TWI357348B - Nano filter structure for breathing and manufactur - Google Patents

Nano filter structure for breathing and manufactur Download PDF

Info

Publication number
TWI357348B
TWI357348B TW98130291A TW98130291A TWI357348B TW I357348 B TWI357348 B TW I357348B TW 98130291 A TW98130291 A TW 98130291A TW 98130291 A TW98130291 A TW 98130291A TW I357348 B TWI357348 B TW I357348B
Authority
TW
Taiwan
Prior art keywords
layer
support
regions
gate
forming
Prior art date
Application number
TW98130291A
Other languages
Chinese (zh)
Other versions
TW201109071A (en
Inventor
Shu Yuan Chuang
Original Assignee
Shu Yuan Chuang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shu Yuan Chuang filed Critical Shu Yuan Chuang
Priority to TW98130291A priority Critical patent/TWI357348B/en
Publication of TW201109071A publication Critical patent/TW201109071A/en
Application granted granted Critical
Publication of TWI357348B publication Critical patent/TWI357348B/en

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Micromachines (AREA)

Description

135^48 f、發明說明:. 【發明所屬之技術領域】 本發明係關於一種濾材結構及其製造方法,更特別的 是關於一種於呼吸時用來過濾空氣之奈米級濾材結構及其 製造方法。 【先前技術】 隨著工商業的發達,人口密集的都市曰益增加,人為 活動所造成的空氣污染也逐日惡化。且近年來汽機車的廢 氣排放、石化燃料的大量使用與各種危害性空氣污染物的 逸散等所產生的空氣污染,更是對空氣污染的室内外環境 中的人員,長時間造成健康上的危害。因此,空氣品質的 重要性更受到大眾的關心與重視。 另一方面,直接影響人體健康的病毒、細菌及有毒粉 塵更是受到大眾的關心與重視,人們利用過濾材料來隔絕 病毒與細菌,使之不會進入人體的呼吸系統而造成感染。 目前使用的過滤、材料多半是採用纖維堆疊而成的過遽網, 如:以聚丙稀(Polypropylene,簡稱PP)為基材製成的多層 過瀘、網,此種過濾網層被應用於口罩、面罩、過滤鼻墊(nose filter)或呼吸器之過濾件上。 以應用於口罩的方面來說,口罩一般可分為防塵口 罩、活性碳口罩及經由美國國家職業安全及健康協會 (National Institute for Occupational Safety and Health, NIOSH)認可的醫療級口罩-N95 口罩。N95規格之口罩 3 1357348 4 其纖維構造十分緊密’可阻隔95%之大小在0.3微米(ym) 以上的微粒’因此N95規格之口罩所帶來的防護效果優於 防塵口罩及活性碳口罩。 然而’如表一所示’對於一般細菌來說,其直徑皆為 0.3微米(/zm)以上而容易被N95 口罩阻隔;但是對於病毒 來δ兒’其直径大小係為奈米等級而遠小於細菌的微米等 級’如嚴重急性啤吸道症候群(Severe Acute Respiratory Syndrome, SARS)之病毒直徑僅為ι〇〇〜12〇奈米(nm),此 時’ N95 口罩即無法有效地阻隔病毒的通過。 種類 大小(微米) 相關疾病 病毒 正黏液病毒 直徑:0.08〜0.12 流行性感冒A、B、C型 (Virus) (Orthomyxoviridae) 冠狀病毒(Coronaviridae) 直徑:0.10〜0.12 SARS 細菌 黏質沙雷氏菌(Serratia 直徑:1.0〜5.0 院内感染(Nosocomial (Bacteria) Marcescens) Infections) 結核桿菌(Mycobacterium tuberculosis) 直徑:0.45 結核病(Tuberculo-sis) 表一 因此,利用習知的纖維堆疊技術所製作出的濾材結構 僅能達到微米等級的防護效果,對於奈米等級之病毒的防 護則幾乎無效果。 相對地,由於濾材係對可傳送的粒子大小作出限制, 因此卩近著濾材結構的精細化’就越會對使用者造成不舒服 的呼吸壓力。亦即,若濾材的開口率越小,透氣程度就越 4 I35f348 差’使用者將難以隔著濾材進行正常的吸氣或吐氣。 【發明内容】 有鑑於習知濾材的缺點’本發明之一目的在於提出一 ^吸用之奈米級濾材結構及其製造方法,以有效過滤病 母、細菌及有毒粉塵。 本4明之另-目的在於提出一種呼吸用之奈米級遽材 、、·。構及其製造方法,以利開口率的提高。 本發明之再一目的在於提出一種奈米級渡村結構及其 4造方法,以增加濾材結構的使用壽命。 為達上述目的及其他目的,本發明提出一種呼吸用之 奈米級濾、材結構,其包含:—頂閘門,係具有複數個頂部 開口; -底_,好行於該·門且具有複數個底部開 口’該些底部開口與該些頂部開口係互相錯開;複數個側 壁間’係位於該頂閘門與該底閘門之間且相鄰於一頂部開 口及-底部開口’每-側壁閘具有平行於該頂閘門及該底 閘門之複數個過渡柵攔(他erablegratings)並形成複數個過 處通道;及複數個支㈣,係位於該·門與該底閉門之 間且位於二側類之交會處;其中,該些過親道係具有 300奈米以下之通道高度。 為達上述目的及其他目的,本發明於第一實施例中提 出一種呼吸用之奈米級濾材結構之製造方法,該奈 材結構包含複數個頂㈣口區、複數個底部開口區了複= 個側壁閘區及複數個支撐體區,每—側料區係相鄰一頂 5 1357348 4 部開口區及一底部開口區,該些支撐體區係位於二側壁閘 區之交會處,其包含下列步驟:(A1)於一基底上形成圖案 化之一提升層;(A2)於部分之該提升層及部分之該基底上 形成圖案化之一第一支撐體層,使該些底部開口區不具有 該第一支撐體層,(A3)於該些底部開口區之該提升層上, 以及於該些頂部開口區及該些側壁閘區之該第一支撐體層 上形成圖案化之一第一犧牲層;(A4)於該些側壁閘區及該 些支撐體區形成圖案化之一第二支撐體層;(A5)於該些頂 部開口區、該些底部開口區及該些側壁閘區形成圖案化之馨 一第二犧牲層,(A6)於該些底部開口區及該些側壁閘區之 最頂層之犧牲層上,以及於該些支撐體區之最頂層之支撐 體層上形成-頂閘門層;(A7)去除該提升層及所有的犧牲 層;及(A8)移除該基底;其中,前述每―犧牲層係被形成 小於或等於300奈米之厚度。其中,於步驟(A5)後可更包 含一步驟(A5-1):依序重覆步驟(A4)及(A5) ’以形成複數層 之支撐體層及複數層之犧牲層。 為連上述目的及其他目的,本發明於第二實施例中提 出一種呼吸用之奈米級濾材結構之製造方法,該奈米級濾 材結構包含複數個頂部開口區、複數個底部開口區、複數 個側壁閘區及複數個支撐體區’每一側壁閘區係相鄰一頂 部開口區及一底部開口區,該些支撐體區係位於二侧壁閘 區之交會處,其包含下列步驟:(B1)於一基底上形成圖案 化之一提升層;(B2)於部分之該提升層及部分之該基底上 形成圖案化之一第一支撐體層,使該些底部開口區不具有 6 I35f348 該第-支#體層;(B3)於該些底部開口區、該些頂部開口 區及該些側壁閘區形成圖案化之一第一犧牲層;(B4)於該 些側壁閘區及該些支撐體區形成圖案化之一第二支撐體 層;(B5)於該些頂部開口區、該些底部開口區、該些側壁 閘區及該些支撐體區形成—第二犧牲層;(B6)於該些頂部 開口區、该些底部開口區、該些側壁閘區及該些支撐體區 形成一第三支撐體層;(B7)於該些頂部開口區、該些底部 • 開口區、該些側壁閘區及該些支撐體區形成一保護層;(B8) 對該些支撐體區進行蝕刻並至少移除該第三支撐體層以各 ; 形成一支撐體凹槽;(B9)於該些支撐體凹槽中進行側向蝕 刻並移除部分之犧牲層以形成複數個支撐體側翼凹槽; (B10)於該些支撐體凹槽及該些支撐體側翼凹槽中進行填 充以形成複數個填充體;(Bn)對該些頂部開口區及該些 底部開口區進行蝕刻並至少移除該第三支撐體層; 於該些頂部開口區、該些底部開口區、該些側壁閘區及部 鲁分之該些支撐體區形成圖案化之一第一通道犧牲層;(Bi3) 於該些底部開口區、該些側壁閘區及該些支撐體區形成一 頂閘門層;(B14)去除該提升層及所有的犧牲層;及(Bi5) 移除該基底;其中,前述每一犧牲層係被形成小於或等於 3〇〇奈米之厚度。 ' 第二實施例中,於步驟(B6)後更可包含一步驟(B6J): 依序重覆步驟(B5)及(B6),以形成複數層之支撐體層及複數 層之犧牲層。以及,於步驟⑺卜丨)中,最後形成之層可為 牲層。 ’ 7 1357348 第二實施例中,於步驟(B12)後更可包含:(B12-1)於該 些側壁閘區及該些支撐體區形成圖案化之一第一通道支撐 體層;及(B12-2)依序重覆步驟(B12)及(B12-1),以形成複數 層之通道支撐體層及複數層之通道犧牲層,並使最後形成 之層係為通道犧牲層。 本發明之實施態樣中,該些頂部開口及該些底部開口 之邊長可形成為具有微米尺度之長度。該些頂部開口及該 些底部開口之周圍皆可具有該些側壁閘。每一支撐體中係 包含一填充體,而該填充體之材料可為聚合物。該頂閘門 之頂面更可包含用以分解有機物之一薄膜。 藉此,本發明利用半導體製程技術來製作此奈米級濾 材結構可輕易地達到奈米尺度之過濾柵欄的製作以及快速 地製造此奈米級濾材結構;微米尺度的頂閘門與底閘門之 其一更可對流入之氣流做出微米級的初步過濾,而可延長 濾材的壽命。多重層疊之過濾、栅攔的設計更可提升濾、材的 開口率,讓使用者能輕鬆地隔著濾材進行吸氣或吐氣。 【實施方式】 為充分瞭解本發明之目的、特徵及功效,茲藉由下述 具體之實施例,並配合所附之圖式,對本發明做一詳細說 明,說明如後: 由於半導體製程技術及面板製程技術的進步與成熟, 這些技術可對薄膜的厚度做精確的控制且可輕易地形成厚 度為奈米等級之薄膜。本發明利用非毒性材料並藉由半導 8 I35T348 體製程技術或面板製程技術中常用的薄膜沉積製程,如: 濺鍍、物理氣相沉積或化學氣相沉積,來形成厚度僅奈米 等級之薄膜,再透過半導體製程技術或面板製程技術中常 用的蝕刻技術,如:乾式蝕刻、濕式蝕刻或氣體蝕刻,進 行不同蝕刻比率之選擇性蝕刻。因此,利用具有不同蝕刻 比率之材料以及搭配適合的蝕刻方式,即可將相鄰材料係 為不同之層疊結構蝕刻成栅欄狀之通道結構。利用半導體 製程技術或面板製程技術不但可精確控制層疊結構的厚度 更可快速地製造本發明之奈米級濾材結構,並且,層疊數 量的增加更可增加氣流的進氣與出氣量而可提高濾材結構 的開口率。 首先請參閱第一圖,係本發明之奈米級過濾通道於一 實施例中的剖面示意圖。該奈米級濾材結構包含一頂閘門 110、一底閘門120及複數個支撐體130,氣流AF可由頂 閘門110之頂部開口 112進入,經由該支撐體130之間距 dl所形成之過濾通道,再由底閘門120之底部開口 122流 出。透過該支撐體130之厚度控制即可決定出過濾通道的 過濾等級。本發明即以此架構來製作成奈米等級且開口率 向之濾·材結構。 接著請參閱第二圖,係本發明之奈米級過濾通道於另 一實施例中的剖面示意圖。為提高濾材之開口率,可於製 程中增加支撐體130之層疊數量或厚度以加大該頂閘門 110與該底閘門120之間距d2,並於過濾通道處形成具複 數層之一側壁閘140,該側壁閘140可由複數個過濾栅攔 9 1357348 施㈣說’輯通道數係為二: 為該閘門„。或該底_。之間距皆 或厚戶的Γ 因此,隨著支撐體130之層疊數量 :又、加,使该頂閉門110與該底閑門120 ::距:可成更多的過_ = 氣相沉積或其他等效二; 二圖相對於篦一冃冰…、及办 又-呵度。弟 产AF夕 來以多增加一過遽通道為例,使氣 :L二一路徑可流動’如此可有效增加過濾通道之開口 : 的開口間距w2亦可利用光罩的設計及普光f :之控制使之成為微米等級之開口,而可對進 ;135^48 f, invention description: [Technical field] The present invention relates to a filter material structure and a manufacturing method thereof, and more particularly to a nano-scale filter material structure for filtering air during breathing and its manufacture method. [Prior Art] With the development of industry and commerce, the population-intensive urban benefits have increased, and the air pollution caused by human activities has also deteriorated day by day. In recent years, the air pollution caused by the exhaust emissions of steam locomotives, the large use of fossil fuels, and the escape of various hazardous air pollutants are even more harmful to people in indoor and outdoor environments with air pollution. harm. Therefore, the importance of air quality is more concerned and valued by the public. On the other hand, viruses, bacteria and toxic dust that directly affect human health are more concerned and valued by the public. People use filter materials to isolate viruses and bacteria from entering the body's respiratory system and causing infection. Most of the filters and materials currently used are over-twisted nets made of fiber stacks, such as multi-layered crepe and mesh made of polypropylene (PP). The filter layer is applied to the mask. , mask, filter nose filter or respirator filter. In the case of masks, masks are generally classified into dust masks, activated carbon masks, and medical grade masks - N95 masks approved by the National Institute for Occupational Safety and Health (NIOSH). N95 size mask 3 1357348 4 The fiber structure is very tight 'blocks 95% of the particles above 0.3 micron (ym) size. Therefore, the N95 size mask is better than the dust mask and activated carbon mask. However, 'as shown in Table 1', for general bacteria, the diameter is 0.3 micron (/zm) or more and is easily blocked by the N95 mask; but for the virus, the size of the diameter is nanometer and much smaller. The micron level of bacteria, such as the Severe Acute Respiratory Syndrome (SARS) virus, is only ι〇〇~12〇N (nm), and the 'N95 mask cannot effectively block the passage of the virus. . Species size (micron) Related diseases Viral mucus virus diameter: 0.08~0.12 Influenza A, B, C (Virus) (Orthomyxoviridae) Coronaviridae Diameter: 0.10~0.12 SARS Serratia marcescens ( Serratia Diameter: 1.0 to 5.0 Nosocomial (Bacteria) Marcescens Infections) Mycobacterium tuberculosis Diameter: 0.45 Tuberculosis - Table 1 Therefore, the filter material structure produced by the conventional fiber stacking technique is only It can achieve micron-level protection, and it is almost ineffective for nano-grade virus protection. In contrast, since the filter material limits the size of the transportable particles, the refinement of the filter structure is less likely to cause uncomfortable breathing pressure to the user. That is, if the opening ratio of the filter material is smaller, the degree of air permeability is 4 I35f348 difference. It is difficult for the user to perform normal inhalation or exhalation through the filter medium. SUMMARY OF THE INVENTION In view of the disadvantages of the conventional filter media, one of the objects of the present invention is to provide a nano-filter material structure for suction and a method for manufacturing the same to effectively filter disease, bacteria and toxic dust. Another object of the present invention is to provide a nano-scale coffin for breathing, . Structure and its manufacturing method to improve the aperture ratio. Still another object of the present invention is to provide a nano-scaled village structure and a method for producing the same to increase the service life of the filter material structure. To achieve the above and other objects, the present invention provides a nanofiltration and material structure for breathing, comprising: a top gate having a plurality of top openings; a bottom _, preferably in the gate and having a plurality a bottom opening 'the bottom opening and the top opening are offset from each other; a plurality of side walls 'between the top gate and the bottom gate and adjacent to a top opening and a bottom opening' each-side wall gate have a plurality of transitional barriers parallel to the top gate and the bottom gate and forming a plurality of passages; and a plurality of branches (four) between the gate and the bottom gate and located on the two sides The meeting place; wherein the passing systems have a channel height of 300 nm or less. In order to achieve the above and other objects, the present invention provides a method for manufacturing a nano-filter material for breathing in a first embodiment, the nano-structure comprising a plurality of top (four) mouth regions and a plurality of bottom opening regions. a side wall gate region and a plurality of support body regions, each of which is adjacent to a top 5 1357348 4 open areas and a bottom open area, the support body areas are located at the intersection of the two side wall gate areas, and the The following steps: (A1) forming a patterned lift layer on a substrate; (A2) forming a patterned first support layer on the portion of the lift layer and a portion of the substrate, such that the bottom open areas are not Having the first support layer, (A3) on the lift layer of the bottom open regions, and forming a first sacrifice on the top open region and the first support layer of the sidewall spacers a layer (A4) forming a patterned second support layer on the sidewall gate regions and the support regions; (A5) forming a pattern on the top opening regions, the bottom opening regions, and the sidewall spacer regions Huaxin-Second Sacrificial Layer (A6) forming a top gate layer on the bottom open region and the topmost sacrificial layer of the sidewall spacers, and on the topmost support layer of the support regions; (A7) removing the lift layer And all of the sacrificial layers; and (A8) removing the substrate; wherein each of the foregoing sacrificial layers is formed to a thickness of less than or equal to 300 nanometers. Wherein, after the step (A5), a step (A5-1) may be further included: the steps (A4) and (A5)' are sequentially repeated to form a support layer of the plurality of layers and a sacrificial layer of the plurality of layers. In order to achieve the above and other objects, the present invention provides a method for manufacturing a nano-filter material for breathing in a second embodiment, the nano-scale filter structure comprising a plurality of top open areas, a plurality of bottom open areas, and a plurality The sidewall gate region and the plurality of support regions are each adjacent to a top open region and a bottom open region, and the support regions are located at the intersection of the two sidewall gate regions, and the method comprises the following steps: (B1) forming a patterned lift layer on a substrate; (B2) forming a patterned first support layer on the portion of the lift layer and a portion of the substrate such that the bottom open regions do not have 6 I35f348 (B3) forming a patterned first sacrificial layer in the bottom opening region, the top opening regions and the sidewall spacer regions; (B4) in the sidewall spacer regions and the Forming a second support layer in the support region; (B5) forming a second sacrificial layer in the top open region, the bottom open region, the sidewall spacers, and the support regions; (B6) In the top open areas, the The bottom opening area, the side wall sluice areas and the support body areas form a third support layer; (B7) the top opening area, the bottom opening area, the side wall sluice areas and the support bodies Forming a protective layer; (B8) etching the support regions and removing at least the third support layer to form a support groove; (B9) laterally forming the support grooves Etching and removing a portion of the sacrificial layer to form a plurality of support body wing grooves; (B10) filling the support body grooves and the support body wing grooves to form a plurality of filler bodies; (Bn) pair The top open areas and the bottom open areas are etched and at least the third support layer is removed; the support areas are formed in the top open areas, the bottom open areas, the side wall areas, and the side portions Forming a patterned first channel sacrificial layer; (Bi3) forming a top gate layer in the bottom opening area, the side wall gate areas and the support body areas; (B14) removing the lifting layer and all sacrifices a layer; and (Bi5) removing the substrate; wherein A sacrificial layer system is formed to a thickness less than or equal 3〇〇 nm. In the second embodiment, after the step (B6), a step (B6J) may be further included: the steps (B5) and (B6) are sequentially repeated to form a support layer of the plurality of layers and a sacrificial layer of the plurality of layers. And, in the step (7), the layer finally formed may be a layer. In the second embodiment, after the step (B12), the method further comprises: (B12-1) forming a patterned first channel support layer on the sidewall gate regions and the support regions; and (B12) -2) Steps (B12) and (B12-1) are sequentially repeated to form a channel support layer of a plurality of layers and a channel sacrificial layer of the plurality of layers, and the layer formed last is a channel sacrificial layer. In an embodiment of the invention, the top openings and the side lengths of the bottom openings may be formed to have a length on a micrometer scale. The side openings and the periphery of the bottom openings may have the side wall gates. Each support body comprises a filler body, and the material of the filler body may be a polymer. The top surface of the top gate may further comprise a film for decomposing organic matter. Thereby, the present invention utilizes semiconductor process technology to fabricate the nano-scale filter material structure, which can easily reach the nanometer-scale filter fence and rapidly manufacture the nano-scale filter material structure; the micro-scale top gate and the bottom gate are more Micron-level preliminary filtration of the incoming gas stream can be extended to extend the life of the filter media. The multi-layered filter and barrier design improves the opening ratio of the filter and the material, allowing the user to easily inhale or exhale through the filter. DETAILED DESCRIPTION OF THE INVENTION In order to fully understand the objects, features and effects of the present invention, the present invention will be described in detail by the following specific embodiments and the accompanying drawings. Advances and maturity of panel process technology, which allows precise control of film thickness and easy formation of nanometer-thickness films. The present invention utilizes non-toxic materials and forms a thickness of only nanometers by a thin film deposition process commonly used in semi-conductor 8 I35T348 process technology or panel process technology, such as sputtering, physical vapor deposition or chemical vapor deposition. The thin film is then selectively etched at different etching ratios by etching techniques commonly used in semiconductor process technology or panel process technology, such as dry etching, wet etching, or gas etching. Therefore, adjacent materials can be etched into a barrier-like channel structure by using different materials with different etching ratios and suitable etching methods. The semiconductor process technology or the panel process technology can not only accurately control the thickness of the laminated structure, but also can quickly manufacture the nano-scale filter structure of the present invention, and the increase of the number of layers can increase the intake and output of the airflow and improve the filter material. The aperture ratio of the structure. Referring first to the first drawing, a cross-sectional view of a nanofiltration passage of the present invention is shown in one embodiment. The nano-scale filter structure comprises a top gate 110, a bottom gate 120 and a plurality of support bodies 130. The airflow AF can be accessed by the top opening 112 of the top gate 110, and the filter passage formed by the distance d1 between the support bodies 130, and then It flows out from the bottom opening 122 of the bottom gate 120. The filtration level of the filtration channel can be determined by the thickness control of the support body 130. According to the present invention, the nanometer grade and the aperture ratio of the filter material structure are produced by this structure. Referring next to the second drawing, a cross-sectional view of a nanofiltration passage of the present invention is shown in another embodiment. In order to increase the aperture ratio of the filter material, the number or thickness of the support body 130 may be increased in the process to increase the distance d2 between the top gate 110 and the bottom gate 120, and one sidewall gate 140 having a plurality of layers is formed at the filter channel. The sidewall gate 140 can be composed of a plurality of filter grids. The number of channels is two: for the gates „. or the bottom _. The distance between the two is thick or thick. Therefore, with the support body 130 The number of stacking: add, add, so that the top closed door 110 and the bottom idle door 120:: distance: can be more than _ = vapor deposition or other equivalent two; two maps relative to 篦一冃冰..., and In the case of the AF-production, the addition of a bypass channel is used as an example to make the gas: L two-way path flowable. This can effectively increase the opening of the filter channel: the opening pitch w2 can also be used by the reticle The design and the control of Puguang f: make it a micron-level opening, which can be reversed;

F做初步的濾除(微米等級之粒子)。 ’、刀L 遽材於—實—奈米級 板製程技術量半導體製程技術或面 ⑽里化弟一圖所不之結構的實施 頂部間_具以_部開„其中該頂㈣= 之對向側(即底部)係分別為人個底部開口⑵,而頂 :之Γ側(即底部)係為底部間門12。。第三圖;: j為-種不例’於實際實施時可依實際需要決定該遽材 結構之面積與開口數量。 心 接著請參閱第四圖,係本發明於另一實施例中之太 、«材結構的立體示意圖。財所示係於奈米級據材二構 之四周同樣具有該側壁閘i♦第三及第四圖所示之實施例 皆可利用半導體製程技術或面板製程技術來製作。 接著請參閱第五圖,係第三及第四圖所示之奈米級濾 材結構的俯視圖。接下來將以底閘門剖面AA’、頂閘門剖 面BB’及側壁閘剖面CC’來說明頂部開口區、底部開口區、 側壁閘區及支撐體區於製程步驟中之製作流程。其中,該 些頂部開口 112、該些頂閘門110、該些支撐體13〇及該些 側壁閘140之形狀僅為一種示例,任合其他可構成本發明 濾材結構之形狀’如圓形,皆不離開本發明之範疇。再者, 為清楚說明及比較頂部開口區、底部開口區、側壁閘區及 支撐體區於各步驟中的剖面,第五圖中,侧壁閘剖面cc, 係放大至與底閘門剖面AA’、頂閘門剖面bb,相同。 接著清參閱第六至十一圖,為奈米級濾材結構之製程 步驟於第一實施例中之製作流程剖面圖。第六A至十一 A 圖為第五圖中底閘門剖面線AA’於製程步驟中之剖面圖, 第六B至十-B圖為第五圖中頂閘門剖面線BB,於製程步 驟中之剖面圖’第六C至十-C圖為第五圖中側壁閑剖面 線CC’於製程步驟中之剖©圖。本發明採用半導體製程技 術或面板製程技術來製作奈米級之過濾結構’於製程步驟 中形成各層的方法包含濺鍍(sputter)、化學氣相沉積法 (CVD)、誠氣相沉積法(PVD)或其他等效之方法,而圖案 化係指半導體製程技術或面板製程技術常用之微影 (lithography)及餘刻(etching)技術,其中钮刻技術包含乾式 蝕刻、濕式蝕刻、氣體蝕刻或其他等效之蝕刻方法。 於此第一貫施例中,請參閱第六A、B、c圖,該奈米 1357348 級過濾結構可包含支撑體區200、了員部開口區300、底部開 口區400及側壁閘區500。首先,進行步驟(A1),提供一基 底601 ’該基底601可使用如:玻璃基底(glass)、晶圓基底 (wafer)、塑膠基底(plastic)或其他等效之基底。接著於該基 底601上形成圖案化之一提升層603。接著進行步驟(A2), 於部分之該提升層603及部分之該基底601上形成圖案化 之一第一支撐體層605a ’即’於支撐體區200、頂部開口 區300及側壁閘區500之該提升層603上具有該第一支撐 體層605a,而底部開口區400則不具有該第一支撐體層 605a。 接著請參閱第七A、B、C圖,進行步驟(A3),.使用賤 鍍、化學氣相沉積法、物理氣相沉積法或其他等效之方法 及進行微影與钮刻技術,於底部開口區400之該提升層6〇3 上,以及於頂部開口區300及側壁閘區500之該第一支樓 體層 605a 上形成一第一犧牲層(first sacrificiai iayer)6〇7a。 其中’此犧牲層最後會被移除,本發明即利用犧牲層之厚 度來控制過濾通道的過濾等級。在半導體製程技術或面板 製程技術下,膜層之厚度控制是相當容易且精確的。因此, 本發明為使過濾通道能對病毒產生過濾效果,犧牲層之厚 度(或高度)係小於或等於300奈米。 接著晴參閱第八A、B、C圖,進行步驟(A4),使用賤 鍍化學氣相沉積法、物理氣相沉積法或其他等效之方法 及進行微影與蝕刻技術,於側壁閘區5〇〇之該第—犧牲層 607a上’及支撐體區2〇〇之第一支撐體層6〇5a上形成一第 12 二支撐體層605b。其中於第/V C财,切體區及側 壁閘區500之該第二支撐體層·係呈連續之層狀結構, 於側壁閘區500中之支撐體層會形成如第二、三、四圖中 所示之過濾柵攔142。於第八A、B、c圖中之支撐體區2〇〇、 頂部開口區300及側壁閘區500之第一支擇體層6〇5&則會 形成如第二、三、四圖中所示之底閘門12〇。 接著請參閱第九A、B、C圖,進行步驟(A5),使用濺 參 锻化予氣相、/儿積法、物理氣相沉積法或其他等效之方法 及進行试影與银刻技術,於頂部開口區3〇〇及底部開口區 4〇〇之該第一犧牲層607a上,以及於側壁閘區5〇〇之該第 二支撐體層605b上形成一第二犧牲層6〇7b。 接著晴參閱苐十A、B、C圖,進行步驟(A6),使用藏 鍍、化學氣相沉積法、物理氣相沉積法或其他等效之方法 及微影與姓刻技術,於底部開口區400及側壁閘區500之 最頂層之犧牲層(即第二犧牲層607b)上,以及於支撐體 • 區200之最頂層之支撐體層(即第二支撐體層605b)上形 成一頂閘門層(top gate layer)610。其中於第十b圖中,底 部開口區400之該頂閘門層610會形成如第二、三、四圖 中所示之頂閘門110。 接著請參閱第十一 A、B、C圖,進行步驟(A7),進行 最後蝕刻(final etch) ’利用蝕刻技術,如乾式蝕刻、濕式蝕 刻、氣體蝕刻或其他等效之方法去除該提升層603及所有 的犧牲層607a、607b。最後進行步驟(A8),移除該基底601, 即形成如第三或四圖所示之奈米級濾材結構。移除該基底 13 1357348 ’ I為切割(scribe)或其他等效之切裂技術來達 I半導體製程技術或面板製程技術者應了解 =疋’第三及第四圖所示之側邊的不同結構可由製程上之 料設計來達成。最後,該奈米級過濾結構即可與其他 2定疋件組裝在—起,而可成為如呼吸面罩吏用的過遽 口罩裡的過濾、層或是鼻墊過濾器...等過濾裝置。 备夕閱第十一 A、B、C圖,係為具有五過濾通道 之不未級濾材結構部分剖面圖,圖中之wi、w2、d 一及二圖中之W1、則2。其中第一至五支撐 ^別ί應i 6〇5a〜e,而第一至五犧牲層則已被去除而 ,,,、:於圖中。前述第六至十一圖已說明具備二過濾通道 =4㈣材結構的製作方法,然而更多的過丨慮通道數 :增加開口率,因此,根據前述之方法,於步驟(A5)後更 進行步驟(A5]),即,重覆第八及九圖所示之製程步驟(A4) 及⑽以增加過渡通道的數量。亦即,支撐體層與犧牲層 的又互層疊可形成更多的過渡通道。以第十二圖之五通道 數之奈米濾材結構來說’氣流從頂部開口區進入,並 =經側壁閘區5〇〇進行奈米級之過據,再由底部開口區彻 l出,反之,如吐氣時,氣流從底部開口區進入,並 流經側壁閘區5G0,再由頂部開口區_流出。孰 術者應了解的是,無論是吸氣或吐氣皆可使氣^經側壁 閘區500 ’且吸氣時之氣流不一定要從頂部開口區獅進 亦可從底部開口區400進入。亦即,該奈米級渡材結 構亚無使用方向性上的限制,其上下兩面皆可做為進氣面。 1357348 於此第一實施例中,更可於步驟(A6)後,即去除該提 升層603及所有犧牲層6〇7a、7〇7b之前,更包含一牛驟 (A6-1):於該糊Η層61()上形成用以分解有機物之一^膜 612 (請參閱第十三a、B、c圖),該薄膜612可為欽⑺)、 二氧化鈦(Ti02)、翻(pt)...等抗病毒、細菌或可殺死病毒、 細菌之材料,其係為一種觸媒,用以將濾材結構上之有機 物分解。該薄膜612之形成方法可採用物理氣相沉積法、 化學氣相沉積法、濺鍍或其他等效之製程。 於第一實施例中,提升層003、支撐體層605a〜e、犧 牲層607a〜e及頂閘門層61〇之材料選擇主要係使提升層 603及犧牲層607a〜e被蝕刻時,支撐體層605a〜e及頂閘門 層610皆得以被保留。下述表二至表七為第一實施例中之 材料與各膜層形成時之蝕刻方式及最後蝕刻時(移除提升 層及所有犧牲層)之蝕刻方式的示例’熟悉該項技術者應 了解的是談些材料與蝕刻方式的選擇並不能為一種限制, 任何可形成本發明之奈米濾材結構之其他材料與蝕刻方式 皆不離本發明之範#。其中,PAN濕餘刻成分為(Phosphorus acid + Acetic acid + Nitric acid)aq,BOE 濕钱刻成分為(HF + NH4F)aq。 15 選擇一 名稱 材料 —钱刻方式(etChm〇de) 提升層(603) 鉬(Mo) (C12/SF6) 支撐體層(605) 氧化矽(SiOx) BOE濕银刻 犧牲層(607) 翻(Mo) PAN濕蝕刻或乾蝕刻(C12/SF6) 頂閘門層(610) 氧化矽(SiOx) BOE濕姓刻 薄膜(612) 氧化鈦(TiOx) 乾钱刻(Cl2)或濕飯刻(Hydrogen Peroxide) 最後钮刻(final etch) 鞋刻翻(Mo) PAN濕姓刻或氣體蝕刻iXeF2) 1357348 表二 選擇二 名稱 材料 钱刻方式(etch mode) 提升層(603) 非晶咬(a-Si) 乾蝕刻(Cl2) 支撐體層(605) 氧化矽(SiOx) BOE濕蝕刻 犧牲層(607) 非晶矽(a-Si) 乾蝕刻(Cl2) 頂閘門層(610) 氧化矽(SiOx) BOE濕蝕刻 薄膜(612) 氧化鈦(ΉΟχ) 乾钮刻(Cl2)或濕蚀刻(Hydrogen Peroxide) 最後蝕刻(final etch) 蝕刻非晶矽(a-Si) 氣體蝕刻(XeF2) 表三 16 I35T348F is initially filtered (micron-sized particles). ', knife L coffin in - real - nano-scale process technology semiconductor process technology or surface (10) in the implementation of the structure of the top of the figure of the younger brother _ with _ part open „ where the top (four) = the right The side (ie, the bottom) is a bottom opening (2), and the top: the bottom side (ie, the bottom) is the bottom door 12. The third figure;: j is a kind of 'in case of actual implementation. The area of the coffin structure and the number of openings are determined according to actual needs. The heart is next to the fourth figure, which is a three-dimensional schematic diagram of the material structure of the present invention in another embodiment. The two sides of the material structure also have the side wall gate i. The embodiments shown in the third and fourth figures can be fabricated by using semiconductor process technology or panel process technology. Next, please refer to the fifth figure, which is the third and fourth figures. The top view of the nano-scale filter structure shown. Next, the bottom gate section AA', the top gate section BB' and the sidewall gate section CC' will be used to illustrate the top open area, the bottom open area, the side wall gate area and the support body area. The production process in the process step, wherein the tops are open 112. The shapes of the top gates 110, the support bodies 13 and the side wall gates 140 are only an example, and any other shape that can constitute the filter material structure of the present invention, such as a circle, does not leave the scope of the present invention. In addition, in order to clearly explain and compare the top opening area, the bottom opening area, the side wall gate area and the support body area in each step, in the fifth figure, the side wall gate section cc is enlarged to the bottom gate section AA. ', the top gate section bb, the same. Next, refer to the sixth to eleventh figure, which is a cross-sectional view of the manufacturing process of the nano-scale filter structure in the first embodiment. The sixth to eleventh figure is the first In the five figures, the bottom gate section line AA' is a cross-sectional view in the process step, and the sixth to tenth-B-th is the top gate cross-section line BB in the fifth figure, and the cross-sectional view in the process step 'sixth C to ten- Figure C is a cross-sectional view of the sidewall idle cross-section line CC' in the process of the fifth step. The present invention uses a semiconductor process technology or a panel process technology to fabricate a nano-scale filter structure. The method of forming the layers in the process step includes Sputter, chemical vapor CVD, PVD, or other equivalent methods, and patterning refers to lithography and etching techniques commonly used in semiconductor process technology or panel process technology. The engraving technique includes dry etching, wet etching, gas etching or other equivalent etching methods. In the first embodiment, please refer to the sixth A, B, and c diagrams, and the nano 1357348 filter structure may include support. The body region 200, the opening portion 300, the bottom opening region 400, and the sidewall gate region 500. First, the step (A1) is performed to provide a substrate 601. The substrate 601 can be used, for example, a glass substrate or a wafer substrate. (wafer), plastic substrate (plastic) or other equivalent substrate. A patterned one of the lift layers 603 is then formed on the substrate 601. Next, step (A2) is performed to form a patterned first support layer 605a', that is, in the support body region 200, the top opening region 300, and the sidewall gate region 500, on a portion of the lift layer 603 and a portion of the substrate 601. The lift layer 603 has the first support layer 605a, and the bottom open region 400 does not have the first support layer 605a. Then refer to Figure 7A, B, and C, and perform step (A3), using ruthenium plating, chemical vapor deposition, physical vapor deposition, or other equivalent methods, and performing lithography and button etching techniques. A first sacrificial layer 6〇7a is formed on the lift layer 6〇3 of the bottom open region 400, and on the first open floor region 605a of the top open region 300 and the sidewall gate region 500. Wherein the sacrificial layer is finally removed, and the present invention utilizes the thickness of the sacrificial layer to control the filtering level of the filtering channel. Thickness control of the film layer is fairly easy and precise under semiconductor process technology or panel process technology. Therefore, the present invention allows the filtration channel to filter the virus, and the thickness (or height) of the sacrificial layer is less than or equal to 300 nm. Then refer to Figure 8A, B, and C for the step (A4), using yttrium plating chemical vapor deposition, physical vapor deposition or other equivalent methods and lithography and etching techniques in the sidewall gate region. A 12th support layer 605b is formed on the first support layer 6〇5a of the sacrificial layer 607a and the support body region 2〇〇. The second support layer in the body of the cutting body region and the sidewall gate region 500 is a continuous layered structure, and the support layer in the sidewall gate region 500 is formed as shown in the second, third, and fourth figures. The filter barrier 142 is shown. The first support layer 6〇5& of the support body region 2〇〇, the top open region 300 and the sidewall gate region 500 in the eighth, fourth, fourth and fourth views will be formed as shown in the second, third and fourth figures. The bottom gate is 12 示. Then refer to the ninth, A, B, and C diagrams, and perform the step (A5), using the sputtered forging gasification, gas chromatography, physical vapor deposition, or other equivalent methods, and performing the experiment and silver engraving. a second sacrificial layer 6〇7b is formed on the first sacrificial layer 607a of the top open region 3〇〇 and the bottom open region 4〇〇, and the second support layer 605b of the sidewall gate region 5〇〇. . Then, refer to Figure 10A, B, and C for the step (A6). Use the Tibetan plating, chemical vapor deposition, physical vapor deposition or other equivalent methods and lithography and surname techniques to open at the bottom. A top gate layer is formed on the sacrificial layer of the topmost layer of the region 400 and the sidewall gate region 500 (i.e., the second sacrificial layer 607b), and on the topmost support layer (i.e., the second support layer 605b) of the support region 200. (top gate layer) 610. In the tenth bth diagram, the top gate layer 610 of the bottom opening region 400 forms the top gate 110 as shown in the second, third, and fourth figures. Next, refer to Figure 11A, B, and C, and perform step (A7) for final etch. 'Use the etching technique, such as dry etching, wet etching, gas etching, or other equivalent method to remove the lift. Layer 603 and all of the sacrificial layers 607a, 607b. Finally, step (A8) is performed to remove the substrate 601, thereby forming a nano-scale filter structure as shown in the third or fourth figure. Removing the substrate 13 1357348 'I is a scribe or other equivalent cracking technique to reach the I semiconductor process technology or the panel process technology should understand the difference between the sides shown in the third and fourth figures. The structure can be achieved by designing the material on the process. Finally, the nano-stage filter structure can be assembled with other 2 fixed pieces, and can be used as a filter, layer or nose pad filter in a mask of a breathing mask. . Read the eleventh, A, B, and C diagrams, which are partial cross-sectional views of the filter structure with five filtration channels. Wi, w2, d, and W1 and then 2 in the figure. The first to fifth support ^ ί i i 6 〇 5a ~ e, and the first to fifth sacrificial layers have been removed and,,,,: in the figure. The foregoing sixth to eleventh drawings have been described as having a two-filter channel=4 (four) material structure, but more the number of channels are considered: increasing the aperture ratio, and therefore, proceeding after step (A5) according to the foregoing method. Step (A5)), that is, repeating the process steps (A4) and (10) shown in Figures 8 and 9 to increase the number of transition channels. That is, the support layer and the sacrificial layer are laminated to each other to form more transition channels. In the tenth channel of the five-channel nano-filter structure, the airflow enters from the top opening area, and the nano-level is passed through the side wall of the side wall, and then the bottom opening area is completely removed. Conversely, if exhaled, the airflow enters from the bottom open area and flows through the side wall gate 5G0 and then flows out from the top open area. It should be understood by the surgeon that either inhalation or exhalation can cause the gas to pass through the sidewall gate area 500' and the airflow during inhalation does not have to enter from the top open area lion or from the bottom open area 400. That is to say, the nano-staged structure has no directional restriction, and both upper and lower sides can be used as the intake surface. 1357348 In this first embodiment, after the step (A6), that is, before removing the lifting layer 603 and all the sacrificial layers 6〇7a, 7〇7b, a further step (A6-1) is included: The paste layer 61 () is formed to decompose one of the organic film 612 (see the thirteenth a, B, c diagram), the film 612 can be Qin (7)), titanium dioxide (Ti02), turn (pt). .. anti-virus, bacteria or materials that can kill viruses and bacteria, which is a catalyst for decomposing organic matter on the filter structure. The film 612 can be formed by physical vapor deposition, chemical vapor deposition, sputtering or other equivalent processes. In the first embodiment, the material selection of the lift layer 003, the support layers 605a to e, the sacrificial layers 607a to e, and the top gate layer 61 is mainly such that when the lift layer 603 and the sacrificial layers 607a to e are etched, the support layer 605a Both ~e and top gate layer 610 are preserved. Tables 2 to 7 below are examples of the etching method of the material and the film layer in the first embodiment and the etching method at the time of the last etching (removing the lift layer and all the sacrificial layers). It is understood that the choice of materials and etching methods is not a limitation, and any other materials and etching methods that can form the nanofiltration material structure of the present invention are not inconsistent with the invention. Among them, the PAN wet residue component is (Phosphorus acid + Acetic acid + Nitric acid) aq, and the BOE wet money engraving component is (HF + NH4F) aq. 15 Select a name material - money engraving (etChm〇de) Lifting layer (603) Molybdenum (Mo) (C12/SF6) Support layer (605) Cerium oxide (SiOx) BOE wet silver engraving layer (607) Turn (Mo PAN wet or dry etching (C12/SF6) top gate layer (610) yttrium oxide (SiOx) BOE wet film (612) titanium oxide (TiOx) dry money (Cl2) or wet rice (Hydrogen Peroxide) Final button (final etch) shoe engraved (Mo) PAN wet surname or gas etching iXeF2) 1357348 Table 2 selection two name material money etch mode (etch mode) lifting layer (603) amorphous bite (a-Si) dry Etching (Cl2) Support layer (605) Cerium oxide (SiOx) BOE wet etching sacrificial layer (607) Amorphous germanium (a-Si) Dry etching (Cl2) Top gate layer (610) Cerium oxide (SiOx) BOE wet etching film (612) Titanium oxide (ΉΟχ) Dry button engraving (Cl2) or wet etching (finogen etch) Final etching (a-Si) Gas etching (XeF2) Table III 16 I35T348

選擇三 名稱 材料 钱刻方式(etch mode) 提升層(603) 鉬(Mo) PAN濕蝕刻或乾蝕刻(Cb/SFd 支撐體層(605) 非晶矽(a-Si) 乾蝕刻(Cb) 犧牲層(607) 氧化矽(SiOx) BOE濕蚀刻 頂閘門層(610) 非晶碎(a-Si) 乾蝕刻(Cl2) 薄膜(612) 氧化鈦(TiOx) 乾钱刻(CI2)或濕姓刻(Hydrogen Peroxide) 最後蚀刻(final etch) 蝕刻氧化矽(SiOx) 及鉬(Mo) BOE濕蝕刻及PAN濕蝕刻 表四 選擇四 名稱 材料 雀虫刻方式(etch mode) 提升層(603) 鉬(Mo) 乾蝕刻(sf6) 支撐體層(605) 銘合金(AI Alloy) 濕蝕刻(h3po4) 犧牲層(607) 鉬(Mo) 乾蝕刻(sf6) 頂閘門層(610) 銘合金(A1 Alloy) 濕蝕刻(h3po4) 薄膜(612) 氧化鈦(TiOx) 乾蝕刻(Cl2)或濕蝕刻(Hydrogen Peroxide) 最後触刻(final etch) 蝕刻鉬(Mo) 氣體钱刻(XeF2) 表五 17 選擇五 名稱 材料 敍刻方式(etch mode) 提升層(603) 氮化矽(SiNx) 濕钱刻(dilute HF) 支撐體層(605) 翻(Mo) PAN濕姓刻 犧牲層(607) 氮化矽(SiNx) 濕蝕刻(dilute HF) 頂閘門層(610) 翻(Mo) PAN濕蝕刻 薄膜(612) 氧化鈦(TiOx) 乾姓刻(Cl2)或濕姓刻(Hydrogen Peroxide) 最後银刻(final etch) 蝕刻氮化矽(SiNx) 濕蝕刻(dilute HF) 1357348 表六 選擇六 名稱 材料 勤刻方式(etch mode) 提升層(603) 鉬(Mo) PAN濕蝕刻 支撐體層(605) 氮化矽(SiNx) _^^'J (dilute HF) 犧牲層(607) 鈿(Mo) pan濕姓刻 頂閘門層(610) 氮化矽(SiNx) ^^Kdilute HF) 薄膜(612) 氧化鈦(TiOx) 乾蝕刻(Cl2)或濕蝕刻(Hydrogen Peroxide) 最後# 刻(final etch) 蝕刻鉬(Mo) 蝕刻 表七 接著請參閱第十三至二十四圖’為奈米級濾材結構之 製程步驟於第二貫施例中之製作流程剖面圖,同樣地,第 十二A至二十四A圖為第五圖中底閘門剖面線a A,於製程 步驟中之剖面圖’第十三B至二十四^圖為第五圖中頂閑 門剖面線BB’於製程步驟中之剖面圖,第十三c至二十四 C圖為第五圖中側壁閘剖面'線CC’於製程步驟中之剖面 圖。此第二實施例與第-實施例係同樣形成層疊式結構, 18 I35T348 再利用蝕刻方式完成各個過濾通道。然此第二實施例於形 成層疊式結構時係採用一次性之形成方式,接下來將以第 十三至二十四圖來說明製程中的各個步驟。 於此第一實施例中,請參閱第十三A、B、C圖,該奈 米級過濾結構可包含支撐體區200、頂部開口區300、底部 開口區400及侧壁閘區500。首先,進行步驟(B1),提供一 基底701,該基底701可使用如:玻璃基底(glass)、晶圓基 底(wafer)、塑膠基底(plastic)或其他等效之基底。接著於該 基底701上形成圖案化之一提升層703。接著進行步驟 (B2),於部分之該提升層703及部分之該基底701上形成 圖案化之一第一支撐體層705a,即,於支撐體區200、頂 部開口區300及側壁閘區5〇〇之該提升層703上具有該第 一支撑體層705a ’而底部開口區400則不具有該第一支撐 體層705a。 接著請參閱第十四A、B、C圖,進行步驟(B3),使用 藏鍵、化學氣相沉積法、物理氣相沉積法或其他等效之方 法及進行微影與蝕刻技術,於底部開口區4〇〇之該提升層 703上’以及於頂部開口區300及側壁閘區500之該第一支 標體層7〇5a上形成一第一犧牲層(行如sacrificiai laye〇707a。其中,犧牲層之厚度(或高度)係小於或等於 300奈米。 接著請參閱第十五A、B、C圖,進行步驟(B4),使用 濺鍍、化學氣相沉積法、物理氣相沉積法或其他等效之方 法及進行微影與蝕刻技術,於側壁閘區5㈨之該第一犧牲 19 1357348 層707a上,及支撐體區2〇〇之第一支撐體層7〇5a上形成 一第二支撐體層705b。其中於第十五C圖中,支掠體區2〇〇 及側壁閘區500之該第二支撐體層705b係呈連續之層狀結 構’於側壁閘區500中之支撐體層會形成如第二、三、四 圖中所示之過濾柄搁142。於第十五A、B、〇圖中之支撐 體區200、頂部開口區300及側壁閘區500之第一支摔體層 705a則會形成如第二、三、四圖中所示之底閘門1。 接著請參閱第十六.A、B、C圖,進行步驟(B5),使用 歲艘、化學氣相沉積法、物理氣相沉積法或其他等效之方書 法,於该些頂部開口區、該些底部開口區4⑼、該些側 壁閘區500及該些支撐體區2〇〇形成一第二犧牲層7〇7b。 接著%參閱第十七A、B、C圖,進行步驟(B6),使用 滅鑛、化學氣相沉積法、物理氣相沉積法或其他等效之方 法,於該些頂部開口區300、該些底部開口區400、該些側 壁閘區500及該些支撐體區2〇〇形成—第三支撐體層 7〇5c。進行步驟(B7),使用濺鍍、化學氣相沉積法 、物理氣 φ 相>儿積法或其他等效之方法,於該些頂部開口 區300、該些 底。卩開口區400、該些侧壁閘區5〇〇及該些支撐體區2〇〇 形成一保護層709。 接著晴參閱第十八A、B、c圖,進行步驟(B8),對該 些支樓體區200進行钱刻並至少移除該第三支撐體層7〇5c 以於每一支撐體區2〇〇中各形成一支樓體凹槽別。由於該 支撐體凹槽21〇的形成須採用較高功率的非均向性餘刻 製私,圖案化之光阻層72〇容易在高功率的非均向性蝕刻 20 1357348 之下於開口邊緣發生光阻被去除的情形’而容易使光阻層 720下之膜層被蝕刻而導致線寬均一性控制不易,尤其在過 濾通道數量越多時,高功率的非均向性蝕刻作用的時間會 更長’光阻層720之開口邊緣會被去除的更嚴重。因此,Select three-name material etch mode lift layer (603) molybdenum (Mo) PAN wet or dry etching (Cb/SFd support layer (605) amorphous germanium (a-Si) dry etching (Cb) sacrificial layer (607) Cerium oxide (SiOx) BOE wet etching top gate layer (610) Amorphous (a-Si) dry etching (Cl2) film (612) Titanium oxide (TiOx) Dry money engraving (CI2) or wet surname ( Hydrogen Peroxide) Final etch Etching yttrium oxide (SiOx) and molybdenum (Mo) BOE wet etching and PAN wet etching Table 4 Selection Four Name Materials etch mode Lifting layer (603) Molybdenum (Mo) Dry etching (sf6) Support layer (605) Alloy (AI Alloy) Wet etching (h3po4) Sacrificial layer (607) Molybdenum (Mo) Dry etching (sf6) Top gate layer (610) Alloy (A1 Alloy) Wet etching ( H3po4) Thin film (612) Titanium oxide (TiOx) Dry etching (Cl2) or wet etching (finogen etch) Final etch Etching Molybdenum (Mo) Gas engraving (XeF2) Table 5 17 Selecting five name materials Etch mode Lifting layer (603) Tantalum nitride (SiNx) Wet money etch (dilute HF) Support layer (605) Turn (Mo) PAN wet surname sacrificial layer (607) Tantalum nitride (SiNx) Wet etching ( Di Lute HF) top gate layer (610) flip (Mo) PAN wet etch film (612) titanium oxide (TiOx) dry name engraved (Cl2) or wet engraved (hydrogen peroxide) final silver engraved (final etch) etched tantalum nitride (SiNx) Wet Etching (Dilute HF) 1357348 Table 6 Selecting Six Names Material Etching Mode (etch mode) Lifting Layer (603) Molybdenum (Mo) PAN Wet Etching Support Layer (605) Tantalum Nitride (SiNx) _^^' J (dilute HF) sacrificial layer (607) 钿 (Mo) pan wet surnamed gate layer (610) tantalum nitride (SiNx) ^^Kdilute HF) film (612) titanium oxide (TiOx) dry etching (Cl2) or Hydrogen Peroxide Final #etch Etching Etching Molybdenum (Mo) Etching Table 7 Next, please refer to Figures 13 to 24 for the process steps of the nano-scale filter structure in the second embodiment. In the same way, the twelfth A to twenty-four A is the bottom gate cross-section a A in the fifth figure, and the cross-sectional view in the process step 'Thirteenth B to Twenty-fourth is the first Figure 5 is a cross-sectional view of the top gate line BB' in the process step, and the thirteenth c to twenty-fourth C is the section of the sidewall gate section 'line CC' in the fifth step in the process step Fig. This second embodiment forms a stacked structure similarly to the first embodiment, and the 18 I35T348 uses etching to complete each of the filter channels. However, the second embodiment adopts a one-time forming manner in forming a stacked structure, and each step in the process will be described later in the thirteenth through twenty-fourth drawings. In the first embodiment, referring to Figures 13A, B, and C, the nanoscale filter structure can include a support region 200, a top open region 300, a bottom open region 400, and a sidewall gate region 500. First, step (B1) is performed to provide a substrate 701 which can be used, for example, a glass substrate, a wafer substrate, a plastic substrate or other equivalent substrate. A patterned one lift layer 703 is then formed on the substrate 701. Next, step (B2) is performed to form a patterned first support layer 705a on the portion of the lift layer 703 and a portion of the substrate 701, that is, in the support region 200, the top open region 300, and the sidewall gate region 5〇. The lift layer 703 has the first support layer 705a' and the bottom open region 400 does not have the first support layer 705a. Next, please refer to Figure 14A, B, and C, and perform step (B3) using Tibetan key, chemical vapor deposition, physical vapor deposition or other equivalent methods and lithography and etching techniques at the bottom. Forming a first sacrificial layer on the lift layer 703 of the open region 4' and the first support layer 7〇5a of the top open region 300 and the sidewall gate region 500 (such as sacrificiai laye〇 707a. The thickness (or height) of the sacrificial layer is less than or equal to 300 nm. Next, refer to the fifteenth A, B, and C diagrams, and perform the step (B4) using sputtering, chemical vapor deposition, physical vapor deposition. Or other equivalent method and lithography and etching technique, forming a second on the first sacrificial 19 1357348 layer 707a of the sidewall gate region 5 (9) and the first support layer 7〇5a of the support region 2〇〇 The support layer 705b, wherein in the fifteenth C, the second support layer 705b of the ramming region 2 and the sidewall lands 500 is a continuous layered structure 'the support layer in the sidewall lands 500 Forming a filter handle 142 as shown in the second, third, and fourth figures. A, B, and the support body region 200, the top open region 300, and the first wrap layer 705a of the sidewall gate region 500 form a bottom gate 1 as shown in the second, third, and fourth figures. Referring to Figures 16A, B, and C, proceed to step (B5), using the old ship, chemical vapor deposition, physical vapor deposition, or other equivalent calligraphy, in the top open areas, the The bottom opening area 4 (9), the side wall sluice areas 500, and the support body areas 2 〇〇 form a second sacrificial layer 7 〇 7b. Next, refer to the seventeenth A, B, and C diagrams, and perform the step (B6), using Excavation, chemical vapor deposition, physical vapor deposition or other equivalent methods in the top open region 300, the bottom open regions 400, the sidewall gate regions 500, and the support regions 2 The crucible is formed into a third support layer 7〇5c. Step (B7) is performed, using sputtering, chemical vapor deposition, physical gas φ phase > chiral method or other equivalent method, in the top open region 300 The bottom opening area 400, the side wall gate areas 5〇〇 and the support body areas 2〇〇 form a protective layer 709 Then, referring to the eighteenth A, B, and c diagrams, the step (B8) is performed, and the plurality of support body regions 200 are engraved and at least the third support layer 7〇5c is removed to each support body region 2 Each of the slabs forms a groove of the building body. Since the formation of the groove 21〇 of the support body must be made of a higher power non-uniformity, the patterned photoresist layer 72 is easily at a high power. The non-uniform etching 20 1357348 under the condition that the photoresist is removed at the edge of the opening, and the film layer under the photoresist layer 720 is easily etched, resulting in difficulty in controlling the uniformity of the line width, especially in the number of filtering channels. At the time, the high power anisotropic etch will take longer and the opening edge of the photoresist layer 720 will be removed more severely. therefore,

藉由該保護層709的設置,可保護其下之膜層不受高功率 之非均向性蝕刻的影響,該保護層7〇9之材料係可抵抗高 功率之餘刻,舉例來說,高功率之非均向性蝕刻可為一乾 蝕刻技術,而該保護層709對濕蝕刻反應程度較大,因此, 可先進行濕蝕刻將保護層709蝕刻出一開口,再利用高功 率之乾蝕刻進行該些支撐體凹槽21〇的形成,在光阻層 及保瘦層7G9的搭配下可確保其下之膜層.不受損傷。 此外’步驟(B8)中係至少移除該第三支樓體層7〇5c, 其可4木用㈣終點㈣^(咖d咖咖,EpD)來進行By the arrangement of the protective layer 709, the underlying film layer can be protected from high power non-uniform etching, and the material of the protective layer 7〇9 can resist high power, for example, The high-power non-uniform etch can be a dry etching technique, and the protective layer 709 is more reactive to wet etching. Therefore, the protective layer 709 can be etched out to an opening by wet etching, and then high-power dry etching is performed. The formation of the support recesses 21 is performed, and the underlying film layer can be ensured without damage by the combination of the photoresist layer and the thin layer 7G9. In addition, in step (B8), at least the third branch body layer 7〇5c is removed, which can be used for 4 wood (4) end point (four) ^ (cafe d coffee, EpD)

餘^深度的控制。熟悉該項技術者應了解的是,任何其他 可達到相同仙效果之控制技術皆可適用本發明。 此支ΪΓΓ第十九A、B、C圖’進行步驟(B9),於該 210中進行側向…移除部分之犧牲層以 中形成複數個切體側翼凹槽212,並 翼凹槽212後,移除該光阻層720。 =⑽A'B、C _,進行步驟卿),於 該些支撐體凹槽210及該此主擋興 、 充以形成複數個填充_Γ。如行填 為該些支撐體區携中的主要支+ T 4些填充_ 211係 919 A J黃叉往,並藉由該些側翼凹槽 狀_整體之結構更為翻%充體之材料可選用可 21 1357348 撓性之材料,如:聚合物(polymer),其可使滤材結構本體 具有更高的可撓程度而可增加結構的穩定性。以聚合物來 說,先將聚合物填入該些支撐體凹槽210及該些支撐體側 翼凹槽212中,再利用熱爐進行加熱以固化聚合物。 接著請參閱第二十一 A、B、C圖,進行步驟(B11), 對該些頂部開口區300及該些底部開口區400進行蝕刻並 至少.移除該第三支撐體層705c。如同步驟(B8),利用光阻 層720及不同蝕刻技術之搭配,先對保護層蝕.刻.出一開口, 再進行高功率之非均向性蝕刻。以及,同樣進行蝕刻深度 的控制以至少移除該第三支撐體層705c,其亦可採用前述 之蝕刻終點偵測器來達成,並於蝕刻完成後移除光阻層 720。 接著請參閱第二十二A、B、C圖,使用濺鍍、化學氣 相沉積法、物理氣相沉積法或其他等效之方法及微影與蝕 刻技術進行步驟(B12),於該些頂部開口區300、該些底部 開口區400、該些側壁閘區500及部分之該些支撐體區200 形成圖案化之一第一通道犧牲層710a。 接著請參閱第二十三A、B、C圖,使用濺鍍、化學氣 相沉積法、物理氣相沉積法或其他等效之方法及微影與蝕 刻技術進行步驟(B13),於該些底部開口區400、該些側壁 閘區500及該些支撐體區200形成一頂閘門層713。其中於 第二十三B圖中,底部開口區400之該頂閘門層713會形 成如第二、三、四圖中所示之頂閘門110。 接著請參閱第二十四A、B、C圖,進行步驟(B14), 22 1357348 進行最後蝕刻,利用钱刻技術,如乾式独刻、濕式蝕刻、 氣體蝕刻或其他等效之方法去除該提升層703及所有的犧 牲層707a、707b、71〇a。最後進行步驟(B15),移除該基底 701 ’即形成如第三或四圖所示之奈米級濾材結構。移除該 基底701之方法可為切割(scribe)或其他等效之切裂技術來 達成。 接著請參閱第二十五A、B、C圖,係為具有五過濾通 道數之奈米級濾材結構部分剖面圖,圖中之w 1、w2、d2 分別對應於第一及二圖中之W1、W2、d2。其中第一至五支 撐體層分別對應至705a〜e。前述第十三至二十四圖已說明 具備三過濾通道數之奈米級濾材結構的製作方法,然而更 多的過濾通道數可增加開口率,因此,根據前述之方法, 於步驟(B6)後更進行步驟(Β6_ι),即,重覆製程步驟(B5)及 (B6)以增加過濾通道的數量。亦即,支撐體層與犧牲層的 交互層疊可形成更多的過濾通道。再者,於步驟(B6-1)中, 最後步驟可為步驟(B5),使最後形成之層係為犧牲層,此 時’該保護層709可做為支撐體層之功用’而多增加出一 過渡通道。 接者請參閱第二十六A、B、C圖’於此第二實施例中, 亦可於步驟(B12)後更包含兩步驟:(B12-1)於該些側壁閘區 500及該些支撐體區200形成圖案化之一第一通道支撐體 層712a;及(B12-2)依序重覆步驟(B12)及(B12-1),以形成 複數層之通道支撐體層712a〜712b及複數層之通道犧牲 層’並使最後形成之層係為通道犧牲層。此二步驟係使底 23 1357348 部開口區400於側邊之通道寬度加寬(請參閱第二十六b 圖)。於前述步驟(B6-1)中所形成之過濾通道數量越多時, 底部開口區400之侧邊通道寬度的加寬就越顯得有益。舉 例來說可使用三至四層之通道犧牲層來增加底部開口區 400之側邊通道的通道寬度。於第二十六a、B、C圖之例 子中係採用三層之通道犧牲層(請參閱第二十六B圖中之 X部位)。 前述之步驟(B6-1)、(B12-1)及(B12-2)係可依實際需要 做層疊數量之控制。 Φ 於此第二實施例中,更可於步驟(B13)後,即去除該提 升層703及所有犧牲層707a、707b、710a之前,更包含一 步驟(B13-1):於該頂閘門層712a上形成用以分解有機物之 一薄膜714 (請參閱第二十五或二十六圖),該薄膜714可 為、(·)一氧化鈦(Ti〇2)、翻(Pt)…等抗病毒、細菌或可殺 死病毋、細菌之材料,其係為一種觸媒,用以將濾材結構 上之有機物分解。該薄膜714之形成方法可採用物理氣相籲 '儿積法、化學氣相沉積法、濺鍍或其他等效之製程。 述表Y至表十二為第二實施例中之材料與各膜層形 成%之姓刻方式及最後蝕刻時(移除提升層及所有犧牲層) 之钱刻方式的示例,熟悉該項技術者應了解的是該些材料 與姓刻方式的選擇並不能為一種限制,任何可形成本發明 之奈米/慮材結構之其他材料與蝕刻方式皆不離本發明之範 命八中 PAN 濕飯刻成分為(Phosphorus acid + Acetic acid d)aq ’ b〇E 濕敍刻成分為(hf + NH4F)aq。 24 1357348Control of the depth of ^. It should be understood by those skilled in the art that any other control technique that achieves the same effect can be applied to the present invention. The nineteenth A, B, and C diagrams of the support step (B9) are performed in the 210 to remove a portion of the sacrificial layer to form a plurality of cut-body flank grooves 212, and the wing grooves 212 Thereafter, the photoresist layer 720 is removed. = (10) A'B, C _, performing the step), and the plurality of fillings Γ are formed in the support grooves 210 and the main body. For example, fill in the main support of the support area + T 4 some filling _ 211 series 919 AJ yellow fork, and by the flank groove shape _ overall structure can be more than 5% of the material can be filled The material of 21 1357348 flexible, such as polymer, can be used to make the filter structure body have higher flexibility and increase the stability of the structure. In the case of a polymer, the polymer is first filled into the support grooves 210 and the support side groove 212, and then heated by a hot furnace to cure the polymer. Referring to the twenty-first, A, B, and C diagrams, the step (B11) is performed to etch the top open area 300 and the bottom open areas 400 and at least remove the third support layer 705c. As with the step (B8), the photoresist layer 720 and the different etching techniques are used to first etch the protective layer, and then perform an opening and then perform high-power non-uniform etching. And, the etching depth is controlled to remove at least the third support layer 705c, which can also be achieved by using the etching end point detector described above, and removing the photoresist layer 720 after the etching is completed. Next, refer to Figure 22, A, B, and C, using the sputtering, chemical vapor deposition, physical vapor deposition, or other equivalent methods and lithography and etching techniques to perform the step (B12). The top open region 300, the bottom open regions 400, the sidewall gate regions 500, and portions of the support regions 200 form a patterned first channel sacrificial layer 710a. Next, please refer to the 23rd, A, B, and C diagrams, using the sputtering, chemical vapor deposition, physical vapor deposition or other equivalent methods and lithography and etching techniques to perform the step (B13). The bottom opening region 400, the side wall gate regions 500, and the support body regions 200 form a top gate layer 713. Wherein in the twenty-third figure B, the top gate layer 713 of the bottom open region 400 forms the top gate 110 as shown in the second, third and fourth figures. Then refer to the 24th A, B, and C diagrams, and perform the step (B14), 22 1357348 for the final etching, using a money engraving technique such as dry-type etching, wet etching, gas etching, or other equivalent method to remove the Lift layer 703 and all sacrificial layers 707a, 707b, 71〇a. Finally, step (B15) is carried out, and the substrate 701' is removed to form a nano-scale filter structure as shown in the third or fourth figure. The method of removing the substrate 701 can be accomplished by scribe or other equivalent slitting techniques. Next, please refer to the twenty-fifth, A, B, and C diagrams, which are partial cross-sectional views of the nano-scale filter material structure with five filter channels. The w 1 , w2 , and d2 in the figure correspond to the first and second graphs respectively. W1, W2, d2. The first to fifth support layers correspond to 705a~e, respectively. The above-mentioned thirteenth to twenty-fourth drawings have explained the manufacturing method of the nano-sized filter material structure having the three-filter passage number, however, the number of the more filter channels can increase the aperture ratio, and therefore, according to the foregoing method, in the step (B6) Then, the step (Β6_ι) is further performed, that is, the process steps (B5) and (B6) are repeated to increase the number of filter channels. That is, the interactive stacking of the support layer and the sacrificial layer can form more filtering channels. Furthermore, in the step (B6-1), the final step may be the step (B5), so that the layer formed last is a sacrificial layer, and the 'protective layer 709 can be used as a function of the support layer' A transitional passage. Referring to the twenty-sixth A, B, and C diagrams, in the second embodiment, the step (B12) may further include two steps: (B12-1) in the sidewall spacers 500 and the The support body regions 200 form a patterned first channel support layer 712a; and (B12-2) sequentially repeat steps (B12) and (B12-1) to form a plurality of channel support layers 712a-712b and The channel sacrificial layer of the plurality of layers and the resulting layer is the channel sacrificial layer. This two steps widens the width of the channel at the side of the open area 400 of the bottom portion 1 1357348 (see Figure 26b). The greater the number of filter channels formed in the aforementioned step (B6-1), the more advantageous the widening of the side channel width of the bottom open region 400 is. For example, a three to four layer channel sacrificial layer can be used to increase the channel width of the side channel of the bottom opening region 400. In the example of the twenty-sixth, a, B, and C diagrams, a three-layer channel sacrificial layer is used (see the X portion in Figure 26B). The aforementioned steps (B6-1), (B12-1) and (B12-2) can be controlled according to actual needs. Φ In this second embodiment, after step (B13), that is, before removing the lift layer 703 and all the sacrificial layers 707a, 707b, and 710a, a step (B13-1) is further included: at the top gate layer A film 714 for decomposing an organic substance is formed on the 712a (refer to the twenty-fifth or twenty-sixth figure), and the film 714 can be an anti-resistant agent such as titanium oxide (Ti〇2), turning (Pt), etc. A virus, a bacterium, or a material that kills disease, bacteria, and is a catalyst that decomposes organic matter on the structure of the filter material. The film 714 can be formed by a physical gas phase process, chemical vapor deposition, sputtering or other equivalent process. Tables Y to 12 are examples of the method of forming the % of the material and each film layer in the second embodiment and the way of engraving (removing the lift layer and all the sacrificial layers) at the time of the last etching, familiar with the technique. It should be understood that the selection of the materials and the method of surname is not a limitation, and any other materials and etching methods that can form the nano/material structure of the present invention are not separated from the PAN wet rice of the present invention. The wet component of (Phosphorus acid + Acetic acid d)aq ' b〇E is (hf + NH4F)aq. 24 1357348

選擇一 項目 材料 蝕刻方式(etch mode) 提升層(703) 鉬(Mo) PAN濕蝕刻或乾蝕刻(C12/SF6) 支撐體層(705、712) 氧化矽(SiOx) BOE濕蝕刻 犧牲層(707、710) 鉬(Mo) PAN濕蝕刻或乾蝕刻(C12/SF6) 保護層(709) 銅(Cu) 採用硝酸水溶液(hno3)或硫酸銨 (Ammonium Persulfates, APS)進行 濕蝕刻 支撐體凹槽(210)蝕刻方式 蝕刻鉬(Mo)及氧化 矽(SiOx) 高功率之乾蝕刻(sf6) 支撐體凹槽侧翼(212)蝕刻 方式 蝕刻鉬(Mo) PAN濕蝕刻 側壁閘區(500)蝕刻方式 蝕刻鉬(Mo)及氧化 矽(SiOx) 高功率之乾蝕刻(sf6) 頂閘門層(713) 氧化矽(SiOx) BOE濕姓刻 薄膜(714) 氧化鈦CTiOx) 乾蝕刻(Cl2)或濕蝕刻(Hydrogen Peroxide) 最後蚀刻(final etch) 蝕刻鉬(Mo) PAN濕蝕刻或氣體蝕刻(XeF2) 表八 1357348 選擇二 項目 材料 蝕刻方式(etch mode) 提升層(703) 非晶矽(a-Si) 乾蝕刻(Cl2) 支撐體層(705、712) 氧化矽(SiOx) BOE濕1生刻 犧牲層(707、710) 非晶珍(a-Si) 乾姓刻(CI2) 保護層(7〇9) 鋼(Cu) 採用硝酸水溶液(hno3)或硫酸銨 (Ammonium Persulfates, APS)進行 濕Ίέ刻 支撐體凹槽(210)蝕刻方式 蝕刻非晶矽(a-Si)及 氧化矽(SiOx) 高功率之乾蝕刻(C12+SF6) 支撐體凹槽側翼(212)蝕刻 方式 蝕刻非晶矽(a-Si) C12 rich低功率乾蝕刻或氣體蝕刻 (XeF2) 側壁閘區(500)蝕刻方式 蝕刻非晶矽(a-Si)及 氧化矽〖SiOx) 高功率之乾蝕刻(ci2+sf6) 頂閘門層(713) 氧化矽(SiOx) B〇E濕蝕刻 薄膜(714) 氧化鈦(TiOx) 乾姓刻((¾)或濕蚀刻(Hydrogen Peroxide') 最後蝕刻(final etch) 钱刻非晶石夕(a-Si) 氣體餘刻rvec_、 -----2)Select a project material etch mode lift layer (703) molybdenum (Mo) PAN wet or dry etch (C12/SF6) support layer (705, 712) yttrium oxide (SiOx) BOE wet etch sacrificial layer (707, 710) Molybdenum (Mo) PAN Wet Etching or Dry Etching (C12/SF6) Protective Layer (709) Copper (Cu) Wet Etching Support Grooves with HNO3 or Ammonium Persulfates (APS) Etching etching molybdenum (Mo) and yttrium oxide (SiOx) high power dry etching (sf6) support body groove side (212) etching method etching molybdenum (Mo) PAN wet etching sidewall gate region (500) etching method etching molybdenum (Mo) and yttrium oxide (SiOx) High-power dry etching (sf6) Top gate layer (713) Cerium oxide (SiOx) BOE wet film (714) Titanium oxide CTiOx) Dry etching (Cl2) or wet etching (Hydrogen Peroxide) Final etch Etching Molybdenum (Mo) PAN Wet Etching or Gas Etching (XeF2) Table VIII 1357348 Selecting Two Project Materials Etching Mode (etch mode) Lifting Layer (703) Amorphous Germanium (a-Si) Dry Etching (Cl2) Support layer (705, 712) Cerium oxide (SiOx) BOE wet 1 Sacrificial layer (707, 710) Amorphous (a-Si) (CI2) Protective layer (7〇9) Steel (Cu) Etching of amorphous crucibles (a-Si) by wet etching of support grooves (210) using aqueous solution of nitric acid (hno3) or ammonium persulfate (APS) ) and yttrium oxide (SiOx) high-power dry etching (C12+SF6) support groove flanks (212) etching etching amorphous germanium (a-Si) C12 rich low-power dry etching or gas etching (XeF2) sidewall gate Area (500) etching etching amorphous germanium (a-Si) and yttrium oxide [SiOx) high power dry etching (ci2+sf6) top gate layer (713) yttrium oxide (SiOx) B〇E wet etch film (714 Titanium oxide (TiOx) dry name ((3⁄4) or wet etching (Hydrogen Peroxide') final etching (final etch) money engraved amorphous stone eve (a-Si) gas residual rvec_, -----2)

表九Table 9

26 1357348 項目 選擇. 提升層(703) 支撐體層(705、712) 犧牲層(707'710) 保護層(709)26 1357348 Item Selection. Lifting layer (703) Support layer (705, 712) Sacrificial layer (707'710) Protective layer (709)

姓刻方式(etch mode) — — —— - PAN濕蝕刻或乾蝕刻(C12/SF6)Etch mode — — — — PAN wet or dry etching (C12/SF6)

BOE濕蝕刻 採用硝酸水溶液(hno3)或硫酸銨 (Ammonium Persulfates, APS)進行 濕Ί虫刻 支撐體凹槽(210)14刻方式 蝕刻氧化矽(SiOx) 及非晶矽(a-Si) 高功率之乾姓刻(C12+SF6) 支撐體凹槽側翼(212)蝕刻 方式 蝕刻氧化矽(SiOx) BOE濕蝕刻 側壁閘區(500)蝕刻方式 蝕刻氧化矽(?iOx) 及非晶妙(a-Si) 高功率之乾蝕刻(ci2+sf6) 頂閘門層(713) 薄膜(714) 氧化鈦〇ΠΟχ) 乾蝕刻(Cl2) 乾姓刻(C〖2)或濕姓刻(Hydrogen Peroxide) 最後钱刻(final etch) 蝕刻氧化矽(SiOx) 及鉬(Mo)_表十 先進行BOE濕蝕刻再進行pAN濕 飯刻 27 ·_ …— —一 ' -- _ 選擇四 項目 材料 姓刻方式(etch mode) 提升層(703) 鉬(Mo) 乾蝕刻(sf6) 支撐體層(705、712) 鋁合金(A1 Alloy) 濕蝕刻(H3P〇4) 犧牲層(707、710) 鉬(Mo) 乾蝕刻(sf6) 保護層(709) 銅(Cu) 採用硝酸水溶液(hno3)或硫酸銨 (Ammonium Persulfates,APS)進行 濕Ί虫刻 支撐體凹槽(210)蝕刻方式 餘刻翻(Mo)及銘合 金 高功率之乾蝕刻(C12+SF6) 支撐體凹槽側翼(212)蝕刻 方式 蝕刻鉬(Mo) 氣體蝕刻(XeF2) 側壁閘區(500)蝕刻方式 蝕刻鉬(Mo)及鋁合 金 高功率之乾蝕刻(C12+SF6) 頂閘門層(713) 鋁合金(AI Alloy) 濕蝕刻(Η3Ρ04;) 薄膜(714) 氧化鈦(TiOx) 乾蝕刻(Cl2)或濕蝕刻(Hydrogen Peroxide) 最後蝕刻(final etch) 蝕刻鉬(Mo) 氣體蝕刻(XeF2) 1357348 表Η— 選擇五 項目 材料 着虫刻方式(etch mode) 提升層(703) 氮化矽(SiNx) 濕蝕刻(dilute HF) 支撐體層(705、712) 翻(Mo) PAN濕蝕刻 犧牲層(707、710) 氮化矽(SiNx) 濕蝕刻(dilute HF) 保護層(709) 銅(Cu) 採用硝酸水溶液(hno3)或硫酸銨 (Ammonium Persulfates,APS)進行濕 Ί虫刻 支撐體凹槽(210)钱刻方式 蝕刻氮化矽(SiNx) 及鉬(Mo) 高功率之乾蝕刻(cf4+sf6) 支撐體凹槽側翼(212)蝕刻 方式 蝕刻氮化矽(SiNx) 濕钱刻(dilute HF) 側壁閘區(500)蝕刻方式 蝕刻氮化矽(SiNx) 及鉬〇VIo) 高功率之乾蝕刻(cf4+sf6) 頂閘門層(713) 鉬(Mo) PAN濕截刻 薄膜(714) 氧化鈦(TiOx) 乾蝕刻(α2)或滠蝕刻(Hydrogen Peroxide) 最後蝕刻(final etch) 蝕刻氮化矽(SiNx) 濕蝕刻(dilute HF) 1357348 表十二 29 1357348 選擇六 項目 材料 钱刻方式(etch mode) 提升層(703) 翻(Mo) pAN濕蝕刻 支撐體層(705、712) 氮化矽(SiNx) 濕ii 刻(dilute HF) 犧牲層(707、710) 鉬(Mo) PAN濕蝕刻 保護層(709) 鋼(Cu) 採用硝酸水溶液(hno3)或硫酸銨 (Ammonium Persulfates, APS)進行 濕姓刻 支撐體凹槽(210)蝕刻方式 蝕刻鉬(Mo)及氮化 矽(SiNx) 高功率之乾蝕刻(cf4+sf6) 支撐體凹槽側翼(212)蝕刻 方式 蝕刻鉬(Mo) PAN濕蝕刻 側壁閘區(500)勉刻方式 蝕刻鉬(Mo)及氮化 矽(SiNx) 高功率之乾蝕刻(cf4+sf6) 頂閘門層(713) 氮化矽(SiNx) .濕蝕刻(dilute HF) 薄膜(714) 氧化鈦CTiOx) 乾飯刻(CD或濕触刻(Hydrogen 最後敍刻(final etch) ------- 蝕刻鉬(Mo) _feroxide)_ PAN濕蝕刻 表十三 前,二實施例所採用之製造方法,該些底部開口區· 會形成第二、三、四圖中之該頂閘門11〇,該些頂部開口區 3 0 0會形成第二、三、四圖中之該底閘門i 2 q,該 區·則會形成第二、三、四圖中之該側壁問刚: 雜區::成第二、三、,中之該些支㈣‘此 外’該些支撐體區20(M系位於該些側壁閉區5〇〇之交 了 r=達導體製程技術來製作此奈米級_ 易 不未尺度之過渡柵欄的製作以及快速地製造 30 1357348 此奈米級濾材結構。各膜層之厚度亦可被有效地控制,可 依實際需要調整各膜層之厚度,犧牲層之厚度的控制更可 決定濾材結構的過濾等級。微米尺度的頂閘門與底閘門之 其一更可對流入之氣流做出微米級的初步過濾,而可延長 濾、材的壽命。多重層疊之過遽柵攔的設計更可提升滤材的 開口率,讓使用者能輕鬆地隔著濾材進行吸氣或吐氣。於 濾材結構表面形成有用以分解有機物之薄膜更可抵抗或殺 鲁 死病毒、細菌。 本發明在上文中已以較佳實施例揭露,然熟習本項技 術者應理解的是,該實施例僅用於描繪本發明,而不應解 讀為限制本發明之範圍。應注意的是,舉凡與該實施例等 效之變化與置換,均應設為涵蓋於本發明之範疇内。因此, 本發明之保護範圍當.以申請專利範圍所界定者為準。 【圖式簡單說明】 • 第一圖為本發明之奈米級過濾通道於一實施例中的剖 面示意圖。 第二圖為本發明之奈米級過濾通道於另一實施例中的 剖面示意圖。 第三圖為本發明於一實施例中之奈米級濾材結構的立 體不意圖。 第四圖為本發明於另一實施例中之奈米級濾材結構的 立體示意圖。 第五圖為第三及第四圖所示之奈米級濾材結構的俯視 31 比7348BOE wet etching using a nitric acid aqueous solution (hno3) or ammonium sulfate (Ammonium Persulfates, APS) for wet aphid engraving support groove (210) 14 etching cerium oxide (SiOx) and amorphous germanium (a-Si) high power The dry name of the engraved (C12+SF6) support groove flanks (212) etching etched yttrium oxide (SiOx) BOE wet etched sidewall gate (500) etching etched yttrium oxide (?iOx) and amorphous (a- Si) High power dry etching (ci2+sf6) Top gate layer (713) Thin film (714) Titanium oxide 〇ΠΟχ) Dry etching (Cl2) Dry surname (C 〖2) or wet surne (Hydrogen Peroxide) Last money Final etch Etching yttrium oxide (SiOx) and molybdenum (Mo) _ Table 10 first BOE wet etching and then pAN wet rice engraving 27 · _ ... - a ' -- _ Select four project material surname way (etch Mode) Lifting layer (703) Molybdenum (Mo) Dry etching (sf6) Support layer (705, 712) Aluminum alloy (A1 Alloy) Wet etching (H3P〇4) Sacrificial layer (707, 710) Molybdenum (Mo) Dry etching ( Sf6) protective layer (709) copper (Cu) using a nitric acid aqueous solution (hno3) or ammonium sulfate (Ammonium Persulfates, APS) for wet aphid engraving support groove (210) etching method to turn over (Mo) and Alloy high power dry etching (C12+SF6) Support body groove side (212) etching method etching molybdenum (Mo) gas etching (XeF2) sidewall gate area (500) etching method etching molybdenum (Mo) and aluminum alloy high power Dry etching (C12+SF6) Top gate layer (713) Aluminum alloy (AI Alloy) Wet etching (Η3Ρ04;) Thin film (714) Titanium oxide (TiOx) Dry etching (Cl2) or wet etching (Hydrogen Peroxide) Final etching (final Etch) Etching molybdenum (Mo) gas etching (XeF2) 1357348 Table Η - Select five items of material etch mode Lifting layer (703) Tantalum nitride (SiNx) Wet etching (dilute HF) Support layer (705, 712) Turning (Mo) PAN wet etching sacrificial layer (707, 710) tantalum nitride (SiNx) wet etching (dilute HF) protective layer (709) copper (Cu) using aqueous nitric acid (hno3) or ammonium sulfate (Ammonium Persulfates, APS) Wet worm inscribed support groove (210) etched tantalum nitride (SiNx) and molybdenum (Mo) High power dry etching (cf4+sf6) Support groove flank (212) etching etching Tantalum nitride (SiNx) Wet money etch (dilute HF) sidewall gate region (500) etching etched tantalum nitride (SiNx) and molybdenum 〇 VIo) high work Dry etching (cf4+sf6) top gate layer (713) molybdenum (Mo) PAN wet cut film (714) titanium oxide (TiOx) dry etching (α2) or hydrogen etching (finogen etch) final etching (final etch) etching Tantalum Nitride (SiNx) Wet Etching (Dilute HF) 1357348 Table 12 29 1357348 Selecting six items of material etch mode Lifting layer (703) Turning (Mo) pAN wet etching support layer (705, 712) Nitriding矽(SiNx) wet ii (dilute HF) sacrificial layer (707, 710) molybdenum (Mo) PAN wet etching protective layer (709) steel (Cu) using nitric acid aqueous solution (hno3) or ammonium sulfate (Ammonium Persulfates, APS) Wet surname support groove (210) etching method etching molybdenum (Mo) and tantalum nitride (SiNx) high power dry etching (cf4 + sf6) support groove side wing (212) etching method etching molybdenum (Mo) PAN Wet-etched sidewall gate region (500) etching molybdenum (Mo) and tantalum nitride (SiNx) high-power dry etching (cf4+sf6) top gate layer (713) tantalum nitride (SiNx). wet etching (dilute HF) Thin film (714) Titanium oxide CTiOx) Dry rice engraving (CD or wet etch (Hydrogen final etch ------- Etching molybdenum (Mo) _feroxide) _ PAN wet etching In the manufacturing method adopted in the second embodiment, the bottom opening area will form the top gate 11〇 in the second, third and fourth figures, and the top opening area 300 will form a second In the third and fourth figures, the bottom gate i 2 q, the area will form the second, third, and fourth figures of the side wall just:: Miscellaneous:: into the second, third, and the middle of the branch (four) 'In addition' these support body regions 20 (M system is located in the side wall closed area 5〇〇 intersection r = up to the conductor process technology to make this nano-level _ easy to unscaled transition fence production and rapid manufacturing 30 1357348 This nanometer filter structure. The thickness of each film layer can also be effectively controlled, and the thickness of each film layer can be adjusted according to actual needs. The control of the thickness of the sacrificial layer can further determine the filtration level of the filter material structure. The micro-scale top and bottom gates provide a micron-level initial filtration of the incoming airflow, which extends the life of the filter and material. The multi-layered barrier is designed to increase the opening ratio of the filter material, allowing the user to easily inhale or exhale through the filter. Forming a film on the surface of the filter material to decompose organic matter is more resistant to or killing viruses and bacteria. The invention has been described above in terms of the preferred embodiments thereof, and it is understood by those skilled in the art that the present invention is not intended to limit the scope of the invention. It should be noted that variations and permutations that are equivalent to the embodiments are intended to be within the scope of the present invention. Therefore, the scope of protection of the present invention is defined by the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS • The first figure is a schematic cross-sectional view of an embodiment of the nanofiltration passage of the present invention in one embodiment. The second figure is a schematic cross-sectional view of another embodiment of the nanofiltration passage of the present invention. The third figure is a schematic view of the structure of the nano-scale filter material in one embodiment of the present invention. Figure 4 is a perspective view showing the structure of a nano-sized filter material in another embodiment of the present invention. The fifth picture shows the structure of the nano-scale filter material shown in the third and fourth figures. 31 to 7348

ο 第六至十一圖為奈米級濾材結構之製程步驟於一— 施例中之製作流程剖面圖。 、貫 濾材結構部分 第十二圖為具有五過濾通道數之奈米 剖面圖。 二實至Γ十’為奈米級濾材結構之製程步驟於第 =例中之製作餘剖Φ圖。 弟 分剖面圖。目U五過遽通道數之奈米級濾材結構部 加寬2示意圖。·、第實知例中底部開口區側邊通道寬度 【主要 元件符號說明】 no 頂閘門. 112 頂部開口 120 底閘門 122 底部開口 130 支撐體 140 側壁閘 142 過濾柵攔 200 支撐體區 21〇 支撐體凹槽 211 填充體 212 支撐體側翼ο The sixth to eleventh figures are the process steps of the nano-scale filter structure process in a section of the production process. The structure of the filter material is shown in Fig. 12 as a section of the nanometer with five filtration channels. The second step to the Γ10 is the process step of the nano-scale filter structure. Divided into sections. The U-level filter material structure of the U-pass channel number is widened and the schematic diagram is widened. · In the first example, the width of the side opening channel in the bottom opening area [main component symbol description] no top gate. 112 top opening 120 bottom gate 122 bottom opening 130 support body 140 side wall gate 142 filter gate block 200 support body area 21〇 support Body groove 211 filler body 212 support body flank

凹槽 32 1357348Groove 32 1357348

300 頂部開口區 400 底部開口區 500 侧壁閘區 601 基底 603 提升層 605a 第一支撐體層 605b 第二支撐體層 605c 第三支撐體層 605d 第四支撐體層 605e 第五支撐體層 607a 第一犧牲層 607b 第二犧牲層 610 頂閘門層 611 薄膜 701 基底 703 提升層 705a 第一支撐體層 705b 第二支撐體層 705c 第三支撐體層 705d 第四支撐體層 705e 第五支撐體層 707a 第一犧牲層 707b 第二犧牲層 709 保護層 33 1357348 710a 第一通道犧牲層 712a 第一通道支撐體層 712b 第二通道支撐體層 712c 第三通道支撐體層 712d 第四通道支撐體層 713 頂閘門層 714 薄膜 720 光阻層300 top open area 400 bottom open area 500 side wall 601 base 603 lift layer 605a first support layer 605b second support layer 605c third support layer 605d fourth support layer 605e fifth support layer 607a first sacrificial layer 607b Two sacrificial layer 610 top gate layer 611 film 701 substrate 703 lift layer 705a first support layer 705b second support layer 705c third support layer 705d fourth support layer 705e fifth support layer 707a first sacrificial layer 707b second sacrificial layer 709 Protective layer 33 1357348 710a First channel sacrificial layer 712a First channel support layer 712b Second channel support layer 712c Third channel support layer 712d Fourth channel support layer 713 Top gate layer 714 Film 720 Photoresist layer

d 1 間距 d2 間距 w 1 間距 w2 間距 AF 氣流d 1 spacing d2 spacing w 1 spacing w2 spacing AF airflow

AA’ 底閘門剖面線 BB’ 頂閘門剖面線 CC’ 側壁閘剖面線 X 部位 34AA' bottom gate section line BB' top gate section line CC' side wall gate section line X location 34

Claims (1)

J48 七 申請專利範圍: 1. 一種呼吸用之奈米級濾材結構,其包含·· 一頂閘門,係具有複數個頂部開口; π , ,係平行於該卿門且具有複數個底部開 4二底。卩開口與該些頂部開口係互相錯開; ,數_㈣,係位於該_門與該底㈣之間且 於一頂部開口及一底部開口,每一 門及=閘門之複數個過濾柵攔並形成;复數個過頂: 二側=:係位於該頂f⑽該底閘門之間且位於 2.如申^利;=通道係具有3⑼奈米以下之通道高度。 部門口及·^广#項所述之奈米級遽材結構,其中該些頂 底部開口之邊長係具有微米尺度之長度。 .如申印專利範圍第丨項所述之 係位於該些_一些底部開=構’該些侧壁閘 4. =^,項所述之奈米級遽材結構,其中該頂閘 門之頂面更包含心分解有缝之-薄膜。 5. 如申請專利範圍第i 樓體中係包含—填充體。之不未級慮材結構’其中每一支 6·如申請專利範圍第5項 體之材料係為聚合物。之不未級麟結構,其中該填充 構之奈米級濾材結構之製造方法,該奈米級滹材处 二:數==區每複f個底部開口區、複數個侧i 牙體IZ母—側壁閘區係相鄰一頂部開口區 35 1357348 及一底部開口區,該些支撐體區係位於二側壁閘區之交會 處,其包含下列步驟: (A1)於一基底上形成圖案化之一提升層; (A2)於部分之該提升層及部分之該基底上形成圖案化之一 第一支撐體層,使該些底部開口區不具有該第一支撐 體層; (A3)於該些底部開口區之該提升層上,以及於該些頂部開 口區及該些側壁閘區之該第一支撐體層上形成圖案化 之一第一犧牲層; (A4)於該些側壁閘區及該些支撐體區形成圖案化之一第二 支撐體層; (A5)於該些頂部開口區、該些底部開口區及該些側壁閘區 形成圖案化之一第二犧牲層; (A6)於該些底部開口區及該些側壁閘區之最頂層之犧牲層 上,以及於該些支撐體區之最頂層之支撐體層上形成 一頂閘門層; (A7)去除該提升層及所有的犧牲層;及 (A8)移除該基底; 其中,前述每一犧牲層係被形成小於或等於300奈米之 厚度。 8. 如申請專利範圍第7項所述之製造方法,其中於步驟(A2)中 係藉由該第一支撐體層之圖案化使該些頂部開口區及該些 底部開口區之邊長係具有微米尺度之長度。 9. 如申請專利範圍第7項所述之製造方法,其中於步驟(A4)中 36 1357348 更匕3將遠些頂部開口 L 句u區及该些底部開口區之周 有S亥些側壁閘區。 囷1r疋義 10. 如申請專利範圍第7 後更包含-步驟(A5 1}彳^ ^方法,其f於步驟(A5) 複數声之支外L 覆步驟(A4)及(A5),以形成 夏歎居之支接體層及複數層之犧牲層。 11. :=利範圍第7項所述之製造方法,其令於步驟(A6) ^更包s-步驟(A6.1):於該頂閘門層上形成用以分解有機 物之一薄膜。 之奈米級濾材結構之製造方法,該奈米級濾材 …構包含複數個頂部開口區、複數個底部開口區、複數個 側壁閘區及複數個支樓體區,每一側壁閑區係相鄰一頂部 開口區及-底部開口區,該些支推體區係位於二側壁閉區 之交會處,其包含下列步驟: (B1)於一基底上形成圖案化之一提升層; (B2) =部分之該提升層及部分之該基底上形成圖案化之一 第一支稽體層,使該些底部開口區不具有該第一支撐 體層; (B3)於該些底部開口區、該些頂部開口區及該些側壁閘區 形成圖案化之一第一犧牲層; (B4)於該些側壁閘區及該些支撐體區形成圖案化之一第二 支撐體層; (B5)於該些頂部開口區、該些底部開口區、該些側壁閉區 及該些支撐體區形成一第二犧牲層; (B6)於該些頂部開π區、該些底部開口區、該些側壁閉區 37 1357348 及該些支撐體區形成一第三支撐體層; (B7)於該些頂部開口區、該些底部開口區、該些側壁閘區 及該些支撐體區形成一保護層; (B 8)對該些支撐體區進行蝕刻並至少移除該第三支撐體層 以各形成一支撐體凹槽; (B 9)於該些支撐體凹槽中進行側向蝕刻並移除部分之犧牲 層以形成複數個支撐體側翼凹槽; (B10)於該些支撐體凹槽及該些支撐體側翼凹槽中進行填 充以形成複數個填充體; (Bl 1)對該些頂部開口區及該些底部開口區進行蝕刻並至 少移除該第三支撐體層; (B12)於該些頂部開口區、該些底部開口區、該些側壁閘區 及部分之該些支撐體區形成圖案化之一第一通道犧 牲層; (B13)於該些底部開口區、該些側壁閘區及該些支撐體區形 成一頂閘門層; (B14)去除該提升層及所有的犧牲層;及 (B15)移除該基底; 其中,前述每一犧牲層係被形成小於或等於300奈米 之厚度。 13. 如申請專利範圍第12項所述之製造方法,其中於步驟(B2) 中係藉由該第一支撐體層之圖案化使該些頂部開口區及該 些底部開口區之邊長係具有微米尺度之長度。 14. 如申請專利範圍第12項所述之製造方法,其中於步驟(B4) 1357348 中更包含將該些頂部開口區及該些底部開口區之周圍皆定 義有該些側壁閘區。 15. 如申請專利範圍第12項所述之製造方法,其中於步驟(B6) 後更包含一步驟(B6-1):依序重覆步驟(B5)及(B6),以形成 複數層之支撐體層及複數層之犧牲層。 16. 如申請專利範圍第15項所述之製造方法,其中於步驟(B6-1) 中,最後形成之層係為犧牲層。 17. 如申請專利範圍第12項所述之製造方法,其中於步驟(B12) 後更包含: (B12-1)於該些側壁閘區及該些支撐體區形成圖案化之一第 一通道支撐體層;及 (B12-2)依序重覆步驟(B12)及(B12-1),以形成複數層之通道 支#體層及複數層之通道犧牲層,並使最後形成之 層係為通道犧牲層。 18. 如申請專利範圍第12項所述之製造方法,其中於步驟(B13) 後更包含一步驟(B13-1):於該頂閘門層上形成用以分解有 機物之一薄膜。 39J48 Seven patent application scope: 1. A nanometer filter material structure for breathing, comprising: a top gate having a plurality of top openings; π , , parallel to the gate and having a plurality of bottom openings 4 2 bottom. The opening and the top opening are offset from each other; the number _(four) is located between the _ door and the bottom (four) and is open at a top opening and a bottom opening, and a plurality of filter grids of each door and the gate are formed and formed Multiple over-tops: Two sides =: The system is located between the top f(10) and the bottom gate and is located at 2. For example, the channel system has a channel height of 3 (9) nm or less. The nano-scale coffin structure described in the department mouth and the ^^广#, wherein the sides of the top bottom opening have a length on a micrometer scale. The system described in the third paragraph of the stipulated patent scope is located at the bottom of the slab. The bottom of the sluice gate is 4. The surface also contains a core-decomposed seam-film. 5. If the scope of the patent application is included in the i-th building, the body is filled. The material of each of them is the polymer of the fifth body of the patent application. The structure of the nanostructured filter material of the filling structure, the nano-scale coffin at the second: number == zone per f bottom opening area, a plurality of side i teeth IZ mother The sidewall lands are adjacent to a top open region 35 1357348 and a bottom open region, the support regions being located at the intersection of the two sidewall gate regions, comprising the steps of: (A1) forming a pattern on a substrate a lifting layer; (A2) forming a patterned first support layer on the portion of the lifting layer and the portion of the substrate such that the bottom opening regions do not have the first supporting layer; (A3) at the bottom Forming a first sacrificial layer on the lift layer of the open region, and forming a first sacrificial layer on the first support layer of the top open region and the sidewall spacers; (A4) the sidewall spacers and the Forming a second support layer in the support region; (A5) forming a patterned second sacrificial layer on the top open regions, the bottom open regions, and the sidewall gate regions; (A6) a bottom opening area and a sacrificial layer of the topmost layer of the side wall gate areas And forming a top gate layer on the topmost support layer of the support regions; (A7) removing the lift layer and all the sacrificial layers; and (A8) removing the substrate; wherein each of the sacrificial layers The thickness is formed to be less than or equal to 300 nanometers. 8. The manufacturing method according to claim 7, wherein in the step (A2), the top opening area and the side opening areas of the bottom opening area are provided by patterning of the first support layer The length of the micrometer scale. 9. The manufacturing method according to claim 7, wherein in step (A4), 36 1357348 is further 匕3, and the side wall of the far top opening L sentence and the bottom opening area have S side wall brakes Area.囷1r疋10. If the scope of the patent application is 7th, the method further includes a step (A5 1} 彳 ^ ^ method, where f is in step (A5), and the steps L (A4) and (A5) are Forming a sacrificial layer of the summer sigh and a sacrificial layer of the plurality of layers. 11. := The manufacturing method described in item 7 of the benefit range, wherein the step (A6) is further included in the step s-step (A6.1): a method for manufacturing a nano-scale filter material structure, wherein the nano-scale filter material comprises a plurality of top open regions, a plurality of bottom open regions, and a plurality of sidewall gate regions, and a film for decomposing a film of organic matter. a plurality of branch body regions, each side wall idle area is adjacent to a top open area and a bottom open area, and the support body areas are located at the intersection of the two side wall closed areas, and the following steps are included: (B1) Forming a patterned lift layer on a substrate; (B2) = partially forming the lift layer and the portion of the substrate to form a patterned first support layer such that the bottom open regions do not have the first support layer (B3) forming one of the patterning in the bottom opening area, the top opening areas, and the side wall areas a sacrificial layer; (B4) forming a patterned second support layer on the sidewall gate regions and the support regions; (B5) the top open regions, the bottom opening regions, and the sidewall closed regions And forming a second sacrificial layer in the support regions; (B6) forming a third support layer on the top open π regions, the bottom open regions, the sidewall closed regions 37 1357348 and the support regions; (B7) forming a protective layer on the top open areas, the bottom open areas, the side wall lands, and the support areas; (B8) etching the support areas and removing at least the The three support layers respectively form a support groove; (B9) laterally etching in the support grooves and removing a portion of the sacrificial layer to form a plurality of support side groove grooves; (B10) Filling the support grooves and the support side groove grooves to form a plurality of filler bodies; (Bl 1) etching the top opening regions and the bottom opening regions and removing at least the third support layer (B12) in the top open areas, the bottom open areas, the The sidewall gate region and a portion of the support regions form a patterned first channel sacrificial layer; (B13) forming a top gate layer in the bottom opening region, the sidewall spacer regions and the support regions; B14) removing the lift layer and all the sacrificial layers; and (B15) removing the substrate; wherein each of the sacrificial layers is formed to a thickness of less than or equal to 300 nm. 13. As claimed in claim 12 In the manufacturing method, in the step (B2), the top opening regions and the side openings of the bottom opening regions have a length of a micrometer scale by patterning of the first support layer. 14. The manufacturing method of claim 12, wherein the step (B4) 1357348 further comprises defining the sidewall opening regions and the periphery of the bottom opening regions. 15. The manufacturing method according to claim 12, wherein the step (B6) further comprises a step (B6-1): repeating the steps (B5) and (B6) sequentially to form a plurality of layers The sacrificial layer of the support layer and the plurality of layers. 16. The manufacturing method according to claim 15, wherein in the step (B6-1), the layer finally formed is a sacrificial layer. 17. The manufacturing method of claim 12, wherein after the step (B12), the method further comprises: (B12-1) forming a patterned first channel in the sidewall gate regions and the support regions a support layer; and (B12-2) sequentially repeating steps (B12) and (B12-1) to form a channel layer of the plurality of layers and a channel sacrificial layer of the plurality of layers, and the resulting layer is a channel Sacrifice layer. 18. The manufacturing method according to claim 12, further comprising a step (B13-1) after the step (B13): forming a film for decomposing the organic material on the top gate layer. 39
TW98130291A 2009-09-08 2009-09-08 Nano filter structure for breathing and manufactur TWI357348B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98130291A TWI357348B (en) 2009-09-08 2009-09-08 Nano filter structure for breathing and manufactur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98130291A TWI357348B (en) 2009-09-08 2009-09-08 Nano filter structure for breathing and manufactur

Publications (2)

Publication Number Publication Date
TW201109071A TW201109071A (en) 2011-03-16
TWI357348B true TWI357348B (en) 2012-02-01

Family

ID=44835780

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98130291A TWI357348B (en) 2009-09-08 2009-09-08 Nano filter structure for breathing and manufactur

Country Status (1)

Country Link
TW (1) TWI357348B (en)

Also Published As

Publication number Publication date
TW201109071A (en) 2011-03-16

Similar Documents

Publication Publication Date Title
Jung et al. Well-ordered thin-film nanopore arrays formed using a block-copolymer template
JP2013513472A5 (en)
TW200816508A (en) Fabrication methods of patterned sapphire substrate and light emitting diode
WO2007105001A8 (en) Method of manufacture of particles with controlled dimensions
TWI357348B (en) Nano filter structure for breathing and manufactur
TW201413370A (en) Phase-shifting mask blank, and phase-shifting mask and process for producing same
CN103030106A (en) Three-dimensional nanometer structure array
CN103030107B (en) Method of manufacturing three-dimensional nanometer-structured array
US11807571B2 (en) Silicon and silica nanostructures and method of making silicon and silica nanostructures
TWI361104B (en) Method, reagent and apparatus for treating emissions containing chlorine trifluoride and other inorganic halogenated gases
US8173033B2 (en) Manufacturing method of a nano filter structure for breathing
CN107469246B (en) Nose plug type respirator
JP4824809B2 (en) Respiratory nano-level filter structure and manufacturing method thereof
KR101052770B1 (en) Nano filter structure for respiration and its manufacturing method
WO2017211215A1 (en) Fluid processing device and preparation method therefor
TW201839176A (en) Method for the pine shaped metal nano grating
JP2005515282A5 (en)
CN102019114A (en) Nanoscale filter material structure for respiration and manufacturing method thereof
TW201330091A (en) Pattern forming method
JP2021156908A (en) Reinforcement pellicle film, and method for producing reinforcement pellicle film
JP2007043127A5 (en)
CN208796979U (en) A kind of three-dimensional Fe Getter Films Prepared structure
CN109941960A (en) A method of preparing nano-pore array structure
CN104338264A (en) Nose mask filtering device
US20230311039A1 (en) Advanced filtration structures for mask and other filter uses

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees