TW200840249A - Widely tunable chirp managed laser - Google Patents

Widely tunable chirp managed laser Download PDF

Info

Publication number
TW200840249A
TW200840249A TW96149737A TW96149737A TW200840249A TW 200840249 A TW200840249 A TW 200840249A TW 96149737 A TW96149737 A TW 96149737A TW 96149737 A TW96149737 A TW 96149737A TW 200840249 A TW200840249 A TW 200840249A
Authority
TW
Taiwan
Prior art keywords
laser
optical
gain
resonator
optical transmitter
Prior art date
Application number
TW96149737A
Other languages
Chinese (zh)
Other versions
TWI363508B (en
Inventor
Daniel Mahgerefteh
Kevin Mccallion
Yasuhiro Matsui
Original Assignee
Finisar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Finisar Corp filed Critical Finisar Corp
Publication of TW200840249A publication Critical patent/TW200840249A/en
Application granted granted Critical
Publication of TWI363508B publication Critical patent/TWI363508B/en

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

A chirp managed laser (CMLTM) optical transmitter is disclosed including a widely tunable laser coupled to a periodic OSR. The laser is tuned to generate pulses corresponding to passbands of the OSR spanning a wide range of frequencies. The laser includes a gain section having an optical path length substantially shorter than the total optical path length of the laser. The laser may be a Y-branch laser having reverse-biased sampled gratings or ring resonator filters tuned by stripe heaters. The laser may also include a reflective external cavity section tunable by modulating the temperature of ring resonators or etalons. The OSR may be integrally formed with the external cavity of the ECL laser.

Description

200840249 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種光傳送器。 【先前技術】 展寬壓縮管理雷射(chirp managed laser ; CMLT1VI)中,雷射 係以高偏壓位準作業,並且經調變以產生鱗和振幅均被調變之 絕熱展寬壓縮脈衝。具有頻率相依傳輸設定檔之光譜整形濾波器 (optical spectrum reshaper; 0SR)接收雷射之輸出,並且輸出呈 有增強振幅之碱。光譜整猶波輯過轉換觸為調触 增加消光比。 展見壓縮管理雷射系統中,需要快速頻率調變。雖铁很多帝 射被調整為㈣的解,但是並非所有均如超出每秒百債位: =之㈣鱗之醉。此外,可充分_速率之雷 射或者如此麟較寬翻之紐辭 合展寬_管轉概狀脈衝。 考〜,去產生適 鑒於上述問題,本領域需要提供一種先 用於資料速率超ψ + r 门田射,適合 、枝幻GGb/S之展望辭 寬範圍之頻率。 子中且跨越較 【發明内容】 第一頻率範圍_整。放置光譜整形濾波 在本發明之-個方面,-種光傳送器包含可調雷射其可於 器以接收雷射之輪出, 200840249 亚且包合位於第—解顧之内的複數悔赚通帶。齡至可 調雷射之控制程式化,令雷射發射出峰頻位於複數個通帶之 第-通帶_絕寬壓雜衝,接下_整雷_產生蜂頻位 於複數個通帶之第二通帶内的絕熱展寬壓縮脈衝,其中第一通帶 與第二通帶不同。 在本發明之另―方面,雷射包含增益部,增益部之光程實質 t小於雷射之整個絲。例如,雷射之絲可能介於增益部之光 程的兩倍和五倍之間。 本电月之另$面,雷射包含增益部,增益部透過光學功 率分配^耦合至第一和第二取樣光柵。取樣光拇被反向偏壓以便 於產生向貧料速率之絕熱脈衝。依照熱光效應透過改變取樣光柵 之溫度以調整雷射。 力^本發明之另一方面,雷射包含麵合至環形共振器部之增益 部。環形共振合至帶狀加熱器,帶狀加熱㈣_立地改變 環形共振器之頻率響應。部分實施射,環形共振器形成於一晶 片之上,此晶片耦合至形成於不同晶片上的雷射。 在本么月之$方面’光譜整开)濾'波器形成於與環形共振器 相Γ的日日f之上’亚且光_合至雷射部;其巾加熱11分別地輕合 至弟-和第二環,透萄立地輕加熱器、的溫度,㈣ 以調整雷射。 n 範 本發明之這些及其他概將在以下描述和所社巾請專利 200840249 圍中體現得更加明顯,或者從本發明之實踐中得以理解。 【實施方式】 t參考「第1圖」,光學傳送器模組1G包細合至光譜整形 '渡波器14之多重雷射(multi韻ion) u。光譜整形濾波器之輪出 -耦合聽合光學器件16例如光_線,從喻合傳送器至光纖。 光譜整形濾波器14轉換來自多重雷射12之調頻訊號為調幅气 號。但是’光譜整雜波H之輸出仍義持調頻。光譜整形渡波 f器、可以具體化為一或多個濾波器,包含:耦合多腔(靖_ mdti-cavity ; CMC)濾波器、週期多腔標準具(etai〇n)、光纖布 拉格光柵(Bmgg grating)、環形共振器濾波器,或者具有波長相 關相耗之任何其他光學元件,但並非限制於此。光譜整形滤波器 14還包§光緘、及爾-陶击斯(Girejp〇um〇is)干涉儀,或者具有 色散(chromatic dispersion)之某些其他元件。 覓頻可調展寬壓縮管理雷射傳送器模組1〇可透過可寬調多重 ( 雷射12之10 Gb/s或更咼的直接調變並結合週期光譜濾波元件(例 如光瑨整形濾波器14)而實現。在一實施例中,使用具有高速增 ’ 显部響應和晶片上相位控制部加上游標(Vernier)型反射濾波元 - 件之單塊積體石粦化銦(Indium Phosphorus ; InP)晶片結構。在另 一貫把例中’使用外腔雷射(extemal cavity laser ; ECL)結構, 其中外腔雷射使用高速磷化銦增益部加上容納游標型反射濾波元 件和選擇相位控制部之積體光學晶片。 200840249 上述每-方案均提供相同的雷射功能,即增益和相位控制以 及可寬調^麵反射器。還可以使用其他標準例如製造容易 度、測錢罝、辨雜、輸出神水平、調整速度等以判定哪 種最適合特定應用。 f 之RC時間常數足夠短 這些參數。 重要的疋展見L官理雷射技術中使用的雷射生產足夠高速 之絕熱展寬壓縮,例如可财重可調雷射帽得。其他基本要求 為增益部響應_狀触,雷射本質速度靴繼能,增益部 。此外,較佳地於完整c頻帶調整時保持 為了保證高速性能並且使雷射絕紐寬麵之轉最小化, 重要的是簡短的雷射腔長度。在較佳實_巾,μ雷射包含 增益部,其相較於雷射之整個光程相對地短。在部分實施例中, 雷射的總絲介於增益部之絲的兩倍和五倍之間。在其他實施 例中,雷射的整個光程三倍大於增益部的光程。在部分實施例中, 田射包含共振器部和增益部,其巾共振器部的絲是辦 程的兩倍多。 曰皿° 、木短雷可於前上可取得之氣銦單财重雷射中達成, 通常由JDSU和Syntune公司供應。「第2圖」、「第3圖」、「第4 圖^「第5圖」、「第6圖」以及「第7圖」所示之雷射結構係為 展見壓縮理雷射技術巾可使㈣多重或外腔雷射之例子。「第2 圖」所示為單塊磷化銦基之裝置,與瑞典的Syntune公司使用的類 200840249 似。各方面的尺寸均為標準值。 「第2圖」之系統包含增益部18、相位控制部20、及包含兩 個獨立可調端面鏡(endmirr〇r)或取樣光柵22之〃 γ分支〃結構, 其透過光功率分配器24耦合於相位控制部20。端面鏡具體化為展 見墨縮取樣光栅22,可以透過熱光效應或電流注入的方式而調 整。對於熱調整,帶狀加熱器26鄰接取樣光柵22而放置,用於 調整它們的反射光譜。 弟2圖」之系統形成於單塊多重晶片之上。或者,增益部 18具體化為由碟化銦形成的法布立一拍若(Fab^per〇t;Fp)雷 射其中破化銦搞合至支樓γ分支結構的石夕或絕緣層覆石夕晶片。 第3圖」所示為混合碟化銦一矽之外腔雷射裝置,其中石夕 曰曰片28係直接地對接搞合勝如叩⑷至鱗化姻製造的法布立 拍右田射—極體晶片30。$晶片28還可以使用其他製造材料, ^ ^ Hydex (LittleOptics 材料)。 去2立-拍若雷射二極體晶片3G和石夕晶片π其中之一或兩 在曰曰片之間⑽一抗反射塗層幻。此外,法布立-拍若雷射-極:一㈣一^ 二確保後向反射極低並且從喊錢雷射駐結射的丑殖腔 層::效應。反射塗層36形_ 200840249 28包含兩個串聯的波導環形共振器濾波器撕、娜 口/ ¥目位控制部4〇。部分實施例中,相位控制部额法布立— =雷射二極體“ 3Q整合。相位控卿肩還可能放置於石夕晶 之上的%形共振器濾波器38a、娜之前或之後。 母鈒形共振器濾波器38a、38b和相位控制部4〇係由分離 :帶狀加熱器42a、働和42e控制。此允許腔模式結構之寬頻游 不型5周即何28被設計成與林立-㈣f射之波導 '式匹配以使得之間的輕合實;見低損耗。波導μ引導來自環 形共振賴波器38b之光訊號,並且發送此光訊號至反射塗層 % ’其中光訊號被向後反射通過腔室。在部分實施例中,相位控 制部係為與帶狀加熱器似鄰接放置的波導44之一部分。經過組 合的雷射二極體晶片30㈣晶片28於作業期間被放置於微冷卻 器之上。 清茶考「第4圖」,另一實施例中,矽晶片28包含光譜整形 濾波器14,其採用耦合至波導44之多個環形共振器濾波器4如、 46b和46c的形式。輸出耦合器48放置於波導44和多個環形共振 器濾波器46a、46b及46c之間,以反射透過波導44而向後傳送 至去布立一拍若雷射一極體晶片3〇之部分光功率。雷射二極體晶 片30支撐與抗反射塗層32相對的反射塗層%,從而光能量透過 光譜整形濾波器14被輸出。輪出波導52傳送來自光譜整形濾波 器14之光訊號通過抗反射塗層54。 10 200840249 請參考「第5圖」,在另一實施例中,雷射二極體晶片邓耦 合至中央波導56。環形共振器濾波器38a、38b各自於不同位置耦 合來自中央波導56之光線。在部分實施例中,相位控制部5如、 -58b被置於每一環形共振器濾波器3如、38b之前。相位控制部 • 5如58b被具體化為帶狀加熱器、⑼b,置於部分中央波導56 之上。來自環形共振器濾波器38a、38b之光線被耦合至波導、 62b,波導62a、62b導引光線至高反射鏡64a、64b。環形共振器 ( 濾波态38a、38b之調整係透過放置於每一環形共振器濾波器3如、 38b之至少一部分之上的帶狀加熱器6如、66b而完成。 明苓考「第6圖」,在再另一實施例中,中央波導56透過例 如多模式介面(multi m〇de interface ; mm!)之光功率分配器68 而被耦合至雷射二極體晶片30的平行波導56a、56b代替。每一 環形共振杰濾波器38a、38b柄合至平行波導56a、56b其中之一。 同樣,相位控制部58a、58b各自耦合至平行波導56a、56b其中 (之一。. 请苓考「第7圖」,在另一實施例中,多重雷射12包含外腔, 外月工包含夕個標準具7〇a、70b,較佳的為兩個。標準具7〇a、7〇b * 由矽形成,可以包含本領域已知的塗層和其他處理。另一方面, 標準具可以由具有先進的熱光係數的其他材料形成,此些材料包 含石粦化銦、神化鎵、光聚合物材料以及各種光性結晶。加熱器72a、 72b耦合至各自的標準具7〇a、7〇b,用於調整標準具的頻率響應, 11 200840249 從而使用游標效應(Vemier effect)改變雷射的頻率。「第7圖」 之實施例中,增益晶片74透過透鏡76耦合至標準具70a、7〇b, 7田射之輪出對準標準具之短焦距矽透鏡較佳。在較佳實施例 中透鏡76係為繞射透鏡,提供的光程比習知透鏡短。增益晶片 74形成於鬲速陶瓷載體或類似基板之上。在部分實施例中,增益 晶片包含增益部74a和相位控制部74b,相位控制部灿可獨立地 被控制以調整雷射腔内的相位。 月二鏡(cavity mirror) 78反射光線反向通過標準具,包含與其 反射面相對的抗反射塗層8〇。輸出透鏡82調整從外部腔引導出的 雷射輸出,_合至其他光纖,其他光纖包含例如光譜整形濾波 為14之展覓壓縮管理雷射光纖。在所描緣的實施例中,標準具 7〇a、70b、增益部74a、腔鏡78以及輸出透鏡幻透過空氣間隙而 與其他組件她。多重雷射12之組件還可以全部裝設於熱電冷卻 器(thermo-electric cooler ; TEC) 84之上以便於連貫操作。 「第2圖」、「第3圖」、「第4圖」、「第5圖」、「第6圖」以 及「第7圖」所示之多重雷射範例中,訪端鏡提供可獨立控制 的兩個週期反射光譜。透過利用游標效應,可產生較寬的可調窄 頻帶反射,從而產生具良好旁模壓伽(side m〇de suppressiQn ration ; SMSR)之平穩的單縱模雷射。相位控制部用於微調整個 腔模結構以獲得雷射之最佳性能。 針對展寬壓齡理雷射健,雷繼必須短,以確保能夠為 12 200840249 Η)伽調變達到足夠快的響應時間,並使絕熱展寬壓縮之稀釋 (dilution)最小化。_是,增益部之光程和保留腔之光程之比 率應該盡可能大。這糾騎益部係紐切,可被爾以在1〇 Gbs資料速率時提供腔相位變化。因此,僅僅此部中的相位變化 有助於整體雷射絕熱展寬壓縮,產生的頻率位移透過其餘雷射腔 被稀釋。 針對外腔雷射結構’用於保留短腔程之轨方法係使用「第3 圖」_弟4圖」、乐5圖」和「第6圖」所示之對接輕合技術。 混合晶片之間使用__合的·透鏡元件需麵著延伸的腔 私亚且降低10 Gbs調變之可能性。然而,如「第7圖」所示,可 以使用繞射透鏡,且不會過度增加腔程。 、)#哭了I 8圖」’上述之可寬調多重雷射和光譜整形濾 ^理^!°這點與展寬m =吕理田射配置中的標準分散式回媿雷射之作業類似。作業期 間’結合「第2圖」、「第3圖「 ” 以及「笛7同'、口」弟4圖」弟5圖」、「第6圖」 Θ」所述之可調·被調整,從而由基本頻率產生且 有峰頻偏移之絕熱脈衝 、/、 哉▼ 的上升緣或下降緣優先處於絕 衝的基頻和峰頻之間,但是,也可能為其他相對位置以從光 譜整形毅器中輪出不同_衝形狀。 f位置以伙光 跨越==^二示,光譜整形驗器較佳地包含若干通帶’ 例頻代帶。進一步如「第8圖」所示,通帶具有 13 200840249 相同的形狀,尤其是通帶的上升緣和下_的斜率。例如,光譜 整形濾'波器還可能被設計為具有50G赫的自由頻譜範圍 speetml fange ; FSR),從騎―頻帶之作絲可容祕透過小的 ' 溫度調節被調整以符合國際電信聯盟之中心波長準確度。 * 上述多重之展寬壓鮮理要求在某種程度上取決於不同 版本技術中所使用的調整方法。例如,「第2圖」所示之單塊版本 中,本發明之實驗已發現絕熱展寬1轉應受到取樣光栅22之標 f 麵向偏壓之影響。通常,前向偏壓作為雷射調節巾—種高效且 低功率消耗之方法,但是自域子注人這些區域導致内腔光能之 吸收。反過來’這在滯㈣標上(sl〇wer _ 導致不需要 的相位和頻率雙化。本發明發現透過反向偏壓這些部件以及藉由 定位焦耳加熱完成取樣光柵之調_可加以避免。反向偏壓導致 部分額外的損失’但是消除自由載子之聚集和相關的滞慢,,頻 率變化。在部分實施例中,前向偏塵仍然用於調變相位控制部2〇、 ( 40、58a、58b 和 74b。 第2圖」所不之取樣光柵22或者例如「第3圖」至「第6 圖」之環形共振器濾波器38a、38b及「第7圖」所示之標準具服、 观之其他週期共振器之另一種調節方法係使用熱光效應。鱗化姻 基材料表現纽大的溫度相·射率,大到足關_節低功率 桃。定位加熱可能使用取樣光栅22上直接放置的帶狀加熱器、 %型共振濾波器36a、36b,或者形成於單塊多重晶片中的標準具 14 200840249 70a、70b。仗而可避免自由載子注入和對應的雷射展寬壓縮特性 之退化。此外,設計取樣光栅22、環形共振器遽波器撕、娜、 標準具7〇a、70b以及其他波導結構的材料,以透過避免上述反向 偏壓的方式表現低傳播損失,也有助於保持反射部之低損失。 此方法可允許雷射之高光輸出功率作業。雷射之還可以透過 改變取樣光柵22、環形共振器濾波器38a、38b或標準具7Ga、鳩 =向偏綠準而完成’從而導致料加財的。帶狀加熱 器還可以用於調整相位控制部2〇、4〇、58&、娜和挪。, 明茶考「弟9圖」,在部分實施例中,傳送器模組⑺裳設於 卜罩6之Θ外罩86包含一晶片,晶片用於支撐固定於其上的 夕重田射12和光絲形濾波器14。輕合光學时π能 纖__在外殼稍光譜整形濾綠14賴訊。棒周錄 W圖中未表示)輕合至傳送器模組1〇之輸入%,並且供二 訊號。外部調變器亦可提供控制訊號,例如透過獨立^多重 雷射^辦溫度而調節多重雷㈣和光譜整形濾波^重 ^明以瞒之實施例揭露如上,並非 ί二=Γ本發明之精神和範圍内,所為之更動與潤二t 夫日*利保細圍之内。關於本發明所界定之保護範圍, 苓-所附之申請專利範圍。 X乾阁。月 【圖式簡單說明】 第1圖所示為本發明實施例之可寬調之展寬_管理雷射傳 15 200840249 送器系統; 第2圖所示為本發明實施例之適合可寬調之展寬壓縮乾理+ 射傳送器系統使用之γ分支雷射; 田 第3圖所示為本發明實施例之適合可寬調之展寬壓縮管理+ 射傳送器系統使用之外腔雷射; S田 第4圖所示為本發明實施例之適合可寬調之展寬壓縮管理+ 射傳送器系統使用之具有積體光譜整形濾波器之外腔雷射田 弟5圖所示為本發明實施例之適合可寬調之展寬壓縮带 射傳送器系統使用之另一外腔雷射; S田 第6圖所示為本發明實施例之適合可寬調之展寬壓 射傳送器系統使用之又另一外腔雷射; 、、 田 罘7圖所示為本翻實關之適合可寬 射傳綠系統使用之再另—外腔雷射; 展π細官理雷 f 8圖所示為典型光譜整形舰ϋ組件之光譜響應; 弟9 _示為本發明實施例之可寬調之展寬壓縮管理 &态糸統之實體佈局。 田射傳 【主要元件符號說明】 1、2 展寬壓縮取樣光栅 10 傳送器模組 12 多重雷射 14 光譜整形濾波器 16 200840249 16 耦合光學器件 18 20 22 24 26 28 30 32 34 36 38a、38b 40 增益部 相位控制部 取樣光桃 光功率分配器 帶狀加熱器 珍晶片 雷射二極體晶片 抗反射塗層 雷射波導 反射塗層 環形共振器濾波器 相位控制部 ( 42a、42b、42c帶狀加熱器 44 波導 46a、46b、46c環形共振器濾波器 48 50 52 54 輸出麵合器 反射塗層 輸出波導 抗反射塗層 中央波導 17 56 200840249 56a > 56b 平行波導 58a、58b 相位控制部 60a、60b 帶狀加熱器 62a、62b 波導 64a、64b 南反射鏡 66a、66b 帶狀加熱器 68 光功率分配器 70a、70b 標準具 72a、72b 加熱器 74 增益晶片 74a 增益部 74b 相位控制部 76 透鏡 78 腔鏡 80 抗反射塗層 82 輸出透鏡 84 熱電冷卻器 86 外罩 88 光纖纜線 90 輸入 18200840249 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to an optical transmitter. [Prior Art] In a chirp-managed laser (CMLT1VI), the laser operates at a high bias level and is modulated to produce an adiabatic broadening compression pulse in which both scale and amplitude are modulated. An optical spectrum reshaper (OSR) having a frequency dependent transmission profile receives the output of the laser and outputs an alkali with enhanced amplitude. The spectrum is filtered and the transition is touched to increase the extinction ratio. See the compression management laser system, which requires fast frequency modulation. Although many irons have been adjusted to the solution of (4), not all of them are like the 100-bit debt per second: = (four) scales drunk. In addition, it can be fully _ speed laser or such a wide ribs widened to extend the width _ tube to the general pulse. In view of the above problems, the field needs to provide a frequency for the wide range of prospects for the data rate super ψ + r Menfield shots. In the sub-section and spanning the first aspect of the invention, the first frequency range is _. Placing Spectral Shaping Filtering In one aspect of the invention, the optical transmitter includes an adjustable laser that can receive the laser in turn, and the 200840249 is included in the first-to-review Passband. The control of the age-to-adjustable laser is programmed so that the laser emits a peak frequency at the first passband of the plurality of passbands _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ An adiabatic broadening compression pulse within the second passband, wherein the first passband is different than the second passband. In still another aspect of the invention, the laser includes a gain portion, and the optical path of the gain portion is substantially smaller than the entire filament of the laser. For example, the silk of the laser may be between two and five times the path of the gain section. On the other side of the electricity month, the laser includes a gain portion, and the gain portion is coupled to the first and second sample gratings through optical power distribution. The sampled light thumb is reverse biased to produce an adiabatic pulse to the lean rate. The laser is adjusted by changing the temperature of the sampled grating in accordance with the thermo-optic effect. In another aspect of the invention, the laser includes a gain portion that is coupled to the ring resonator portion. The ring resonance is combined with the strip heater, and the strip heating (4) _ changes the frequency response of the ring resonator. Partially implemented, a ring resonator is formed over a wafer that is coupled to lasers formed on different wafers. In the monthly aspect of the month, the 'spectral unwinding' filter is formed on the day f opposite to the ring resonator, and the light is turned into the laser portion; Brother - and the second ring, the temperature of the light heater, (4) to adjust the laser. These and other aspects of the present invention will become more apparent from the following description and the disclosure of the application of the present application. [Embodiment] t Referring to "Fig. 1", the optical transmitter module 1G package is fine-tuned to the spectral shaping 'multiple lasers' of the waver 14. The round-out of the spectral shaping filter - coupled to the optics 16 such as the light_line, from the transmitter to the fiber. The spectral shaping filter 14 converts the frequency modulated signal from the multiple lasers 12 to an amplitude modulated gas number. However, the output of the spectral whole clutter H is still frequency-controlled. The spectral shaping wave wave device can be embodied as one or more filters, including: coupled multi-cavity (jing_mdti-cavity; CMC) filter, periodic multi-cavity etalon (etai〇n), fiber Bragg grating (Bmgg) Grid, ring resonator filter, or any other optical component with wavelength dependent phase loss, but is not limited thereto. The spectral shaping filter 14 also includes a Gaussian, Girejp〇um〇is interferometer, or some other component with chromatic dispersion.觅 Frequency Adjustable Widening Compression Management Laser Transmitter Module 1 〇 Wide adjustable multi-tone (10 Gb/s or more direct modulation of laser 12 combined with periodic spectral filtering components (eg pupil shaping filter) In an embodiment, a monolithic indium phosphide (Indium Phosphorus) having a high-speed increasing portion response and a phase on-wafer control unit plus a Vernier type reflection filter element is used. InP) wafer structure. In another example, an external cavity laser (ECL) structure is used, in which the external cavity laser uses a high-speed indium phosphide gain portion plus a vernier-type reflection filter element and selective phase control. The integrated optical wafer of the Department 200840249 Each of the above-mentioned schemes provides the same laser function, namely gain and phase control and a wide-range reflector. Other standards such as ease of manufacture, money measurement, and miscellaneous can also be used. Output the level of the gods, adjust the speed, etc. to determine which is best for the particular application. The RC time constant of f is short enough for these parameters. Important developments are seen in the laser production used in L official laser technology. Speed adiabatic broadening compression, such as a weight-adjustable laser cap. Other basic requirements are the gain response _-touch, the laser-equivalent speed relay, and the gain portion. Further, preferably when the full c-band is adjusted In order to ensure high speed performance and minimize the rotation of the laser wide face, it is important to have a short length of the laser cavity. In a better case, the μ laser contains a gain portion which is comparable to the entire laser. The optical path is relatively short. In some embodiments, the total filament of the laser is between two and five times the filament of the gain portion. In other embodiments, the entire optical path of the laser is three times greater than the gain portion. In some embodiments, the field consists of a resonator portion and a gain portion, and the wire of the towel resonator portion is more than twice as long as the process. The dish is a gas, and the short wood can be obtained in the front. Achieved in a single-profit laser, usually supplied by JDSU and Syntune. "2nd", "3rd", "4th", "5th", "6th" and "7th" The illustrated laser structure is an example of a (4) multiple or external cavity laser that can be seen with a compression laser technology towel. Figure 2 shows a monolithic indium phosphide based device, similar to the class 200840249 used by Syntune in Sweden. The dimensions of all aspects are standard values. The system of Figure 2 contains the gain section 18 and phase control. The portion 20 and the γ 〃 branch 包含 structure including two independently adjustable end mirrors or sample gratings 22 are coupled to the phase control portion 20 through the optical power splitter 24. The end mirror is embodied as an ink The downsampling grating 22 can be adjusted by means of thermo-optic effect or current injection. For thermal adjustment, the strip heater 26 is placed adjacent to the sampling grating 22 for adjusting their reflection spectra. The system of the "Fig. 2" is formed in On top of a single multi-chip. Alternatively, the gain portion 18 is embodied as a Fab^per〇t (Fp) laser formed by indium-plated indium, in which the broken indium is bonded to the γ branch structure of the branch building or the insulating layer is covered. Shi Xi wafer. Figure 3 shows a hybrid disc-indium-in-one-outdoor laser device, in which the Shi Xizhen piece 28 series directly docks to make a victory (such as 叩 叩 (4) to the scaly marriage made by Fabri shot right field shot - Polar body wafer 30. Other materials can be used for wafer 28, ^ ^ Hydex (LittleOptics Materials). Go to 2 stand-ups if the laser diode chip 3G and the stone lithium wafer π one or two between the cymbals (10) an anti-reflective coating magic. In addition, Fabri-Pu Ruo-Lao-Pole: One (four)-one two ensures that the retroreflection is extremely low and the ugly layer:: effect from the shouting of the laser. The reflective coating 36-shaped _ 200840249 28 includes two series-connected waveguide ring resonator filter tearing, Na port / ¥ position control unit 4 〇. In some embodiments, the phase control section is arbitrarily set to = "laser diode" "3Q integration. The phase control shoulder may also be placed before or after the %-shaped resonator filter 38a, Na. The mother-shaped resonator filters 38a, 38b and the phase control portion 4 are controlled by separation: strip heaters 42a, 働 and 42e. This allows the wide-band mode of the cavity mode structure to be designed for 5 weeks, that is, 28 Lin Li-(d) f-waveguide's type matching to make lightness between the two; see low loss. The waveguide μ guides the optical signal from the ring resonance filter 38b and sends the optical signal to the reflective coating % 'where the optical signal Reflected rearward through the chamber. In some embodiments, the phase control portion is part of a waveguide 44 that is placed adjacent to the strip heater. The combined laser diode wafer 30 (four) wafer 28 is placed during operation Above the micro-cooler. "Calm 4", in another embodiment, the ruthenium wafer 28 includes a spectral shaping filter 14 that employs a plurality of ring resonator filters 4, 46b and 46c coupled to the waveguide 44. form. The output coupler 48 is placed between the waveguide 44 and the plurality of ring resonator filters 46a, 46b and 46c for reflection through the waveguide 44 and is transmitted backward to a portion of the light of the laser chip 3 power. The laser diode wafer 30 supports a % of the reflective coating opposite the anti-reflective coating 32 so that the light energy is output through the spectral shaping filter 14. The wheeled waveguide 52 transmits the optical signal from the spectral shaping filter 14 through the anti-reflective coating 54. 10 200840249 Please refer to "figure 5". In another embodiment, the laser diode Deng is coupled to the central waveguide 56. The ring resonator filters 38a, 38b each couple light from the central waveguide 56 at different locations. In some embodiments, phase control section 5, such as -58b, is placed before each of the ring resonator filters 3, such as 38b. The phase control unit 5 is embodied as a strip heater, (9)b, as placed on the partial center waveguide 56. Light from the ring resonator filters 38a, 38b is coupled to a waveguide 62b that directs light to the high mirrors 64a, 64b. The ring resonator (the adjustment of the filtered states 38a, 38b is accomplished by a strip heater 6 such as 66b placed over at least a portion of each of the ring resonator filters 3, 38b. Figure 6 "Figure 6 In still another embodiment, the central waveguide 56 is coupled to the parallel waveguide 56a of the laser diode wafer 30 via an optical power splitter 68 such as a multimode interface (mm!). Instead of 56b, each of the ring resonator filters 38a, 38b is coupled to one of the parallel waveguides 56a, 56b. Similarly, the phase control portions 58a, 58b are each coupled to the parallel waveguides 56a, 56b (one of them. In Fig. 7, in another embodiment, the multiple lasers 12 comprise external cavities, and the outer moons comprise an etalon 7a, 70b, preferably two. The etalon 7〇a, 7〇 b* formed of tantalum may include coatings and other treatments known in the art. On the other hand, the etalon may be formed of other materials having advanced thermo-optic coefficients, including indium antimonide, gallium deuteride, Photopolymer material and various photocrystallization. Heaters 72a, 72b are coupled Combined with the respective etalon 7〇a, 7〇b, used to adjust the frequency response of the etalon, 11 200840249 thus using the Vemier effect to change the frequency of the laser. In the embodiment of Figure 7, the gain The wafer 74 is coupled to the etalon 70a, 7〇b through the lens 76, and is preferably a short focal length lens of the alignment etalon of the field. In the preferred embodiment, the lens 76 is a diffractive lens providing light. The lens is shorter than the conventional lens. The gain wafer 74 is formed on an idle ceramic carrier or the like. In some embodiments, the gain wafer includes a gain portion 74a and a phase control portion 74b, and the phase control portion can be independently controlled to adjust the Ray The phase inside the cavity. The cavity mirror 78 reflects the light back through the etalon and contains an anti-reflective coating 8 相对 opposite the reflective surface. The output lens 82 adjusts the laser output from the external cavity, _ In conjunction with other fibers, other fibers include, for example, a spectral shaping filter that is a compression-managed laser fiber. In the depicted embodiment, etalon 7A, 70b, gain portion 74a, cavity mirror 78, and output lens fantasy Through the air gap and other components, the multiple laser 12 components can also be installed on the thermo-electric cooler (TEC) 84 for continuous operation. "2nd picture", "3rd picture In the multiple laser examples shown in "4th", "5th", "6th" and "7th", the visitor mirror provides two periodic reflection spectra that can be independently controlled. The vernier effect produces a wide adjustable narrowband reflection, resulting in a smooth single longitudinal mode laser with good side modulo sag (SSR). The phase control is used to fine tune the cavity mode structure to achieve the best performance of the laser. For the widening of the age of the thunder, the thunder must be short to ensure that the response time is fast enough for the 12 200840249 伽 gamma modulation, and the dilution of the adiabatic expansion compression is minimized. _ Yes, the ratio of the optical path of the gain section to the optical path of the retention cavity should be as large as possible. This correction is a new cut, which can be used to provide cavity phase changes at 1 Gbs data rate. Therefore, only the phase change in this section contributes to the overall laser adiabatic stretch compression, and the resulting frequency shift is diluted through the remaining laser cavity. For the external cavity laser structure, the method for retaining the short cavity is to use the docking and light combination technique shown in "Fig. 3", "4", "Le 5" and "6". The use of __ combined lens elements between the hybrid wafers is required to face the extended cavity and reduce the possibility of 10 Gbs modulation. However, as shown in Figure 7, a diffractive lens can be used without excessively increasing the cavity. ,) #哭了I 8图”” The above-mentioned wide-adjustable multiple laser and spectral shaping filter ^^°° is similar to the operation of the standard decentralized retroreflective laser in the widening m = Lu Litian shooting configuration. During the operation period, the adjustments are adjusted as described in the "Block 2", "3" and "Bei 7 Tong" and "Dang" brothers 4, "5" and "6" Therefore, the adiabatic pulse generated by the fundamental frequency and having the peak frequency offset, the rising edge or the falling edge of the /, 哉▼ is preferentially between the fundamental frequency and the peak frequency of the absolute impulse, but it may also be other relative positions to be shaped from the spectrum. There are different _ punch shapes in the fitter. The f position is shown by the beam span ==^2, and the spectral shaper preferably includes a number of passbands. Further, as shown in Fig. 8, the pass band has the same shape as 13 200840249, especially the rising edge of the pass band and the slope of the lower _. For example, the spectral shaping filter can also be designed to have a free spectral range of 50 GHz (speetml fange; FSR), which can be adjusted from the ride-band of the wire to a small 'temperature adjustment to conform to the International Telecommunication Union. Center wavelength accuracy. * The above-mentioned multiple expansion requirements are somewhat dependent on the adjustment methods used in different versions of the technology. For example, in the monolithic version shown in "Fig. 2", the experiment of the present invention has found that the adiabatic stretch 1 turn should be affected by the bias of the target f of the sampled grating 22. In general, forward biasing is a method of laser irradiation, which is efficient and low power consumption, but the absorption of light energy from the interior cavity is caused by the application of these areas. Conversely, this is on the stagnation (s) s 导致 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要 不需要. Reverse biasing results in some additional loss 'but eliminates the accumulation of free carriers and associated lags, frequency variations. In some embodiments, forward dusting is still used to modulate the phase control section 2, (40) , 58a, 58b, and 74b. Sample grating 22 as shown in Fig. 2 or ring resonator filters 38a and 38b such as "Fig. 3" to "Fig. 6" and etalon shown in Fig. 7. Another method of adjusting the other periodic resonators of the service and the view is to use the thermo-optic effect. The squamized matrix material exhibits the temperature phase and the rate of the nucleus, and is large enough to the low-power peach. The positioning heating may use the sampling grating. Strip heaters, %-type resonant filters 36a, 36b placed directly on 22, or etalon 14 200840249 70a, 70b formed in a single multi-chip, avoiding free carrier injection and corresponding laser broadening Degradation of compression characteristics. In addition, the material of the sampling grating 22, the ring resonator chopper tear, the nano, the etalon 7〇a, 70b and other waveguide structures are designed to exhibit low propagation loss by avoiding the reverse bias described above, and also to help maintain Low loss of the reflector. This method allows the high light output power of the laser. The laser can also be completed by changing the sampling grating 22, the ring resonator filter 38a, 38b or the etalon 7Ga, 鸠 = to the green 'Therefore, it leads to the increase of the wealth. The ribbon heater can also be used to adjust the phase control parts 2〇, 4〇, 58&, Na and N., and the tea test "Xi 9", in some embodiments, the transmission The cover module (7) is disposed on the cover 6 and the cover 86 includes a wafer for supporting the sigma field 12 and the filament filter 14 fixed thereto. The π energy fiber __ is slightly in the outer casing Spectral shaping filter 14 赖 。 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 棒 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 光谱 光谱Laser control temperature to adjust multiple lightning (four) and light The spectral shaping filter is disclosed in the above embodiments, and is not within the spirit and scope of the present invention, and is modified within the scope of the invention. Scope of protection, 苓- appended patent application scope. X gange. Month [schematic description of the drawings] Figure 1 shows the widening of the widening of the embodiment of the invention _ management laser transmission 15 200840249 transmitter system; Figure 2 is a view showing a gamma-split laser suitable for a wide-tuning widened compression dry-radiation + radiation transmitter system according to an embodiment of the present invention; and Figure 3 is a wide-adjustable widening of the embodiment of the present invention. The compression management + radiation transmitter system uses an external cavity laser; Figure 4 of the S field shows an integrated spectral shaping filter suitable for a wide-tuning widened compression management + emitter transmitter system according to an embodiment of the present invention. The outer cavity laser field brother 5 shows another outer cavity laser suitable for the wide-tuning widened compression belt transmitter system according to an embodiment of the present invention; FIG. 6 shows an embodiment of the present invention. Suitable for wide-tuning widened shot conveyor systems The external cavity laser;,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The spectral response of the plastic raft component; the ninth _ is shown as the physical layout of the wide-tunable stretch compression management &田射传 [Main component symbol description] 1, 2 widened compression sampling grating 10 transmitter module 12 multiple laser 14 spectral shaping filter 16 200840249 16 coupling optics 18 20 22 24 26 28 30 32 34 36 38a, 38b 40 Gain section phase control section sampling light peach light power splitter strip heater Jane wafer laser diode chip anti-reflection coating laser waveguide reflection coating ring resonator filter phase control section (42a, 42b, 42c ribbon Heater 44 Waveguides 46a, 46b, 46c Ring Resonator Filter 48 50 52 54 Output Facer Reflective Coating Output Waveguide Anti-Reflection Coating Central Waveguide 17 56 200840249 56a > 56b Parallel Waveguides 58a, 58b Phase Control Section 60a, 60b strip heaters 62a, 62b waveguides 64a, 64b south mirrors 66a, 66b strip heaters 68 optical power splitters 70a, 70b etalon 72a, 72b heater 74 gain wafer 74a gain portion 74b phase control portion 76 lens 78 Cavity mirror 80 anti-reflective coating 82 output lens 84 thermoelectric cooler 86 housing 88 fiber optic cable 90 input 18

Claims (1)

200840249 十、申請專利範圍: 1· 一種光傳送器,包含有·· 直接凋k雷射,可調於一第一頻率範圍; - 光碏整形濾波态,被放置以接收該直接調變雷射之一輸 含複數倾崎帶,所魏數個通雜麟第一頻率 範圍之内;以及 -控㈣,齡於該可調之直_變雷射,並且被程式化 Γ 贿得該直接調魏射魏第—絕熱展錢縮脈衝,並且使得 該直接調變雷射發射第二絕熱展寬壓縮脈衝,其中該第—絕熱 展寬壓縮脈衝具有位於所述複數個通帶之—第—通帶内的導 頻,該第二絕熱展寬壓縮脈衝具有位於與該所述複數個通帶之 β亥第通▼不同的所述複數個通帶之一第二通帶内的峰頻。 2. 如申明專利範圍第1項所述之光傳送器,其中該直接調變雷射 包含一增益部,該直接調變雷射的一總光程實質上大於該增益 f 部的光程。 3. 如申清專利範圍第2項所述之光傳送器,其中該直接調變雷射 . 包含的一總光程介於該增益部之光程的二倍至五倍之間。 ,4·如申請專利範圍第3項所述之光傳送器,其中該直接調變雷射 包含的一總光程約三倍大於該增益部的光程。 5·如申請專利範圍第1項所述之光傳送器,其中該直接調變雷射 包含一增益部,透過一光功率分配器而耦合至第一和第二取樣 光栅。 ' 19 200840249 6·如申請專利範圍第1項所述之光傳送器,其中該取樣光拇為屏 寬壓縮取樣光栅。 7·如申請專利範圍第5項所述之光傳送器,其中該取樣光柵形成 於一半導體材料中並且被反向偏壓。 8·如申請專利範圍第7項所述之光傳送器,更包含第一和第一力 熱器’为別接近该弟一和弟一取樣光拇;其中該控制器可技作 以透過獨立地調整該加熱器的溫度而調節該直接調變雷射。 9.如申請專利範圍第丨項所述之光傳送器,其中該直接調變雷射 包含耦合至一環型共振器部之一增益部。 10·如申#專利_第丨賴述之光傳送H,其巾該環型共振器部 係形成於一半導體材料中。 11. 如申請專利範圍第1Q項所述之光傳送器,其中該環型共振器 部包含碟化鋼光組件。 12. 如申請專利範圍第1()項所述之光傳送器,其中該環型共振器 部包含第-和第二環,光耦合至該雷射部;且其中加熱器分: 輕合至該第-和第二環,該控制器可操作以透過獨立地調整該 加熱器的溫度而調節該直接調變雷射。 13. 如:請專利範圍第1()項所述之辅送器,更包含—光功率分 配.…亥光功率分配器包含耦合至該雷射部之一輸入,和兩輸 出,其中物型共振器部包含第一和第二環,各自光輕合至該 些輸出之其中之―。 μ 20 200840249 I4·如申印專利範圍第10項戶斤述之光傳送為,其中該增益部對接 耦合至該環型共振器部。 I5·如申凊專利範圍第14項所述之光傳送杰,更包含該雷射部和 , 型共振器部之間的至少,個抗反射表面。 。16·如申請專利範圍第14項所述之光傳送器,其中該雷射部係為 一法布立—拍若(Fabry-Perot)直接調變雷射晶片。 17·如申料概圍第1G賴述之祕送H,其巾該共振器部嵌 於一半導體基板中,且其中該光譜整形濾波器形成於與該共振 器部光通訊的該半導體基板中。 is.如申請專纖_ n項所述之光傳送器,其巾該光譜整形滤 波器包含與該共振器部光通訊的複數個共振器環。 19·如申請專利範圍第17項所述之光傳送器,更包含一輸出耦合 器,放置於該共振器部和該光譜整形濾波器之間。 ' 20.如申請專利範圍第1項所述之光傳送器,其中該直接調變雷射 包含一增益部和包含多個標準具的一外腔。 21·如申請專利範圍第19項所述之光傳送||,更包含—透鏡,位 於該增益部和該多個標準具之間。 22·—種光訊號之傳送方法,包含: 令-直接調”射魏n熱 頻至一第-峰頻之—頻率偏移; “ 傳送該脈衝至包含複數個通帶之—光譜整形滤波器,該第 21 200840249 岭頻處於所述複數個通帶之一第一通帶之内;以及 一夷=即該直接調變雷射以發射—第二絕熱脈衝,包含從一第 二=至—第二峰頻之—頻率偏移,該第二峰輪於所述複數 们逋f之一第二通帶之内。 23. =明專利耗圍第22項所述之光訊號之傳送方法,其中該第 ^頻比該第-峰頻距離該第—通帶之—尖峰傳輸頻率更遠。 2=中圍第22顧敎絲號之傳封法,更包含調 即该光%整形濾波H以移位該第—和第二通帶。 25.如申請專纖_ 22項所述之光減之傳送方法,直中气 直接調變雷射發射鄕—和第二絕熱脈衝,包含傳遞光訊= 過-增盈部和-共振器部,該共振器部包含的—光程實質上大 於比該增益部的光程。 26.如申請專利範圍第22項所述之光訊號之傳送方法,其中該外 腔包含的一光程約大於該增益部之光程兩倍。 { , 27·如申請專利範圍第22項所述之光訊號之傳送方法,其中 令該直接調變雷射發射該第-絕熱脈衝,包含傳遞光訊號 ’ 通過一增益部和第一及第二取樣光栅,其中該第一及第二取^ , 光柵透過一光功率分配器而耦合至該增益部;以及 調節該直接調變雷射以發射該第二絕熱脈衝,包含獨立地 改變該第一和第二取樣光柵之溫度。 更包含反 28·如申請專利範圍第22項所述之光訊號之傳送方法 22 200840249 向偏壓該第-和第二取樣光#。 29·如申請專機1第22項所述之光職之傳送料’並中 令該直接調變雷射發射該[綠 _ 二共振器;以及 通過-增益部和耦合掏益部♦及f ^傳遞光減 凋即敍接具又雷射以發射該第二絕熱脈衝,包含改變彼 此獨立的至少部分該第―和第二環型共振器之溫度。 如申請專利範圍第22項所述之光訊號之傳送方法,其中 、、令該直接調變雷射發射該第—絕熱脈衝,包含傳遞光訊號 通過-增㈣和齡至該增益部且透過_空氣間隙而彼此分 離之第一及第二標準具;以及 調節該直接調變雷射以發射該第二絕熱脈衝,包含改變彼 此镯立的至少部分該第—和第二標準具之溫度。200840249 X. Patent application scope: 1. An optical transmitter comprising: ······················································· One of the inputs contains a complex number of sloping strips, and the Wei number is within the first frequency range of the Tongzilin; and - the control (four) is older than the adjustable straight _ laser, and is stylized and bribed. The Weidi Weidi-adiabatic exhibits a pulse, and causes the direct modulated laser to emit a second adiabatic broadening compression pulse, wherein the first adiabatic broadening compressed pulse has a plurality of passbands in the first passband The pilot, the second adiabatic stretched compression pulse has a peak frequency in a second passband of the plurality of passbands different from the plurality of passbands. 2. The optical transmitter of claim 1, wherein the direct modulation laser comprises a gain portion, a total optical path of the directly modulated laser being substantially greater than an optical path of the gain f portion. 3. The optical transmitter of claim 2, wherein the direct modulation laser comprises a total optical path between two and five times the optical path of the gain portion. 4. The optical transmitter of claim 3, wherein the direct modulation laser comprises a total optical path that is approximately three times greater than an optical path of the gain portion. 5. The optical transmitter of claim 1, wherein the direct modulated laser comprises a gain portion coupled to the first and second sampled gratings via an optical power splitter. The optical transmitter of claim 1, wherein the sampled optical thumb is a screen width compressed sampling grating. The optical transmitter of claim 5, wherein the sampling grating is formed in a semiconductor material and is reverse biased. 8. The optical transmitter of claim 7, further comprising a first and a first heat-heater 'to approach the younger brother and the younger one to sample the optical thumb; wherein the controller is operable to pass the independence The temperature of the heater is adjusted to adjust the direct modulation laser. 9. The optical transmitter of claim </RTI> wherein the direct modulated laser comprises a gain coupled to a one of the toroidal resonator portions. 10. The patent # _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 11. The optical transmitter of claim 1 wherein the toroidal resonator portion comprises a discized steel optical component. 12. The optical transmitter of claim 1 wherein the toroidal resonator portion includes first and second rings, optically coupled to the laser portion; and wherein the heater is: lightly coupled to The first and second rings are operable to adjust the direct modulated laser by independently adjusting the temperature of the heater. 13. For example, please refer to the auxiliary device described in item 1 () of the patent scope, which further includes - optical power distribution. The Haiguang power splitter includes an input coupled to the laser portion, and two outputs, wherein the shape The resonator portion includes first and second rings, each of which is lightly coupled to one of the outputs. μ 20 200840249 I4 · The light transmission of the 10th item of the patent application range is wherein the gain portion is butt-coupled to the ring-shaped resonator portion. I5. The optical transmission device of claim 14, further comprising at least one anti-reflection surface between the laser portion and the type resonator portion. . The optical transmitter of claim 14, wherein the laser portion is a Fabry-Perot direct modulation laser wafer. 17. The present invention is directed to the secret carrier H of the 1G, wherein the resonator portion is embedded in a semiconductor substrate, and wherein the spectral shaping filter is formed in the semiconductor substrate in optical communication with the resonator portion. . An optical transmitter as claimed in claim 1, wherein the spectral shaping filter comprises a plurality of resonator rings in optical communication with the resonator portion. 19. The optical transmitter of claim 17, further comprising an output coupler disposed between the resonator portion and the spectral shaping filter. 20. The optical transmitter of claim 1, wherein the direct modulation laser comprises a gain portion and an outer cavity comprising a plurality of etalon. 21. The optical transmission||, as described in claim 19, further comprising a lens positioned between the gain portion and the plurality of etalons. 22·—A method for transmitting an optical signal, comprising: a direct-tuning “radio n” to a first-peak frequency-frequency offset; “transmitting the pulse to a plurality of passbands—a spectral shaping filter The 21st 200840249 ridge frequency is within one of the first passbands of the plurality of passbands; and the singular = ie, the direct modulated laser to emit - the second adiabatic pulse, including from a second = to - The second peak frequency is a frequency offset, and the second peak is within the second pass band of the plurality of 逋f. 23. The transmission method of the optical signal according to Item 22 of the patent consumption, wherein the first frequency is greater than the first peak frequency of the first pass band. 2 = The sealing method of the 22nd Gushao silk number in Zhongwei, further including the light % shaping filter H to shift the first and second pass bands. 25. For the light reduction transmission method described in the application of the special fiber _ 22, the direct medium gas directly modulates the laser emission 鄕 - and the second adiabatic pulse, including the transmitted light = over - gaining portion and - resonator portion The resonator portion includes an optical path that is substantially larger than an optical path of the gain portion. 26. The method of transmitting an optical signal according to claim 22, wherein the outer cavity comprises an optical path that is greater than about twice the optical path of the gain portion. {27. The method of transmitting an optical signal according to claim 22, wherein the direct modulation laser emits the first adiabatic pulse, including transmitting a light signal' through a gain portion and first and second Sampling the grating, wherein the first and second gratings are coupled to the gain portion through an optical power splitter; and adjusting the direct modulated laser to emit the second adiabatic pulse, comprising independently changing the first And the temperature of the second sampled grating. Further, the method of transmitting the optical signal as described in claim 22 of the patent application section 22 200840249 biases the first and second sampled light #. 29·If you apply for the transmission of the light service described in Item 22 of the special plane 1 and let the direct modulation laser emit the [green_two resonator; and pass-gain section and coupling benefit section ♦ and f ^ The transmitted light is reduced and the laser is fired to emit the second adiabatic pulse, including varying the temperature of at least a portion of the first and second ring resonators that are independent of each other. The method for transmitting an optical signal according to claim 22, wherein the direct modulation laser emits the first adiabatic pulse, including transmitting a light signal through-increasing (four) and age to the gain portion and transmitting _ First and second etalons separated from each other by an air gap; and adjusting the direct modulation laser to emit the second adiabatic pulse, comprising changing a temperature of at least a portion of the first and second etalons that are bound to each other.
TW96149737A 2006-12-22 2007-12-24 Widely tunable chirp managed laser TWI363508B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87686406P 2006-12-22 2006-12-22

Publications (2)

Publication Number Publication Date
TW200840249A true TW200840249A (en) 2008-10-01
TWI363508B TWI363508B (en) 2012-05-01

Family

ID=44821099

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96149737A TWI363508B (en) 2006-12-22 2007-12-24 Widely tunable chirp managed laser

Country Status (1)

Country Link
TW (1) TWI363508B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108173596A (en) * 2012-08-23 2018-06-15 菲尼萨公司 For the integration laser and modulator transmitter of CATV applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108173596A (en) * 2012-08-23 2018-06-15 菲尼萨公司 For the integration laser and modulator transmitter of CATV applications

Also Published As

Publication number Publication date
TWI363508B (en) 2012-05-01

Similar Documents

Publication Publication Date Title
CN113557643B (en) Wavelength control method of silicon photon external cavity tunable laser
US7962045B2 (en) Optical transmitter having a widely tunable directly modulated laser and periodic optical spectrum reshaping element
JP5059601B2 (en) Coolerless integrated circuit and floating wavelength grid photonic integrated circuit (PIC) for WDM transmission networks
WO2017000511A1 (en) Wavelength-tunable external-cavity laser and adjustable light emission module
TWI251393B (en) Tunable laser
US7480425B2 (en) Integrated opto-electronic oscillators
CN111146683B (en) Tunable laser device based on silicon photons and packaging structure thereof
US7260279B2 (en) Integrated opto-electronic oscillators
US20170353001A1 (en) Tunable laser
US6483635B1 (en) Apparatus for light amplification
CN104538841B (en) A kind of hybrid integrated outer cavity adjustable laser based on array waveguide grating
US20200067276A1 (en) External cavity laser
US20050213618A1 (en) Semi-integrated designs for external cavity tunable lasers
CA2424574A1 (en) Tunable external cavity laser
US20130235891A1 (en) Wavelength monitor, wavelength lockable laser diode and method for locking emission wavelength of laser diode
WO2007143627A2 (en) Integrated opto-electronic oscillators
AU2006200889A1 (en) Wavelength tunable laser
US9509119B2 (en) Tunable laser with a cascaded filter and comb reflector
WO2000035132A2 (en) Multiple-wavelength mode-locked laser
CN113937617B (en) Multi-wavelength laser
WO2020107315A1 (en) Two-section dbr laser and monolithic integrated array light source chip
CN108899758A (en) A kind of hybrid integrated tunable external cavity laser and wavelength tuning method
WO2015085544A1 (en) Laser
JP6735666B2 (en) Optical source
TW200840249A (en) Widely tunable chirp managed laser

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees