illustration of a recessed-to-non-volatile memory cell between the source and drain regions, whereby the lower dielectric has three thin layers. This structure is similar to the non-volatile = memory cell of the figure, but the dielectric structure 1 〇 8 (between the charge storage structure 1 and the channel region Π 4) is replaced by a three-layer thin structure 3208. The structure 3208 has a small hole with a barrier to the barrier, for example less than 戋 equals about 4.5 eV, or preferably less than or equal to about 1.9 eV. The approximate thickness range of the gentleman structure 3208 is as follows. Regarding the lower oxide: < 2 Å, 5-20 angstroms, or < 15 angstroms. About the intermediate nitride: < 2 〇 咬 10-20 angstroms. Regarding the upper oxide: < 20 angstroms or 15-20 angstroms. Some embodiments of the memory cell of Figure 32 are represented by SONONOS or band gap ^^ (BE)-SONOS. Additional details of various embodiments of the three-layered thin crucible structure 3208 are disclosed in U.S. Patent Application Serial No. 11/324,540, the disclosure of which is incorporated herein by reference. ~ Figure 33 is a schematic diagram of a non-volatile memory cell having a source region and a polar region lifted off the semiconductor substrate, thereby enabling the lower dielectric structure to have a 26 1336941

^ 三達編號:TW3137PA * 有三層薄ΟΝΟ結構3208。 綜上所述,雖然本發明已以較佳實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 ‘ 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 . 利範圍所界定者為準。^ Sanda number: TW3137PA * There are three layers of thin tantalum structure 3208. In the above, the present invention has been disclosed in the above preferred embodiments, but it is not intended to limit the present invention. Those skilled in the art having the knowledge of the present invention can make various changes and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

27 1336941 --27 1336941 --

^ 三達編號:TW3137PA « 【圖式簡單說明】 第1圖係為一非揮發性記憶體單元之示意圖,非揮發 性記憶體單元在源極區與汲極區之間具有一凹入通道。 第2圖係為一非揮發性記憶體單元之示意圖,非揮發 . 性記憶體單元具有舉升離半導體基板之源極區與汲極區。 ^ 第3A圖係為在具有凹入通道之非揮發性記憶體單元 中,電子從閘極注入至電荷儲存結構之示意圖。 第3B圖係為在具有舉升之源極區與汲極區之非揮發 φ 性記憶體單元中,電子從閘極注入至電荷儲存結構之示意 圖。 第4A圖係為在具有凹入通道之非揮發性記憶體單元 申,電子從基板注入至電荷儲存結構之示意圖。 第4B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體單元中,電子從基板注入至電荷儲存結構之示意 圖。 第5A圖係為在具有凹入通道之非揮發性記憶體單元 • 中,帶間熱電子注入至電荷儲存結構之示意圖。 第5B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體單元中,帶間熱電子注入至電荷儲存結構之示意 圖。 第6A圖係為在具有凹入通道之非揮發性記憶體單元 中,通道熱電子注入至電荷儲存結構之示意圖。 第6B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體單元中,通道熱電子注入至電荷儲存結構之示意 28 1336941^ Sanda Number: TW3137PA « [Simplified Schematic] Figure 1 is a schematic diagram of a non-volatile memory cell with a recessed channel between the source and drain regions. Figure 2 is a schematic diagram of a non-volatile memory cell having a source region and a drain region lifted off the semiconductor substrate. ^ Figure 3A is a schematic diagram of electrons injected from a gate to a charge storage structure in a non-volatile memory cell having a recessed channel. Figure 3B is a schematic illustration of the injection of electrons from the gate into the charge storage structure in a non-volatile memory cell having a lifted source region and a drain region. Figure 4A is a schematic illustration of the injection of electrons from a substrate into a charge storage structure in a non-volatile memory cell having a recessed channel. Figure 4B is a schematic illustration of the injection of electrons from a substrate into a charge storage structure in a non-volatile memory cell having lifted source and drain regions. Figure 5A is a schematic diagram of the injection of hot electrons between the strips into the charge storage structure in a non-volatile memory cell having a recessed channel. Fig. 5B is a schematic view showing the injection of hot electrons between the bands into the charge storage structure in the nonvolatile memory unit having the lifted source region and the drain region. Figure 6A is a schematic illustration of the channel hot electron injection into the charge storage structure in a non-volatile memory cell having a recessed channel. Figure 6B is an illustration of the channel hot electron injection into the charge storage structure in a non-volatile memory cell having lifted source and drain regions. 28 1336941

^ 三達編號·· TW3137PA ^ 圖。 第7A圖係為在具有凹入通道之非揮發性記憶體單元 中,基板熱電子注入至電荷儲存結構之示意圖。 第7B圖係為在具有舉升之源極區與汲極區之非揮發 * 性記憶體單元中,基板熱電子注入至電荷儲存結構之示意 ( 圖。 第8A圖係為在具有凹入通道之非揮發性記憶體單元 中,電洞從閘極注入至電荷儲存結構之示意圖。 • 第8B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體單元中,電洞從閘極注入至電荷儲存結構之示意 圖。 第9A圖係為在具有凹入通道之非揮發性記憶體單元 中,電洞從基板注入至電荷儲存結構之示意圖。 第9B圖係為在具有舉升之源極區與汲極區之非揮發 性記憶體單元中,電洞從基板注入至電荷儲存結構之示意 圖。 • 第10A圖係為在具有凹入通道之非揮發性記憶體單 元中,帶間熱電洞注入至電荷儲存結構之示意圖。 第10B圖係為在具有舉升之源極區與汲極區之非揮 發性記憶體單元中,帶間熱電洞注入至電荷儲存結構之示 意圖。 第11A圖係為在具有凹入通道之非揮發性記憶體單 元中,通道熱電洞注入至電荷儲存結構之示意圖。 第11B圖係為在具有舉升之源極區與汲極區之非揮 29^ Sanda number · TW3137PA ^ Figure. Figure 7A is a schematic diagram of the substrate's hot electron injection into the charge storage structure in a non-volatile memory cell having a recessed channel. Figure 7B is a schematic diagram of the substrate's hot electron injection into the charge storage structure in a non-volatile memory cell having a raised source region and a drain region (Fig. 8A is a recessed channel) In the non-volatile memory cell, a schematic diagram of a hole injected from the gate to the charge storage structure. • Figure 8B shows the non-volatile memory cell in the source and drain regions with lift. A schematic diagram of a hole injected from a gate to a charge storage structure. Figure 9A is a schematic diagram of a hole injected into a charge storage structure from a substrate in a non-volatile memory cell having a recessed channel. Schematic diagram of the injection of holes from the substrate into the charge storage structure in the non-volatile memory cells of the source and drain regions of the lift. • Figure 10A shows the non-volatile memory cells with recessed channels. Schematic diagram of injection of a thermal hole between the strips into the charge storage structure. Fig. 10B is a schematic diagram of the injection of a thermoelectric hole between the strips into the charge storage structure in a non-volatile memory cell having a raised source region and a drain region. . Figure 11A is a schematic diagram of a channel thermowell injected into a charge storage structure in a non-volatile memory cell having a recessed channel. Figure 11B is a non-swing in the source region and the drain region with lift 29

三達編號:TW3137PA 發性記憶體單元中,通道熱 意圖。 ^ /入至電荷儲存結構之示 第12A圖係為在具_ 元中,基板熱電洞注入至電犮:k之非揮發性記憶體單 第12B圖係為在具有=== 冓之示意圖。 發性記憶體單元尹,基 ♦ /原極區與汲極區之非揮 意圖。 兒/5 ’主入至電荷儲存結構之示 第UA圖係為在具有凹 元中,用以讀取館存於電 ^之非揮發性記憶體單 向讀取操作之示意圖。 、’’σ募之右側之資料之一反 第UB圖係為在具有兴 發性記憶體單元令,用二::之源極區與汲極區之非揮 之資料之反向讀取摔作之it儲存於電荷储存結構之右側 师邛之不意圖。 第i4A圖係為在且右,、、 元中’用以储存位於荷 1道之非揮發性記憶體單 取操作之示意圖。 特,、,°構之左側之資料之反向讀 發性記憶體單元〇 1具有舉升之源極區與沒極區之非揮 資料之反向讀取操作=存位於電荷儲存結構之左側之 筮 〈示意圖。 第15Λ圖係為在且 70令’用以讀取儲存:有凹入通道之非揮發性記憶體單 間讀取操作之電荷儲存結構之右側之資料之; 第15B圖係為 發性記憶體單元中具有舉升之源極區與沒極區之非揮 ’用以讀取儲存於電荷储存結構之右侧 1336941Sanda number: TW3137PA In the memory unit, the channel is hot. ^ / / into the charge storage structure shown in Figure 12A is in the _ yuan, the substrate thermoelectric hole injected into the electricity: k non-volatile memory single Figure 12B is a schematic diagram with === 冓. The origin of the memory unit Yin, the base ♦ / the original pole and the bungee area are not intended. The /5 diagram of the primary storage to the charge storage structure is a schematic diagram of the non-volatile memory unidirectional read operation in the recessed element for reading the memory. One of the data on the right side of the ''sigma's UB map is the reverse reading of the data in the source and the bungee area of the source of the sensible memory unit. It is stored in the right side of the charge storage structure. The i4A figure is a schematic diagram of the non-volatile memory single-fetch operation for storing the one-way in the right side. The reverse-reading memory unit 〇1 of the data on the left side of the structure has the reverse reading operation of the non-swept data of the source region and the non-polar region of the lift = stored on the left side of the charge storage structure After that, the schematic diagram. Figure 15 is the data on the right side of the charge storage structure for reading and storing: a non-volatile memory single-single read operation with a recessed channel; Figure 15B is a memory cell The source and lift regions of the lift are used to read and store on the right side of the charge storage structure.

** 三達編號:TW3137PA < 之資料之一帶間讀取操作之示意圖。 第16A圖係為在具有凹入通道之非揮發性記憶體單 元中,用以儲存位於電荷儲存結構之左側之資料之帶間讀 取操作之示意圖。 . 第16B圖係為在具有舉升之源極區與汲極區之非揮 > 發性記憶體單元中,用以儲存位於電荷儲存結構之左側之 資料之帶間讀取操作之示意圖。 第Π圖係具有一凹入通道之一非揮發性記憶體單元 φ 陣列之製造流程圖,其顯示第19至23圖之製程步驟之各 種可能的組合。 第18A圖係具有舉升之源極區與汲極區之一 NOR非 揮發性記憶體單元陣列之製造流程圖,其顯示第24至27 圖之製程步驟之各種可能的組合。 第18B圖係具有舉升之源極區與汲極區之一:NAND 非揮發性記憶體單元陣列之製造流程圖,其顯示第28至 30圖之製程步驟之各種可能的組合。 • 第19A至19C圖係為在第22或23圖之前,在具有 凹入通道之非揮發性記憶體單元中,用以形成一溝槽之製 程步驟。 第20A至20E圖係為在第22或23圖以前,在非揮 發性記憶體單元中形成一溝槽之前,用以縮小一閘極長度 之製程步驟。 第21A至21E圖係為在第22或23圖以前,在非揮 發性記憶體單元中形成一溝槽之前,用以擴大一閘極長度 31 1336941** Three-way number: TW3137PA < One of the data is a schematic diagram of the inter-band read operation. Figure 16A is a schematic illustration of an inter-band read operation for storing data located to the left of the charge storage structure in a non-volatile memory cell having a recessed channel. Fig. 16B is a schematic diagram of an inter-band reading operation for storing data located on the left side of the charge storage structure in a non-swing memory cell having a lifted source region and a drain region. The second diagram is a manufacturing flow diagram of a non-volatile memory cell φ array having a recessed channel showing various possible combinations of the process steps of Figures 19-23. Figure 18A is a manufacturing flow diagram of a NOR non-volatile memory cell array having one of the source and drain regions of the lift, showing various possible combinations of the process steps of Figures 24-27. Figure 18B is a manufacturing flow diagram of one of the source and drain regions of the lift: a NAND non-volatile memory cell array showing various possible combinations of process steps of Figures 28-30. • Figures 19A through 19C are process steps for forming a trench in a non-volatile memory cell having a recessed channel prior to the 22nd or 23rd. 20A to 20E are process steps for reducing the length of a gate before forming a trench in the non-volatile memory cell before the 22nd or 23rd. 21A to 21E are diagrams for expanding a gate length before forming a trench in a non-volatile memory cell before the 22nd or 23rd graph 31 1336941

与 三達編號:TW3137PA ^ 之製程步驟。 第22A至22K圖係為在第19、20或21圖以後之結 束製程步驟’用以形成一 N〇R非揮發性記憶體單元陣列, 每個NOR非揮發性記憶體單元位於一溝槽_,以使每個 . 非揮發性記憶體單元具有一凹入通道。 ‘ 第23A至23E圖係為在帛19、20或21圖以後之結 束製程步驟’用以形成一 NAND非揮發性記憶體單元陣 列’每個NAND非揮發性記憶體單元位於一溝槽令,以使 • 每個非揮發性記憶體單元具有一凹入通道。 第24A至24D圖係為在g 25或26目以前之開始製 程步驟,用以形成在一 N0R陣列中之一非揮發性記憶體 平元之舉升之源極區與沒極區。 第25A至25B圖係為在第24圖以後且在第27圖以 前之結束製程步驟,其使㈣晶相形成在__ n〇r陣列 中之非揮發性憶體單元之舉升之源極區與沒極區。 帛26A至26C圖係在第24圖以後且在第27圖以前 ♦ 之結束製程步驟,其使用多晶石夕以形成在一 n〇r陣列中 之-非揮發性記憶鮮元之舉升之源_與汲極區。 第27A至27D圖係在第25或26圖以前之姓束製程 步驟’用以形成- NOR非揮發性記憶體單元陣列,每個 NOR非揮發性記憶體單元都具有舉升之源極區與沒極區。 第28A至28D圖係為在第29或3〇圖以前之開始製 程步輝,用以形成- NAND非揮發性記憶體單元陣列,每 個NAND非揮發性記憶體單元具有舉升之源極區盘沒極 32 1336941Process steps with Sanda number: TW3137PA ^. 22A to 22K are the process steps after the 19th, 20th or 21th step to form an N〇R non-volatile memory cell array, each NOR non-volatile memory cell is located in a trench _ So that each non-volatile memory cell has a recessed channel. '23A to 23E are the process steps after the 帛19, 20 or 21, to form a NAND non-volatile memory cell array. Each NAND non-volatile memory cell is located in a trench. So that each non-volatile memory unit has a recessed channel. Figures 24A through 24D are process steps beginning before g 25 or 26 mesh to form a source and a non-polar region of a non-volatile memory cell in a NOR array. 25A to 25B are process steps after the 24th and before the 27th, which form the (four) crystal phase in the source of the non-volatile memory cell in the __ n〇r array District and Wuji District.帛26A to 26C are the process steps after the 24th and before the 27th, which use polycrystalline stone to form a non-volatile memory fresh element in an n〇r array. Source _ and bungee area. Figures 27A through 27D are the steps of the process of forming the front-end beam of the 25th or 26th figure to form - NOR non-volatile memory cell arrays, each NOR non-volatile memory cell having a source region for lifting No pole area. The 28A to 28D diagram is a process stepping before the 29th or 3rd drawing to form a NAND non-volatile memory cell array, each NAND non-volatile memory cell having a source region for lifting Plate no pole 32 1336941

1 三達編號:TW3137PA < 區。 第29A至29B圖係為在第28圖以後之結束製程步 驟,其使用磊晶矽以形成一 NAND非揮發性記憶體單元陣 列,每個NAND非揮發性記憶體單元都具有舉升之源極區 . 與沒極區。 第30A至30C圖係為在第28圖以後之結束製程步 驟,其使用多晶矽以形成一 NAND非揮發性記憶體單元陣 列,每個NAND非揮發性記憶體單元都具有舉升之源極區 鲁 與 >及極區。 第31圖係為具有如揭露於此之變化通道區介面之例 示的非揮發性記憶體積體電路之方塊圖。 第32圖係為在源極區與汲極區之間具有一凹入通道 之一非揮發性記憶體單元之示意圖,藉以使下介電結構具 有三層薄ΟΝΟ結構。 第33圖係為具有舉升離半導體基板之源極區與汲極 區之非揮發性記憶體單元之示意圖,藉以使下介電結構具 • 有三層薄0Ν0結構。 33 1336941 …1 Sanda number: TW3137PA < District. 29A to 29B are process steps after the 28th drawing, which use epitaxial germanium to form a NAND non-volatile memory cell array, each NAND non-volatile memory cell having a source of lift District. With the Wuji District. 30A to 30C are process steps after the 28th drawing, which use polysilicon to form a NAND non-volatile memory cell array, and each NAND non-volatile memory cell has a source region for lifting. With > and polar regions. Figure 31 is a block diagram of a non-volatile memory volume circuit having an exemplary interface of the varying channel region as disclosed herein. Figure 32 is a schematic illustration of a non-volatile memory cell having a recessed channel between the source region and the drain region, whereby the lower dielectric structure has a three-layered germanium structure. Figure 33 is a schematic diagram of a non-volatile memory cell having a source region and a drain region lifted off the semiconductor substrate, whereby the lower dielectric structure has three thin 0 Ν 0 structures. 33 1336941 ...

11 三達編號:TW3137PA ^ 【主要元件符號;說明】 102、302、402、502、602、702、802、902、1002、 1102、1202、1302、1402、1502、1602、2264、2722 :閘 極/閘極區 . 104 :介電結構 . 106:電荷儲存結構 108 :電荷儲存結構/介電結構 110、210、304、404、804、904、1204、2280、2380、 • 2560、2660、2960、3060 :源極/源極區 112、212、306、406、806、906、1206、2282、2382、 2562、2662、2962、3062 :汲極區/汲極 114、214 :通道區/通道 116 :源極與汲極區 118 :介面 120 :接面深度 122 :本體/本體區 • 208:介電結構 218 :介面 220 :接面深度 308、408、808、908、1208 :本體區 504、1104 : p+型源極區 506、1106 : p+型汲極區 508、708、1108 : N 型本體區 604、704、1004、1304、1404、1504、1604 : n+型源 34 133694111 Sanda number: TW3137PA ^ [main component symbol; description] 102, 302, 402, 502, 602, 702, 802, 902, 1002, 1102, 1202, 1302, 1402, 1502, 1602, 2264, 2722: gate / Gate region. 104: Dielectric structure. 106: Charge storage structure 108: Charge storage structure / dielectric structure 110, 210, 304, 404, 804, 904, 1204, 2280, 2380, 2560, 2660, 2960, 3060: source/source regions 112, 212, 306, 406, 806, 906, 1206, 2282, 2382, 2562, 2662, 2962, 3062: drain region/drain 114, 214: channel region/channel 116: Source and drain regions 118: interface 120: junction depth 122: body/body regions • 208: dielectric structure 218: interface 220: junction depths 308, 408, 808, 908, 1208: body regions 504, 1104: p+ type source regions 506, 1106: p+ type drain regions 508, 708, 1108: N type body regions 604, 704, 1004, 1304, 1404, 1504, 1604: n+ type source 34 1336941

H 三達編號:TW3137PA < 極區 606、706、1006、1306、1406、1506、1606 : η+型汲 極區 608、1008、1308、1408、1508、1608 : Ρ 型本體區 . 710、1210 :井區 1900、2400、2800 :基板 1910、1912、2112、2290、2772 :氧化物 1922 :光阻 φ 1930、1932、2232 ··溝槽 2040、2042、2440、2840 :間隙壁 2250 :介電材料與電荷儲存結構 2260、2262 :閘極材料 2270、2272 :介電材料 2410 :介電材料與電荷儲存結構 2412 : ΟΝΟ 2420、2650、2652、2820、3050、3052 :多晶矽 • 2430 : SiN/氧化物 2442、2842 .間隙壁侧壁 2550、2950 :磊晶矽 2810 :電荷儲存結構 2812 : ΟΝΟ 3100 :記憶體陣列 3101 :列解碼器 3102 :字元線 35 1336941H Sanda number: TW3137PA < Polar regions 606, 706, 1006, 1306, 1406, 1506, 1606: η+ type drain regions 608, 1008, 1308, 1408, 1508, 1608: Ρ type body region. 710, 1210 : Well area 1900, 2400, 2800: substrate 1910, 1912, 2112, 2290, 2772: oxide 1922: photoresist φ 1930, 1932, 2232 · · trench 2040, 2042, 2440, 2840: spacer 2250: dielectric Materials and Charge Storing Structures 2260, 2262: Gate Materials 2270, 2272: Dielectric Material 2410: Dielectric Material and Charge Storing Structure 2412: ΟΝΟ 2420, 2650, 2652, 2820, 3050, 3052: Polycrystalline 24 2430: SiN/Oxidation 2442, 2842. Gap sidewalls 2550, 2950: epitaxial germanium 2810: charge storage structure 2812: ΟΝΟ 3100: memory array 3101: column decoder 3102: word line 35 1336941

三達編號:TW3137PA 3103 :行解碼器 3104 :位元線 3105 :匯流排 3106 :感測放大器與資料輸入结構 3107 :資料匯流排 3108 :偏壓配置供應電壓 3109 :偏壓配置狀態機 3111 :資料輸入線 3115 :資料輸出線 3150 :積體電路 3208 : ΟΝΟ 結構 36Sanda number: TW3137PA 3103: row decoder 3104: bit line 3105: bus bar 3106: sense amplifier and data input structure 3107: data bus 3108: bias configuration supply voltage 3109: bias configuration state machine 3111: data Input line 3115: data output line 3150: integrated circuit 3208: ΟΝΟ structure 36

Claims (1)

1336941 、 三達編號:TW3137PA ^ 十、申請專利範圍: 1. 一種非揮發性記憶體單元積體電路,包含: 一非揮發性記憶體陣列,其包含複數行,各該行包含 排列成一串列之複數個非揮發性記憶體單元,以使在該串 . 列中之該些非揮發性記憶體單元之一子集合經由在該串 t 列中之其他非揮發性記憶體單元而電連接至一位元線,各 該非揮發性記憶體單元包含: 一電荷儲存結構,用來儲存電荷以控制由非揮發性記 • 憶體單元積體電路儲存之一邏輯狀態; 一源極與一汲極區,係以一通道區分離; 一個或多個介電結構,其至少部分位於該電荷儲存結 構與該通道區之間,且至少部分位於該電荷儲存結構與一 閘極電壓源之間,其中: 其中,對於各該非揮發性記1S體單元陣列之各該非揮 發性記憶體單元,一介面分離該一個或多個介電結構之一 部分與該通道區,且該介面之一第一端結束於該源極區之 • 中間部分,而該介面之一第二端結束於該汲極區之中間部 分。 2. 如申請專利範圍第1項所述之電路,其中,由於 該通道區係凹入該非揮發性記憶體單元積體電路之一基 板,該介面之該第一端結束於該源極區之中間部分,且該 介面之該第二端結束於該汲極區之中間部分。 3. 如申請專利範圍第1項所述之電路,更包含: 一閘極長度調整介電材料層至少部分位於一基板與 37 1336941 ^ 三達編號:TW3137PA « 一個或多個介電結構之間。 4. 如申請專利範圍第1項所述之電路,其中該電荷 儲存結構儲存一位元。 5. 如申請專利範圍第1項所述之電路,其中該電荷 . 儲存結構儲存多重位元。 6. 如申請專利範圍第1項所述之電路,其中該電荷 儲存結構係一電荷捕捉結構。 7. 如申請專利範圍第1項所述之電路,其中該電荷 φ 儲存結構係一奈米晶體結構。 8. 如申請專利範圍第1項所述之電路,其中至少部 分位於該電荷儲存結構與該通道區之間之該介電結構包 含: 一下氧化矽層; 一中間氮化矽層,其位於該下氧化矽層上;以及 一上氧化矽層,其位於該中間氮化矽層上。 9. 如申請專利範圍第8項所述之電路,其中該下氧 φ 化石夕層具有少於大約20埃(Angstroms)之厚度。 10. 如申請專利範圍第8項所述之電路,其中該中 間氮化矽層具有少於大約20埃之厚度。 11. 如申請專利範圍第8項所述之電路,其中該上 氧化矽層具有少於大約20埃之厚度。 12. 如申請專利範圍第8項所述之電路,其中該下 氧化矽層具有大約5至20埃之厚度。 38 1336941 三達編號:TW3137PA - 13.如申請專利範圍第8項所述之電路,其中該中 間氮化矽層具有大約10至20埃之厚度。 14. 如申請專利範圍第8項所述之電路,其中該上 氧化矽層具有大約15至20埃之厚度。 . 15. 如申請專利範圍第8項所述之電路,其中該下 氧化矽層具有少於大約15埃之厚度。 16. 一種非揮發性記憶體單元陣列積體電路之製造 方法,包含以下步驟: φ 形成複數行之非揮發性記憶體單元於該非揮發性記 憶體陣列中,各該行包含排列成一串列之複數個非揮發性 記憶體單元,該步驟包含以下子步驟: 對該非揮發性記憶體陣列之各該非揮發性記憶 體單元形成一電荷儲存結構與一個或多個介電結構,其中 該電荷儲存結構儲存電荷以控制由該非揮發性記憶體單 元陣列積體電路儲存之一邏輯狀態,且所述一個或多個介 電結構係:1)至少部分位於該電荷儲存結構與一通道區之 ❿ 間;且2)至少部分位於該電荷儲存結構與一閘極電壓之來 源之間;及 形成一導電層以提供該閘極電壓;以及 形成複數條位元線以提供一汲極電壓與一源極電壓 至該非揮發性記憶體陣列中之各該行之非揮發性記憶體 單元,以使各該行之該些非揮發性記憶體單元之一子集合 經由在該串列中之其他非揮發性記憶體單元而電連接至 該些位元線之一; 39 1336941 今 三達編號:TW3137PA ’ 其中關於該陣列之各該非揮發性記憶體單元,一介面 分離該一個或多個介電結構之一部分與該通道區,該介面 之一第一端結束於一第一位元線之中間部分,且該介面之 一第二端結束於一第二位元線之中間部分。 * 17.如申請專利範圍第16項所述之方法,更包含以 . 下步驟: 形成一溝槽於一基板中,其中該電荷儲存結構與該一 個或多個介電結構之該形成步驟係發生於該溝槽中。 • 18.如申請專利範圍第16項所述之方法,更包含以 下步驟: 藉由形成一填料來調整一閘極之長度,該填料至少部 分位於該一個或多個介電結構與一基板之間。 19. 如申請專利範圍第16項所述之方法,更包含以 下步驟: 在該電荷儲存結構與該一個或多個介電結構之該形 成步驟之前,藉由形成一介電材料層並移除部分該介電材 料層來縮小一閘極之長度。 20. 如申請專利範圍第16項所述之方法,其中該電 荷儲存結構儲存一位元。 21. 如申請專利範圍第16項所述之方法,其中該電 荷儲存結構儲存多重位元。 22. 如申請專利範圍第16項所述之方法,其中該電 荷儲存結構係一電荷捕捉結構。 1336941 •s 三達編號:TW3137PA ’ 23.如申請專利範圍第16項所述之方法,其中該電 荷儲存結構係一奈米晶體結構。 24.如申請專利範圍第16項所述之方法,其中至少 部分位於該電荷儲存結構與該通道區之間之該介電結構 * 之該形成步驟包含·· . 形成一下氧化矽層; 形成一中間氮化矽層於該下氧化矽層上;以及 形成一上氧化矽層於該中間氮化矽層上。 • 25.如申請專利範圍第24項所述之方法,其中該下 氧化矽層具有少於大約20埃之厚度。 26. 如申請專利範圍第24項所述之方法,其中該中 間氮化矽層具有少於大約20埃之厚度。 27. 如申請專利範圍第24項所述之方法,其中該上 氧化矽層具有少於大約20埃之厚度。 28. 如申請專利範圍第24項所述之方法,其中該下 氧化矽層具有大約5至20埃之厚度。 ® 29.如申請專利範圍第24項所述之方法,其中該中 間氮化矽層具有大約10至20埃之厚度。 30. 如申請專利範圍第24項所述之方法,其中該上 氧化矽層具有大約15至20埃之厚度。 31. 如申請專利範圍第24項所述之方法,其中該下 氧化矽層具有少於大約15埃之厚度。 32. —種非揮發性記憶體單元陣列積體電路之製造 方法,包含以下步驟·· 41 1336941 *> 三達編號:TW3137PA ^ 對該非揮發性記憶體單元陣列中之各該非揮發性記 憶體單元形成一電荷儲存結構與一個或多個介電結構,其 中該電荷儲存結構儲存電荷以控制由該非揮發性記憶體 單元陣列積體電路儲存之一邏輯狀態,且該一個或多個介 . 電結構係1)至少部分位於該電荷儲存结構與一通道區之 間:以及2)至少部分位於該電荷儲存結構與一閘極電壓源 之間; 形成用以提供該閘極電壓之一導電層之一第一部分; φ 在形成提供該閘極電壓之該導電層之該第一部分之 後,形成複數條位元線,該複數個位元線用以提供一汲極 電壓與一源極電壓至該非揮發性記憶體單元陣列中之各 該非揮發性記憶體單元,在該非揮發性記憶體單元陣列中 之各該非揮發性記憶體單元之該通道區在提供該汲極電 壓之該些位元線之一第一位元線與提供該源極電壓之該 些位元線之一第二位元線之間延伸; 在形成該些位元線之後,形成用以提供該閘極電壓之 # 該導電層之一第二部分,該第一部分與該第二部分實體上 相連接, 其中,對該非揮發性記憶體單元陣列之各該非揮發性 記憶體單元,一介面分離該一個或多個介電結構之一部分 與該通道區,該介面之一第一端結束於該第一位元線之中 間部分,而該該介面之一第二端結束於該第二位元線之中 間部分。 42 1336941 三達編號:TW3I37PA ‘ 33. 如申請專利範圍第32項所述之方法,更包含以 下步驟: 形成一溝槽於一基板中,其中該電荷儲存結構與該一 個或多個介電結構之該形成步驟係發生於該溝槽中。 . 34. 如申請專利範圍第32項所述之方法,更包含以 下步驟: 藉由形成一填料來調整一閘極之長度,該填料至少部 分位於該一個或多個介電結構與一基板之間。 φ 35. 如申請專利範圍第32項所述之方法,更包含以 下步驟: 在該電荷儲存結構與該一個或多個介電結構之該形 成步驟之前,藉由形成一介電材料層並移除部分該介電材 料層來縮小一閘極之長度。 36. 如申請專利範圍第32項所述之方法,更包含: 形成一介電材料層,其分離該些位元線與該導電層之 該第二部分。 • 37. 如申請專利範圍第32項所述之方法,更包含: 形成該些位元線之該步驟包含添加摻質。 38. 如申請專利範圍第32項所述之方法,其中該電 荷儲存結構儲存一位元。 39. 如申請專利範圍第32項所述之方法,其中該電 荷儲存結構儲存多重位元。 40. 如申請專利範圍第32項所述之方法,其中該電 荷儲存結構係一電荷捕捉結構。 43 1336941 - ** 三達編號:TW3137PA - 41.如申請專利範圍第32項所述之方法,其中該電 荷儲存結構係一奈米晶體結構。 42.如申請專利範圍第32項所述之方法,其中至少 部分位於該電荷捕捉結構與該通道區之間之該介電结構 . 之該形成步驟包含: 形成一下氧化矽層; 形成一中間氮化矽層於該下氧化矽層上;以及 形成一上氧化矽層於該中間氮化矽層上。 • 43.如申請專利範圍第42項所述之方法,其中該下 氧化矽層具有少於大約20埃之一厚度。 44. 如申請專利範圍第42項所述之方法,其中該中 間氮化矽層具有少於大約20埃之一厚度。 45. 如申請專利範圍第42項所述之方法,其中該上 氧化矽層具有少於大約20埃之一厚度。 46. 如申請專利範圍第42項所述之方法,其中該下 氧化矽層具有大约5至20埃之一厚度。 • 47.如申請專利範圍第42項所述之方法,其中該中 間氮化矽層具有大約10至20埃之一厚度。 48. 如申請專利範圍第42項所述之方法,其中該上 氡化矽層具有大約15至20埃之一厚度。 49. 如申請專利範圍第42項所述之方法,其中該下 氧化矽層具有少於大約15埃之一厚度。 441336941, Sanda number: TW3137PA ^ X. Patent application scope: 1. A non-volatile memory cell integrated circuit comprising: a non-volatile memory array comprising a plurality of rows, each row comprising arranged in a series a plurality of non-volatile memory cells such that a subset of the non-volatile memory cells in the string is electrically coupled to other non-volatile memory cells in the string of t columns a bit line, each of the non-volatile memory cells comprising: a charge storage structure for storing charge to control a logic state stored by the non-volatile memory cell integrated circuit; a source and a drain a region separated by a channel region; one or more dielectric structures at least partially between the charge storage structure and the channel region, and at least partially between the charge storage structure and a gate voltage source, wherein Wherein, for each of the non-volatile memory cells of each of the non-volatile 1S body cell arrays, an interface separates one of the one or more dielectric structures from the pass Region, and the ends at one end of the first interface • the source region of the intermediate portion and the second end of the one end of the interface to the intermediate portion of the drain region division. 2. The circuit of claim 1, wherein the first end of the interface ends in the source region because the channel region is recessed into a substrate of the non-volatile memory cell integrated circuit. a middle portion, and the second end of the interface ends in a middle portion of the drain region. 3. The circuit of claim 1, further comprising: a gate length adjusting dielectric material layer at least partially located on a substrate and 37 1336941 ^ Sanda number: TW3137PA « one or more dielectric structures . 4. The circuit of claim 1, wherein the charge storage structure stores one bit. 5. The circuit of claim 1, wherein the charge storage structure stores multiple bits. 6. The circuit of claim 1, wherein the charge storage structure is a charge trapping structure. 7. The circuit of claim 1, wherein the charge φ storage structure is a nano crystal structure. 8. The circuit of claim 1, wherein the dielectric structure at least partially between the charge storage structure and the channel region comprises: a lower yttrium oxide layer; an intermediate tantalum nitride layer located at the On the lower hafnium oxide layer; and an upper hafnium oxide layer on the intermediate tantalum nitride layer. 9. The circuit of claim 8 wherein the lower oxygen philipid layer has a thickness of less than about 20 angstroms. 10. The circuit of claim 8 wherein the intermediate tantalum nitride layer has a thickness of less than about 20 angstroms. 11. The circuit of claim 8 wherein the upper ruthenium oxide layer has a thickness of less than about 20 angstroms. 12. The circuit of claim 8 wherein the lower ruthenium oxide layer has a thickness of between about 5 and 20 angstroms. 38. The circuit of claim 8, wherein the intermediate tantalum nitride layer has a thickness of about 10 to 20 angstroms. 14. The circuit of claim 8 wherein the upper ruthenium oxide layer has a thickness of between about 15 and 20 angstroms. 15. The circuit of claim 8 wherein the lower ruthenium oxide layer has a thickness of less than about 15 angstroms. 16. A method of fabricating a non-volatile memory cell array integrated circuit, comprising the steps of: φ forming a plurality of rows of non-volatile memory cells in the non-volatile memory array, each row comprising arranged in a series a plurality of non-volatile memory cells, the step comprising the substeps of: forming a charge storage structure and one or more dielectric structures for each of the non-volatile memory cells of the non-volatile memory array, wherein the charge storage structure Storing a charge to control a logic state stored by the non-volatile memory cell array integrated circuit, and the one or more dielectric structures are: 1) at least partially located between the charge storage structure and a channel region; And 2) at least partially between the charge storage structure and a source of a gate voltage; and forming a conductive layer to provide the gate voltage; and forming a plurality of bit lines to provide a drain voltage and a source voltage Non-volatile memory cells of each row in the non-volatile memory array such that the non-volatile memory of each row One subset of the cells is electrically connected to one of the bit lines via other non-volatile memory cells in the string; 39 1336941 Jadada number: TW3137PA 'where the non-volatile memory of the array a body unit, an interface separating a portion of the one or more dielectric structures from the channel region, a first end of the interface ending in a middle portion of a first bit line, and a second end of the interface ends The middle part of a second bit line. * 17. The method of claim 16, further comprising the steps of: forming a trench in a substrate, wherein the step of forming the charge storage structure and the one or more dielectric structures Occurs in the trench. 18. The method of claim 16, further comprising the step of: adjusting a length of a gate by forming a filler, the filler being at least partially located in the one or more dielectric structures and a substrate between. 19. The method of claim 16, further comprising the steps of: forming a layer of dielectric material and removing the charge storage structure and the one or more dielectric structures prior to the forming step A portion of the dielectric material layer is used to reduce the length of a gate. 20. The method of claim 16, wherein the charge storage structure stores one bit. 21. The method of claim 16, wherein the charge storage structure stores multiple bits. 22. The method of claim 16, wherein the charge storage structure is a charge trapping structure. The method of claim 16, wherein the charge storage structure is a nano crystal structure. 24. The method of claim 16, wherein the forming step of the dielectric structure* at least partially between the charge storage structure and the channel region comprises: forming a ruthenium oxide layer; forming a An intermediate tantalum nitride layer is on the lower tantalum oxide layer; and an upper tantalum oxide layer is formed on the intermediate tantalum nitride layer. The method of claim 24, wherein the lower ruthenium oxide layer has a thickness of less than about 20 angstroms. 26. The method of claim 24, wherein the intermediate tantalum nitride layer has a thickness of less than about 20 angstroms. 27. The method of claim 24, wherein the upper ruthenium oxide layer has a thickness of less than about 20 angstroms. 28. The method of claim 24, wherein the lower ruthenium oxide layer has a thickness of between about 5 and 20 angstroms. The method of claim 24, wherein the intermediate tantalum nitride layer has a thickness of about 10 to 20 angstroms. The method of claim 24, wherein the upper ruthenium oxide layer has a thickness of about 15 to 20 angstroms. The method of claim 24, wherein the lower ruthenium oxide layer has a thickness of less than about 15 angstroms. 32. A method of manufacturing a non-volatile memory cell array integrated circuit, comprising the following steps: 41 1336941 *> Sanda number: TW3137PA ^ Each of the non-volatile memory in the non-volatile memory cell array The cell forms a charge storage structure and one or more dielectric structures, wherein the charge storage structure stores charge to control a logic state stored by the non-volatile memory cell array integrated circuit, and the one or more dielectrics The structure 1) is at least partially located between the charge storage structure and a channel region: and 2) at least partially between the charge storage structure and a gate voltage source; forming a conductive layer for providing the gate voltage a first portion; φ forming a plurality of bit lines after forming the first portion of the conductive layer providing the gate voltage, the plurality of bit lines for providing a drain voltage and a source voltage to the non-volatile Each of the non-volatile memory cells in the array of memory cells, each of the non-volatile memory cells in the array of non-volatile memory cells The channel region extends between a first bit line of one of the bit lines providing the drain voltage and a second bit line of the bit lines providing the source voltage; After the bit line, a second portion of the conductive layer is formed to provide the gate voltage, and the first portion is physically connected to the second portion, wherein each of the non-volatile memory cell arrays is non-volatile a volatile memory cell, an interface separating a portion of the one or more dielectric structures from the channel region, a first end of the interface ending in a middle portion of the first bit line, and one of the interfaces The two ends end in the middle portion of the second bit line. 42. The method of claim 32, further comprising the steps of: forming a trench in a substrate, wherein the charge storage structure and the one or more dielectric structures This forming step occurs in the trench. 34. The method of claim 32, further comprising the steps of: adjusting a length of a gate by forming a filler, the filler being at least partially located in the one or more dielectric structures and a substrate between. Φ 35. The method of claim 32, further comprising the steps of: forming a layer of dielectric material and moving before the step of forming the charge storage structure and the one or more dielectric structures In addition to a portion of the dielectric material layer to reduce the length of a gate. 36. The method of claim 32, further comprising: forming a layer of dielectric material separating the bit lines from the second portion of the conductive layer. 37. The method of claim 32, further comprising: the step of forming the bit lines comprises adding dopants. 38. The method of claim 32, wherein the charge storage structure stores one bit. 39. The method of claim 32, wherein the charge storage structure stores a plurality of bits. 40. The method of claim 32, wherein the charge storage structure is a charge trapping structure. 43. The method of claim 32, wherein the charge storage structure is a nano crystal structure. 42. The method of claim 32, wherein the dielectric structure is at least partially located between the charge trapping structure and the channel region. The forming step comprises: forming a lower cerium oxide layer; forming an intermediate nitrogen A ruthenium layer is formed on the lower ruthenium oxide layer; and an upper ruthenium oxide layer is formed on the intermediate tantalum nitride layer. The method of claim 42, wherein the lower ruthenium oxide layer has a thickness of less than about 20 angstroms. 44. The method of claim 42, wherein the intermediate tantalum nitride layer has a thickness of less than about 20 angstroms. 45. The method of claim 42, wherein the upper ruthenium oxide layer has a thickness of less than about 20 angstroms. The method of claim 42, wherein the lower ruthenium oxide layer has a thickness of about 5 to 20 angstroms. 47. The method of claim 42, wherein the intermediate tantalum nitride layer has a thickness of about 10 to 20 angstroms. 48. The method of claim 42, wherein the upper bismuth telluride layer has a thickness of about 15 to 20 angstroms. 49. The method of claim 42, wherein the lower ruthenium oxide layer has a thickness of less than about 15 angstroms. 44
TW96125141A 2006-07-10 2007-07-10 Nonvolatile memory array having modified channel region interface TWI336941B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80684006P 2006-07-10 2006-07-10

Publications (2)

Publication Number Publication Date
TW200805637A TW200805637A (en) 2008-01-16
TWI336941B true TWI336941B (en) 2011-02-01

Family

ID=38999941

Family Applications (5)

Application Number Title Priority Date Filing Date
TW96125141A TWI336941B (en) 2006-07-10 2007-07-10 Nonvolatile memory array having modified channel region interface
TW96125135A TWI364112B (en) 2006-07-10 2007-07-10 Nonvolatile memory having modified channel region interface
TW096125139A TWI349337B (en) 2006-07-10 2007-07-10 Operating method of nonvolatile memory having modified channel region interface
TW96125136A TWI360201B (en) 2006-07-10 2007-07-10 Nonvolatile memory having raised source and drain
TW100139194A TWI365512B (en) 2006-07-10 2007-07-10 Nonvolatile memory having raised source and drain regions

Family Applications After (4)

Application Number Title Priority Date Filing Date
TW96125135A TWI364112B (en) 2006-07-10 2007-07-10 Nonvolatile memory having modified channel region interface
TW096125139A TWI349337B (en) 2006-07-10 2007-07-10 Operating method of nonvolatile memory having modified channel region interface
TW96125136A TWI360201B (en) 2006-07-10 2007-07-10 Nonvolatile memory having raised source and drain
TW100139194A TWI365512B (en) 2006-07-10 2007-07-10 Nonvolatile memory having raised source and drain regions

Country Status (2)

Country Link
CN (6) CN101106139A (en)
TW (5) TWI336941B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891184B (en) * 2011-07-19 2017-03-01 联华电子股份有限公司 Nonvolatile memory with and preparation method thereof
CN103915483B (en) * 2012-12-28 2019-06-14 瑞萨电子株式会社 Field effect transistor and production method with the channel core for being modified to reduce leakage current
TWI514551B (en) * 2013-05-15 2015-12-21 Toshiba Kk Nonvolatile memory device
CN109545792B (en) * 2018-11-29 2022-01-04 上海华力微电子有限公司 SONOS storage structure and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355237B2 (en) * 2004-02-13 2008-04-08 Sandisk Corporation Shield plate for limiting cross coupling between floating gates

Also Published As

Publication number Publication date
TWI360201B (en) 2012-03-11
TW200805575A (en) 2008-01-16
TW200805637A (en) 2008-01-16
TW200805583A (en) 2008-01-16
TW200807726A (en) 2008-02-01
CN101106139A (en) 2008-01-16
TW201218320A (en) 2012-05-01
CN102064198A (en) 2011-05-18
TWI365512B (en) 2012-06-01
TWI364112B (en) 2012-05-11
TWI349337B (en) 2011-09-21
CN101106138A (en) 2008-01-16
CN101106137A (en) 2008-01-16
CN102097127A (en) 2011-06-15
CN101106136A (en) 2008-01-16

Similar Documents

Publication Publication Date Title
TWI388052B (en) Memory devices with split gate and blocking layer
JP5069858B2 (en) Multi-bit nonvolatile memory device using carbon nanotube channel and operation method thereof
US6191445B1 (en) Nonvolatile semiconductor memory device and method of reading a data therefrom
TW512495B (en) Nonvolatile semiconductor memory device, process of manufacturing the same and method of operating the same
JP2004152977A (en) Semiconductor storage device
US7646637B2 (en) Nonvolatile memory having modified channel region interface
TW201212168A (en) Memory architecture of 3D array with diode in memory string
TW200532901A (en) Nonvolatile semiconductor memory device
TW200908343A (en) Non-volatile semiconductor memory device
JP2007511076A (en) Technology for programming flash memory using gate junction leakage current
TW200907979A (en) Method and apparatus for programming nonvolatile memory
TW200837887A (en) Trench memory structures and operation
JP2009076680A (en) Non-volatile semiconductor storage device and its operating method
TWI473253B (en) Nonvolatile memory array with continuous charge storage dielectric stack
US8765553B2 (en) Nonvolatile memory array having modified channel region interface
TWI336941B (en) Nonvolatile memory array having modified channel region interface
TW200419733A (en) Single bit nonvolatile memory cell and methods for programming and erasing thereof
JPWO2008146760A1 (en) Storage element and reading method thereof
US20080006871A1 (en) Nonvolatile Memory Having Raised Source and Drain Regions
JP2008118040A (en) Nonvolatile semiconductor storage device, manufacturing method thereof, and information writing method using the same
TW200302569A (en) Transistor and semiconductor memory using the same
KR100849993B1 (en) Nor flash memory usimg asymmetric schottky-barrier and fabricating method thereof
JP4370749B2 (en) Nonvolatile semiconductor memory device and operation method thereof
TW200847161A (en) Three cycle sonos programming
WO2008041536A1 (en) Non-volatile semiconductor storage device and method for operating the same