TWI357157B - Printed, self-aligned, top-gate thin film transist - Google Patents

Printed, self-aligned, top-gate thin film transist Download PDF

Info

Publication number
TWI357157B
TWI357157B TW096121120A TW96121120A TWI357157B TW I357157 B TWI357157 B TW I357157B TW 096121120 A TW096121120 A TW 096121120A TW 96121120 A TW96121120 A TW 96121120A TW I357157 B TWI357157 B TW I357157B
Authority
TW
Taiwan
Prior art keywords
thin film
gate
semiconductor
layer
doped glass
Prior art date
Application number
TW096121120A
Other languages
Chinese (zh)
Other versions
TW200818509A (en
Inventor
Rockenberger Joerg
Montague Cleeves James
Kamath Arvind
Original Assignee
Kovio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kovio Inc filed Critical Kovio Inc
Publication of TW200818509A publication Critical patent/TW200818509A/en
Application granted granted Critical
Publication of TWI357157B publication Critical patent/TWI357157B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Description

1357157 九、發明說明: 【發明所屬之技術領域】1357157 IX. Description of the invention: [Technical field to which the invention belongs]

本發明係關於一種印刷式(printed)自對準(此江-沾明冲上閘極 (top-gate)薄膜電晶體(Thin Film Transistor, TFT),含金屬墨水可被 用以列印閘極金屬。於一實施例中,含金屬(metal-contahhg)墨 水包含金屬奈米粒子。本發明在印出該金屬墨水後需要微溫、非 南溫或雷射活化處理。 【先前技術】 在傳統的上閘極TFT製程中,首先,藉由將閘極材料圖案化 來確保閘極對齊於源極/汲極區域,並且用其作為摻雜物注入及/ 或活化之遮罩。這種方法遇到的問題視閘極金屬的選擇而定,因 為閘極金屬需要能夠反射紫外光雷射輻射(如A1)或是可與活化作 用中的熱㈣物共胁冑於⑼代的溫度(如#雜_(_)聚石夕 分子(poly-silicon)或Mo、Pd或W之耐熱金屬)。 由於列印製程相對於光微影(photolithography)有著高生產力 的優點’因此傳統列印技術(如噴墨列印)可有益於製造電子裝 J。然而,由於墨滴的體積並不小,因此高解析度的列印技術通 爷雙限於列印線寬(約10 μιη或更大)。 q因此而要發展能形成小線寬(例如小於10 μιη)結構的TFT ^製程(如:使用列印技術的閘極),及/或不受限於特定閘極材料 (如鋁、耐熱金屬或摻雜的聚矽分子)之製程。 【發明内容】The present invention relates to a printed self-alignment (top-gate thin film transistor (TFT), metal-containing ink can be used to print a gate In one embodiment, the metal-contahhg ink comprises metal nanoparticles. The invention requires micro-temperature, non-semi-temperature or laser activation treatment after printing the metal ink. In the upper gate TFT process, first, by patterning the gate material, it is ensured that the gate is aligned with the source/drain region and is used as a dopant implant and/or activation mask. The problem encountered depends on the choice of gate metal, because the gate metal needs to be able to reflect ultraviolet laser radiation (such as A1) or can be co-fired with the heat (four) in the activation (9) generation temperature (such as #杂_(_) poly-silicon or Mo, Pd or W heat-resistant metal. Due to the high productivity of the printing process relative to photolithography, the traditional printing technology Such as inkjet printing) can be beneficial for the manufacture of electronic equipment J. However, due to ink droplets The volume is not small, so the high-resolution printing technology is limited to the print line width (about 10 μm or more). q Therefore, a TFT capable of forming a small line width (for example, less than 10 μm) is developed. Process (eg, using a gate of a printing technique), and/or process not limited to a particular gate material (eg, aluminum, heat resistant metal, or doped polyfluorene molecules).

本發明之-料在於提供—種職TFT的方法,包含下列步 ,·形成半導體薄_ ;將掺雜的玻璃圖_印 ^ TFT i 5 將閘電極(gate electr〇de)形成於溝道區域上或上方,閘電 之極介電薄膜(gate dielectric flkn)以及位於閘極介電薄膜上 導體(gate c〇nduct〇r);以及將摻雜物(dopant)從摻雜的玻璃 圖案擴散至半導體薄膜層内。 ^發明之另-範脅在於提供一種聊,包含:半導體薄膜 二蚀立於半導體薄膜層上的摻雜的玻璃圖案之至少—部份,其中 階”.的玻璃圖案之至少兩部份定義位於TFT之溝道區域上方的間 台、人極,於半導體薄膜層之溝道區域上或上方,該閘電極 道二:心電薄膜以及位於閘極介電薄膜上之閘極導體;以及半 4膜層内之位於溝道區域兩侧之含有摻雜物之區域。 士發明之另一範嘴在於提供一種形成薄膜結翻方法,包含 驟形成半導體薄膜層;將摻雜的玻璃圖案列印於半導體 脾换if,摻雜的玻翻案中之間隙定義TFT之溝道區域;以及 將摻雜物婦雜的玻__散至半導_膜層内。 本發明之另一範疇在於提供一種薄膜結構,包含:半導體薄 、二’位於半導體薄膜層上的掺雜的玻璃圖案之至少—部份,盆 =雜的玻_案之至少兩部份定義位於TFT之溝道區域上方^ 二j、,以及轉體_層内之位於溝道區域兩侧之含有摻雜物之 ㈣之間的間隔主要由墨水位置的精確度加上列印裝置 小^址ί力及精確度來決定,因此兩線之間的間隔可能 ρ列之最小線寬。目此,首先列印—源極/沒極圖案,以 =義金屬的位置,致使能製造具有溝道寬度小於 〇μιη的向效能印刷式上閘極TFT。 ,發明細於在各種紐上製造TFT及其電路,基材包含, 石气石英)片或條、塑膠及/或金屬箔、片或板、 日日等不同基材之製程,全都可能含有一或多個緩衝層(如石夕及 1357157 /或紹氧化物)。相關應用包含,但不受限於’顯示 i 置或感應科。 ‘、,、深尾褒 【實施方式】 自對準的上_ TFT㈣印刷式耐熱金屬或蝴極的 到顯著的挑戰。本發明係藉由下列製程來克服上述挑戰,首 -層製作圖案’定義源極級極區域,接著活化摻雜 由 ,下退火或是活化侧),接著__金屬前驅物墨^田 ^-較佳具體實施射,由補㈣要非高溫或雷脑化處理的 步驟’含銀或金之單純貴金屬墨水可被用以列印閘極金 明之TFT可在十億翻(GHz)_率基準下運作,且呈 = ⑴狹窄的溝道寬度、(2)自對準但一小部份重叠於閑極j 及汲極終端,及/或(3)高載子機動性。 ’、和 之特具體例之詳述’鱗魏更加清楚描述本發明 神,而並非以上述所揭露的較佳具體實施例來對本發 制。相反地,其目岐希望能涵蓋各種改變及呈 性f安排於本發明所欲中請之專利範圍的範_内。因此,i ^該根據上述的說明作最寬廣的解 致使”涵盖所有可此的改變以及具相等性的安排參考 於,丫為了 起見’本文中的,,祕於,,(eGupled tG)、,,連接 接With)指的是直 印,除1沈積’包含全體沈積、塗覆以及列 定需要的或從材料形成之元件或結構)之材料特 了此相當不同的)物性及/或電性。”(聚)石夕 7 1357157 炫”((poly)silane)指的是化合物或化合物的混合,實質上包含 及/或鍺以及(2)氫,而且(聚)石夕烷顯著地包含具有至少15 =矽及/ 或鍺原子的形式。這類的形式可能包含一或多個環(cydic nng)。’’(環)石夕燒’’((cydc^siiane)指的是化合物或化合物的混和,實 質上包含(1)矽及/或鍺以及(2)氫,而且(環)矽燒可能含有一個或多 個環且少於15卿及/或鍺原子。,,異(環辦烧,,㈣en)(eydQ>iriane) 指的是化合物或化合物的混和,實質上包含(1)矽及/或鍺、(2)氫 以及(3)—或多個如B、P、As或sb之類的摻雜物原子可被傳 統碳化氫、矽烷或適當的置換基所替代,且異(環)矽烷可能包含 一個或多個環。並且,結構或物體之,,主表面,,係至少一部份由結 構或物體之最大軸定義之表面(例如,如果結構是球狀,且其半^ 大於其厚度,徑向表面為結構之主表面;然而,結構成方形The invention is directed to a method for providing a job-specific TFT, comprising the steps of: forming a thin semiconductor film; forming a doped glass pattern with a gate electrode to form a gate electrode in a channel region Above or above, a gate dielectric flkn and a gate dielectric film (gate c〇nduct〇r); and diffusing dopants from the doped glass pattern to Within the semiconductor film layer. Another invention of the invention is to provide a chat comprising: at least a portion of a doped glass pattern of a semiconductor film etched on a layer of a semiconductor film, wherein at least two portions of the glass pattern of the order are located a mesa and a human pole above the channel region of the TFT, on or above the channel region of the semiconductor thin film layer, the gate electrode 2: an electrocardiographic film and a gate conductor on the gate dielectric film; and a half 4 A region containing a dopant on both sides of the channel region in the film layer. Another method of the invention is to provide a method for forming a film junction, comprising forming a semiconductor thin film layer; printing the doped glass pattern on The semiconductor spleen exchange if, the gap in the doped glass flip case defines the channel region of the TFT; and the glass __ of the dopant is dispersed into the semi-conductive film layer. Another scope of the present invention is to provide a film The structure comprises: a semiconductor thin, at least a portion of the doped glass pattern on the semiconductor thin film layer, and at least two portions of the potted glass are located above the channel region of the TFT. And the swivel_layer The spacing between the (4) containing dopants on both sides of the channel region is mainly determined by the accuracy of the ink position plus the small force and accuracy of the printing device, so the interval between the two lines may be The minimum line width of the ρ column. Therefore, first print the source/dot pattern, with the position of the metal, enabling the fabrication of a high-efficiency printed upper gate TFT having a channel width smaller than 〇μιη. The process of fabricating TFTs and their circuits on various ridges, substrates containing, quartz gas) sheets or strips, plastic and/or metal foils, sheets or plates, and various substrates such as day and day may all contain one or more Buffer layer (such as Shi Xi and 1357157 / or oxide). Related applications include, but are not limited to, 'display i or sensing section. ',,, deep tail 褒 [implementation] self-aligned upper _ TFT (four) The printing heat-resistant metal or the butterfly is a significant challenge. The present invention overcomes the above challenges by the following process: the first-layer pattern 'defines the source-level polar region, then the activated doping, the lower annealing or the active side ), followed by __ metal precursor ink ^ Tian ^ - Preferably, the specific implementation of the shot, by the supplement (four) to be non-high temperature or cerebral processing steps 'silver or gold-containing pure precious metal ink can be used to print the gate of the gold Ming TFT can be in billion (GHz) _ rate Operating under the benchmark, with = (1) narrow channel width, (2) self-aligned but a small overlap with idler j and bungee terminations, and/or (3) high carrier mobility. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 'The singularity of the present invention is more clearly described, and the present invention is not made in the preferred embodiments disclosed above. Conversely, it is intended to cover various changes and presentations. The scope of the patent application is intended to be within the scope of the invention. Therefore, i ^ is the broadest solution according to the above description, so that all changes and equivalent arrangements can be referred to, for the sake of 'In this paper, the secret, (eGupled tG),,, connected with) refers to the direct printing, except for the 1 deposition 'contains all the deposition, coating and the elements or structures required or formed from the material. The material is quite different in terms of physical properties and/or electrical properties. "(poly)silane" refers to a compound or mixture of compounds, substantially comprising and/or hydrazine and (2) hydrogen, and (poly) oxalate significantly comprises at least 15 = 矽 and / or the form of 锗 atoms. Such forms may contain one or more cydic nng. '' (cydc^siiane) refers to a compound or a mixture of compounds, substantially containing (1) hydrazine and/or hydrazine and (2) hydrogen, and (ring) smoldering may contain One or more rings and less than 15 singular and/or samarium atoms.,, (hetero-burning, (iv) en) (eydQ>iriane) refers to the compound or compound mixture, which essentially contains (1) 矽 and / Or ruthenium, (2) hydrogen, and (3) - or a plurality of dopant atoms such as B, P, As or sb may be replaced by conventional hydrocarbons, decane or a suitable substituent, and iso (ring) The decane may contain one or more rings. Also, the structure or object, the major surface, is at least partially defined by the surface of the structure or the largest axis of the object (for example, if the structure is spherical and its half ^ is greater than Its thickness, the radial surface is the main surface of the structure; however, the structure is square

形或橢圓形之處,結構之主要表面是由兩個最大軸,一般是長度 和寬度,所定義)。 X 以化學式(AHz)k表示的環矽烷化合物,其中a為矽,z為2 或2(較佳為2)以及k為3到12(較佳為4到8),其詳細製備^法 可由申請中的美國專利申請號1〇/789,317(申請日:2〇〇4年2月 27日)得知。異(環)石夕烧化合物、摻雜的矽烷中介物、其製備方法 以及用以決定及/或控制前驅物以及主動層(active film)之摻雜程产 之技術由申請中的美國專利申請號1〇/950,373(申請日:2〇〇4年1 月24日)、1〇/949,013(申請日:2004年9月24日)以及 1〇/956,714(申請曰:2004年1〇月i日)詳細描述之,而且包含以 化學式(Aiy/DR1;^以及(AnHz)m(DRl3-m)q表示之化合物。其中, (AH^DR、的η為2到12,m為1或2,A為Si或Ge,z為j 或2 ’ D為Sb、As、P或B,R1為烷基、芳香族煙、 biyl}、气香族烧基CaralkyD或AR%,其中R2為氫、院基、芳 經基、芳香族烷基或AyH2y+1(其中y為1到4的整數)。、 中的 η 為 3 到 12 的整數,z 為(11_(}^到(2n+ m為1到3的整數,A為Si或Ge,D可為Sb、As、P或β, 8 1357157 i mi可ί ί、=:芳香族絲、芳香族絲或也, ,、中t為虱、烷基、方香族羥基、芳香族烷基或A穿 g)。养矽烷與聚矽烷化合物係揭露於美 60/奪4(申請曰:2006年10月6曰)以及心^ T11 lVrB) > * t ” ; ΐ 為氫、(其* R2為氫姐基) 或烧基,但疋如果q=〇且A為石夕,則R不為苯基㈣ 如 q=〇,則(n+be〇 ;如果n=0,則咬2 ;如果_且_,則(n+q) 22 ’ m值為4到6,寡矽烷或聚矽烷實質上包含①氫、(Η)石夕及/或Where the shape or ellipse, the main surface of the structure is defined by two largest axes, generally length and width. X is a cyclodecane compound represented by the chemical formula (AHz) k, wherein a is hydrazine, z is 2 or 2 (preferably 2), and k is 3 to 12 (preferably 4 to 8), and the detailed preparation method can be The U.S. Patent Application No. 1/789,317 (filed on: February 27, 2004) is incorporated by reference. An isocyclic (cyclone) compound, a doped decane intermediate, a process for the preparation thereof, and a technique for determining and/or controlling the doping and active doping of the active film are filed in the U.S. Patent Application Serial No. No. 1〇/950,373 (application date: January 24, 2004), 1〇/949,013 (application date: September 24, 2004) and 1〇/956,714 (application number: 1 month of 2004) Japanese) is described in detail, and includes a compound represented by a chemical formula (Aiy/DR1; ^ and (AnHz)m(DRl3-m)q, wherein (AH^DR, η is 2 to 12, and m is 1 or 2) , A is Si or Ge, z is j or 2 ' D is Sb, As, P or B, R1 is alkyl, aromatic smoke, biyl}, scented CaralkyD or AR%, wherein R2 is hydrogen, Affiliation, aryl, aromatic alkyl or AyH2y+1 (where y is an integer from 1 to 4), η is an integer from 3 to 12, and z is (11_(}^ to (2n+ m is 1) An integer of 3, A is Si or Ge, D can be Sb, As, P or β, 8 1357157 i mi can be ίί, =: aromatic filament, aromatic filament or also, ,, t is 虱, alkane a base, a fragrant hydroxy group, an aromatic alkyl group or an A through g). The combination of decane and polydecane The system is disclosed in the United States 60 / win 4 (application 曰: October 6th, 2006) and heart ^ T11 lVrB) > * t ”; ΐ is hydrogen, (its * R2 is hydrogen sister base) or burnt base, but 疋If q=〇 and A is Shi Xi, then R is not phenyl (four), such as q=〇, then (n+be〇; if n=0, bite 2; if _ and _, then (n+q) 22 ' m value is 4 to 6, oligodecane or polydecane substantially contains 1 hydrogen, (Η) Shi Xi and/or

鍺,其分子量為45〇到23〇〇克/莫耳,其具有小於h的多重分 散扣數(polydispersion index)。進行固化(curing)以形成非結晶氫化 的半導體後,接著退火(annealing)及/或充分地照射使其至少一部 份結晶及/或減少非結晶氫化半導體的氫含量(hydr〇gen'c〇ntent) °, 形成具有不大於0.1 at%碳含量的薄膜。 般而5,液態半導體墨水進一步包含溶劑,但並非總是必 需,溶劑以環烧經(cycloalkane)為佳。因此,當使用實質上包含 IVA族元素的墨水(例如以矽烷為主的前驅物,如矽或摻雜二 矽),形成半導體層30的步驟可能進一步包含沈積後乾燥液態前 驅物墨水的步驟。可參閱申請中美國專利申請號1〇/616,147(申浐 日:2003 年 7 月 8 號)、1〇/789,317(申請日:2004 年 2 月 27 ^ 以及10/789,274(申請曰:2004年2月27號)。 沈積後(且至少些許乾燥後),半導體層藉由加熱而固化, 參閱申請中美國專利申請號1〇/789,274(申請日:2004年2月27 號)以及10/949,013(申請曰:20〇4年9月24號),而形成非結晶 氫化(摻雜)石夕(a-Si:H)層。當半導體層由(環)石夕烷及/或異(環) 所形成’固化/加熱步驟可移除不需要的前驅物/墨水副產品,$ 如易揮發的含碳材料,或是降低a-Si:H層的含氫量(如果半導體 層形成後,使用雷射來結晶,特別有益處)。當半導體層由異(環" 矽烷形成,固化/加熱步驟可活化異(環)石夕烷内的部份摻雜物,^ 9 1357157 疋在很多具體實施例中,摻雜物的活化更可能發生在雷射結晶化 過程。 推雜的半導體層可由液態半導體前驅物墨水的區域列印來沈 積於閘極金屬及半導體層上(例如:申請中之美國專利申請號 1〇/949,013(申請日:2004 年 9 月 24 號)及 11/203,563(申請曰 Γ 2005年8月11號))。後者方法接近金屬氧化物半導體(Metal Oxide Semiconductor,MOS)TFT結構的形成方法,可節省成本, 因為G)半導體前驅物材料的有效使用,以及(ii)半導體沈積及製圖 整合為單一列印步驟。 全面沈積包含蒸鍍、物理蒸氣沈積、濺鍍或化學蒸氣沈積, 已為習知技藝之人所知悉。全面沈積包含旋轉塗覆墨水以及固化 墨水(可參閱美國專利號6,878,184以及申請號1〇/749,876,申請 曰,2003年12月31日)。墨水包含(環)矽烷、聚矽烷或金屬奈米 粒子(不易起化學反應的)及溶劑。金屬可藉由下述順序沈積,包 s基本金屬、傳統合金以及導電金屬化合物。基本金屬如銘 (aluminum)、鈦(titanium)、釩(vanadium)、鉻(chromium)、鉬 (molybdemmi)、鎢(tungSten)、鐵(ir〇n)、鎳(nickd)、鈀 (palladium)、鉑(platinum)、銅(copper)、辞(zinC)、銀(silver)或金 (gold)傳統合金如銘銅合金、銘梦合金、銘銅發合金、欽鶴合 金、鉬鎢合金或鋁鈦合金等。導電化合物為基本金屬的氮化物以 及矽化物,如氮化鈦、矽化鈦、氮化鈕、矽化鈷、矽化鉬矽化 鎢或矽化鉑。於其他實施例中,全面沈積之步驟包含旋轉塗覆墨 水,墨水包括含金屬材料,含金屬材料包含金屬奈米粒子及/或一 個或多個所揭露之金屬之有機前驅物。在雷射製圖之前,本發明 之方法進-步包含金屬、有機前驅物及/或金屬奈米粒子之固 退火步驟。 本發明描述製造印刷式自對準上閘極TFT之設計及流程。流 程包含印刷式摻雜玻璃於下列三種方法至少其中之一。 丄二>3/丄:)/ 丄二>3/丄:)/ 源 ⑴印刷式雜綱提縣細祕雜㈣推雜物來 介電璃的作用如同内層介電質;深-層的内声 :璃 ==、玻璃圖案之步驟留下在内層介= 得可印刷式結構之_空間_成電晶體閘極,使 用的_極線寬ϋ墨滴體積在未來廣泛使 用的列印技術中,如喷墨、凹版料爭以芬丞佩& t ^ 式',ό構之間的空間也被預期縮小。本發明將合謓門搞 線寬持續小於對紅印刷式結構之最小寬度。枚氣讓閘極 本發明將以下述之多個具體實施例在各種方面來詳細說明。 直里準源極/;及極間極結辑的被十 換雜物注入整個閘極介電質 j眚參關—Α到圖—Ε。圖—Α到圖—Ε的流程在列印換 璃圖案之前,先形朗齡tf。電晶體溝道(例如實g上 L s非晶矽或聚晶矽)藉由接著沈積的摻雜玻璃而來之 使其免於受污染。 柳奶 請參閱圖一 A,物理上隔絕的矽薄膜之形成可藉由列印或塗 覆分子及/或奈米粒子為主之矽墨水於基材丨上,接著轉換 矽烷薄例如藉由退火及/或固化)。亦即,可傳統地沈積石夕J 膜(例如藉由電漿輔助化學氣相沉積(pECVD)、低壓化學氣相沈 積fPCVD)以及濺鍍等)以及藉由紫外光雷射照射、熱爐或快$ 升溫退火(Rapid Thermal Annealing,RTA)來結晶(在結晶催化劑如 11 1357157 媒’係選擇性的)°接著藉由低解析度光微影 ^^擇性_製作_於聚晶薄膜。切薄膜藉由雷射退火 ΐ二根可藉由選擇性蝕刻來移除沈積矽薄膜 ^非,、、、射、非結晶部份。較佳之基材包含梦晶圓、玻璃條、玻 璃片、塑膠片或金屬片(其中可選擇性的為剛硬或彈性,以 為例’具有薄氧化層於其上)。 基材1包含傳統的力學支撐結構,當的非導電性基材可包 各以玻璃、陶瓷、介電質或塑膠所製成之盤、碟及/或片。亦 當ίί/ΐ基材包含以半導體(如石夕)及/或金屬所製成之晶 因、碟、片及/或羯。在基材包含金屬片及/或箱之例子中,裝置 導ΐ或電容,方法可進—步包含從金屬基材形成 導體及/或電4。然而,任何導電紐應在其與其上之任一電性 主動U結構之財-絕緣層(如半導體層2),除了導電接觸點 ΐ位ϋ位於絕緣體上之裝置到形成於金屬基材内之結構(中介 1、導體及/或電容之—或多個金屬墊,用以電子商品監視 (Electronic Article Surveillance, (Radio Frequency mentiflcation,rfid)標籤’例如美國專利申請號i〇/885,283(申請 =.20〇4年7月6日)及/或美國臨時專利申請號6〇/592,596(申 «月日· 20〇4年7月31日申請)以及6〇/617 617(申請日:2〇〇4年The ruthenium has a molecular weight of 45 Å to 23 gram per mole, which has a polydispersion index less than h. After curing to form a non-crystalline hydrogenated semiconductor, followed by annealing and/or sufficient irradiation to at least partially crystallization and/or reduce the hydrogen content of the amorphous hydrogenated semiconductor (hydr〇gen'c〇) Ntent) °, forming a film having a carbon content of not more than 0.1 at%. Generally, the liquid semiconductor ink further contains a solvent, but it is not always necessary, and the solvent is preferably cycloalkane. Therefore, when an ink substantially containing an IVA group element (e.g., a decane-based precursor such as ruthenium or doped ruthenium) is used, the step of forming the semiconductor layer 30 may further include the step of drying the liquid precursor ink after deposition. See US Patent Application No. 1〇/616,147 (Application Date: July 8, 2003), 1〇/789,317 (Application Date: February 27, 2004 and 10/789, 274 (Application: 2004) February 27, 2007. After deposition (and at least a little drying), the semiconductor layer is cured by heating, see U.S. Patent Application Serial No. 1/789,274 (filed on: February 27, 2004) and 10/. 949,013 (application 曰: September 24, 2014), and form a non-crystalline hydrogenated (doped) australis (a-Si:H) layer. When the semiconductor layer consists of (cyclo)stone and/or The 'curing/heating step formed by the ring can remove unwanted precursors/ink by-products, such as volatile carbonaceous materials, or reduce the hydrogen content of the a-Si:H layer (if the semiconductor layer is formed, It is particularly advantageous to use a laser to crystallize. When the semiconductor layer is formed of a hetero (cyclo) decane, the curing/heating step can activate a part of the dopant in the hetero (cyclo) alkane, ^ 9 1357157 疋 many In a specific embodiment, the activation of the dopant is more likely to occur during the laser crystallization process. The doped semiconductor layer may be made of a liquid semiconductor precursor ink. The area is printed and deposited on the gate metal and semiconductor layers (for example, US Patent Application No. 1/949,013 (Application Date: September 24, 2004) and 11/203,563 (Application 曰Γ 2005 8) The 11th)). The latter approach is close to the formation of metal oxide semiconductor (MOS) TFT structures, which can save costs because of the efficient use of G) semiconductor precursor materials and (ii) semiconductor deposition and mapping integration. A single printing step. Comprehensive deposition including vapor deposition, physical vapor deposition, sputtering, or chemical vapor deposition is known to those skilled in the art. Full deposition includes spin-on inks and cured inks (see U.S. Patent No. 6,878 , 184 and application No. 1 / 749, 876, application 12, December 31, 2003). The ink contains (cyclo) decane, polydecane or metal nanoparticles (not easily chemically reacted) and solvent. The sequential deposition, including s basic metals, traditional alloys and conductive metal compounds. Basic metals such as aluminum, titanium, vanadium, chromium, molybdemmi , tungsten (tungSten), iron (ir〇n), nickel (nickd), palladium, platinum, copper, zinC, silver or gold traditional alloys such as Ming copper alloy, Mingmeng alloy, Ming copper hair alloy, Qinhe alloy, molybdenum tungsten alloy or aluminum titanium alloy. The conductive compound is a base metal nitride and a telluride such as titanium nitride, titanium telluride, a nitride button, cobalt telluride, molybdenum telluride, or platinum telluride. In other embodiments, the step of overall deposition comprises spin coating ink, the ink comprising a metal containing material comprising metal nanoparticles and/or one or more organic precursors of the disclosed metal. Prior to laser mapping, the method of the present invention further comprises a solid annealing step of a metal, an organic precursor and/or a metal nanoparticle. The present invention describes the design and flow of fabricating a printed self-aligned upper gate TFT. The process comprises at least one of the following three methods of printing doped glass.丄二>3/丄:)/丄二>3/丄:)/ Source (1) Printed genre Tixian County fine secret (4) Pushing matter to the role of dielectric glass as inner dielectric; deep-layer Internal sound: glass ==, the step of the glass pattern is left in the inner layer = the _ space of the printable structure is the gate of the transistor, and the volume of the _ pole line is used for printing in the future. In technology, such as inkjet and gravure materials, the space between the structures is also expected to shrink. According to the invention, the line width of the combined door is continuously smaller than the minimum width of the red printed structure. The present invention will be described in detail in various aspects in the following specific embodiments. Straight-line quasi-source/; and inter-pole episodes are injected into the entire gate dielectric by a change of impurities. Figure - Α to map - Ε process before printing the glass pattern, first form the age of tf. The transistor channel (e.g., L s amorphous germanium or polycrystalline germanium on the real g) is protected from contamination by the subsequent deposition of doped glass. Referring to Figure 1A, the physically isolated ruthenium film can be formed by printing or coating molecular and/or nanoparticle-based ruthenium ink on the substrate, followed by conversion of the decane thin, for example by annealing. And / or curing). That is, the Shichen J film can be conventionally deposited (for example, by plasma assisted chemical vapor deposition (pECVD), low pressure chemical vapor deposition (fPCVD), and sputtering, etc.) and by ultraviolet laser irradiation, hot furnace or Rapid Thermal Annealing (RTA) is used for crystallization (selective in a crystalline catalyst such as 11 1357157) followed by low-resolution photolithography to produce a polycrystalline film. The cut film is laser-annealed and the second film can be removed by selective etching to remove the deposited non-crystalline, non-crystalline, non-crystalline portions. The preferred substrate comprises a dream wafer, a glass strip, a glass sheet, a plastic sheet or a metal sheet (which may alternatively be rigid or elastic, for example having a thin oxide layer thereon). The substrate 1 comprises a conventional mechanical support structure, and the non-conductive substrate may comprise disks, dishes and/or sheets each made of glass, ceramic, dielectric or plastic. Also, the ίί/ΐ substrate contains crystals, discs, sheets, and/or crucibles made of a semiconductor such as Shi Xi and/or metal. In the case where the substrate comprises a metal sheet and/or a box, the device is guided or capacitive, and the method may further comprise forming a conductor and/or electricity 4 from the metal substrate. However, any conductive contact should be on any of its electrically active U-structured financial-insulating layers (such as semiconductor layer 2), except that the conductive contacts are placed on the insulator to form the metal substrate. Structure (intermediate 1, conductor and / or capacitor - or a plurality of metal pads for electronic article surveillance (Electronic Article Surveillance, (Radio Frequency mentifcation, rfid) tag", for example, US Patent Application No. i 〇 / 885, 283 (application =. July 6th, 20th, 4th) and/or US Provisional Patent Application No. 6〇/592,596 (application for the date of July 31st, July 31st) and 6〇/617 617 (application date: 2〇〇) 4 years

If H ^ t請°基材包含由石夕晶圓、玻璃絲、陶竞基板或 ,甘Ϊ ’片或碟、金屬箱、金屬片_以及夾層板所組成之群 ΐΓί、之1件’導電元件一般有絕緣層於其上(例如:對應的 氧化層)。 形成半導體舰層2之步驟可包含將半導體前驅物墨水列印 成圖案’接著乾燥墨水’接著固化墨水(藉由將 乾餘的墨水加,、、、或退火—段足_時間來交叉結合(_3祉)及/ 及/或增加平均分子量,增加化合物的黏 及/或:咸夕?發性)’接著將半導體薄膜部份或大致完全地結 曰曰來形成聚晶舰。半導體薄膜層2 —般包含—或多個w族元 12 1357157 Ϊ為聚石夕或石夕錯。典型半導體層2厚度可形成約30、75 500或1000奈米,或其中範圍内任何值。 k擇適备薄膜厚度,進而最佳化電晶體電性。 半半導體層1實質上包含輕微推雜無機 +導體材科,例如—或多個族元素(石夕及/或鍺) $ m-v”族材料(如:Ga蛛乂及” n_VI,,族(或輝銅礦^ 進一步包含密度為〜1〇16到〜5χ1〇18原子/立方公分的推雜= (例如B、p、AS或Sb)。輕微摻雜半導體薄膜係揭露於申 美國申請號10/949,013(申請曰:2004年9月24曰)。於一實旆 例中,半導體(電晶體溝道)層2係輕微掺雜的(例如,摻雜 約為1〇16到5xl018)。從石夕烧為主的墨水形成,輕微摻雜的半J 體層2於非結晶態有濃度表(例如,摻雜濃度與半導體厚度的 係),大約整個半導體層厚度均勻地呈現非結晶態。舉例來說, 半導體層2包含基材上均勻的掺雜半導體材料層,摻雜半導體 材料包含(a)氫化的,非結晶的或至少部份多結晶的以八族元 素,IVA族元素包含至少一個矽和鍺,以及作)摻雜物。於特定 ^施例中,薄膜結構中的IVA族元素實質上包含矽,摻雜物(可 能為B、p、As或sb,但較佳為B或P)的濃度,如上所述。 請參閱圖一 B,閘極介電質3可藉由半導體層2的熱氧化作 用或藉由列印或塗覆適當介電質前驅物以形成於半導體(例如, d)石夕烧)薄膜2上’接著轉換為介電薄膜(例如,四烧基碎氧 (tetraalkylsii〇Xane)或四烷氧基矽烷(tetraalkoxysilane)之類的氧化 石夕前驅物的液相沈積)’或是轉換為其他金屬氧化物(例如, Ti〇2、Zr〇2、Hf〇2)的沈積,或是轉換為氧化矽及/或氮化石夕層的 化學氣相沈積(CVD)、電漿辅助化學氣相沈積(PECVD)、低壓化 學氧相沈積(LPCVD)或賤鐘。如圖一 C所示’掺雜的玻璃薄膜4 接著被列印於(例如,喷墨、凹版印刷)閘極介電質3上。於一實 施例中’閘極介電質薄膜3形成於半導體薄膜層2的整個表面 上’接著摻雜的玻璃圖案4被列印於其上。掺雜的玻璃圖案的 13 1357157 版面設計實質上相同於TFT的源極_没極結構的預期版面^十 可印摻雜玻璃薄膜區域之間的間隙5定義閘極 間隙的寬度為1〜100μιη(較佳為biOpm,於一些實施 1〜5μιη)。於高溫退火後,從摻雜玻璃而來的摻雜物 二 電質進入聚残膜,定義源極/錄區域5。將 ^二 玻璃擴散至閘極介電質的溫度較佳為11〇〇ΐ以^ 7〇〇°C,持續一段足夠時間來摻雜源極/汲極終 ;二 的溝道區域7。 I—由卜禾摻雜 較佳地’列印摻雜玻璃的流程利用可以同時沈n 摻雜玻璃於電路上不同面積的工具。舉例來說,—實^ i有兩個喷墨頭在同-架上的喷墨形卩裝置,喷墨頭分隔 對應於電路中N型及p型電晶體面積之間的距離 (或此距離的數倍)。兩個喷墨頭對應地連接於N型與p 的玻璃前驅物的蓄積處(·Γνοΐτ),以及於同-個列印動作^ 在電路中不同的區域除去Ν型及ρ型摻雜的玻璃。 ,雜玻璃的前驅物包含旋塗摻雜物(spin_on_Dopant,S配 ㈣有增大的黏滞性之配方(‘‘調整”係藉由具有高黏 ft 或相容溶劑來置換或稀釋配方中的溶劑)、沈積後可 η侧。c)t氧化的摻齡付墨水配方(例如,具有 推f物置換基的環狀、線狀或樹狀魏低分子或高分子,、Ξ =ycrH9PR2 ’其巾尺係為低碳數的絲咖^心苯基或 =絲置顧笨基)、配方巾的摻雜前驅物W如,特丁基填 Urt-butyl-phosphine)、氧化摻雜分子石夕墨水配方(例如,在 具有摻雜物前驅物的環狀、線狀麟狀雜低分子或高 二长CyCl〇_Sl5〇5iilD)的氧化版本(例如單、雙或三特丁基磷 “ ϋ員,的氧化物〕或是捧雜置換基〉以及包含構及领化合物 例如鄰本_二丁酯(di_n_butylph〇sphate)之類的有機磷酸醋 (organophosphate))以及蝴酸鹽基(例如三特丁基硼酸鹽(tri t_ 14 Ί357157 butylborate))的玻璃形成配方(例如所謂的溶谬·凝膠(s〇l gel)配 方)。 適當的介電質也包括含磷、氧(進一步包含矽、碳、氫及/或 氮)、硼(進一步包含矽、碳、氫、氧及/或氮)、砰及/或銻(進一步 包含矽、碳、氫及/或氧)的化合物及/或高分子。If H ^ t please ° the substrate consists of a group of conductive elements consisting of Shi Xi wafer, glass fiber, Tao Jing substrate or Ganzi 'sheet or dish, metal box, metal sheet _ and sandwich board. There is typically an insulating layer thereon (eg, a corresponding oxide layer). The step of forming the semiconductor ship layer 2 may include printing the semiconductor precursor ink into a pattern 'then drying the ink' followed by curing the ink (by adding, drying, or annealing the remaining ink) to cross-bond ( _3祉) and / and / or increase the average molecular weight, increase the adhesion of the compound and / or: salty) "then the semiconductor film partially or substantially completely crusted to form a polycrystalline ship. The semiconductor thin film layer 2 generally comprises - or a plurality of w-type elements 12 1357157 Ϊ is a polystone or a stone slip. The thickness of a typical semiconductor layer 2 can be formed to be about 30, 75 500 or 1000 nm, or any value within the range. k select the appropriate film thickness to optimize the transistor electrical properties. The semi-semiconductor layer 1 substantially comprises a slightly doped inorganic + conductor material, such as - or a plurality of family elements (Shi Xi and / or 锗) $ mv" family of materials (such as: Ga spider 乂 and "n_VI," family (or The bismuth ore further contains a dopant having a density of from ~1〇16 to 〜5χ1〇18 atoms/cm3 = (for example, B, p, AS or Sb). The lightly doped semiconductor film is disclosed in US Application No. 10/ 949,013 (application 曰: September 24, 2004). In a practical example, the semiconductor (transistor channel) layer 2 is slightly doped (for example, doping is about 1〇16 to 5xl018). The ink-based ink is formed, and the lightly doped semi-J body layer 2 has a concentration table (for example, a doping concentration and a semiconductor thickness) in an amorphous state, and the thickness of the entire semiconductor layer uniformly exhibits an amorphous state. The semiconductor layer 2 comprises a layer of uniformly doped semiconductor material on the substrate, the doped semiconductor material comprising (a) a hydrogenated, amorphous or at least partially polycrystalline group of eight elements, the Group IVA element comprising at least one germanium. And 锗, and as a dopant. In a specific embodiment, the IVA group in the film structure The concentration of germanium, dopant (possibly B, p, As or sb, but preferably B or P) is substantially as described above. Referring to Figure 1B, the gate dielectric 3 can be semiconductor The thermal oxidation of layer 2 is either formed by printing or coating a suitable dielectric precursor on a semiconductor (e.g., d) film 2, which is then converted to a dielectric film (e.g., a four-burning base) Liquid phase deposition of a oxidized stone precursor such as tetraalkylsii〇Xane or tetraalkoxysilane or converted to other metal oxides (eg, Ti〇2, Zr〇2, Hf〇) 2) deposition, or chemical vapor deposition (CVD), plasma assisted chemical vapor deposition (PECVD), low pressure chemical oxygen deposition (LPCVD) or cesium clock converted to yttrium oxide and/or nitride layer. The doped glass film 4 as shown in Fig. C is then printed on (e.g., ink jet, gravure) gate dielectric 3. In one embodiment, the gate dielectric film 3 is formed on the entire surface of the semiconductor thin film layer 2, and then the doped glass pattern 4 is printed thereon. The 13 1357157 layout design of the doped glass pattern is substantially the same as the source of the TFT _ the expected layout of the immersed structure. The gap 5 between the ten-printable doped glass film regions defines the width of the gate gap to be 1 to 100 μm ( Preferably it is biOpm, in some implementations 1~5μιη). After the high temperature annealing, the dopants from the doped glass enter the polyresist film, and the source/recording region 5 is defined. The temperature at which the ^ 2 glass is diffused to the gate dielectric is preferably 11 〇〇ΐ to 7 〇〇 ° C for a sufficient period of time to dope the source/drain terminal; I. The process of doping the doped glass preferably by 'doping the doped glass utilizes a tool that can simultaneously dope the glass to different areas of the circuit. For example, there are two inkjet heads on the same frame, and the inkjet heads are separated by the distance between the N-type and p-type transistors in the circuit (or the distance). Several times). The two ink jet heads are correspondingly connected to the accumulation of the glass precursors of the N-type and p (·Γνοΐτ), and the same-printing action is performed to remove the Ν-type and p-type doped glasses in different regions of the circuit. . , the precursor of the miscellaneous glass contains a spin-on dopant (Spin_on_Dopant, S- (4) has an increased viscosity of the formulation (''Adjustment') by replacing or diluting the formulation with a high viscosity ft or compatible solvent Solvent), η side after deposition. c) t-oxidized age-incorporated ink formulation (for example, a cyclic, linear or dendritic low molecular or macromolecule with a push-substituent, Ξ =ycrH9PR2 ' The towel ruler is a low-carbon silk coffee core or a silk-based base, the doped precursor of the formula towel W, such as a Urt-butyl-phosphine, and an oxidized doped molecular stone An oxidized version of an ink formulation (eg, a cyclic, linear ribbed hetero-molecule or a high-length CyCl〇_Sl5〇5iilD with a dopant precursor) (eg, mono-, di- or tri-tert-butyl phosphate) , an oxide] or a heterocyclic substituent, and an organic phosphate containing a conformational compound such as di_n_butylph〇sphate, and a sulphate group (eg, tributyl) a glass forming formulation of a borate (tri t_ 14 Ί 357157 butylborate) (such as a so-called solute gel) S〇l gel))). Suitable dielectrics also include phosphorus, oxygen (further containing cerium, carbon, hydrogen and/or nitrogen), boron (further containing cerium, carbon, hydrogen, oxygen and/or nitrogen), cerium and/or cerium (further included) Compounds and/or polymers of hydrazine, carbon, hydrogen and/or oxygen.

含磷介電質包含: 吲哚基磷酸(0X0 phosphorus)化合物及酸(例如,ρ2〇3、ρ2〇5、 POCl3 等); 填基梦酸鹽(phosphosilicate); 單(monomeric)、雙(dimeric)及 / 或寡(〇lig〇meric)磷酸鹽(例 如,偏磷酸鹽及/或聚磷酸鹽); 磷酸鹽(phosphonate)、次磷酸鹽(phosphinate)以及麟化氫 (phosphine);The phosphorus-containing dielectric material comprises: a mercaptophosphoric acid (0X0 phosphorus) compound and an acid (for example, ρ2〇3, ρ2〇5, POCl3, etc.); a phosphosilicate; a mono(monomeric), a double (dimeric) And/or oligo (〇lig〇meric) phosphate (eg, metaphosphate and/or polyphosphate); phosphate (phosphonate), phosphinate, and phosphine;

有機吲哚基填酸(oxo phosphorus)化合物及酸(例如,烧基(芳 香羥基)磷酸(alkyl(aryl)phosphate)、磷酸鹽、次磷酸鹽及其濃縮 產品),以及 烷基磷酸及/或烷基次磷酸及/或芳香羥基磷酸及/或芳香羥基 次構酸。 含碳介電質包含: 無機碳化合物及無機碳酸(例如,硼酸或B2〇3); 石夕酸碳(borosilicate)、棚氮六環(borazole)及其高分子形式; 鹵化碳(boron halogenide)(例如,BBr3); 15 1357157 硼烷(borane)(例如,B1()H1()),矽(sila-)及/或氮雜硼烷 (azaborane);以及 有機硼化合物及有機硼酸(例如,烷基/芳香羥基碳酸、硼酸 鹽、烧基環硼氧烧(boroxine)、硼氮六環以及添加棚烧複合物)。 含砷及/或含銻介電質包括: 上述氧代(0X0-)及氮雜(aza-)類似化合物,如As203以及 Sb203 ;以及 石申基石夕烧(arsinosilane),如 cyclo-As5(SiH3)5。 因此,源極及汲極終端包含(i)IVA族元素、如GaAs的III-V 族化合物半導體,或如ZnS或ZnS的Π-VI族(硫化物)半導體, 以及(ii)摻雜物元素。半導體包含IV族元素(如Si及/或Ge)以及 B、P、As及Sb所組成之群組其中之一。 於不同實施例中’閘極寬度至少為0.1微米、0.5微米、1微 米或2微米。於一實施例中,最小閘極寬度約為5微米。閘極 長度從Ιμιη到ΙΟΟΟμπι或其中任意範圍中的值(如從2μιη到 200μηι或從5μιη到ΙΟΟμιη)。閘極厚度從50nm到1〇〇〇〇nm或其 中任意範圍中的值(如lOOnm到5000nm或從200nm到 2000nm)。源極及汲極終端之厚度從1〇nm到1〇〇〇nm或其中任 意範圍中的值(例l〇nm、20nm或250nm到1〇〇〇nm、1〇〇nm或 50nm) ° 請參閱圖一 E,藉由沈積適當閘極金屬前驅物(例如,含有金 屬奈米粒子或有機金屬化合物墨水,掺雜分子及/或奈米粒子為 主的矽墨水,矽化前驅物墨水),可將閘極金屬8至'少列印於& 刷式摻雜玻細案所定A之間軸’接轉換為閘極金屬。摻 雜的石夕墨水祕舰-㈣要高溫退火輕射照射用以形成聚 16 1357157 晶矽及/或用以活化摻雜物來達到充分的導電性。亦即,種子層 (seed layer)的前驅物可被列印於由印刷式摻雜玻璃圖案 ^ 間隙内,閘極金屬(例如Ag、Au、Cu、pd、pt)可被電鍍 (electroplated)或化學鍍(eiectrolessl神①於種子層 在鍍膜程序前,需要進行活化步驟/ 上種子層An organic oxo phosphorus compound and an acid (eg, an alkyl (aryl) phosphate, a phosphate, a hypophosphite, and a concentrated product thereof), and an alkyl phosphate and/or Alkyl hypophosphorous acid and/or aromatic hydroxyphosphoric acid and/or an aromatic hydroxy acid. The carbonaceous dielectric comprises: an inorganic carbon compound and an inorganic carbonic acid (for example, boric acid or B2〇3); a borosilicate, a borazole, and a polymer thereof; a boron halogenide (eg, BBr3); 15 1357157 Borane (eg, B1()H1()), sila-) and/or azaborane; and organoboron compounds and organoborates (eg, Alkyl/aromatic hydroxycarbonic acid, borate, boroxine, boron hexacycline, and addition of shed composites). The arsenic-containing and/or antimony-containing dielectrics include: the above-mentioned oxo (0X0-) and aza- (aza-) analogous compounds, such as As203 and Sb203; and the arsinosilane, such as cyclo-As5 (SiH3). ) 5. Therefore, the source and drain terminals comprise (i) Group IVA elements, Group III-V compound semiconductors such as GaAs, or Group VI-VI (sulfide) semiconductors such as ZnS or ZnS, and (ii) dopant elements. . The semiconductor includes one of a group IV element (such as Si and/or Ge) and a group of B, P, As, and Sb. In various embodiments, the gate width is at least 0.1 microns, 0.5 microns, 1 micron or 2 microns. In one embodiment, the minimum gate width is about 5 microns. The length of the gate is from Ιμιη to ΙΟΟΟμπι or a value in any range thereof (e.g., from 2μιη to 200μηι or from 5μιη to ΙΟΟμιη). The gate thickness is from 50 nm to 1 〇〇〇〇 nm or a value in any range (e.g., 100 nm to 5000 nm or from 200 nm to 2000 nm). The thickness of the source and drain terminals is from 1 〇 nm to 1 〇〇〇 nm or a value in any range (eg, l〇nm, 20nm or 250nm to 1〇〇〇nm, 1〇〇nm or 50nm) ° Referring to Figure IE, by depositing a suitable gate metal precursor (for example, a metal ink or an organometallic compound ink, doped molecules and/or nanoparticle-based ruthenium ink, ruthenium precursor ink), The gate metal 8 to 'lessly printed on the & brush-doped glass case A is connected to the gate metal'. The doped Shishi ink secret ship-(d) is subjected to high-temperature annealing light radiation to form poly 16 1357157 wafers and/or to activate dopants to achieve sufficient conductivity. That is, the precursor of the seed layer can be printed in the gap of the printed doped glass pattern, and the gate metal (eg, Ag, Au, Cu, pd, pt) can be electroplated or Electroless plating (eiectrolessl god 1 in the seed layer before the coating process, the activation step / upper seed layer is required

閘極金屬前驅物的列印包含喷墨、凹版印刷、平版顯影。再 者於閘極金屬上製作圖案的步驟包含塗覆或列印閘極金 驅物’將其局部地暴露於雷射照射下,致使曝光區域改變 度特性(可參閱美國專利申請號1〇/749,876,申請曰:2〇〇3年12 月31日)。洗去未曝光區域後,在另外的固化或退火過 昭 射過的閘極金屬前驅物留著用以形成閘極金屬。亦即,可使用;; 正向”製II及軸法’暴露於照射下的區域被洗去。這些實施例 Ϊιίϊΐΐ®實例)具有無法直接㈣料成的高解析i金屬閘 極,案的優點。—般而言,閘極導體包含金屬。_,對間極 而吕’’’金屬”包含掺雜的聚石夕分子。 列印枯於此所揭露之其他可列印的墨水)藉由傳統The printing of the gate metal precursor includes inkjet, gravure, lithographic development. Further, the step of patterning the gate metal includes coating or printing the gate gold flooder 'locally exposing it to laser illumination, resulting in an exposed area change characteristic (see U.S. Patent Application No. 1/ 749,876, application 曰: December 31, 2). After the unexposed areas are washed away, additional gated metal precursors are cured or annealed to form gate metal. That is, it can be used;; the positive "system II and the shaft method" is exposed to the area under irradiation. These examples of Ϊιίϊΐΐ® have high-resolution i-metal gates that cannot be directly (four), the advantages of the case In general, the gate conductor contains a metal. _, the pair of poles and the '''metal'' contains doped poly-stone molecules. Print the other printable inks revealed hereby by tradition

。舉例來說,列印代表將含金屬墨水根據預定 喷墨印、網版列印、凹版印刷、平版印刷、彈性凸版 exography),喷霧塗覆(Spray_c〇ating)、狹縫塗 ting)微點觸(micr〇sp〇tting)、平盤塗覆 _c ' M0P(StamPing) ' dispense 方式印出。墨水實質上包含金屬前驅 屬仆人胳七。適〇於列印或鍍膜的金屬前驅物包含有機金 f化合物或金屬(如欽、銅、銀、絡、翻、鶴、姑、鎳、^、 奈米、鐵’或是金屬合金’較佳為銀或金)的奈米粒子(如. For example, the printing means that the metal-containing ink is subjected to a predetermined ink jet printing, screen printing, gravure printing, lithography, elastic relief exography, spray coating, and slit coating. Touch (micr〇sp〇tting), flat plate coating _c 'M0P (StamPing) ' dispense mode to print out. The ink essentially contains the metal precursor servant. Suitable for printing or coating metal precursors containing organic gold compounds or metals (such as Chin, copper, silver, lanthanum, turn, crane, austen, nickel, ^, nano, iron 'or metal alloy' is preferred Nanoparticles of silver or gold)

如具有一 17 1357157 ㈣乂面活性劑)’且提供一或多個表面^體(ligand)(例如所® 原子),或是保持非聽。鍍膜包含雷射利用金屬(如U Ιΐί粒子或有機金屬化合物來寫人金屬的種子層,接著選堪) ϋ(例如,藉由化學鍍或電鍍)一塊導體(如c〇,N g 導體(如Sl及域Ge)於雷射寫入後的種子層上。亦即墨上= 上包含含有黏著劑内一或多個金屬或合金粉末的糊狀物。、 參 句墨水可由一般及/或其他已知流程使其乾燥。舉例來 k二屬前驅物墨水可藉由加熱含有印刷式金屬前驅物墨水的 ίϊΐ:溫度下一段足夠長的時間來移除溶劑及/或黏著劑,S 3使:,燥。從可印墨水移除溶劑的適當溫度為8〇ΐ到1 C,或其中任意範圍中的值(例如,1〇〇。〇到12〇。〇。於 J 刷式墨水移除溶劑的適當時間長度為1〇移二If there is a 17 1357157 (four) surfactant, and provide one or more surfaces (such as the ® atom), or remain non-listening. The coating consists of a laser using a metal (such as U Ιΐ ί particles or an organometallic compound to write a seed layer of a human metal, followed by a coating) ϋ (for example, by electroless plating or electroplating) a conductor (such as c〇, N g conductor (such as Sl and the domain Ge) are on the seed layer after the laser writing, that is, the ink contains a paste containing one or more metal or alloy powders in the adhesive. The ink of the sentence can be general and/or others. Knowing the process to dry it. For example, the k-genus precursor ink can be removed by heating the ink containing the printed metal precursor ink at a temperature for a sufficient period of time to remove the solvent and/or the adhesive, S 3 : Dry. The appropriate temperature for removing the solvent from the printable ink is 8 〇ΐ to 1 C, or a value in any range (for example, 1 〇〇. 〇 to 12 〇. 〇. Remove the solvent from the J brush ink Appropriate length of time is 1

=此加熱方法可在—般的加熱板上、烤 J 選擇性地於鈍氣環境下進行。 溫1埂仃, 县分離出的乾燥含金屬材料進—步叹夠的溫度盥時門 =退火來改善電性及/或物性(例如,導 及細= This heating method can be carried out on a common hot plate and baked in a selective atmosphere. Temperature 1埂仃, the dry metal-containing material separated from the county is sighed enough to slam the temperature 盥 gate = annealing to improve electrical and / or physical properties (for example, guide and fine

接i雷ϋίΐΐίϊϊ全面地沈積或列印’進行退火以形成 ===:成具有圖案的金“:X 前包=r已或=圖=屬驟 度為1分鐘到2小時,較佳為1()分鐘到 3 =地峨氣或健的環境下導熱。柄Ϊί = 圖案化的麵舰耿核善其雜、概mg將雷射 18 ^57157 於一實施例中’從印刷式摻雜玻璃圖案除去閘極金屬前驅物 墨水的水分,將其有效地限制在摻雜玻璃圖案所定義的間隙 内。在閘極金屬前驅物墨水沈積前,摻雜玻璃圖案被用以(例 如’藉由電漿照射’塗覆添氟層(fluorinated iayer)或其他具有除 ^性質的材料)確保除濕。閘極金屬前驅物墨水及/或^雜^玻璃 前驅物包含用來確保摻雜玻璃圖案除去閘極金屬前驅物墨水之 添加物。另一實施例,閘極金屬前驅物弄濕可印摻雜玻璃圖 案,致使其延伸超出摻雜玻璃圖案部份之間的間隙區域,且至 少一部份覆蓋到摻雜玻璃圖案。此實施例有益於減少裝置内的 閘極引發汲極漏電情況。 根據本發明,製造TFT的流程包含下列步驟: 沈積輕微摻雜或不摻雜的矽烷來形成非結晶態矽薄膜; (選擇性地)去氫非結晶矽; 化)沈積難氧化物、成長閘極氧化物、或其他方式(例如熱氧i ϋ ϋ ΐΐ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ ϊϊ () minutes to 3 = heat in the mantle or in a healthy environment. Handle Ϊ ί = patterned surface ship 耿 耿 善 、 概 概 概 概 18 18 18 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ The pattern removes moisture from the gate metal precursor ink, effectively confining it to the gap defined by the doped glass pattern. Before the gate metal precursor ink is deposited, a doped glass pattern is used (eg, by electricity) Slurry irradiation 'fluorinated iayer or other materials with decontamination properties" ensures dehumidification. Gate metal precursor inks and / or glass precursors are included to ensure doped glass pattern removal gate An additive to a metal precursor ink. In another embodiment, the gate metal precursor wets the doped glass pattern such that it extends beyond the gap region between the doped glass pattern portions and at least a portion is covered Doped glass pattern. This embodiment is beneficial for reducing the loading The gate within the gate induces a drain leakage condition. According to the present invention, the process for fabricating a TFT comprises the steps of: depositing a lightly doped or undoped germane to form an amorphous germanium film; (selectively) dehydrogenating amorphous germanium Diluting difficult oxides, growing gate oxides, or other means (such as hot oxygen)

將輕微摻雜的或不摻雜的非結晶態石夕結晶化,藉 子(excimer)雷射或火爐處理); 刀 區^由沈雜_玻翻印或其他製圖綠⑽極及没極 處理匕及/或擴散摻雜物進入源極以及及極區域(例如’藉由熱 (選擇性地)沈積金屬種子層; 沈積閘極金屬; 閘極金屬(選擇性地)進行退火; 19 1357157 沈積保護層(passivation)(例如,氧化物或氮化物),· 後的氣化物夕形 之勒圖厂儿^圖二:8顯示藉由從摻雜玻璃注入掺雜物的聚石夕分子 而rU ’有益於結合間極介電質形成的另一流程。然 閉極氧縫要方面餘雜物賴雜前,達成Crystallization of lightly doped or undoped amorphous states, treated by excimer laser or furnace); knife area ^ by refilling _ glass reprint or other drawing green (10) pole and immersion treatment 匕And/or diffusing dopants into the source and the polar regions (eg, 'thermally (selectively) depositing a metal seed layer; depositing a gate metal; gate metal (optionally) annealing; 19 1357157 deposition protection Passivation (for example, oxide or nitride), after the gasification of the shape of the plant, Figure 2: 8 shows the rU ' by the injection of dopants from the doped glass. Another process that is beneficial to the formation of inter-electrode dielectrics.

冷薄膜12關1A職流程形成於基材11上,藉由列印或 膜,奈練子為主㈣墨水’接著將其轉換為石夕薄 你、〆,藉由傳統方法沈積矽薄膜(例如,PECVD、LPCVD、濺 般藉纟料光雷射騎、紐或RTA退火(選擇 ,二u、Nl、AI之類結晶催化劑出現情況下)來結晶。因 此、參閱圖二B ’摻雜的玻璃14被列印(例如,喷墨列印、凹 或平板印刷)於(聚)石夕薄膜上。可印摻雜圖案的版面設計 大致上相同於源極-汲極區域的預期版面設計。亦即, 雜玻璃,歸應於TFT⑽輕微摻魏伸區域(例如,輕微推雜 沒極)’第二掺雜玻璃圖案可接著列印用以形成相對重度換‘源 極級極區域。印刷式摻雜玻璃區域14之間隙 金屬 以及問極介電質的位置。間隙寬度可為㈣(較^ ΐμηι到ΙΟμιη或_到5_。列印後,掺雜的玻璃圖案於夠低 的溫度下選擇性地固化來確保沒有摻雜物接著從摻雜玻璃擴散 至矽薄膜或擴散至定義閘極金屬及閘極介電質的間隙。於一' 施例中,摻雜玻璃圖案製造出複數個孔洞,暴露半 之含有掺雜物(例如’輕微摻雜)的表面。 '、日 請參酬2C,閘極介電質13的形成可藉由暴露的聚石夕層的 熱矽氧化作用,列印或塗覆適當介電前驅物且轉換 膜,或是Si02或其他氧化金屬的液態沈積,或氧化石夕及化 矽沈積方_丨如,PECVD、LPCVD、於魏錢氣源的存在下 20 1357157 之元素㈣齡小魏轉収較⑽_。 雜物從掺雜玻璃擴散至溝i區域。 U、抑制或避免摻 材料電含上述任何的閘極介電薄膜 接著形_ 麵小於 SHI中任意範圍中的值(例如,30A到贈ί μα ίThe cold film 12 is closed on the substrate 11 by printing or printing, and the ink is used as the main ink (4), and then converted into a thin film, and the germanium is deposited by a conventional method (for example, , PECVD, LPCVD, sputtering, crystallization by laser beam riding, neon or RTA annealing (selection, in the case of crystallization catalysts such as ii, Nl, AI). Therefore, refer to Figure 2B 'Doped glass 14 is printed (eg, inkjet printed, recessed or lithographically printed) on a (poly) stone film. The layout of the printable doped pattern is substantially the same as the intended layout of the source-drain region. That is, the miscellaneous glass is assigned to the slightly doped region of the TFT (10) (for example, a slightly doped dipole). The second doped glass pattern can then be printed to form a relatively heavy-for-source-polar region. The gap metal between the miscellaneous glass region 14 and the position of the dielectric material. The gap width can be (4) (relative to ΐμηι to ΙΟμιη or _ to 5_. After printing, the doped glass pattern is selectively at a sufficiently low temperature Curing to ensure that no dopants then diffuse from the doped glass to the tantalum film Diffusion to define the gap between the gate metal and the gate dielectric. In one example, the doped glass pattern creates a plurality of holes that expose half of the surface containing dopants (eg, 'slightly doped.' 2C, the formation of the gate dielectric 13 can be printed or coated with a suitable dielectric precursor and converted film, or SiO 2 or other oxidation by the thermal oxidation of the exposed polylithic layer. Liquid deposition of metal, or oxidized stone and cerium deposition, such as PECVD, LPCVD, in the presence of Wei Qiang gas source 20 1357157 element (four) age small Wei transfer (10) _. To the trench i region U, suppress or avoid the doping material containing any of the above gate dielectric films and then the shape is smaller than the value in any range of SHI (for example, 30A to ί μα ί

2〇〇l:t^^ * 500A ,J 或疋於另一實施例,約為1500A) 氧化矽或氧化銘的材料是較佳的選擇。於一實:;:J係 電薄膜13的厚度大於重度摻雜祕及汲極終端的厚产,二^ ,源極及汲極終端與閘極金屬層之間形成電連結的^ 取低H以高速電晶體而言,薄閘極介電薄膜是較 擇。在閘严氧化物13形成後,請參閱圖二D,溫度被升至(例如 大於800 C)足以將換雜物擴散(驅使(制咖))至半導於 形成源極/_域16。進而,於升高溫 與摻雜物的驅使同時發生。需要引出顯著的摻雜物擴散作用^ 摻雜玻璃退火溫度的較佳選擇為高於用以形成介電性的有效閘 極介電質的溫度,但不高於基材的最大處理溫度(例如:如鋁之 類相對低熔點材料的金屬箔,不會超過600°C的溫度,以及或許 在使用雷射的情況下,不鑛鋼簿’不會超過11〇〇°C的溫产)。 之後,請參閱圖二E ’閘極金屬18的形成大致上與圖一 E 的閘極金屬8的形成相同。 ~ 21 1357157 瘦雜玻璃層的姑yfh 錮』ΐΊ到圖三C顯示藉由沈積障壁及/或保護層25或產生 隆低拉於摻雜朗上’於形成雜介電質的過程中, 生過度擴散的可能性之另-流程。因此,於- 磷或碳)㈣膜。糾,缺乏摻雜物的 ί產iS 摻雜玻璃薄膜於熱水或水蒸氣甲 於石夕22 ίίΓίΐ 些推雜物’但在玻璃塊體中(特別 足夠的摻雜物’有益於源極/沒極齡 溥…蒦曰及/或摻雜物貧乏層25可藉由暴露 膜於可改變表面特性的纽Τ絲成,例如避==== 擴散至溝道,例如暴露於臭氧或Ν2〇。 卿雜物顯耆地 請參閱圖三Α’保護層或障壁層25(可為獅^ 層)可在注入摻雜物前,以遠低於用於導引:雜^ 的姐度來形成。此障壁層有效地避免摻雜物從摻璃、於 兩溫度下翻:至相接結構(例如,聚赠道27 極介電質23及/或内層介電質)。保護二5 未推雜氧化石夕’未掺雜氧化石夕對於接著的閘極介電 質形成過程並不是阻礙。能夠製造障壁層的流程包含由 目沈積Si〇2(矽氟酸伽士—卿出咖acid)以及硼酸:水 犯和物)’於適當溫度製造出高品質閘極介電質的薄膜戶。 11繼義24 __輸掺i物來 無’藉由列印或塗覆適當間極介電前驅物以及接 著固化&火(例如,使用液態沈積或傳統方法)的步驟來形成閘 22 1357157 橫向延伸不需要侷限在摻雜玻璃圖案/結構24 =的間隙。事實上’於-些例子中,希望至少部份的閑極 23能完全地或部份地覆蓋掺雜玻璃圖案的表面(如圖三b =)。於-些例子中’閘極介電層自己也提供障壁/保護層乃 抑制或避免掺雜玻璃層24或源極/汲極圖案%過於擴 政摻雜物。源極/祕區域26的形成大致上相同於圖一 D = 極/汲極區域26。 们原 於一些例子中,由於摻雜材料的增強的氧化率,需2〇〇l:t^^ * 500A , J or 疋 in another embodiment, about 1500A) yttrium oxide or oxidized material is a preferred choice. Yu Yishi::: The thickness of the J-based electrical film 13 is greater than that of the heavily doped secret and the terminal of the drain, and the electrical connection between the source and the drain terminal and the gate metal layer is low. In the case of high-speed transistors, thin gate dielectric films are preferred. After the gate oxide 13 is formed, referring to Figure 2D, the temperature is raised (e.g., greater than 800 C) sufficient to diffuse the dopant (driving) to the semiconductor to form the source/_ domain 16. Further, the high temperature rise occurs simultaneously with the driving of the dopant. Need to induce significant dopant diffusion ^ The preferred annealing temperature of the doped glass is higher than the temperature of the effective gate dielectric used to form the dielectric, but not higher than the maximum processing temperature of the substrate (eg : Metal foils such as aluminum, which are relatively low-melting materials, do not exceed 600 ° C, and perhaps in the case of lasers, the non-mine steel book 'will not exceed 11 ° C temperature production. Thereafter, referring to Fig. 2E', the formation of the gate metal 18 is substantially the same as the formation of the gate metal 8 of Fig. 1. ~ 21 1357157 A thin glass layer of yfh ΐΊ ΐΊ 图 图 图 图 图 图 图 图 图 图 图 图 图 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积Another possibility of over-diffusion - the process. Therefore, in the - phosphorus or carbon) (four) film. Correction, lack of dopants, il production iS doped glass film in hot water or water vapor in the stone eve 22 ίίΓ ΐ some tweaks 'but in the glass block (especially enough dopants are beneficial to the source / No extreme age 蒦曰... 蒦曰 and/or dopant-depleted layer 25 can be formed by exposing the film to a twisted wire that can change surface properties, such as avoiding ==== diffusion to the channel, such as exposure to ozone or Ν2〇 For details, please refer to Figure 3. The protective layer or barrier layer 25 (which can be a lion layer) can be formed before the dopant is implanted, which is much lower than that used for guiding: The barrier layer effectively prevents the dopant from turning from the glass, at two temperatures: to the junction structure (for example, the polysilicon 27 dielectric and/or the inner dielectric). The oxidized stone eve 'undoped oxidized oxide eve is not an obstacle to the subsequent gate dielectric formation process. The process of fabricating the barrier layer includes the deposition of Si 〇 2 (矽 矽 — 卿 以及 以及 acid) Boric acid: water crimes and substances) 'produces high-quality gate dielectric films at appropriate temperatures. 11 继 24 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The lateral extension need not be limited to the gap of the doped glass pattern/structure 24 =. In fact, in some examples, it is desirable that at least a portion of the idler 23 can completely or partially cover the surface of the doped glass pattern (Fig. 3b =). In some examples, the gate dielectric layer itself also provides a barrier/protective layer that inhibits or prevents the doped glass layer 24 or the source/drain pattern from being too diffuse dopant. The source/secret region 26 is formed substantially the same as FIG. 1 D = pole/drain region 26. In some cases, due to the enhanced oxidation rate of the doping material,

=用前’掺雜物過度擴散進人溝道區域27。增強的氧化 在溝道27的邊緣產生較厚的閘極氧化物幻。較厚的介電質減少 =26邊緣的電場’因此減少·引起汲極漏te她⑽ Dram Leakage,GIDL)的情況。 ^參閱圖三T ’金屬28被列印用以沈積適當閘極金屬 刖驅物(例如,金屬奈米粒子或有機金屬化合物、摻雜分子及/或= The pre-dopant is excessively diffused into the human channel region 27. Enhanced oxidation produces a thicker gate oxide illusion at the edge of the channel 27. The thicker dielectric is reduced by =26 the electric field at the edge is reduced, causing the leakage of her (10) Dram Leakage, GIDL). Referring to Figure 3, T' metal 28 is printed to deposit a suitable gate metal ruthenium drive (e.g., metal nanoparticles or organometallic compounds, dopant molecules, and/or

^米粒子為主_墨水、魏物前驅物)於_式摻雜的玻璃圖 案24所定義的間隙25内’且轉換為閘極金屬 極金屬8。 UThe rice particles are mainly _ink, and the precursor of the material is in the gap 25 defined by the _-doped glass pattern 24 and is converted into the gate metal electrode 8. U

源極/汲極接觸點及其互诖的咕_ 源極/汲極接點及其互連的結構的處理流程可與任上 述知裝置結構及/或流程一起使用。 、 責作源極/汲極接觸鍅刻點的戒罩沾問梓 圖四A到圖四D顯示形成源極/汲極接點及内層介電質 (InterLayer Dielectric,ILD)於圖一到圖三所示之基礎TFT結構的 過^。請參閱圖四A,此過程使用印刷式金屬閘極14〇,部份地 覆蓋摻雜玻璃圖案130,當作蝕刻摻雜玻璃圖案13〇的遮罩來暴 露源極级極區域112及m的接點面積。此實施例確保源極/汲 23 1357157The process flow of the source/drain contacts and their interconnected 源_source/drain contacts and their interconnected structures can be used with any of the known device structures and/or processes. Responsible for the source/bungee contact engraving point mask. Figure 4A to Figure 4D show the formation of the source/drain contact and the inner dielectric (ILD) in Figure 1 to Figure The basic TFT structure shown in Figure 3. Referring to FIG. 4A, the process uses a printed metal gate 14〇 partially covering the doped glass pattern 130 as a mask for etching the doped glass pattern 13〇 to expose the source-level regions 112 and m. Contact area. This embodiment ensures the source / 汲 23 1357157

極接點的距離相當接近(因此降低電阻),致使源極/汲極接點上 的光學矽化物如同沒有有機内層介電質存在於源極/汲極區域 112/114上方。進而,延伸閘極金屬140超出閘極介電質120的 面積以及留下部份摻雜玻璃130於閘極金屬140下方,可減少 閘極引起汲極漏電的情況。The distance between the pole contacts is quite close (and thus the resistance), causing the optical germanium on the source/drain contacts to exist above the source/drain regions 112/114 as if there were no organic inner dielectric. Further, extending the gate metal 140 beyond the area of the gate dielectric 120 and leaving a portion of the doped glass 130 under the gate metal 140 reduces the gate leakage caused by the gate.

源極/汲極區域112/114以及溝道116於基材1〇〇上的形成 類似於圖一 D的源極/没極區域6以及溝道7。從掺雜玻璃130 注入摻雜物後,留下未摻雜半導體層的一部份110。於源極/汲 極區域112/114形成後’留下摻雜玻璃層13〇。閘極介電質12〇 的形成類似於圖一 C的閘極介電質3或圖二c的閘極介電質13 的形成。氧化層122形成於未被摻雜玻璃層GO所覆蓋之半導 體層(如110)的暴露表面的氧化作用期間。The source/drain regions 112/114 and the channel 116 are formed on the substrate 1A similar to the source/nomogram region 6 and the channel 7 of FIG. After implanting the dopant from the doped glass 130, a portion 110 of the undoped semiconductor layer remains. The doped glass layer 13 is left behind after the source/tin region 112/114 is formed. The formation of the gate dielectric 12 类似于 is similar to the formation of the gate dielectric 3 of FIG. 1 or the gate dielectric 13 of FIG. The oxide layer 122 is formed during the oxidation of the exposed surface of the semiconductor layer (e.g., 110) not covered by the doped glass layer GO.

如圖四B所示,摻雜玻璃圖案13〇以及暴露的介電層122 的钱刻的完成鋪由暴露於-或夠適當細包含但不限於 HF為主的濕蝕刻劑(例如緩衝氧化蝕刻劑(6〇切)、n〇e、墊底蝕 刻劑、pyridineOT侧劑溶液)、hf為主或证製造出的蒸氣 耽體,或電祕刻。選擇侧劑致使閘極介電f 122及推雜玻 璃130的侧率能夠大於下面的石夕層(例如,層ιι〇、ιΐ2以及 及金制極層140的侧率,如此可大致 璃而不需絲任何料雜金屬。 ①娜娜玻 及光潔淨的步驟(未顯示)後,請參 ? °c ϊί 不如1#技術之人所知,互連金屬也可列印於暴 上’但於,,墊底,,區域而非平面上。於—香二二/於暴路的金屬 150或152也與閘極金屬140相拉血 1中,互連金屬物體 (未顯示)。蜂的電晶體 管道結構較低接觸面積。互連全屬0^日、電日日體及/或提供 佳的選擇。 屬的電阻低於10歐姆坪方為較 24 1357157 心t了確保良好的接觸,®四c的結構可進-步被退火以形 ίί/ΐίϊ的互連金屬歷52的介面上,或是遍佈於互 衫t 及下面神112/114之_接觸面之整個膜厚。 k虽矽化物形成的金屬包含,但不受限於,A1、Ni、pd、朽、 JV Ti Co。互連金屬可從這些石夕化物形成的金屬中選 /亦即,含有形成矽化物(例如,摻雜Ni有機金屬的銀墨水) 、添加物之互連金屬前驅物墨水已被觀察到可降低互連150/152 以及摻雜矽源極/沒極區域112/114之間的接點電阻。然而,添 加物(例如鎳)會與矽介面分離及/或形成矽化物。As shown in FIG. 4B, the doped glass pattern 13 and the exposed dielectric layer 122 are finished by a wet etchant that is exposed to - or suitably fine, but not limited to HF (eg, buffered oxide etch). Agent (6 〇 cut), n〇e, bottom etchant, pyridineOT side agent solution), hf-based or certified vapor corpus, or electric secret. The side agent is selected such that the side rates of the gate dielectric f 122 and the push glass 130 can be greater than the side layers of the underlying layer (eg, layers ιι, ι 2, and gold pole layer 140, such that the glass can be substantially Need any wire miscellaneous metal. 1 Nana glass and light clean steps (not shown), please refer to ° ° ϊί Not as good as 1# technology, interconnect metal can also be printed on the storm 'but , the bottom of the bottom, the area, not the plane. The metal 150 or 152 of the fragrant scent / violent road also pulls the blood with the gate metal 140, interconnecting metal objects (not shown). The lower contact area of the pipe structure. The interconnection is all 0^ day, electricity day and/or provide a good choice. The resistance of the genus is less than 10 ohms and the square is more than 24 1357157 to ensure good contact, ® 4 The structure of c can be further annealed to form the interface of the interconnected metal calendar 52 of the ίί/ΐίϊ, or the entire film thickness of the contact surface of the intertwined t and the underlying 112/114. The formed metal includes, but is not limited to, A1, Ni, pd, smog, JV Ti Co. Interconnecting metals can be formed from these ceramides Dependent selection, that is, an interconnect metal precursor ink containing a halide (eg, a silver ink doped with Ni organometallic) and an additive has been observed to reduce interconnection 150/152 and doped yttrium source Contact resistance between /dipole region 112/114. However, additives such as nickel may separate from the tantalum interface and/or form a telluride.

於列印互連金屬150/152後(可藉由多個傳,統流程來形成, 如濺鍍及光微影,但列印為較佳選擇),以及參閱圖四D,内層 介電質160被列印用以覆蓋任何暴露的活化區域(例如,間^ 140以及源極/汲極區域112/114),但留下適當面積的管道孔洞 ^2/164(例如,互連點150/152上方)。内層介電前驅物包含玻璃 形成配方(例如,旋塗玻璃配方,有機矽酸鹽或有機亞矽酸鹽)、 有機介電質(例如,聚亞醯膜(polyimide)、聚(環苯丁烯) 氧化矽前驅物(例如,氧化的矽烷,si5H5(〇H)5)或是列印後氧化 的分子及/或奈米粒子為主的矽配方(例如,矽墨水)。 列印内層介電質160的步驟包含喷墨、凹版印刷、平版印 刷,類似於其他所揭露的可列印的墨水之列印步驟。亦即,將 2層介電質圖案化的步驟包含列印或沈積内層介電質(例如,對 紫外光以及/或紅外光敏感的聚亞醯膜)以及將其暴露於照射下 (例如,紅外光、可見光或紫外光照射)來改變照射區域的溶解度 特性。暴露此層於適當蝕刻劑或溶劑可移除形成管道孔洞的内 層介電質之暴露(正向)或未暴露(負向)面積。 於另一實施例中,可丟棄材料首先被列印於對應内層介電 質内稱後形成的管道孔道位置之位置内。接著,所描述之内層 介電前驅物被列印或全面沈積。於固化内層介電前驅物後,管 25 可丢棄材料可分解,形成管道孔洞。其他用來從管 ^於源極/祕終端其中之一或閘極終端#導體也可減 ίΐ相ΐ於另—個導體。舉例來說,於裝設二極真空管的電晶 -,導體可電連接於一個源極/汲極終端及閘極。於裝設電容 的電Β曰體内,導體皆可電連接於源極/汲極終端。亦即,薄介電 層可形成於源極/汲極終端上方,電容地連接於下方源極/沒極終 端的導體可形成於薄介電層上。 作源極/汲榀桩觸點蝕刻摭置的内層介雷皙After printing the interconnect metal 150/152 (can be formed by multiple processes, such as sputtering and photolithography, but printing is preferred), and see Figure 4D, the inner dielectric 160 is printed to cover any exposed active areas (eg, 140 and source/drain regions 112/114), but leaving a suitable area of hole 2/164 (eg, interconnection point 150/) Above 152). The inner dielectric precursor comprises a glass forming formulation (eg, a spin-on glass formulation, an organic bismuth or an organic tellurite), an organic dielectric (eg, polyimide, poly(cyclobutene) a cerium oxide precursor (for example, oxidized decane, si5H5 (〇H) 5) or a ruthenium-based oxidized molecule and/or a nanoparticle-based ruthenium formulation (for example, ruthenium ink). The step of the quality 160 comprises inkjet, gravure, lithographic printing, similar to the printing process of other disclosed printable inks. That is, the step of patterning the two layers of dielectric comprises printing or depositing the inner layer. An electrical property (eg, a polythene film that is sensitive to ultraviolet light and/or infrared light) and exposure to illumination (eg, infrared, visible, or ultraviolet light) to alter the solubility characteristics of the illuminated area. Exposure of the layer The exposed (positive) or unexposed (negative) area of the inner dielectric forming the hole in the pipe may be removed by a suitable etchant or solvent. In another embodiment, the discardable material is first printed on the corresponding inner layer. Pipe hole position formed after electric quality In the position, the inner dielectric precursor is then printed or fully deposited. After curing the inner dielectric precursor, the tube 25 discards the material to decompose and form a tube hole. One of the pole/secret terminals or the gate terminal #conductor can also be reduced to the other conductor. For example, in the case of a cell with a two-pole vacuum tube, the conductor can be electrically connected to a source/汲a terminal and a gate. In the body of the capacitor, the conductor can be electrically connected to the source/drain terminal. That is, a thin dielectric layer can be formed over the source/drain terminal, capacitively A conductor connected to the lower source/nopole terminal can be formed on the thin dielectric layer. The inner layer of the source/pile contact etching device

駐C ’以及圖八叫圖八<:)。可使用上朗樣的技 圖五A到圖五E顯示在另一用以製造TFT過程中形成的結 構。請參閱圖五A,溝道210、第一源極/汲極區域212、第二源 極/沒極區域214,以及未摻雜半導體(例如矽)區域216被形成於 基材200上。摻雜玻璃230以及導電閘極金屬240被列印於基 材200上或上方’閘極介電質22〇以及熱氧化物222/224形成如 圖中所述。 類似於圖四A到圖四E的過程,圖五A到圖五E的過程使 用侷限於印刷式摻雜玻璃區域230(閘極介電質210)之間的面積 的閘極240 ’不會覆蓋到摻雜玻璃圖案230。然而,於此實施例 中’在摻雜玻璃圖案230的蝕刻過程中,第一内層介電質245 被沈積用以保護閘極金屬240以及閘極介電質22〇,暴露源極/ 汲極區域212/214或其上之接觸點(未顯示)。 圖五B中,第一内層介電質245被列印致使可完全覆蓋閘 極金屬、閘極介電質220及至少部份但非全部的掺雜玻璃圖案 230。第一内層介電質245的前驅物墨水包含玻璃形成配方(例 26 1357157 如,旋塗玻璃配方,矽酸鹽或有機矽氧烧)、有機介電質 ,亞醯膜、BCB)、氧化的石夕前驅物(例如,氧化的石夕烧,In C ’ and Figure VIII are called 八<:). The structure formed in another process for fabricating a TFT can be shown using the above-mentioned technique 5A to 5E. Referring to FIG. 5A, a channel 210, a first source/drain region 212, a second source/nomogram region 214, and an undoped semiconductor (e.g., germanium) region 216 are formed on the substrate 200. Doped glass 230 and conductive gate metal 240 are printed on or over substrate 200. Gate dielectric 22 and thermal oxide 222/224 are formed as shown. Similar to the process of Figures 4A through 4E, the process of Figures 5A through 5E uses a gate 240' that is limited to the area between the printed doped glass regions 230 (gate dielectric 210). The doped glass pattern 230 is covered. However, in this embodiment, during the etching of the doped glass pattern 230, the first inner dielectric 245 is deposited to protect the gate metal 240 and the gate dielectric 22, exposing the source/drain Region 212/214 or a contact point thereon (not shown). In Figure 5B, the first inner dielectric 245 is printed such that the gate metal, gate dielectric 220, and at least some but all of the doped glass pattern 230 are completely covered. The precursor ink of the first inner dielectric 245 comprises a glass forming formulation (Example 26 1357157, for example, spin-on glass formulation, citrate or organic oxime), organic dielectric, yttrium film, BCB), oxidized Shi Xi precursor (for example, oxidized Shi Xizhuo,

SiAHhj)、或是列印後氧化的分子及/或奈来粒子為主的石夕配 方。 列印第-内層介電質245包含噴墨、凹版印刷、平版印刷 等的方法。亦即,製圖於内層介電質的方法包含列印或沈積内 層介電質(對紫外光以及/或紅外光敏感的聚亞醯膜),以及暴露 於照射(紫外光、可見光、紅外光的照射)下以改變騎區域的溶 解度特性。暴露該層於適當蝕刻劑或溶劑將會移除形成管道孔 洞的内層介電質内的暴露(正向)或未暴露(負向)面積。 接者,如圖五C所示,掺雜玻璃圖案230以及熱氧化區域 222以及224被钱刻至足以移除熱氧化區域222及故以及暴露 ,雜源極//及極區域212/214。银刻暴露的摻雜玻璃圖案230及暴 洛的熱氧化物222/224的完成可藉由暴露於適當姓刻劑於一段足 夠長的時間來移除熱氧化物區域222及224,但保留第一内層介 電質245 —部为留於閘極金屬上方,敍刻劑包含但不限於Hp為 .主的濕钱刻劑(例如’緩衝氧化蝕刻劑(B〇E)、N〇E、僖 =、Py—、证為主或HP製造丄二氣= 電漿蝕刻。於許多實施例中,摻雜玻璃圖案23〇的一些部分也 殘留於摻雜源極/汲極區域212/214上方。蝕刻劑可為擇性 地介於摻雜玻璃圖案230以及第一内層介電質245之間,摻雜 玻璃圖案230以及熱氧化物區域222/224之間,或是這三種&料 (亦即,摻雜玻璃圖案230,第一内層介電質245二以及^氧化物 222/224)之間,選擇蝕刻劑致使摻雜玻璃23〇以及埶氧化物 222/224的的姓刻率足夠大於下面的半導體(例如,源i/汲極區 域212/214以及無摻雜半導體區域216)的蝕刻率,致使能大致上 完整去除熱氧化物222/224而不需移除下面的半導體。 依據韻刻時間,敍刻劑只移除摻雜玻璃圖案230的相當細 27 1357157 由只暴露源極/沒極區域214/216的小邊界或面積。於 1中,以上所有提到的材料都適用於第一内層介電質 姆摻雜破璃23G有著低侧性的閉極 雜ί言之’請參關六A ’選擇適#祕刻時間以致大多數 除’留下摻雜玻璃232小部份(或其他絕緣體) 金屬240以及閘極介電質220。於此例中,選擇適當 可45以致其侧率相較於摻雜玻璃圖案的侧率係 例而言,於此例中可選擇有機、絕緣體(例如,聚亞酿 璃_ 用保護層及/或推雜物貧乏層於可印掺雜玻 雜物貧多爲列tt t Α到圖三C) ’可選擇無摻雜保護層/摻 摻雜玻璃圖案的蝕刻率是可忽略的。 八蝕到羊比起 、及』i,=m230(圖五b所示)被侧用以暴露源極/ 及極&域212/214以及留下換雜玻璃,,殘餘物”说(圖六A所 不)。_摻雜玻璃聽及暴露的熱氧化物區域222/22 如文中所述’但選擇適當侧劑以致摻 = 化物222/224相比於内層介電質泌_刻率係足夠大以致g =除J㈣摻雜玻璃而*會移除任何_介電層2切。推雜 玻璃圖案230所包含的或以摻雜氧化石夕為主的實施例中 >及極區域212/214以及無摻雜半導體區域216實 層介電層245包含氮化石夕。 X貞上匕S石夕,内 請參閱圖五D以及圖六B ’於摻雜玻璃23〇及孰氧化物 222/224破蝕刻後,基材可被(選擇性地)潔淨,互連金屬25〇= 被为別列印於暴露的源極/沒極區域212/214上。互連今屬 250/252也與閘極金屬24〇(未顯示)相接觸。印刷式互連= 250/252被用以連接同層内的電晶體,及/或提供低電__^ 28 1357157 給上面的管道結構。如果選擇適當連 5=252以及源極/沒極區域212之間,位於間極金屬24〇 一侧 導體21匕源極/汲極區域214,位於另—侧之無推雜半 等體16。互連金屬的電阻較佳係低於丨〇歐姆/平方。 列印且職互連金屬的步魏含列印適#互連金屬前驅物 (例如’金屬奈米粒子或有機金屬化合物、矽化物前驅墨水),以 及轉換為互連金屬。亦即,種子層的前驅物可被印於接觸面 以及轉換為種子層,接著互連金屬(例如,Ag、Au、a、柯、 可被電鑛或化學鍍難子層。種子輕要在賴序 活化步驟。 疋订 製圖於互連金屬的步驟包含塗覆朗印互連金屬前驅物以 及區域性暴露於雷射照射下,以致暴露區域的印刷式互連金屬 前驅物改變溶職躲。沖聽露絲㈣面積後(沖走未暴露 面積為較佳作法)’選擇性地於額外固化或退火步驟後,照射後 的互連金屬前驅物會留下用以形成互連金屬。此實施例提供無 法直接用列印方法達成的高解析度金屬互連製圖的優點。 • 為了確保良好接觸,結構進一步被退火用以形成矽化物於 互連金屬及矽之間的介面或遍佈接觸面的整個膜厚。於此實施 例中,於摻雜玻璃圖案230的蝕刻過程中保護閘極金屬24〇的 内層介電質適合於矽化作用溫度。 請參閱圖五E以及圖六c,列印互連金屬後,第二内層介 電質260/262/264被印於閘極245以及源極/汲極區域212/214上 方,但留下管道孔洞280於適當面積内,用以與較高金屬化程 度接觸。内層介電質260-264的前驅物包含同樣或類似第一内層 介電質245的玻璃形成配方(如石夕烧、石夕氧烧的旋塗玻璃配方, 如聚亞醯膜、BCB的有機介電質,如氧化矽烷的氧化矽前驅 29 =。’或列印後氧化或氮化的分子及/或奈米粒子為主的石夕或銘配SiAHhj), or a zebra formula based on molecules that are oxidized after printing and/or nai particles. The printing of the first inner layer dielectric 245 includes a method of inkjet, gravure printing, lithography, and the like. That is, the method of patterning the inner dielectric includes printing or depositing an inner dielectric (polyimide film sensitive to ultraviolet light and/or infrared light), and exposure to ultraviolet light, visible light, infrared light. Under irradiation) to change the solubility characteristics of the riding area. Exposing the layer to a suitable etchant or solvent will remove the exposed (positive) or unexposed (negative) area within the inner dielectric forming the via hole. As shown in Figure 5C, the doped glass pattern 230 and the thermally oxidized regions 222 and 224 are engraved sufficient to remove the thermal oxidized regions 222 and, as well as the exposed, dopant// and polar regions 212/214. The completion of the silver-exposed exposed doped glass pattern 230 and the violent thermal oxide 222/224 may be removed by exposing the appropriate surname to the thermal oxide regions 222 and 224 for a sufficient period of time, but retaining the An inner dielectric 245 is left over the gate metal, and the etchant includes, but is not limited to, Hp is the main wet money agent (eg, 'buffered oxide etchant (B〇E), N〇E, 僖=, Py-, proof-based or HP-made 丄2 gas = plasma etch. In many embodiments, portions of the doped glass pattern 23 也 also remain above the doped source/drain regions 212/214. The etchant may be selectively interposed between the doped glass pattern 230 and the first inner layer dielectric 245, between the doped glass pattern 230 and the thermal oxide regions 222/224, or the three & That is, between the doped glass pattern 230, the first inner layer dielectric 245 and the oxide 222/224), the etchant is selected such that the doping ratio of the doped glass 23 and the tantalum oxide 222/224 is sufficiently larger than Etching rates of the underlying semiconductors (eg, source i/drain regions 212/214 and undoped semiconductor regions 216), resulting in The thermal oxide 222/224 is substantially completely removed without removing the underlying semiconductor. Depending on the time of engraving, the engraving agent removes only the relatively thin 27 1357157 of the doped glass pattern 230 by exposing only the source/nomogram region 214 / 216 small border or area. In 1 , all the above mentioned materials are suitable for the first inner layer of dielectric quality doped glass 23G with low side of the closed-cell miscellaneous words 'Please refer to the six A 'Select the appropriate time for the secret time so that most of the 'excluding the doped glass 232 small (or other insulator) metal 240 and the gate dielectric 220. In this case, select the appropriate 45 so that its side rate Compared with the side ratio of the doped glass pattern, in this case, an organic or insulator can be selected (for example, poly-aluminum _ with a protective layer and/or a ruin-poor layer for the printable doped glassy substance) Poverty is the column tt t Α to Figure 3 C) 'The etch rate of the undoped protective layer/doped doped glass pattern is negligible. Eight eclipse to sheep, and 』i, =m230 (Figure 5 b) is used to expose the source / and pole & field 212 / 214 and leave the replacement glass, the residue" said (Figure 6A No. _Doped glass illuminates and exposes the thermal oxide region 222/22 as described herein' but selects the appropriate side agent such that the 222/224 is sufficiently large compared to the inner dielectric bleed g = in addition to J (tetra) doped glass * will remove any _ dielectric layer 2 cut. In the embodiment of the doped glass pattern 230 or in the doped oxidized stone eve, and the polar region 212 / 214 and The undoped semiconductor region 216 of the solid dielectric layer 245 comprises nitrite. X贞上贞S石夕, please refer to Figure 5D and Figure 6B' in the doped glass 23〇 and the tantalum oxide 222/224 After etching, the substrate can be (selectively) cleaned and the interconnect metal 25 〇 = printed on the exposed source/nomogram regions 212/214. The interconnect 250/252 is also in contact with the gate metal 24〇 (not shown). Printed Interconnect = 250/252 is used to connect the transistors in the same layer, and / or provide low power __^ 28 1357157 to the above pipe structure. If the appropriate connection 5 = 252 and the source / no-pole region 212 are selected, the conductor 21 is located on the side of the interpole metal 24 匕 and the source/drain region 214 is located on the other side. The resistance of the interconnect metal is preferably less than 丨〇 ohms/square. The printing of the inter-metal interconnects is performed by interconnecting metal precursors (such as 'metal nanoparticles or organometallic compounds, telluride precursor inks') and converted to interconnect metals. That is, the precursor of the seed layer can be printed on the contact surface and converted into a seed layer, followed by interconnecting the metal (eg, Ag, Au, a, ke, can be electro-mine or electrolessly plated. The seed is light The step of activating the pattern. The step of patterning the interconnect metal comprises coating the embossed interconnect metal precursor and regional exposure to laser illumination such that the printed interconnect metal precursor of the exposed area changes the smear. After listening to the area of the Ruth (4) (a preferred practice is to wash away the unexposed area) 'Selectively after the additional curing or annealing step, the irradiated interconnect metal precursor will remain to form the interconnect metal. Examples provide the advantages of high-resolution metal interconnect drawings that cannot be achieved directly by the printing method. • To ensure good contact, the structure is further annealed to form the interface between the interconnect metal and the germanium or the contact surface. The entire film thickness. In this embodiment, the inner dielectric of the gate metal 24 is protected during the etching process of the doped glass pattern 230. Suitable for the germanium temperature. See Figure 5E and Figure 6c, print After the metal is attached, the second inner dielectric 260/262/264 is printed over the gate 245 and the source/drain regions 212/214, but leaving the tube holes 280 within the appropriate area for use with the higher metal Degree of contact. The precursor of the inner dielectric 260-264 comprises a glass forming formulation similar to or similar to the first inner dielectric 245 (such as a spin-on glass formulation of Shi Xizhuo, Shi Xi Oxygen, such as a polythene film). BCB's organic dielectric, such as yttrium oxide yttrium oxide precursor 29 =. ' or after printing or oxidizing or nitriding molecules and / or nanoparticle-based Shi Xi or Ming

,了暴露源極/汲極區域312及314,圖七A觸七D以及 到圖八〇的處理流程使用可印内層介電圖案350/352/354 ^作^刻摻雜玻璃330的遮罩。圖七A到圖七D以及圖八a到 D的流程主要的不同在於摻雜玻璃圖案33〇的蝕刻選擇性 跟第—内層介電質350/352/354 (如圖八Λ到圖八D所示,第一 内層介電質350V352V354,)相關。圖七A到圖七D的流程中, 蝕,係選擇性的,因此相對於圖八A到圖八D的流程,可產生 較薄的可印内層介電質圖案350/352/354。於圖八A到圖八D的 過程中’蝕刻係非選擇性的,因此相對圖七A到圖七D的過 程,用以列印内層介電質圖案350,/352,/354,的材料有較廣的變化 性。 、 5青參閱圖七A以及圖八A,第一内層介電質350/352/354(或 350V352Y354D可被列印致使可完全覆蓋閘極金屬34〇以及基材 300上其他可曝光之區域’以及部份(但未完全)覆蓋摻雜玻璃圖 案330 ’如同半導體島緣(如316)。第一内層介電質350/350'到 354/354'的前驅物包含任何玻璃形成配方,如同氮化物或石夕及/或 鋁的氧氮化物。内層介電質係可被列印或可用以作圖。 接著’如圖七B以及圖八B所示,暴露的摻雜玻璃圖案 330以及熱氧化物322/324被餘刻,用以暴露未被第一内廣介電 質350/352/354(或350V352V354’)覆蓋的面積内之源極/汲極區域 312/314。摻雜玻璃圖案330被独刻。於圖七B的過程中,選擇 適當蝕刻劑以致摻雜玻璃330及熱氧化物322/324的蝕刻率足夠 大於第一内層介電質350/352/354及下面源極/汲極區域312/314 的蝕刻率,以致能完全移除摻雜玻璃330而不會移除任何第一 30 1357157 介電質350/352/354或源極/>及極區域312/314。圖八B的處理 中,選擇適當蝕刻劑以致摻雜玻璃330及熱氧化物322/324的蝕 ^率接近或相同於第一内介電質3507352,/354,的蝕刻率,但相對 高於下面源極/汲極區域312/314的蝕刻率。根據内層介^質及 其厚度的選擇,摻雜玻璃圖案的移除可導致浮雕結構S 332(圖七 B)或332’(圖八B)。然而’當掺雜玻璃相對第一内層介電質為低 蝕刻選擇性(如圖八B所示),將有相當薄的第一内層介電質(圖 八B中蝕刻的第一内層介電質356/357/358與圖八A的可印/已 圖案化的第一内層介電質350,/352,/354i相比較)。於此例中,可 印/已圖案化的第一内層介電質35〇|/3521/354,的厚度大於摻雜玻 璃^30的厚度(例如’ >l_5x、公、攻、汾、y〇x)。如圖八B 所示’此排列方式可避免浮雕結構332的形成。 於其中一例,選擇適當蝕刻時間以致多數(但非全部)摻雜玻 璃層可從源極/汲極312/314上方移除。特別地,留下由第一内 ,介電質350或350所覆蓋且鄰接於閘極金屬34〇及閘極介電 薄膜320的一小部份掺雜玻璃332。 蝕刻以及光潔淨(未顯示)步驟後,互連金屬36〇/362可被列 印於暴露的源極/汲極312/314上,如圖七c以及圖八c所示。 進一步地,互連金屬可與閘極金屬(未顯示)接觸。可印互連^屬 可被用於連接同層内的電晶體,及/或提供較低接觸面給管道結 構。如果内層介電質適用於接著的高溫處理(例如矽酸鹽、氮^ 矽)’於沈積互連金屬360/362後,源極/没極接點可能^生矽化 作用。互連金屬的電阻較佳為低於丨〇歐姆/平方。列印以及形 互連金屬的步驟如文中所述。 列印互連金屬360/362後,如圖七D及圖八ο所示,第二 内層介電質370可被列印用以覆蓋暴露的活化面積(例如閘極以 及源極/没極區域),但留下管道孔洞38〇於適當面積内。内層介 電質370的前驅物包含相同玻璃形成配方以及其他内層介電質 31 丄乃/157 的材料。 _ iϊ疋實施例中(不受限於圖七A _人d),雷射製 含沈獅_㈣好靴義♦金屬層)u 十地用可被防蝕劑(防蝕劑的吸染射、 或⑼波長或波段的雷射照射剩的一二 ΐ __以訂對應於被形成的結構“ 這此步金屬34G及/或互連金屬屬62、;注意The exposed source/drain regions 312 and 314 are exposed, and the process flow of the etched inner dielectric pattern 350/352/354^ is used as the mask for the etched glass 330. . The main difference between the flow of Fig. 7A to Fig. 7D and Fig. 8a to D is that the etching selectivity of the doped glass pattern 33〇 is the same as that of the first inner dielectric 350/352/354 (as shown in Fig. 8 to Fig. 8D). As shown, the first inner dielectric is 350V352V354,) related. In the flow of Figures 7A through 7D, the etch is selective, so that a thinner printable inner dielectric pattern 350/352/354 can be produced relative to the flow of Figures 8A through 8D. In the process of FIGS. 8A to 8D, the etching process is non-selective, and thus the material for printing the inner dielectric patterns 350, /352, /354, relative to the process of FIGS. 7A to 7D. There is a wide range of variability. Referring to Figure 7A and Figure 8A, the first inner dielectric 350/352/354 (or 350V352Y354D can be printed so that it can completely cover the gate metal 34〇 and other exposed areas on the substrate 300' And a portion (but not completely) covering the doped glass pattern 330' as a semiconductor island edge (such as 316). The precursor of the first inner layer dielectric 350/350' to 354/354' comprises any glass forming formulation, like nitrogen An oxynitride of the compound or the stellite and/or aluminum. The inner dielectric system can be printed or used for mapping. Next, as shown in Figure 7B and Figure 8B, the exposed doped glass pattern 330 and heat The oxides 322/324 are engraved to expose the source/drain regions 312/314 that are not covered by the first inner dielectric 350/352/354 (or 350V 352V354'). Doped glass pattern 330 is unique. In the process of Figure VIIB, an appropriate etchant is selected such that the etch rate of doped glass 330 and thermal oxide 322/324 is sufficiently greater than the first inner dielectric 350/352/354 and the underlying source/ Etching rate of the drain region 312/314 so that the doped glass 330 can be completely removed without removing any first 30 1357157 Electrode 350/352/354 or source/> and polar region 312/314. In the process of Figure VIIIB, the appropriate etchant is selected such that the doping ratio of doped glass 330 and thermal oxide 322/324 is close to or the same The etching rate of the first internal dielectric 3507352, /354, but relatively higher than the etching rate of the lower source/drain region 312/314. According to the choice of the inner dielectric and its thickness, the doped glass pattern Removal may result in relief structure S 332 (Fig. 7B) or 332' (Fig. 8B). However, when the doped glass has a low etch selectivity with respect to the first inner dielectric (as shown in Fig. 8B), There is a relatively thin first inner dielectric (the first inner dielectric 356/357/358 etched in Figure VIIIB and the printable/patterned first inner dielectric 350, 352 in Figure VIIIA) , /354i compared). In this example, the thickness of the printable/patterned first inner dielectric 35〇|/3521/354 is greater than the thickness of the doped glass ^30 (eg '>l_5x, Gong, attack, 汾, y〇x). As shown in Fig. 8B, 'this arrangement avoids the formation of the relief structure 332. In one case, select the appropriate etching time so that most (but not all) doping The glass layer can be removed from above the source/drain 312/314. In particular, leaving the first inner, dielectric 350 or 350 and adjacent to the gate metal 34 and the gate dielectric film 320 A small portion of the doped glass 332. After the etching and light cleaning (not shown) steps, the interconnect metal 36〇/362 can be printed on the exposed source/drain 312/314, as shown in Figure VII and Figure Eight c shows. Further, the interconnect metal can be in contact with a gate metal (not shown). Printable interconnects can be used to connect transistors in the same layer and/or provide a lower contact surface for the pipe structure. If the inner dielectric is suitable for subsequent high temperature processing (e.g., niobate, nitrogen), after deposition of interconnect metal 360/362, the source/no-pole contacts may be deuterated. The resistance of the interconnect metal is preferably less than 丨〇 ohms/square. The steps of printing and forming the interconnect metal are as described herein. After printing the interconnect metal 360/362, as shown in FIG. 7D and FIG. 8, the second inner dielectric 370 can be printed to cover the exposed active area (eg, gate and source/drain regions). ), but leaving the pipe hole 38 within the appropriate area. The precursor of the inner dielectric 370 comprises the same glass forming formulation as well as other inner dielectric materials. _ iϊ疋 in the example (not limited to Figure 7A _ person d), the laser system contains the lion _ _ (four) good boots ♦ metal layer) u ten ground can be used as a corrosion inhibitor (anti-corrosion dyeing, Or (9) a wavelength or band of laser radiation remaining one or two __ to correspond to the structure being formed "this step metal 34G and / or interconnect metal genus 62;;

圖案的全部缝的椒杨㈣雜(藉峨糊 料。具有紅外光波段的光是較佳的選擇,雖然 或對7b皮長或波絲感,光絲线雜騎在需要或預定 的防钱劑部份。實施例揭露於美國專利申請號11/2 日:2005年8月11日。 ,^月 髀菩ΐ;:時射基材,半導體層(例如,具有電晶 fii λ 27、116、21G或的特性,如掺雜物程度或 濃度)的形成可藉由列印或塗覆摻雜或未摻雜半導體墨水於基材Patterned all sewn pepper poplar (four) miscellaneous (borrowing paste. Light with infrared light band is the better choice, although or for 7b skin length or wave sense, light silk line riding in need or scheduled anti-money The embodiment is disclosed in U.S. Patent Application No. 11/2: August 11, 2005. ^^月髀髀;: time-emitting substrate, semiconductor layer (for example, having an electro-crystal fii λ 27, 116 , 21G or characteristics, such as dopant level or concentration) can be formed by printing or coating doped or undoped semiconductor ink on the substrate

上。於一實施例中’於旋轉塗覆步驟的過程中,當用紫外&照 射墨水’過程包含旋轉塗覆含有半導體前驅物的墨水於基g 上此技藝(亦為表外光旋轉塗覆^jV spin-coating))描述於申請 中美國專利申請號1〇/789,274 ’申請日:2004年2月27曰。另 —實施例中,列印(包含同時或立即紫外光照射)包含噴墨或凹版 印刷,彈性凸版印刷、網版印刷或平版印刷摻雜或非摻雜半導 體墨水於基材上對應活化電晶體區域的位置(或其他用以沈積材 料於基材上選擇區域的沈積技藝)。其中一例,半導體層,於照 射同時的沈積後,一般具有非結晶型態,進一步處理之前,一 般會結晶化(例如’藉由加熱或雷射照射;請參閱美國專利申請 號10/950,373以及10/949,013,申請日皆為2004年9月24 曰)。於許多例子中,結晶化將會活化摻雜物中至少一部分。 32 1357157 相較於先前技術,本發明提供用以製 接受的電性(例如,開關(on/ofE)速度及比例^性業^可 上閘極tft的低成本方法。可印及/或可照射的ΐ ;似由更多傳統方法所職結構的結果; 較低成本以及較高生產力,以及(2)較高解程;j 於傳統製圖列印法(例如喷墨)’有相近或更高二產二'父 發明具體實施例之詳述’係希望能更加清楚描述本on. In an embodiment, during the process of the spin coating step, the process of illuminating the ink with ultraviolet light includes the technique of spin coating the ink containing the semiconductor precursor on the base g (also for the surface light spin coating). JV spin-coating)) is described in the application US Patent Application No. 1/789,274 'Application Date: February 27, 2004. In another embodiment, the printing (including simultaneous or immediate ultraviolet light irradiation) comprises inkjet or gravure printing, elastic relief printing, screen printing or lithographic doping or non-doping of the semiconductor ink on the substrate corresponding to the activated transistor The location of the area (or other deposition technique used to deposit material on selected areas of the substrate). In one example, the semiconductor layer, after deposition simultaneously, generally has an amorphous state, which is typically crystallized prior to further processing (eg, by heating or laser irradiation; see U.S. Patent Application Serial Nos. 10/950,373, and 10) /949,013, the application date is September 24, 2004 曰). In many instances, crystallization will activate at least a portion of the dopant. 32 1357157 In contrast to the prior art, the present invention provides a low cost method for making acceptable electrical (e.g., on/of E speeds and ratios of gates tft.) printable and/or Irradiation of ΐ; results from the structure of more traditional methods; lower cost and higher productivity, and (2) higher resolution; j in traditional cartographic printing (eg inkjet) 'have similar or higher yields The details of the specific embodiment of the 'parent invention' are intended to describe this more clearly.

Hi 發明所欲中請之專利範圍的㈣内。因 廇的魅2月斤ίΐϊ專利範圍的範嘴應該根據上述的說明作最寬 -的解釋’以致使其涵蓋所有可能的改變以及具相等性的安排。Hi invented the patent scope of (4). Because of the fascination of the 2 2 2 ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ ΐϊ

33 1357157 - 石义:2、12、22 間隙:5、15 ' 保護層:25 閉極介電質:3、13、23、120、122、210、220 閉棰金屬:8、18、28、140、240、340 ·· 戚璃:4、14、24、130、230、232、330、332 源極/汲極:6、16、26、112、114、212、214、312、314 漆道區域:7、17、27、116、216、310 立連金屬:150、152、250、252、360、362 内層介電質:160、245、260、262、264、350、352、354、 350'、352,、354'、356、357、358、370 管道孔洞:162、164、280、380 熱氧化物:222、224、322、324 3533 1357157 - Shiyi: 2, 12, 22 Clearance: 5, 15 ' Protective layer: 25 Closed dielectric: 3, 13, 23, 120, 122, 210, 220 Closed metal: 8, 18, 28, 140, 240, 340 ·· Glass: 4, 14, 24, 130, 230, 232, 330, 332 Source/Bungee: 6, 16, 26, 112, 114, 212, 214, 312, 314 Area: 7, 17, 27, 116, 216, 310 Vertical metal: 150, 152, 250, 252, 360, 362 Inner dielectric: 160, 245, 260, 262, 264, 350, 352, 354, 350 ', 352, 354', 356, 357, 358, 370 pipe holes: 162, 164, 280, 380 thermal oxides: 222, 224, 322, 324 35

Claims (1)

100年5月31日 十、申請專利範圍: 1· 種形成>專膜電晶體(Thin Film Transistor,TFT)之方法,包含下 列步驟: 形成一半導體薄膜層; 將一摻雜的玻璃圖案(doped glass pattern)印於該半導體薄膜 層上或上方,該摻雜的玻璃圖案中之一間隙(gap)暴露該半 導體薄膜層的一部份並定義該薄膜電晶體之一溝道區域 (channel region); 將一閘電極(gate electrode)形成於該間隙内該溝道區域上或 上方’该閘電極包含一閘極介電薄膜(gate dielectric film) 以及位於該閘極介電薄膜上之一閘極導體(gate conductor);以及 將一摻雜物(dopant)從該摻雜的玻璃圖案擴散至該半導體薄 膜層内。 2. 如申請專利範圍第1項所述之方法,其中形成該半導體薄膜層 的步驟包含將一液態墨水(liquid—phase ink)印於一基材上,該 液態墨水包含一含有半導體之前驅物(semic〇nduct〇r — containing precursor) ° 3. 如申請專利範圍第1項所述之方法,其中該摻雜的玻璃圖案係 印於對應該薄膜電晶體之源極(source)以及汲極(drain)終端之 έ亥半導體薄膜層之區域上或上方。 .如申睛專利範圍第4項所述之方法,包含將該閘極導體形成於 該閘極介電薄膜上,且至少形成於該間隙内。 5.如申請專利範圍第5項所述之方法,其中形成該閘極導體的步 驟包含將包含一閘極導體前驅物之一墨水印於該閘極介電薄 100年5月31日 膜上 嫩嫩,物嶋麵璃圖案 7.膜形成於該間隙 1顿述之方法,其巾·婦雜物的步驟 且二,=玻翻案以及該半導體薄膜層加熱到一溫度 沒^構 時間,以於該半導體薄膜層内形成一源極/ 8· ^申請專利範圍第!項所述之方法,其中印出該摻雜的玻 驟包含將一包含一摻雜的玻璃前驅物之墨水印於該; 水韓=層上或上方’接著將包含該摻雜的玻璃前驅物之該墨 水轉換為一摻雜玻璃。 ^里 A 圍^項所述之方法,進—步包含移除該推雜的 少—部份,以充分地暴露包含雛的摻雜物之該 +導體薄膜層之表面。 10.如申請專利範圍第1()項所述之方法,其中移除該摻雜的玻璃 圖案之-部份的步驟會留下歸雜的玻璃職之剩餘部份。 如申請專利範圍第10項所述之方法,進一步包含將一導電互 連結構(conductive interconnect structure)形成於包含擴散的摻 雜物之該半導體薄膜層之該暴露的表面上。 / 12. 如申請專利制第1G項所述之方法,進—步包含將—内層介 電薄膜(interlayer dielectric film)形成於該摻雜的玻璃圖^以 及該閘電極上方。 13. 如申請專利範圍第1項所述之方法,進一步包含將—保護層 (passivation layer)或一換雜物貧乏層(dopant_如咖㈣形成^ 37 100年5月31曰 U 侧案之/暴露的表面。 .一種薄膜電晶體,包含: 半導體薄膜層; 麵圖案之至少—部份’位於該半導體薄膜層上, :::摻雜的玻璃圖案之至少兩部份定義一間隙於該薄 鲁 险】Z體之-溝道區域上方且該摻雜的玻璃圖案之該間 一丨糸暴路該半導體薄膜層的一部份; 位於該溝道區域上與該間_,該閘電極包含一 兮:^;_丨電薄膜以及位於該閘極介電薄膜上之一閘極導體; 1導體_勒之含有摻雜物之複數個區域,位於該溝道 區域之兩側;以及 t電互連結構,位於該半導體薄膜層之該含有換雜物的區 域之暴露的表面上。 ^月專利圍第ls項所述之薄膜電晶體,包含複數個半導 16 + —屬I、層,位於一基材上之一電晶體主體圖案内。 ·=睛專概圍第15項所述之細電晶體,其中該換雜的玻 17圖案位於該半導體薄膜層之源極以及汲極區域上或上方。 • °申請專利範圍第15項所述之薄膜電晶體,其中該閘電極填 滿該間隙。 令羞 ^ 、 圍第15項所述之薄膜電晶體,其中該閘極介電 1碍膜包含該半導體薄膜層之一熱氧化物(thermal oxide)。 .如申請專利範圍第15項所述之薄膜電晶體,其中該摻雜的玻 。續圖案位_半導體薄闕上,且關極介㈣膜只位於該間 隙内。 、 2〇.如申請專概㈣15項所述之祕電晶體,其中該閘極導體 38 100年5月31臼 包含一金屬。 第15項所述之薄膜電晶體,其中該等含有摻 22 ^ 雜物與該摻雜的玻_案之該摻雜物相同。 •tm祀圍第15項所述之薄膜電晶體,進一步包含位於 二二1人_案内之複數個開ϋ (QPeninS),暴露該半導體薄 膜層之斜有摻雜物的區域之表面。 23^!1 專利範圍第15項所述之薄膜電晶體,進一步包含—内 电賴,位於該摻軸__以及該閘電極上方。 It請專利範圍第15項所述之薄膜電晶體,進-步包含-被 θ或摻雜物負乏層,位於該摻雜的玻璃圖案之—暴露的表 面0 25. ^申请專職’ 15項所述之薄膜電晶體,其中—含有換雜 上的獨立區域與該溝道區域之間的每一個介面大體上對齊於 該換雜的玻璃圖案之一邊緣。 26. 種形成薄膜電晶體(ThinFilmTransist〇r,TFT)之方法,包含 列步驟: 形成一半導體薄膜層; 將一閘極介電薄膜形成於該半導體薄膜層之全部表面; 將一摻雜的玻璃圖案(doped giaSs pattem)印於該閘極介電薄 膜上或上方,以致該摻雜的玻璃圖案具有一間隙(gap),其 暴露該半導體薄膜層的一部份並定義該薄膜電晶體之一 溝道區域(channel region); 將一閘電極(gate electrode)形成於該間隙内該溝道區域上或 上方,該閘電極包含一閘極介電薄膜(gate dielectric film) 以及位於該閘極介電薄膜上之一閘極導體(gate 100年5月31曰 100年5月31曰 將 體薄 conductor);以及 -摻雜物(dopant)從玻 膜層内。 u又王4千等 一種薄臈電晶體,包含: 半導體薄膜層; =的玻璃圖案之至少—部份,位於該 其中軸極介㈣赚了位於關隙内還 二、;°亥+蜍體溥膜層之部份表面; 含有摻雜物之複數個區域,位於該溝道 ϋϋΐί ^於解導體薄麟之該麵摻雜物的區May 31, 100, the scope of the patent application: 1. The method of forming a thin film transistor (TFT), comprising the steps of: forming a semiconductor thin film layer; and placing a doped glass pattern ( a doped glass pattern printed on or above the semiconductor thin film layer, a gap in the doped glass pattern exposing a portion of the semiconductor thin film layer and defining a channel region of the thin film transistor Forming a gate electrode on or above the channel region. The gate electrode includes a gate dielectric film and a gate on the gate dielectric film a gate conductor; and diffusing a dopant from the doped glass pattern into the semiconductor film layer. 2. The method of claim 1, wherein the step of forming the semiconductor thin film layer comprises printing a liquid phase ink on a substrate, the liquid ink comprising a semiconductor precursor The method of claim 1, wherein the doped glass pattern is printed on a source and a drain corresponding to the thin film transistor (semiconductor) Drain) The upper or upper area of the semiconductor film layer of the terminal. The method of claim 4, comprising forming the gate conductor on the gate dielectric film and forming at least in the gap. 5. The method of claim 5, wherein the step of forming the gate conductor comprises printing ink containing one of the gate conductor precursors on the film of the gate dielectric thin film on May 31, 100. Tender and tender, the glass pattern of the object 7. The film is formed in the gap 1 method, the step of the towel and the maternity and the second, the glass flip and the heating of the semiconductor film layer to a temperature without Forming a source in the semiconductor film layer / 8 · ^ patent application scope! The method of claim, wherein printing the doped glass comprises printing an ink comprising a doped glass precursor on the water layer; or above the water layer comprising the doped glass precursor The ink is converted to a doped glass. The method described in the paragraph A, the step of removing the portion of the dopant is sufficiently exposed to expose the surface of the + conductor film layer containing the dopant of the chick. 10. The method of claim 1 wherein the step of removing the portion of the doped glass pattern leaves the remainder of the contaminated glass. The method of claim 10, further comprising forming a conductive interconnect structure on the exposed surface of the semiconductor film layer comprising the diffused dopant. / 12. The method of claim 1G, wherein the step of forming an interlayer dielectric film over the doped glass and above the gate electrode. 13. The method of claim 1, further comprising: a passivation layer or a poorly-missed layer (dopant_such as coffee (4) formed ^ 37 100 May 31 曰 U side case / exposed surface. A thin film transistor comprising: a semiconductor thin film layer; at least a portion of the surface pattern is located on the semiconductor thin film layer, and at least two portions of the ::: doped glass pattern define a gap therebetween a thin portion of the semiconductor film layer over the channel region and between the doped glass patterns; located on the channel region and the gate electrode The invention comprises: a germanium film and a gate conductor on the gate dielectric film; a plurality of regions of the conductor containing the dopant, located on both sides of the channel region; An electrical interconnect structure on the exposed surface of the semiconductor-containing film layer containing the impurity-containing region. The thin film transistor according to the above-mentioned patent, which includes a plurality of semi-conductive 16+-genus I, layers Located in a transistor body pattern on a substrate. The fine crystal according to item 15, wherein the modified glass 17 pattern is located on or above the source and drain regions of the semiconductor thin film layer. The thin film transistor, wherein the gate electrode fills the gap. The thin film transistor according to Item 15, wherein the gate dielectric film comprises a thermal oxide of the semiconductor thin film layer (thermal The thin film transistor according to claim 15, wherein the doped glass has a pattern on the semiconductor thin film, and the gate (4) film is located only in the gap. For example, the application of the micro-crystal according to the above-mentioned (4), wherein the gate conductor 38 comprises a metal according to the semiconductor film of the fifth aspect, wherein the film contains the 22 ^ impurity and the The dopant of the doped glass is the same. The thin film transistor according to item 15 of the tm, further comprising a plurality of openings (QPeninS) in the case of two or two persons, exposing the semiconductor film layer The surface of the region where the dopant is oblique. 23^!1 Patent scope No. 15 The thin film transistor further includes an inner electrode, located on the doping axis __ and the gate electrode. The film transistor according to claim 15 of the patent scope, further comprising - is θ or doped a negative layer, located on the exposed surface of the doped glass pattern 0 25. ^Application of a full-time 'film thin film transistor of the '15 item, wherein - between the independent region on the impurity and the channel region Each of the interfaces is substantially aligned with one of the edges of the alternating glass pattern. 26. A method of forming a thin film transistor (TFT) comprising the steps of: forming a semiconductor thin film layer; dielectrically blocking a gate Forming a thin film on the entire surface of the semiconductor thin film layer; printing a doped glazed pattern on or above the gate dielectric film such that the doped glass pattern has a gap, Exposing a portion of the semiconductor thin film layer and defining a channel region of the thin film transistor; forming a gate electrode on or above the channel region in the gap, the gate electrode package a gate dielectric film and a gate conductor on the gate dielectric film (gate will be thin conductor on May 31, 2010, May 31, 100; and - dopant (dopant) from the glass layer. u Wang 4 thousand and other thin germanium transistors, including: a semiconductor film layer; = at least part of the glass pattern, in which the axis is interposed (four) earned in the gap, two;; a portion of the surface of the ruthenium layer; a plurality of regions containing dopants located in the region of the channel ϋϋΐί ^
TW096121120A 2006-06-12 2007-06-12 Printed, self-aligned, top-gate thin film transist TWI357157B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81316106P 2006-06-12 2006-06-12
US80973707A 2007-05-31 2007-05-31

Publications (2)

Publication Number Publication Date
TW200818509A TW200818509A (en) 2008-04-16
TWI357157B true TWI357157B (en) 2012-01-21

Family

ID=38934990

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096121120A TWI357157B (en) 2006-06-12 2007-06-12 Printed, self-aligned, top-gate thin film transist

Country Status (3)

Country Link
JP (1) JP2007335870A (en)
KR (1) KR100941119B1 (en)
TW (1) TWI357157B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833808B2 (en) * 2008-03-24 2010-11-16 Palo Alto Research Center Incorporated Methods for forming multiple-layer electrode structures for silicon photovoltaic cells

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224340A (en) * 1989-02-27 1990-09-06 Seiko Epson Corp Manufacture of thin film transistor
US5573964A (en) * 1995-11-17 1996-11-12 International Business Machines Corporation Method of making thin film transistor with a self-aligned bottom gate using diffusion from a dopant source layer
KR100205306B1 (en) 1995-12-26 1999-07-01 구본준 A method of fabricating a thin film transistor
JPH11251259A (en) * 1998-03-04 1999-09-17 Seiko Epson Corp Method for introducing impurity to semiconductor layer, and manufacture of thin-film transistor and semiconductor device
JP3346284B2 (en) * 1998-07-06 2002-11-18 松下電器産業株式会社 Thin film transistor and method of manufacturing the same
JP2001185731A (en) * 1999-12-24 2001-07-06 Toshiba Corp Semiconductor device and its manufacturing method
TW480728B (en) 2001-02-02 2002-03-21 Hannstar Display Corp Polysilicon thin film transistor structure and the manufacturing method thereof
JP2004103963A (en) * 2002-09-12 2004-04-02 New Japan Radio Co Ltd Method for manufacturing semiconductor device and manufacturing apparatus of the semiconductor device
JP4409231B2 (en) * 2003-08-29 2010-02-03 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2006140335A (en) * 2004-11-12 2006-06-01 Seiko Epson Corp Complementary transistor circuit, electro-optical device, electronic device, and fabrication process of complementary transistor

Also Published As

Publication number Publication date
KR20070118555A (en) 2007-12-17
TW200818509A (en) 2008-04-16
JP2007335870A (en) 2007-12-27
KR100941119B1 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
US8796125B2 (en) Printed, self-aligned, top gate thin film transistor
US7767520B2 (en) Printed dopant layers
TWI375280B (en) Printed dopant layers
TWI309438B (en) Mos transistor with laser-patterned metal gate, and method for making the same
TW490729B (en) Method for fabricating semiconductor device with high quality crystalline silicon film
JP3600541B2 (en) Method of forming ohmic contacts for thin film transistors
KR101578229B1 (en) Printing of contact metal and interconnect metal via seed printing and plating
JP2011511441A (en) Silicon thin film transistor and manufacturing system and method thereof
JP2011529126A (en) Aluminum ink and method for producing the same, method for depositing aluminum ink, and film formed by printing and / or depositing aluminum ink
JP2007142367A (en) Thin film transistor and method of manufacturing same
KR100302402B1 (en) A method for fabricating a semiconductor device
KR20050105247A (en) Methods of forming thin film transistors and related systems
TWI306622B (en) Method of forming silicided gate structure field of the invention
JP2008536295A5 (en)
TW201034204A (en) Thin film transistor and method for manufacturing same
TWI357157B (en) Printed, self-aligned, top-gate thin film transist
TW201044106A (en) Method for fabricating polysilicon hard mask using metal catalyst and semiconductor device using the same
JP2008211144A5 (en)
JP4145963B2 (en) Semiconductor device manufacturing method
KR100314705B1 (en) Semiconductor device and manufacturing method thereof
WO2014070019A1 (en) Protective cover for a copper containing conductor
CN101101878A (en) Printed, self-aligned, top gate thin film transistor
KR100940162B1 (en) Method for forming gate electrode
KR100796614B1 (en) Fabricating of thin film transistor
JPH07211634A (en) Semiconductor device and fabrication thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees