TWI363508B - Widely tunable chirp managed laser - Google Patents

Widely tunable chirp managed laser Download PDF

Info

Publication number
TWI363508B
TWI363508B TW96149737A TW96149737A TWI363508B TW I363508 B TWI363508 B TW I363508B TW 96149737 A TW96149737 A TW 96149737A TW 96149737 A TW96149737 A TW 96149737A TW I363508 B TWI363508 B TW I363508B
Authority
TW
Taiwan
Prior art keywords
laser
pulse
adiabatic
optical
frequency
Prior art date
Application number
TW96149737A
Other languages
Chinese (zh)
Other versions
TW200840249A (en
Inventor
Daniel Mahgerefteh
Kevin Mccallion
Yasuhiro Matsui
Original Assignee
Finisar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Finisar Corp filed Critical Finisar Corp
Publication of TW200840249A publication Critical patent/TW200840249A/en
Application granted granted Critical
Publication of TWI363508B publication Critical patent/TWI363508B/en

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

1363508 ' 100年10月26日替換頁 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種光傳送器。 【先前技術】 展見壓縮管理雷射(chirp managed laser ; CMLTM)中,雷射 係以高偏壓位準作業,並且經調變以產生頻率和振幅均被調變之 絕熱展寬壓縮脈衝。具有頻率相依傳輪設定檔之光譜整形濾波器 (optical spectrum reshaper ; 0SR)接收雷射之輸出,並且輸出具 有增強振㈣變之喊。光譜整猶㈣透過轉換觸為調幅以 增加消光比。 展寬堡縮f理f射线中,需要快速辭調變。_很多雷 射被調整為列的醉,但是並麵有均為以超出每秒百債位元 之㈣速率之鮮。此外,可充分調頻料之雷 射或者無法_如蹄雜寬關之紐醉,或者無法產 合展寬壓縮管理雷射使用之脈衝。 馨於上《題,本錢需錢供—触_ 驗資料速輸觸之卿縮㈣ ^ 寬範圍之鮮。 Ml%越較 【發明内容】 在本發明之—個方面,—種光傳送器包含可調雷射, ㈣率|_難。物物彡_爾雷射之輪出,; 5 1363508 , 100年10月26日替換頁_ 並且包含位於第一頻率範圍之内的複數個週期性通帶。耦合至可 卜田射之控帝j器被程式化’令雷射發射出峰頻位於複數個通帶之 苐一通帶内的絕熱展寬壓縮脈衝,接下來調整雷射以產生峰頻位 於複數個通帶之第二通帶内的絕熱展寬壓縮脈衝,其中第一通帶 與第二通帶不同。 在本發明之另一方面,雷射包含增益部,增益部之光程實質 上小於雷射之整個絲。例如,雷射之紐可能介於增益部之光 程的兩倍和五倍之間。 嫌 在本發明之另一方面,雷射包含增益部,增益部透過光學功 手刀配_合至第一和第二取樣光栅。取樣光栅被反向偏壓以便 :產生TBJ貝料速率之絕熱脈衝。依照熱光效應透過改變取樣光栅 之溫度以調整雷射。 a在本發明之另一方面,雷射包含搞合至環形共振器部之增益 部。環形共振雜合至帶狀加熱器,帶狀加熱器用於獨立地改變 環形共振器之頻率響應。部分實施例中,環形共振器形成於—晶i 片之上,此晶片耦合至形成於不同晶片上的雷射。 在本發明之另一方面,光譜整形遽波器形成於與環形共振器 至曰曰片之上’亚且光輕合至雷射部;其+加熱器分別地輕合 和第-% ’透過齡地調整加熱關溫度, 以調整雷射。 邗 本發明之這些及其他特徵將在以下描述和所附之申請專利範 100年10月26日替換頁 圍中體現得更加·’或者從本發明之實射得1^^---- 【實施方式】 請參考「第1圖」,光學傳送器模組1〇包含輕合至光譜整形 濾'波器14之多重雷射(_ti侧iQn) 12。光譜整形舰器之輸出 輕合至耦合光學器件16例如光纖引線,從她合傳送器絲纖。 光譜整形濾波$ 14轉換來自多重雷射12之調頻訊號為調幅訊 號。但疋’光譜整形紐器之輸&仍祕持_。光譜整形渡波 器可以具體化為n個m,包含··轉合多腔(c〇upied mum-cavity ; CMC)濾波器、週期多腔標準具(—η)、光纖布 拉格光柵(Bragg grating)、環形共振器據波器,或者具有波長相 關損耗之任何其他光學元件,但並非關於此。光譜整形渡波器 14還包含光纖、及爾·陶諾斯(Gire_丁〇um〇is)干涉儀,或者具有 色散(chromatic dispersion)之某些其他元件。 寬頻可調展寬壓縮管理雷射傳送器模組i〇可透過可寬調多重 田射12 ·之10 Gb/s或更高的直接調變並結合週期光譜濾波元件(例 如光4整祕波ϋ 14)而實現。在—實關巾,使祕有高速增 益部響應和晶片上相位控制部加上游標(Vemier)型反射濾波元 件之單塊積體磷化銦(indium Phosphorus; _晶片結構。在另 只施例中,使用外腔雷射(extema〗cav办laser,·汉工)結構, 其中外腔f射㈣高軸化銦增益部加上容_標型反射滤波元 件和選擇相位控制部之積體光學晶片。 1363508 100年10月26曰替換頁- 種最適合特定應用 上㈣-方_提軸_雷射魏,即增益和相位控制以 及可⑽波絲擇反㈣。射以使«他標準例如製造容易 度、—產f、功率消耗、輪出功率水平、調整速度等以判定哪 重要的是展寬魏管理雷射技射使用的雷射生奴夠高速 之絕熱展寬壓縮,例如可從多重可難射獲得。其他基本要求 為增益部響觸間要足触,雷射本·度不_性能,增益部 之RC時間常數足夠短。此外,較佳地於完整c頻帶調整時保持.· 這些參數。 為了保證高速性能並且使雷射絕熱展寬壓縮之稀釋最小化, 重要的是保持短的雷射腔長度。在較佳實施财,多重雷射包含 增盈部,其相較於雷射之整個光程相對地短。在部分實施例中, 雷射的總光程介於增益部之光程的兩倍和五倍之間。在其他實施 例中,雷射的整個光程三倍大於增益部的光程。在部分實施例中, 替射包g共振器部和增盈部,其中共振器部的光程是增益部之光馨 私·的兩倍多。 短雷射腔可於商業上可取得之磷化銦單塊多重雷射中達成, 通常由JDSU和Syntune公司供應。「第2圖」、「第3圖」、「第4 圖」、「第5圖」、「第6圖」以及「第7圖」所示之雷射結構係為 展寬壓縮管理雷射技術中可使用的多重或外腔雷射之例子。「第2 圖」所示為單塊填化铟基之裝置’與瑞典的Syntune公司使用的類 8 1363508 - 100年10月26日替換頁 似。各方面的尺寸均為標準值。 「第2圖」之系統包含增益部is、相位控制部2〇、及包含兩 個獨立可調端面鏡(end mirror)或取樣光柵22之〃 Y分支〃結構, ' 其透過光功率分配器24耦合於相位控制部20。端面鏡具體化為展 寬壓縮取樣光栅22,可以透過熱光效應或電流注入的方式而調 整。對於熱調整,帶狀加熱器26鄰接取樣光柵22而放置,用於 調整它們的反射光譜。 參 「第2圖」之系統形成於單塊多重晶片之上。或者,增益部 is具體化為由磷化銦形成的法布立—拍若(Fabry_Per〇t;FP)雷 射,其中填化銦耗合至支禮Y分支結構的石夕或絕緣層覆石夕晶片。 「第3圖」所示為混合碟化銦—石夕之外腔雷射裝置,其中石夕 晶片28係直接地對接輕合(butt-coupled)至碌化錮製造的法布立 -拍若雷射二極體晶片3G,晶片28還可以使用其他製造材料, 例如絕緣層覆石夕、石夕基二氧化石夕,或者Hydex (^Optics專屬 •材料)。 法布立-拍若雷射二歸日日日片3()抑日日日片28財之一或兩 者在晶片之間包含-抗反射塗層32。此外,法布立—拍若雷射二 極體晶片30和矽晶片28相對於雷射波導34之方内成一—角产 以確保後向歸極低並域*最,!、化訪模絲構巾 (SUb-__。反射塗層36形成於石夕晶片之上 射: 層32相對。 /、 100年10月26曰替換頁. ,石夕晶片28包含兩個串聯的波導環形共振器遽波器38a、38b .· 和,導相位控制部4Q。部分實細中,相位控制部⑼與法布立― “射極體3曰片3〇整合。相位控制部4〇還可能放置於石夕晶 片28之上的環形共振器濾波器38a、38b之前或之後。 , 母一環形共振器遽波器38a、38b和相位控制部4〇係由分離 =帶狀加熱器42a、42b和42c控制。此允許腔模式結構之寬頻游 標型調節和微調。石夕晶片28被設計成與法布立—拍若雷射之波導 34杈式匹配,以使得之間的輕合實現低損耗。波導44引導來自環 _ 形共振器;t波H 38b之光訊號,並且發送此光訊號至反射塗層 36,其令光訊號被向後反射通過腔室。在部分實施例中,相位控 制部係為與帶狀加熱器42c鄰接放置的波導44之一部分。經過組 合的雷射二極體晶片3〇和矽晶片28於作業期間被放置於微冷卻 器之上。 請參考「第4圖」,另一實施例中,矽晶片28包含光譜整形 濾波器14,其採用耦合至波導44之多個環形共振器濾波器4知、φ 46b和46c的形式。輸出耦合器48放置於波導44和多個環形共振 器濾波器46a、46b及46c之間,以反射透過波導44而向後傳送 至法布立一拍若雷射二極體晶片30之部分光功率。雷射二極體晶 片30支撐與抗反射塗層32相對的反射塗層50,從而光能量透過 光譜整形濾波器14被輸出。輸出波導52傳送來自光譜整形濾波 器14之光號通過抗反射塗層54。 1363508 100年Π)月26日替換頁 〉 請參考「第5圖」,在另一實施例中,雷射二極體晶片30耦 合至中央波導56。環形共振器濾波器38a、38b各自於不同位置耦 :: 合來自令央波導56之光線。在部分實施例中,相位控制部58a、 58b被置於母一環形共振器遽波器3如、38b之前。相位控制部 58&、581>被具體化為帶狀加熱器術、6此,置於部分中央波導56 之上。來自環形共振器濾波器38a、38b之光線被耦合至波導62a、 62b,波導62a、62b導引光線至高反射鏡64a、64b。環形共振器 鲁;t波器施’之調整係透過放置於每一環形共振器滤波器3如、 38b之至少一部分之上的帶狀加熱器66a、66b而完成。 請參考「第6圖」,在再另一實施例中,中央波導56透過例 如多模式介面(multi mode interface ; MMI)之光功率分配器砧 而被耦合至雷射二極體晶片30的平行波導56a、56b代替。每一 %形共振器濾波器38a、38b耦合至平行波導56a、56b其中之一。 同樣,相位控制部58a、58b各自耦合至平行波導56a、56b豆 • 之一。 請參考「第7圖」,在另一實施例中,多重雷射12包含外腔, 外腔包含多個標準具7〇a、70b,較佳的為兩個。標準具7〇a、7〇b 由矽形成,可以包含本領域已知的塗層和其他處理。另一方面, “準具可以由具有先進的熱光係數的其他材料形成,此些材料包 含鱗化銦、珅化鎵、光聚合物材料以及各種光性結晶。加熱器72a、 2b輕5至各自的標準具7〇a、7〇b,用於調整標华具的頻率響應, 11 1363508 _ 100年10月26曰替換頁- 從而使用游標效應(Vernier effect)改變雷射的頻率。「第7圖」 之實施例中,增益晶片74透過透鏡76耦合至標準具70a、7〇b, 令雷射之輸出對準標準具之短焦距矽透鏡較佳。在較佳實施例 中’透鏡76係為繞射透鏡,提供的光程比習知透鏡短。增益晶片 』 74形成於南速陶究載體或類似基板^^*。在部分實施例中,增益 晶片包含增盈部74a和相位控制部74b ’相位控制部74b可獨立地 被控制以調整雷射腔内的相位。 腔鏡(cavity mirror) 78反射光線反向通過標準具,包含與其 鲁 反射面相對的抗反射塗層80。輸出透鏡82調整從外部腔引導出的 雷射輸出,以耦合至其他光纖,其他光纖包含例如光譜整形濾波 益14之展寬壓縮管理雷射光纖。在所描緣的實施例中,標準具 70a、70b、增益部74a、腔鏡78以及輸出透鏡82透過空氣間隙而 與其他組件相隔。多重雷射12之組件還可以全部裝設於熱電冷卻 器(thermo-electric cooler ; tec) 84之上以便於連貫操作。 「第2圖」、「第3圖」、「第4圖」、「第5圖」、「第6圖」以着 及「第7圖」所示之多重雷射範例中,雷射端鏡提供可獨立控制 的兩個週期反射光譜。透過利用游標效應,可產生較寬的可調窄 頻帶反射,從而產生具良好旁模壓制比(side邮如s卿咖加 ration,SMSR)之平穩的單縱模雷射。相位控制部用於微調整個 腔模結構以獲得雷射之最佳性能。 針對展寬壓縮管理雷射作業,雷射腔必須短,以確保能夠為 12 10 Gbs調變達到足夠快的響應時間,並使絕熱^1^· 最小化。特別是,增益部之光 率編佩。糊騎_顧棒可翻變以在⑴1363508 'Replacement page of October 26, 100 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to an optical transmitter. [Prior Art] In the Chirp managed laser (CMLTM), the laser operates at a high bias level and is modulated to produce an adiabatic broadening compression pulse whose frequency and amplitude are both modulated. An optical spectrum reshaper (OSR) having a frequency dependent transmission profile receives the output of the laser, and the output has an enhanced vibration (four) change. The spectrum is still (4) through the conversion touch to adjust the amplitude to increase the extinction ratio. In the widening of the b-f, the need to quickly change the tone. _ Many lasers are adjusted to be drunk, but the faces are all at a rate that exceeds the (four) rate per second. In addition, the laser can be fully tuned or can't be stunned, or it can't produce the pulse of the extended compression management laser. Xin on the "question, the capital needs money for the supply - touch _ test data speed change touches the shrinking (four) ^ wide range of fresh. The more Ml% is compared [Invention] In one aspect of the invention, the optical transmitter comprises an adjustable laser, and (4) the rate is difficult. The object is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The controller coupled to the control unit can be programmed to cause the laser to emit an adiabatic stretched compression pulse with a peak frequency in the passband of the plurality of passbands, and then adjust the laser to produce a peak frequency at a plurality of An adiabatic broadening compression pulse in the second passband of the passband, wherein the first passband is different from the second passband. In another aspect of the invention, the laser includes a gain portion having an optical path that is substantially smaller than the entire length of the laser. For example, a laser beam may be between two and five times the light path of the gain section. In another aspect of the invention, the laser includes a gain portion that is coupled to the first and second sampled gratings by an optical hand tool. The sampled grating is reverse biased to: generate an adiabatic pulse of the TBJ feed rate. The laser is adjusted by changing the temperature of the sampled grating in accordance with the thermo-optic effect. In another aspect of the invention, the laser includes a gain portion that is coupled to the ring resonator portion. The ring resonance is hybridized to a ribbon heater, which is used to independently change the frequency response of the ring resonator. In some embodiments, a ring resonator is formed over a wafer that is coupled to a laser formed on a different wafer. In another aspect of the invention, a spectral shaping chopper is formed on the sub-ring from the ring resonator to the cymbal and lightly coupled to the laser portion; the + heater is respectively lightly coupled and the first -% 'transmission Adjust the heating off temperature to adjust the laser. These and other features of the present invention will be more apparent from the following description and the accompanying patent application, the replacement page of October 26, 100, or from the actual implementation of the present invention, 1^^--- Embodiments Please refer to FIG. 1 , the optical transmitter module 1 〇 includes multiple lasers (_ti side iQn) 12 that are lightly coupled to the spectral shaping filter 14 . The output of the spectral shaping vessel is lightly coupled to the coupling optics 16 such as a fiber optic lead, from which the transmitter is filamented. The spectral shaping filter $14 converts the FM signal from multiple lasers 12 into an amplitude modulation signal. But the 疋' spectral shaping device's loss & still secret _. The spectral shaping waver can be embodied as n m, including a multi-cavity (CMC) filter, a periodic multi-cavity etalon (-η), a fiber Bragg grating, A ring resonator is a waver, or any other optical component with wavelength dependent losses, but is not relevant. The spectral shaping waver 14 also includes an optical fiber, a Girex, or some other component having a chromatic dispersion. The wide-band adjustable widening compression management laser transmitter module i〇 can be directly modulated by a wide-adjustable multi-field 12 · 10 Gb / s or higher combined with periodic spectral filtering components (such as light 4 full wave ϋ 14) and achieved. In the actual closing towel, the high-speed gain portion response and the on-wafer phase control unit plus the upstream (Vemier) type reflection filter element of the monolithic indium phosphide (indium Phosphorus) _ wafer structure. In another example In the outer cavity laser (extema, cav, laser, Hangong) structure, in which the external cavity f-shoot (four) high-intensity indium gain portion plus the capacitive-target reflection filter component and the integrated phase control portion of the integrated optics Wafer. 1363508 October 26 曰 曰 Replacement page - the most suitable for a specific application (4) - square _ lifting axis _ laser Wei, that is, gain and phase control and (10) wave wire optics (four). Shoot to make «he standard such as Ease of manufacture, production f, power consumption, turn-off power level, adjustment speed, etc. to determine what is important is to widen the high-speed adiabatic expansion compression of the laser-powered laser used by the Wei management laser technology, for example, from multiple It is difficult to obtain. Other basic requirements are that the gain portion should be in full contact with the touch, the laser is not _ performance, and the RC time constant of the gain portion is sufficiently short. In addition, it is preferably maintained during the complete c-band adjustment. Parameters. To ensure high speed performance And to minimize the dilution of the laser adiabatic compression compression, it is important to maintain a short length of the laser cavity. In a preferred implementation, the multiple lasers include an augmentation portion that is relatively short compared to the entire optical path of the laser. In some embodiments, the total optical path of the laser is between two and five times the optical path of the gain portion. In other embodiments, the entire optical path of the laser is three times greater than the optical path of the gain portion. In some embodiments, the package includes a resonator portion and a gain portion, wherein the optical path of the resonator portion is more than twice that of the gain portion. The short laser cavity is commercially available. Indium single-block multiple lasers are achieved, usually supplied by JDSU and Syntune. "2nd", "3rd", "4th", "5th", "6th" and " The laser structure shown in Figure 7 is an example of a multi- or external-cavity laser that can be used in wide-area compression-managed laser technology. "Figure 2" shows a single-packed indium-based device' with Sweden Syntune used class 8 1363508 - October 26, 100 to replace the page. All dimensions are standard values. "2nd The system includes a gain portion is, a phase control portion 2, and a 〃 Y-branch structure including two independently adjustable end mirrors or sample gratings 22, which are coupled to the phase control through the optical power splitter 24 The end face mirror is embodied as a widened compression sampled grating 22 which can be adjusted by means of thermo-optic effect or current injection. For thermal adjustment, the strip heaters 26 are placed adjacent to the sampled grating 22 for adjusting their reflection spectra. The system of "Fig. 2" is formed on a single multi-chip. Alternatively, the gain portion is embodied as a Fabry_Per〇t (FP) laser formed of indium phosphide. The indium is consumed to the Shi Xi or the insulating layer covered stone wafer of the Y branch structure. "Picture 3" shows a hybrid disc-indium-shixi outer cavity laser device, in which the Shixi wafer 28 is directly butt-coupled to the fascinating fabric. The laser diode chip 3G, the wafer 28 can also use other materials of manufacture, such as an insulating layer, a stone, a stone, or a Hydex (^Optics exclusive material). Fabri-Pan Ruoliang II returns to Japan and Japan 3 () one of the 28 solar dollars or both of them contains an anti-reflective coating 32 between the wafers. In addition, the Fabry-Lake laser diode 30 and the germanium wafer 28 are formed at a single angle with respect to the laser waveguide 34 to ensure that the backwards are extremely low and the domain is the most. The scarf (SUb-__. The reflective coating 36 is formed on the Shihua wafer: the layer 32 is opposite. /, October 26, pp. 205. The Shixi wafer 28 contains two waveguide ring resonators in series. The waveguides 38a, 38b. and the pilot phase control unit 4Q. In part, the phase control unit (9) is integrated with the Fabry-"electrode body 3". The phase control unit 4 may also be placed on the stone. Before or after the ring resonator filters 38a, 38b above the wafer 28, the mother-ring resonator choppers 38a, 38b and the phase control portion 4 are controlled by the separation = strip heaters 42a, 42b and 42c. This allows for wide-band vernier type adjustment and fine-tuning of the cavity mode structure. The lithium wafer 28 is designed to be matched with the Fabry-Perot laser waveguide 34 to achieve low loss between the light junctions. Directing the optical signal from the ring _-shaped resonator; t-wave H 38b, and transmitting the optical signal to the reflective coating 36, The optical signal is reflected back through the chamber. In some embodiments, the phase control portion is part of the waveguide 44 placed adjacent to the strip heater 42c. The combined laser diode wafer 3 and the germanium wafer 28 are During operation, it is placed on top of the micro-cooler. Referring to FIG. 4, in another embodiment, the germanium wafer 28 includes a spectral shaping filter 14 that employs a plurality of ring resonator filters 4 coupled to the waveguide 44. In the form of φ 46b and 46c, the output coupler 48 is placed between the waveguide 44 and the plurality of ring resonator filters 46a, 46b and 46c for reflection through the waveguide 44 and back to the Fabry. Part of the optical power of the diode wafer 30. The laser diode wafer 30 supports the reflective coating 50 opposite the anti-reflective coating 32 such that the light energy is output through the spectral shaping filter 14. The output waveguide 52 is transmitted from the spectral shaping The light of the filter 14 passes through the anti-reflective coating 54. 1363508 100 years Π) 26th page replacement page > Please refer to "figure 5", in another embodiment, the laser diode chip 30 is coupled to the central waveguide 56. The ring resonator filters 38a, 38b are each coupled to light from the central waveguide 56 at different locations. In some embodiments, the phase control portions 58a, 58b are placed before the parent-ring resonator chopper 3, such as 38b. The phase control unit 58&, 581> is embodied as a strip heater, 6 and placed on a portion of the center waveguide 56. Light from the ring resonator filters 38a, 38b is coupled to waveguides 62a, 62b which direct light to the high mirrors 64a, 64b. The adjustment of the ring resonator ru; t-wave device is accomplished by strip heaters 66a, 66b placed over at least a portion of each of the ring resonator filters 3, 38b. Please refer to FIG. 6. In still another embodiment, the central waveguide 56 is coupled to the parallel of the laser diode wafer 30 through an optical power splitter anvil such as a multi mode interface (MMI). The waveguides 56a, 56b are replaced. Each of the % shaped resonator filters 38a, 38b is coupled to one of the parallel waveguides 56a, 56b. Similarly, the phase control portions 58a, 58b are each coupled to one of the parallel waveguides 56a, 56b. Please refer to "FIG. 7". In another embodiment, the multiple laser 12 comprises an outer cavity comprising a plurality of etalon 7a, 70b, preferably two. The etalon 7A, 7〇b is formed from tantalum and may include coatings and other treatments known in the art. On the other hand, "the rig can be formed of other materials having advanced thermo-optic coefficients, including scalar indium, gallium antimonide, photopolymer materials, and various photo-crystals. Heaters 72a, 2b are light 5 to The respective etalon 7〇a, 7〇b is used to adjust the frequency response of the standard gimmick, 11 1363508 _ 100 October 2006 曰 replacement page - thus using the Vernier effect to change the frequency of the laser. In the embodiment of Fig. 7, the gain chip 74 is coupled to the etalon 70a, 7b through the lens 76, and the output of the laser is aligned with the short focal length of the etalon. In the preferred embodiment, the lens 76 is a diffractive lens that provides a shorter optical path than conventional lenses. The gain chip 』74 is formed on the Nanshi ceramic research carrier or similar substrate ^^*. In some embodiments, the gain wafer includes a gain portion 74a and a phase control portion 74b. The phase control portion 74b can be independently controlled to adjust the phase within the laser cavity. Cavity mirror 78 reflects light back through the etalon and contains an anti-reflective coating 80 opposite its reflective surface. Output lens 82 adjusts the laser output directed from the external cavity to couple to other fibers, and other fibers include a broadened compression managed laser fiber such as spectral shaping filter. In the depicted embodiment, etalon 70a, 70b, gain portion 74a, cavity mirror 78, and output lens 82 are separated from other components through an air gap. The multiple laser 12 components can also be mounted entirely on a thermo-electric cooler (tec) 84 for continuous operation. "2nd picture", "3rd picture", "4th picture", "5th picture", "6th picture" and "multiple laser examples" shown in "Fig. 7", laser end mirror Provides two periodic reflection spectra that can be independently controlled. By utilizing the vernier effect, a wider adjustable narrowband reflection can be produced, resulting in a smooth single longitudinal mode laser with a good side-to-side compression ratio (side postal squirrel ration, SMSR). The phase control is used to fine tune the cavity mode structure to achieve the best performance of the laser. For stretch compression management laser operations, the laser cavity must be short to ensure a fast enough response time for 12 10 Gbs modulation and to minimize thermal insulation. In particular, the gain of the gain section is advertised.糊骑_顾棒 can be changed to (1)

Gbs資料速料提供腔相位變化。因此,健此部中的相位變化 有助於整體雷射絕熱展縮,產生的頻率位移透過其餘雷射腔 被稀釋。 針料腔雷射結構,用於保留短腔程之先進方法係使用「第3 圖」、「第4圖」、「第5圖」和「第6圖」所示讀雜合技術。 混合晶片之間制__合的習知透鏡元件需要顯著延伸的腔 程亚且降低1()Gbs調變之可能性。然而,如「第7圖」所示,可 以使用繞射魏,衫會過度增域程。 。叫麥考第8圖」,上述之可寬調多重雷射和週期光譜整形滤 发。 同朗以產生展寬壓縮管理雷射型作業。這點與展寬壓 縮管理雷射配置中的標準分散式回餽雷射之作·似。作業期 間^合「第2圖」、「第3圖」、「第4圖」、「第5圖」、「第6圖」 以及第7圖」所述之可調雷射被調整,從而由基本頻率產生具 有峰頻偏#之纟s熱脈衝。通帶之_的上升緣或下降緣優先處於絕 熱脈衝的基頻和峰頻之間,但是,也可能為其他相對位置以從光 4整形渡波②巾輪出刊的脈衝形狀。 如「第8圖」所示’光譜整形濾波器較佳地包含若干通帶, ^越例如C頻帶之寬頻帶。進-步如「第8圖」所示,通帶具有 13 1363508 100年10月26曰替換頁 相同的形狀’尤其是通帶的均緣和下降_斜^:物,光譜一J 整形濾波II還可能被設計為具有邮赫的自由頻譜翻(^·-spectrd range ; FSR),從而每—頻帶之作業點可容易地透過小的 溫度調節被調整以符合目際電信聯盟之巾讀鮮確度。 ‘ 上述多重雷射之展寬壓縮管理要求在某種程度上二決於不同 版本技術中所使用的調整方法。例如,「第2圖」所示之單塊版本 中’本發明之實驗已發現絕熱妓壓縮響應受到取樣光拇22之標 準Θ向偏[之衫響。通常’則向偏壓作為雷射調節中一種高效且鲁 -力率’肖耗之方法’但疋自域子注人频區域導朗腔光能之 吸收。反過來,這在滯慢時標上(sWer㈤⑽)導致不需要 _位和頻轉化。本發册現透過反向碰這些部件以及藉由 ,位焦耳加熱完成取樣光栅之調_可加以避免。反向偏壓導致 ^刀額外的抽失’但是消除自由載子之聚集和相關的、帶慢夕頻 率變化。在部分實施例中,前向偏壓仍然用於調變相健制部20、 4〇、58a、58b 和 74b。 φ 第2圖」所示之取樣光栅22或者例如「第3圖」至「第6 圖」之環形共振器濾波器38a、38b及「第7圖」所示之標準具7〇a、 他週期共振器之另一種調節方法係使用熱光效應。碟化銦 基材料表現㈣大的溫度欄反射率,大収以用於調節低功率 =耗。植加熱可能使縣樣_22上直減置的帶狀加熱器、 壤型共振渡波器36a、36b,或者形成於單塊多重晶片中的標準具 1363508 -. 100年10月26日替換頁 ·. 70a、70b。攸而可避免自由載子注人和對應的雷射展寬壓縮特性 之退化。此外’设汁取樣光栅22、環形共振器遽波器38a、遍、 ;; 鮮具7〇a、7〇b以及其他波導結構的材料,以透過避免上述反向 1 偏壓的方絲㈣低傳播損失,也有助於保持反射部之低損失。 此方法可允♦雷射之兩光輸出功率作業。雷射之調節還可以透過 改變取樣光柵22、環形共振器濾波器38a、38b或標準具7〇&、7诎 之反向偏壓位準而完成’從而導致焦耳加熱中的變化。帶狀加熱 籲器還可以用於調整相位控制部20、40、58a、58b和74b。 明參考第9圖」’在部分實施例中,傳送器模組1〇裝設於 外罩86之内’外罩86包含一晶片,晶片用於支撐固定於其上的 多重雷射12和光譜整形據波器14。麵合光學器件16能夠確保光 纖纜線88固定在外殼以與光譜整形濾波器14光通訊。外部調變 器(圖中未表示)耦合至傳送器模組1〇之輸入9〇,並且供應資料 • 訊號。外部調變器亦可提供控制訊號,例如透過獨立地改變多重 雷射12内的元件溫度而調節多重雷射12和光譜整形濾波器14。 雖然本發明以前述之實施例揭露如上,然其並非用以限定本 發明。在不脫離本發明之精神和範圍内,所為之更動與潤飾,均 屬本發明之專利保護範圍之内。關於本發明所界定之保護範圍請 參照所附之申請專利範圍。 【圖式簡單說明】. 第1圖所示為本發明實施例之可寬調之展寬壓縮管理雷射傳 15 iJ635〇8 送器系統; 100年10月26日替換頁 第2圖所示為本發明實施例之適合可寬調之展寬壓縮管理雨 射傳送器系統使用之Y分支雷射; 田Gbs data feeds provide cavity phase changes. Therefore, the phase change in this part contributes to the adiabatic expansion of the overall laser, and the resulting frequency shift is diluted through the remaining laser chambers. The needle-cavity laser structure, the advanced method for retaining the short cavity, uses the hybrid technology shown in "3rd", "4th", "5th" and "6th". Conventional lens elements fabricated between hybrid wafers require a significantly extended cavity and reduce the likelihood of 1 () Gbs modulation. However, as shown in Figure 7, the diffraction can be used, and the shirt will increase the range. . Called McCaw 8th, the above-mentioned wide-adjustable multiple laser and periodic spectral shaping filters. Tonglang uses a widened compression to manage laser-type operations. This is similar to the standard decentralized feedback laser in the extended compression management laser configuration. During the operation period, the adjustable lasers described in "2D", "3rd", "4th", "5th", "6th" and 7th) are adjusted so that The fundamental frequency produces a 脉冲s heat pulse with a peak frequency offset #. The rising or falling edge of the passband is preferentially between the fundamental frequency and the peak frequency of the adiabatic pulse, but it is also possible for other relative positions to shape the pulse shape of the wave 2 from the light. As shown in Fig. 8, the spectral shaping filter preferably includes a plurality of pass bands, such as a wide band of the C band. Step-by-step as shown in Figure 8, the passband has the same shape as the 13 1363508 October 26 曰 replacement page 'especially the pass and drop _ oblique ^:, spectrum-J shaping filter II It may also be designed to have a free spectral range (FSR), so that the operating point per band can be easily adjusted through small temperature adjustments to match the accuracy of the telecom alliance. . ‘The above-mentioned multiple lasers have a wide compression management requirement that depends to some extent on the adjustment methods used in different versions of the technology. For example, in the monolithic version shown in "Fig. 2", the experiment of the present invention has found that the adiabatic compression response is subject to the standard deviation of the sampled optical thumb 22. Usually, 'biasing is used as a method of high efficiency and Lu-force rate in laser regulation', but it is absorbed by the light energy of the domain. Conversely, this on the stagnation time scale (sWer(5)(10)) results in no need for _bit and frequency conversion. This issue is now avoided by touching these components in reverse and by adjusting the sampling grating by bit Joule heating. The reverse bias causes the ^ knife to be extra lost' but eliminates the accumulation of free carriers and the associated slow-frequency variation. In some embodiments, the forward biasing is still used to modulate the phase dopings 20, 4, 58a, 58b, and 74b. The sampling grating 22 shown in Fig. 2 or the ring resonator filters 38a and 38b of "Fig. 3" to "Fig. 6" and the etalon 7a shown in "Fig. 7", the cycle thereof Another method of conditioning the resonator uses a thermo-optic effect. The dish indium-based material exhibits (4) large temperature column reflectivity, which is used to adjust low power = consumption. The plant heating may cause the strip heaters, the soil type resonance ferrites 36a, 36b, or the etalon formed in the monolithic multi-wafer, 1363508 -. Replacement page on October 26, 100 70a, 70b. The degradation of the free-loading compression characteristics and the corresponding laser broadening compression characteristics can be avoided. In addition, 'the juice sampling grating 22, the ring resonator chopper 38a, the pass; the fresh 7〇a, 7〇b and other waveguide structure materials to avoid the above-mentioned reverse 1 biased square wire (four) low Propagating losses also helps to maintain low losses in the reflector. This method allows the operation of two laser output powers of the laser. The adjustment of the laser can also be accomplished by changing the reverse bias level of the sampled grating 22, the ring resonator filter 38a, 38b or the etalon 7 〇 & 7 从而 to cause a change in Joule heating. The ribbon heater can also be used to adjust the phase control portions 20, 40, 58a, 58b, and 74b. Referring to Figure 9, "In some embodiments, the transmitter module 1 is mounted within the housing 86. The housing 86 includes a wafer for supporting the multiple lasers 12 and spectral shaping data attached thereto. Wave filter 14. The facet optics 16 ensures that the fiber optic cable 88 is secured to the housing for optical communication with the spectral shaping filter 14. An external modulator (not shown) is coupled to the input of the transmitter module 1〇 and supplies the data • signal. The external modulator can also provide control signals, such as adjusting the multiple lasers 12 and spectral shaping filters 14 by independently varying the temperature of the components within the multiple lasers 12. Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. Modifications and modifications are intended to be included within the scope of the present invention without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a wide-adjustable widened compression management laser transmission 15 iJ635〇8 transmitter system according to an embodiment of the present invention; FIG. 2 is a replacement page on October 26, 100. Y-branch laser suitable for wide-tuning widened compression management raindrop transmitter system according to an embodiment of the present invention;

第3圖所示為本發明實施例之適合可宽調之展_縮管理雷 射傳送器系統使用之外腔雷射; W 第4圖所示為本發明實施例之適合可寬調之展寬壓縮管理雷 射傳送器系統使用之具有積體光譜整形濾波器之外腔雷射; 第5晒示為本發明實施例之適合可寬調之展寬壓縮管理雷鲁 射傳送器系統使用之另一外腔雷射; 第6圖所示為本發明實施例之適合可寬調之展寬壓縮管理雷 射傳送器系統使用之又另一外腔雷射; 第7圖所示為本發明實施例之適合可寬調之展寬壓縮管理雷 射傳送器系統使用之再另一外腔雷射; 第8圖所示為典型光譜整形濾波器組件之光譜響應;以及 、、第9圖所示為本發明實施例之可寬調之展寬壓縮管理雷射傳 送器系統之實體佈局。 【主要元件符號說明】 1 ' 2 展寬壓縮取樣光柵 10 傳送器模組 12 多重雷射 14 光譜整形濾波器 16 1363508 100年10月26日替換頁 耦合光學器件 增益部 相位控制部 取樣光柵 光功率分配器 帶狀加熱器 砍晶片FIG. 3 is a view showing an external cavity laser suitable for a wide-tunable expansion-constrained laser transmitter system according to an embodiment of the present invention; FIG. 4 is a view showing a wide-adjustable widening according to an embodiment of the present invention. Compressed management of the laser transmitter system using an integrated spectral shaping filter for external cavity laser; the fifth display is a suitable wide-tuning widened compression management of the Rayluo transmitter system used in the embodiment of the present invention. External cavity laser; FIG. 6 shows still another external cavity laser suitable for wide-tuning widened compression management laser transmitter system according to an embodiment of the present invention; FIG. 7 is an embodiment of the present invention Suitable for wide-tuning wide-width compression management of the laser transmitter system for another external cavity laser; Figure 8 shows the spectral response of a typical spectral shaping filter component; and, Figure 9, shows the invention The flexible layout of the scalable widened compression management laser transmitter system of the embodiment. [Main component symbol description] 1 ' 2 widened compression sampling grating 10 transmitter module 12 multiple laser 14 spectral shaping filter 16 1363508 October 26, 2010 replacement page coupling optics gain section phase control section sampling grating optical power distribution Strip heater

雷射二極體晶片 抗反射塗層 雷射波導 36 反射塗層 38a、38b 環形共振器濾波器 40 相位控制部 42a、42b、42c帶狀加熱器Laser diode wafer Anti-reflective coating Laser waveguide 36 Reflective coating 38a, 38b Ring resonator filter 40 Phase control unit 42a, 42b, 42c Strip heater

16 18 20 22 24 26 28 30 32 34 44 波導 46a、46b、46c環形共振器濾波器 48 輸出耦合器 50 反射塗層 52 輸出波導 54 抗反射塗層 56 中央波導. 17 1363508 100年10月26曰替換頁 56a ' 56b 平行波導 裊 58a ' 58b 相位控制部 60a ' 60b 帶狀加熱器 V 62a 、 62b 波導 64a ' 64b 南反射鏡 66a 、 66b 帶狀加熱器 68 光功率分配器 70a ' 70b 標準具 • 72a ' 72b 加熱器 74 增益晶片 74a 增益部 74 b 相位控制部 76 透鏡 78 腔鏡 80 抗反射塗層 馨 82 輸出透鏡 84 熱電冷卻器 86 外罩 88 光纖纜線 90 輸入 1816 18 20 22 24 26 28 30 32 34 44 Waveguides 46a, 46b, 46c Ring resonator filter 48 Output coupler 50 Reflective coating 52 Output waveguide 54 Anti-reflective coating 56 Central waveguide. 17 1363508 October 26, 2014 Replacement page 56a ' 56b Parallel waveguide 袅 58a ' 58b Phase control 60a ' 60b Ribbon heater V 62a , 62b Waveguide 64a ' 64b South mirror 66a , 66b Ribbon heater 68 Optical power splitter 70a ' 70b Etalator • 72a ' 72b Heater 74 Gain Wafer 74a Gain Section 74 b Phase Control Section 76 Lens 78 Cavity 80 Anti-Reflective Coating Xin 82 Output Lens 84 Thermoelectric Cooler 86 Housing 88 Fiber Optic Cable 90 Input 18

Claims (1)

100年1〇月26日替換頁 '、申請專利範圍: 一種光傳送器,包含有·· 器分別耦合至該 ^接調變雷射,可調於—第—頻率範園,該直接 2=至卿共振H部之增益部,財該環顯振器部包含第田 Μ和弟一核,域合增益部;且其中加熱 第一和第二環; 一光譜整職波H,觀肋接收該直_㈣射之一輸 頻-率 —亚且包含複_職通帶’所述複數贿帶錄該第一 j 範圍之内;以及 、「控制ϋ,合於該可調之直接·祕,並城程式化 ^使得該直接調變雷射發射第絕熱展寬壓縮脈衝,並且使得 =接調變雷射發射第二絕熱展寬墨縮脈衝,其中該第一絕熱 ,寬1 縮脈衝具有位於所述複數個通帶之—第—通帶内的峰 頻’該第二絕熱展寬壓縮脈衝具有位於與該所述複數個通帶之 該第-通帶不同的所述複數個通帶之一第二通帶内的峰頻, 其中该控制器可制乍以透過獨立地調整該加熱器的溫度 而調節該直接調變雷射。 2.如申請專利範圍第1項所述之光傳送器,其中該直接調變雷射 的總光程實質上大於該增益部的光程。 如申明專利範圍第2項所述之光傳送器’其中該直接調變雷射 包含的一總光程介於該增益部之光程的二倍至五倍之間。 4·如申請專利範圍第3項所述之光傳送器,其中該直接調變雷射 19 1363508 100年10月26日替換頁 包含的一總光程約三倍大於該增益部的光程。 5. —種光傳送器,包含有: 一直接調變雷射,可調於一第一頻率範圍,其中該直接調 變雷射包含一增益部,透過一光功率分配器而耦合至第一和第 二取樣光柵’並且其中該第一和第二取樣光柵形成於一半導體 材料中並且被反向偏壓; 一光谱整形/慮波器,被放置以接收該直接調變雷射之一輸 出並且包含複數個週期通帶,所述複數個通帶位於該第一頻率 鲁 範圍之内;以及100 years, 1 month, 26th, replacement page', patent application scope: An optical transmitter, including a device coupled to the modulated laser, respectively, adjustable to - the first frequency garden, the direct 2 = To the gain portion of the H-resonance H section, the ring oscillator portion includes the Tiantian and the brother-core, the domain-integration gain portion; and wherein the first and second rings are heated; a spectral full-time wave H, the rib receiving The direct _ (four) shot of a frequency-rate-Asia and contains the complex _ 职通 belt 'the multiple bribes recorded within the first j range; and, "control ϋ, in conjunction with the adjustable direct secret And the city programming ^ enables the direct modulation laser to emit the adiabatic broadening compression pulse, and causes the = modulated laser to emit a second adiabatic broadening ink pulse, wherein the first adiabatic, wide 1 pulse has a location a plurality of passbands - a peak frequency in the first passband - the second adiabatic stretched compression pulse having one of the plurality of passbands different from the first passband of the plurality of passbands a peak frequency within the two-pass band, wherein the controller can be configured to independently adjust the temperature of the heater 2. The optical transmitter of claim 1, wherein the total optical path of the direct modulated laser is substantially greater than the optical path of the gain portion. The optical transmitter of item 2, wherein the direct modulation laser includes a total optical path between two and five times the optical path of the gain portion. 4. As claimed in claim 3 The optical transmitter, wherein the direct modulation laser 19 1363508, the replacement page included on October 26, 100, has a total optical path that is approximately three times larger than the optical path of the gain portion. 5. - Optical transmitter, including : a direct modulation laser, tunable to a first frequency range, wherein the direct modulation laser includes a gain portion coupled to the first and second sampling gratings through an optical power splitter and wherein the first A first and second sampled grating are formed in a semiconductor material and are reverse biased; a spectral shaping/wave filter is placed to receive one of the direct modulated laser outputs and includes a plurality of periodic pass bands, Multiple passbands are located at the first frequency of Lu Fan Within; and 一控制器,耦合於該可調之直接調變雷射,並且被程式化 以使得該直接調變雷射發射第一絕熱展寬壓縮脈衝,並且使得 該直接調變雷射發射第二絕熱展寬壓縮脈衝,其中該第一絕熱 展寬壓縮脈衝具有位於所述複數個通帶之—第—通帶内的峰 頻、亥第一絶熱展寬壓縮脈衝具有4立於與該所述複數個通帶之 該第-通帶不同的所述複數個通帶之—第二通帶内的導頻。 6‘如申請專利範圍第5項所述之光傳送器,其中該取樣光拇 寬壓縮取樣光柵。 7. 如申請專利範圍第5項所述之光傳送器,更包含第一和第-熱器,分別接近該第-和第二取樣光柵;其中該控制器可^ 以透過獨立地調整該加熱器的溫度而調節該直接調變' 8. 如申請專利範.圍第!項所述之光傳送器,其中該環型 20 係形成於-半導體材料t。 替換頁 9·如ΐ請專利範圍第〗項所述之光傳送器,其中該環型共振 包含填化鉬光組件。 、°。邛 1。:申,專利範圍第i項所述之光傳送器,更包含—光功率分配 。亥光功率分配H包含輕合至該增益部之—輸人,和兩輸 一,其中該第—環和該第二環各自光耦合至該些輸出之其中之 U·:申請專利範圍第!項所述之光傳送器,其中該増益部對接輕 口至5亥環型共振器部。 請專利範圍第U項所述之光傳送器,更包含該增益部和 趣型共絲部之_至少—織反·^ 申請專利範圍第n項所述之光傳送器,其令該增益部係為 法布立~~拍若(Fabry-Perot)直接調變雷射晶片。 14.^請專利麵第1()項所述之緣送器,其㈣環形共振器 T嵌於-半導體基板中,且其中就譜整猶波器形成於與該 裱形共振器部光通訊的該半導體基板中。 人 15·如:請專利麵第14項所述之光傳送器,其中該光譜整形據 波器包含與該環形共振器部光通訊的複數個共振器環。 、 16. =申請專利範圍第17項所述之光傳送器,更包含:輸出輕合 益,放置於該環形共振器部和該光譜整形濾波器之間。 17. —種光傳送器,包含有: 21 1363508 100年10月26日替換頁. 一直接調變雷射,可調於一第一頻率範圍,其中該直接調 變雷射包含:一增益部及一外腔,該外腔包含多個標準具; 一光譜整形濾波器’被放置以接收該直接調變雷射之一輸 出並且包含複數個週期通τ ’所述複數個通帶位於該第一頻率 範圍之内; 一控制器,耦合於該可調之直接調變雷射,並且被程式化 以使得該直接調變雷射發射第-絕熱展寬壓縮脈衝,並且使得 該直接調變雷射發射第二絕熱展寬壓縮脈衝,射該第—絕熱籲 展寬塵縮脈衝具有位於所述複數個通帶之—第—通帶内的峰 頻’該第二絕熱展寬塵縮脈衝具有位於與該所述複數個通帶之 該第-通帶不_所述複數個通帶之—第二通帶⑽峰頻;以 及 、 ,促於该項盃邵和該多個標準具之間。 18. —種光訊號之傳送方法,包含: 令一直接調變雷射發射一坌_奸&amp; 頻帛、,·巴熱脈衝,包含從—第一基 頭至第-峰頻之_頻率偏移; 傳送該脈衝至包含複數個通帶之一光戦 —峰頻處麟顧數個通f u力纽$,該弟 調節該直接調變雷㈣發二通:之内;以及 二基頻至-第二峰頻之—頻熱脈衝,包含從一第 個通帶之一第二通帶之内,夕5亥第二峰頻處於所述複數 22 1363508 ----—-- • 100年10月26曰替換頁 - 令該直接調變雷射發射該第一絕熱脈衝,包含傳遞光訊號 通過一增益部和第一及第二取樣光柵’其中該第一及第二取樣 光柵透過一光功率分配器而耦合至該增益部;以及 : 調節該直接調變雷射以發射該第二絕熱脈衝,包含獨立地 改變該第一和第二取樣光柵夂溫度。 19.如申请專利範圍第18項所述之光訊號之傳送方法,其中該第 基頻比該第一峰頻距離該第一通帶之一尖峰傳輪頻率更遠。 • 2〇.如申請專利範圍第18項所述之光訊號之傳送方法,更包含調 節該光譜整形濾波器以移位該第一和第二通帶。 21. 如申請專利範圍第22項所述之光訊號之傳送方法,其中令該 直接调變雷射發射該第一和第二絕熱脈衝,包含傳遞光訊號通 過一增益部和一共振器部,該共振器部包含的一光程實質上大 於比該增益部的光程。 22. 如申請專利範圍第ls項所述之光訊號之傳送方法,其中該直 • 接調變雷射包含:一增益部及-外腔,該外腔包含的一光程約 大於δ玄增益部之光程兩倍。 23. 如申請專利範圍第^項所述之光訊號之傳送方法,更包含反 向偏壓該第一和第二取樣光柵。 24. —種光訊號之傳送方法,包含·· ' 令一直接調變雷射發射-第-絕熱脈衝,包含從一第-基. 23 100年〗0月26日替換頁· 、至—第—峰頻之-頻率偏移; 〜峰^該輯至包含魏個通帶之—光譜整形舰器,該第 貝處於所述複數個通帶之-第-通帶之内,·以及 謂節該直接調變雷射以發射一第二絕熱脈衝,包含從一第 二基頻至-第二峰頻之―頻率偏移,該第二峰頻處於所述複數 调通帶之一第二通帶之内, …其中令駐接靖訪發賴第—縫脈衝,包含傳遞光 訊破通過-增益部和福合至該增益部之第一及第二共振器;以 及 調節該直接調變雷射以發射該第二絕熱脈衝,包含改變彼 此獨立的至少部分該第—和第二環型共振器之溫度。 25. 一種光訊號之傳送方法,包含: 令-直接調變雷射發射一第一絕熱脈衝,包含從一第—基 頻至一第一峰頻之一頻率偏移; 傳送該脈衝至包含複數個通帶之一光譜整形濾波器,該第 一峰頻處於所述複數個通帶之一第一通帶之内;以及 調節該直接調變雷射以發射一第二絕熱脈衝,包含從一第 一基頻至一第二峰頻之一頻率偏移,該第二峰頻處於所述複數 個通帶之一第二通帶之内, 其中令忒直接調變雷射發射該第一絕熱脈衝,包含傳遞光 訊號通過一增益部和耦合至該增益部且透過一空氣間隙而彼 24 1363508 _ - 100年10月26日替換頁 ; 此分離之第一及第二標準具;以及 調節該直接調變雷射以發射該第二絕熱脈衝,包含改變彼 &gt; 此獨立的至少部分該第一和第二標準具之溫度。 25 1363508 100年10月26日替換頁- 七、指定代表圖: (一) 本案指定代表圖為:第(3)圖。 (二) 本代表圖之元件符號簡單說明: 28 碎晶片 30 雷射二極體晶片 32 抗反射塗層 34 雷射波導 36 反射塗層 φ 38a 、 38b 壤形共振斋遽波裔 40 相位控制部 42a、42b, 、42c帶狀加熱器 44 波導 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 無a controller coupled to the adjustable direct modulated laser and programmed to cause the direct modulated laser to emit a first adiabatic stretched compression pulse and to cause the direct modulated laser to emit a second adiabatic stretched compression a pulse, wherein the first adiabatic stretched compression pulse has a peak frequency located in a first passband of the plurality of passbands, and the first adiabatic stretched compressed pulse has a fourth passband and the plurality of passbands The first passband is different from the pilot of the plurality of passbands - the second passband. The optical transmitter of claim 5, wherein the sampled optical width is a compressed sampling grating. 7. The optical transmitter of claim 5, further comprising first and first heaters respectively adjacent to the first and second sampling gratings; wherein the controller is capable of independently adjusting the heating Adjust the temperature of the device and adjust the direct modulation' 8. As applied for the patent model. The optical transmitter of the item, wherein the ring 20 is formed on a semiconductor material t. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; , °.邛 1. : Shen, the optical transmitter described in item i of the patent range, further includes - optical power distribution. The optical power distribution H includes a light-conducting input to the gain portion, and two inputs, wherein the first ring and the second ring are optically coupled to each of the outputs. U: Patent Application No. The optical transmitter of the item, wherein the benefit portion is docked to the 5 亥 ring type resonator portion. The optical transmitter according to the Uth aspect of the patent scope further includes the optical transmitter of the gain portion and the interesting conjugate portion, at least the woven fabric, and the gain portion It is a Fabry-Perot direct modulation laser wafer. 14. The patent device according to Item 1 () of the patent surface, wherein (4) the ring resonator T is embedded in the semiconductor substrate, and wherein the spectrum is formed in the optical communication with the dome resonator portion In the semiconductor substrate. The optical transmitter of claim 14, wherein the spectral shaping data encoder comprises a plurality of resonator rings in optical communication with the annular resonator portion. 16. The optical transmitter of claim 17 further comprising: an output light benefit placed between the ring resonator portion and the spectral shaping filter. 17. An optical transmitter comprising: 21 1363508 October 26, 100 replacement page. A direct modulation laser that is adjustable in a first frequency range, wherein the direct modulation laser includes: a gain portion And an outer cavity, the outer cavity comprising a plurality of etalon; a spectral shaping filter 'positioned to receive one of the direct modulated laser outputs and comprising a plurality of periodic pass τ 'the plurality of passbands are located at the a frequency range; a controller coupled to the adjustable direct modulation laser and programmed to cause the direct modulation laser to emit a first-adiabatic broadening compression pulse and to cause the direct modulation laser Transmitting a second adiabatic broadening compression pulse, the first adiabatic broadening dust pulse having a peak frequency located in the first passband of the plurality of passbands, the second adiabatic broadening dust pulse having a location The first passband of the plurality of passbands is not the peak passband of the plurality of passbands, and the second passband (10); and, between the cups and the plurality of etalons. 18. A method for transmitting an optical signal, comprising: causing a direct modulation laser to emit a 坌 奸 & amp , , , , , , , , , , , , , , , , , , , , , , , , , , , 巴 巴Offset; transmitting the pulse to one of the plurality of passbands - the peak frequency is a number of passes, and the younger adjusts the direct modulated thunder (four) two-way: and two fundamental frequencies The frequency-to-frequency pulse of the second peak frequency is included in a second passband from a first passband, and the second peak frequency is at the complex number 22 1363508 ------- October 26 曰 replacement page - causes the direct modulation laser to emit the first adiabatic pulse, comprising transmitting a light signal through a gain portion and first and second sampling gratings, wherein the first and second sampling gratings pass through An optical power splitter is coupled to the gain portion; and: adjusting the direct modulated laser to emit the second adiabatic pulse, comprising independently varying the first and second sampled rasters. 19. The method of transmitting an optical signal according to claim 18, wherein the first fundamental frequency is farther from the peak frequency of the first passband than the first peak frequency. 2. The method of transmitting an optical signal as described in claim 18, further comprising adjusting the spectral shaping filter to shift the first and second passbands. 21. The method of transmitting an optical signal according to claim 22, wherein the direct modulation laser emits the first and second adiabatic pulses, including transmitting a light signal through a gain portion and a resonator portion, The resonator portion includes an optical path that is substantially larger than an optical path of the gain portion. 22. The method of transmitting an optical signal as described in claim ls, wherein the direct modulated laser comprises: a gain portion and an outer cavity, the outer cavity comprising an optical path greater than a δ 玄 gain The light path of the ministry is twice. 23. The method of transmitting an optical signal as recited in claim 4, further comprising reverse biasing the first and second sampled gratings. 24. - A method of transmitting optical signals, including · · 'A direct modulation laser emission - the first adiabatic pulse, including from a first base. 23 100 years〗 on October 26 replacement page ·, to - - peak frequency - frequency offset; ~ peak ^ the series to the Wei-passband-spectrum shaping ship, the first shell is in the - passband of the plurality of passbands, and the predicate Directly modulating the laser to emit a second adiabatic pulse comprising a frequency offset from a second fundamental frequency to a second peak frequency, the second peak frequency being in a second pass of the plurality of passbands Within the band, ... wherein the resident visit visits the first-slot pulse, including the first and second resonators that transmit the optical break-through gain and the gain to the gain portion; and adjust the direct-modulated thunder Shooting to emit the second adiabatic pulse includes varying the temperature of at least a portion of the first and second ring resonators that are independent of one another. 25. A method of transmitting an optical signal, comprising: ???a direct modulation laser emission - a first adiabatic pulse comprising a frequency offset from a first fundamental frequency to a first peak frequency; transmitting the pulse to a plurality of a spectral shaping filter of the passband, the first peak frequency being within a first passband of the plurality of passbands; and adjusting the direct modulated laser to emit a second adiabatic pulse, comprising from a a frequency offset from a first fundamental frequency to a second peak frequency, wherein the second peak frequency is within a second pass band of the plurality of pass bands, wherein the first radiant is directly modulated by the laser to emit the first thermal insulation The pulse includes transmitting a light signal through a gain portion and coupling to the gain portion and transmitting through an air gap to replace the page on October 26, 2014; the first and second etalons of the separation; and adjusting the Directly modulating the laser to emit the second adiabatic pulse, comprising varying the temperature of at least a portion of the first and second etalons. 25 1363508 Replacement page on October 26, 100 - VII. Designated representative map: (1) The representative representative of the case is: (3). (b) The symbol of the symbol of this representative figure is briefly described: 28 broken wafer 30 laser diode chip 32 anti-reflective coating 34 laser waveguide 36 reflective coating φ 38a, 38b magnetic resonance 遽 遽 40 40 40 phase control 42a, 42b, and 42c ribbon heaters 44. VIII. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW96149737A 2006-12-22 2007-12-24 Widely tunable chirp managed laser TWI363508B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87686406P 2006-12-22 2006-12-22

Publications (2)

Publication Number Publication Date
TW200840249A TW200840249A (en) 2008-10-01
TWI363508B true TWI363508B (en) 2012-05-01

Family

ID=44821099

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96149737A TWI363508B (en) 2006-12-22 2007-12-24 Widely tunable chirp managed laser

Country Status (1)

Country Link
TW (1) TWI363508B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104718748B (en) * 2012-08-23 2018-01-16 菲尼萨公司 Integration laser and modulator transmitter for CATV applications

Also Published As

Publication number Publication date
TW200840249A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
EP1679771B1 (en) Multiple resonator and variable-wavelength light source using the same
US7962045B2 (en) Optical transmitter having a widely tunable directly modulated laser and periodic optical spectrum reshaping element
US7664156B2 (en) Wavelength tunable laser
JP2022522796A (en) Silicon Photonics External Resonator-type Synchronous Laser Wavelength Control Method
US8831049B2 (en) Tunable optical system with hybrid integrated laser
US8908723B2 (en) External cavity widely tunable laser using a silicon resonator and micromechanically adjustable coupling
TWI251393B (en) Tunable laser
US20100232458A1 (en) Wavelength Tunable External Cavity Laser
JP2008251673A (en) Optical device and manufacturing method therefor
US20050213618A1 (en) Semi-integrated designs for external cavity tunable lasers
US20020076149A1 (en) Channel-switched cross-connect
US8670470B2 (en) Tunable Laser
CA2424574A1 (en) Tunable external cavity laser
US9817190B2 (en) Tunable wavelength filter with embedded metal temperature sensor and its application to external-cavity type tunable wavelength laser
US6934313B1 (en) Method of making channel-aligned resonator devices
CN108899758A (en) A kind of hybrid integrated tunable external cavity laser and wavelength tuning method
TWI363508B (en) Widely tunable chirp managed laser
CN102570275B (en) Laser capable of tuning wavelengths
CN202817480U (en) Laser with tunable wavelength
KR20160010803A (en) Tunable light source
CN110048303A (en) A kind of laser and Optical Maser System
KR101631981B1 (en) Tunable wavelength filter and tunable wavelength laser module with embedded thin film metal temperature sensor
JP5553248B2 (en) Optical device and manufacturing method thereof
WO2007123334A1 (en) Wavelength tunable external cavity laser
KR20160047287A (en) Multichannel Wavelength Tunable External Cavity Laser

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees