TWI355820B - Efficient computation of spatial filter matrices f - Google Patents

Efficient computation of spatial filter matrices f Download PDF

Info

Publication number
TWI355820B
TWI355820B TW094122216A TW94122216A TWI355820B TW I355820 B TWI355820 B TW I355820B TW 094122216 A TW094122216 A TW 094122216A TW 94122216 A TW94122216 A TW 94122216A TW I355820 B TWI355820 B TW I355820B
Authority
TW
Taiwan
Prior art keywords
matrix
spatial
initial
transmission
channel
Prior art date
Application number
TW094122216A
Other languages
English (en)
Other versions
TW200635256A (en
Inventor
Mark S Wallace
Jay Rodney Walton
Steven J Howard
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34979956&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI355820(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200635256A publication Critical patent/TW200635256A/zh
Application granted granted Critical
Publication of TWI355820B publication Critical patent/TWI355820B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

1355820 » · 九、發明說明: 【發明所屬之技術領域】 * · 本發明概言之係關於通信’更具體而言,係關於對多輸 ';- 入多輸出(ΜΙΜΟ)通信系統中資料傳輸之空間處理。 【先前技術】 ΜΙΜΟ系統在一發射實體處使用多(Ντ)個發射天線並在 一接收實體處使用多(NR)個接收天線進行資料傳輸。一由 該等Ντ個發射天線及NR個接收天線構成之ΜΙΜΟ通道可分 解成Ns個空間通道,其中NsSmin{NT,Nr}。可使用該等 Ns個空間通道並行地發射資料,以獲得更大之通量及/或 另外獲得更高之可靠性。 每一空間通道可能會經歷各種不利的通道狀態,例如衰 落效應、多路徑效應及幹擾效應。該等%個空間通道亦可 能會經歷不同之通道狀態,並可獲得不同之信號對雜訊及 幹擾比(SNR) ^每一空間通道之SNR會決定其傳輸容量, φ 傳輸容量通常係由一可在空間通道上可靠傳輸之特定資料 傳輸率來量化。對於時變無線通道而言,通道狀態會隨時 間變化’且每一傳輸通道之SNR亦隨時間變化。 為提高效能,ΜΙΜΟ系統可利用某種形式之回饋,以供 接收實體用於評價該等空間通道並提供可表示每一空間通 ,道之通道狀態或傳輸容量之回饋資訊。然後,發射實體可 根據回饋資訊來調節每一空間通道上之資料傳輸。然而, 由於各種原因,可能無法得到該回饋資訊。舉例而言,系 統可能不支援來自接收實體之回饋傳輸,或者無線通道之 •02908.doc 1455820 邊化可能快於接收實體可對無線通道實施估計及/或發回 ' 回饋貧訊之速率。總之,若發射實體並不知曉通道狀態, 、 則其可此品要以一低速率來發射資料,以便甚至在最差情 % 形通道狀態下資料傳輸亦可由接收實體可靠地解碼。此一 系統之效能將取決於所預期之最差情形通道狀態,此極不 為吾人所樂見。 為提高效能(例如,當無法得到回饋資訊時),發射實體 • 可執行空間處理,以使資料傳輸在一延長的時間週期中不 會觀測到最差情形通道狀態,如下文所述。因而,可對資 料傳輸使用一更咼之資料傳輸率。然而,對於發射實體及 接收實體二者而言,該空間處理意味著複雜度增加。 因此,此項技術中需要具有在MIM〇系統中有效地執行 空間處理以提高效能之技術。 【發明内容】 本文說明用於有效地計算由一接收實體用於空間處理之 • 空間濾波矩陣之技術。一發射實體可使用全通道狀態資訊 (「全CSI」)或「部分CSI」傳輸經由一 ΜΙΜΟ通道來發射 貝料’如下文所述。發射實體亦可利用引導傳送差異 (STD)來提高效能。藉助STD,發射實體使用不同之引導 矩陣執行空間處理’以使資料傳輸觀測到各有效通道之總 體,而非在一長時間週期中停留在一「差」的通道實現 上。接收實體針對全CSI或部分CSI傳輸及引導傳送差異來 執行互補之接收機空間處理。若MIM〇通道相對為靜態或 者不急劇變化’則可有效地計算用於接收機空間處理之空 102908.doc 1^55820 間濾波器。 .. 右MIMOlt道在―系列傳輸跨度(例如u符號週期或 . 頻率子頻内相對為靜態,則該ΜΙΜΟ通道在該等傳輪跨 ,-《内之各通道響應矩陣可高度相關。在此種情形中,可根 據一通道響應矩陣及—所選之接收機處理技術來導出一初 始工間濾波矩陣,如下文所述。然後,可根據該初始空間 遽'波矩陣及用於每—傳輸跨度之引導矩陣來計算在該靜態 • 範圍内該傳輸跨度之空間濾波矩陣。 右ΜΙΜΟ通道不為靜態、但並不急劇變化,則不同傳輪 跨度之通道響應矩陣可能部分地相關。在此種情形中,可 為、·σ定之傳輸跨度^導出一空間濾波矩陣,並用其 來導出另-傳輸跨度所之初始空間滤波矩陣。然後,可根 據該初始空間遽波矩陣、例如使用一迭代程序來計算傳輸 5度m之工間;慮波矩陣也㈤。可在一系列所關心之傳輸 跨度内重複該相同的處理,以便可使用每一新導出之空間 •滤'波矩陣為另一傳輸跨度計算另-空間滤波矩陣。 μ可將。亥等引導矩陣定義成能夠簡化空間濾波矩陣之計 ^下文將進一步詳細闡述本發明之各種態樣及實施例。 【實施方式】 在本文中’「實例性」一詞用於意指「用作一實例、例 j解」本文中闡述為「實例性」之任何實施例皆未 必應視為好於或優於其他實施例。 圖1顯示一單载波MIM0系統1〇〇中一發射實體ιι〇及一接 收實;iaI50之簡單方塊圖。在發射實體處一發射(η) I02908.doc 1355820 ι間處理器120對資料符號(由一向量芝(所)標記)執行空間處 . 理,以產生發射符號(由一向量2L(m)標記)。本文中所述 . 「資科符號」係對應於資料之調變符號,「導頻符號」係 ♦ 對應於導頻(其係為發射實體及接收實體二者所預知之資 料)之調變符號,「發射符號」係欲自一發射天線發送之 符號,「接收符號」係自一接收天線獲得之符號,調變符 號係一調變方案(例如M-PSK、M-QAM等等)所用信號星象 φ 圖中一點之複數值。空間處理係根據引導矩陣公切)及可能 其他矩陣來執行❶發射符號由一發射單元(TMTR)122進一 步調節來產生Ντ個已I周變信號,然後該等Ντ個已調變信號 自Ντ個發射天線124經由一 ΜΙΜΟ通道發射。 在接收實體150處’所發射之已調變信號由Nr個接收天 線1 5 2接收到’且該等n R個接收信號經過一接收單元 (RCVR)l 54調節以獲得接收符號(由一向量£(w)標記)。然 後’ 一接收(RX)空間處理器160使用空間濾波矩陣(由 春 仏0)標記)對該等接收符號執行接收機空間處理(或空間匹 配濾波),以獲得「所偵測」資料符號(由一向量i(w)標記)。 所偵測資料符號係由發射實體110所發送資料符號之估計 值。發射實體及接收實體處之空間處理將在下文中說明。 本文所述空間濾波矩陣計算技術既可用於單載波mim〇 系統亦可用於多載波ΜΙΜΟ系統。多載波可使用正交分頻 多工(OFDM)、離散多單音(DMT)、某些其他多載波調變 技術、或某些其他構造來獲得^ OFDM會有效地將整個系 統頻寬劃分成多(NF)個正交子頻帶,該等正交子頻帶亦稱 102908.doc 1355820 作音調、子載波、頻段、及通道。對於OFDM而言,每一 子頻帶皆與一可使用資料來調變之相應子載波相關聯。
在MI1VIO系統1〇〇争,由發射實體11〇處之]^7個發射天線 及接收實體150處之NR個接收天線構成之ΜΙΜΟ通道可由 一NRXNT維通道響應矩陣廷(w)來表徵,該nr><nt維通道響 應矩陣H(m)可表示為: (m) K2(m) ··· Λ]Ντ(m)' 力2.1(W) A2,2(W)…Λ2.Ντ(/?ί) 方程式(1) :· ; •' 丨 \.2(m) ··· Wm) 其中元〇)(其中ζ·= 1 .為且_/ = 1 ...Ντ)表示 在傳輸跨度m中發射天線y與接收天線ζ•之間的通道増 益。一傳輸跨度可涵蓋時間及/或頻率尺寸◊舉例而言, 在一單載波ΜΙΜΟ系.統中,一傳輸跨度可對應於一個符號 週期,符號週期係傳輸一個資料符號之時間間隔。在一多 載波職〇系統中,一傳輸跨度可對應於一個符號週期中 之一個子頻帶。—傳輪跨度亦可涵蓋多個符號週期及/或 多個子頻帶°為㈣起見,假定Μ細通道為滿秩通道, 其中 ns=nt$nr。 MIM0系統可使用—種或多種運作模式-例如-「已校 準」模式及-「未校準」模式—來支援資料傳輪。 模式可採用全CSI傳輸,_ & 4 $ Μ + 準 k 料在ΜΙΜ0通道之正交空 二二,)上傳輸,準模式可採用部分 則料使二科例如自各單獨發射天線在MlMOit道 102908.doc 1355820 之各空間通道上傳輸。 ΜΙΜΟ系統亦可採用引導傳送差異(STD)來提高效能。藉 •- 助STD,發射實體使用引導矩陣執行空間處理,以使一資 ♦- 料傳輸觀測到各有效通道之總體,而非在一長時間週期中 停留在一單一的差通道實現上。因此,效能不會受最差情 形通道狀態控制。 1.已校準模式-全CSI傳輸 φ 對於全Csi傳輸,可按下式對H(W)的一相關矩陣執行特 徵值分解來獲得廷(所)之仏個特徵模態: — 方程式(2) 其中B_(W)係廷(w)的一ntxNt維相關矩陣; EIw)係一NTXNT維單位矩陣,其各行係E(w)之特徵向 量; 係一由达(w)之特徵值構成之NTXNT維對角矩陣;及 表示共軛轉置。 φ 單位矩陣红係由性質红//.辽=[表徵,其中1係恒等矩陣。 -單位矩陣之各行互相正交,且每一行皆具有單位冪。矩 陣如)可由發射實體用於空間處理,以在旦㈤之Ns個特徵 2態上傳輸資料。特徵模態可視為藉由分解而獲得之正交 工門通道4(w)之對角線元係区(w)之特徵值,其表示該等 s個特徵模態之冪增益。亦可執行奇異值分解來獲得左特 徵向量及右特徵向量㈣,左射政向量及右特徵向量矩陣 可用於全CSI傳輸。 發射實體按下式使用引導傳送差異對全CSI傳輸執行空 102908.doc 間處理: , 方程式(3)
其中乏(m)係一 NTxl維向量,其具有欲在傳輸跨度讲中發送 之多達Ns個資料符號; Σ(所)係傳輸跨度m的一ntxNt維引導矩陣; I_(w)係傳輸跨度w之特徵向量矩陣;及
2/(m)係一 NTxl維向量,其具有欲在傳輸跨度所中自心個 發射天線發送之Ντ個發射符號。
如方程式(3)所示,以中之每一資料符號皆藉由犯m)中 一相應的行有效地得到空間擴展。若Ns<Nt,則藉由一 nsxns維矩陣父(所)對乏(w)中之Ns個資料符號實施空間擴 展’以獲得Ns個「擴展」符號。每一擴展符號皆包含該Ns 個資料符號中每一資料符號之一分量。然後,在a(岣之該 Ns個特徵模態上發送來自空間處理之Ns個擴展符號。每一 引導矩陣父(w)皆係一單位矩陣,並可如下文所述來產生。 接收貫體自該NR個接收天線獲得接收符號,此可表示為: =S/_qr(m)·s(m) + n(m) ,方程式(4) 其中〇(m)係一 NRxl維向量,其具有在傳輸跨度所中經由該
Nr個接收天線獲得之Nr個接收符號; H(⑷係傳輸跨度w的一雜訊向量;及 係在藉由引導傳送差異實施之全CSI傳輸情況下 由資料向量M>)觀測到的一 NRxNT維「有效」ΜΙΜΟ通道響 102908.doc -12· 1355820 應矩陣,其係: ^/_攻(切)=2(切)1(»0.沿》0。 方程式(5) 為簡明起見,假定雜訊係具有一零平均向量及一協方差矩 陣么η =σ2·ϊ,where σ2之加成性白高斯雜訊(AWGN),其中σ2係 雜訊之方差且I係恒等矩陣。 接收實體可使用各種接收機處理技術來恢復乏(w)中之資 料符號。適用於全CSI傳輸之技術包括一種全CSI技術及一 種最小均方差(MMSE)技術。 對於全CSI技術,接收實體可按下式導出一空間濾波矩 陣 : M/Clf(讲)= :^(爪).△-丨(W)·#(«0·!!"(rn)。 方程式(6) 接收實體可按下式使用M/«如)執行接收機空間處理: I fast (m) = Μ , = VH(m)· A'1 (m) · Eh (m) · Hw (m) · [H(/w) · E(m) · V(m) · s(m) + n(m)] = s(m) + nf(m), 其中㈣係一具有Ns個所偵測資料符號之Ντ X 1維向 量;及. η/Ο)係在揍收機空間處理之後的後偵測雜訊。 對於MMSE技術,接收實體可按下式導出一空間濾波矩 陣 Μ/__» : 乸/_圆》= [1^—攻《廷/_攻(爪)+ 〇'2-!]-1.£^_攻(爪)。方程式(8) 空間濾波矩陣Μ,,,,㈣會使來自該空間濾波器之符號估計 I02908.doc -13 - 1355820 值與中之資料符號之間的均方差最小化。 接收實體可按下式執行MMSE空間處理: f_mmse (m) rf(m), • . = D/,m™e(^)·Mf^e(f») [Ef_eff(m) s(m) + n(m)], 方程式(9) % =^e(m) nf ^{m) s(m) + nf mmst(m), 其中係一對角矩陣,其含有對角線元 Μ。·〆—^厂攻㈣,或 = 及 MMSE已遽波雜訊。 ® 來自空間濾波器之符號估計值㈣係資料符號之未歸 一化估計值。與換算矩陣«㈨相乘則會提供資料符號 之歸一化估計值。 全csi傳輸力圖在n(m)之特徵模態上發送資料。然而, 由於(舉例而言)SL(rn)之估計值不理想、特徵值分解存在錯 誤、算術精度有限等等,一全CSI資料傳輸可能並非完全 正交。MMSE技術則可補償(或「清除」)在全CSI資料傳輸 中之任何正交性損失。 • 表1匯總了在發射實體及接收實體處對使用引導傳送差 異之全CSI傳輸執行之空間處理。 表1 實體 已校準模式-全CSI傳輸 發送機 X/(^) = E(m)-V(w)-s(/7i) 空間處理 有效通道 接收機 全CSI M fcsi (w) = v w (m) A"1 (m) · Ew (m) · Hw (m) 空間濾波矩陣 ifcAm) = Mfc3i(m)-rf(m) 空間處理 102908.doc • 14- +^ ir nHf 空間濾波矩陣 ^im)] )·£/(«) 空間處理
MMSE 妄厂""《㈣=5/1 mm«(彷)· M/ ---—--二〜 2.未校準模式-局部CSI傳輪 發射實體按下 方程式(10) 如方程式(10) 對於使用引導傳送差旦之Λ .時圪左-之。ρ分CSI傳輸, 式執行空間處理: 其中係傳輸跨度所之發射資料向量。 h Km)中之每―資㈣號皆藉由父⑻中一相應的行得 到空間擴展》 咏货射藉由乘以犯所)而得到 故1NT個發射 Ντ個擴展符號。 接收貫體獲得接收符號,此可表示為. rp(m) =H(m).xp(w) + n(m) = H(W).V(m).§(m)+a(m) ^ 方程式(11) = SP_e#(W) .§(W) + B(W), 其中l(m)係傳輸跨度w之技術符號向量;及 ㈣係在使用引導傳送差異實施部分CSI傳輸之情況 下由乏Ο)觀測到的一 NrXNt維有效MlM〇通道響應矩陣, 其係: fip 攻㈣)=Η(π) · Y(w) 0 方程式(12) 接收實體可使用各種接收機處理技術來恢復芝(w)中之資 料符號。適用於部分CSI傳輸之技術包括通道相關矩陣求 逆(CCMI)技術(其亦通常稱作逼零技術)、MMSE技術、及 102908.doc 15 順序性幹擾消除(SIC)技術。 在CCMI技術中,接收實體可, r按仪員m J筏下式導出一空間濾波矩 陣 Km): = ).Ηρ^(,)Γ. ·Η^(,)=Ε^(/ίι,Η^(/7ΐ) 〇 接收實體可按下式執行CCMI空間處理: =Mcemi(m) rp(m), 方程式(14) =Ep_e£r (m) Up_^(m)· [Sp_eff (m) · s(/«) + n(w)j ^ =§⑻+3C», 其中U㈨係CCMI已滤波雜訊。歸因於屯»之結構, CCMI技術可放大雜訊。 在MMSE技術中,接收實體可按下式導出n慮波矩 陣M—e⑽: Μ…⑻《身^㈣切㈣。方程式⑼ 對應於部分CSI傳輸的方程式〇5)與對應好⑶傳輸的 2式(8)具有相同的形式。·然而,在對應於部分⑶傳輸 的方程式(1 5)中係使用艮» (而非屯_»)。 接收實體可按下式執行MMSE空間處理: ^P.m-ueC»») =Up_^e(m) Mp ^
Um).M〜(W).Sp ».咖) + uw),方程式⑽ 其中及〜㈣權”身s_(w)],且U⑽係在部分 CSI傳輸情況下之MMSE已濾波雜訊。 對於SIC技術’接收實體在順序性階段中恢復办)中之 資料符號。為清楚起見’在下文說明中假定乏⑻中之每一 102908.doc 1355820 »中之母一兀皆對應於一個資料符號流。接收實體 在Ns個順序性階段中處理。⑻中之該〜個接收符號流,
\復一(W)中之Ns個育料符號流。通常,SIC處理之方式 係·為-個流恢復—個封包,然後為另一流恢復另一封 包’依此類推。為簡明起見,在下文說明中假定Ns=Nt。 對於每-階段其中片Ns),接收實體對彼階段之^ 個輸入符號流匕㈣執行接收機空間處理。第一階段(€=1) 之輸入符號流係接收符號流或β(/η)=ϊ»。每一後續階段 (/ 2.._NS)之輸入符號流皆係根據前一階段修改之符號流。 Pfc白&/之接收機空間處理係基於一空間濾波矩陣鳃㈨,空 門遽波矩陣乳(m)可根據一減小的有效通道響應矩陣 ㈨並進一步根據(:(:]^1、mmse或某種其他技術來導 出。包含.㈨中對應於Nsj+i個尚未在階段^ 中得到恢復之資料符號流的Nsj+1個行。接收實體獲得階 段/中的一個所偵測資料符號流{毛},並進一步處理(例如解 調變、解交錯及解碼)該流來獲得一對應之已解碼資料流
{幻。 "IL 接下來’接收實體估計由資料符號流{々}對尚未得到恢 復之其他資料符號流造成之幹擾。為估計該幹擾,接收實 體按由發射實體對已解碼資料流以}執行的相同方式來處理 (例如再編碼、交錯及符號映射)該流,並獲得_「 經再調 變之」符號流仿},該「經再調變之」符號流⑹係剛剛恢 復之資料符號流{々}之估計值。然後,接收實體使兩引導 矩陣!L(m)對該經再調變之符號流執行空間處理,並進—+ 10290S.doc 17 1355820 將該結果乘以通道響應矩陣廷(W),以獲得由流{々丨造成之 NR個幹擾分量!。然後,接收實體將該Nr個幹擾分量 • - i>)自在當前階段^中!:>) iNR個輸入符號流中減去,以 •t · 獲得下一階段的NR個輸入符號流〇),或者 [p 0«) = !:;^)-! (;«)。輸入符號流〇)代表在假定已有效地實 施幹擾消除時’假若尚未傳輸資料符號流時接收實體 將接收到之流。然後,接收實體對該Nr個輸入符號流 _ ϊΓ㈣重複相同之處理來恢復另一資料流。然而,下一階 段ΟΙ之有效通道響應矩陣HiV(m)會減少一行,該行對應 於在階段,中得到恢復之資料符號流。 對於SIC技術,每一資料符號流之SNr皆相依於(1)每一 階段所用之接收機處理技術(例如CCMI或MMSE),(2)該資 料符號流在其中得到恢復之具體階段,及(3)因在後續階段 中付到恢復之資料符號流造成之幹擾量。一般而言,由於 消除了來自在先前階段中得到恢復之資料符號流之幹擾, • 因而在後續階段中得到恢復之資料符號流之S N R會漸次提 高。因而,此可容許對在後續階段中恢復之資料符號流使 用更高之速率。 表2匯總了在使用引導傳送差異之部分CSI傳輸情況下, 發射實體及接收實體處之空間處理。為簡明起見,在表2 中未顯示SIC技術。 表2 實體 木役平犋八一邯分CSI值銓 發送機 Xp(m)-\(mys(m) 空間處理 有效通道 102908.doc -18- 1355820
接收機 CCMI 空間瀘、波矩陣 e(历)=£;*__(/») -Mp__e(w) .Ef)(>H) 圖2顯示一用於使用引導傳送差異實施資料傳輸^ 型。發射貫體110為引導傳送差異執行空間處理(或空間擴 展)(塊220)並為全CSI或部分CSI傳輸執行空間處理(塊 230)。接收實體15〇為全CSI或部分CSI傳輸執行接收機空 間處理(塊260)並為引導傳送差異執行接收機空間處理^ 二間解擴展)(塊270)。如圖2所示,發射實體在為全CSI及 部分CSI傳輸執行空間處理(若有)之前為引導傳送差異執 行空間擴展。接收實體可為全CSI或部分⑶傳輸執行互補 .之接收機空間處理,隨後為引導傳送差異執行空間解擴 展。 3.空間濾波矩陣計算 藉助引導傳送差異,可對㈣之傳輸跨度使料同之引 導矩陣加),以使由-資料傳輸所觀測到之有效讀〇通 道隨機化。此可提高效能,0因資料傳輸不會在-長的時 間㈣中觀測到「差」的職〇通道實現。傳輸跨度可對 應於早載波ΜΙΜΟ系統之符號週期或多載波職〇系統之 子頻帶。 圖3Α顯示-在單載請Μ。系統情況下使用引導傳送差 異^部分⑶傳輸。對於㈣統,傳輪跨度標記 付號週期標記—)。在每-符號週㈣可傳輪」個 I02908.doc -19· 1355820 資料符號向量L(„) ’並可使用一為彼符號週期所選之引導 矩陣XO)對該資料符號向量釭„)實施空間擴展。每一資料 符號向量§X«)皆觀測到一有效ΜΙΜΟ通道響應 廷(„)·γ⑻並使用一空間濾波矩陣而得到恢 復。
圖3Β顯示一在多載波ΜΙΜΟ系統情況下使用引導傳送差 異之部分CSI傳輸。對於該系統,傳輸跨度標記历可等於一 子頻帶標記&(或所=幻。在每一符號週期中,可在每一子頻 帶灸中傳輪一個資料符號向量乏(幻,並可使用一為彼子頻帶 所選之5丨導矩陣公幻對該資料符號向量^實施空間擴 展。母一資料符號向量乏(巧皆觀測到一有效MlM〇通道響 應⑷.X⑷並使用一空間濾波矩陣姓而得二 恢復。向量⑽及矩陣砂)、这⑷和么⑷亦為符號週期”之 函數’但為簡明起見為加以顯示。
如圖3Α及3Β所示,若對不同之傳輸跨度使用不同之 導矩陣’則由接收實體所用之空間濾波矩陣係傳輸跨度 記1 之函數。即使通道響應矩陣廷(岣在—系列傳輸跨$ 固定或恒定不變,此亦成立。舉例而言,在一 MIMO^ it φ dfei-fc\. B .- 予、,先中,對於一具有平坦頻率響應之平坦 麵Ο通道,削可在―組子頻f巾固定*變。作為^ 實例’、在-單载波臟〇系統中’對於—無瞬時衰落 應〇通道,胸可在—給定時間間隔中固定 間間隔可對應於在傳輸一作為塊實施編喝及解瑪的資: 號塊時所用持續時間之全部或一部分。 , 102908.doc 1355820
在相鄰傳輸跨度之通道響應矩陣之間,例如在廷㈤與 )之間’ 常存在—定程度之關聯。在接收實體處, 可利用此㈣聯來簡化以“波輯之計算。下文將針對 兩種情形-全關聯及部分關聯—對該計算加以說明。 A. 全關聯 對於全㈣,麵⑽道之料響應料在所關心的-系列傳輪跨度標記(例如對於W=1...M)中固定不變,其中Μ 可係任何大於1之整數。因而廷⑴=a⑺=“.=a(M)=i^ 對於全CSI技術,具有全關聯通道響應矩陣之空間濾波 矩陣可表示為: 方程式(17) 方程式(18) 因而空間濾波矩陣担可表示為: "(所)"Ύ (所’ 其中 /72=1 …Μ, 其中丨係一基空間濾波矩陣,其係無 引導傳送差異時全CSI技術之空間濾波矩陣。由於通道響 應矩陣Η固定,因而基空間濾波矩陣^…不為傳輸跨 度m之函數。方程式(丨8)表明’每一傳輸跨度讲之空間濾波 矩陣可藉由將基空間濾波矩陣自左乘以該 傳輸跨度所用引導矩陣Y^(m)來獲得。 或者,可按下式計算空間遽波矩陣Μ^,,Γ m): 私,,.(所)=丛_丨(所).胜^"(1),其中w:=2…Μ, 方程式(19) 其中 且丛叶y(i)。方程 式(19)表明,每一傳輸跨度所之空間濾波矩陣以化〆^可藉 由將傳輸跨度1之空間濾波矩陣丛ccm,_(l)自左乘以矩陣 102908.doc 21 1355820
SjO)來獲得。矩陣瓦() 龙由— 一、八'、~ 2 ... Μ)係單位矩陣, 乘皆係藉由將兩個麼正引導矩陣例與則相 中獲件。矩輕】⑻可預先加以計算並健存於-記憶體 對於全CSI傳輸情況下之MMSE枯供 a 士入 ^ ^ 技術,具有全關聯通道 曰應矩陣之空間濾、波矩陣可表示為: = [ΥΧη"·Η·ε·綱+σ2·ΐΓ.γ"(吩E«.s",方程式⑽ =YW •Hw.H.E + a2-I]-,.E/,.Hw 方程式(2〇)可使用如下性質導出:a-1及 ~ I。方程式2〇中第二等式中括號内之項可表示為. [Y'r.Η"·Η.Ι.Υ+〇·2.!] 〜幻, = [Vw(Ew-Hw.H.E + a2-I).V], ,上面第二等 其中為清楚起見已省略了 「(w)」。因而 式中之項之逆可表示為: 其中。 空間濾波矩陣Μ/_;«_(所)可計算為: M-/_m m.^g(-^')~V ( W ) · 5i5/_mmse_6ase ’ 其中价~1 .·,Μ, 方程式(21) 其中 Μ/_關。類似於全 CSI 技術,傳輸跨度W之空間濾波矩陣可藉由將基空 間〉慮波矩陣^i f_mmxp._hese 自左乘以引:導矩陣YH(W)來獲得。 空間濾波矩陣(所)亦可計算為: 102908.doc -22- 1355820
其中w=2 m,方程式㈤ 其中 Μ/,αΐ)=Χ"⑴。 對於CCMI技術,具有全關聯通道響應料Γ空間濾波 矩陣可表示為: M^im) =[K^) ^(m)Vl U^rn),
= [Yw(m).Hw -Η· V(m)]-1 · Vw(w).H« = [Yw(W).R.V(OT)]-*.yw(w).a« ^ = Y',(W).R-» · V%).h« 方程式(23) 其中由於y(m)係一單位矩陣 因而。 因而,空間濾波矩陣也cmi•(所)可計算為: M_ccm;(W) 乂…’其中讲=ι…%, 其中。空間濾波矩陣姓⑽ 方程式(24) i(m)亦可計算
也⑽和)=!和).丛⑽,·(ι) ’其中W=2_M,方程式(25) 其中 Mcc«/(1)=:^(l).^;1 .g/7。 對於局部CSI傳輸情況下之MMSE技術,具有全關聯通 道響應矩陣之空間濾波矩表示為: Mp_mmje(m) ^(»ι) + σ2 ·Ι]_, , 方程式(26) 方程式(26)可按與上述方程式(20)相似之方式導出β 空間濾波矩陣可計算為: 私一關奸(所)=^(讲).仏_臟—奸’其中所=1..^1, 方程式(27) 102908.doc 1355820 其中= 。空間濾波矩陣關ie(w) 亦可計算為: 也_關“(所)=丛丨(77〇.仏_;„/7^(1),其中771=2—]^,方程式(28) 其中私_雜以1)=:^⑴ + 。 表3匯總了在傳輸跨度m = 1 ... Μ内具有全關聯通道響應 矩陣之全CSI及部分CSI傳輸的空間濾波矩陣之計算。 表3-具有全關聯之空間濾波矩陣
模式 空間濾波矩陣 技術 全CSI V {p%)*^ifcsi base 全CSI 旦,及 mmse_base(j^}-)"^(Lf_mmse_base MMSE 部分CSI ,及 ^iccmz(^)-iT^'^L.ccmiJtfase CCMI 户_mm.yg(所)-y ^ip_mmse_base MMSE 一般而言,傳輸跨度w之空間濾波矩陣可按 Μχ(所)=:^(所計算,其中下標「X」表示接收機處 理技術,其可係 「/cW」、「乂jwmM」、「ccmz·」或 r p_mmse j 。基空間滤·波矩陣公lx_6_可儼若未使用引導傳 送差異一般加以計算。 圖4顯示一用於在傳輸跨度m=l...M内計算具有全關聯通 道響應矩陣之空間濾波矩陣之過程400之流程圖。首先計 算一初始空間濾波矩陣(塊412)。該初始空間濾波矩 陣可係根據(1)通道響應矩陣SL及(2)所選用之接收機處理技 術(例如全CSI、用於全CSI之MMSE、CCMI、或用於部分 CSI之MMSE)導出之基空間濾波矩陣。或者,該初 102908.doc • 24· ⑧ 1355820 始空間遽波矩陣可係傳輸跨度m = 1之空間濾、波矩陣 K1),其可根據氐及又(1)導出。 若= ⑽(如圖4所示),則將傳輸跨度標記W設定 為1 ’或者方’則將傳輸跨度標記相設定為 2(塊414)。然後,根據初始空間濾波矩陣^ _及傳輸跨 度W所用之引導矩陣Κ;Μ)來計算傳輸跨度w之空間濾波矩 陣仏(所)(塊416)。具體而言,可如上文所述根據|^^^與 或者Μχ(Ι)與WKm)來計算^所)。然後,判定是否w < Μ(塊420) »若答案係「是」’則遞增標記历(塊422),且 該過程返回塊41 6來計算另一傳輸跨度之空間濾波矩陣。 反之,若在塊420中m=M,則將空間濾波矩陣i⑴至 KM)分別用於對所接收符號向量g⑴至^(Μ)之接收機空 間處理(塊424)。儘管為簡明起見在圖4中未顯.示,然而可 在既產生空間濾波矩陣亦獲得接收符號向量L(w)後 立即將每一空&濾波矩陣用於接收機空間處理。 對於全CSI傳輸’發射實體處之空間處理亦可簡化為: 。可根據每一傳輸跨度之引導矩陣父(㈣ 及矩陣E為彼傳輸跨度計算一矩陣盈.Y(w),在全關聯情形 中’E不為傳輸跨度之函數。 Β· 部分關聯 對於部分關聯,ΜΙΜΟ通道之通道響應矩陣未跨所關心 的傳輸跨度標記範圍全關聯。在此種情形中,可使用一為 傳輸跨度,計算出之空間濾波矩陣來方便對另一傳輸跨度功 之空間濾波矩陣之計算。 i02908.doc •25- ⑧ 1355820 豢 在一實施例中,藉由移除傳輸跨度之所用之引導矩陣 —(€)自為傳輸跨度^計算之空間濾波矩陣&(/)獲得傳 輸跨度/之基空間遽波矩陣私」…,如下式所示·. 么加⑺=汹I⑷。 方程式(29) 然後,使用基空間濾波矩陣來導出傳輸跨度 Μ例如⑺=叫之基空㈣、波矩陣也加W。仏»)Ϊ 例如使用一迭代程序或演算法來計算,該迭代程序或演算 法以迭代方式對觚執行一組計算,以獲得 之最终解。用於計算““犯解之迭代程序㈠列如 自適應性MMSE演算法、梯度演算法、格點演算法等等)為 此項技術所習知,在本文中不再加以贅述。傳輸跨度所之 空間濾波矩陣Km)可計算為:
Mx(m)=V//(m).Mx iejce(w) 〇 方程式(30) 因而該實施例之處理次序可表示為· 财BUou—M加)’其中,,—,,表示直接計'算且 表示可能的迭代計算。基空間濾波矩陣I 及
Mxj^O)不包含引導矩陣’而空間濾波矩陣&⑷及Κπ) 分別包含用於傳輸跨度/及m之弓丨導矩陣公€)及ν(附)。 在另一實施例中,使用一迭代程序來計算傳輸跨度所之 空間濾波矩陣&(/7〇 ’該迭代程序以迭代方式對一初始猜 測值Μ,㈣.執行一組計算。該初始猜測值可根據為= 度之導出之空間濾波矩陣來導出,如下式所示· &⑻=思(w).m,W, 方程式(31) 102908.doc -26- ⑧ 1355820 其中K讲)=:^(>).:YK)。該實施例之處理次序可表示為: • Μ,⑺— 。空間濾波矩陣鼠㈣及包⑻二者皆包 # > 含用於傳輸跨度m之引導矩陣Y(w)〇 對於上述實施例,延及l(m).可視為初始空間濾 波矩陣,用於為一新的傳輸跨度w導出空間濾波矩陣 一般而言,K幻與^⑷之間的關聯程度相依於 M*_base⑷與也_base〇)之間的關聯程度,而仏^⑷與 • 也-base(w)之間的關聯程度又相依於傳輸跨度《與w的廷⑷ 與IKm)之間的關聯程度。關聯度愈高,可使得愈快地收斂 至Μχ(^)之最終解。 圖5顯示一用於為傳輸跨度m=1..M計算具有部分關聯通 道響應矩陣之空間濾波矩陣的過程5〇〇之流程圖。將當前 及下一傳輸跨度之標記初始化為€=1&m=2(塊512)。根據 所選用之接收機處理技術為傳輸跨度/計算一空間濾波矩 陣Mx(0(塊514)。然後,根據空間濾波矩陣&(句及適當之 •引導矩陣/若干引導矩陣及公岣來計算傳輪跨度⑺之初 始空間濾波矩陣,例如如方程式(29)或(31)所示(塊 516)。然後,例如使用一迭代程序,根據該初始空間濾波 矩陣來計算傳輸跨度w之空間濾波矩陣&…)(塊 518)。 然後,判定是否m<M(塊520) ^若答案係「是」,則將 標記/及m更新為例如卜爪及所二衍+丨(塊522)。然後,該過程 返回至塊5 16來計算另一傳輸跨度之空間濾波矩陣。反 102908.doc -27- 明5820 之’若在塊52时判定出已計算出所有空㈣波矩陣,則 將空間遽波矩陣助)至也⑻分別用於對接收符號向量 1(1)至^(M)執行接收機空間處理(塊524)。 〜為簡明起見,圖5顯示為Μ個連續的傳輸跨度w=i..m計 算Μ個空間遽波矩陣。肖等傳輸跨度不需要鄰接。一般而 言,使用為一個傳輸跨度/導出之空間濾波矩陣來獲得另 —傳輸跨度m之空間濾波矩陣之初始猜測值,其中^及讲可 係任何標記值。 4·引導矩陣 可產生一組引導矩陣(或傳送矩陣)並將其用於引導傳送 差異。該等引導矩陣可標記為{Z},或者,其中 —1...L,其中L可係任何大於丨之整數。每一引導矩陣乂⑴ 皆應為一單位矩陣。該條件會確保使用^^·)同時傳輸之Ντ 個資料符號具有相同之功率且在使用公〇進行空間擴展後 相互正交。 該組L個引導矩陣可以不同之方式產生。舉例而言,可 根據一單位基矩陣及一組純量來產生該等L個引導矩陣。 該基矩陣可用作該L個引導矩陣之一。其餘L1個引導矩陣 則可藉由將該基矩陣之各列乘以不同之純量組合來產生。 每一純量可係任一實數或複數值。該等純量選擇成具有單 位大小,以使藉由該等純量所產生之引導矩陣為單位矩 陣。 該基矩陣可係一沃爾什矩陣。一 2χ2維沃爾什矩陣Μ。〗 及一更大尺寸之沃爾什矩陣W2Nx2N可表示為: 102908.doc -28- 1355820 W2 x2 及 w
2Nx2N
wNxN WNxN
WNxN' •WNxN 方程式(32) 沃爾什矩陣之維數為2之乘方(例如2,4,8等等)。 該基矩陣亦可係一傅立葉矩陣。對於一 ΝχΝ維傅立葉矩 陣这ΝΧΝ,这ΝΧΝ之第《列、第讲行中之元心…可表示為: d",e N ,其中w=n…N}且m = {l…N}。方程式(33) 可形成任何正方維(例如2 ’ 3,4,5等等)之傅立葉矩 陣。亦可使用其他矩陣作為基矩陣。 對於一 NxN維基矩陣,可將基矩陣之第2至第^^列中之每 -列分別乘以K個不同之可能純量之一。自該等尺個純量 對N-H固列之ΚΝ·]種不同排列,可獲得尺…個不同之引導矩 陣。舉例而言,可將列2迎中之每一列分別乘以一純量 + 1 ’ ’兮,或_;。當Ν=4且κ=4時,可自一Μ基矩陣及 四個不同之純量產生64個不同之引導矩陣。一般而古,可 將基矩陣之每-列乘以任—具有γ形式之純量,直中何 ^值.將一與純量相乘之& -進-步乘以⑽,以獲得一每一行皆具有單 維引導矩陣。 根據-沃爾什矩陣(或一 4χ4維傅立葉矩陣)導出之 矩陣具有某些所期望之性質。 旦 貝*將沃爾什矩陣中之各列乘 ,、里±1及±/’則所得到之引導矩陣中之每—㈣+1, -「權:,〜·。在此種情形中,—空間遽波矩陣中之元(或 權重」)與該引導矩陣中之元之乘法可僅藉由位元調處 I02908.doc -29· 1355820 來執行。若該L個引導矩陣中之各元屬於一由Η +
=構成之集合,則可大大簡化用於為全關聯情形導以 間濾波矩陣之計算。 5·ΜΙΜ0系統 圖6顯示-麵〇系統_t—存取點㈣及—使用者終端 :〇之方塊圖。存取點610配備有Nap個可用於資料傳輸及 收之天線,且使用者终端65〇配備有Nut個天線,其中 Nap>l 且 Nut>i。 、 在下行鏈路上,在存取點61〇處,一 τχ資料處理器“Ο 接收及處理(編碼、交錯及符號映射)訊務/封包資料及控制 /負擔資料,並提供資料符號β — τχ空間處理器63〇使用下 行鏈路之引導矩陣Z(w)及可能的特徵向量矩陣豇岣對該等 資料符號執行空間處理,如表丨及2所示。τχ空間處理器 630還適當地以導頻符號實施多工,並提供Ν&ρ個發射符號 流至Nap個發射單元6323至632ap。每一發射單元632皆接 收並處理一相應之發射符號流,然後提供一對應之下行鏈 路已調變信號。然後,自Nap個天線634a至634ap分別發射 來自發射單元632a至632ap之Nap個下行鏈路已調變信號。 在使用者終端650處,Nut個天線652a至652ut接收所發射 之下行鏈路已調變信號’且每一天線皆提供一接收信.號至 一相應之接收單元654。每一接收單元654皆執行與接收單 元632所執行處理互補之處理’並提供接收符號。一rx空 間處理器660對來自所有Nut個接收單元654a至654ut之接收 符號執行接收機空間處理(例如如表1及2所示),並提供所 I02908.doc -30 · 1355820 偵測資料符號。-RX資料處理器㈣處理(例如符號解映 射、解交錯及解碼)所偵測資料符號,然後為下行鍵路提 供經解碼之符號。 上行鏈路處理既可相同亦可不同於下行鏈路處理。訊務 及控制資料由-TX資料處理器⑽處理(例如編碼交錯及 符號映射)、由-TX空間處理器69〇使用上行鍵路之引導矩 陣h㈨及可能的特徵向量矩陣纪岣實施空間處理、並與導 頻符號相多工,以產生Nut個發射符號流。Nut個發射單元 654a至654Ut調節該Nut個發射符號流以產生&個上行鏈路 已調變信號,然後經由Nut個天線6仏至65 行鏈路已調變信號。 在存取點㈣處,該等上行鍵路已調變信號由〜個天線 634= 634ap接收到並由~個接收單元仙至ο㈣處理, 以獲得上行鏈路之接收符號。一RX空間處理器“4對該等 接收符號執行接收機空間處理,然後提供所偵測資料符 號’該等所㈣資料符號由—RX資料處理器M6進 理以獲得上行鏈路之已解碼資料。 ▲處^ 6 3 8及6 7 8分別為存取點及使用者終端執行通道估 =3=陣計算,器_及_分別控制存取點 '為處各種處理單兀之運作。記憶體單元642及 682則分別儲存控制器630及680所用之資料及程式碣。 端處理器678之—實施例,處理_為使用者終 712^/丁通道估計及空間濾波矩陣計算。—通道估計器 -侍所接收導頻符號並為每一其中可得到所接收導頻 102908.doc 1355820 符號之傳輸跨度導出一通道響應矩陣。一濾波器714可為 •. 當則及先前傳輸跨度之通道響應矩陣執行時域濾波,以獲 * 得一更高品質之通道響應矩陣a(w)。然後,一單元716計 •- 算一初始空間濾波矩陣。 對於全關聯旦〇),初始空間濾波矩陣可係(丨)一根 據BLW及所選接收機處理技術計算出之基空間濾波矩陣 或(2)根據廷⑴、γ⑴及所選接收機處理技術計算 • 出的傳輸跨度1之空間濾波矩陣。對於部分關聯之 H(衍),初始空間濾波矩陣可係一初始猜測值 杜^^(〇或&(m) _其係根據一為另一傳輸跨度/計算出之 空間滤波矩陣也⑷而獲得…單元718根據初始空間滤波 矩陣⑽及用於傳輸跨度w之引導矩陣公w)來計算該傳 輸跨度之空間濾波矩陣延^所)。對於部分關聯之扭岣,單 元71 8可執行一迭代程序來根據初始空間濾波矩陣(其係 ΜχΟ)之初始猜測值)為1(所)進行計算。 _ 4理H 638為存取點6職行通道估計及空關波矩陣計 算,並可按與處理器678相似之方式來構建。 本文所述空間滤波矩陣計算技術可由各種構件來實施。 舉例而言,該等技術可構建於硬體、軟體 '或其一組合 中。•對於硬體實施方案m皮矩陣計算㈣之處理^ 元可·構建於一或多個應用專用積體電路(ASIC)、數位信號 ;處理器(DSP)、數位信號處理裝置(DspD)、可程式化邏輯 裝置(明、場可程式化閉陣列(FpGA)、處理器、控制 器、微控制器、微處理器、其他設計用於執行本文所述功 I02908.doc -32· 能之電子單元 或其一組合中。
來勃^體構建方案,可藉由模組(例如程序、功能等等) 订波矩陣計算。軟體碼可储存於記憶體單元 (列如圓.6中之記憶體單元642及682)中並由處理器執行(例 如圖6中之控制器64〇及_)。該記憶體單元既可構建於處 理器内’亦可構建於處理器外部,在構建於處理器外部之
障況下,该記憶體單元可藉由此項技術中習知的各種構件 以通k方式耦合至處理器。 本文中所包含之標題旨在方便查閱並幫助確定某些章節 之位置1等標題並非意欲限定該等標題下所述概念之範 疇,遠等概念亦可適用於整篇說明書中之其他章節。
上文所揭示實施例旨在使任一熟習此項技術者皆能夠製 作或使用本發明。熟習此項技術者將易於得知該等實施例 料種修改方式,且本文所定義的—般原理亦可適用於其 他實施例,此並未背離本發明之主旨或範疇。因此,本發 明並非思欲限定為本文所示實施例,而應賦予其與本文所 揭示原理及新穎特徵相一致的最寬廣範嘴。 【圖式簡單說明】 圖1顯示一 ΜΙΜΟ系統中的一發射實體及一接收實體 圖2顯示一用於使用引導傳送差異實施資料傳輪之模 型; 圖3Α及3Β分別顯示一單载波ΜΙΜ〇系統及_多載波 ΜΙΜΟ系統中之資料傳輸。 圖4及5分別顯示用於為完全相關及部分相關通道響應矩 I02908.doc •33· 1355820 陣計算空間濾波矩陣之過程;
圖6顯示存取點及使用者終端之方塊圖;及 圖7顯示一用於空間濾波矩陣計算之處理器之方塊圖。 【主要元件符號說明】
100 ΜΙΜΟ系統 110 發射實體 120 發射(ΤΧ)空間處理器 122 發射單元(TMTR) 124 發射天線 150 接收實體 152 接收天線 154 接收單元(RCVR) 160 接收(RX)空間處理器 600 ΜΙΜΟ系統 610 存取點 620 ΤΧ資料處理器 630 ΤΧ空間處理器 . 632a-ap 發射單元 634a-ap 天線 638 處理器 640 控制器 642 記憶體單元 644 RX空間處理器 646 RX資料處理器 102908.doc -34- ⑧ 6501355820
652a-ut 654a-ut 660 670 678 680 682 688 690 712 714 716 718 使用者終端 天線 接收單元 RX空間處理器 RX資料處理器 處理器 控制器 記憶體單元 TX資料處理器 TX空間處理器 通道估計器 渡波器 初始空間濾波矩陣計算單元 空間濾波矩陣計算單元
102908.doc •35- ⑧ϊ

Claims (1)

  1. 、申請專利範園·· % ; 線夕輪入多輸出(ΜΙΜΟ)通信系統中導出空間 濾波矩障之古^ 平之方法,其包括: 確定-初始空間遽波矩陣;及 根據該初始而A I 土 二4濾波矩陣及用於複數個傳輸跨度之複 数调?丨導矩陸 波矩陣 ,為該複數個傳輸跨度導出複數個空間i 2 ·根據請求項1之大 一 法,/、中該初始空間濾波矩陣係根據 3 〇通道的—通道響應矩陣來確定。 n月求項2之方法’其中該複數個傳輸跨度中每一傳 輸跨度之兮' 介pq Μ卫β遽波矩陣係根據該初始通道響應矩陣及 一用於該傳輸跨度之引導矩陣來導^ 〜 4·根據請求項2之方法,其中該初始空間遽波矩陣係進一 步根據該複數個傳輸跨度之一的一引導矩陣來確定。 5 ·根據請求項3 f ❿ 之方法,其中該複數個傳輸跨度中每一傳 輸跨度之該空間遽波矩陣係根據該初始通道響應矩陣、 用於確&該初始空間爐波矩陣之該引導矩陣、及一用於 該傳輸跨度之引導矩陣來導出。 、 6·根據請求項1之方法’其中資料在-ΜΙΜΟ通道之正交空 間通道上傳輸,且其中該初始通道響應矩陣係根據—全 通道狀態資訊(全CSI)技術來確定。 7·根據請求項1之方法,其中資料在一 ΜΙΜΟ通道之正交空 間通道上傳輸,1其中該初始•通道響應矩陣係根據—最 小均方差(MMSE)技術來確定。 102908.doc 8. 8. «ι % * 9. 10. 11. 12. 13. • 14. 15. 根據請求> 士、A $ 1之方法,其中資料在一ΜΙΜΟ通道之空間通 道上傳輪, 且其中該初始通道響應矩陣係根據一通道相 關矩陣求逆(CCMI)技術來確定。 根據請求jg ι +七 # 1之方法,其中資料在一 ΜΙΜΟ通道之空間通 道上傳輪,Β #上 且其中該初始通道響應矩陣係根據一最小均 方差(MMSE)技術來確定。 根據#求項1之方法’其中該複數個引導矩陣由一發射 實體用於對資料實施空間處理以獲得傳送差異。 根據請求1 + 士、丨 巧1之方法,其中該複數個引導矩陣之元係一 由+1 -1、+j、及-j構成之集合之成員,其中j係·1的一 平方根。 根據μ求項1之方法,其中該複數個傳輸跨度對應於複 數個符號週期。 根據叫求項1之方法,其中該複數個傳輸跨度對應於複 數個頻率子頻帶。 根據請求碩丨之方法,其進一步包括: 使用該複數個空間濾波矩陣對該複數個傳輸跨度所接 收之符號執行空間處理。 一種於—無線多輸入多輸出(ΜΙΜΟ)通信系統中之裝置, 其包括: 處理器,其運作以確定一初始空間濾波矩陣並根據 該初始空間遽波矩ρ車及用於複數個傳輸跨度之複數個引導 矩陣為該魏個傳輸跨度導Λ複數個空間毅矩陣;及 一圮憶體’其運作以儲存該複數個引導矩陣。 102908.doc -2- ⑩ 16. 據月求項15之裝置,其中該初始空間遽波矩陣係根據 - ΜΙΜΟ通道的—通道響應矩陣來確定,且其中該複數 個傳輸跨度巾每—傳輸跨度线空⑽波料係根據該 初始通道響應矩陣及—用於該傳輸跨度之引導矩陣來導 出0 17. 根據β求们5之裝置’其中該初始通道響應矩陣係根據 ,王通道狀態資訊(全CSI)技術、一最小均方差(MMSE) • 技術、或—通道相關矩陣求逆(CCMI)技術來確定。 18. 根據D月求項15之裝置,其中該複數個引導矩陣之元係一 由 丨+j、及-j構成之集合之成員,其中j係-1的一 平方根。 19. 根據請求項15之裝置’其進一步包括: 工間處理器’其運作以使用該複數個空間遽波矩陣 對該複數個傳輸跨度所接收之符號執行空間處理。 20. -種於一無線多輸入多輸出⑽m〇)通信系統中之裝置, 其包括: 用於確定一初始空間濾波矩陣之構件;及 用於根據該初始空間滤波矩陣及用於複數個傳輸跨度 之複數個引導矩陣為該複數個傳輸跨度導出複數個空間 遽波矩陣之構件。 A根據請求項2〇之裝置’其中該初始空間遽波矩陣係根據 - ΜΙΜΟ通道的_通道響應矩陣來確定,且其中該複數 個傳輸跨度中每__傳輸跨度之該空m矩陣係根據該 初始通道響應矩陣及一用於該傳輸跨度之引導矩陣來導 102908.doc 1355820 出。 22.根據請求項20之裝置,其中該初始通道響應矩陣係根據 一全通道狀態資訊(全csi)技術 '一最小均方g(MMSE) 技術、或一通道相關矩陣求逆(CCMI)技術來破定。 23·根據請求項20之裝置,其中該複數個引導矩陣之元係一 由+卜-卜+^及-淡成之集合之成員’其扪係领一 平方根。 Φ 24.根據請求項2〇之裝置,其進一步包括: 用於使用該複數個空間濾波矩陣對該複數個傳輸跨度 所接收之符號執行空間處理之構件。 25. —種於一無線多輸入多輸出(MIM〇)通信系統中導出空間 遽波矩陣之方法,其包括: 為一第一傳輸跨度導出一第一空間濾波矩陣; 根據該第一空間濾波矩陣為一第二傳輸跨度確定一第 一初始空間濾波矩陣,;及 • 根據該第一初始空間濾波矩陣為該第二傳輸跨度導出 一第二空間濾、波矩陣。 26. 根據請求項25之方法,其中該第一空間渡波矩陣係根據 在该第-傳輸跨度中為—MIM()通道獲得的—通道響應 矩陣並進一步根據一接收機空間處理技術來導出。 27. 根據請求項25之方法,其中該確定該第一初始空間濾波 矩陣包括 ' 處理該第一空間濾波矩陣以移除 - 、咕巾 Ί寸爾吟 度之第一引導矩陣,且盆由好·^· · ns W 中該第一初始二間滤波矩陣等 102908.doc -4- ⑧ 28. 於已移除掉該第—引導矩陣之該第一空間滤波矩陣。 根據请求項25之方法,其巾該確定該第-初始空間慮波 矩陣包括: 處理該第-空間據波矩陣,以移除一用於該第一傳輸 跨度之第?丨導矩陣並包含—用於該第二傳輸跨度之第 一引導矩陣,且其中該第一初始空間濾波矩陣等於已移 除掉該第-引導矩陣並包含該第二引導矩陣之該第一空 間濾波矩陣。 29. 30. 31. 32. 33. ㈣虞請求項25之方法,其中該第n慮波矩陣係使用 一迭代程序導丨’該迭代程序對該第-初始m慮波矩 陣執仃一組計算以獲得該第二空間濾波矩陣的一最終 解。 根據請求項25之方法,其進一步包括: 根據該第二空間據波矩陣為一第三傳輸跨度確定一第 二初始空間濾波矩陣;及 根據該第二初始空間遽波矩陣為該第三傳輸跨度導出 一第三空間濾波矩陣。 根據請求初之方法,其巾該第-及第:料跨度對應 於兩個不同之符號週期。 根據叫求項25之方法’其中該第—及第:傳輸跨度對應 於兩個不同之頻率子頻帶。 種於一無線多輸入多輸出(ΜΙΜΟ)通信系統中之穿置, ^ : 一處理器,其運作以為—第一傳輸跨度導出—第一空 102908.doc 1355820 間滤波矩陣、根據該第一处pg :產、士 Ac itife A 乐&間濾波矩陣為一第二傳輪路 度確定-第-初始空間濾波矩陣、及根據該第_初始空 =慮波料為該第:傳輸跨度導^ —第H慮波矩 34.根據請求項33之裝置, r忑慝理裔運作以處理該 空間渡波矩陣以移除一用於該第一傳輪跨度之 矩陣’以中該第-初始空間心矩陣等於已移 第一弓丨導矩陣之該第一空間濾波矩陣。 .、^ 35·根據請求項33之裝置,其步 該第二空間遽波矩陣為-第三傳輸跨度確定一第…: 空間遽波矩陣、及根據該 初始 三傳輪㈣道山⑯ 矛初始工間慮波矩陣為該第 -寻輸跨度導n空間滤波矩陣。 36_ -種於一無線多輸入多輪 其包括·· m统中之裝置’ 用於為一第一傳輸跨度導出—* 件; 乐二間濾波矩陣之構 用於根據δ亥第一空間遽波矩 一第—初始咖 干々弟一傳輸跨度確定 二間濾波矩陣之構件;及 用於根據該第一初始空間濾 導出一第二介門法I 干乃这第一傳輪跨度 二間濾波矩陣之構件。 37.根據請求項36之 扶罝其中該用於確定竽埜、 濾波矩陣之構件包括 尺这第—初始空間 用於處理該第一空間濾波矩陣以移除 輸跨度之第_ 2丨.s '用於該第一傳 -之第%導矩陣之構件, τ唸第一初始空間 102908.doc 1355820 . 濾'波矩陣等於已 波矩陣。 移除掉該第一 引導矩陣之該第一空間濾 38.根據請求項36之裝置,其進一步包括·· 用於根據該第:空 嚷一、 皮矩陣為一第三傳輪跨声被^ 一第一仞始空間濾波矩陣之構件;及 又確疋 用於根據該第二初始空…慮波矩陣為 導出-第三空間滤波矩陣之構件。 -傳輪跨度
    I02908.doc
TW094122216A 2004-06-30 2005-06-30 Efficient computation of spatial filter matrices f TWI355820B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/882,491 US7110463B2 (en) 2004-06-30 2004-06-30 Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system

Publications (2)

Publication Number Publication Date
TW200635256A TW200635256A (en) 2006-10-01
TWI355820B true TWI355820B (en) 2012-01-01

Family

ID=34979956

Family Applications (2)

Application Number Title Priority Date Filing Date
TW094122216A TWI355820B (en) 2004-06-30 2005-06-30 Efficient computation of spatial filter matrices f
TW100141347A TWI451710B (zh) 2004-06-30 2005-06-30 於一多輸入多輸出(mimo)通信系統內供引導傳送差異之空間濾波矩陣之有效計算

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW100141347A TWI451710B (zh) 2004-06-30 2005-06-30 於一多輸入多輸出(mimo)通信系統內供引導傳送差異之空間濾波矩陣之有效計算

Country Status (15)

Country Link
US (2) US7110463B2 (zh)
EP (1) EP1766807B1 (zh)
JP (3) JP4833969B2 (zh)
KR (1) KR100887199B1 (zh)
CN (1) CN101010890B (zh)
AU (2) AU2005260035C1 (zh)
BR (1) BRPI0512808B1 (zh)
CA (2) CA2727876C (zh)
ES (1) ES2427934T3 (zh)
IL (1) IL180340A0 (zh)
MX (1) MX2007000268A (zh)
MY (1) MY139975A (zh)
RU (1) RU2363101C2 (zh)
TW (2) TWI355820B (zh)
WO (1) WO2006004706A1 (zh)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US7151809B2 (en) * 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US8204149B2 (en) * 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US7336746B2 (en) * 2004-12-09 2008-02-26 Qualcomm Incorporated Data transmission with spatial spreading in a MIMO communication system
US20050180312A1 (en) * 2004-02-18 2005-08-18 Walton J. R. Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US8169889B2 (en) 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US8285226B2 (en) * 2004-05-07 2012-10-09 Qualcomm Incorporated Steering diversity for an OFDM-based multi-antenna communication system
US8923785B2 (en) 2004-05-07 2014-12-30 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
US7110463B2 (en) * 2004-06-30 2006-09-19 Qualcomm, Incorporated Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system
US7978649B2 (en) 2004-07-15 2011-07-12 Qualcomm, Incorporated Unified MIMO transmission and reception
US7978778B2 (en) 2004-09-03 2011-07-12 Qualcomm, Incorporated Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
EP1784032A1 (en) * 2005-11-04 2007-05-09 Alcatel Lucent Method for performing user allocation in SDMA systems, and corresponding base station
US7813421B2 (en) * 2006-01-17 2010-10-12 Marvell World Trade Ltd. Order recursive computation for a MIMO equalizer
KR100922936B1 (ko) 2006-02-07 2009-10-22 삼성전자주식회사 통신 시스템에서 데이터 송수신 방법 및 시스템
US8543070B2 (en) 2006-04-24 2013-09-24 Qualcomm Incorporated Reduced complexity beam-steered MIMO OFDM system
US8290089B2 (en) 2006-05-22 2012-10-16 Qualcomm Incorporated Derivation and feedback of transmit steering matrix
CA2660826A1 (en) 2006-08-07 2008-02-21 Interdigital Technology Corporation Method, apparatus and system for implementing multi-user virtual multiple-input multiple-output
US8374650B2 (en) * 2006-09-27 2013-02-12 Apple, Inc. Methods for optimal collaborative MIMO-SDMA
US8073486B2 (en) 2006-09-27 2011-12-06 Apple Inc. Methods for opportunistic multi-user beamforming in collaborative MIMO-SDMA
US8626104B2 (en) 2006-09-28 2014-01-07 Apple Inc. Generalized codebook design method for limited feedback systems
US7702029B2 (en) 2006-10-02 2010-04-20 Freescale Semiconductor, Inc. MIMO precoding enabling spatial multiplexing, power allocation and adaptive modulation and coding
US8073069B2 (en) 2007-01-05 2011-12-06 Apple Inc. Multi-user MIMO-SDMA for finite rate feedback systems
US7961807B2 (en) * 2007-03-16 2011-06-14 Freescale Semiconductor, Inc. Reference signaling scheme using compressed feedforward codebooks for multi-user, multiple input, multiple output (MU-MIMO) systems
US8020075B2 (en) * 2007-03-16 2011-09-13 Apple Inc. Channel quality index feedback reduction for broadband systems
US7809074B2 (en) * 2007-03-16 2010-10-05 Freescale Semiconductor, Inc. Generalized reference signaling scheme for multi-user, multiple input, multiple output (MU-MIMO) using arbitrarily precoded reference signals
US8547986B2 (en) 2007-04-30 2013-10-01 Apple Inc. System and method for resource block-specific control signaling
US7978623B1 (en) 2008-03-22 2011-07-12 Freescale Semiconductor, Inc. Channel rank updates in multiple-input multiple-output communication systems
CN102017439A (zh) * 2008-04-25 2011-04-13 美国博通公司 用于为最大似然检测预测信道质量指数值的方法和系统
US20090312043A1 (en) 2008-06-13 2009-12-17 Silvus Technologies, Inc. Interference mitigation for devices with multiple receivers
JP4725628B2 (ja) * 2008-10-10 2011-07-13 ソニー株式会社 受信装置、受信方法、プログラム、及び無線通信システム
US8488724B2 (en) * 2009-05-14 2013-07-16 Silvus Technologies, Inc. Wideband interference mitigation for devices with multiple receivers
US8311484B2 (en) * 2009-09-15 2012-11-13 Broadcom Corporation Method and system for interference suppression using information from non-listened base stations
US8798550B2 (en) * 2012-05-11 2014-08-05 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for CSI reporting
US10547358B2 (en) * 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US9237513B2 (en) * 2014-06-13 2016-01-12 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Method for performing a cell search in multiple antenna wireless systems
EP3374066A4 (en) 2015-11-12 2020-04-08 Unger Marketing International, LLC WATER TREATMENT SYSTEMS WITH DIVERSION DEVICES
EP3229428B1 (en) * 2016-04-06 2021-03-10 Institut Mines-Télécom Methods and devices for sequential sphere decoding
US10727911B2 (en) * 2018-08-20 2020-07-28 Nokia Solutions And Networks Oy Beamforming in MIMO radio networks
EP4091265B1 (en) 2020-01-14 2023-12-06 Sony Group Corporation Improved internal data transfer in a multiple-antenna communication system
USD1028169S1 (en) 2020-10-29 2024-05-21 Unger Marketing International, Llc Water conditioning system

Family Cites Families (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL100213A (en) 1990-12-07 1995-03-30 Qualcomm Inc Mikrata Kedma phone system and its antenna distribution system
DE4101629C3 (de) 1991-01-21 2003-06-26 Fuba Automotive Gmbh Antennendiversity-Anlage mit mindestens zwei Antennen für den mobilen Empfang von Meter- und Dezimeterwellen
IT1259032B (it) * 1992-05-25 1996-03-11 Alcatel Italia Metodo per processare ed ottimizzare la funzione per analogica in un sistema di trasmissione radio digitale in diversita' di spazio e/o angolo
US5668837A (en) * 1993-10-14 1997-09-16 Ericsson Inc. Dual-mode radio receiver for receiving narrowband and wideband signals
CA2151284C (en) * 1994-02-10 2000-04-25 Kazuhiko Fukawa Adaptive spread spectrum receiver
US5604921A (en) 1995-07-07 1997-02-18 Nokia Mobile Phones Ltd. Radiotelephone user interface for broadcast short message service
US6134215A (en) 1996-04-02 2000-10-17 Qualcomm Incorpoated Using orthogonal waveforms to enable multiple transmitters to share a single CDM channel
DE69725995T2 (de) * 1996-08-29 2004-11-11 Cisco Technology, Inc., San Jose Raumzeitliche signalverarbeitung für übertragungssysteme
US6584144B2 (en) * 1997-02-24 2003-06-24 At&T Wireless Services, Inc. Vertical adaptive antenna array for a discrete multitone spread spectrum communications system
US6408016B1 (en) * 1997-02-24 2002-06-18 At&T Wireless Services, Inc. Adaptive weight update method and system for a discrete multitone spread spectrum communications system
US6058105A (en) 1997-09-26 2000-05-02 Lucent Technologies Inc. Multiple antenna communication system and method thereof
US6314147B1 (en) * 1997-11-04 2001-11-06 The Board Of Trustees Of The Leland Stanford Junior University Two-stage CCI/ISI reduction with space-time processing in TDMA cellular networks
US6185440B1 (en) 1997-12-10 2001-02-06 Arraycomm, Inc. Method for sequentially transmitting a downlink signal from a communication station that has an antenna array to achieve an omnidirectional radiation
US6618454B1 (en) * 1998-02-06 2003-09-09 At&T Corp. Diversity coded OFDM for high data-rate communication
US6317466B1 (en) * 1998-04-15 2001-11-13 Lucent Technologies Inc. Wireless communications system having a space-time architecture employing multi-element antennas at both the transmitter and receiver
US6198775B1 (en) * 1998-04-28 2001-03-06 Ericsson Inc. Transmit diversity method, systems, and terminals using scramble coding
US6175743B1 (en) * 1998-05-01 2001-01-16 Ericsson Inc. System and method for delivery of short message service messages to a restricted group of subscribers
CA2341747C (en) 1998-09-04 2007-05-22 At&T Corp. Combined channel coding and space-time block coding in a multi-antenna arrangement
AU6257399A (en) * 1998-09-18 2000-04-10 Hesham El Gamal Method and constructions for space-time codes for psk constellations for spatialdiversity in multiple-element antenna systems
US6363121B1 (en) 1998-12-07 2002-03-26 Lucent Technologies Inc. Wireless transmission method for antenna arrays using unitary space-time signals
GB9828216D0 (en) * 1998-12-21 1999-02-17 Northern Telecom Ltd A downlink beamforming approach for frequency division duplex cellular systems
EP1073214B1 (en) 1999-02-16 2008-12-17 Mitsubishi Denki Kabushiki Kaisha Radio communication system, transmitter and receiver
US6218985B1 (en) * 1999-04-15 2001-04-17 The United States Of America As Represented By The Secretary Of The Navy Array synthesis method
ATE329414T1 (de) * 1999-10-19 2006-06-15 Interdigital Tech Corp Empfänger zur mehrbenutzererkennung von cdma- signalen
US6788661B1 (en) * 1999-11-12 2004-09-07 Nikia Networks Oy Adaptive beam-time coding method and apparatus
US6351499B1 (en) 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter
US6298035B1 (en) * 1999-12-21 2001-10-02 Nokia Networks Oy Estimation of two propagation channels in OFDM
US6804307B1 (en) 2000-01-27 2004-10-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for efficient transmit diversity using complex space-time block codes
US6816555B2 (en) * 2000-02-18 2004-11-09 Sony Corporation Signal component demultiplexing apparatus, filter apparatus, receiving apparatus, communication apparatus, and communication method
US6473467B1 (en) 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US6542556B1 (en) * 2000-03-31 2003-04-01 Nokia Mobile Phones Ltd. Space-time code for multiple antenna transmission
US6486828B1 (en) * 2000-07-26 2002-11-26 Western Multiplex Adaptive array antenna nulling
US7065156B1 (en) * 2000-08-31 2006-06-20 Nokia Mobile Phones Ltd. Hopped delay diversity for multiple antenna transmission
US6985434B2 (en) 2000-09-01 2006-01-10 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US6842487B1 (en) * 2000-09-22 2005-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Cyclic delay diversity for mitigating intersymbol interference in OFDM systems
US6956897B1 (en) * 2000-09-27 2005-10-18 Northwestern University Reduced rank adaptive filter
EP1195937A1 (en) * 2000-10-03 2002-04-10 Telefonaktiebolaget Lm Ericsson Space-time coding with orthogonal transformations
US7110378B2 (en) * 2000-10-03 2006-09-19 Wisconsin Alumni Research Foundation Channel aware optimal space-time signaling for wireless communication over wideband multipath channels
EP1387180A1 (en) * 2000-12-12 2004-02-04 Matsushita Electric Industrial Co., Ltd. Radio-wave arrival-direction estimating apparatus and directional variable transceiver
JP3576099B2 (ja) 2000-12-22 2004-10-13 株式会社東芝 スマートアンテナを用いた受信装置、スマートアンテナを用いた受信方法及びビーム形成回路
US7050510B2 (en) 2000-12-29 2006-05-23 Lucent Technologies Inc. Open-loop diversity technique for systems employing four transmitter antennas
US6801790B2 (en) * 2001-01-17 2004-10-05 Lucent Technologies Inc. Structure for multiple antenna configurations
GB0102316D0 (en) * 2001-01-30 2001-03-14 Koninkl Philips Electronics Nv Radio communication system
EP1241824A1 (en) 2001-03-14 2002-09-18 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Multiplexing method in a multicarrier transmit diversity system
US6496535B2 (en) * 2001-03-23 2002-12-17 Navini Networks, Inc. Method and system for effective channel estimation in a telecommunication system
GB0108381D0 (en) * 2001-04-04 2001-05-23 Koninl Philips Electronics Nv Radio communication system
US6982946B2 (en) * 2001-04-05 2006-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Partly orthogonal multiple code trees
US7173981B1 (en) 2001-04-27 2007-02-06 The Directv Group, Inc. Dual layer signal processing in a layered modulation digital signal system
US6711124B2 (en) * 2001-05-25 2004-03-23 Ericsson Inc. Time interval based channel estimation with transmit diversity
CN100414861C (zh) * 2001-05-25 2008-08-27 明尼苏达大学董事会 无线通信网中的空时编码传输
US6999472B2 (en) * 2001-05-30 2006-02-14 Nokia Mobile Phones Limited Apparatus, and associated method, for space-time encoding, and decoding, data at a selected code rate
US20020193146A1 (en) * 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
FR2827439B1 (fr) * 2001-07-13 2003-10-24 Leroy Somer Moteurs Machine discoide
US6441786B1 (en) * 2001-07-20 2002-08-27 Motorola, Inc. Adaptive antenna array and method for control thereof
US7359466B2 (en) * 2001-08-24 2008-04-15 Lucent Technologies Inc. Signal detection by a receiver in a multiple antenna time-dispersive system
US7149254B2 (en) * 2001-09-06 2006-12-12 Intel Corporation Transmit signal preprocessing based on transmit antennae correlations for multiple antennae systems
US7248559B2 (en) 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
US7327798B2 (en) 2001-10-19 2008-02-05 Lg Electronics Inc. Method and apparatus for transmitting/receiving signals in multiple-input multiple-output communication system provided with plurality of antenna elements
KR200260860Y1 (ko) 2001-10-25 2002-01-17 김지환 접이식 휴대폰 충전기
US7095987B2 (en) * 2001-11-15 2006-08-22 Texas Instruments Incorporated Method and apparatus for received uplinked-signal based adaptive downlink diversity within a communication system
EP1449275A4 (en) * 2001-11-29 2010-05-05 Interdigital Tech Corp MULTIPLE INPUT MULTIPLE OUTPUT SYSTEM EFFICIENT FOR MULTIFRAJECT CHANNELS SUBJECT TO GETAWAY
US6760388B2 (en) * 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
JP3992489B2 (ja) * 2001-12-12 2007-10-17 株式会社エヌ・ティ・ティ・ドコモ 無線通信方法及びその装置
US20030112745A1 (en) * 2001-12-17 2003-06-19 Xiangyang Zhuang Method and system of operating a coded OFDM communication system
JP2003198645A (ja) 2001-12-27 2003-07-11 Sharp Corp 送信装置及びこれを用いた通信システム
BR0306718A (pt) 2002-01-04 2004-12-28 Nokia Corp Métodos e aparelhos para transmitir sìmbolos complexos e para receber um sinal, sistema compreendendo um transmissor e um receptor e matriz de código de transmissão
US7020110B2 (en) * 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US6862271B2 (en) * 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US6636568B2 (en) * 2002-03-01 2003-10-21 Qualcomm Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system
US6741587B2 (en) 2002-04-02 2004-05-25 Nokia Corporation Inter-frequency measurements with MIMO terminals
US6711528B2 (en) * 2002-04-22 2004-03-23 Harris Corporation Blind source separation utilizing a spatial fourth order cumulant matrix pencil
EP1359684A1 (en) 2002-04-30 2003-11-05 Motorola Energy Systems Inc. Wireless transmission using an adaptive transmit antenna array
KR100511292B1 (ko) * 2002-04-30 2005-08-31 엘지전자 주식회사 레이크 수신기의 빔포밍 웨이트 벡터 업데이트 방법 및 웨이트 벡터를 이용한 레이크 수신장치
US6847306B2 (en) * 2002-05-17 2005-01-25 Keyvan T. Diba Emergency traffic signal attachment
GB0212165D0 (en) * 2002-05-27 2002-07-03 Nokia Corp A wireless system
FI20021013A0 (fi) 2002-05-29 2002-05-29 Nokia Corp Tiedonsiirtomenetelmä ja -järjestelmä
KR100548311B1 (ko) * 2002-06-07 2006-02-02 엘지전자 주식회사 이동 통신 시스템에서의 송신 다이버시티 장치와 방법
US7095709B2 (en) * 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US7613248B2 (en) * 2002-06-24 2009-11-03 Qualcomm Incorporated Signal processing with channel eigenmode decomposition and channel inversion for MIMO systems
JP3677492B2 (ja) 2002-07-31 2005-08-03 松下電器産業株式会社 マルチキャリア送信装置およびマルチキャリア送信方法
JP4098027B2 (ja) 2002-08-01 2008-06-11 松下電器産業株式会社 無線基地局装置
US7394754B2 (en) * 2002-08-01 2008-07-01 Mediatek Inc. System and method for transmitting data in a multiple-branch transmitter-diversity orthogonal frequency-division multiplexing (OFDM) system
US6940917B2 (en) 2002-08-27 2005-09-06 Qualcomm, Incorporated Beam-steering and beam-forming for wideband MIMO/MISO systems
US7529177B2 (en) 2002-08-28 2009-05-05 Agere Systems Inc. Dithering scheme using multiple antennas for OFDM systems
DE60223367T2 (de) 2002-09-05 2008-02-14 Mitsubishi Electric Information Technology Centre Europe B.V. Verfahren zur Übertragung von einer Basisstation eines MC-CDMA-Telekommunikationssystems zu einer Vielzahl von Benutzern
US7031669B2 (en) * 2002-09-10 2006-04-18 Cognio, Inc. Techniques for correcting for phase and amplitude offsets in a MIMO radio device
US6873606B2 (en) * 2002-10-16 2005-03-29 Qualcomm, Incorporated Rate adaptive transmission scheme for MIMO systems
US20040081263A1 (en) * 2002-10-24 2004-04-29 Lee King F. Method and apparatus for receiving diversity transmissions
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8208364B2 (en) * 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8134976B2 (en) * 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US7151809B2 (en) * 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7317750B2 (en) * 2002-10-31 2008-01-08 Lot 41 Acquisition Foundation, Llc Orthogonal superposition coding for direct-sequence communications
AU2003287484A1 (en) * 2002-11-04 2004-06-07 Vivato, Inc. Complementary beamforming methods and apparatuses
US7057555B2 (en) * 2002-11-27 2006-06-06 Cisco Technology, Inc. Wireless LAN with distributed access points for space management
US7200631B2 (en) * 2003-01-10 2007-04-03 Lucent Technologies Inc. Method and apparatus for determining an inverse square root of a given positive-definite hermitian matrix
US7130580B2 (en) 2003-03-20 2006-10-31 Lucent Technologies Inc. Method of compensating for correlation between multiple antennas
US7099678B2 (en) 2003-04-10 2006-08-29 Ipr Licensing, Inc. System and method for transmit weight computation for vector beamforming radio communication
US7385617B2 (en) * 2003-05-07 2008-06-10 Illinois Institute Of Technology Methods for multi-user broadband wireless channel estimation
US7079870B2 (en) * 2003-06-09 2006-07-18 Ipr Licensing, Inc. Compensation techniques for group delay effects in transmit beamforming radio communication
GB0317147D0 (en) * 2003-07-22 2003-08-27 Dalton Stephen "GAM"- Gravity-air-motion
KR100584321B1 (ko) * 2003-08-02 2006-05-26 삼성전자주식회사 카르테시안 피드백 루프 회로를 포함하는 tdma 방식송수신 장치
US7065144B2 (en) * 2003-08-27 2006-06-20 Qualcomm Incorporated Frequency-independent spatial processing for wideband MISO and MIMO systems
US7356073B2 (en) * 2003-09-10 2008-04-08 Nokia Corporation Method and apparatus providing an advanced MIMO receiver that includes a signal-plus-residual-interference (SPRI) detector
JP4296177B2 (ja) 2003-09-15 2009-07-15 株式会社エヌ・ティ・ティ・ドコモ 送信ダイバーシティ付きマルチキャリアシステム
JP4300368B2 (ja) 2003-09-30 2009-07-22 株式会社エヌ・ティ・ティ・ドコモ マルチユーザ信号から送信信号を生成し、ユーザ信号を抽出する装置及び方法
US8204149B2 (en) * 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US7302009B2 (en) * 2003-12-17 2007-11-27 Qualcomm Incorporated Broadcast transmission with spatial spreading in a multi-antenna communication system
US7778425B2 (en) * 2003-12-24 2010-08-17 Nokia Corporation Method for generating noise references for generalized sidelobe canceling
US7194042B2 (en) * 2004-01-13 2007-03-20 Qualcomm Incorporated Data transmission with spatial spreading in a mimo communication system
US7336746B2 (en) * 2004-12-09 2008-02-26 Qualcomm Incorporated Data transmission with spatial spreading in a MIMO communication system
US20050180312A1 (en) * 2004-02-18 2005-08-18 Walton J. R. Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US8169889B2 (en) * 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
WO2005081481A1 (en) 2004-02-19 2005-09-01 Ntt Docomo, Inc. Channel estimator and method for estimating a channel transfer function and apparatus and method for providing pilot sequences
JP4388077B2 (ja) 2004-02-19 2009-12-24 株式会社エヌ・ティ・ティ・ドコモ 有効なチャネルの評価のための装置および方法ならびにパイロットシーケンスを提供するための装置および方法
US7447268B2 (en) * 2004-03-31 2008-11-04 Intel Corporation OFDM system with per subcarrier phase rotation
US7583747B1 (en) * 2004-03-31 2009-09-01 University Of Alberta Method of systematic construction of space-time constellations, system and method of transmitting space-time constellations
US20050238111A1 (en) * 2004-04-09 2005-10-27 Wallace Mark S Spatial processing with steering matrices for pseudo-random transmit steering in a multi-antenna communication system
US7564814B2 (en) * 2004-05-07 2009-07-21 Qualcomm, Incorporated Transmission mode and rate selection for a wireless communication system
US8285226B2 (en) * 2004-05-07 2012-10-09 Qualcomm Incorporated Steering diversity for an OFDM-based multi-antenna communication system
US8923785B2 (en) * 2004-05-07 2014-12-30 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
US8619907B2 (en) * 2004-06-10 2013-12-31 Agere Systems, LLC Method and apparatus for preamble training in a multiple antenna communication system
US7110463B2 (en) * 2004-06-30 2006-09-19 Qualcomm, Incorporated Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system
US7978649B2 (en) * 2004-07-15 2011-07-12 Qualcomm, Incorporated Unified MIMO transmission and reception
US7894548B2 (en) * 2004-09-03 2011-02-22 Qualcomm Incorporated Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system
US7978778B2 (en) * 2004-09-03 2011-07-12 Qualcomm, Incorporated Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
US7974359B2 (en) * 2004-12-22 2011-07-05 Qualcomm Incorporated Methods and apparatus for mitigating multi-antenna correlation effect in communication systems

Also Published As

Publication number Publication date
JP2015173453A (ja) 2015-10-01
KR20070028609A (ko) 2007-03-12
IL180340A0 (en) 2007-07-04
AU2005260035B2 (en) 2009-04-09
RU2007103348A (ru) 2008-08-10
CA2572591C (en) 2012-05-22
ES2427934T3 (es) 2013-11-04
JP2008505544A (ja) 2008-02-21
JP4833969B2 (ja) 2011-12-07
EP1766807A1 (en) 2007-03-28
TW201210227A (en) 2012-03-01
AU2005260035C1 (en) 2009-09-17
AU2005260035A1 (en) 2006-01-12
US20070009059A1 (en) 2007-01-11
EP1766807B1 (en) 2013-06-19
BRPI0512808A (pt) 2008-04-08
CN101010890A (zh) 2007-08-01
WO2006004706A1 (en) 2006-01-12
KR100887199B1 (ko) 2009-03-06
JP2011188507A (ja) 2011-09-22
US20060002496A1 (en) 2006-01-05
RU2363101C2 (ru) 2009-07-27
MY139975A (en) 2009-11-30
JP6219334B2 (ja) 2017-10-25
TWI451710B (zh) 2014-09-01
BRPI0512808B1 (pt) 2018-10-09
CA2727876A1 (en) 2006-01-12
JP5770005B2 (ja) 2015-08-26
US7110463B2 (en) 2006-09-19
US7991065B2 (en) 2011-08-02
TW200635256A (en) 2006-10-01
CN101010890B (zh) 2011-06-08
AU2009202779A1 (en) 2009-07-30
CA2727876C (en) 2014-07-08
MX2007000268A (es) 2007-04-02
CA2572591A1 (en) 2006-01-12

Similar Documents

Publication Publication Date Title
TWI355820B (en) Efficient computation of spatial filter matrices f
US7336746B2 (en) Data transmission with spatial spreading in a MIMO communication system
EP1712029B1 (en) Methods and apparatuses of DATA TRANSMISSION WITH SPATIAL SPREADING IN A MIMO COMMUNICATION SYSTEM
KR101092794B1 (ko) 광대역 miso 및 mimo 시스템에 대한 주파수 독립 공간 프로세싱
EP1917737B1 (en) Method and apparatus for selection of virtual antennas
TWI358215B (en) Adaptive pilot insertion a mimo-ofdm system
TWI359593B (en) Pilot and data transmission in a quasi-orthogonal
CN101133565B (zh) 用于时分双工通信系统的信道校准的方法和装置
JP2008535400A (ja) チャネル行列の特異値分解のための方法および装置
WO2015188385A1 (zh) 用于大规模mimo系统的混合模拟数字预编码的方法
WO2013149440A1 (zh) 多天线的功率分配方法及装置