TWI359971B - Manufacturing method of lcd panel - Google Patents
Manufacturing method of lcd panel Download PDFInfo
- Publication number
- TWI359971B TWI359971B TW95119303A TW95119303A TWI359971B TW I359971 B TWI359971 B TW I359971B TW 95119303 A TW95119303 A TW 95119303A TW 95119303 A TW95119303 A TW 95119303A TW I359971 B TWI359971 B TW I359971B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- pattern
- image
- liquid crystal
- crystal panel
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70791—Large workpieces, e.g. glass substrates for flat panel displays or solar panels
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70258—Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7088—Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Liquid Crystal (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Optical Filters (AREA)
Description
1359971 -m 7.-^8- 年月曰丨够^ 九、發明說明: 【發明所屬之技術領域】 本發明係關於液晶面板的製造方法。詳細地說,乃是 關於在構成液晶面板的基板上曝光形成各種圖案時之圖案 的位置控制。 【先前技術】 在液晶面板的製造程序中,提高面板的像素開口率經 常是重要的課題。特別是在最近,爲了抑制液晶顯示器的 製造成本而趨向採用低價位背光板,針對像素開口率的要 求亦變得嚴格。爲了增大像素開口率,必須要將構成液晶 面板之濾光片基板的黑色矩陣細線化。但是,構成濾光片 基板的元件中,亦存在有不得不配置於黑色矩陣的線寬內 之元件。隨著黑色矩陣的細線化,前述元件的配置便被要 求非常高的位置準確度。 構成液晶面板之各元件的形成,一般是藉由利用光罩 之面曝光加以進行(例如參照專利文獻1)。但是,在利用光 罩之面曝光中由於容易產生圖案位置的偏差,只能夠利用 增加黑色矩陣的線寬吸收位置偏差的影響。因此,在藉由 面曝光的元件形成方面,黑色矩陣的細線化係困難的。 對此’在近幾年,提出有利用數位曝光裝置進行基板 曝光的方法。例如在專利文獻2中提到有,在記錄媒體歪 斜的情況下,能夠修正影像的記錄位置偏差的數位曝光裝 置。 【專利文獻1】特開2002-350897號公報 1359971 100. 7. 2-8----------------------, I牛月曰丨|_正眷換頁 ! __ 【專利文獻2】特開2005-037911號公報 【發明內容】 (發明所欲解決之問題) 近年來,隨著液晶電視等之製品的大型化,在液晶面 板製造程序中所處理的玻璃基板的尺寸已經超越兩公尺。 當基板變大時,即使是些微的溫度變化亦無法忽視玻璃的 變形量。例如,即使是溫度膨脹係數爲32e〃/°C之較低的 玻璃基材,只要有兩公尺的玻璃,在0.15度的溫度變化下 大小就會有l^m的變化。在藉由曝光於層狀形成圖案的過 程中’若是產生此般之溫度變化,所形成的圖案會產生偏 差,製品的良率會惡化。 專利文獻2中提到的裝置,乃是以設置於基板上之定 位記號爲基準在基板上定義區域,藉由對記錄於每一區域 內之影像進行修正之方式,修正記錄位置的偏差。但是, 在大型基板上高密度地形成圖案之情況下,記錄定位記號 而放置的位置,受到某些程度的限制。因此,藉由定位記 號所特定之區域,並不一定會成作爲修正用單位區域之適 當大小領域。 因此’本發明,係在大型基板上高密度地形成圖案之 液晶面板製造程序中,能夠正確地控制曝光位置,即使黑 色矩陣的細線化亦不會造成因圖案的位置偏差導致液晶面 板的開口率降低。此外更能夠防止因產生位置偏差所導致 的良率降低。 (解決課題之手段) 1359971 -.-• H --— *...... 年月日_正替換頁| —— * 本發明之液晶面板製造方法,其特徵爲將構成液晶面 板之至少一種的構造元件藉由含有以下三個步驟之程序以 形成。第1步驟乃是,將存在於基板上之複數個對象由此 基板的拍攝影像中讀取然後取得各對象之位置座標的基板 讀取步驟;第2步驟乃是,將表示將要形成構造元件之圖 案的影像,即記錄於藉由複數之對象的位置所特定區域內 之區域影像,根據基板讀取程序中取得之位置座標進行修 正的影像修正步驟;第3步驟乃是,根據構成在影像修正 步驟中所修正之區域影像的各像素之數値,藉由對掃描基 板之光束進行開啓、關閉控制之方式,在由基板讀取步驟 中取得之位置座標所特定之區域內,記錄由影像修正步驟 所修正後之區域影像的影像記錄步驟。 前述構造元件,具體而言,乃是形成於構成液晶面板 之彩色濾光片基板上之柱狀的間隙物、液晶配向控制材, 此外更可是形成於陣列基板上之薄膜電晶體的通道部、源 極部及/或汲極部、接觸孔部等。 又,前述基板讀取步驟中的讀取對象,可以是以定位 目的所形成之陣列對準記號,亦可以是讀取構成液晶面板 之顯示部之構造元件。 (發明之效果) 依據本發明之液晶面板的製造方法,在形成構成基板 之各元件時,拍攝基板上的複數個位置,取得此位置上存 在之記號或是圖案的實際位置座標,配合此位置偏差將在 此基板上進行曝光紀錄的影像進行變形或移動。因此,能 1359971 .. — - - - - -— — ------ - ·· — ;年月曰懺¥替換頁丨 ί_j 夠以高準確度控制形成於黑色矩陣上之間隙物,以及各元 件的配置位置。 特別是,若能夠不僅識別以位置參照爲目的而形成於 基板端部的對準記號,亦能夠識別彩色濾光片基板的黑色 矩陣、陣列基板的閘電極等,則可不藉由對準記號的設置 間隔,而以小區域爲單位進行位置參照,可不因基板尺寸 或是製品面板的尺寸,而經常以適切的尺寸的區域爲單位 進行位置參照。 【實施方法】 以下,將根據本發明之一實施形態,說明TFT液晶面 板的製造方法。 第1圖表示液晶面板的製造程序之槪要。液晶面板, 乃是將在彩色濾光片基板製造程序1中所製造的彩色濾光 片基板及在陣列基板製造程序2中所製造的TFT陣列基 板,在液晶胞製造程序3中藉由貼合方式加以製造。_ 在彩色濾光片基板製造程序1及陣列基板製造程序2 中,通常,會在一片透明基板上,形成製品面板數片份之 彩色濾光片構造,或是TFT陣列構造。例如,第2圖所示 之彩色濾光片基板4,乃是在寬度大約兩公尺之透明基板 上形成16個數量之20吋液晶面板之彩色濾光片構造5。 在透明基板上,除了彩色濾光片構造5之外,亦形成 有表示基板上之主要位置(四個角落、中心等)的記號6a、 6b、6c、6 d ' 6 e ' 6f、6g、6h 及 6i。在 TFT 陣列基板製造 程序2中亦相同地,會在一片透明基板上’形成液晶面板 1359971 100.-7:^8----------—· I牛月曰後正替換買;1359971 -m 7.-^8- Years of the month ^ IX. Description of the invention: [Technical Field of the Invention] The present invention relates to a method of manufacturing a liquid crystal panel. More specifically, it relates to the positional control of the pattern when various patterns are formed on the substrate constituting the liquid crystal panel. [Prior Art] In the manufacturing process of a liquid crystal panel, increasing the pixel aperture ratio of the panel is often an important issue. In particular, recently, in order to suppress the manufacturing cost of a liquid crystal display, a low-priced backlight panel has been used, and the demand for a pixel aperture ratio has become strict. In order to increase the pixel aperture ratio, it is necessary to thin the black matrix of the filter substrate constituting the liquid crystal panel. However, among the elements constituting the filter substrate, there are elements which have to be disposed in the line width of the black matrix. With the thinning of the black matrix, the configuration of the aforementioned components is required to have a very high positional accuracy. The formation of each element constituting the liquid crystal panel is generally performed by exposure using a mask (see, for example, Patent Document 1). However, in the exposure of the surface using the reticle, it is easy to cause variations in the pattern position, and it is only possible to increase the influence of the positional deviation of the line width of the black matrix. Therefore, the thinning of the black matrix is difficult in terms of element formation by surface exposure. In recent years, there has been proposed a method of performing substrate exposure using a digital exposure device. For example, Patent Document 2 mentions a digital exposure apparatus capable of correcting a deviation in recording position of an image when the recording medium is skewed. [Patent Document 1] JP-A-2002-350897, No. 1,359,971 100. 7. 2-8----------------------, I Niu Yuejun|_眷 眷 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 The size of the treated glass substrate has exceeded two meters. When the substrate becomes large, the amount of deformation of the glass cannot be ignored even with slight temperature changes. For example, even a glass substrate having a lower coefficient of thermal expansion of 32 e 〃 / ° C has a change in size of 0.1 m under a temperature change of 0.15 degrees as long as there is a glass of two meters. In the process of forming a pattern by exposure to a layer, if such a temperature change occurs, the formed pattern is deviated, and the yield of the product is deteriorated. The device mentioned in Patent Document 2 defines a region on a substrate based on a positioning mark provided on a substrate, and corrects the deviation of the recording position by correcting the image recorded in each region. However, in the case where a pattern is formed at a high density on a large substrate, the position at which the positioning marks are recorded is limited to some extent. Therefore, by arranging the area specified by the symbol, it does not necessarily become an appropriate size field for the unit area for correction. Therefore, the present invention is capable of accurately controlling the exposure position in the liquid crystal panel manufacturing process in which a pattern is formed on a large substrate at a high density, and even if the thinning of the black matrix does not cause the aperture ratio of the liquid crystal panel due to the positional deviation of the pattern. reduce. In addition, it is possible to prevent a decrease in yield due to positional deviation. (Means for Solving the Problem) 1359971 -.-• H --- *...... Year Month Day_Position Replacement Page| —— * The method for manufacturing a liquid crystal panel of the present invention is characterized in that at least a liquid crystal panel is to be formed A construction element is formed by a procedure comprising the following three steps. The first step is a substrate reading step of reading a plurality of objects existing on the substrate and capturing the position coordinates of the respective objects, and the second step is to indicate that the structural elements are to be formed. The image of the pattern, that is, the image of the area recorded in the area specified by the position of the plurality of objects, and the image correction step corrected according to the position coordinates obtained in the substrate reading program; the third step is that the image is corrected according to the composition The number of pixels of the area image corrected in the step is controlled by the image in the area specified by the position coordinates obtained by the substrate reading step by opening and closing the light beam of the scanning substrate. The image recording step of the area image corrected by the step. Specifically, the structural element is a columnar spacer formed on a color filter substrate constituting the liquid crystal panel, a liquid crystal alignment control material, and further a channel portion of the thin film transistor formed on the array substrate, Source portion and/or drain portion, contact hole portion, and the like. Further, the object to be read in the substrate reading step may be an array alignment mark formed by positioning, or may be a structural element for reading a display portion constituting the liquid crystal panel. Advantageous Effects of Invention According to the method for manufacturing a liquid crystal panel of the present invention, when forming each element constituting the substrate, a plurality of positions on the substrate are photographed, and an actual position coordinate of the mark or the pattern existing at the position is obtained, and the position is matched. The deviation deforms or moves the image on which the exposure is recorded on the substrate. Therefore, it is possible to control the gap formed on the black matrix with high accuracy, and to replace the page 丨 _ _ _ _ The location of each component. In particular, if it is possible to recognize not only the alignment marks formed on the end portions of the substrate for the purpose of positional reference but also the black matrix of the color filter substrate or the gate electrode of the array substrate, the alignment marks can be omitted. The interval is set, and the position reference is made in units of small areas, and the position reference can be often performed in units of an appropriate size area regardless of the substrate size or the size of the product panel. [Embodiment] Hereinafter, a method of manufacturing a TFT liquid crystal panel will be described according to an embodiment of the present invention. Fig. 1 shows a summary of the manufacturing process of the liquid crystal panel. The liquid crystal panel is a color filter substrate manufactured in the color filter substrate manufacturing program 1 and a TFT array substrate manufactured in the array substrate manufacturing program 2, and is bonded in the liquid crystal cell manufacturing program 3. The way to manufacture. In the color filter substrate manufacturing program 1 and the array substrate manufacturing program 2, a color filter structure or a TFT array structure in which a plurality of product panel sheets are formed is usually formed on a single transparent substrate. For example, the color filter substrate 4 shown in Fig. 2 is a color filter structure 5 in which 16 numbers of 20-inch liquid crystal panels are formed on a transparent substrate having a width of about two meters. On the transparent substrate, in addition to the color filter structure 5, marks 6a, 6b, 6c, 6d'6e'6f, 6g indicating main positions (four corners, a center, etc.) on the substrate are formed. 6h and 6i. In the same manner as in the TFT array substrate manufacturing process 2, a liquid crystal panel 1359971 100.-7 is formed on a transparent substrate: ^8-----------I is replaced by a cow ;
j · __I 數片份之陣列構造,及表示基板上之位置的記號。彩色‘濾 光片基板及TFT陣列基板,會在液晶胞製造程序3中,在 基板彼此貼合之前,或是貼合之後,分割爲製品尺寸,由 此完成液晶面板。 以下,將針對彩色濾光片基板製造程序1進行說明。 第3圖係說明彩色濾光片基板製造程序1之詳細流程圖。 彩色濾光片基板乃是藉由在基板上形成第3圖之流程圖的 各個步驟所表示元件之方式加以製造。作爲透明基板,可 以使用表面具有氧化矽披覆膜之蘇打玻璃板、低膨脹玻璃 板、無鹼玻璃扳以及石英玻璃板等周知之玻璃板,或者是 使用塑膠薄膜。 如圖所示般,在彩色濾光片基板製造程序1中,首先, 在透明基板上形成黑色矩陣(S101)。第4A圖及第4B圖乃 是將步驟S101中之黑色矩陣形成程序後之基板一部分擴 大表示之圖。第4A圖表示基板之上面,第4B圖表示基板 之剖面,兩圖所示均爲相當於液晶面板約一個像素數量之 區域。 如第4A圖及第4B圖所示般,在本實施形態中,於步 驟S101處,形成膜厚爲0.5〜程度之黑色矩陣圖案8。 黑色矩陣圖案8’乃是由向著一個方向(圖的垂直方向)平行 地延伸的複數條線,與各線垂直的方向上略小於1 00 # m之 短線,以及較其更短的線,形成在垂直方向上以大約150 的間隔交互地突出之構造。在此構造中,一個像素量 的圖案會形成如英文字母的.E三個倂排的模樣。 1359971 脈7:妙----------------- i年月日ii®正替換贫 1- --------- 如後述般’在本實施形態中,將含有石墨黑等之黑色 顏料之感光性阻劑藉由利用曝光顯影加工成前述形狀之方 式形成黑色矩陣圖案8。但是,在本發明中的黑色矩陣的 形成方法、圖案形狀及材料並未有特別限定,可使用任何 周知的技術。例如’特開2004-361447號所說明般,亦可 形成由含有金屬微粒子之感光性組成物所構成之黑色矩 陣。 又’在本實施形態中’與黑色矩陣圖案8同時形成有 第2圖所示之記號6a〜6i。也就是說,將黑色感光性阻劑 的既定場所’曝光爲第2圖所示十字型圖案形狀。 接著,在透明基板7上形成R(紅色)的著色像素層 (S102)。如第5A圖及第5B圖所示般,R像素圖案9,乃是 在透明基板7上的黑色矩陣圖案8其上述平行延伸之複數 條線之間以每3行有1行的比率加以形成。r像素圖案9 的材料’乃是以顏料成分等之紅色著色劑及黏合劑爲主要 成分’必要時包含有由光聚合性的單體或寡聚物所構成之 光聚合化合物’光聚合初始材等材料。 R像素圖案9,乃是將前述材料藉由曝光顯影進而加工 前述形狀加以形成。此時’在本實施形態中,在曝光處理 之前’先進行觀測在步驟S 1 0 1所形成之黑色矩陣圖案8及 記號6 a〜6 i。接著’以觀測後之圖案爲基準而決定形成著 色像素圖案9的區域。針對根據觀測圖案的位置參照,會 在後面加以敘述。 接著’使用含有綠色著色劑、藍色著色劑之材料,藉 -10- 1359971 iOO. 7. ------------------… 牛“卿正替換頁 由相同的方法,在未形成有R的著色像素層之行上,形成 G(綠)的著色像素層及B(藍)的著色像素層(S103、S104)。 第6A圖及第6B圖上,顯示G像素圖案10及B像素圖案 1 1形成後之狀態。又,著色像素圖案的材料並無特別限制, 可使用作爲彩色爐光片的材料之周知的任何材料,在後述 的位置參照用的圖案觀測,則是以透光性愈高的材料愈容 易觀測。 在形成三色的著色像素層之後,接著,形成覆蓋像素 著色層般由透明樹脂所構成之保護膜13(S105)。接下來, 更在其上面藉由噴鍍形成透明電極 14(ITO: Indium Tin Oxide氧化銦錫)(S106)。在本實施形態中,保護膜13約 爲l#m,透明電極14的膜厚約爲800A。前述各層,亦可 採用周知的保護膜或透明電極之材料,在後述的位置參照 用的圖案觀測,則是以透光性愈高的材料愈容易觀測。 接著,在透明電極1 4上’形成間隙物1 2 ( S 1 0 7 )。間隙 物1 2,乃是以能夠平均地控制液晶單胞的間隙程度的間 隔’與黑色矩陣圖案8的線重疊般加以形成。在本實施中, 如第6A圖及第6B圖所示般,在包圍R像素圖案9的周圍 般加以形成之黑色矩陣圖案的E型較短之水平線及垂直線 的交點上’配置高度約2〜4 /z m的圓柱狀間隙物1 2。間隙 物12’乃是由周知的感光樹脂藉由曝光顯影而加工成前述 圖案形狀而形成。 作爲間隙物1 2的材料以採用透明樹脂爲佳,在本實施 形態中亦可以使用透光性低的材料。在本實施形態中,在 1359971 Μ 7...28___________________________________ •' i牛月曰_正替換頁: *___i ' 曝光處理之前,先藉由觀測在步驟S101所形成之黑色矩陣 圖案8及記號6,能夠將間隙物正確地配置於與黑色矩陣 圖案8重疊的位置上。 又,作爲控制液晶胞的間隙的間隙物中,已知有在液 晶胞製造程序中散佈於基板上球狀的間隙物球,在本說明 * 書中,如前述般,將在彩色濾光片基板製造程序1中,藉 由對基板上之既定位置進行曝光所形成之柱狀元件稱爲間 隙物。 接著,在透明電極 14上,形成配向控制材(肋 材)(S108)。第7A圖及第7B圖,表示配向控制材形成後之 基板的狀態。在本實施形態中,配向控制材乃是如第 7A 圖所不般,在著色像素圖案9、10及11上,由向一個方向 平行地形成之複數條線狀圖案,以及向與此方向略成垂直 之方向平行地形成之複數條線狀圖案所構成。又,此線狀 圖案15,係如第7B圖所示般,乃是高度左右之突起 狀的圖.案。此突起狀的圖案在彩色濾光片基板與陣列基板 黏合之後,將液晶胞的液晶分子依既定的方向進行配向。 作爲配向控制材之材料,可使用周知的透明感光性樹脂。 又,即使在配向控制材的形成程序中,亦可進行在步 驟S 1 0 1所形成之黑色矩陣圖案8及記號6的觀測。又,亦 可以配合進行先前形成之間隙物1 2的觀測。然後,在線狀 圖案15形成之際,以所觀察之圖案等的位置作爲基準而調 整圖案的形成位置。 如前述般,在本實施形態中,將構成彩色濾光片基板 -12- 1359971 牛月曰1餐^替換頁:j · __I The array structure of several pieces, and the mark indicating the position on the substrate. The color filter substrate and the TFT array substrate are divided into product sizes in the liquid crystal cell manufacturing process 3 before the substrates are bonded to each other or after bonding, thereby completing the liquid crystal panel. Hereinafter, the color filter substrate manufacturing program 1 will be described. Fig. 3 is a detailed flow chart showing the procedure 1 for manufacturing the color filter substrate. The color filter substrate is manufactured by forming the elements shown in the respective steps of the flowchart of Fig. 3 on the substrate. As the transparent substrate, a well-known glass plate such as a soda glass plate having a yttria-coated film on the surface, a low-expansion glass plate, an alkali-free glass plate, and a quartz glass plate, or a plastic film can be used. As shown in the figure, in the color filter substrate manufacturing program 1, first, a black matrix is formed on a transparent substrate (S101). 4A and 4B are views showing a part of the substrate after the black matrix forming process in step S101 is enlarged. Fig. 4A shows the upper surface of the substrate, and Fig. 4B shows the cross section of the substrate. Both of the figures show areas corresponding to the number of pixels of the liquid crystal panel. As shown in Figs. 4A and 4B, in the present embodiment, in step S101, a black matrix pattern 8 having a film thickness of 0.5 to a degree is formed. The black matrix pattern 8' is a plurality of lines extending in parallel in one direction (the vertical direction of the figure), a short line slightly smaller than the line perpendicular to each line in the direction of each line, and a shorter line, formed in A configuration that alternately protrudes at intervals of about 150 in the vertical direction. In this configuration, a pattern of one pixel amount will form a three-row pattern of .E as an English letter. 1359971 脉 7: Miao----------------- i year and month ii® is replacing poverty 1 -- -------- as described later 'in this embodiment In the photosensitive resist containing a black pigment such as graphite black, the black matrix pattern 8 is formed by being subjected to exposure and development into the aforementioned shape. However, the method of forming the black matrix, the pattern shape and the material in the present invention are not particularly limited, and any well-known technique can be used. For example, as described in Japanese Laid-Open Patent Publication No. 2004-361447, a black matrix composed of a photosensitive composition containing metal fine particles can be formed. Further, in the present embodiment, the symbols 6a to 6i shown in Fig. 2 are formed simultaneously with the black matrix pattern 8. That is, the predetermined place ' of the black photosensitive resist' is exposed to the cross-shaped pattern shape shown in Fig. 2. Next, an R (red) colored pixel layer (S102) is formed on the transparent substrate 7. As shown in FIGS. 5A and 5B, the R pixel pattern 9 is formed by a ratio of one line per three lines between the plurality of lines extending in parallel in the black matrix pattern 8 on the transparent substrate 7. . The material of the r pixel pattern 9 is a photopolymerizable compound which is composed of a photopolymerizable monomer or oligomer as a main component of a red coloring agent such as a pigment component and a binder. And other materials. The R pixel pattern 9 is formed by subjecting the above material to exposure and development to process the aforementioned shape. At this time, in the present embodiment, the black matrix pattern 8 and the marks 6 a to 6 i formed in the step S 1 0 1 are observed before the exposure processing. Next, the area where the colored pixel pattern 9 is formed is determined based on the observed pattern. The position reference based on the observation pattern will be described later. Then 'use a material containing green colorant, blue colorant, borrow -10- 1359971 iOO. 7. ------------------... In the same manner, a G (green) colored pixel layer and a B (blue) colored pixel layer are formed on the row of the colored pixel layer in which R is not formed (S103, S104). On Figs. 6A and 6B, The state in which the G pixel pattern 10 and the B pixel pattern 1 1 are formed is displayed. Further, the material of the colored pixel pattern is not particularly limited, and any material known as a material of the color furnace sheet can be used, and it can be used for a position to be described later. In the pattern observation, it is easier to observe the material having higher light transmittance. After forming the colored pixel layer of three colors, a protective film 13 made of a transparent resin covering the pixel colored layer is formed (S105). Further, a transparent electrode 14 (ITO: Indium Tin Oxide) is formed thereon by sputtering (S106). In the present embodiment, the protective film 13 is approximately l#m, and the thickness of the transparent electrode 14 is approximately 800A. For each of the above layers, a well-known protective film or a material of a transparent electrode may be used, which will be described later. When the pattern for reference is observed, the more transparent the material is, the easier it is to observe. Next, the spacer 1 2 (S 1 0 7 ) is formed on the transparent electrode 14. The spacer 1 2 is The interval 'which can control the degree of the gap of the liquid crystal cell on average is overlapped with the line of the black matrix pattern 8. In the present embodiment, as shown in FIGS. 6A and 6B, around the R pixel pattern 9 is surrounded. A rectangular spacer 1 having a height of about 2 to 4 /zm disposed at an intersection of a horizontal line and a vertical line of a short E-type black matrix pattern formed by the like. The spacer 12' is made of a well-known photosensitive resin. It is preferable to use a transparent resin as the material of the spacer 1 2 by exposure and development. In the present embodiment, a material having low light transmittance can also be used. In the present embodiment, at 1359971 Μ 7 ... 28___________________________________ • ' i 牛月曰 _ positive replacement page: *___i ' Before the exposure process, by observing the black matrix pattern 8 and the symbol 6 formed in step S101, the spacer can be correctly arranged in black Moment Further, as a spacer for controlling the gap of the liquid crystal cell, a spacer ball which is spherically dispersed on the substrate in the liquid crystal cell manufacturing process is known, and as described above, In the color filter substrate manufacturing program 1, a columnar element formed by exposing a predetermined position on a substrate is referred to as a spacer. Next, an alignment control material (rib) is formed on the transparent electrode 14. (S108). Fig. 7A and Fig. 7B show the state of the substrate after the alignment control material is formed. In the present embodiment, the alignment control material is a plurality of linear patterns which are formed in parallel in one direction on the colored pixel patterns 9, 10 and 11, as shown in Fig. 7A, and are slightly oriented in this direction. The plurality of linear patterns formed in parallel in the vertical direction are formed. Further, the linear pattern 15 is a projection having a height of about the right as shown in Fig. 7B. After the color filter substrate is bonded to the array substrate, the projection pattern aligns the liquid crystal molecules of the liquid crystal cell in a predetermined direction. As the material of the alignment control material, a known transparent photosensitive resin can be used. Further, even in the forming process of the alignment control material, the observation of the black matrix pattern 8 and the mark 6 formed in the step S 1 0 1 can be performed. Further, it is also possible to cooperate with the observation of the previously formed spacer 1 2 . Then, when the linear pattern 15 is formed, the position at which the pattern is formed is adjusted based on the position of the observed pattern or the like. As described above, in the present embodiment, a color filter substrate -12- 1359971 牛月曰1 meal ^ replacement page will be formed:
J 4的各構造元件,藉由曝光及顯像之方式加以形成。因此, 在以下更針對藉由曝光顯像所產生之構造元件的形成順序 進行說明。 第8圖係說明第3圖的步驟S101的黑色矩陣形成程序 之流程圖。首先,將透明基板洗淨(S 201),在洗淨後基板 的全面或是在形成彩色濾光片構造之區域上,塗抹黑色的 負片型感光性阻劑(S2〇2)。接著,對阻劑材料以適當的溫 度進行烘烤(預烘烤:S2〇3),將塗抹後的阻劑層曝光爲黑色 矩陣形圖案的形狀。曝光乃是藉由使用後述之DMD曝光裝 置之數位記錄加以進行(S 204)。具體而言,乃是產生顯示 黑色矩陣圖案的雙値影像,根據此雙値影像的各像素數 値,對應於數値爲1的像素之位置會受到曝光,對應於數 値爲0的像素之位置不會受到曝光般,控制對基板的光的 照射。 接著,將曝光後之基板進行顯影(S205)。在本實施形 態中’由於阻劑乃是負片型阻劑,曝光後的部份會作爲圖 案留在基板上。將此圖案,再度進行烘烤(後烘烤)固定於 基板上(S206)。藉由以上步驟,形成參照第4A圖及第4B 圖所說明的黒色矩陣圖案8。 第9圖乃是說明第3圖之R像素形成程序(S1〇2)、G 像素形成程序(S 1 0 3 )、B像素形成程序(S ! 〇4)、間隙物形成 程序(S 1 0 7)或配向控制材形成程序(s 1 〇 8 )共通的元件形成 程序之流程圖。Each of the structural elements of J 4 is formed by exposure and development. Therefore, the order of formation of the structural elements produced by exposure development will be described below. Fig. 8 is a flow chart showing the black matrix forming procedure of step S101 of Fig. 3. First, the transparent substrate is washed (S201), and a black negative-type photosensitive resist (S2〇2) is applied to the entire substrate after cleaning or to a region where the color filter structure is formed. Next, the resist material is baked at a suitable temperature (prebaking: S2 〇 3), and the smeared resist layer is exposed to the shape of a black matrix pattern. The exposure is performed by using a digital recording of a DMD exposure apparatus to be described later (S204). Specifically, a double-turn image in which a black matrix pattern is displayed is generated. According to the number of pixels of the double-twist image, the position of the pixel corresponding to the number of pixels is exposed, corresponding to a pixel having a number of 0. The position is not exposed to light, and the illumination of the substrate is controlled. Next, the exposed substrate is developed (S205). In the present embodiment, since the resist is a negative-type resist, the exposed portion remains as a pattern on the substrate. This pattern is again baked (post-baked) and fixed on the substrate (S206). By the above steps, the green matrix pattern 8 described with reference to FIGS. 4A and 4B is formed. Fig. 9 is a view showing an R pixel forming program (S1〇2), a G pixel forming program (S1 0 3 ), a B pixel forming program (S ! 〇 4), and a spacer forming program (S 1 0) in Fig. 3; 7) A flow chart of a component forming program common to the alignment control material forming program (s 1 〇 8 ).
首先’將形成圖案後之基板洗淨(S301)。例如,在R 1359971 100.牛月曰4 )正替換貢丨 像素形成程序中係洗淨形成黒色矩陣後之基板。又,在配 向控制材形成程序中,係洗淨形成黑色矩陣圖案、著色像 素層及間隙物後之基板。接著,塗抹成爲形成元件之材料 的阻劑(S3 02)。在本實施形態中,乃是塗抹負片型感光性 阻劑。接著,利用對應於阻劑材料的適當溫度進行.烘烤(預 烘烤:S 3 0 3 )。 之後,爲了重疊形成於下層之圖案與接下來形成之圖 案之位置,進行基板的讀取(S304)及影像的修正(S305)。針 對此類處理,將在後面敘述。 接著,將塗抹後之阻劑,曝光爲描繪於修正後之影像 上之圖案形狀(S 3 06)。曝光乃是與形成黑色矩陣圖案相 同,藉由使用DMD曝光裝置之數位記錄加以進行。然後, 將曝光後之基板進行顯影(S3 07),將顯影後留於基板上之 .圖案再度進行烘烤(後烘烤)固定於基板上(S308)。藉由以上 步驟,形成各元件之圖案。 以下,針對圖案之位置參照用的處理,也就是針對步 驟S304之基板讀取處理及步驟S305之影像修正處理,進 行說明。 步驟S3 04之基板讀取處理,乃是由將基板表面進行探 索性攝影所獲得之影像,與第2圖所圖示之記號6或形成 於基板上既定之圖案進行辨識,取得識別後之記號及圖案 之既定座標系中位置座標的處理。記號及圖案的辨識能夠 使用周知之所有影像辨識方法,在本實施形態中,乃是使 用圖案對照的方法進行辨識。 -14- 1359971 μ 7. 28..................... -- 丨牛月替換頁j --! * 例如,取得記號之位置座標時,在黑色矩陣形成程序 S101中在記錄記號6的位置上設置攝影機對基板表面進行 攝影。然後,由攝影影像中心,切出相當於記號6大小的 區域影像,以此區域影像爲對象進行藉由圖案對照之辨 * 識。若是在將記號6記錄後之程序之後的程序中基板並未 - 伸縮的話,由於記號6存在於此區域影像內所以藉由圖案 對照之辨識結果應該會是一致。在此情況下,將此區域影 像的中心位置的座標作爲現在的記號6之位置座標加以取 得。 另一方面,若是在將記號6記錄後之程序之後的程序 中基板會產生伸縮的話,由於記號6係存在於由攝影影像 的中心稍微偏離之位置上,藉由圖案對照之辨識結果將不 會一致。在此情況下,在攝影影像內將區域影像進行些許 偏移一直到對照結果一致爲止地重複圖案對照,將對照結 果一致時之區域影像的中心座標,作爲現在的記號6之位 置座標加以取得。 又,在取得形成於基板上之圖案的位置座標時,預先 決定在取得位置座標上進行影像攝影的位置,在此位置上 設置攝影機拍攝基板表面。第10圖乃是說明形成於讀取對 象基板上之圖案與攝影位置之關係的例示圖。攝影位置, 乃是分別設置在基板的垂直方向、水平方向的若干場所, 相鄰的攝影位置,乃是如第1 0圖所示之攝影位置1 6 a、 1 6b、1 6c及1 6d般構成矩形之頂點般加以決定。在本實施 形態中,矩形的一邊長度成爲3 0cm般決定攝影位置。 -15- 1359971 ❹ & " * ***·*****"' * ·_—. <··. i牛月.正替換頁丨First, the substrate after patterning is washed (S301). For example, in R 1359971 100. Niu Yuezhen 4) is replacing the substrate of the Gongga pixel forming process after washing the tantalum matrix. Further, in the alignment control material forming program, the substrate on which the black matrix pattern, the colored pixel layer, and the spacer are formed is washed. Next, a resist (S3 02) which becomes a material for forming the element is applied. In the present embodiment, a negative-type photosensitive resist is applied. Next, baking is performed using a suitable temperature corresponding to the resist material (prebaking: S 3 0 3 ). Thereafter, in order to superimpose the pattern formed on the lower layer and the pattern formed next, the substrate is read (S304) and the image is corrected (S305). This type of processing will be described later. Next, the applied resist is exposed to a pattern shape drawn on the corrected image (S 3 06). The exposure was carried out in the same manner as the formation of a black matrix pattern by using a digital recording of a DMD exposure apparatus. Then, the exposed substrate is developed (S307), and the pattern is left on the substrate after development, and the pattern is again baked (post-baked) and fixed on the substrate (S308). By the above steps, a pattern of each element is formed. Hereinafter, the processing for referring to the position of the pattern, that is, the substrate reading processing in step S304 and the image correction processing in step S305 will be described. The substrate reading process of step S3 04 is to obtain an image obtained by exploratory imaging of the surface of the substrate, and to identify the symbol 6 shown in FIG. 2 or a predetermined pattern formed on the substrate, and obtain the mark after recognition. And the processing of the position coordinates in the established coordinate system of the pattern. The identification of the symbols and the patterns can be performed using all known image recognition methods. In the present embodiment, the pattern comparison method is used for identification. -14- 1359971 μ 7. 28..................... -- yak month replacement page j --! * For example, when the position coordinates of the mark are obtained, In the black matrix forming program S101, a camera is placed at the position of the recording mark 6 to photograph the surface of the substrate. Then, from the center of the photographic image, an area image corresponding to the size of the symbol 6 is cut out, and the image of the area is used for object recognition. If the substrate is not stretched in the program after the program in which the mark 6 is recorded, since the mark 6 exists in the image of the area, the recognition result by the pattern control should be identical. In this case, the coordinates of the center position of the image of the area are obtained as the position coordinates of the current symbol 6. On the other hand, if the substrate is stretched and contracted in the program after the program in which the symbol 6 is recorded, since the symbol 6 is present at a position slightly deviated from the center of the photographic image, the recognition result by the pattern comparison will not occur. Consistent. In this case, the area image is slightly shifted in the photographic image until the comparison result is matched, and the center coordinates of the area image when the comparison result is matched are obtained as the position coordinates of the current symbol 6. Further, when the position coordinates of the pattern formed on the substrate are obtained, the position at which the image is captured on the position coordinates is determined in advance, and the camera is placed at the position to photograph the surface of the substrate. Fig. 10 is a view showing an example of the relationship between the pattern formed on the reading target substrate and the photographing position. The photographing positions are respectively set in a plurality of places in the vertical direction and the horizontal direction of the substrate, and the adjacent photographing positions are the photographing positions 1 6 a, 16b, 16c, and 16d shown in Fig. 10 It is determined by the apex of the rectangle. In the present embodiment, the photographing position is determined such that the length of one side of the rectangle is 30 cm. -15- 1359971 ❹ &" * ***·*****"' * ·_-. <··. i Niuyue. Replacement page丨
. L :_I 記錄於各攝影位置的圖案’能夠由攝影位置的座標來 特定。因此,由攝影影像中,辨識'其特定圖案,取得其圖 案的位置座標。具體而言,由攝影影像中,切出相當於特 定圖案大小之區域影像,以此區域影像爲對象進行藉由圖 案對照之識別。只要在將此圖案記錄後之程序之後的程序 中基板並未伸縮的話,由於所識別之圖案將會存在於此區 域影像內,所以應該與藉由圖案對照之辨識結果一致。在 此情況下,將此區域影像的中心座標,或此圖案的特徵部 (頂點等)的座標,作爲此圖案的現在的位置座標加以取得。 另一方面,若是在將記號記錄此圖案後之程序之後的 程序中基板會產生伸縮的話,由於所將辨識的圖案會存在 於由攝影影像的中心稍微偏離之位置上,藉由圖案對照之 辨識結果係不會一致。 例如,在第1 〇圖的攝影位置1 6 a上,預先設想存在有 第11圖中以實線表示之圖案然後進行攝影及圖案對照。若 是基板伸縮造成實際的圖案偏移到第11圖中以虛線表示 的位置爲止的話,以攝影位置1 6 a爲中心之區域影像作爲 對象的圖案對照之辨識結果係不一致。 在此情況下,在攝影影像內將區域影像進行些許偏移 地重複圖案對照一直到對照結果一致爲止,將對照結果一 致時之區域影像的中心座標,或此圖案的特徵部(頂點等) 的座標1 7,作爲此圖案的現在的位置座標加以取得。 又,在步驟S103以後之程序中,由於形成結束之圖案 中存在有著色像素層,除了進行圖案形狀的對照之外亦可 1359971 Μ 7. 28 一 ί牛月日癃咖正替换頁i !___ 以進行顏色的對照。或者,不進行形狀的對照,而僅根據 顏色對圖案進行識別。例如’在本實施形態中,如第6A 圖所示般’間隙物1 2僅形成於R像素圖案9之行的黑色矩 陣上’並未形成於G像素圖案1〇及b像素圖案n之行的 黑色矩陣上。在此情況下,在間隙物形成程序S107中的基 板讀取處理S 3 4 0中’進行考慮到顏色資訊的對照,圖案的 辨識會變得容易。 接著’參照第12圖及第13圖,說明步驟S3 〇5的影像 修正處理。步驟S305的影像修正處理,乃是根據步驟S3〇4 的基板讀取處理中所取得的位置座標的資訊,在後續的步 驟S3 06中將記錄於基板上之雙値影像進行修正的處理◊在 本實施形態中,乃是根據黑色矩陣圖案8的既定場所及記 號6的位置座標修正影像。 例如,針對第10圖的攝影位置16a、16b、16c及16d 進行圖案之識別的結果,在各攝影位置上觀測到第1 1圖所 例不般之圖案偏移。然後,由此觀測結果,位置1 6 a、1 6 b、 16c及16d爲頂點的區域,得知本應該爲第12(a)圖所示般 之矩形區域,實際上卻成爲如第12(b)圖所示般之歪斜區 域。在此情況下,將記錄於此矩形區域的矩型影像,配合 觀測到的歪斜變形爲歪斜的影像。 影像的變形,縮短攝影位置的間隔,換句話說,影像 進行變形時的單位區域設定得愈短,愈能夠針對實際的歪 斜進行忠實的變形。但是,在製造效率爲優先之情況下, 以將若干程度寬區域作爲單位區域進行影像的修正爲佳。 1359971 例如,如第1 3圖所示般,若將第2圖所斥 中的4個記號的位置作爲頂點之矩形區域fi 單位區域,則在一片的基板中能有9個場月 於僅針對4個區域影像進行影像修正即可, 的處理時.間會相較變短。 但是’第2圖所示之記號,無法形成灰 面板之功能用的圖案所形成的範圍內,也葡 液晶面板的顯示區域內。因此,在所製造把 寸較小之情況下,僅利用記號進行位置對照 位置準確度,但是在面板尺寸較大之情況闲 行黑色矩陣圖案8的讀取則無法獲得充分= 狀況。因此’僅將取得位置座標之對象作赁 取得黑色矩陣圖案的位置座標,以根據所製 的尺寸及碁板尺寸適當地決定爲佳。當然, 號及黑色矩陣圖案雙方進行位置對照。 在將矩形影像合適於歪斜的方形區域瓶 法中’可考慮例如以下之方法。將矩形 ABCD ’將影像ABCD內的點作爲X。又,窮 取得將特定後之方形區域作爲A,Β,C,D,,^ 標點作爲X ’。 將邊A’B’內分爲t:(l-t)的點作爲<3,將 1(1-〇的點作爲11’線〇11內分爲3:(1-8)的| 下的關係式(1)會成立。 100.· 1; -2 ^----------------- ί年月曰1 雜吏^替換頁: 1——-__I ,之記號6 a〜6 i F爲影像修正的 〒進行攝影,由 故位置對照用 >實現作爲液晶 t是無法形成於 J液晶面板的尺 I可獲得充分的 F,存在有不進 :位置準確度之 $記號,或是亦 ^造之液晶面板 亦能夠利用記 t加以變形之方 影像作爲影像 ΐ由位置座標的 ί其區域內之座 邊D’C’內分爲 U乍爲X時,以 1359971 100. 7. 28 牛月W满 【關係式1】L : _I The pattern 'recorded at each photographing position can be specified by the coordinates of the photographing position. Therefore, from the photographic image, the 'specific pattern is recognized, and the position coordinates of the pattern are obtained. Specifically, in the photographic image, an area image corresponding to a specific pattern size is cut out, and the area image is used for object recognition by the pattern comparison. As long as the substrate does not expand and contract in the program after the program recorded by this pattern, since the recognized pattern will exist in the image of the area, it should be consistent with the recognition result by the pattern. In this case, the coordinates of the center coordinates of the area image or the features (vertex, etc.) of the pattern are obtained as the current position coordinates of the pattern. On the other hand, if the substrate is stretched and contracted in the program after the program in which the mark is recorded, the pattern to be recognized may exist at a position slightly deviated from the center of the photographic image, and the pattern is compared. The results will not be consistent. For example, in the photographing position 1 6 a of the first drawing, it is preliminarily assumed that there is a pattern indicated by a solid line in Fig. 11 and then photographing and pattern matching are performed. If the actual pattern shifts to the position indicated by the broken line in Fig. 11 when the substrate is stretched and contracted, the recognition result of the pattern comparison with the area image centered on the photographing position 16 a is inconsistent. In this case, in the photographic image, the region image is repeatedly shifted to repeat the pattern control until the comparison result is consistent, and the center coordinates of the region image when the comparison result is coincident, or the feature portion (vertex, etc.) of the pattern The coordinates 17 are obtained as the current position coordinates of the pattern. Further, in the procedure after step S103, since the colored pixel layer exists in the pattern in which the formation is completed, in addition to the comparison of the pattern shape, 1359971 Μ 7. 28 a 牛 月 癃 癃 正 替换 替换 替换 i i ! ! ! ! ! ! ! ! ! ! For color comparison. Alternatively, the shape is not recognized, but the pattern is recognized only by color. For example, in the present embodiment, as shown in FIG. 6A, the spacers 1 2 are formed only on the black matrix of the row of the R pixel patterns 9 'not formed in the G pixel pattern 1 〇 and the b pixel pattern n On the black matrix. In this case, in the substrate reading processing S 3 4 0 in the spacer forming program S107, the comparison of the color information is performed, and the pattern recognition becomes easy. Next, the image correction processing of step S3 〇 5 will be described with reference to Figs. 12 and 13 . The image correction processing of step S305 is based on the information of the position coordinates acquired in the substrate reading processing of step S3〇4, and the processing of correcting the double-twisted image recorded on the substrate is performed in the subsequent step S306. In the present embodiment, the image is corrected based on the predetermined position of the black matrix pattern 8 and the position coordinates of the symbol 6. For example, as a result of pattern recognition of the photographing positions 16a, 16b, 16c, and 16d in Fig. 10, a pattern shift as in the case of Fig. 1 is observed at each photographing position. Then, from this observation, the areas where the positions 16a, 16b, 16c, and 16d are vertices, and the rectangular area which should be the one shown in Fig. 12(a), actually become the 12th ( b) The skewed area as shown in the figure. In this case, the rectangular image recorded in this rectangular area is combined with the observed skew deformation into a skewed image. The deformation of the image shortens the interval between the photographing positions. In other words, the shorter the unit area when the image is deformed, the more faithful the deformation can be made to the actual skew. However, in the case where the manufacturing efficiency is prioritized, it is preferable to correct the image by using a certain wide area as a unit area. 1359971 For example, as shown in Fig. 1, if the position of the four symbols in the second figure is the rectangular area fi unit area of the vertex, there can be nine field months in one substrate. The image correction can be performed on the four regional images, and the processing time will be shorter. However, the symbol shown in Fig. 2 does not form a pattern for the function of the gray panel, and is also in the display region of the liquid crystal panel. Therefore, in the case where the manufacturing size is small, the positional positional accuracy is performed using only the mark, but if the panel size is large, the reading of the black matrix pattern 8 is not sufficient. Therefore, it is preferable to determine the position coordinates of the black matrix pattern only by acquiring the object of the position coordinate, and to appropriately determine the size and the size of the seesaw according to the manufactured size. Of course, both the number and the black matrix pattern are compared in position. In the case of a rectangular image in which a rectangular image is suitable for skewing, for example, the following method can be considered. The rectangle ABCD ' is taken as the point X in the image ABCD. Further, the poor obtains the square area as the A, Β, C, D, and ^ punctuation points as X ′. The point in which the edge A'B' is divided into t:(lt) is taken as <3, and the point of 1 (1-〇 is divided into the relationship of |1 in the 11' line 〇11 to 3:(1-8) Formula (1) will be established. 100.· 1; -2 ^----------------- 年年月曰1 吏吏^ Replacement page: 1——-__I , Symbols 6 a to 6 i F are photographed for image correction, and the positional comparison is used. As the liquid crystal t, it is impossible to form the ruler I of the J liquid crystal panel, and sufficient F is obtained, and there is a difference in positional accuracy. The $ mark or the liquid crystal panel can also be used as the image by using the t-shaped image to be deformed by the position coordinate 的 in the region of the seat D'C' is divided into U 乍 X, 1359971 100. 7. 28 Niuyue W full [Relationship 1]
G = t(l-A)+A H = t(c-D)+D …G = t(l-A)+A H = t(c-D)+D ...
P = s(H-G)+GP = s(H-G)+G
= st(C-D-B + A)+s(D-A)+t(B-A)+A 由此關係式(1),可導出以下之連立方程式(2),透過解 開此連立方程式,能夠求得t及s。 ast + b s + ct= d fst + gs + ht=e ".(2) (但是,a,b,c,d,e,f,g,h 爲常數) 接著,利用所求取之t及s的値,同樣藉由將矩形影 像ABCD歪斜後之方形區域A’B’C’D’進行內分的方式,求 出對應於方形區塽內之點X’之矩形影像ABCD內的點X。 由位於此點X之像素的値決定位於方形區域內之點X ’之像 素的値。針對存在於方形區域A ’ B ’ C ’ D ’的境界線上及內部 之所有座標點進行同樣的處理的話,能夠決定構成方形區 域A’B’C’D’的所省像素的値。由此,能夠獲得合於方形區 域A ’ B ’ C ’ D ’的形狀及大小的影像。 另外,亦可以考慮執行仿射變換或一次線性變換等之 變換處理之處理。仿射變換乃是藉由線性變換及平行移動 之組合’將圖形變形之方式。將構成原始圖形之點的座標 (x,y)及構成變形後之圖形之點的座標(X,Y),由以下第(3) 式說明兩者之關係。 X=ax+by+c Y = dx + ey + f ... ( 3 ) 將由彩色濾光片基板所讀取之記號與黑色矩陣圖案的座 -19- 1359971 】❹. > _ ί ιΙ >ιι 1 一 * I年月曰修正替換買丨= st(CDB + A)+s(DA)+t(BA)+A With this relation (1), the following equations (2) can be derived. By solving this equation, you can find t and s. . Ast + bs + ct= d fst + gs + ht=e ".(2) (However, a, b, c, d, e, f, g, h are constants) Then, using the obtained t and The s 値, also by the inner division of the square area A'B'C'D' after the rectangular image ABCD is skewed, finds the point X in the rectangular image ABCD corresponding to the point X' in the square area 塽. The 値 of the pixel located at the point X ′ in the square area is determined by the 位于 at the pixel of this point X. The same processing can be performed for all the coordinate points existing on the boundary line of the square area A ′ B ′ C ′ D ′ and the inside, and the 像素 of the pixels constituting the square area A’B'C'D' can be determined. Thereby, an image of the shape and size of the square area A ' B ' C ' D ' can be obtained. Further, it is also conceivable to perform processing of transform processing such as affine transformation or linear transformation. An affine transformation is a method of deforming a pattern by a combination of linear transformation and parallel movement. The relationship between the coordinates (x, y) constituting the point of the original figure and the point (X, Y) constituting the point of the deformed figure is described by the following formula (3). X=ax+by+c Y = dx + ey + f ... ( 3 ) The mark read by the color filter substrate and the black matrix pattern -19 - 1359971 ❹. > _ ί ιΙ > ; ιι 1 a * I year month 曰 correction replacement buy 丨
、 i___I 標及此;等記號與圖案原本應在之位置的座標(形成時的 座標)’帶入第(3)式時,能獲得6個式子。藉由解開此6 個式子組成之連立方程式,求出a,b,c,d,e,f之數値。此 a,b,c,d,e,f的數値會根據設定之第(3)式,置換爲各像素之 座胃° ®此’能夠獲得合於藉由所讀取之記號及圖案加以 特定之三角型區域的形狀之點陣圖影像。 + ¾線性變換是亦稱爲類仿射變換之方法,將使用以 下的第(4)式取代仿射變換的第(3)式。 X=axy+by+Cy+d Y = exy+ fx + gy + h ... (4) #由彩色濾光片所讀取之記號及黑色矩陣圖案的座 標’以及此等記號及圖案之原本應存在之位置的座標代入 第(4)式之後,可獲得8個式子。藉由解開此8個式子組成 之連立方程式’求出 a,b,c,d,e,f,g,h 之數値。此 a,b,C,d,e,f,g,h的數値會根據設定之第(4)式,置換爲各像素 之座標。由此’能夠獲得合於藉由所讀取之記號及圖案加 以特定之方形區域的形狀之影像。 又’前述變換雖然是使區域影像變形之處理,亦可以 不使區域影像變形,而將包含於區域影像內之各像素之影 像配合區域的歪斜作平行移動般地進行影樣修正。此時的 平行移動’可以針對每一像素個別進行,亦可以將數個像 素的整合作爲移動單位,針對每一移動單位進行平行移 動。在此方法中,由於只要計算區域影像內的移動方向及 -20 - 1359971 移動量即可,較進行區域影像變 時間。 10(1 7*. 28------------.... i年月曰替換頁: -——- _! 形的處理更能夠縮短處理 第1 4圖爲說明前述進行影像修正所產生之效果用之 示意圖。不管實際之圖案係位於第11圖之虛線所示之位 置,不對存在於實線所示位置者進行影像修正而形成間隙 物1 2之情況下,黑色矩陣圖案8及間隙物1 2的位置關係, 不會成爲第7A圖所示之位置關係,而會成爲第14圖例示 之位置關係。也就是說,原本應重疊於黑色矩陣圖案8般 地形成的間隙物1 2,會變成與黑色矩陣圖案8相鄰形成。 若是形成於此位置,會導致像素開口率降低因而不適合。 又,如非產生如第14圖所示之水平方向的位置偏差而 係產生垂直方向的位置偏差的情況時,會形成配向控制材 1 5與間隙物1 2重疊,造成間隙物1 2的高度較原來的間隙 物1 2之高度爲高。間隙物1 2的高度不一致的話,·無法正 確地控制液晶胞的間隙。又,配向控制材1 5的位置偏移的 話,亦會影響到液晶面板的視角,因而不適合。 因此’很明顯地,進行步驟S304之基板讀取處理及步 驟S 3 05之影像修正處理,減低下層圖案與上層圖案的位置 偏差’有助於製品的品質提升或是良率的改善。 在此,針對使用於第8圖之步驟S204之黑色矩陣的記 錄、第9圖之步驟S304之基板讀取、步驟S305之影像修 正以及步驟S3 06之影像記錄上的曝光裝置進行說明。第 15圖及第16圖乃是曝光裝置31之槪略構造之示意圖。第 15圖乃是將曝光裝置31由斜上方所觀察之圖,第16圖乃 -21- 1359971 100. 7. 28 一----------- I牛月a條替換買i !__——' 是由水平方向所觀察之圖。 曝光裝置31具備有板狀之設置台20、配置於其上方 之兩條線路狀之導引件2 1、在此導引件2 1上沿著導引件 21進行來回移動之平台座30以及以可旋轉之狀態安裝於 平台座30上之平板狀平台22。平台22,其上面能夠將進 行曝光之基板2 3加以吸附而維持。 在平台22的移動路徑上方,配置有由配列於與平台 22之移動方向成垂直之方向之線上之複數個曝光頭群所構 成之掃描器25。掃描器25具備有藉由在設置台20之中央 部處將兩條導引件21挾持般加以配置之兩根支柱24所支 撐的閘29a。在本實施形態中,構成掃描器25之曝光頭乃 是配置於兩條線上,第一條線上之曝光頭與第二條線上之 曝光頭乃是呈交叉格子狀配置。 各曝光頭中,其內部具備有美國德州儀器公司製造之 數位微小鏡裝置(DMD)。由具備有曝光裝置31之未圖示的 光源所射出的光束,會經由未圖示之透鏡系統而被導引到 曝光頭內,入射到DMD。又,構成DMD之各微小鏡其反 射面之角度,乃是根據構成由曝光所記錄之影像的各像素 的數値加以控制。具體而言,像素的數値爲1之情況時, 入射到DMD的光束會藉由微小鏡加以反射而照射到平台 22上的基板23般加以控制。另一方面,像素的數値爲〇 之情況時,入射的光束會藉由微小鏡加以反射不會照射到 基板2 3般加以控制。 基板的曝光,將記錄於基板之影像進行分割後將受到 -22 - 1359971 ,®0r 7: '2^-------1 I牛月曰緣》i替換頁丨丨 分割之影像資料分配到各曝光頭,將平台22沿'著導引件一 邊移動一邊藉由控制各曝光頭之DMD加以進行。基板乃是 藉由各曝光頭,在平台的移動方向上曝光爲長帶狀。此時, 由於曝光頭的寬度較DMD的寬度爲寬,雖然在由排成一線 之曝光頭所造成之曝光’會在曝光頭之間產生未受到曝光 之區域,在第一條線未曝光之區域,藉由呈交叉格子所配 置之第二條線的曝光頭加以曝光。由此能夠將基板23的全 面進行曝光。 曝光裝置31中,更設置有兩台能夠拍攝吸附於平台 2 2上之基板2 3的邊緣附近的低倍率攝影機2 7。又,所謂 的低倍率攝影機27乃是意謂攝影倍率設定爲由拍攝影像 中能夠辨識第2圖所示之記號6之倍率之狀態下的攝影 機。也就是說,包含將可進行高倍率攝影之攝影機的攝影 倍率設定爲低倍率之情況。攝影機2 7,乃是固定於由支柱 及閘所構成之支撐體26,設置於平台22的一角及此角之 對角的上方。 又,曝光裝置31,具備有複數台能夠拍攝基板23之 邊緣以外的部分般加以設置之高倍率攝影機28。高倍率攝 影機2 8乃是設定爲由拍攝影像能夠辨識形成於基板上之 黑色矩陣圖案、著色像素圖案、間隙物、配向控制材等每 個元件之倍率的攝影機。高倍率攝影機2 8,乃是以一定之 間隔固定於受到支柱24所支撐之閘29b。閘29b具備有軌 道,高倍率攝影機2 8固定於此軌道上,前述間隔必要時可 進行變.更。在本實施形態中,6台高倍率攝影機28以30cm -23 - 1359971 f KM),7 · 2*8 -—* — — — i年月日修替換頁i t__ i 的間隔加以配置。 第1 7圖係針對高倍率相機2 8之照明功能加以說明之 示意圖。巧倍率相機28,其內部具備有光源,藉由如圖之 箭號所示般由落射照明對基板進行攝影。例如,在間隙物 形成之程序中,如圖所示般,拍攝形成到透明電極1 4爲止 狀態的基板進行位置對照,但是如前述般,彩色濾光片基 板,除了黑色矩陣圖案8之外’乃是由具有透光性之元件 所構成,故可利用藉由落射照明之攝影,取得能夠辨識黑 色矩陣8之影像。 以上所說明之平台22、曝光頭、低倍率相機27及高 倍率相機2 8乃是受到控制部加以控制。第1 8圖係用以就 控制部之詳細而說明之方塊圖。如圖示般,曝光裝置3 1之 控制部32,乃是具備有將藉由曝光裝置記錄於基板影像, 也就是,控制由產生黑色矩陣圖案、著色像素圖案、間隙 物、配向控制材之設計圖的CAD/CAM系統之影像資料的 擷取之影像輸入控制部33、控制平台22之移動及旋轉的 平台控制部3 5、控制低倍率攝影機2 7及高倍率攝影機2 8 之拍攝的攝影控制部36、以及控制曝光頭25與供應給曝. 光頭之光束的光源之曝光控制部3 7,此外,控制部3 2更 具備有由曝光所記錄之圖案的記錄位置不會產生偏差般控 制記錄位置之記錄位置控制部3 4。 在本實施形態中,影像輸入控制部3 3、平台控制部 3 5、攝影控制部3 6、曝光控制部3 7以及記錄位置控制部 3 4,乃是配置於控制基板上各項功能專用之控制器。但是, -24 - 1359971 μ 7. 2Β----------------— I年月日修餅賴丨 * 控制部32,亦可以在泛用CPU與具備記憶體之控制基板的 前述記憶體上,組入能夠執行前述各功能之程式之方式加 以實現。, i___I is marked with this; when the symbol and the coordinate at which the pattern should originally be located (the coordinate at the time of formation) are brought into the equation (3), six expressions can be obtained. The number of a, b, c, d, e, and f is obtained by solving the equations of the six equations. The number of a, b, c, d, e, and f will be replaced by the stomach of each pixel according to the set formula (3). This can be obtained by the symbols and patterns read. A bitmap image of the shape of a particular triangular region. The + 3⁄4 linear transformation is a method also called affine-like transformation, and the equation (3) of the affine transformation is replaced by the following equation (4). X=axy+by+Cy+d Y = exy+ fx + gy + h (4) #The mark read by the color filter and the coordinates of the black matrix pattern and the original of these marks and patterns After the coordinates of the existing position are substituted into the equation (4), eight equations are obtained. The number of a, b, c, d, e, f, g, h is obtained by solving the cubic equation of the eight equations. The number of a, b, C, d, e, f, g, h will be replaced by the coordinates of each pixel according to the set (4). Thus, it is possible to obtain an image that is combined with the shape of the specific square area by the symbols and patterns read. Further, the above-described conversion is a process of deforming the area image, and the pattern image can be corrected by moving the skew of the image matching area of each pixel included in the area image in parallel without deforming the area image. The parallel movement ' at this time may be performed individually for each pixel, or the integration of a plurality of pixels may be used as a moving unit, and parallel movement is performed for each moving unit. In this method, since the movement direction in the area image and the movement amount of -20 - 1359971 can be calculated, the area image change time is performed. 10(1 7*. 28------------.... i year month 曰 replacement page: -——- _! Shape processing can shorten the processing of Figure 14 to illustrate the foregoing A schematic diagram for the effect of image correction. The actual pattern is located at the position indicated by the broken line in Fig. 11, and the image is corrected to form the spacer 1 2 in the position shown by the solid line. The positional relationship between the matrix pattern 8 and the spacers 1 2 does not become the positional relationship shown in Fig. 7A, but becomes the positional relationship exemplified in Fig. 14. That is, it should be formed so as to be superimposed on the black matrix pattern 8. The spacers 1 2 are formed adjacent to the black matrix pattern 8. If formed at this position, the pixel aperture ratio is lowered and thus it is not suitable. Further, if the positional deviation in the horizontal direction is not generated as shown in Fig. 14 When the positional deviation in the vertical direction occurs, the alignment control material 15 and the spacer 1 2 are overlapped, and the height of the spacer 1 2 is higher than the height of the original spacer 1 2. The height of the spacer 1 2 If it is inconsistent, it is impossible to correctly control the interval between the liquid crystal cells. Further, if the positional deviation of the alignment control material 15 affects the viewing angle of the liquid crystal panel, it is not suitable. Therefore, it is apparent that the substrate reading processing of step S304 and the image correction processing of step S3 05 are performed. Decreasing the positional deviation of the lower layer pattern from the upper layer pattern contributes to the improvement of the quality of the product or the improvement of the yield. Here, the substrate for the recording of the black matrix used in step S204 of FIG. 8 and the step S304 of FIG. 9 The reading, the image correction in step S305, and the exposure apparatus on the image recording in step S3 06 are explained. Fig. 15 and Fig. 16 are schematic diagrams showing the schematic configuration of the exposure device 31. Fig. 15 is an exposure device 31. The picture observed from obliquely above, Figure 16 is -21 - 1359971 100. 7. 28 one----------- I Niuyue a replacement to buy i!__——' is from the horizontal direction The exposure device 31 is provided with a plate-shaped mounting table 20, two line-shaped guiding members 2 1 disposed above it, and moving back and forth along the guiding member 21 on the guiding member 21 The platform base 30 and the rotatably mounted platform base 30 A flat plate 22, a platform 22 on which the substrate 2 3 to be exposed is adsorbed and maintained. Above the moving path of the stage 22, a plurality of lines arranged in a direction perpendicular to the moving direction of the stage 22 are disposed. The scanner 25 is composed of an exposure head group. The scanner 25 is provided with a shutter 29a supported by two pillars 24 arranged to hold the two guides 21 at the central portion of the installation table 20. In the embodiment, the exposure heads constituting the scanner 25 are disposed on two lines, and the exposure heads on the first line and the exposure heads on the second line are arranged in an intersecting lattice shape. Each of the exposure heads is internally provided with a digital micromirror device (DMD) manufactured by Texas Instruments. The light beam emitted from a light source (not shown) including the exposure device 31 is guided into the exposure head through a lens system (not shown) to be incident on the DMD. Further, the angle of the reflecting surface of each of the micromirrors constituting the DMD is controlled based on the number of pixels constituting the image recorded by the exposure. Specifically, when the number of pixels 値 is 1, the light beam incident on the DMD is controlled by the substrate 23 reflected on the stage 22 by being reflected by the micro mirror. On the other hand, when the number of pixels is 〇, the incident light beam is controlled by the micro mirror and is not irradiated onto the substrate 23. The exposure of the substrate, after the image recorded on the substrate is divided, will be replaced by -22 - 1359971, ®0r 7: '2^-------1 I Distributing to each of the exposure heads, the platform 22 is moved along the side of the guide while controlling the DMD of each exposure head. The substrate is exposed to a long strip shape in the moving direction of the stage by each of the exposure heads. At this time, since the width of the exposure head is wider than the width of the DMD, although the exposure caused by the exposure heads arranged in a line produces an unexposed area between the exposure heads, the first line is not exposed. The area is exposed by an exposure head of a second line arranged in a crossed grid. Thereby, the entire surface of the substrate 23 can be exposed. In the exposure device 31, two low-magnification cameras 27 capable of capturing the vicinity of the edge of the substrate 2 3 adsorbed on the stage 2 2 are further provided. In addition, the low-magnification camera 27 is a camera in a state in which the shooting magnification is set to a magnification in which the symbol 6 shown in Fig. 2 can be recognized in the captured image. That is to say, the case where the photographing magnification of the camera capable of high-magnification photography is set to a low magnification is included. The camera 2 7 is fixed to a support body 26 composed of a pillar and a gate, and is disposed at a corner of the platform 22 and above the diagonal of the corner. Further, the exposure device 31 is provided with a high-magnification camera 28 in which a plurality of portions other than the edge of the substrate 23 can be imaged. The high-magnification camera 2 8 is a camera that is set to recognize the magnification of each element such as a black matrix pattern, a colored pixel pattern, a spacer, and an alignment control material formed on the substrate by the captured image. The high-magnification camera 2 8 is fixed to the shutter 29b supported by the support 24 at a constant interval. The gate 29b is provided with a track, and the high-magnification camera 28 is fixed to the track, and the interval can be changed as necessary. In the present embodiment, six high-magnification cameras 28 are arranged at intervals of 30 cm -23 - 1359971 f KM), 7 · 2*8 - - * - - - i - day replacement page i t__ i . Fig. 17 is a schematic diagram illustrating the illumination function of the high magnification camera 28. The camera 28 has a light source inside, and the substrate is photographed by epi-illumination as shown by the arrow. For example, in the procedure of forming the spacers, as shown in the figure, the substrate formed in the state of being formed to the transparent electrode 14 is photographed for positional comparison, but as described above, the color filter substrate except for the black matrix pattern 8' Since it is composed of a light-transmitting element, it is possible to obtain an image capable of recognizing the black matrix 8 by photographing by epi-illumination. The platform 22, the exposure head, the low magnification camera 27, and the high magnification camera 28 described above are controlled by the control unit. Figure 18 is a block diagram for the details of the control unit. As shown in the figure, the control unit 32 of the exposure device 31 is provided with a substrate image to be recorded by the exposure device, that is, to control the design of the black matrix pattern, the colored pixel pattern, the spacer, and the alignment control material. The video input control unit 33 for capturing the image data of the CAD/CAM system of the figure, the platform control unit for controlling the movement and rotation of the control platform 22, and the photographing control for controlling the shooting of the low magnification camera 27 and the high magnification camera 28. The portion 36 and the exposure control unit 3 7 that controls the exposure head 25 and the light source supplied to the light beam of the exposure head, and the control unit 32 further includes a control position in which the recording position of the pattern recorded by the exposure does not vary. Position recording position control unit 34. In the present embodiment, the video input control unit 33, the platform control unit 35, the imaging control unit 36, the exposure control unit 37, and the recording position control unit 34 are dedicated to each function of the control board. Controller. However, -24 - 1359971 μ 7. 2Β----------------- I-day-day repair cake Lai* control unit 32, can also be used in general-purpose CPU and memory The memory of the control board is realized by incorporating a program capable of executing the above functions.
以下,針對藉由控制部3 2所執行的控制處理,以間隙 ' 物12之形成程序爲例進行說明。又,針對將由C.AD/CAM ' 系統所取入之影像直接記錄於基板上時之動作’特開 2005-055881號公報等之公知文獻中存在有詳細之說明,在 本說明書中省略其說明。 第1 9圖係說明記錄位置控制用之初始化處理的流程 圖。在間隙物12之形成程序中,置定於曝光裝置31的平 台2 2上者乃是在透明電極1 4上作爲間隙物1 2之材料之感 光性樹脂受到成膜之基板2 3。 當基板23受到置定時,記錄位置控制部34會對於攝 影控制部3 6送出指示低倍率攝影機27之攝影之信號。由 此,基板2 3其角附近會以低倍率進行拍攝(S 4 0 1)。記錄位 置控制部34會由攝影所獲得之影像讀取基板23上之記號 (S402)。詳細而言’對於由攝影所獲得之影像施行前述之 圖案對照處理’取得記號之位置座標。例如,在此乃是第 2圖所示之記號中,讀取記號6c及記號6f。 . 接著,根據讀取之記號的位置座標,判定基板2 3對於 平台22之移動方向是否筆直’也就是說是否與移動方向平 行地配置(S403)。第20A圖及第20B圖係說明此判定方法 之說明圖。 如第20A圖所示般’在初始狀態下,平台22會與平台 -25- 1359971 100. 7 牛} 之移動方向平行地配置於平台座30上。例如,受 記號6c的位置爲位置40,記號6f的位置爲位置 時’記.錄位置控制部3 4會根據取得記號6 c的位 板23的大小以及平台22之移動方向,藉由計算 板23對於平台22之移動方向筆直地加以配置之 號6 f的位置4 1。 另外,記錄位置控制部3 4更可由位置4 0、i 及位置42的關係中,求取對於基板23的平台22 0。傾斜角0爲0的話,則判定基板2 3會筆直地 台22上,而在基板23上設定座標系(S405)。例 所示般’將記號6f的位置42作爲原點(〇,〇),將 方向設定爲X軸,將與平台移動方向垂直的方向 軸。 若是傾斜角0爲0以外的値的話,記錄位置 則判定基板並非筆直地配置,將表示傾斜角0的 到平台控制部35。平台控制部35會藉由旋轉控 30的方式,如第20B圖所示般,平台22會對於 方向僅作0角傾斜般,調整平台方向(S404)。藉 驟S401〜S403爲止的處理,確認基板23對於平 向平行地受到配置之後,在步驟S 4 0 5設定座標斉 又,在第2〇A圖及第2〇B圖中,爲了容易理 傾斜角0加大表示,實際上傾斜角0,係即使如 所示般使平台22旋轉,亦是不會對平台的移動造 度之角度。 .28------------------ "雜頁丨 到讀取之 42之情況 置40、基 ,求取基 情況的記. 立置4 1以 的傾斜角 配置於平' 如,如圖 平台移動 設定爲y 控制部3 4 資料供給 制平台座 平台移動 由重複步 台移動方 I 。 解,故將 第20B圖 成障礙程 -26 - 1359971 年月日修g替換頁i L ___ - ______i 接著’參照第21圖’針對座標系被設定後的記錄位置 控制部34的處理進行說明。記錄位置控制部34,會根據 設定之座標系,計算拍攝對象之記號或黑色矩陣圖案的座 標。但是’在本實施形態中,如參照第1 5圖所說明般,由 於高倍率攝影機28乃是以30cm的間隔固定於與平台之移 動方向呈垂直之閘29b上,攝影位置的y座標(與平台22 之移動方向呈垂直之方向的座標)會預先受到固定。因此, 只要計算攝影位置的X座標,即可同時求取6個攝影位置 的座標。由計算所求的之座標所代表之位置,乃設定作爲 攝影位置(S 4 Ο 1 )。 接著,記錄位置控制部3 4,會對於平台控制部3 5指 示平台22的移動,各高倍率攝影機28,會將平台22成爲 配置於所設定之攝影位置的上方般在移動方向進行移動 (S 402)。然後,記錄位置控制部34,會對於攝影控制部36 指示高倍率攝影機28的攝影(S 403)。 接著,記錄位置控制部3 4,會由高倍率攝影機2 8的 攝影所獲得之影像,藉由重覆前述圖案對照處理之方式對 應存在於設定之攝影位置之圖案或記號進行檢索(S 404)。 然後,辨識到圖案時’取得此圖案之預先決定之座標(例如 圖案的中心座標KS405) - 記錄位置控制部34’會將由步驟3401到S405爲止的 處理,針對預定之全攝影位置的圖案或記號的讀取結束爲 止不斷重複。 接著,參照第22圖’針對利用所取得之座標値的影像 -27 - 1359971 --Μ ---ι .· I年月曰修鹽香替換頁: I ___^ * 修正處理進行說明。記錄位置控制部3 4 ’會將記錄於作爲 攝影位置加以設定之位置作爲頂點所定義之區域的區域影 像,依單位區域讀取到記憶體(S501)。另一方面’根據藉 由第21圖所示之處理所取得之座標’掌握欲記錄此區域影 ' 像之基板上的實際之區域形狀。然後’與實際的區域形狀 • 重疊,修正所讀取之區域影像(S502)。也就是說’使所讀 取之區域影像成爲基板上之記錄其影像之區域的實際形狀 般進行變形或移動。 記錄於基板之影像會被分割爲複數之區域影像’又’ 藉由基板上複數之攝影位置定義有複數之區域。因此’對 每一區域影像重複進行步驟S501與步驟S 502之處理。針 對全區域影像當處理結束之後(S 5 0 3 )’將修正後之區域影 像加以合成,集合成顯示記錄於基板上之影像全體之單一 影像(S504)。之後,記錄位置控制部34,會對於曝光控制 部3 7指示對合成後影像之基板的記錄。曝光控制部3 7之 記錄處理,乃是曝光裝置的一般性處理’也就是說,與將 由 CAD/C AM系統所輸入的影像直接記錄到基板上時之處 理相同。 以上,雖然針對彩色濾光片基板製造程序1進行說 明,接著,針對第1圖所示之陣列基板製造程序2進行說 明。第23圖係說明陣列基板製造程序2的詳細之流程圖。 ' 陣列基板,乃是藉由在透明基板上形成第23圖之流程圖的 各步驟所示之元件的方式加以製造。透明基板與彩色光片 基板相同,可使用表面具有二氧化矽被膜之蘇打玻璃板、 -28 - 1359971 7 .........—… I牛.月替換頁j »- — ________ - t 低膨脹玻璃板、無鹼性玻璃板、石英玻璃板等周知之玻璃 板或塑膠薄膜。 第24A圖係表示形成有主要元件之狀態下之基板的上 面’將相當於大約液晶面板的一個像素數量之.區域加以擴 大表示。第24B圖係第24A圖所示之構造中更將TFT構造 部擴大表示之圖。又,第25A圖、第25B圖、第25C圖、 第25D圖以及第25E圖爲在形成第24B圖所示之TFT構造 部爲止之各程序中基板之剖面圖。 如第23圖所示般,在陣列基板製造程序2中,首先, 在透明基板上形成閘電極(S601)。形成於透明基板50上之 閘電極圖案5 1,會如第24A圖所示般在平行並排之線狀圖 案上以等間隔,形成設置有與TFT的源極或汲極之交叉部 的圖案形狀。 在形成閘電極圖案51方面,首先,藉由噴鍍,將鉅 (丁&)、鉬(]^〇)、鎢(\¥)、鈦(1^)、鉻((:1')或是鋁(八1)等之金屬, 在透明基板上50上形成膜厚250〜300nm般進行成膜。 接著,在此金屬膜上塗抹感光性阻劑,根據抗蝕性材 料以適當的溫度進行烘烤(預烘烤),利用曝光裝置3 1將阻 劑層曝光爲前述圖案形狀。將曝光後之基板進行顯影後, 受到曝光的部分會作爲圖案殘留於基板上。將此阻劑圖 案,再次進行烘烤(後烘烤)而固定於基板上。 接下來,將受到固定之阻劑圖案作爲蝕刻光罩’將存 在於阻劑圖案下方之金屬膜進行蝕刻,最後藉由剝離液處 理或灰化等將阻劑剝離。第2 5 A圖乃是透過以上之程序在 -29 - 1359971 Μ 7. 28 .- i 4 Η 替換買s •_ 1 ' 透明基板50上形成閘電極圖案51之後之TFT構造部的剖 面圖。 接著,如步驟S602及第25B圖所示般形成’由氮化矽 (SiNx)所構成之膜厚爲3 00〜400nm之閘氧化膜55、由阿 ' 爾發矽(a -Si)所構成之膜厚爲200〜3 00nm之半導體膜56 ' 以及由氮化矽(SiNx)所構成之通道部57。通道部57’乃是 在半導體膜56上將膜厚爲2 0 Onm之氮化矽膜藉由化學氣相 成長法(CVD: Chemical Vapor Deposition)或噴鍍法加以形 成,與閘電極圖案51之形成程序相同,在其上面塗抹感光 性阻劑,利用曝光裝置3 1對阻劑層進行圖案形狀之曝光顯 影,再將阻劑圖案作爲蝕刻光罩將氮化矽進行蝕刻加以形 成。第25B圖乃是表示通道部57形成後之.TFT構造部之 剖面。 在本實施形態中,當形成通道部57時,藉由曝光裝置 3 1進行前述之記錄位置的控制,通道部5 7與下層之閘電 極圖案5 1能夠如第24A圖及第24B圖所示之位置關係般 準確度良好地受到配置。 接著,形成構成TFT之汲極及源極(S603)。步驟S603 中,首先,在形成TFT構造之區域上,覆蓋前述通道部57 之圖案及其下方之半導體膜56般,形成膜厚合計爲40〜 5〇nm般之N +型阿爾發矽(a -Si)層58及N +型微結晶矽Uc ' -Si)層59’在其上方,形成鉅(T a)、鉬(Mo)、鎢(W)、鈦(Ti)、 鉻(Cr)或是鋁(A1)等之金屬膜。此外,更在此金屬膜上,形 成在後續接觸孔形成程序中作爲行使停止鈾刻層之功能的 -30 - 1359971 Μ 7; 28 ---------..- 牛月日修替換頁. _.一_j 層61。然後,與閘電極圖案51的形成程序相同,在層61 上塗抹感光性阻劑,利用曝光裝置3 1對阻劑層進行圖案形 狀之曝光顯影,再將阻劑圖案作爲蝕刻光罩將層6 1、金屬 膜、層58即層59進行蝕刻。由此,在基板上形成第24A 圖及第24B圖所示般之源極52及汲極53之圖案。第25C 圖乃是形成源極及汲極之後的TFT構造部的剖面圖。 又,在本實施形態中,當形成源極5 2及汲極5 3之際, 藉由曝光裝置31進行前述之記錄位置的控制,源極52及 汲極53之圖案與下層之閘電極圖案51能夠如第24A圖及 第24B圖所示之位置關係般準確度良好地受到配置。 接著,形成保護膜及接觸孔(S 604)。保護膜及接觸孔 乃是在源極52及汲極53上將成爲保護膜材料之氮化矽 (SiNx)藉由CVD法等使膜厚成爲300nm以下般進行堆積。 在其上與前述閘電極圖案51的形成程序相同,藉由曝光及 顯影形成阻劑圖案,將阻劑圖案作爲蝕刻光罩,將汲極上 的一部分區域進行蝕刻形成接觸孔54的同時,將基板之周 邊部分進行蝕刻使下層之端子露出。此時,前述的層6 1乃 是作爲停止抗蝕層行使功能。第25D圖乃是顯示保護膜62 及接觸孔5 4形成後之TFT構造部之剖面。 又,如第24B圖所示般,接觸孔54必須要形成於汲極 5 3之上部。因此’在本實施形態中,形成保護膜及接觸孔 之際’也是藉由曝光裝置31進行如前述般之記錄位置的控 制。 最後,形成像素電極(S605)。像素電極63,乃是藉由 1359971 100. 7. 28 *- i 噴鑛進行堆積ITO ’與閘電極圖案形成程序相同,藉由曝 光及顯影形成阻劑圖案’將阻劑圖案作爲蝕刻光罩,藉由 倉虫刻形成圖案。第25Ε圖,乃是表示像素電極63形成後 TFT構造部之剖面。形成像素電極63之際,亦藉由曝光裝 置3 1進行記錄位置控制。 第26圖所示之流程圖,乃是說明陣列基板製造程序2 的各元件之形成程序中’進行記錄位置控制的程序,具體 而言,即是形成通道部57、源極52、汲極53、接觸孔54 之程序中表示共通處理之流程圖。 首先,洗淨形成有圖案之基板(S701)。接著,將形成 之元件之材料藉由CVD法或是噴鍍在基板上成膜(S7〇2)。 之後’在此膜上塗抹感光性阻劑(S703),根據抗蝕性材料 以適當的溫度進行烘烤(預烘烤:S 704)。 之後’爲了使形成於下層之圖案與接下來形成之圖案 之位置進行對照’而進行基板之讀取(S 7 0 5 )及影像的修正 (S706)。此等處理之內容及使用於此等處理之曝光裝置31 的構成雖然如同在彩色濾光片基板製造程序1的說明中已 經說明,但在陣列基板製造程序2中,與彩色濾光片基板 製造程序1不同,存在有將無光透過性之材料進行成膜之 程序。 具體而言,感光性阻劑、閘絕緣膜、保護膜以及透明 電極具有光透過性,而閘電極、源極、汲極等之金屬與阿 爾發矽並不具有光透過性。例如,在通道部57之形成程序 中’在將通道部57形成圖案的層下方存在有阿爾發矽的 -32 - 工 35997I IQd ^ , ;年) • !__ - 層,故要由如第1 7圖所示之落下照明所拍攝之影 閘電極圖案5 1會比較困難。 因此,在陣列基板製造程序2中,如第27圖 示般由圖案的斜上方接觸照射光,在攝影影像中 • 緣的段差會作成陰影向上浮出。由此,由攝影影 . 辨識相當於閘電極圖案5 1的形狀,所以能夠執行 光片基板製造程序1相同之圖案的位置對照。 在修正影像之後,接著將塗抹之阻劑曝光成 正後之影像上之圖案形狀(S 7 0 7 )。在形成通道部 5 2、汲極5 3時,在曝光、顯影後阻劑如此等圖案 殘留地進行曝光,在形成接觸孔5 4時,在曝光、 劑如洞形狀般地不殘留地進行曝光。然後,將曝 板進行顯影(S7 08),顯影後將殘留於基板上之阻 再度進行烘烤(後烘烤)後固定於基板上(S 709)。 接著,將受到固定之阻劑圖案作爲蝕刻光罩 驟S702成膜之層進行蝕刻(S710)。最後,藉由洗 劑之基板,’形成元件(S71 1)。 以上,雖然針對陣列基板製造程序2進行說曰」 參照第28圖’說明第1圖所示之液晶單胞製造程 . 液晶單胞製造程序3中,在彩色濾光片基板及陣 塗抹將液晶維持在單胞內用之黏著劑(密封材料 S804)。接著,在短路施加程序(S802)中,塗抹將 片基板的電極及陣列基板的電極作電性連接用之 膏。 28 弓曰修^替換1 ______J 像,辨識 之箭號所 圖案的邊 像,能夠 與彩色濾 描繪於修 5 7、源極 形狀般地 顯影後阻 光後之基 劑圖案, ,將在步‘ 淨剝離阻 弓,最後, 序3。在 列基板上 )(S801 、 彩色濾光 導電性錫 -33 - 1359971 -拠7 !年, 之後’在形成彩色濾光片基板端之彩色濾光 區域處滴下液晶(S803),將彩色濾光片基板及陣 相貼合(S 805)。基板的貼合,乃是藉由將分別形 板上之對準記號(第2圖所示之記號6等)彼此 式’ TFT陣列與彩色濾光片能準確度優良地重疊 加壓及紫外線照射進行暫時固定。之後,更加藉 紫外線照射,令密封材料熱硬化(S 806)。此時, 的距離,也就是單晶的間隙,乃是藉由形成於彩 基板上之間隙物1 2高準確度地受到控制。 接著,將互相貼合後之基板,切斷爲製品面 (S807)。具體而言,在玻璃表面沿著切斷的線造 給予壓力衝擊而切斷基板。另外,單晶一但加熱 後冷卻的方式,可獲得良好的配向(S 8 0 8 )。最後 上設置偏光板,利用滾輪進行加壓而黏貼(S 8 09) 晶面板。 以上所說明之液晶面板的製造程序中,如前 形成構成基板的各元件時,拍攝基板上複數個位 在其位置應存在之記號或圖案的實際位置座標, 置偏移,將曝光紀錄於此基板上之影像進行變形 因此,在彩色濾光片基板製造程序中,應形成於 上之間隙物,即使黑色矩陣的細線化持續進行亦 度佳地配置於黑色矩陣上。又,在與間隙物重疊 阻礙的液晶配向控制材,亦能夠不與間隙物重疊 地配置。此外,即使在陣列基板製造程序中’能 〇0 . ..« - r - ·· ·ι_ 一詹* 丨曰修®秦替換頁; 片構造之 列基板互 成於各基 對照之方 ,再藉由 由加壓或 兩片基板 色濾光片 板的尺寸 成傷痕, ,藉由之 ,在單晶 ,完成液 述般,在 置,取得 對照其位 或移動。 黑色矩陣 能夠準確 時會造成 而準確般 夠高準確 -34 - 1359971 -100;*7".*28·—..... '—-— 年月曰修((歲•替換頁丨 [________* 度地控制應配置於閘電極上部之通道部,與閘電極以既定 之位置關係加以配置之源極、汲極,以及應形成汲極上接 觸孔等之配置位置。 又,當製品之面板尺寸大型化時,由於不得不加寬形 成於基板端部之對準記號的間隔,存在有僅利用對準記號 之位置對照無法確保充分的準確度之情況,在本實施形態 之方法中,除了以位置對照爲目的形成於基板端部之對準 記號之外,藉由辨識彩色濾光片基板的黑色矩陣或陣列基 板的閘電極之方式,不依賴對準記號的設置間隔,能夠以 小區域爲單位進行位置對照。因此,即使製品之面板尺寸 變大時,又或是在製造程序所處理之透明基板的尺寸變 大,能夠以適當尺寸的區域爲單位進行位置對照,以高準 確度調整圖案彼此之位置關係。 又,只要是業者當能考慮到前述實施形態之種種變化 例,即使是與前述實施形態不同之方法,只要是包含於專 利申請範圍所記載之順序的方法,當然均包含於本發明之 範圍內。 例如,在前述實施形態中,基板端部的記號讀取方面 係使用低倍率攝影機27,而黑色矩陣等之元件的圖案之讀 取方面則使用高倍率攝影機2 8,又,雖然分別設置有複數 台之各個種類之攝影機,亦可以令一台可移動之攝影機進 行移動,更令其一邊變更倍率’ 一邊進行必要位置之攝影。 【圖式之簡單說明】 第1圖係液晶面板的製造程序之槪要的示意圖。 -35 - 1359971 —__ "* ; I年月日修替換頁iHereinafter, the procedure for forming the gap 'object 12 will be described as an example of the control processing executed by the control unit 32. In addition, in the publicly known documents such as the Japanese Patent Laid-Open Publication No. 2005-055881, the entire disclosure of the present disclosure of . Fig. 19 is a flow chart showing the initialization process for recording position control. In the forming process of the spacers 12, the substrate 2 of the exposure device 31 is placed on the transparent electrode 14 as the substrate 2 3 on which the photosensitive resin as the material of the spacers 1 2 is formed. When the substrate 23 is set, the recording position control unit 34 sends a signal indicating the shooting of the low magnification camera 27 to the shooting control unit 36. As a result, the substrate 2 3 is photographed at a low magnification near the corner (S 4 0 1). The recording position control unit 34 reads the mark on the substrate 23 from the image obtained by photographing (S402). Specifically, the position coordinates of the mark are obtained by performing the aforementioned pattern matching process on the image obtained by photography. For example, here, in the symbol shown in Fig. 2, the symbol 6c and the symbol 6f are read. Next, based on the position coordinates of the read mark, it is determined whether or not the moving direction of the substrate 2 with respect to the stage 22 is straight', that is, whether it is arranged in parallel with the moving direction (S403). Fig. 20A and Fig. 20B are explanatory diagrams for explaining the determination method. As shown in Fig. 20A, in the initial state, the platform 22 is disposed on the platform base 30 in parallel with the moving direction of the platform -25-1359971 100. 7 cattle}. For example, when the position of the symbol 6c is the position 40 and the position of the symbol 6f is the position, the recording position control unit 34 will calculate the board based on the size of the bit plate 23 on which the symbol 6c is obtained and the moving direction of the stage 22. 23 Position 4 1 of the number 6 f that is configured straight for the direction of movement of the platform 22. Further, the recording position control unit 34 can determine the platform 22 0 for the substrate 23 from the relationship of the position 40, i and the position 42. When the tilt angle 0 is 0, it is determined that the substrate 2 3 is on the straight stage 22, and the coordinate system is set on the substrate 23 (S405). As shown in the example, the position 42 of the symbol 6f is used as the origin (〇, 〇), the direction is set to the X-axis, and the direction axis is perpendicular to the direction in which the platform moves. If the inclination angle 0 is other than 0, the recording position determines that the substrate is not arranged straight, and the inclination control angle is 0 to the platform control unit 35. The platform control unit 35 rotates the control unit 30, and as shown in Fig. 20B, the stage 22 adjusts the platform direction by tilting only the 0 angle with respect to the direction (S404). By the processing up to steps S401 to S403, it is confirmed that the substrate 23 is placed in parallel in the horizontal direction, and then the coordinate 设定 is set in step S405, and in the second 〇A diagram and the second 〇B diagram, in order to facilitate tilting An increase in the angle 0 indicates that the tilt angle of 0 is actually the angle at which the platform 22 is not moved even if the platform 22 is rotated as shown. .28------------------ " Miscellaneous Pages to the reading of 42 cases set 40, base, to find the base case record. Stand 4 1 or so The tilt angle is arranged in a flat shape. For example, as shown in the figure, the movement of the platform is set to y. The control unit 3 4 is supplied by the platform. The platform is moved by the repeating step moving side I. Therefore, the processing of the recording position control unit 34 in which the coordinate system is set is described with reference to Fig. 21, and the processing of the recording position control unit 34 is described. The recording position control unit 34 calculates the coordinates of the object or the black matrix pattern based on the set coordinate system. However, in the present embodiment, as described with reference to Fig. 15, the high-magnification camera 28 is fixed to the shutter 29b perpendicular to the moving direction of the stage at an interval of 30 cm, and the y coordinate of the photographing position (and The coordinates of the direction in which the platform 22 moves in the vertical direction are fixed in advance. Therefore, as long as the X coordinate of the photographing position is calculated, the coordinates of the six photographing positions can be simultaneously obtained. The position represented by the coordinates obtained by the calculation is set as the photographing position (S 4 Ο 1 ). Next, the recording position control unit 34 instructs the platform control unit 35 to move the platform 22, and each high-magnification camera 28 moves the platform 22 in the moving direction as it is placed above the set shooting position (S 402). Then, the recording position control unit 34 instructs the photographing control unit 36 to photograph the high magnification camera 28 (S403). Next, the recording position control unit 34 searches for the image obtained by the high-magnification camera 28 by the pattern or symbol existing in the set shooting position by repeating the pattern matching processing (S 404). . Then, when the pattern is recognized, the predetermined coordinates of the pattern are acquired (for example, the center coordinates KS405 of the pattern) - the recording position control unit 34' will process the steps from 3401 to S405 for the pattern or mark of the predetermined full shooting position. The reading is repeated as of the end. Next, referring to Fig. 22, the image of the obtained coordinate -27 - 1359971 - Μ ---ι . · I year 曰 盐 salt replacement page: I ___^ * Correction process will be explained. The recording position control unit 3 4 ' reads the area image recorded in the area defined as the vertex at the position set as the shooting position, and reads it into the memory in accordance with the unit area (S501). On the other hand, 'the coordinates obtained by the processing shown in Fig. 21' grasp the actual shape of the area on the substrate on which the image of the area is to be recorded. Then, 'the actual area shape is overlapped with the actual area shape, and the read area image is corrected (S502). That is to say, the image of the region read is deformed or moved as the actual shape of the region on the substrate on which the image is recorded. The image recorded on the substrate is divided into a plurality of area images 'and' defined by a plurality of areas on the substrate. Therefore, the processing of steps S501 and S502 is repeated for each area image. After the processing of the entire area image is completed (S 5 0 3 ), the corrected area images are combined and displayed as a single image showing the entire image recorded on the substrate (S504). Thereafter, the recording position control unit 34 instructs the exposure control unit 37 to record the substrate of the synthesized image. The recording processing of the exposure control unit 37 is a general processing of the exposure apparatus ‘that is, the same as when the image input by the CAD/C AM system is directly recorded on the substrate. As described above, the color filter substrate manufacturing program 1 will be described. Next, the array substrate manufacturing program 2 shown in Fig. 1 will be described. Fig. 23 is a flow chart showing the detailed procedure of the array substrate manufacturing program 2. The array substrate is manufactured by forming the elements shown in the respective steps of the flowchart of Fig. 23 on the transparent substrate. The transparent substrate is the same as the color light substrate, and a soda glass plate having a cerium oxide film on the surface can be used, -28 - 1359971 7 .......... I cattle. Month replacement page j »- ________ t Low-expansion glass plate, non-alkali glass plate, quartz glass plate and other well-known glass plates or plastic films. Fig. 24A is a view showing that the upper surface of the substrate in a state in which the main elements are formed is enlarged corresponding to the number of pixels of the liquid crystal panel. Fig. 24B is a view showing an enlarged view of the TFT structure portion in the structure shown in Fig. 24A. Further, Fig. 25A, Fig. 25B, Fig. 25C, Fig. 25D, and Fig. 25E are cross-sectional views of the substrate in each of the procedures for forming the TFT structure portion shown in Fig. 24B. As shown in Fig. 23, in the array substrate manufacturing program 2, first, a gate electrode is formed on a transparent substrate (S601). The gate electrode patterns 51 formed on the transparent substrate 50 are formed at equal intervals on the parallel side-by-side line patterns as shown in FIG. 24A to form a pattern shape at the intersection with the source or the drain of the TFT. . In forming the gate electrode pattern 51, first, by sputtering, giant (butyl &), molybdenum (?), tungsten (\¥), titanium (1^), chromium ((:1') or It is a metal such as aluminum (eight 1), and is formed by forming a film thickness of 250 to 300 nm on the transparent substrate 50. Next, a photosensitive resist is applied to the metal film, and the temperature is applied to the resist material at an appropriate temperature. Baking (prebaking), the resist layer is exposed to the pattern shape by the exposure device 31. After the exposed substrate is developed, the exposed portion remains as a pattern on the substrate. Bake (post-baking) again and fix it on the substrate. Next, the fixed resist pattern is used as an etch mask to etch the metal film existing under the resist pattern, and finally by stripping or The resist is peeled off by ashing, etc. The second 5A is after the gate electrode pattern 51 is formed on the transparent substrate 50 by the above procedure at -29 - 1359971 Μ 7. 28 .- i 4 替换A cross-sectional view of the TFT structure portion. Next, as shown in steps S602 and 25B, A gate oxide film 55 having a film thickness of 300 to 400 nm and a semiconductor film 56' having a film thickness of 200 to 300 nm composed of arsenic (a-Si) and a nitrogen film composed of silicon oxide (SiNx) a channel portion 57 formed of ruthenium (SiNx). The channel portion 57' is formed by a chemical vapor deposition method (CVD: Chemical Vapor Deposition) or a ruthenium nitride film having a film thickness of 20 nm on the semiconductor film 56. The sputtering method is formed in the same manner as the formation process of the gate electrode pattern 51, and a photosensitive resist is applied thereon, and the resist layer is subjected to patterning exposure and development by the exposure device 31, and the resist pattern is used as an etching mask. The yttrium nitride is formed by etching. Fig. 25B is a cross-sectional view showing the TFT structure portion after the channel portion 57 is formed. In the present embodiment, when the channel portion 57 is formed, the exposure device 3 1 performs the foregoing. In the control of the recording position, the channel portion 57 and the lower gate electrode pattern 51 can be disposed with high accuracy as in the positional relationship shown in Figs. 24A and 24B. Next, the drain and the source constituting the TFT are formed. (S603). In step S603, first, in forming a TFT structure In the region formed, the pattern of the channel portion 57 and the semiconductor film 56 underneath the film are formed to form an N + -type a-Si layer 58 and an N + film having a total thickness of 40 to 5 Å. The microcrystalline 矽Uc '-Si) layer 59' is formed thereon to form a metal such as giant (T a), molybdenum (Mo), tungsten (W), titanium (Ti), chromium (Cr) or aluminum (A1). membrane. In addition, on the metal film, it is formed in the subsequent contact hole forming process as a function of stopping the uranium layering -30 - 1359971 Μ 7; 28 ---------..- Replace page. _. A _j layer 61. Then, similarly to the formation procedure of the gate electrode pattern 51, a photosensitive resist is applied on the layer 61, and the resist layer is subjected to patterning exposure development by the exposure device 31, and the resist pattern is used as an etching mask. 1. The metal film, layer 58, layer 59, is etched. Thereby, the patterns of the source 52 and the drain 53 as shown in Figs. 24A and 24B are formed on the substrate. Fig. 25C is a cross-sectional view showing the TFT structure portion after the source and the drain are formed. Further, in the present embodiment, when the source electrode 5 2 and the drain electrode 5 3 are formed, the above-described recording position is controlled by the exposure device 31, the pattern of the source electrode 52 and the drain electrode 53 and the gate electrode pattern of the lower layer. The 51 can be configured with good accuracy as in the positional relationship shown in Figs. 24A and 24B. Next, a protective film and a contact hole are formed (S604). In the protective film and the contact hole, tantalum nitride (SiNx) which is a material of the protective film on the source electrode 52 and the drain electrode 53 is deposited by a CVD method or the like to have a film thickness of 300 nm or less. The resist pattern is formed by exposure and development, the resist pattern is used as an etch mask, and a portion of the drain is etched to form the contact hole 54 while the substrate is formed. The peripheral portion is etched to expose the terminals of the lower layer. At this time, the aforementioned layer 6 1 functions as a stop resist layer. Fig. 25D is a cross section showing the TFT structure portion after the protective film 62 and the contact hole 504 are formed. Further, as shown in Fig. 24B, the contact hole 54 must be formed on the upper portion of the drain 5 3 . Therefore, in the present embodiment, the formation of the protective film and the contact hole is also controlled by the exposure device 31 as described above. Finally, a pixel electrode is formed (S605). The pixel electrode 63 is deposited by the 1359971 100. 7. 28 *- i shot ITO 'the same as the gate electrode pattern forming process, and the resist pattern is formed by exposure and development to use the resist pattern as an etch mask. The pattern is formed by the worm. Fig. 25 is a cross-sectional view showing the TFT structure portion after the pixel electrode 63 is formed. At the time of forming the pixel electrode 63, the recording position control is also performed by the exposure device 31. The flowchart shown in FIG. 26 is a procedure for describing the recording position control in the forming procedure of each element of the array substrate manufacturing program 2, specifically, the channel portion 57, the source 52, and the drain 53 are formed. In the program of the contact hole 54, a flowchart of common processing is shown. First, the substrate on which the pattern is formed is washed (S701). Next, the material of the formed element is formed on the substrate by CVD or sputtering (S7〇2). Thereafter, a photosensitive resist is applied to the film (S703), and baked at a suitable temperature in accordance with the resist material (prebaking: S 704). Then, in order to collide the position of the pattern formed on the lower layer with the pattern formed next, the substrate is read (S 7 0 5 ) and the image is corrected (S706). The contents of such processing and the configuration of the exposure device 31 used in the processing are as described in the description of the color filter substrate manufacturing program 1, but in the array substrate manufacturing program 2, the color filter substrate is manufactured. Unlike the procedure 1, there is a procedure for forming a film having no light transmissive property. Specifically, the photosensitive resist, the gate insulating film, the protective film, and the transparent electrode have light transmittance, and the metal such as the gate electrode, the source, and the drain has no light transmittance. For example, in the forming process of the channel portion 57, there is a -32-35997I IQd ^ , ; The shadow gate electrode pattern 51 taken by the falling illumination shown in Fig. 7 may be difficult. Therefore, in the array substrate manufacturing program 2, as shown in Fig. 27, the irradiation light is contacted obliquely upward from the pattern, and in the photographic image, the step of the edge is made to float upward. Thereby, since the shape corresponding to the gate electrode pattern 51 is recognized by the photographic image, the positional comparison of the pattern of the same pattern of the optical sheet manufacturing program 1 can be performed. After correcting the image, the applied resist is then exposed to the pattern shape on the image of the front (S 7 0 7 ). When the channel portion 5 and the drain 5 3 are formed, the resist is exposed in a pattern such as after the exposure and development, and when the contact hole 5 4 is formed, the exposure is performed without exposure, such as a hole shape. . Then, the exposure plate is developed (S7 08), and after the development, the resistance remaining on the substrate is again baked (post-baking) and then fixed on the substrate (S709). Next, the resist pattern to be fixed is etched as a layer formed by the etching mask S702 (S710). Finally, the element is formed by the substrate of the detergent (S71 1). As described above, the array substrate manufacturing program 2 is described. Referring to FIG. 28, the liquid crystal cell manufacturing process shown in FIG. 1 will be described. In the liquid crystal cell manufacturing process 3, the color filter substrate and the array are coated with liquid crystal. The adhesive for the unit cell is maintained (sealing material S804). Next, in the short-circuit application program (S802), a paste for electrically connecting the electrodes of the substrate and the electrodes of the array substrate is applied. 28 bow repair ^ replace 1 ______J image, identify the side image of the arrow pattern, can be painted with the color filter in the repair, after the source shape is developed, the base pattern after blocking, will be in step Net peeling obstruction, finally, preface 3. On the column substrate) (S801, color filter conductive tin-33 - 1359971 - 拠 7 ! years, then 'drop the liquid crystal at the color filter region where the color filter substrate is formed (S803), color filter The substrate and the array are bonded together (S 805). The bonding of the substrates is performed by aligning the alignment marks on the respective shapes (symbols 6 and the like shown in FIG. 2) with each other's TFT array and color filter. The sheet can be temporarily fixed by superimposing pressure and ultraviolet irradiation with high precision. Thereafter, the sealing material is thermally cured by ultraviolet irradiation (S 806). At this time, the distance, that is, the gap of the single crystal, is The spacers 12 formed on the color substrate are controlled with high accuracy. Next, the substrates bonded to each other are cut into product surfaces (S807). Specifically, the glass surfaces are formed along the cut lines. The substrate is cut by a pressure shock, and a good orientation (S 8 0 8 ) is obtained by cooling the single crystal once after heating. Finally, a polarizing plate is provided, and the roller is pressed and adhered (S 8 09) Crystal panel. The system of the above described liquid crystal panel In the manufacturing process, when the components constituting the substrate are formed as before, the actual position coordinates of the marks or patterns on which the plurality of bits are located at the position on the substrate are taken, offset, and the image recorded on the substrate is exposed and deformed. In the color filter substrate manufacturing process, the spacer is formed on the upper spacer, and even if the thinning of the black matrix continues, the liquid crystal alignment control material is prevented from being overlapped with the spacer. It is also possible to arrange without overlapping with the spacers. In addition, even in the array substrate manufacturing process, 'can be 〇 0 . .. « - r - ·· · ι_ 一詹* 丨曰修®Qin replacement page; The substrates are formed on the basis of the respective bases, and the flaws are formed by the pressure or the size of the two substrate color filter plates, thereby obtaining a comparison in the single crystal. Bit or move. Black matrix can be accurate and accurate enough when accurate -34 - 1359971 -100;*7".*28·-..... '--- Year of the month repair ((years of replacement Page 丨[________* Degree control should be configured The channel portion on the upper part of the gate electrode, the source electrode and the drain electrode arranged in a predetermined position relationship with the gate electrode, and the arrangement position of the contact hole on the drain electrode, etc., when the panel size of the product is increased, The interval between the alignment marks formed at the end portions of the substrate is not widened, and there is a case where sufficient accuracy cannot be ensured by the positional comparison using only the alignment marks. In the method of the present embodiment, the method is formed for the purpose of positional comparison. In addition to the alignment marks at the end portions of the substrate, by recognizing the black matrix of the color filter substrate or the gate electrode of the array substrate, the positional comparison can be performed in units of small areas without depending on the arrangement interval of the alignment marks. Therefore, even if the panel size of the product becomes large, or the size of the transparent substrate processed by the manufacturing process becomes large, the positional comparison can be performed in units of appropriate size regions, and the positional relationship between the patterns can be adjusted with high accuracy. In addition, as long as the manufacturer can take into consideration various modifications of the above-described embodiments, even a method different from the above-described embodiment is a method included in the order described in the patent application, and is of course included in the scope of the present invention. . For example, in the above-described embodiment, the low-magnification camera 27 is used for the reading of the end portion of the substrate, and the high-magnification camera 2 is used for the reading of the pattern of the element such as the black matrix, and the plural is provided separately. The various types of cameras in Taiwan can also move a mobile camera and make it possible to change the magnification while taking pictures of the necessary positions. [Simplified description of the drawings] Fig. 1 is a schematic diagram showing a manufacturing procedure of a liquid crystal panel. -35 - 1359971 —__ "* ; I year and month repair replacement page i
!_I 第2圖係彩色濾光片基板之實施例的示意圖。 第3圖係說明彩色濾光片基板製造程序細部之流程 圖。 第4A圖係將黑色矩陣形成程序後之基板上面的一部 分擴大表示之說明圖。 第4B圖係對應於第4A圖之剖面圖。 第5A圖係將R像素圖案形成程序後之基板上面的一 部分擴大表示之說明圖。 第5B圖係對應於第5A圖之剖面圖。 第6A圖係將全著色像素圖案形成程序後之基板上面 的一部分擴大表示之說明圖。 第6B圖係對應於第6A圖之剖面圖。 第7 A圖係將配向控制材形成程序後之基板上面的一 部分擴大表示之說明圖。 第7B圖係對應於第7A圖之剖面圖。 第8圖係說明黑色矩陣形成程序之流程圖。 第9圖係說明各兀件之形成程序之流程圖.。 第10圖說明形成於讀取對象基板上之圖案與攝影位 置之關係的例示圖。 第11圖係針對圖案之位置偏差加以說明之示意圖。 第12圖(a)、(b)分別係針對將由黑色矩陣圖案所定義 之區域爲單位進行影像修正處理加以說明之示意圖。 第1 3圖係針對將由對準記號所定義之區域爲單位進 行影像修正處理加以說明之示意圖。 -36 - 1359971 100. 7. 28 ........ ί千Η 山爹替換頁. i ! - _ _ τ _ _ _r> 第14圖係說明進行影像修正所產生之效果用之示意 圖。 第15圖係曝光裝置之槪略構造之示意圖(由上方所觀 察之圖)。 第16圖係‘曝光裝置之槪略構造之示意圖(由水平方向 所觀察之圖)。 第1 7圖係針對以高倍率相機進行攝影時之照明加以 說;明之示意圖。 第18圖係曝光裝置之控制部的詳細說明圖。 第1 9圖係說明記錄位置控制用之初始化處理的流程 圖。 第20A圖係p明基板設置方向的判定方法之說明圖。 第20B圖係說明基板設置方向的調整方法之說明圖。 第 2 1圖係說明記錄位置控制用之影像讀取處理之流 程圖。 第2 2圖係說明記錄位置控制用之影像修正處理之流 程圖。 第2 3圖係說明陣列基板製造程序的詳細之流程圖》 第24A圖係表示形成有構成TFT之主要元件之狀態下 之基板的上面之示意圖。 第24B圖係第24A圖之TFT構造部之擴大圖。 第25A圖係直到形成第24B圖所示之部分爲止之各過 程中基板之剖面圖。 第25B圖係直到形成第24B圖所示之部分爲止之各過 -37 - 1359971 I牛Η匕猶爱^替換買: 程中基板之剖面圖。 第25C圖係直到形成第24B圖所示之部分爲止之各過 程中基板之剖面圖。 第25D圖係直到形成第24B圖所示之部分爲止之各過 程中基板之剖面圖。 第25E圖係直到形成第24B圖所示之部分爲止之各過 程中基板之剖面圖。 第2 6圖係說明陣列基板製造程序中記錄位置控制處 理之流程圖。 第27圖係說明拍攝無透光性層時之照明之示意圖。 第2 8圖係說明液晶胞製造程序之詳細之流程圖。 【元件符 號說 明 ] 4 彩 色 濾 光 片 基 板 5 彩 色 濾 光 片 構 造 6 a 〜6 i 記 號 7 透 明 基 板 8 里 y 1 v \ 色 矩 陣 圖 案 9 R 像 素 圖 案 10 G 像 素 圖 案 11 B 像 素 圖 案 12 間 隙 物 13 保 護. 膜 1 4 透 明 電 極 15 配 向 控 制 材 -38 - 1359971 ιοα ϋϋ________ : ·!_I Figure 2 is a schematic view of an embodiment of a color filter substrate. Fig. 3 is a flow chart showing the details of the manufacturing process of the color filter substrate. Fig. 4A is an explanatory view showing an enlarged view of a part of the upper surface of the substrate after the black matrix forming process. Fig. 4B is a cross-sectional view corresponding to Fig. 4A. Fig. 5A is an explanatory view showing an enlarged view of a part of the upper surface of the substrate after the R pixel pattern forming process. Fig. 5B is a cross-sectional view corresponding to Fig. 5A. Fig. 6A is an explanatory view showing an enlarged view of a part of the upper surface of the substrate after the full-color pixel pattern forming process. Figure 6B is a cross-sectional view corresponding to Figure 6A. Fig. 7A is an explanatory view showing an enlarged view of a part of the upper surface of the substrate after the alignment control material forming process. Fig. 7B is a cross-sectional view corresponding to Fig. 7A. Figure 8 is a flow chart illustrating the black matrix forming procedure. Figure 9 is a flow chart showing the procedure for forming each component. Fig. 10 is a view showing an example of the relationship between the pattern formed on the substrate to be read and the photographing position. Figure 11 is a schematic diagram illustrating the positional deviation of the pattern. Fig. 12 (a) and (b) are diagrams for explaining image correction processing for each area defined by a black matrix pattern. Fig. 1 is a schematic diagram for explaining image correction processing in units of areas defined by alignment marks. -36 - 1359971 100. 7. 28 ........ ί千Η Hawthorn replacement page. i ! - _ _ τ _ _ _r> Figure 14 is a schematic diagram showing the effect of image correction . Fig. 15 is a schematic view showing the schematic configuration of the exposure apparatus (viewed from above). Fig. 16 is a schematic view showing the outline of the exposure apparatus (a diagram observed from the horizontal direction). Figure 17 is for the illumination of a high-magnification camera; Fig. 18 is a detailed explanatory diagram of a control unit of the exposure apparatus. Fig. 19 is a flow chart showing the initialization process for recording position control. Fig. 20A is an explanatory diagram of a method of determining the direction in which the substrate is disposed. Fig. 20B is an explanatory view for explaining a method of adjusting the substrate setting direction. Fig. 21 is a flow chart showing the image reading processing for recording position control. Fig. 2 is a flow chart showing the image correction processing for recording position control. Fig. 2 is a flow chart showing the detailed procedure of the manufacturing process of the array substrate. Fig. 24A is a view showing the upper surface of the substrate in a state in which the main elements constituting the TFT are formed. Fig. 24B is an enlarged view of the TFT structure portion of Fig. 24A. Fig. 25A is a cross-sectional view of the substrate in each of the processes up to the portion shown in Fig. 24B. Figure 25B is a section of the substrate in the process until the formation of the portion shown in Figure 24B. -37 - 1359971 I. Fig. 25C is a cross-sectional view of the substrate in each of the processes up to the portion shown in Fig. 24B. Fig. 25D is a cross-sectional view of the substrate in each of the processes up to the portion shown in Fig. 24B. Fig. 25E is a cross-sectional view of the substrate in each of the processes up to the portion shown in Fig. 24B. Fig. 26 is a flow chart showing the recording position control process in the array substrate manufacturing process. Figure 27 is a schematic view showing the illumination when the non-transmissive layer is photographed. Figure 28 is a flow chart showing the detailed process of the liquid crystal cell manufacturing process. [Description of component symbols] 4 Color filter substrate 5 Color filter structure 6 a ~ 6 i Symbol 7 Transparent substrate 8 y 1 v \ Color matrix pattern 9 R Pixel pattern 10 G Pixel pattern 11 B Pixel pattern 12 Interstitial 13 Protection. Membrane 1 4 Transparent Electrode 15 Orientation Control Material -38 - 1359971 ιοα ϋϋ________ :
牛月日替換F 1 6 a ~ 1 6 d 拍 攝 位 置 17 際 的 位 置 20 設 置 台 2 1 導 件 22 平 台 23 基 板 24 支 柱 2 5 掃 描 器 26 支 撐 體 27 低倍 率 攝 影 機 28 尚 倍 率 攝 影 機 29 閘 3 1 曝 光 裝 置 5 1 閘 電 極 圖 案 5 2 源 極 53 汲 極 54 接 觸 孔 57 通 道 部 -39 -Niuyue Day Replacement F 1 6 a ~ 1 6 d Shooting Position 17 Position 20 Setting Table 2 1 Guide 22 Platform 23 Substrate 24 Pillar 2 5 Scanner 26 Support 27 Low Magnification Camera 28 Still Camera 29 Brake 3 1 Exposure device 5 1 gate electrode pattern 5 2 source 53 drain 54 contact hole 57 channel portion -39 -
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005162006A JP2006337696A (en) | 2005-06-01 | 2005-06-01 | Method for manufacturing liquid crystal panel |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200706975A TW200706975A (en) | 2007-02-16 |
TWI359971B true TWI359971B (en) | 2012-03-11 |
Family
ID=37481581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95119303A TWI359971B (en) | 2005-06-01 | 2006-06-01 | Manufacturing method of lcd panel |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2006337696A (en) |
TW (1) | TWI359971B (en) |
WO (1) | WO2006129652A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5607104B2 (en) * | 2012-04-25 | 2014-10-15 | 岩崎電気株式会社 | Polarized UV irradiation device |
KR102151254B1 (en) | 2013-08-19 | 2020-09-03 | 삼성디스플레이 주식회사 | Exposing apparatus and method thereof |
CN111077744A (en) * | 2020-01-03 | 2020-04-28 | Tcl华星光电技术有限公司 | Array substrate preparation method, array substrate and liquid crystal display panel |
US11194199B2 (en) | 2020-01-03 | 2021-12-07 | Tcl China Star Optoelectronics Technology Co., Ltd | Method of manufacturing array substrate, array substrate, and LCD panel |
CN116339003A (en) * | 2023-03-10 | 2023-06-27 | 福建华佳彩有限公司 | Method for improving alignment accuracy of liquid crystal display panel |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3127763B2 (en) * | 1995-02-23 | 2001-01-29 | 凸版印刷株式会社 | Method of manufacturing exposure mask and method of manufacturing color filter using the same |
JP4505270B2 (en) * | 2003-07-02 | 2010-07-21 | 富士フイルム株式会社 | Image recording apparatus, image recording method, and program |
JP4312535B2 (en) * | 2003-08-06 | 2009-08-12 | シャープ株式会社 | Pattern exposure equipment |
-
2005
- 2005-06-01 JP JP2005162006A patent/JP2006337696A/en not_active Withdrawn
-
2006
- 2006-05-30 WO PCT/JP2006/310761 patent/WO2006129652A1/en active Application Filing
- 2006-06-01 TW TW95119303A patent/TWI359971B/en active
Also Published As
Publication number | Publication date |
---|---|
TW200706975A (en) | 2007-02-16 |
JP2006337696A (en) | 2006-12-14 |
WO2006129652A1 (en) | 2006-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050105071A1 (en) | Methods for patterning substrates having arbitrary and unexpected dimensional changes | |
US8159674B2 (en) | Exposure method and exposure device | |
JP4744954B2 (en) | Substrate manufacturing method and exposure apparatus | |
TWI359971B (en) | Manufacturing method of lcd panel | |
TWI668732B (en) | Projection exposure device, projection exposure method, photomask for projection exposure device, and method of manufacturing substrate | |
US6502324B2 (en) | Method of alignment between sheet materials, method of alignment, substrate assembling method and aligning apparatus | |
US10396207B2 (en) | Method for manufacturing thin film transistor substrate | |
JP5404619B2 (en) | Exposure equipment | |
US7767369B2 (en) | Photo-mask and thin-film transistor substrate | |
JP2003066466A (en) | Substrate superposing device, substrate sticking method and manufacturing method for liquid crystal cell | |
JP3983278B2 (en) | Exposure method and exposure apparatus | |
JP2005221806A (en) | Image recording apparatus, and method for manufacturing board | |
CN110764327A (en) | Array substrate and preparation method thereof | |
US20090155933A1 (en) | Manufacturing Method of Display Device | |
US20050099615A1 (en) | System for fabricating electronic modules on substrates having arbitrary and unexpected dimensional changes | |
KR101949389B1 (en) | Method of forming pattern using mask-less exposure equipment | |
JP5823339B2 (en) | Photomask substrate, photomask and pattern transfer method | |
JP2001159755A (en) | Liquid crystal display device and method of producing the same | |
JP4591919B2 (en) | Manufacturing method of counter substrate for liquid crystal panel | |
JP4023461B2 (en) | Liquid crystal alignment processing apparatus and liquid crystal alignment processing method | |
JP2891238B2 (en) | Magnification projection exposure method and apparatus | |
TW200905409A (en) | Exposure method and manufacturing method for electronic device | |
US8233141B2 (en) | Shutter pixel, shutter structure including the shutter pixel, and exposure apparatus including the shutter structure | |
JP5513729B2 (en) | Method for producing color filter forming substrate | |
JP2005099232A (en) | Substrate for liquid crystal display device |