TWI359232B - Fluid transmission device with multi flow channels - Google Patents

Fluid transmission device with multi flow channels Download PDF

Info

Publication number
TWI359232B
TWI359232B TW97115931A TW97115931A TWI359232B TW I359232 B TWI359232 B TW I359232B TW 97115931 A TW97115931 A TW 97115931A TW 97115931 A TW97115931 A TW 97115931A TW I359232 B TWI359232 B TW I359232B
Authority
TW
Taiwan
Prior art keywords
valve
valve body
inlet
outlet
structures
Prior art date
Application number
TW97115931A
Other languages
Chinese (zh)
Other versions
TW200944657A (en
Inventor
Shin Chang Chen
Ying Lun Chang
Rong Ho Yu
Shih Che Chiu
Original Assignee
Microjet Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microjet Technology Co Ltd filed Critical Microjet Technology Co Ltd
Priority to TW97115931A priority Critical patent/TWI359232B/en
Publication of TW200944657A publication Critical patent/TW200944657A/en
Application granted granted Critical
Publication of TWI359232B publication Critical patent/TWI359232B/en

Links

Description

丄359232 九、發明說明: 【發明所屬之技術領域】 • 本案係關於一種流體輸送裝置,尤指一種適用於微泵 . 浦結構之多流道流體輸送裝置。 【先前技術】 • 目前於各領域中無論是醫藥、電腦科技、列印、能源 等工業’產品均朝精緻化及微小化方向發展,其中微泵 浦、噴霧器、噴墨頭、工業列印裝置等產品所包含之流體 . 輪运結構為其關鍵技術,是以,如何藉創新結構突破其技 術瓶頸’為發展之重要内容。 。月參閱第圖,其係為習知微泵浦結構之結構示意 --、圖―’習知微泵潢踔辑1〇係由閥體座Η、閥體蓋體U、閥 體薄膜13、微致動器14及蓋體15所組成「其中,閥體薄-•膜13係包含入口閥門結構⑶及出口閥門結構132,閥體 座11包含入口通道111及出口通道112、閥體蓋體12與 微致動器14間定義形成一壓力腔室123,閥體薄膜13設 置在閥體座11與閥體蓋體12之間。 备一電壓作用在微致動器14的上下兩極時,會產生 一電場,使得微致動器14在此電場之作用下產生彎曲, 當微致動器14朝箭號χ所指之方向向上彎曲變形,將使 得[力腔至123之體積增加,因而產生一吸力,使閥體薄 膜13之入口閥門結構13ι開啟,使液體可自閥體座11上 1359232 之入口通道111被吸取進來,並流經閥體薄膜13之入口 閥門結構131及閥體蓋體12上之入口閥片通道121而流 入壓力腔室123内’反之當微致動器μ因電場方向改變 而朝箭號X之反方向向下彎曲變形時,則會慶縮座力腔室 *丨23之體積,使得壓力腔室123對内部之流體產生一推力, 並使閥體薄膜13之入口閥門結構131、出口閥門結構132 承受一向下推力,而出口閥門結構132將開啟,並使液體 • 由壓力腔室I23經由閥體蓋體12上之出口閥門通道122、 間體薄膜13之出π閥門結構132,而從閥體座u之出口 通道112流出流體輸送裝置10外,因而完成流體之傳輸 過程。 雖然售知微泵浦結構10能夠達到輸送流體的功能, 但是其係使用單-壓力腔室配合單—流通管道、單一進出 謂絲-對的彻結構料,若使甩習知微粟浦結構1〇 進打兩種不同液體之不同比例的混合時,需先藉由兩個泵 浦依照不㈣舰取韻拌混合,紐核混合後之流體 傳达至微泵浦結構10進行«輸送的方式,或是僅使用 :個泵浦,但是必須要搭配外接之流量調㈣門,如此的 只施方式將會增加整個泵浦系統的複雜度。 因此’如何發展一種可改盖 道流體輸送裝置,實為目;ί:土述'知技術缺失之多流 只馮目則迫切需要解決之問題。 【發明内容】 種多流道流體輸送裝 本案之主要目的在於提供— U59232 置俾解決以習知微泵浦結構進行兩種不同液體之不同比 例的混合,.需先藉由兩個泵浦依照*同比例汲取再 ί閥Γ=:Γ泵浦’但是必須要搭配外接之流量; 即閥門’將增加正個泵浦系統的複雜度等缺點。 為達上述目的,本案之一較廣義實施樣態為提供 多流道流體輸找置,用以傳送流體,其係包含:間體座, 其係具有至少一出口通道及至少-入口通道;閥體蓋體’ 其與闕體創目互堆4結合,錢設置於闕體座 及間體蓋體之間,且具有二個以上閥門結構,該等間門f 構係同厚f及同材料製成;複數個暫存室,設置於閥體薄σ 膜與閥體蓋體之間’以及於閥體薄膜與閥體座之間;以及 振動裝置,其週邊係固設於閥體蓋體。 —【實施-方式】-— _____ -------- 1明2本案特徵與優點的—些典型實施例將在後段的 :月中㈣敘述1理解的是本案能夠在不同的態樣上且 =的變化,其皆不脫離本案的範圍,且其中的說明及 圖不在本質上係當作說明之用,而非用以限制本案。 —本案之多流道流體輸送裝置主要係藉由單1力腔 2致動器配合多個流通管道、多個進出口及其多個閥門 :^配置概S ’能夠在不增加整體尺寸下,使流量及揚 增加,非常適合用於流量及揚程需求相對較高之應 今主 gq Λ-λ- $弟—圖(a),其係本案較佳實施例之多流道流 二泣妒2分解結構示意圖’如圖所示’本實施例之多 丫㈣裝置20係由闕體座21、闕體蓋體22、閥體 \叙#、致動裝置24及蓋體25所組成,閥體蓋體22及 ^ 、置24之間形成一壓力腔室225(如第二圖(c)所 不).主要用來儲存流體,多流道流體輸送裝置20之組裝 方式係將闕體薄膜23設置於閥體座21及閥體蓋體Μ之 =’並使_薄膜23與閥體座21及關蓋體以相對應 設置,且在閥體薄膜23與閥體蓋體22之間形成第一暫存 室,而在閥體薄膜23與閥體座21之間形成第二暫存室, 並且於閥體蓋體22上之相對應位置更設置有致動裝置 24致動裝置24係由一振動薄膜241以及一致動器242 組裝而成,用以驅動多流道流體輸送裝置2〇之作動,最 後’再將蓋-體25設置於致動裝一置一2_4之上方,故唭係依序 將閥體座21、閥體薄膜23、閥體蓋體22、致動裝置24及 蓋體25相對應堆疊設置,以完成多流道流體輸送裝置2〇 之組裝(如第二圖(e)所示)。 其中,閥體座21及閥體蓋體22係為本案多流道流體 輸送裝置20中導引流體進出之主要結構,請再參閱第二 圖(b)並配合第二圖(a) ’其中第二圖(b)係為第二圖 (a)所示之閥體座的背面結構示意圖,如第二圖(a)所 示,閥體座21係具有入口通道211a、211b及出口通道 212a、212b ’但並不以此為限,多流道流體輸送裝置2〇 所設置之入口通道及出口通道的數量可分別為至少一個 1359232 ' 以上,流體係可由外界輸入,經由入口流道211a、211b - 分別傳送至閥體座21之開口 213a、213b,並且’於本實 施例中,閥體薄膜23及閥體座21之間所形成的第二暫存 . 室即為圖中所示之出口暫存腔215a、215b,但不以此為 限,其係由閥體座21於與出口流道212a、212b相對應之 位置產生部分凹陷而形成,並分別與出口流道212a、212b 相連通,該出口暫存腔215a、215b係用以暫時儲存流體, 0 並使流體由出口暫存腔215a、215b經由開口 214a、214b 而輸送至出口通道212a、212b流出。以及,在閥體座21 上更具有複數個凹槽結構,用以供一密封環26(如第三圖 (a)及第四圖(a)所示)設置於其上,於本實施例中,閥 ' 體座21係具有環繞開口 213a、213b週邊之凹槽216a、 ' 216b,及環繞於出口暫存腔215a、215b週邊之凹槽217a、 2~l· 7b ° _ — - 請參閱第二圖(c)並配合第二圖(a),其中第二圖(c) • 係為第二圖(a)所示之閥體蓋體之背面結構示意圖,如 . 圖所示,閥體蓋座22係具有一上表面220及一下表面 221,以及在閥體蓋座22上亦具有貫穿上表面220至下表 面221之入口閥門通道222a、222b及出口閥門通道223a、 223b,且該入口閥門通道222a、222b係分別設置於與閥 體座21之開口 213a、213b相對應之位置,而出口閥門通 . 道223a、223b則分別設置於與閥體座21之出口暫存腔 215a、215b内之開口 214a、214b相對應之位置,並且, 於本實施例中,閥體薄膜23及閥體蓋體22之間所形成之 1359232 ' 複數個第一暫存室即為圖中所示之入口暫存腔224a、 -224b ’且不以此為限,其係由閥體蓋體22之下表面221 於與入口閥門通道222a、222b相對應之位置產生部份凹 • 陷而形成’且其係連通於入口閥門通道222a、222b。 . 請再參閱第二圖(c),如圖所示,閥體蓋體22之上表 面220係部份凹陷,以形成一壓力腔室225,其係與致動 裝置24之致動器242相對應設置,壓力腔室225係經由 _ 入口閥門通道222a、222b分別連通於入口暫存腔224a ' 224b ’並同時與出口閥門通道223a、223b相連通,因此, 當致動器242受電壓致動使致動裝置24上凸變形,造成 壓力腔室225之體積膨脹而產生負壓差,可使流體經入口 閥門通道222a、222b流至壓力腔室225内,其後,當施 加於致動242的電場方向改變後,致動器242將使致動 •一裝置24下凹變形壓办腔室_225 |縮而體積減小,使壓力 腔室225與外界產生正壓力差,促使流體由出口閥門通道 • 223a、223b流出壓力腔室225之外,於此同時,同樣有部 分流體會流入入口閥門通道222a、222b及入口暫存室 224a、224b内,然而由於此時的入口閥門結構231a、 231b(如第三圖(c)及第四圖(c)所示)係為使受壓而關閉 的狀態’故該流體不會通過入口閥片2313a、2313b而產 生倒流的現象,至於暫時儲存於入口暫存腔224a、224b •内之流體,則於致動器242再受電壓致動,重複使致動裝 置24再上凸變形而增加壓力腔室225體積時,再由入口 暫存腔224a、224b經至入口閥門通道222a、222b而流入 11 1359232 壓力腔室225内,以進行流體的輸送。 ' $外’閥體蓋體22上同樣具有複數個凹槽社構,以 本實施例為例,在閥體蓋座22之上表面22〇係^有環繞 •壓力腔室225而設置之凹槽226 ’其係供一密封環 .第三圖(a)及第四圖(a)所示)設置於其中,而在下表面 221上則具有環繞設置於入口暫存腔22乜、22仆之^槽 227a、227b,以及環繞設置於出口閥門通道22如、22北 • 之凹槽228a、228b,同樣地,上述凹槽結構係用以供一密 封環27(如第三圖(a)及第四圖(a)所示)設置於其中。山 • ' 請參閱第二圖(d)並配合第二圖(a),其中第二圖(d) • 係為第二圖(a)所示之閥體薄膜之結構示意圖,如圖所 -示,閥體薄膜23主要係以傳統加工、或黃光蝕刻、或雷 射加工、或電鑄加工、或放電加工等方式製出且為一厚 度貝質土相-同-之-薄一片一結構—其係具m個鎮m開_ 關,包含第一閥開關以及第二閥開關,於本實施例中,第 鲁一閥開關係為入口閥門結構231a、231b,而第二閥開關係 為出口閥門結構232a、232b,但並不以此為限,多流道流 體輸送裝置20所設置之入口閥門結構及出口閥門結構的 數量分別為至少一個以上’其中,入口閥門結構231a、231b 係分別具有入口閥片2313a、2313b以及複數個環繞入口 間片2313a、2313b週邊而設置之鏤空孔洞2312a、2312b, .另外,在孔洞2312a、2312b之間更分別具有與入口閥片 -2313a、2313b相連接之延伸部2311a、2311b,當閥體薄 膜23承受一自壓力腔室225傳遞而來之應力時,如第三 12 1359232 * 圖(C)及第四圖(C)所示,入口閥門結構231a、231b係整 - 個平貼於閥體座21之上,此時入口閥片2313a、2313b會 緊靠凹槽216a、216b上密封環26突出部分,而密封住閥 . 體座21上之開口 213a、213b,且其外圍的鏤空孔洞 . 2312a、2312b及延伸部2311a、2311b則順勢浮貼於閥體 座21之上,故因此入口閥門結構231a、231b之關閉作用, 使流體無法流出。丄359232 IX. Description of the invention: [Technical field to which the invention pertains] • The present invention relates to a fluid delivery device, and more particularly to a multi-channel fluid delivery device suitable for use in a micropump. [Prior Art] • At present, in various fields, products such as medicine, computer technology, printing, energy, etc. are developing in the direction of refinement and miniaturization, among which micro pump, sprayer, inkjet head, industrial printing device The fluids contained in such products. The rotary structure is its key technology, so how to break through its technical bottleneck by innovative structure is an important part of development. . Referring to the figure, it is a schematic diagram of the structure of the conventional micro-pump structure--the figure--the conventional micro-pump 踔 踔 1 由 is composed of the valve body seat, the valve body cover U, the valve body film 13, The microactuator 14 and the cover 15 are composed of "the valve body is thin - the membrane 13 includes an inlet valve structure (3) and an outlet valve structure 132. The valve body seat 11 includes an inlet passage 111 and an outlet passage 112, and a valve body cover. A pressure chamber 123 is defined between the 12 and the microactuator 14. The valve body film 13 is disposed between the valve body seat 11 and the valve body cover 12. When a voltage is applied to the upper and lower poles of the microactuator 14, An electric field is generated such that the microactuator 14 is bent under the action of the electric field, and when the microactuator 14 is bent upward in the direction indicated by the arrow ,, the volume of the force chamber to 123 is increased, thereby A suction force is generated to open the inlet valve structure 13 of the valve body film 13, so that liquid can be sucked in from the inlet passage 111 of the 1592322 on the valve body seat 11, and flows through the inlet valve structure 131 and the valve body cover of the valve body film 13. The inlet valve passage 121 on the body 12 flows into the pressure chamber 123. When the direction of the electric field changes and is deformed downward in the opposite direction of the arrow X, the volume of the seat chamber *丨23 is condensed, so that the pressure chamber 123 generates a thrust to the internal fluid, and the valve body film is formed. The inlet valve structure 131 and the outlet valve structure 132 of 13 are subjected to a downward thrust, and the outlet valve structure 132 is opened, and the liquid is supplied from the pressure chamber I23 through the outlet valve passage 122 on the valve body cover 12, and the interlayer film 13 The π valve structure 132 emerges from the outlet passage 112 of the valve body seat u out of the fluid delivery device 10, thereby completing the fluid transfer process. Although the micropump structure 10 is known to be capable of transporting fluid, it is used. The single-pressure chamber cooperates with a single-flow pipe, a single inlet and outlet wire-to-pair structure material, if the 微 知 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微The two pumps are mixed according to the (four) ship's rhyme, and the fluid after the new core is mixed to the micro-pump structure 10 for the «transport method, or only: one pump, but must be matched with the external flow rate (four) the door Such a single application method will increase the complexity of the entire pumping system. Therefore, 'how to develop a fluid transport device that can be modified, and the actual situation; ί:There is a need for the lack of knowledge of the technology. The problem is solved. [The invention] The main purpose of the multi-channel fluid transport package is to provide - U59232 to solve the problem of mixing different ratios of two different liquids by the conventional micro-pump structure. The pumps are pumped according to the same ratio of * Γ Γ Γ =: Γ pump 'but must be matched with the external flow; that is, the valve 'will increase the complexity of the pump system. A more general implementation is to provide a multi-channel fluid transport for transporting a fluid, comprising: an interbody housing having at least one outlet passage and at least an inlet passage; a valve body cover and a body The combination of the creation of the mutual heap 4, the money is placed between the body block and the body cover body, and has more than two valve structures, the door f structure is made of the same thickness f and the same material; a plurality of temporary storage rooms , set in the valve body thin σ film and 'And between the valve membrane and the valve seat between the cover member; and a vibration means, which is disposed on the periphery of the valve cover fastener member. - [Implementation - Method] - _____ -------- 1 Ming 2 characteristics and advantages of the case - some typical examples will be in the latter paragraph: mid-term (four) narrative 1 understand that the case can be in different aspects The changes in the above and the = are not deviated from the scope of the case, and the descriptions and figures therein are not intended to be illustrative, and are not intended to limit the case. - The multi-channel fluid transfer device of the present case is mainly composed of a single 1 force chamber 2 actuator with a plurality of flow pipes, a plurality of inlets and outlets and a plurality of valves thereof: ^ configuration S can be added without increasing the overall size Increasing the flow rate and the increase of the flow rate, it is very suitable for the current flow gq Λ-λ-$ brother- diagram (a), which is a relatively high flow and head demand, which is the multi-flow flow of the preferred embodiment of the present invention. Schematic diagram of the exploded structure 'as shown in the drawing' The multi-turn (four) device 20 of the present embodiment is composed of a body block 21, a body cover 22, a valve body, a valve body 24, and a cover body 25, the valve body A pressure chamber 225 is formed between the cover 22 and the cover 24 (as shown in the second figure (c)). It is mainly used for storing fluid, and the multi-channel fluid transfer device 20 is assembled by the body film 23 . The valve body seat 21 and the valve body cover body =='and the film 23 is disposed corresponding to the valve body seat 21 and the closing body, and the first between the valve body film 23 and the valve body cover 22 is formed. a temporary storage chamber, and a second temporary storage chamber is formed between the valve body film 23 and the valve body seat 21, and is disposed at a corresponding position on the valve body cover 22 The device 24 is assembled by a vibrating membrane 241 and an actuator 242 for driving the multi-channel fluid transport device 2, and finally the cover-body 25 is placed on the actuator. Above the 2_4, the valve body seat 21, the valve body film 23, the valve body cover 22, the actuating device 24 and the cover body 25 are sequentially stacked to complete the multi-channel fluid transport device 2〇. Assembly (as shown in the second figure (e)). Wherein, the valve body seat 21 and the valve body cover body 22 are the main structures for guiding fluid in and out of the multi-channel fluid transport device 20 of the present case, please refer to the second figure (b) and cooperate with the second figure (a) The second figure (b) is a schematic view of the back structure of the valve body seat shown in the second figure (a). As shown in the second figure (a), the valve body seat 21 has inlet passages 211a, 211b and an outlet passage 212a. 212b 'but not limited thereto, the number of inlet channels and outlet channels provided by the multi-channel fluid conveying device 2 可 may be at least one 1359232 ' respectively, and the flow system may be input from the outside through the inlet flow path 211a, 211b - are respectively transmitted to the openings 213a, 213b of the valve body seat 21, and 'in the present embodiment, the second temporary storage chamber formed between the valve body film 23 and the valve body seat 21 is as shown in the figure. The outlet temporary chambers 215a, 215b, but not limited thereto, are formed by the valve body seat 21 at a position corresponding to the outlet flow passages 212a, 212b, and are respectively connected to the outlet flow passages 212a, 212b. The outlet temporary chambers 215a, 215b are used to temporarily store fluids, 0 Body from the outlet buffer cavity 215a, 215b is conveyed via the opening 214a, 214b to the outlet channel 212a, 212b flows. And a plurality of groove structures on the valve body seat 21 for providing a sealing ring 26 (as shown in the third figure (a) and the fourth figure (a)), in the embodiment. The valve body 21 has grooves 216a, '216b around the periphery of the openings 213a, 213b, and grooves 217a, 2~l·7b ° around the outlets 215a, 215b. The second figure (c) is combined with the second figure (a), wherein the second figure (c) is a schematic view of the back structure of the valve body cover shown in the second figure (a), as shown in the figure, the valve The body cover 22 has an upper surface 220 and a lower surface 221, and also has inlet valve passages 222a, 222b and outlet valve passages 223a, 223b extending through the upper surface 220 to the lower surface 221 on the valve body cover 22, and The inlet valve passages 222a, 222b are respectively disposed at positions corresponding to the openings 213a, 213b of the valve body seat 21, and the outlet valve passages 223a, 223b are respectively disposed at the outlet temporary chambers 215a of the valve body seat 21, The openings 214a, 214b in the position 215b correspond to each other, and, in the embodiment, the valve body film 23 and the valve body cover 22 The formed first temporary storage chamber is the inlet temporary storage chambers 224a, -224b' shown in the figure, and is not limited thereto, and is formed by the lower surface 221 of the valve body cover 22 and the inlet. The corresponding locations of the valve passages 222a, 222b create partial recesses that are formed and communicate with the inlet valve passages 222a, 222b. Referring again to the second diagram (c), as shown, the upper surface 220 of the valve body cover 22 is partially recessed to form a pressure chamber 225 that is coupled to the actuator 242 of the actuator 24. Correspondingly, the pressure chambers 225 are in communication with the inlet temporary chambers 224a' 224b' via the inlet valve passages 222a, 222b, respectively, and are in communication with the outlet valve passages 223a, 223b, thus, when the actuator 242 is subjected to voltage The actuating device 24 is convexly deformed, causing the volume of the pressure chamber 225 to expand to create a negative pressure differential that allows fluid to flow into the pressure chamber 225 through the inlet valve passages 222a, 222b, and thereafter, when applied to the actuation After the direction of the electric field of 242 is changed, the actuator 242 will cause the actuator to be depressed, and the volume is reduced, causing the pressure chamber 225 to generate a positive pressure difference from the outside, thereby causing the fluid to be caused by The outlet valve passages 223a, 223b exit the pressure chamber 225, while a portion of the fluid also flows into the inlet valve passages 222a, 222b and the inlet temporary chambers 224a, 224b, however, due to the inlet valve structure 231a at this time , 231b (as in Figure 3 (c) and (c) is a state in which the pressure is closed, so that the fluid does not flow backward through the inlet valve pieces 2313a, 2313b, and the fluid temporarily stored in the inlet temporary chambers 224a, 224b. Then, the actuator 242 is again actuated by the voltage, and when the actuator 24 is repeatedly deformed to increase the volume of the pressure chamber 225, the inlet temporary chambers 224a, 224b pass through the inlet valve passages 222a, 222b. Flow into the 11 1359232 pressure chamber 225 for fluid delivery. The 'outside' valve body cover 22 also has a plurality of groove structures. In the embodiment, the upper surface 22 of the valve body cover 22 is provided with a surrounding pressure chamber 225. The groove 226' is provided with a sealing ring. The third figure (a) and the fourth figure (a) are disposed therein, and the lower surface 221 has a surrounding space disposed in the inlet temporary cavity 22, 22 The grooves 227a, 227b, and the grooves 228a, 228b disposed around the outlet valve passages 22, such as 22 north, are similarly used for a sealing ring 27 (as in the third figure (a) and The fourth figure (a) is shown in it. Mountain • ' Please refer to the second diagram (d) and cooperate with the second diagram (a), where the second diagram (d) • is the schematic diagram of the valve body film shown in the second diagram (a), as shown in the figure - It is shown that the valve body film 23 is mainly produced by conventional processing, or yellow light etching, or laser processing, or electroforming processing, or electric discharge machining, and is a thickness of shelly soil phase - the same - a thin one The structure - the system has m towns m open - off, including the first valve switch and the second valve switch. In this embodiment, the first valve opening relationship is the inlet valve structure 231a, 231b, and the second valve opening relationship For the outlet valve structures 232a, 232b, but not limited thereto, the number of the inlet valve structure and the outlet valve structure provided by the multi-channel fluid delivery device 20 are at least one or more respectively, wherein the inlet valve structures 231a, 231b are There are inlet valve pieces 2313a, 2313b and a plurality of hollow holes 2312a, 2312b provided around the periphery of the inlet pieces 2313a, 2313b. In addition, there are more respectively between the holes 2312a, 2312b and the inlet valve pieces -2313a, 2313b. Connecting extensions 2311a, 2311b, as valves When the film 23 is subjected to a stress transmitted from the pressure chamber 225, as shown in the third 12 1359232 * (C) and the fourth (C), the inlet valve structures 231a, 231b are flushed to the valve. Above the body seat 21, at this time, the inlet valve pieces 2313a, 2313b abut against the protruding portions of the sealing ring 26 on the grooves 216a, 216b, and seal the openings 213a, 213b on the valve body 21, and the hollow holes in the periphery thereof The 2312a, 2312b and the extensions 2311a, 2311b are floated on the valve body seat 21, so that the inlet valve structures 231a, 231b are closed to prevent fluid from flowing out.

而當閥體薄膜23受到壓力腔室225體積增加而產生 I 之吸力作用下,由於設置於閥體座21之凹槽216a、216b 内的密封環26已提供入口閥門結構231a、231b —預力 (Preforce),因而入口閥片2313a、2313b可藉由延伸部 2311a、2311b的支撐而產生更大之預蓋緊效果,以防止逆 • 流,當因壓力腔室225之負壓而使入口閥門結構231a、231b -產生位移(如第三圖(b)及-第四圖…(b)_教示)丄此時,_流體 則可經由鏤空之孔洞2312a、2312b由閥體座21流至閥體 ► 蓋體22之入口暫存腔224a、224b,並經由入口暫存腔224 a、224b及入口閥門通道222a、222b傳送至壓力腔室225 内,如此一來,入口閥門結構231a、231b即可因應壓力 腔室225產生之正負壓力差而迅速的開啟或關閉,以控制 流體之進出,並使流體不會回流至闕體座21上。 同樣地,位於同一閥體薄膜23上的另一閥門結構則 .為出口閥門結構232a、232b,其中之出口閥片2323a、 2323b、延伸部 2321a、2321b 以及孔洞 2322a、2322b 之 作動方式均與入口閥門結構231a、231b相同,因而不再 13 1359232 贅述,惟出口閥門結構232a、232b週邊之密封環27設置 - 方向係與入口閥門結構231a、231b之密封環26反向設 置,因而當壓力腔室225壓縮而產生一推力時,設置於閥 . 體蓋體22之凹槽228a、228b内的密封環27將提供出口 . 閥門結構232a、232b —預力(Preforce),使得出口閥片 2323a、2323b可藉由延伸部2321a、2321b之支撐而產生 更大之預蓋緊效果,以防止逆流(如第三圖(b)及第四圖 ^ ( b)所示),當因壓力腔室225之正壓而使出口閥門結構 232a、232b產生向上位移,此時,流體則可經由鏤空之孔 洞2322a、2322b由壓力腔室225經閥體蓋體22而流至閥 體座21之出口暫存腔215a、215b内,並可經由開口 214a、 214b及出口流道212a、212b排出,如此一來,則可經由 ' 出口閥門結構232a、232b開啟之機制,將流體自壓力腔 '------室-2-25内洩出,以-達到流-體輸送之功能(如第-三圖(-e)及- 第四圖(c)所示)。 • 請參閱第三圖(a)及第四圖(a ),其係分別為第二圖 (e )所示之多流道流體輸送裝置之未作動狀態之A-A及 B-B剖面結構示意圖,於本實施例中,所有的密封環26、 27、28其材質可為可耐化性佳之橡膠材料,但不以此為 限,其中,設置於閥體座21上環繞開口 213a、231b之凹 槽216a、216b内的密封環26可為一圓環結構,其厚度係 ‘ 大於凹槽216a、216b深度,使得設置於凹槽216a、216b 内之密封環26係部分凸出於閥體座21之表面構成一微凸 結構,因而使得贴合設置於閥體座21上之閥體薄膜23之 14 1359232 ' 入口閥門結構231a、231b之入口閥片2313a、2313b因密 - 封環26之微凸結構而形成一向上隆起,而閥體薄膜23之 其餘部分係與閥體蓋體22相抵頂,如此微凸結構對入口 閥門結構231a、231b頂推而產生一預力(Preforce)作用, 有助於產生更大之預蓋緊效果,以防止逆流,且由於密封 環26向上隆起之微凸結構係位於閥體薄膜23之入口間門 結構231a、231b處,故使入口閥門結構231a、231b在未 > 作動時使入口閥片2313a、2313b與閥體座21之表面間具 有一間隙,同樣地,當密封環27設置於環繞出口閥門通 道223a、223b之凹槽228a、228b内時,由於其密封環27 係設置於閥體蓋體22之下表面221,因而該密封環27係 使閥體薄膜23之出口閥門結構232a、232b凸出而形成一 ' 向下隆起於閥體蓋體22之微凸結構,此微凸結構僅其方 一 向與形''成.於入口…間門結構-23、23.1 b-之微-凸-結構係.為反 向設置,然而其功能均與前述相同,因而不再贅述。 | 至於其餘分別設置於凹槽結構217a,217b、227a, 227b 及226内之密封環26、27及28,主要用來分別使閥體座 21與閥體薄膜23、閥體薄膜23與閥體蓋體22以及閥體 蓋體22與致動裝置24之間緊密貼合時,防止流體外洩。 當然,上述之微凸結構除了使用凹槽及密封環來搭配 形成外,於一些實施例中,閥體座21及閥體蓋體22之微 . 凸結構亦可採用半導體製程,例如:黃光蝕刻或鍍膜或電 鑄技術,直接在閥體座21及閥體蓋體22上形成。 請同時參閱第三圖(a)〜(c)以及第四圖(a)〜 15 1359232 • (c),如圖所示,當蓋體25、致動裝置24、閥體蓋體22、 - 閥體薄膜23、密封環26、27、28以及閥體座21彼此對應 組裝設置後,閥體座21上之開口 213a、213b係分別與閥 體薄膜23上之入口閥門結構231a、231b以及閥體蓋體22 上之入口閥門通道222a、222b相對應,且閥體座21上之 開口 214a、214b則與閥體薄膜23上之出口閥片結構 232a、232b以及閥體蓋體22上之出口閥門通道223a、223b φ 相對應,並且,由於密封環26設置於凹槽216a、216b内, 使得閥體薄膜23之入口閥門結構231a、231b微凸起於閥 體座21之上,並藉由位於凹槽216a、216b内之密封環26 頂觸闊體薄膜23而產生一預力(Preforce)作用,使得入 口閥門結構231a、231b在未作動時則與閥體座21之表面 形成一間隙,同樣地,出口閥門結構232a、232b亦藉由 -一 一將-密封環-2-7-設-至於凹。槽-22.8.a_ _v 2_2..8b-中-的相同-方--式與-閥-體-蓋體22之下表面221形成一間隙。 φ 當以一電壓驅動致動器242時,致動裝置24產生彎 曲變形,如第三圖(b)及第四圖(b)所示,致動裝置24 係朝箭號b所指之方向向下彎曲變形,使得壓力腔室225 之體積增加,因而產生一吸力’使閥體薄膜2 3之入口閥 門結構231a、231b、出口閥門結構232a、232b均承受一 向下之拉力,並使已具有一預力之入口閥門結構231a、 . 231b之入口閥片2313a、2313b迅速開啟(如第三圖(b)及 第四圖(b)所示),使液體可大量地自閥體座21上之入 口通道211a及211b被吸取進來,並流經閥體座21上之 16 1359232 開口 213a、213b、閥體薄膜23上之入口閥門結構231a、 * 231b之孔洞23i2a、2312b、閥體蓋體22上之入口暫存腔 224a、224b、以及入口閥片通道222a、222b而流入壓力 腔室225之内,此時,由於閥體薄膜23之入口閥門結構 231a、231b、出口閥門結構232a、232b承受該向下拉力, 故位於另一端之出口閥門結構232a、232b係因該向下拉 力使得位於閥體薄膜23上之出口閥片2323a、2323b密封 φ 住出口閥門通道223a、223b,而使得出口閥門結構232a、 232b關閉。 當致動裝置24因電場方向改變而如第三圖(c)及第四 圖(c)所示之箭號a向上彎曲變形時,則會壓縮壓力腔 室225之體積,使得壓力腔室225對内部之流體產生一推 力’並使閥體薄膜23之入口閥門結構231a、231b、出口 閥-門結-構232a-、2_32b承受·--向上-推力,此時-,設置於凹-槽228a、228b内之密封環27上出口閥門結構232a、232b _ 的出口閥片2323a、2323b其可迅速開啟(如第三圖(c)及 第四圖(c)所示),並使液體瞬間大量宣洩,由壓力腔室 225經由閥體蓋體22上之出口閥門通道223a、223b、閥 體薄膜23上之出口閥門結構232a、232b之孔洞2322a、 2322b、閥體座21上之出口暫存腔215a、215b、開口 214a、 214b及出口通道212a、212b而流出多流道流體輸送裝置 . 20之外,因而完成流體之傳輸過程。 同樣地,此時由於入口閥門結構231a、231b係承受 該向上之推力,因而使得入口閥片2313a、2313b密封住 17 ]213a、213b ’因而關閉入口間門結構231a、231b, =流體不逆流,並且’藉由入口閥門結構心、麗 閥門結構232a、232b配合設置於閥體座21及閥體 :體?上之凹槽216a、216b以及凹槽228a 228b内的 在、,26、27之設計,可使流體於傳送過程中不會產生 ==㈣’達到高效率之傳輸’且本案多流道流體輸送 爐ίΓ尺寸大小不變之閥體薄膜上設置多個人口閥門結 =^_結構’以及於閥體座上設置不同多個入口通 通道,可形成多個流通管道以進行兩種不同流體 之〜合及分流輸出。 本案夕流道流體輸送裝置可藉由將閥體薄膜上所設 不同::門結構及出口閥門結構的配置進行變化,以因應 —(=—之昆合及/或分流輸出,請參閱第五目(a)〜 之多錄Ϊ料杨乡―流絲體輸送裝飾'包奴關薄膜— 輸Μ w施例之結構示意圖,如圖所示,本案多流道流體 閥之閥體薄膜可選擇配置二進二出的混合及分流 構配置㈣混合闕門結 配置(如h w )所不)、—進三出的分流閥門結構 置(如第 (C)所示)、一進四出的分流闕Η結構配 之閥體蓮π " 6不),但本案多流道流體輪送裝置 要是㈣二的進出間門結構的配置方式並不以此為限,只 以祕的進出閥門結構的配置方式可達到多流道 仃机體之混合及/或分流輸出的功效均為本案所保護 18 之範圍。 之多流道流體輸送裝置之閥㈣膜的人D閥門 及1円Γ结構的實施態樣並不僅揭限於第二圖⑷ 一圖(d)所不之入口閥門結構23 門結構232a、232b的刑处+ 如t)及出口闕 同悲’亦可使用具有相同厚度,相 性取決於/剛性特性的閥門結構,其中,閥門結構的剛 杳 閥門結構的外觀型態、所包含之延伸部的寬度及 =:並配合㈣致㈣置之震動鮮來娜進行分流或 體的比例,請參㈣六圖⑷〜(e),其係為本 案較么實施例之閥門結構之結構示意圖,如第六圖⑷ 所不,閥門結構61具有閥片6U、環繞閥片611週邊而設 置之鏤空孔洞612 ’以及在孔洞612之間更分別具有與閥 片611相連接之延伸部613,於本實施例中閥片一 l^r形結構’孔洞-61-2的數-量為3 ,至於,延伸部613的數 夏可為3且其形狀可呈現切線型態,但閥片611的形狀、 孔洞612以及延伸部613的數量及形狀並不以此為限。 凊再參閱第六圖(b )’於一些實施例中,閥門結構62 同樣具有閥片621、環繞閥片621週邊而設置之鏤空孔洞 622,以及在孔洞622之間更分別具有與閥片621相連接 之延伸部623,於本實施例中閥片621為一圓形結構,孔 洞622的數量可為4 ’至於,延伸部623的數量為4且其 形狀可呈現直線型態’但上述閥片621形狀、孔洞622以 及延伸部623的數量及形狀並不以此為限。 請再參閱第六圖(c )’於一些實施例中,閥門結構63 19 1359232 '同樣具有閥片631、孔洞632以及延伸部633,至於闊片 -631、孔洞632以及延伸部633之間的連接關係係於上述 相同,因此不在述贅述,於本實施例中,閥片631為—圓 形結構,孔洞632的數量可為4,至於,延伸部633的二 里為4且其形狀可王現長s形型態,但閥片6 31形狀、孔 洞632以及延伸部633的數量及形狀並不以此為限。 請再參閱第六圖(d)’於一些實施例中,閥門結構64 φ 同樣具有閥片641、孔洞642以及延伸部643,至於閥片 641、孔洞642以及延伸部643之間的連接關係係於上述 相同,因此不在述贅述,於本實施例中,閥片641為一圓 形結構,孔洞642的數量可為5,至於,延伸部643的數 量為5且其形狀可呈現短S形型態,但閥片64卜孔洞642 以及延伸部643的數量及形狀並不以此為限。 请再參閱第六圖-(e ),於一些實施例中,_闕f寻結構 同樣具有閥片651、孔洞652以及延伸部653,至於閥片 • 65卜孔洞652以及延伸部653之間的連接關係係於上述 相同,因此不在述贅述,於本實施例中,閥片651為一類 似圓开>結構且其周圍具有齒狀結構,孔洞的數量 可為3,至於,延伸部653的數量為3且其形狀可呈現切 線型態,但閥片651形狀、孔洞652以及延伸部653的數 量及形狀並不以此為限。 . 當然,本案之多流道流體輸送裝置之閥體薄膜上所適 -用之閥門結構的實施態樣並不僅限於第六圖(a )〜(e ) 所揭露的型態,亦可由其它的變化,只要是使用具有相同 20 ^59232 厚度,相同材料, 5蒦之範圍。 但是剛性不同的閥門結構均為本案所保 —本案多流道流體輸送裝置之閥體薄膜上可藉由配置 第六圖(a)〜(e)所示之閥門結構及其變化型態,利用 不同剛性料之_結構組合,因越緊衫同造成在相 =搶體壓力下產生不同闊門開度,造成不同比例之液體混 合。並且,亦可透過適當流體管道與進出口閥門結構配 置,進行流體分流並分配至不同容器中,至於分配所需比 例亦可透過前述之不同剛性閥門結構設置來達成。 閥體薄膜的配置方式亦可以以相同剛性設計之兩個 以上出口閥門結構搭配不同剛性之兩入口閥門結構,可使 本案之多流道流體輸送裝置達到進行兩種不同液體之不 同比例的混合功效。 明參閱弟七圖’其-係為第一圖-所-示之單一壓力腔室—配_ 合單一出入口閥門結構與第二圖(a)所示之單一壓力腔 室配合複數個出入口閥門結構之流量比對數據圖,本實驗 數據係使用第六圖(d)所示之閥門結構,對致動裝置之 驅動電壓(Driving voltage)為250Vpp,致動器的直徑 (PZT diameter)為 22 mm,致動器的厚度(pzt thickness) 為〇· 20则^振動薄膜厚度(Diaphragm thickness)為 0.15mm間門結構之閥片厚度(valve thickness )為 0.025mm’閥門結構之延伸部寬度(valve arm width)為 〇.4mm ’如第七圖所示,其中箭頭a所指係代表本案第二 圖(a)所不之單一壓力腔室配合複數個出入口閥門結構 21 1359232 • 之多流道流體輸送裝置的流量波形圖,箭頭B所指係代表 - 第一圖所示之單一壓力腔室配合單一出入口閥門結構之 流體輸送裝置的流量波形圖,由圖式可知,於相同頻率 (Frequency,Hz)下本案可達到的流量(Flow rate)與 習知技術相較確實可大幅度的提升流量。 綜上所述,本案之多流道流體輸送裝置係適用於微泵 浦結構,主要由閥體座、閥體薄膜、閥體蓋體、振動薄膜 I 及致動器堆疊而成,藉由單一壓力腔室及致動器配合多個 流通管道、多個進出口及其多個閥門結構之配置概念,能 夠在不增加整體尺寸下,使流量及揚程大為增加,非常適 合用於流量及揚程需求相對較高之應用場合; 另外,本案之多流道流體輸送裝置之閥體薄膜所具有 ' 二個以上閥門結構係同厚度及同材料製成,藉由不同剛性 - ·-設計之間門組合,因-其鬆緊-度不同造成在柑词艙體禮力T 產生不同閥門開度,造成不同比例之液體混合。並且,亦 φ 可透過適當流體管道與閥門結構配置,進行流體分流並分 配至不同容器中,至於分配所需比例亦可透過前述之不同 剛性閥門設置來達成。是以,本案之多流道流體輸送裝置 極具產業之價值,爰依法提出申請。 本案得由熟知此技術之人士任施匠思而為諸般修 飾,然皆不脫如附申請專利範圍所欲保護者。 22 【圖式簡單說明】 其?為習知微栗浦結構之結構示意圖。 詈之二二其係為本案較佳實施例之多流道流體輸送裝 置之分解結構示意圖。 構示意圖。 第二圖(c) 結構示意圖 第二圖(d) 示意圖。 "圖(b)其係為第二圖(a)所示之闕體座的背面結 其係為第二® (a)所示之閥體蓋體之背面 其係為第二圖(a)所示之閥體薄膜之結構 第一圖(e):其係為第二圖(a)之組裝結構示意圖。 第一圖(a ).其係為第二圖(e )所示之多流道流體輸送 裝置之未作動狀態之A-A剖面結構示意圖。 第二圖(七)其係為第—三圖—(a )_ .之壓力腔室膨脹狀態示 意圖。 弟二圖(c):其係為第三圖(b)之麼力腔室愿縮狀態示 意圖。 苐四圖(a):其係為第二圖(e )所示之多流道流體輸送 裝置之未作動狀態之B-B剖面結構示意圖。 第四圖(b):其係為第四圖(a)之壓力腔室膨脹狀態示 意圖。 第四圖(c):其係為第四圖(b)之壓力腔室壓縮狀態示 意圖。 第五圖(a)〜(e ):其係為本案多流道流體輸送裝置所 23 1359232 - 包含之閥體薄膜之多種實施例之結構示意圖。 - 第六圖(a)〜(e),其係為本案較佳實施例之閥門結構 之結構不意圖。 第七圖··其係為第一圖所示之單一壓力腔室配合單一出入 口閥門結構與第二圖(a)所示之單一壓力腔室配合複數 個出入口閥門結構之流量比對數據圖。 【主要元件符號說明】 微泵浦結構:10 閥體座:11、21 入 口通道:111、211a、211b 出 口通道:112、212a、212b 閥體蓋體:12、22 壓力腔室:123、225 閥體薄膜:13、23 微致動器:14 多流道流體輸送裝置:20 蓋體:15、25 致動—裝置:24 —- - 振-動薄-膜:2 41——- 致動器:242 齒狀結構:6511 出口暫存腔:215a、215b 上表面:220 下表面:221 入口暫存腔:224a、224b 入 口閥片:2313a、2313b 出 口閥片:2323a、2323b 方向:a、b、x 密封環:26、27、28 入口閥門結構:231a、231b 出口閥門結構:232a、232b 入口閥門通道:221 出口閥門通道:222 壓力腔室:226 密封環:26、27、28 入口閥片:2313 出口閥片:2323 24 1359232 • 開口 : 213a、213b 、214a、214b ‘入口閥片通道:121、222a、222b 出口閥門通道:122、223a、223b 出口閥門結構:132、232a、232b 入口閥門結構:131、231a、231b 凹槽:216a、216b、217a、217b、226、227a、227b、 228a ' 228b 延伸部:2311a、2311b、2321a、2321b 閥門結構:61、62、63、64、65 閥片:611、621、631、641、651 孔洞:2312a、2312b、2322a、2322b、612、622、632、 642 > 652 延伸部:613、623、633、643、653When the valve body film 23 is subjected to the suction of the pressure chamber 225 to increase the volume I, the seal ring 26 disposed in the recesses 216a, 216b of the valve body seat 21 has provided the inlet valve structure 231a, 231b. (Preforce), so that the inlet valve pieces 2313a, 2313b can be made to have a larger pre-tightening effect by the support of the extension portions 2311a, 2311b to prevent reverse flow, when the inlet valve is caused by the negative pressure of the pressure chamber 225 Structures 231a, 231b - generate displacement (as in the third diagram (b) and - fourth diagram ... (b) _ teaching) 丄 at this time, the _ fluid can flow from the valve body seat 21 to the valve via the hollow holes 2312a, 2312b Body ► The inlet temporary chambers 224a, 224b of the cover 22 are transferred into the pressure chamber 225 via the inlet chambers 224a, 224b and the inlet valve passages 222a, 222b, such that the inlet valve structures 231a, 231b The positive or negative pressure difference generated by the pressure chamber 225 can be quickly opened or closed to control the ingress and egress of the fluid and prevent the fluid from flowing back to the crucible seat 21. Similarly, another valve structure located on the same valve body film 23 is the outlet valve structure 232a, 232b, wherein the outlet valve pieces 2323a, 2323b, the extension portions 2321a, 2321b, and the holes 2322a, 2322b are operated in the same manner as the inlet. The valve structures 231a, 231b are identical and therefore no longer described in detail, but the seal ring 27 around the outlet valve structures 232a, 232b is disposed in a direction opposite to the seal ring 26 of the inlet valve structure 231a, 231b, thus acting as a pressure chamber When the 225 is compressed to generate a thrust, the seal ring 27 disposed in the recess 228a, 228b of the body cover 22 will provide an outlet. The valve structure 232a, 232b - Preforce, such that the outlet valve plates 2323a, 2323b A larger pre-covering effect can be produced by the support of the extensions 2321a, 2321b to prevent backflow (as shown in the third diagram (b) and the fourth diagram (b)), due to the pressure chamber 225 The positive pressure causes the outlet valve structures 232a, 232b to be displaced upwardly. At this time, the fluid can flow from the pressure chamber 225 through the valve body cover 22 to the outlet temporary cavity of the valve body seat 21 via the hollow holes 2322a, 2322b. 215a, 21 5b, and can be discharged through the openings 214a, 214b and the outlet flow channels 212a, 212b, so that the fluid can be self-pressure chamber '------ room via the mechanism of the opening of the outlet valve structure 232a, 232b The -2-25 is leaked out to achieve the function of flow-body transport (as shown in the third-figure (-e) and - fourth (c)). • Please refer to the third figure (a) and the fourth figure (a), which are schematic diagrams of the AA and BB cross-sectional structures of the multi-channel fluid delivery device shown in the second figure (e), respectively. In the embodiment, all the sealing rings 26, 27, and 28 may be made of a rubber material having good chemical resistance, but not limited thereto, wherein the groove 216a of the valve body seat 21 surrounding the openings 213a, 231b is provided. The seal ring 26 in the 216b may be a ring structure having a thickness greater than the depth of the grooves 216a, 216b such that the seal ring 26 disposed in the grooves 216a, 216b protrudes from the surface of the valve body seat 21. Forming a micro-convex structure, so that the inlet valve plates 2313a, 2313b of the inlet valve structure 231a, 231b of the valve body film 23 disposed on the valve body seat 21 are attached to the micro-convex structure of the dense-sealing ring 26 An upward bulge is formed, and the remaining portion of the valve body film 23 abuts against the valve body cover 22, such that the micro-convex structure pushes the inlet valve structures 231a, 231b to generate a pre-force effect, which contributes to the generation Larger pre-tightening effect to prevent backflow and due to sealing The upwardly raised micro-convex structure is located at the entrance door structure 231a, 231b of the valve body film 23, so that the inlet valve structures 231a, 231b cause the inlet valve pieces 2313a, 2313b and the valve body seat 21 to be unactuated. There is a gap between the surfaces. Similarly, when the seal ring 27 is disposed in the recesses 228a, 228b surrounding the outlet valve passages 223a, 223b, since the seal ring 27 is disposed on the lower surface 221 of the valve body cover 22, The sealing ring 27 protrudes from the outlet valve structures 232a, 232b of the valve body film 23 to form a micro-convex structure that bulges downwardly from the valve body cover 22, and the micro-convex structure is formed only in one direction and shape. In the entrance...the door structure -23, 23.1 b-micro-convex-structure system. is set in the reverse direction, however its functions are the same as before, and therefore will not be described again. The remaining seal rings 26, 27 and 28 respectively disposed in the groove structures 217a, 217b, 227a, 227b and 226 are mainly used to respectively form the valve body seat 21 and the valve body film 23, the valve body film 23 and the valve body. When the lid body 22 and the valve body cover 22 are in close contact with the actuating device 24, fluid leakage is prevented. Of course, the above-mentioned micro-convex structure is formed by using a groove and a sealing ring. In some embodiments, the micro-convex structure of the valve body seat 21 and the valve body cover 22 can also be a semiconductor process, for example, yellow light. Etching or coating or electroforming techniques are formed directly on the valve body seat 21 and the valve body cover 22. Please also refer to the third figure (a) ~ (c) and the fourth figure (a) ~ 15 1359232 • (c), as shown, when the cover 25, the actuating device 24, the valve body cover 22, - After the valve body film 23, the seal rings 26, 27, 28 and the valve body seat 21 are assembled to each other, the openings 213a, 213b on the valve body seat 21 are respectively connected to the inlet valve structures 231a, 231b and the valve on the valve body film 23. The inlet valve passages 222a, 222b on the body cover 22 correspond, and the openings 214a, 214b in the valve body seat 21 and the outlet valve plate structures 232a, 232b on the valve body film 23 and the outlet on the valve body cover 22 The valve passages 223a, 223b φ correspond to each other, and since the seal ring 26 is disposed in the recesses 216a, 216b, the inlet valve structures 231a, 231b of the valve body membrane 23 are slightly protruded above the valve body seat 21, and by The sealing ring 26 located in the recesses 216a, 216b contacts the wide film 23 to generate a pre-force effect, so that the inlet valve structures 231a, 231b form a gap with the surface of the valve body seat 21 when not in operation. Similarly, the outlet valve structures 232a, 232b are also provided by - one-to-seal ring -2-7- Concave. The groove -22.8.a_ _v 2_2..8b-medium-the same-square-form forms a gap with the lower surface 221 of the valve-body-cover body 22. φ When the actuator 242 is driven by a voltage, the actuating device 24 is subjected to bending deformation. As shown in the third (b) and fourth (b), the actuating device 24 is directed to the direction indicated by the arrow b. The downward bending deformation causes the volume of the pressure chamber 225 to increase, thereby generating a suction force so that the inlet valve structures 231a, 231b of the valve body membrane 23 and the outlet valve structures 232a, 232b are subjected to a downward pulling force and have The inlet valve plates 2313a, 2313b of the inlet valve structure 231a, . 231b of a pre-force are rapidly opened (as shown in the third figure (b) and the fourth figure (b)), so that the liquid can be largely from the valve body seat 21. The inlet passages 211a and 211b are sucked in and flow through the 16 1359232 openings 213a, 213b on the valve body seat 21, the inlet valve structures 231a, * 231b on the valve body film 23, the holes 23i2a, 2312b, and the valve body cover 22 The upper inlet chambers 224a, 224b and the inlet valve passages 222a, 222b flow into the pressure chamber 225. At this time, the inlet valve structures 231a, 231b and the outlet valve structures 232a, 232b of the valve body film 23 are received. The pull-down force, so the outlet valve at the other end Structures 232a, 232b by the line so that the outlet valve positioned on the valve membrane 23 and pull down force 2323a, 2323b sealing φ live outlet valve channel 223a, 223b, such that the outlet valve structure 232a, 232b closed. When the actuating device 24 is bent upwardly as the arrow a shown in the third (c) and fourth (c) directions is changed due to the change of the electric field direction, the volume of the pressure chamber 225 is compressed, so that the pressure chamber 225 Producing a thrust to the internal fluid' and causing the inlet valve structure 231a, 231b of the valve body membrane 23, the outlet valve-gate junction structure 232a-, 2_32b to withstand - up-thrust, at this time -, in the concave-groove The outlet valve plates 2323a, 2323b of the outlet valve structures 232a, 232b_ in the sealing ring 27 in 228a, 228b can be quickly opened (as shown in the third figure (c) and the fourth figure (c)), and the liquid is instantaneously A large amount of venting is temporarily stored by the pressure chamber 225 through the outlet valve passages 223a, 223b on the valve body cover 22, the holes 2322a, 2322b of the outlet valve structures 232a, 232b on the valve body film 23, and the outlet on the valve body seat 21. The chambers 215a, 215b, the openings 214a, 214b, and the outlet passages 212a, 212b exit the multi-channel fluid delivery device 20. thereby completing the fluid transfer process. Similarly, at this time, since the inlet valve structures 231a, 231b are subjected to the upward thrust, the inlet valve pieces 2313a, 2313b are sealed 17] 213a, 213b' thus closing the inlet door structure 231a, 231b, = fluid does not flow backward, And the design of the 26, 27 in the recesses 216a, 216b and the recesses 228a 228b of the valve body seat 21 and the valve body body are matched by the inlet valve structure core and the valve structure 232a, 232b. , can make the fluid does not produce in the process of transmission == (four) 'to achieve high efficiency transmission' and the multi-channel fluid delivery furnace of this case is set to a plurality of population valve knot film on the valve body film size = ^ _ structure ' And a plurality of inlet passages are provided on the valve body seat, and a plurality of flow conduits can be formed to perform the combination of the two different fluids and the split output. In this case, the fluid conveying device of the flow channel can be changed by setting the different structure of the valve body film: the structure of the door and the structure of the outlet valve to respond to - (= - the combination of the Kunming and / or the shunt output, please refer to the fifth (a) ~ Many recorded materials Yangxiang - Liusi body transport decoration 'Baonuguan film - transmission Μ w structure diagram, as shown in the figure, the multi-channel fluid valve body film can be selected Configuration of two-in and two-out mixing and split-flow configuration (4) Mixed-gate configuration (such as hw), - In-and-out three-way split valve structure (as shown in (C)), one-in and four-out split阙Η structure with valve body lotus π " 6 no), but the multi-channel fluid transfer device in this case, if the (four) two access door structure configuration is not limited to this, only secret access to the valve structure The configuration can achieve the mixing and/or shunt output of the multi-channel 仃 body is the scope of protection 18 of this case. The embodiment of the valve D of the multi-channel fluid delivery device (4) membrane and the structure of the 1円Γ structure are not limited to the second valve diagram (4), the inlet valve structure 23 of the diagram (d), and the gate structure 232a, 232b. The penalty section + such as t) and the exit 阙 ' ' can also use a valve structure having the same thickness, phase dependence / rigidity characteristics, wherein the appearance of the valve structure of the valve structure and the width of the extension portion included And =: and in conjunction with (four) to (four) set the vibration of fresh Laina to split or body proportions, please refer to (four) six maps (4) ~ (e), which is the structure of the valve structure of this example, such as the sixth The valve structure 61 has a valve piece 6U, a hollow hole 612' disposed around the periphery of the valve piece 611, and an extension portion 613 connected to the valve piece 611 between the holes 612, respectively, in this embodiment. The number-amount of the valve-l-r-shaped structure 'hole -61-2 is 3, as for the number of extensions 613 may be 3 and its shape may assume a tangential shape, but the shape of the valve piece 611, the hole 612 The number and shape of the extensions 613 are not limited thereto. Referring again to FIG. 6(b)', in some embodiments, the valve structure 62 also has a valve plate 621, a hollow hole 622 disposed around the periphery of the valve plate 621, and a valve plate 621 between the holes 622, respectively. In the embodiment, the valve piece 621 has a circular structure, and the number of the holes 622 can be 4'. As for the number of the extending portions 623 is 4 and the shape thereof can be linear, the valve is the same. The number and shape of the shape of the piece 621, the hole 622, and the extending portion 623 are not limited thereto. Referring again to FIG. 6(c)', in some embodiments, the valve structure 63 19 1359232' also has a valve plate 631, a bore 632, and an extension 633 as shown between the wide strip-631, the aperture 632, and the extension 633. The connection relationship is the same as described above, and therefore, the description is not described. In the present embodiment, the valve piece 631 has a circular structure, and the number of the holes 632 can be four. As for the second portion of the extension portion 633, the shape is ok. The shape and shape of the valve piece 631, the hole 632, and the extension 633 are not limited thereto. Referring again to the sixth diagram (d)', in some embodiments, the valve structure 64 φ also has a valve plate 641, a bore 642 and an extension 643. The connection between the valve plate 641, the bore 642 and the extension 643 is The same as above, therefore, the description is not described herein. In the present embodiment, the valve piece 641 has a circular structure, and the number of the holes 642 can be 5. As for the number of the extending portions 643 is 5 and the shape can be short S-shaped. However, the number and shape of the valve piece 64 and the extending portion 643 are not limited thereto. Referring again to FIG. 6-(e), in some embodiments, the _阙f seek structure also has a valve plate 651, a hole 652, and an extension 653, between the valve plate 65 hole 652 and the extension 653. The connection relationship is the same as described above, and therefore, in the present embodiment, the valve piece 651 is a similar circular opening structure and has a toothed structure around it, and the number of holes may be 3, as for the extension portion 653 The number is 3 and its shape can assume a tangential shape, but the shape and shape of the valve piece 651, the hole 652 and the extension 653 are not limited thereto. Of course, the embodiment of the valve structure suitable for the valve body film of the multi-channel fluid transport device of the present invention is not limited to the type disclosed in the sixth figure (a) to (e), and may be other The change is as long as it is used with the same 20^59232 thickness, the same material, 5 蒦 range. However, the valve structure with different rigidity is guaranteed by the present case. The valve body film of the multi-channel fluid conveying device of the present case can be utilized by arranging the valve structure and its variants shown in the sixth figure (a) to (e). The combination of different rigid materials, due to the tighter tie, results in different wide door opening under the phase of the body pressure, resulting in different proportions of liquid mixing. Moreover, the fluid can be shunted and distributed to different containers through proper fluid conduits and inlet and outlet valve configurations. The ratio of dispensing can also be achieved through the various rigid valve configurations described above. The valve body film can also be arranged in two or more outlet valve structures of the same rigid design with two rigid inlet valve structures, so that the multi-channel fluid conveying device of the present invention can achieve the mixing effect of different ratios of two different liquids. . See the seven-figure diagram of the figure, which is the first pressure chamber of the first diagram--with a single inlet and outlet valve structure and a single pressure chamber shown in the second diagram (a) with a plurality of inlet and outlet valve structures. The flow ratio is compared with the data plot. The experimental data is the valve structure shown in the sixth diagram (d). The driving voltage of the actuator is 250Vpp and the diameter of the actuator is 22 mm. The thickness of the actuator (pzt thickness) is 〇·20th. The thickness of the diaphragm is 0.15mm. The valve thickness of the door structure is 0.025mm'. The width of the extension of the valve structure (valve arm) Width) is 〇.4mm 'As shown in the seventh figure, the arrow a refers to the single pressure chamber of the second figure (a) of the case and a plurality of inlet and outlet valve structures 21 1359232 • Multi-channel fluid transport The flow waveform of the device, the arrow B represents the flow waveform of the fluid delivery device with a single pressure chamber and a single inlet and outlet valve structure, as shown in the figure, at the same frequency (Frequency, Hz) Case achievable flow (Flow rate) compared to the prior art can indeed greatly improved traffic. In summary, the multi-channel fluid delivery device of the present invention is suitable for a micro-pump structure, which is mainly composed of a valve body seat, a valve body film, a valve body cover body, a vibration film I and an actuator, and is formed by a single The pressure chamber and the actuator cooperate with a plurality of distribution pipes, a plurality of inlets and outlets, and a plurality of valve structure configurations thereof, so that the flow rate and the head can be greatly increased without increasing the overall size, which is very suitable for flow and lift. In the application where the demand is relatively high; in addition, the valve body film of the multi-channel fluid conveying device of the present case has 'two or more valve structures are made of the same thickness and the same material, and the door is designed by different rigidity--- The combination, due to its different elasticity, results in different valve opening in the citrus ritual T, resulting in different ratios of liquid mixing. Moreover, φ can be dispensed and dispensed into different containers through a suitable fluid conduit and valve configuration, and the desired ratio can be achieved through the different rigid valve settings described above. Therefore, the multi-channel fluid conveying device in this case is of great industrial value and is submitted in accordance with the law. This case has been modified by people who are familiar with the technology, but it is not intended to be protected by the scope of the patent application. 22 [Simple description of the diagram] What? It is a schematic diagram of the structure of the micro-Lipu structure. The second embodiment is a schematic exploded view of the multi-channel fluid transport device of the preferred embodiment of the present invention. Schematic diagram. Figure 2 (c) Schematic diagram of the second diagram (d). " Figure (b) is the back side of the body block shown in the second figure (a) which is the back side of the valve body cover shown in the second ® (a). The structure of the valve body film shown in the first figure (e): it is a schematic view of the assembly structure of the second figure (a). Fig. 1(a) is a schematic view showing the A-A cross-sectional structure of the multi-channel fluid transporting device shown in Fig. 2(e). The second figure (7) is the illustration of the pressure chamber expansion state of the third to the (a)_. Figure 2 (c): It is the intention of the force chamber in the third figure (b). Figure 4 (a): This is a schematic view of the B-B cross-sectional structure of the multi-channel fluid transport device shown in Fig. 2(e). Figure 4(b): This is a schematic illustration of the pressure chamber expansion state of the fourth diagram (a). Figure 4 (c): This is the pressure chamber compression state of Figure 4 (b). Figure 5 (a) ~ (e): This is a structural schematic diagram of various embodiments of the multi-channel fluid transport device 23 1359232 - including the valve body film. - Figure 6 (a) - (e), which is not intended to be a structural structure of the preferred embodiment of the present invention. Figure 7 is a flow comparison data plot of a single pressure chamber with a single inlet and outlet valve structure as shown in the first figure and a single pressure chamber shown in Figure 2(a). [Main component symbol description] Micro-pump structure: 10 valve body seat: 11, 21 inlet channel: 111, 211a, 211b outlet channel: 112, 212a, 212b valve body cover: 12, 22 pressure chamber: 123, 225 Body film: 13, 23 Microactuator: 14 Multi-channel fluid delivery device: 20 Cover: 15, 25 Actuation - Device: 24 —- - Vibrating-moving thin film: 2 41——- Actuation Device: 242 Toothed structure: 6511 Exit temporary cavity: 215a, 215b Upper surface: 220 Lower surface: 221 Entrance temporary cavity: 224a, 224b Entrance valve: 2313a, 2313b Outlet valve: 2323a, 2323b Direction: a, b, x seal ring: 26, 27, 28 inlet valve structure: 231a, 231b outlet valve structure: 232a, 232b inlet valve passage: 221 outlet valve passage: 222 pressure chamber: 226 seal ring: 26, 27, 28 inlet valve Sheet: 2313 Exit valve: 2323 24 1359232 • Opening: 213a, 213b, 214a, 214b 'Inlet valve passage: 121, 222a, 222b Outlet valve passage: 122, 223a, 223b Outlet valve structure: 132, 232a, 232b Entrance Valve structure: 131, 231a, 231b Groove: 216a, 216b, 217a, 217b, 226, 227a, 227b, 228a '228b Extension: 2311a, 2311b, 2321a, 2321b Valve structure: 61, 62, 63, 64, 65 Valve plate: 611, 621, 631, 641, 651 Hole : 2312a, 2312b, 2322a, 2322b, 612, 622, 632, 642 > 652 extension: 613, 623, 633, 643, 653

2525

Claims (1)

申請專利範圍 含 :一種多流道流體輸送裝置,用以傳送—流體,其係包 •-閥體座’其係具有至少―出口通道及至少一入口通 一閥體蓋體,其與該閥體座相互堆最社八. 一間體其係設置於該閥體;^閥體蓋體之 二二ϋ有二個以上閥門結構’該等閥門結構係同厚度及 冋材料製成; 複數個暫存室’設置於該閥體薄膜與該閥體蓋體之 曰’,以及於該閥體薄膜與該閥體座之間;以及 一振動裝置’其週邊係固設於關體蓋體。 申請專利範圍第-1項所述之多流道流體輸送裝置, 忒等閥門結構係分別具有二―閥片、複數個孔、ϋ及複 正固^伸邛,1 2亥複數個孔洞係環繞閥片週邊設置,複數個 3中^係與該閥片連接且設置於該複數個孔洞之間。 如申清專利範圍第2項所述之多流道流體輸送裝置’ 4 其中該閥片實質上係為圓形結構。 7申清專利範圍第3項所述之多流道流體輸送裝置, 26 1 中該閱片周圍係包含一齒狀結構。 1如申請專利範圍第2項所述之多流道流體輸送裝置, 2 中該延伸部實質上係為机線型態。 ’申請專利範圍第2項所述之多流道流體輸送裝置,The patent application scope includes: a multi-channel fluid conveying device for conveying a fluid, the bag body having a valve body having at least an outlet passage and at least one inlet opening and a valve body cover, and the valve The body is stacked with each other. The body is set in the valve body; the valve body cover has two or more valve structures. The valve structures are made of the same thickness and 冋 material; The temporary storage chamber is disposed between the valve body film and the valve body cover, and between the valve body film and the valve body seat; and a vibrating device 'the periphery thereof is fixed to the closing body cover. The multi-channel fluid conveying device described in the scope of patent application No.-1, the valve structure of the 忒 and so on have a two-valve piece, a plurality of holes, a ϋ and a rectifying ^, and a plurality of holes are surrounded by a plurality of holes. The valve plate is disposed around the plurality of holes, and is connected to the valve plate and disposed between the plurality of holes. The multi-channel fluid delivery device '4 according to claim 2, wherein the valve piece is substantially circular. 7 The invention discloses a multi-channel fluid conveying device according to item 3 of the patent scope, wherein the reading piece comprises a tooth-like structure around the reading piece. 1 In the multi-channel fluid delivery device of claim 2, wherein the extension is substantially in the machine type. The multi-channel fluid delivery device of claim 2,
TW97115931A 2008-04-30 2008-04-30 Fluid transmission device with multi flow channels TWI359232B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97115931A TWI359232B (en) 2008-04-30 2008-04-30 Fluid transmission device with multi flow channels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97115931A TWI359232B (en) 2008-04-30 2008-04-30 Fluid transmission device with multi flow channels

Publications (2)

Publication Number Publication Date
TW200944657A TW200944657A (en) 2009-11-01
TWI359232B true TWI359232B (en) 2012-03-01

Family

ID=44869418

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97115931A TWI359232B (en) 2008-04-30 2008-04-30 Fluid transmission device with multi flow channels

Country Status (1)

Country Link
TW (1) TWI359232B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102601008B (en) * 2011-01-19 2014-05-07 研能科技股份有限公司 Liquid atomizing and spraying dosing device

Also Published As

Publication number Publication date
TW200944657A (en) 2009-11-01

Similar Documents

Publication Publication Date Title
CN101550925B (en) Fluid transporting device with a plurality of dual-cavity actuating structures
TWI431195B (en) Fluid transmission device capable of generating micro drop fluid
US8157549B2 (en) Multi-channel fluid conveying apparatus
CN101550927B (en) Multi-flow passage fluid transporting device with a plurality of dual-cavity actuating structures
JP4793442B2 (en) Micro pump
TWI622701B (en) Fluid transmitting device
Berg et al. Peristaltic pumps
TWI359232B (en) Fluid transmission device with multi flow channels
TWI342831B (en) Fluid transmission device
TW200924849A (en) Micro type sucking chip
TWI398577B (en) Fluid transmission device cable of transmitting fluid at relatively large fluid rate
TWI332557B (en) Fluid transmission device having flow way board
TW201827710A (en) Fluid transmitting device
TWI359233B (en) Fluid transmission device with multi flow channels
CN108980017B (en) Fluid delivery device
TWI359234B (en) Manufacturing method of fluid transmission device
TWI412716B (en) Heat-absorbable fluid transmission device
TWI353891B (en) Fluid transmission device having a plurality of do
TWI353890B (en) Fluid transmission device with multi flow channels
CN101560972B (en) Fluid conveyer with runner plate
CN101881266B (en) Fluid transporting device
CN101520040A (en) Manufacturing method of multi-flow passage fluid conveying device
Böhm et al. Manufacturing of self-priming plastic micropumps
TW200942330A (en) Asymmetric double-chambered fluid transmission device
CN101566145A (en) Multiple-sprue fluid conveying appliance