1359341 NVT-2007-106 26897twf.doc/p 九、發明說明: 【發明所屬之技術領域】 本發明疋有關於-種電壓產生裝置,且特別是有關於 一種具有溫度補償能力的電座產生裝置。 …一 -- — —__________________ 在所有的電子系統中,總是存在著一些不可取代的類 比電路。而這些類比電路為了追求電路表現的穩定性,多 半而要個準確的參考電源。因此,許多不同的電壓產生 f置被設計出、。喊些電壓產生裝置主要在於提供所屬的 ”糸,-個準確的參考電壓。而其中最重要的課題,就 產生的輸出電壓在溫度改變時,可以具有自我補 仏月b力’而不隨著變動。 請先參照圖!,圖!繪示習知的電壓產 置_是利用放大器着的兩個輸1 愿’藉著電阻R1、R2,並配合電晶體Q3來 所使。此外’電壓產生裝置100利用其 再與基極間的跨壓具有負溫度係數, 導通電流具有正溫度係數的特性,來達 的效果。然而’在電壓產生裝置1〇〇 可以動作,其所需要的系統電壓必須限制 接滿足低作的要求。 置此種習知的電壓產生裝置細則為上述的電壓產生; 13593411359341 NVT-2007-106 26897twf.doc/p IX. Description of the Invention: [Technical Field] The present invention relates to a voltage generating device, and more particularly to a battery generating device having temperature compensation capability. ... one -- — —__________________ In all electronic systems, there are always irreplaceable analog circuits. In order to pursue the stability of circuit performance, these analog circuits mostly need an accurate reference power supply. Therefore, many different voltage generations are designed. Shouting some voltage generating devices is mainly to provide the associated "糸, - an accurate reference voltage. And the most important subject, the output voltage generated can have self-reinforcing monthly b force when the temperature changes" without Please refer to the figure!, Figure! shows the conventional voltage production _ is the use of the two inputs of the amplifier is willing to 'by the resistors R1, R2, and with the transistor Q3. In addition, 'voltage generation The device 100 has a negative temperature coefficient by using the voltage across the base and the conduction current has a positive temperature coefficient. However, the voltage generating device 1 can be operated, and the required system voltage must be Limiting the connection to meet the requirements of low operation. The conventional voltage generating device details are generated as described above; 1359341
NVT-2007-106 26897twf.doc/p 置100的改良,是-種可以在低系統電壓下工作的電壓產 生裝置。電壓產生裝置200只需針對電壓產生裝置刚新 增加四個電阻RA1、rA2、Rbi以及V電壓產生裝置2〇〇 的電路原理為:因放大n AMP的作用使端點①電壓和端 點仏電壓相同,又由於電阻、、電阻&的阻值相等, 電壓也相㈤。自此’可推得輸”墨VQUT為同下式⑴ 所示: νουτ =NVT-2007-106 26897twf.doc/p A modification of 100 is a voltage generating device that can operate at low system voltages. The voltage generating device 200 only needs to newly add four resistors RA1, rA2, Rbi and V voltage generating device 2〇〇 to the voltage generating device. The circuit principle is that the terminal 1 voltage and the terminal 仏 voltage are caused by the amplification of n AMP. The same, and because the resistance, resistance & resistance are equal, the voltage is also phase (five). Since then, the 'transferable' ink VQUT is as shown in the following formula (1): νουτ =
R2R2
R2 R1R2 R1
VTlnN Ο) 其中的R2 = Ra,+RA2 = RB1+RB2 ’ Veb2為電晶體Q2的射極 與基極的電壓差,電晶體Q1的面積為電晶體Q2的N倍, Vt則為電晶體Q1的導通電壓。 不過,此種架構依然是透過雙極性接面電晶體(bip〇lar junction transistor,BJT)Q卜Q2和多個電阻來完成溫度補 償,所需的晶片面積以及製程花費將相對的提高,造成成 本上的負擔,此為相當大的缺點。 【發明内容】 本發明提供一種電壓產生裝置’具有溫度補償功能 的。其中該電壓產生裝置僅需要很低的系統電壓,且不需 要電阻,有效節及電路面積。 本發明提出一種電壓產生裝置,具有溫度補償功能, 包括電流產生器、開關、電晶體以及電容切換器。其中, 電W產生用以產生第一電流’並且鏡射此第一電流,進 1359341 NVT-2007-106 26897twf.doc/p 端電性連接至接地端或放大器的輸出端。此外,第三内建 開關依據控制訊號,使放大器的第二輸入端與放大^的輸 出端電性連接或斷開。 ° 本發明因採用電晶體接收不同電流產生不同的跨 f ’再利用電容切換電路使這些跨壓相減,而產生輸出電 壓二因此,並不需妻使用到電阻,且僅需要^驅動-電流源的 低系統電壓,有效的節省電路面積以及功率損耗。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 以下將針對本發明提出多個實施例,來近一步說明本 發明。期使本領域具通常知識者更能了解,並得以據以實 施。 首先睛參照圖3 A,圖3Α繪示本發明之第一實施例的 電壓產生裝置示意圖。電壓產生裝置300包括電流產生器 310、開關320、電晶體Mil以及電容切換器330。其中的 電流產生器310包括有電流源311〜313,電流源311產生 第電流Π ’而電流源312以及電流源313則是鏡射電流 源3U所產生第一電流η來分別產生第二電流Π以及第 一電在13。這?自鏡射的情形可以藉由習知的電流鏡電路的 方式來達成,此處並不繁述,重點是在於電流源311〜313 所分別產生的第一電流II、第二電流12以及第三電流13 1359341 NVT-2007-106 26897twf.d〇c/p 的輸出端呈電性連接或斷開。 由於電壓產生裝置3〇〇中的開關320與電容切換器 330中的内建開關410〜430都是依據控制訊號CTL來動 作’因此可以得知内建開關41〇〜43〇經由切換所造成的内 建電容C1〜C3的連接關係,與電晶體Mil所接收的電流 (第二電流兰—電| D)具有一-定莳關係。-以下-則將一 描述在本第一實施例中,配合圖4繪示的電容切換器330 的實施方法下’所產生的電路連接關係(包括電晶體Mil 與電流源312、313以及内建電容Cl〜C3間的連接關係)。 請同時參照圖5A以及圖5B。圖5A以及圖5B分別 繪示不同的控制訊號所造成的電路連接關係的等效電路示 意圖。其中電晶體Mil接收第二電流12.時(也就是電晶體 Mil連接到電流源312),内建電容C2的第二端電性連接 至内建電容C1的第一端,内建電容C3的第二端電性連接 至接地端GND,且放大器AMP的第二輸入端與放大器 AMP的輪出端電性連接(如圖5A所繪示)。 另一方面,當電晶體Mil接收第三電流13時(也就是 電晶體Mil連接到電流源313),内建電容C2的第二端電 性連接至接地端GND時,内建電容C3的第二端電性連接 至放大器AMP的輸出端,且放大器AMP的第二輸入端與 放大器AMP的輸出端斷開(如圖5B所繪示),此時的第一 蛘壓VGS1蔣被i己*憶在一電·容-切換電路330的内建電容C1中。 藉由上述圖5A以及圖5B所繪示的等效電路可以得 知,輸出電壓VOUT與跨壓VGS1及跨壓VGS2的關係將如 1359341 NVT-2007-106 26897twf. doc/p 式(2)所示: V〇UT = g[l + ^)vGs2_VGsi] (2) 由於其中的跨壓VGS1及跨壓vGS2均具有相同的溫度 係數,因此可以得知電壓產生裝置300具有溫度補償的能 力-。並且一’只要藉-由—調整件建—電容C1〜C3的值^就可以調 整電壓產生裝置300的溫度補償係數以及輸出電壓ν〇υτ 的電壓值。 第二實施例: 接下來將再提出一個更為完整的實施例,來說明本發 明的電壓產生裝置的實施方式。 請參照圖6,圖6繪示本發明之第二實施例的電壓產 生裝置示意圖。其中在電壓產生裝置600中,電流產生器 610中的電流源611〜613分別由電晶體]V18〜Μ10來建構。 而偏壓電晶體則由電晶體M3以及電晶體Μ4來建構。此 外’在電流產生器610中’還更包括了使用電晶體mi、 電晶體M2、電晶體M5〜M7來提供作為偏壓電晶體的電晶 體M3偏壓訊號。另外,電流產生器61〇還增加了以電晶 體Mci〜Mo所形成的啟動電路(start-up circuit),來在電路 啟動時穩定上述的偏壓電路。 而開關620則由電晶體MSI以及電晶體MS2來建 —構,異中電晶體MS-1-受控於控制訊號CTL,而電晶|MS2 受控於控制訊號CTL’而控制訊號CTL為控制訊號CTL 的邏輯反向訊號。也就是說,當控制訊號CTL為邏輯低準 12 1359341 NVT-2007-106 26897twf.doc/p 位時,電晶體MS2導通而電晶體MSI關閉,電晶體Mil 接收電流源613產生的電流。相反的,當控制訊號CTL為 邏輯高準位時,電晶體MSI導通而電晶體MS2關閉,電 晶體Mil接收電流源612產生的電流。 另外,在電容切換器630方面,電晶體MB1〜MB4以 及電晶體Μ01~ΝΪ05矣同構達出放夫器634,並產生輸出 電壓VOUT。而内建開關631則由電晶體MS3、MS4所建 φ 構,電晶體MS3受控於控制訊號CTL而電晶體MS4受控 於控制訊號CTL。相對的’内建開關632由電晶體MS5、 MS6所建構,電晶體MS6受控於控制訊號CTL而電晶體 MS5受控於控制訊號^TL。内建開關633則由電晶體 MS7 ’電晶體MS7則受控於控制訊號CTL。 而關於電壓產生裝置600詳細的作動細節,則與上述 說明的第-實施射的電壓產生裝置3 〇 〇類似,此^則不 再贅述。 ►來產本發明利用開關使電晶體接收不同的電流 =壓;減:得到輸出電壓。不僅不需要使二^ 及省電的雙效的降低消耗功率’進而達成降低成本 脫離本發明之於、L屬技術領域中具有通常知識者,在不 因此本發明之二内,當可作些許之更動與潤飾, 毛月之保護乾圍當視後附之申請專 c S ) 13 1359341 NVT-2007-106 26897twf.doc/p 為準。 【圖式簡單說明】 圖1、圖2分別繪示不同的習知之電壓產生裝置。 • 圖3A繪示本發明之第一實施例的電壓產生裝置示意 -----圖、— —一… -------- ------ 圖3B繪示本發明之第一實施例的電壓產生裝置的另 一實施方法示意圖。 ® 圖4繪示本發明之第一實施例中的電容切換器330的 一實施方法。 圖5A以及圖5B分別繪示不同的控制訊號所造成的霜 路連接關係的等效電路示意圖。 圖6繪示本發明之第二實施例的電壓產生裝爹齐意 圖。 【主要元件符號說明】 鲁 100、2〇〇、3〇〇、6〇〇 :電壓產生襄置 310、610 :電流產生器 311〜313、611〜613 :電流源 320、410〜430、620、631 〜633 :開關 330、630 :電容切換器 CTL、CTL· 控制訊號 . . .’ GND :接地端 C1〜C3 :電容 1359341 NVT-2007-106 26897twf.doc/p II〜13 :電流 R1 〜R3、Rai、Ra2、Rbi、Rb2 .電阻 VOUT :輸出電壓 AMP、634 :放大器 Q1、Q2、MB1、MB2、Ml〜Ml 1、MCI〜MC3、MB 1 〜MB4、 MCM〜M05、〜MS7—m :端點VTlnN Ο) where R2 = Ra, +RA2 = RB1+RB2 ' Veb2 is the voltage difference between the emitter and the base of the transistor Q2, the area of the transistor Q1 is N times that of the transistor Q2, and Vt is the transistor Q1 Turn-on voltage. However, this architecture still uses the bipolar junction transistor (BJT) Qb Q2 and multiple resistors to complete the temperature compensation. The required wafer area and process cost will be relatively increased, resulting in cost. The burden on this is a considerable disadvantage. SUMMARY OF THE INVENTION The present invention provides a voltage generating device having a temperature compensation function. The voltage generating device requires only a very low system voltage and does not require a resistor, an effective node, and a circuit area. The present invention provides a voltage generating device having a temperature compensation function including a current generator, a switch, a transistor, and a capacitor switch. Wherein, the electric W is generated to generate the first current ' and the first current is mirrored, and the 1359341 NVT-2007-106 26897twf.doc/p terminal is electrically connected to the ground or the output of the amplifier. In addition, the third built-in switch electrically connects or disconnects the second input of the amplifier to the output of the amplifier according to the control signal. ° The present invention uses a transistor to receive different currents to generate different cross-f' reuse capacitor switching circuits to subtract these voltages and generate an output voltage. Therefore, it is not necessary to use a resistor and only need to drive-current The low system voltage of the source effectively saves circuit area and power loss. The above described features and advantages of the present invention will become more apparent from the following description. [Embodiment] Hereinafter, the present invention will be described in more detail with reference to a plurality of embodiments of the present invention. The period is made easier for those with ordinary knowledge in the field and can be implemented accordingly. Referring first to Figure 3A, Figure 3A shows a schematic diagram of a voltage generating device in accordance with a first embodiment of the present invention. The voltage generating device 300 includes a current generator 310, a switch 320, a transistor Mil, and a capacitance switcher 330. The current generator 310 includes current sources 311 313 313, the current source 311 generates a first current Π ' and the current source 312 and the current source 313 are the first current η generated by the mirror current source 3U to generate a second current Π. And the first electricity is at 13. The self-mirror situation can be achieved by a conventional current mirror circuit, which is not described here. The focus is on the first current II and the second current 12 generated by the current sources 311 to 313, respectively. The output of the third current 13 1359341 NVT-2007-106 26897twf.d〇c/p is electrically connected or disconnected. Since the switch 320 in the voltage generating device 3 and the built-in switches 410 to 430 in the capacitor switch 330 are both operated according to the control signal CTL, it can be known that the built-in switches 41 〇 43 43 are switched. The connection relationship of the built-in capacitors C1 to C3 has a one-fixed relationship with the current received by the transistor Mil (the second current blue-electric | D). - The following - will describe the circuit connection relationship generated in the first embodiment, in conjunction with the implementation of the capacitor switch 330 shown in FIG. 4 (including the transistor Mil and the current sources 312, 313 and the built-in The connection relationship between the capacitors C1 to C3). Please refer to FIG. 5A and FIG. 5B at the same time. 5A and 5B respectively show equivalent circuit diagrams of circuit connection relationships caused by different control signals. When the transistor Mil receives the second current 12. (that is, the transistor Mil is connected to the current source 312), the second end of the built-in capacitor C2 is electrically connected to the first end of the built-in capacitor C1, and the built-in capacitor C3 The second end is electrically connected to the ground GND, and the second input of the amplifier AMP is electrically connected to the turn-out end of the amplifier AMP (as shown in FIG. 5A). On the other hand, when the transistor Mil receives the third current 13 (that is, the transistor Mil is connected to the current source 313), and the second terminal of the built-in capacitor C2 is electrically connected to the ground GND, the built-in capacitor C3 The two ends are electrically connected to the output end of the amplifier AMP, and the second input end of the amplifier AMP is disconnected from the output end of the amplifier AMP (as shown in FIG. 5B), and the first voltage VGS1 at this time is hereinafter* It is recalled in the built-in capacitor C1 of the electric-capacitor-switching circuit 330. It can be known from the equivalent circuit shown in FIG. 5A and FIG. 5B that the relationship between the output voltage VOUT and the voltage across the VGS1 and the voltage across the VGS2 will be as in the 1359341 NVT-2007-106 26897 twf. doc/p (2) It is shown that: V〇UT = g[l + ^)vGs2_VGsi] (2) Since the cross voltage VGS1 and the cross voltage vGS2 have the same temperature coefficient, it is known that the voltage generating device 300 has the capability of temperature compensation. Further, the temperature compensation coefficient of the voltage generating device 300 and the voltage value of the output voltage ν 〇υ τ can be adjusted by the value of the capacitors C1 to C3. Second Embodiment: Next, a more complete embodiment will be presented to explain an embodiment of the voltage generating device of the present invention. Please refer to FIG. 6. FIG. 6 is a schematic diagram of a voltage generating device according to a second embodiment of the present invention. In the voltage generating device 600, the current sources 611 to 613 in the current generator 610 are constructed by transistors [018] to 10, respectively. The bias transistor is constructed by transistor M3 and transistor Μ4. Further, the 'in the current generator 610' further includes the use of the transistor mi, the transistor M2, and the transistors M5 to M7 to provide an electric crystal M3 bias signal as a bias transistor. Further, the current generator 61A also adds a start-up circuit formed by the electric crystals Mci to Mo to stabilize the above-described bias circuit at the time of circuit startup. The switch 620 is constructed by the transistor MSI and the transistor MS2. The heterogeneous transistor MS-1- is controlled by the control signal CTL, and the transistor |MS2 is controlled by the control signal CTL' and the control signal CTL is controlled. The logical reverse signal of the signal CTL. That is, when the control signal CTL is at the logic low level 12 1359341 NVT-2007-106 26897 twf.doc/p bit, the transistor MS2 is turned on and the transistor MSI is turned off, and the transistor Mil receives the current generated by the current source 613. Conversely, when the control signal CTL is at a logic high level, the transistor MSI is turned on and the transistor MS2 is turned off, and the transistor Mil receives the current generated by the current source 612. Further, in the case of the capacitance switcher 630, the transistors MB1 to MB4 and the transistors Μ01 to ΝΪ05 are isomorphic to the 634, and the output voltage VOUT is generated. The built-in switch 631 is constructed by transistors MS3 and MS4, the transistor MS3 is controlled by the control signal CTL and the transistor MS4 is controlled by the control signal CTL. The opposite 'built-in switch 632' is constructed by transistors MS5, MS6, which is controlled by the control signal CTL and the transistor MS5 is controlled by the control signal ^TL. The built-in switch 633 is controlled by the transistor MS7' transistor MS7 from the control signal CTL. The detailed operation details of the voltage generating device 600 are similar to those of the first-exemplified voltage generating device 3 described above, and will not be described again. ► The present invention utilizes a switch to cause the transistor to receive different currents = voltage; minus: to obtain an output voltage. In addition, it is not necessary to reduce the power consumption of the double-effect and the power-saving, and further reduce the cost, and the person having the general knowledge in the technical field of the L-gen is not included in the second invention. The change and retouching, the protection of the Maoyue is attached to the application of the special c S) 13 1359341 NVT-2007-106 26897twf.doc/p. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 and Fig. 2 respectively show different conventional voltage generating devices. FIG. 3A is a schematic diagram of a voltage generating device according to a first embodiment of the present invention—FIG. 3B illustrates the first embodiment of the present invention. A schematic diagram of another embodiment of a voltage generating device of an embodiment. ® Figure 4 illustrates an embodiment of a capacitor switch 330 in a first embodiment of the present invention. FIG. 5A and FIG. 5B are respectively schematic diagrams showing an equivalent circuit of a frost connection relationship caused by different control signals. Fig. 6 is a view showing the voltage generating device of the second embodiment of the present invention. [Description of main component symbols] Lu 100, 2〇〇, 3〇〇, 6〇〇: voltage generating devices 310, 610: current generators 311 to 313, 611 to 613: current sources 320, 410 to 430, 620, 631 ~ 633 : Switch 330, 630 : Capacitor switch CTL, CTL · Control signal . . . GND : Ground terminal C1 ~ C3 : Capacitor 1359341 NVT-2007-106 26897twf.doc / p II ~ 13 : Current R1 ~ R3 , Rai, Ra2, Rbi, Rb2. Resistor VOUT: output voltage AMP, 634: amplifier Q1, Q2, MB1, MB2, M1~Ml 1, MCI~MC3, MB1~MB4, MCM~M05, ~MS7-m: End point
1515