TWI355065B - Method and device of multi-chip stack to halve wir - Google Patents

Method and device of multi-chip stack to halve wir Download PDF

Info

Publication number
TWI355065B
TWI355065B TW097110889A TW97110889A TWI355065B TW I355065 B TWI355065 B TW I355065B TW 097110889 A TW097110889 A TW 097110889A TW 97110889 A TW97110889 A TW 97110889A TW I355065 B TWI355065 B TW I355065B
Authority
TW
Taiwan
Prior art keywords
wafer
electrodes
bonding wires
stacking method
bonding
Prior art date
Application number
TW097110889A
Other languages
Chinese (zh)
Other versions
TW200941692A (en
Inventor
Chi Yuam Chung
Original Assignee
Powertech Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powertech Technology Inc filed Critical Powertech Technology Inc
Priority to TW097110889A priority Critical patent/TWI355065B/en
Publication of TW200941692A publication Critical patent/TW200941692A/en
Application granted granted Critical
Publication of TWI355065B publication Critical patent/TWI355065B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Wire Bonding (AREA)

Abstract

Disclosed are a method and a device of multi-chip stack to halve wire-bonding processes. According to the method, initially, a carrier substrate having a plurality of fingers is provided. At least a first chip is disposed on the substrate. Next, a plurality of bonding wires are formed by wire-bonding to connect the first electrodes of the first chip to the fingers. At least a second chip is face-to-face disposed on the first chip. During mounting the second chip, the second electrodes of the second chip are bonded to the ends of the bonding wires on the first electrodes so that the second chip is electrically connected with the substrate through the bonding wires. In one embodiment, the second electrodes of the second chip are bonded with the first electrodes. Accordingly, half of wire-bonding processes and the amount of the bonding wires can be reduced to shorten production cycle time and to save costs. Additionally, the ends of the bonding wires on the first chip can be re-bonded to the first electrodes to solve the problems of wire broken and wire-sweep. In a preferred embodiment, the bonding wires are formed by reverse bonding.

Description

1355065 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種可應用於半導體裝置之多晶片 堆疊技術,特別係有關於一種打線製程減半之多晶片堆 疊方法與其構造。 【先前技術】 為了提昇單一半導體裝置之性能與容量,以符合電 子產品小型化、大容量與高速化之趨勢,一般而言是將 多個晶片堆疊設置於一載板上,以節省空間。然而在製 程中打線電性連接之次數是對應於晶片堆疊的數量,當 晶片堆疊的數量增加時,打線電性連接之次數也會隨之 增加,使得製程繁複且易有沖線問題。 請參閱第1圖所示並配合參閱第2圖,一種習知多 晶片堆疊方法包含以下步驟:「提供一載板」步驟1、「第 一次設置晶片」步驟2、「第一次打線電性連接」步驟3、 「設置一間隔片」步驟4、「第二次設置晶片」步驟5、 「第二次打線電性連接」步驟6、「形成一封膠體」步 驟7、「設置複數個外接端子」步驟8。,首先,在「提 供一載板」步驟1中,如第2圖A所示,提供一載板 1 1 〇,其係具有複數個接指1 1 1。接著,在「第一次設置 晶片」步驟2中,如第2圖B所示,利用一晶片吸嘴 20設置一第一晶片120於該載板110上且該第一晶片 120具有複數個第一電極121(如第3圖所示)。在「第 一次打線電性連接」步驟3中,如第2圖C及第3圖所 6 1355065 示,打線形成複數個第一銲線131,其係利用一銲針3〇 將該些第一鋒線131之第一端i31A連結至該些第—電 極121’再將其第一端131B係連接該些接指111。接著, 在「設置一間隔片」步驟4中,如第2圖D所示,設置 一間隔片180於該第一晶片12〇上。如第3圖所示,該 間隔片1 80之尺寸係小於該第一晶片丨2〇之尺寸,以顯 露該些第一電極121且不壓覆該些第一銲線13卜在「第 二次設置晶片」步驟5中,如第2圖E所示,利用該晶 馨片吸嘴20設置一第二晶片140於該間隔片180上且該 第二晶片140具有複數個第二電極141(如第3圖所 示)。接著,在「第二次打線電性連接」步驟6中,如 第2圖F及第3圖所示,打線形成複數個第二銲線132, 其係利用該銲針30將該些第二銲線132之第一端132A 係連接該些第二電極i41,而其第二端132B係連接該 些接指111»之後,在「形成一封膠體」步驟7中,如 φ 第2圖G所示,形成一封膠體150於該載板11〇上,以 密封該些晶片12〇與140以及該些銲線131與132(如第 3圖所示)。最後,在「設置複數個外接端子」步驟8 中’如第2圖η所示,設置複數個外接端子I70於該載 板110外露於該封膠體15〇之表面。 由於該第一晶片! 20與該第二晶片140係分別以專 屬的第一銲線131與第二銲線132連接至該載板110, 故在製程中需經過兩次的打線製程’對應於晶片堆疊數 量,才可達到該些晶片12〇、14〇與該載板11 〇之間之 1355065 電性互連,故多道的打線製程無法省略。並且,在擁擠 的封膠空間内銲線數量過多易有沖線的問題。此外,習 知該些銲線131與132皆係為正向打線,以避免晶片上 接點產生假焊或空焊等焊不黏的現象,但導致該些銲線 131之最大弧高在該第一晶片120上。為了避免該第二 晶片140碰觸該些第一銲線131而導致電氣短路,該間 隔片180之厚度需大於該些第一銲線131之弧高,又避 免該些第二銲線132外露於該封膠體150,故必須增加 該封膠體150的厚度,導致整體的多晶片堆疊構造的厚 度無法降低。 【發明内容】 本發明之主要目的係在於提供一種打線製程減半之 多晶片堆疊方法與構造,減少一半的打線製程與銲線數 量,藉以縮短多晶片堆疊製程並節省銲線之消耗,能在 上層晶片面對面設置時再度接合銲線之一端與下層晶片 之電極,故能增強銲線在晶片之間打線端的接合力,不 會有斷線與沖線的問題,並可控制在一較薄的堆疊厚 度。 本發明之次一目的係在於提供一種打線製程減半之 多晶片堆疊方法與構造,由於逆打銲線之線尾端被上層 晶片之電極再接合,故能縮小該第一晶片與該第二晶片 之間隙,降低晶片堆疊高度。 本發明之另一目的係在於提供一種打線製程減半之 多晶片堆疊方法與構造,確保在上下層晶片之間的銲線 8 1355065 之一端與晶片之電極作有效接合。 本發明之另一目的係在於提供一種打線製程減半之 多晶片堆疊方法與構造,解決封膠體無法填滿過小晶片 間隙的問題。 本發明之另一目的係在於提供一種打線製程減半之 多晶片堆疊方法與構造,使該些接指可被打線共用,利 用接指的數量減少可以降低載板之成本。 本發明的目的及解決其技術問題是採用以下技術方 案來實現的。依據本發明所揭示之一種多晶片堆疊方 法,首先,提供一載板,其係具有複數個接指。之後, 設置至少一第一晶片於該載板上,該第一晶片係具有複 數個第一電極。接著,打線形成複數個第一銲線,其係 連接該些第一電極至該些接指。最後,設置至少一第二 晶片於該第一晶片上,該第二晶片係具有複數個第二電 極,在設置之同時,該些第二電極係接合至該些第一銲 線在該些第一電極上之一端,以使該第二晶片經由該些 第一銲線電性連接至該載板。另揭示一種多晶片堆疊構 造。 本發明的目的及解決其技術問題還可採用以下技術 措施進一步實現。 在前述之多晶片堆疊方法中,該些第一銲線係可為逆 打銲線,而使該些第一銲線在該些第一電極上之一端係 為線尾端,以使該些第一銲線之最大弧高遠離該第一晶 片且不超過該第二晶片。 9 1355065 在前述之多晶片堆疊方法中,該些第二電極係可為金 凸塊並金-金鍵合於該些第一銲線。 在前述之多晶片堆疊方法中,該些第二電極係可為銲 料凸塊並回焊接合於該些第一銲線。 在前述之多晶片堆疊方法中,該些第二電極係可包覆 該些第一銲線在該些第一電極上之一端並更焊接至該 些第一電極。 在前述之多晶片堆疊方法中,該些第一電極係可為凸 塊。 在前述之多晶片堆疊方法中,該些第一電極係可為銲 塾。 在前述之多晶片堆疊方法中,可另包含之步驟為:形 成一封膠體於該載板上,以密封該第一晶片、該第二晶 片以及該些第一銲線。 在前述之多晶片堆疊方法中,該封膠體係可更填滿該 第一晶片與該第二晶片之間隙。 在前述之多晶片堆疊方法中,可另包含以下步驟:在 該些第一銲線形成之後,形成一填充膠於該第一晶片 上;並在設置該第二晶片之後,烘烤固化該填充膠,以 使該填充膠填滿該第一晶片與該第二晶片之間隙。 在前述之多晶片堆疊方法中,可另包含之步驟為:設 置複數個外接端子於該載板外露於該封膠體之一表面。 在前述之多晶片堆疊方法中,該第一晶片係可為複數 個,該些接指係位於該些第一晶片之間。 10 1355065 在前述之多晶片堆疊方法中,該些第一電極與該些第 二電極皆可為周邊配置。 在前述之多晶片堆疊方法中,該些第一電極與該些第 二電極皆可為中央配置。 在前述之多晶片堆疊方法中,可另包含之步驟為:設 置一第三晶片於該第二晶片上,該第三晶片係具有複數 個第三電極。 在前述之多晶片堆疊方法中,可另包含之步驟為:打 線形成複數個第二銲線,係連接該些第三電極至該些接 指。 在前述之多晶片堆疊方法中,可另包含之步驟為:設 置一第四晶片於該第三晶片上,該第四晶片係具有複數 個第四電極,在設置之同時,該些第四電極係接合至該 些第二銲線在該些第三電極上之一端,以使該第四晶片 經由該些第二銲線電性連接至該載板。 【實施方式】 依據本發明之第一具體實施例,配合參閱第4及5 圖,具體揭示一種打線製程減半之多晶片堆疊方法。 請參閱第3圖所示,一種多晶片堆疊方法主要包含 以下步驟:「提供一載板」步驟11、「第一次設置晶片」 步驟12、「打線電性連接」步驟13、「形成一填充膠」 步驟1 4、「第二次設置晶片並電性連接」步驟1 5、「形 成一封膠體」步驟16、「設置複數個外接端子」步驟17。 其中,「形成一填充膠」步驟14係為非必要的步驟,故 11BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-wafer stacking technique applicable to a semiconductor device, and more particularly to a wafer stacking method in which a wire bonding process is halved and a configuration thereof. [Prior Art] In order to improve the performance and capacity of a single semiconductor device, in order to meet the trend of miniaturization, large capacity, and high speed of electronic products, a plurality of wafers are generally stacked on a carrier to save space. However, the number of wire-bonding connections in the process corresponds to the number of wafer stacks. As the number of wafer stacks increases, the number of wire-bonded electrical connections increases, making the process complicated and susceptible to wire-breaking problems. Referring to FIG. 1 and referring to FIG. 2, a conventional multi-wafer stacking method includes the following steps: "providing a carrier" step 1, "first setting a wafer" step 2, "first wire bonding" Connection Step 3, "Set a spacer" Step 4, "Second Setup Wafer" Step 5, "Second Wire Connection" Step 6, "Form a Gel" Step 7, "Set Multiple External Connections Terminal" step 8. First, in the "providing a carrier" step 1, as shown in Fig. 2A, a carrier 1 1 〇 is provided which has a plurality of fingers 1 1 1 . Next, in the "first setting wafer" step 2, as shown in FIG. 2B, a first wafer 120 is disposed on the carrier 110 by using a wafer nozzle 20, and the first wafer 120 has a plurality of An electrode 121 (as shown in Figure 3). In step 3 of the "first wire bonding" step, as shown in FIG. 2C and FIG. 3, reference numeral 13135565, the wire is formed into a plurality of first bonding wires 131, which are formed by a soldering pin 3 The first end i31A of the front line 131 is connected to the first electrodes 121' and the first end 131B is connected to the connecting fingers 111. Next, in the step of "setting a spacer", as shown in Fig. 2D, a spacer 180 is provided on the first wafer 12A. As shown in FIG. 3, the spacer 180 has a size smaller than the size of the first wafer ,2〇 to expose the first electrodes 121 and does not overstress the first bonding wires 13 in the second In the step 5, as shown in FIG. 2E, a second wafer 140 is disposed on the spacer 180 by the crystal chip suction nozzle 20, and the second wafer 140 has a plurality of second electrodes 141 ( As shown in Figure 3). Next, in the "second wire bonding" step 6, as shown in FIG. 2F and FIG. 3, a plurality of second bonding wires 132 are formed by wire bonding, and the second bonding wires 132 are used to form the second wires. The first end 132A of the bonding wire 132 is connected to the second electrodes i41, and the second end 132B is connected to the connecting fingers 111», in the step of forming a colloid, in step 7, such as φ, FIG. As shown, a gel 150 is formed on the carrier 11 to seal the wafers 12 and 140 and the bonding wires 131 and 132 (as shown in FIG. 3). Finally, in the step 8 of "setting a plurality of external terminals", as shown in Fig. 2, a plurality of external terminals I70 are provided on the surface of the sealing body 15A. Thanks to this first wafer! 20 and the second wafer 140 are respectively connected to the carrier 110 by a dedicated first bonding wire 131 and a second bonding wire 132, so that the wire bonding process of two times in the process corresponds to the number of wafer stacks. A 1355065 electrical interconnection between the wafers 12A, 14A and the carrier 11 is achieved, so that the multi-pass wiring process cannot be omitted. Moreover, the excessive number of bonding wires in the crowded sealing space is prone to the problem of punching. In addition, it is known that the soldering wires 131 and 132 are forward-wired to prevent the solder joints on the wafer from being soldered or soldered, but the maximum arc height of the solder wires 131 is On the first wafer 120. In order to prevent the second wafer 140 from contacting the first bonding wires 131 to cause an electrical short circuit, the thickness of the spacer 180 needs to be greater than the arc height of the first bonding wires 131, and the second bonding wires 132 are prevented from being exposed. Because of the encapsulant 150, the thickness of the encapsulant 150 must be increased, resulting in an inability to reduce the thickness of the overall multi-wafer stack construction. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method and a structure for halving a plurality of wafer winding processes, which can reduce the number of wire bonding processes and the number of bonding wires by half, thereby shortening the multi-wafer stacking process and saving the consumption of the bonding wires. When the upper layer wafer is disposed face to face, the electrode of one end of the bonding wire and the electrode of the lower layer wafer are re-engaged, so that the bonding force of the wire bonding end between the wires can be enhanced, and there is no problem of wire breakage and punching, and can be controlled in a thinner Stack thickness. A second object of the present invention is to provide a method and a structure for stacking a plurality of wafers in which the wire bonding process is halved. Since the tail end of the reverse bonding wire is rejoined by the electrodes of the upper wafer, the first wafer and the second can be reduced. The gap between the wafers reduces the stack height of the wafer. Another object of the present invention is to provide a method and structure for stacking a plurality of wafers in which the wire bonding process is halved to ensure effective bonding of one end of the bonding wire 8 1355065 between the upper and lower wafers to the electrodes of the wafer. Another object of the present invention is to provide a method and structure for stacking multiple wafers in which the wire bonding process is halved, and to solve the problem that the sealing body cannot fill the gap of the small wafer. Another object of the present invention is to provide a method and structure for stacking multiple wafers in which the wire bonding process is halved, so that the fingers can be shared by wires, and the number of fingers can be reduced to reduce the cost of the carrier. The object of the present invention and solving the technical problems thereof are achieved by the following technical solutions. In accordance with a multi-wafer stacking method disclosed herein, first, a carrier is provided having a plurality of fingers. Thereafter, at least one first wafer is disposed on the carrier, the first wafer having a plurality of first electrodes. Then, the wire is formed into a plurality of first bonding wires, which connect the first electrodes to the fingers. Finally, at least one second wafer is disposed on the first wafer, the second wafer has a plurality of second electrodes, and the second electrodes are bonded to the first bonding wires at the same time One end of an electrode to electrically connect the second wafer to the carrier via the first bonding wires. A multi-wafer stack construction is also disclosed. The object of the present invention and solving the technical problems thereof can be further realized by the following technical measures. In the foregoing multi-wafer stacking method, the first bonding wires may be reverse bonding wires, and the first bonding wires are terminated at one end of the first electrodes to make the wires The maximum arc height of the first bonding wire is away from the first wafer and does not exceed the second wafer. 9 1355065 In the foregoing multi-wafer stacking method, the second electrode systems may be gold bumps and gold-gold bonded to the first bonding wires. In the foregoing multi-wafer stacking method, the second electrode systems may be solder bumps and re-sold to the first bonding wires. In the foregoing multi-wafer stacking method, the second electrodes may coat the first bonding wires on one of the first electrodes and solder them to the first electrodes. In the foregoing multi-wafer stacking method, the first electrode systems may be bumps. In the foregoing multi-wafer stacking method, the first electrode systems may be solder bumps. In the foregoing multi-wafer stacking method, the method further comprises the steps of: forming a gel on the carrier to seal the first wafer, the second wafer, and the first bonding wires. In the foregoing multi-wafer stacking method, the encapsulation system can fill the gap between the first wafer and the second wafer. In the foregoing multi-wafer stacking method, the method further includes the steps of: forming a filling glue on the first wafer after the forming of the first bonding wires; and baking and curing the filling after the second wafer is disposed a glue to fill the gap between the first wafer and the second wafer. In the foregoing multi-wafer stacking method, the method further comprises the steps of: providing a plurality of external terminals on the surface of the carrier to be exposed on the surface of the sealing body. In the foregoing multi-wafer stacking method, the first wafer system may be plural, and the connecting fingers are located between the first wafers. 10 1355065 In the foregoing multi-wafer stacking method, the first electrodes and the second electrodes may be peripherally arranged. In the foregoing multi-wafer stacking method, the first electrodes and the second electrodes may all be centrally disposed. In the foregoing multi-wafer stacking method, the method further includes the step of: disposing a third wafer on the second wafer, the third wafer having a plurality of third electrodes. In the foregoing multi-wafer stacking method, the method further comprises the steps of: forming a plurality of second bonding wires by wire bonding, and connecting the third electrodes to the contacts. In the foregoing multi-wafer stacking method, the method further includes the steps of: disposing a fourth wafer on the third wafer, the fourth wafer has a plurality of fourth electrodes, and at the same time, the fourth electrodes are disposed Bonding to the one ends of the second bonding wires on the third electrodes to electrically connect the fourth wafer to the carrier via the second bonding wires. [Embodiment] According to the first embodiment of the present invention, with reference to Figures 4 and 5, a method for stacking wafers in which the wire bonding process is halved is specifically disclosed. Referring to FIG. 3, a multi-wafer stacking method mainly comprises the following steps: "providing a carrier board" step 11, "first setting a wafer" step 12, "wire bonding electrical connection" step 13, "forming a filling" Glue Step 1 4, "Set the wafer and electrically connect the second time" Step 1 5, "Form a gel" Step 16. "Set a plurality of external terminals" Step 17. Among them, the step of forming a filling glue step 14 is an unnecessary step, so 11

在X 同實施例中,「形成一填充膠」步驟14、「形成一 封瑕 *體J步驟16與「設置複數個外接端子」步驟17係 可省故 略或置換。各步驟中的元件組成關係可參閱第5 圖,仕1 步驟順序詳述如下。 首先,在「提供一載板J步驟U中,如第5圖A 斤示,提供—載板21〇’該載板210係具有複數個接指 211 °通常該載板210係為一線路基板或多層印刷電路 板,依應用產品之不同變化,該載板210亦可為一導線 架或一預模導線架。具體而言,該載板210係具有一黏 晶表面21 2以及一相對之外露表面2 1 3,該些接指2 11 係形成於該黏晶表面2 1 2之側邊,在本實施例中係排列 於該黏晶表面212之兩相對的平行側邊。 之後,在「第一次設置晶片」步驟12中,如第5圖 B及第6圖所示’設置至少一第一晶片22〇於該載板210 上’該第一晶片220係具有複數個第一電極221(如第6 圖所示),該些第一電極221可排列於該第一晶片22〇 之側邊,如兩對應側邊或四周侧邊。可利用一晶片吸嘴 40吸附該第一晶片220之主動面並將該第一晶片220 之背面貼附於該載板210之該黏晶表面212,並以黏著 膠固定結合。在步驟12之後’該第一晶片220係以該 些第一電極221朝上遠離該载板21〇的方式設置在該載 板210上。在一實施例中’如第6圖所示,該些第一電 極221係可為銲墊,如鋁墊或鋼墊。在另一實施例中, 如第7圖所示,另一種第一晶片220,之複數個第一電極 12In the same embodiment as X, the step of forming a filling glue step 14, "forming a package * body J step 16 and "setting a plurality of external terminals" step 17 can be omitted or replaced. Refer to Figure 5 for the component composition relationship in each step. The sequence of steps is detailed below. First, in the "providing a carrier J step U, as shown in FIG. 5A, the carrier plate 21 is provided". The carrier 210 has a plurality of fingers 211. Generally, the carrier 210 is a circuit substrate. Or a multi-layer printed circuit board, which may be a lead frame or a pre-mode lead frame, depending on the application product. Specifically, the carrier 210 has a die-bonding surface 21 2 and a relative The exposed surface 2 1 3 is formed on the side of the die surface 2 1 2 , and in this embodiment is arranged on two opposite parallel sides of the die surface 212. In the step 12 of "setting the wafer for the first time", as shown in FIG. 5B and FIG. 6, 'providing at least one first wafer 22 on the carrier 210', the first wafer 220 has a plurality of first electrodes 221 (as shown in FIG. 6), the first electrodes 221 may be arranged on the side of the first wafer 22, such as two corresponding sides or four sides. The active surface of the first wafer 220 is adsorbed by a wafer nozzle 40, and the back surface of the first wafer 220 is attached to the die surface 212 of the carrier 210, and is bonded by an adhesive. After the step 12, the first wafer 220 is disposed on the carrier 210 with the first electrodes 221 facing away from the carrier 21〇. In an embodiment, as shown in Fig. 6, the first electrodes 221 may be solder pads such as aluminum pads or steel pads. In another embodiment, as shown in FIG. 7, another first wafer 220, the plurality of first electrodes 12

< S 1355065 22p係可為凸塊,例如金凸塊、銅凸塊或是其他導電材 質之複合凸塊。< S 1355065 22p can be a bump, such as gold bumps, copper bumps or other composite bumps of conductive material.

• 接著,在「打線電性連接」步驟13中,如第5圖C . 及第6圖所示’打線形成複數個第一銲線231,其係連 接該些第一電極221至該些接指211。該些第一銲線231 係為細長可撓性金屬線。較佳地,該些第一銲線23丨係 為逆打銲線。可利用打線接合方式藉由一銲針50將每 φ 一第一銲線231之一端連結至對應之該些接指211,然 後該銲針50往上移動,並將第一銲線231之另一端打 線至與該接指2 1 1對應之第一電極22 1,使該第一晶片 220與該載板210電性互連。在反覆的打線接合後,便 可形成所有的該些第一銲線23 1。而上述之打線接合方 式係可選自於超音波接合(Ultrasonic Bonding,U/S)、熱 壓接合(Thermocompression Bonding,T/C)或熱超音波 接合(Thermosonic Bonding, T/S)之其中之一。如第6圖 φ 所示,由於逆打形成,每一第一銲線231之一第一端 231A係連接該載板210之該些接指211之其中之一, 並為結球端(ball bond) »每一第一銲線231之一第二端 231B係連接該第一晶片220之該些第一電極221之其 中之一,並為線尾端(^丨1匕011(1,或稱為以忱111)〇11£1)。因 此,該些第一銲線23 1之最大弧高遠離該第一晶片22〇 且不超過該第二晶片240(如第6圖所示)。 如有必要,在本實施例中’如第5圖D所示,在「打 線電性連接」步驟13之後可進行一「形成一填充謬」 13 1355065 步驟14。在該些第一銲線231形成之後,形成一填充 膠2 60於該第一晶片220上。在本實施例中,可利用點 膠技術藉由一點膠針頭60將尚為液態之填充膠260點 塗在該第一晶片220上之中心區域。該填充膠260係可 選用底部填充膠 260(underfill material)、非導電膠 (NCP)、異方性導電膠(ACP、ACF)。並在「第二次設置 晶片並電性連接」步驟 15之後,烘烤固化該填充膠 260,以使該填充膠260填滿該第一晶片220與該第二 晶片240之間隙(如第6圖所示),能解決晶片間隙過小 無法順利填入封膠體2 5 0而形成孔隙與氣泡的問題。然 在另一非限定地實施例中,可省略該「形成一填充膠」 步驟14,如第9圖所示,該第一晶片220與該第二晶 片240之間係可不使用填充膠260,而該封膠體250係 可直接填滿該第一晶片220與該第二晶片240之間的空 隙。 之後,在「第二次設置晶片並電性連接」步驟1 5中, 如第5圖E、F及第6圖所示,設置至少一第二晶片240 或240’於該第一晶片220上,該第二晶片240係具有複 數個第二電極241在其主動面,在設置之同時,該些第 二電極241係接合至該些第一銲線23 1在該些第一電極 221上之第二端23 1B,以使該第二晶片240經由該些第 一銲線231電性連接至該載板210。具體而言,可利用 該晶片吸嘴40吸附該第二晶片240之背面並將該第二 晶片240之主動面壓置於該第二晶片240之主動面上。 14 1355065 故該第二晶片24〇你丨、丨斗丨 ,冲楚一晶 υ係以該些第二電極241朝向該第 片220並對準該坻第 泰丄 + β筮一晶 —弟一電極221的方式設置在該第 片 220上。該此繁-布^ β ? 3 1 —弟一電極241接合至該些第一釦線2 之第二端231Β的方法可為超音波鍵合或是回焊接合。 在本實施例t,該第—晶片22q與該第二晶片24〇係可 :寸相同之阳片。該些第一電S 221與該些第二電極 ⑷皆可為周邊配置。請參閱第6圖所示,在-具體實 %例中’該些第二電極241係可為金凸塊並金·金鍵合 於該些第-銲線231,以使在設置該第二晶月24〇之過 程該些第-銲線231之第二端Bn可再鍵合於該些第 —電極221。較佳坫 _ μ ^ 地’該些第二電極241可更進一步鍵 合於該些第一電极 一 極221。在另一實施例中,如第7圖所 示,另一種第二曰w —日曰片240’之複數個第二電極241,係可 為婷料凸塊並回惶拉人 接=於該些第一銲線231。再如第7 圖所示,該些第_ -一電極241’係可包覆該些第一銲線231 在該些第一電極 21上之第二端231B並更焊接至該些 第—電極221,,成扣从• Next, in the “wire-to-wire electrical connection” step 13, as shown in FIG. 5C and FIG. 6 , a plurality of first bonding wires 231 are formed, which are connected to the first electrodes 221 to the connections. Means 211. The first bonding wires 231 are elongated flexible metal wires. Preferably, the first bonding wires 23 are reversed bonding wires. One end of each of the first bonding wires 231 can be connected to the corresponding fingers 211 by a bonding wire 50, and then the soldering pins 50 are moved upward, and the first bonding wires 231 are further One end is wired to the first electrode 22 1 corresponding to the finger 2 1 1 to electrically interconnect the first wafer 220 and the carrier 210. After the repeated wire bonding, all of the first bonding wires 23 1 can be formed. The above-mentioned wire bonding method may be selected from the group consisting of Ultrasonic Bonding (U/S), Thermocompression Bonding (T/C) or Thermosonic Bonding (T/S). One. As shown in FIG. 6 φ, one of the first ends 231A of each of the first bonding wires 231 is connected to one of the fingers 211 of the carrier 210, and is a ball bond. The second end 231B of each of the first bonding wires 231 is connected to one of the first electrodes 221 of the first wafer 220, and is a wire tail end (^丨1匕011 (1, or For 忱111)〇11£1). Therefore, the maximum arc height of the first bonding wires 23 1 is away from the first wafer 22 且 and does not exceed the second wafer 240 (as shown in Fig. 6). If necessary, in the present embodiment, as shown in Fig. 5D, after the "wire-to-wire electrical connection" step 13, a "formation of a filling" 13 1355065 step 14 can be performed. After the first bonding wires 231 are formed, a filling paste 2 60 is formed on the first wafer 220. In this embodiment, a still liquid filling glue 260 can be applied to the central portion of the first wafer 220 by a dispensing technique using a dispensing technique. The filler 260 is available as an underfill material 260 (underfill material), a non-conductive paste (NCP), an anisotropic conductive paste (ACP, ACF). After the step 15 of "setting the wafer and electrically connecting for the second time", the filling adhesive 260 is baked and cured, so that the filling adhesive 260 fills the gap between the first wafer 220 and the second wafer 240 (eg, the sixth As shown in the figure, it can solve the problem that the wafer gap is too small to fill the encapsulant 250 to form pores and bubbles. In another non-limiting embodiment, the "forming a filler" step 14 may be omitted. As shown in FIG. 9, the filler 260 may not be used between the first wafer 220 and the second wafer 240. The encapsulant 250 directly fills the gap between the first wafer 220 and the second wafer 240. Then, in step 15 of "Second setting and electrically connecting", at least one second wafer 240 or 240' is disposed on the first wafer 220 as shown in FIG. 5E, F and FIG. The second wafer 240 has a plurality of second electrodes 241 on the active surface thereof, and the second electrodes 241 are bonded to the first bonding wires 23 1 on the first electrodes 221 while being disposed. The second end 23 1B is electrically connected to the carrier 210 via the first bonding wires 231 . Specifically, the wafer nozzle 40 can be used to adsorb the back surface of the second wafer 240 and press the active surface of the second wafer 240 onto the active surface of the second wafer 240. 14 1355065 Therefore, the second wafer 24 〇 丨 丨 丨 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 冲 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二The electrode 221 is disposed on the first sheet 220. The method of joining the second electrode 231 of the first buckle 2 to the second end 231 of the first buckle 2 may be ultrasonic bonding or back welding. In the embodiment t, the first wafer 22q and the second wafer 24 can be the same size. The first electric S 221 and the second electrodes (4) may be peripherally arranged. Referring to FIG. 6 , in the specific example, the second electrodes 241 may be gold bumps and gold and gold are bonded to the first bonding wires 231 so that the second crystal moon is disposed. The second end Bn of the first bonding wire 231 may be re-bonded to the first electrodes 221. Preferably, the second electrodes 241 are further bonded to the first electrode electrodes 221. In another embodiment, as shown in FIG. 7, the second plurality of second electrodes 241 of the second type 曰w-day 240 240' may be embossed and pulled back. Some first bonding wires 231. As shown in FIG. 7 , the first electrode 241 ′ can cover the second ends 231B of the first bonding wires 231 on the first electrodes 21 and solder them to the first electrodes. 221,, buckled from

、 唯保該些第一銲線23 1之第二端231B 被該也第一 φ w- * 221’與該些第二電極241,有效接合。 因此,本發明炫 Θ僅需一次的打線製程,達到兩堆疊晶 片電性連接至^ 取板之功效,在設置該第二晶片240時即 可同時達成該第-s 乐一 b日片2 4 0與該載板2 1 0之間之電性互 連’免除習知枯;^ 士 + & , v > 孜術中在第二次設置晶片步驟之後需再執 行第一-人打線電性連接步驟,相較於習知晶片多晶片堆 疊方法可減Φ & 一半的打線並節省銲線以縮短製程。由於 15 1355065 該第二晶片240之該些第二電極241係結合該些第一銲 線231之第二端231B,使該些第一銲線231為電性共 用,以電性連接至該載板210,能明顯地減少打線所需 要的銲線數量,以降低製造成本。並且,第二電極241 • 係接合於該些第一銲線23 1,故能增強該些第一銲線 231在該第一晶片220上該第二端231B的接合力,不 會有斷線與沖線的問題。此外,在上述多晶片堆疊製程 中,不需要在該第一晶片220與第二晶片240之間設置 • 習知間隔片,可減少製程步驟並降低多晶片堆疊高度。 具體而言,如第5圖G及第6圖所示,該多晶片堆 疊方法可另包含一「形成一封膠體」步驟16,可利用 模封或印刷等方法形成一封膠體250於該載板210上, 以密封該第一晶片22〇、該第二晶片24〇以及該些第一 銲線231 ’以保護該第一晶片220與該第二晶片240以 及該些第一銲線231不被外界塵粒與水氣污染。由於被 • 該封膠體250密封的銲線需要數量被減少了,降低銲線 之單位密度,故在形成該封膠體250時,減少了沖線發 生的可能。此外’在該第二晶片240上無需預留銲線弧 高’能達到防止銲線外露與封裝尺寸薄化之功效。 在本實施例中,該多晶片堆疊方法可另包含一「設 置複數個外接端子」步驟17。如第5圖Η及第6圖所 示,設置複數個外接端子2 70於該載板210外露於該封 謬體250之該外露表面213。該些外接端子270係可為 銲球(solder ball),或可利用錫膏、金屬球、金屬栓或 16 1355065 異方性導電膠(ACF)置換銲球而作為該些外4 270 ° 為了因應其他功能需求或為了增加記憶體容 可容許的封膠厚度下可以往上堆疊晶片。該多晶 方法可另包含兩次設置晶片以及一次在晶片設 之間的打線連接。請參閱第8圖所示,在第三晶 步驟中,一第三晶片2 8 0係背對背設於該第二晶 上,該第三晶片280係具有複數個第三電極281 第三晶片280係以該些第三電極281朝上遠離該 片240的方式設至在該第二晶片240上。該第 280係可實質相同於該第一晶片220。在一打線 驟中,形成複數個第二焊線23 2,其係連接該些 極281至該些接指 211。該些第二銲線232之 23 2A係連接該些接指211,該些第二銲線232之 23 2B係連接該些第三電極28卜在第四次晶片設 中,一第四晶片 290係面對面設置於該第三晶 上,該第四晶片290係具有複數個第四電極291 置之同時,該些第四電極291係接合至該些第 232在該些第三電極281上之第二端232B,以使 晶片290經由該些第二銲線232電性連接至該載: 因此,一種依照前述多晶片堆疊方法所製成 片堆疊構造可參閲第6圖,主要包含該載板210 一晶片220、該些第一銲線231以及該第二晶片 該第一晶片220係設置於該載板210上。並藉由 妾端子 量,在 片堆疊 置步驟 片設置 片240 ,且該 第二晶 二晶片 形成步 第三電 第一端 第二端 置步驟 片 28 0 »在設 二銲線 該第四 板 2 1 0〇 之多晶 、該第 240 ° 該些第 17 1355065 一銲線23 1連接該第一晶片220之該些第—電極221至 該載板210之該些接指211。該第二晶片240係面對面 設置於該第一晶片22〇上,該第二晶片240之該些第二 電極241係接合至該些第一銲線23 1在該些第一電極 221上之第二端231B,以使該第二晶片240經由該些第 一銲線231電性連接至該載板210«在本實施例中,該 些第一電極221係可為銲墊。該些第二電極241係可為 金凸塊並可利用超音波或熱壓合方式使其金-金鍵合於 該些第一銲線231之第二端231B,該些第二電極241 之一部位更可接合至該些第一電極221。一封膠體25〇 係可形成於該載板?10之該黏晶表面212上,以密封該 第一晶片220、該第二晶片240以及該些第一銲線23丄 並覆蓋該些接指2U。該些外接端子27〇係可設置於該 載板210之外露表面213。 力一種依Only the second ends 231B of the first bonding wires 23 1 are effectively joined to the second electrodes 241 by the first φ w- * 221'. Therefore, the present invention only needs one wire bonding process, and the two stacked chips are electrically connected to the board, and the second wafer 240 can be simultaneously provided to achieve the first-s-b-day film 2 4 0 and the electrical interconnection between the carrier 2 1 0 'exemption from the conventional; ^ 士 + & v > 孜 在 在 在 在 设置 设置 设置 设置 设置 设置 设置 设置 设置 设置 设置 设置 第二 第二 第二 第二 第二 第二 第二 第二 第一 第一 第一 第一 第一 第一The connection step can reduce the Φ & half of the wire and save the wire to shorten the process compared to the conventional wafer multi-wafer stacking method. Since the second electrodes 241 of the second wafer 240 are coupled to the second ends 231B of the first bonding wires 231, the first bonding wires 231 are electrically shared, and are electrically connected to the carrier. The plate 210 can significantly reduce the number of bonding wires required for wire bonding to reduce manufacturing costs. Moreover, the second electrode 241 is bonded to the first bonding wires 23 1 , so that the bonding force of the first bonding wires 231 on the second end 231B of the first wafer 220 can be enhanced without disconnection. The problem with the line. In addition, in the above multi-wafer stacking process, it is not necessary to provide a conventional spacer between the first wafer 220 and the second wafer 240, which can reduce the number of processing steps and reduce the multi-wafer stack height. Specifically, as shown in FIG. 5G and FIG. 6, the multi-wafer stacking method may further include a “forming a gel” step 16 by forming a gel 250 by using a method such as molding or printing. The first wafer 22, the second wafer 24, and the first bonding wires 231' are sealed on the board 210 to protect the first wafer 220 and the second wafer 240 and the first bonding wires 231. It is polluted by outside dust and water. Since the number of bonding wires to be sealed by the encapsulant 250 is reduced, and the unit density of the bonding wires is lowered, the possibility of occurrence of the punching is reduced when the encapsulant 250 is formed. In addition, there is no need to reserve a wire arc height on the second wafer 240 to prevent the wire from being exposed and the package size from being thinned. In this embodiment, the multi-wafer stacking method may further include a step of "setting a plurality of external terminals". As shown in FIG. 5 and FIG. 6, a plurality of external terminals 210 are disposed on the carrier 210 to expose the exposed surface 213 of the package body 250. The external terminals 270 may be solder balls, or may be replaced by solder paste, metal balls, metal plugs or 16 1355065 anisotropic conductive paste (ACF) as the outer 4 270 ° in order to cope with Other functional requirements or stacking of wafers can be made up to increase the allowable thickness of the memory. The polycrystalline method can additionally include two sets of wafers and one wire bond between the wafer sets. Referring to FIG. 8, in the third crystal step, a third wafer is disposed back to back on the second crystal, and the third wafer 280 has a plurality of third electrodes 281. The third electrodes 281 are disposed on the second wafer 240 with the third electrodes 281 facing away from the sheet 240. The 280th line can be substantially identical to the first wafer 220. In a single tapping step, a plurality of second bonding wires 23 2 are formed which connect the poles 281 to the fingers 211. The second bonding wires 232 are connected to the connecting fingers 211, and the second bonding wires 232 are connected to the third electrodes 28 in a fourth wafer setting, and a fourth wafer 290 is connected. The fourth wafer 290 is disposed on the third surface of the third electrode 291, and the fourth electrode 291 is bonded to the third electrode 281 on the third electrode 281. The two ends 232B are electrically connected to the wafer 290 via the second bonding wires 232. Therefore, a sheet stacking structure according to the foregoing multi-wafer stacking method can be referred to FIG. 6, and the carrier board is mainly included. A wafer 220, the first bonding wires 231, and the second wafer 220 are disposed on the carrier 210. And by the 妾 terminal amount, the sheet is disposed in the sheet stacking step, and the second crystal second wafer is formed into the third electric first end, the second end step sheet 28 0 » the second soldering line is disposed on the fourth board The polysilicon of 2 1 0 、, the 240th portion of the 173505505, a bonding wire 23 1 is connected to the first electrodes 221 of the first wafer 220 to the fingers 211 of the carrier 210. The second wafers 240 are disposed face to face on the first wafer 22, and the second electrodes 241 of the second wafer 240 are bonded to the first bonding wires 23 1 on the first electrodes 221 The two ends 231B are electrically connected to the carrier 210 via the first bonding wires 231. In the embodiment, the first electrodes 221 may be solder pads. The second electrodes 241 may be gold bumps and may be gold-gold bonded to the second ends 231B of the first bonding wires 231 by ultrasonic or thermocompression, and a portion of the second electrodes 241 More bonding to the first electrodes 221 is possible. A gel 25 can be formed on the carrier? The viscous surface 212 of the 10 is sealed to seal the first wafer 220, the second wafer 240, and the first bonding wires 23A and cover the contacts 2U. The external terminals 27 can be disposed on the exposed surface 213 of the carrier 210. Force

疊構造可參閱第7圖’除了第一晶片22〇,與第二盖 240’,其餘主要元件皆為相同。該第一晶片22〇,之劣 個第一電極22 Γ係可為凸塊,缔哲 ’ 琢第二晶片240’之名 個第二電極241’係可為銲·料&祕μ 塊並回焊接合於該連 一銲線231。該些第二電極241,後π 係可包覆該些第一在 231在該些第一電極221’上之一 & 231Β並更焊接j 些第一電極22Γ。 依照前述多晶片堆疊方法所制 教成之多晶片堆疊構造 可在一有限厚度内堆疊更多晶片 θ °如第8圖所示,在該 18 1355065 第二晶片240上可再堆疊該第三晶片280與該第四晶片 290並形成複數個第二銲線232,其晶片堆疊與打線方 法係可為上述「第一次設置晶片」步驟12、「打線電性 連接」步驟13與「第二次設置晶片並電性連接」步驟 15之重複操作。 如第9圖所示,在不同實施例中可省略「形成一填 充膠」步驟14,在依照前述多晶片堆疊方法所製成之 一種多晶片堆疊構造中該封膠體250可更填滿該第一 ^ 晶片220與該第二晶片240之間隙。 依據本發明之第二具體實施例,揭示另一種打線製 程減半之多晶片堆疊方法與構造。 首先,請參閱第10圖A所示’提供一載板310,該 載板3 1 0係具有複數個接指3 1 1。在本實施例中,該些 接指311係可形成於該載板310之中央區域。 之後,請參閱第10圖B及第11圖所示,利用一晶 • 片吸嘴4〇設置至少一第一晶片32〇於該載板310上, 在本實施例中,該第一晶片3 2 0係可為複數個,該些接 指3 1 1係位於該些第一晶片320之間,使該些接指3 1 1 可被打線共用’故該些接指311的數量能減少以降低該 載板310之成本。如第u圖所示,每一第一晶片32〇 係具有複數個第一電極321。該些第一電極321可排列 於所屬第一晶片320之中央區域》在本實施例中,該些 第一電極321係可為銲墊。在另一實施例中,如第12 圖所示,另一種第一晶片320’之複數個第一電極321’ / 19 1355065 係可為凸塊。 接著’請參閱第10圖C及第11圖所示, 、 由 左日 針50打線形成複數個銲線33〇,其係連接該也第 極321至該些接指311。如第^圖所示,誃此 電 Λ二知線3 3 0 之第一端331係連接該些接指311,其第_ 一3 3 2係連 接該些第一電極32^該些第一端331係可為結球端, 該些第二端332係可為線尾線。 ’The stack structure can be referred to in Fig. 7' except for the first wafer 22'' and the second cover 240', and the remaining main components are the same. The first wafer 22, the inferior first electrode 22 can be a bump, and the second electrode 241' of the second wafer 240' can be a solder material & The return welding is combined with the continuous bonding wire 231. The second electrodes 241, the rear π system may cover the first electrodes 231 on the first electrodes 221' and further solder the first electrodes 22A. The multi-wafer stack configuration taught in accordance with the foregoing multi-wafer stacking method can stack more wafers θ ° in a limited thickness. As shown in FIG. 8, the third wafer can be further stacked on the 18 1355065 second wafer 240. 280 and the fourth wafer 290 form a plurality of second bonding wires 232, and the wafer stacking and wire bonding method may be the first step of "setting the wafer" step 12, "wire bonding" step 13 and "second time". Repeat the operation of step 15 of setting up the wafer and electrically connecting. As shown in FIG. 9, the "forming a filler" step 14 may be omitted in different embodiments, and the encapsulant 250 may be more filled in the multi-wafer stack construction fabricated according to the multi-wafer stacking method described above. A gap between the wafer 220 and the second wafer 240. In accordance with a second embodiment of the present invention, another method and construction of halving a plurality of wafer stacking processes is disclosed. First, referring to Fig. 10A, a carrier 310 is provided, which has a plurality of fingers 31. In this embodiment, the fingers 311 can be formed in a central region of the carrier 310. Then, as shown in FIG. 10B and FIG. 11, at least one first wafer 32 is disposed on the carrier 310 by using a wafer nozzle 4, in the embodiment, the first wafer 3 The number of the fingers may be reduced between the first wafers 320, so that the fingers 3 1 1 can be shared by wires. Therefore, the number of the fingers 311 can be reduced. The cost of the carrier 310 is reduced. As shown in Fig. u, each of the first wafers 32 has a plurality of first electrodes 321 . The first electrodes 321 can be arranged in a central region of the associated first wafer 320. In this embodiment, the first electrodes 321 can be solder pads. In another embodiment, as shown in Fig. 12, the plurality of first electrodes 321' / 19 1355065 of the other first wafer 320' may be bumps. Next, as shown in Fig. 10C and Fig. 11, a plurality of bonding wires 33A are formed by the left-hand pin 50, which connects the first poles 321 to the fingers 311. As shown in FIG. 2, the first end 331 of the circuit 2 3 0 0 is connected to the fingers 311, and the first 3 3 2 is connected to the first electrodes 32 The end 331 can be a ball end, and the second end 332 can be a wire tail. ’

非必要地’在一實施例中,如第1 〇圖 Μ υ所不’該多 晶片堆疊方法中可另包含一「形成一填充膠」步驟,在 該些銲線330形成之後,利用一點膠針頭6〇形成一填 充膠360於該第一晶片320之主動面上。 、 之後’請參閱第10圖Ε及第1 1圖所示,利用該晶 片吸嘴40設置至少一第二晶片340或340,於該第一晶 片320上,其中該第二晶片340之主動面係朝向該第一 晶片320之主動面。該第二晶片340係具有複數個位於 其主動面之第二電極341’在設置之同時,該些第二電 極341係接合至該些銲線330在該些第一電極321上之 第二端332,以使該第二晶片340經由該些銲線330電 性連接至該載板310〇在本實施例中,該些第一電極321 與該些.第二電極341皆可為中央配置。在本實施例中, 如第11圖所示’該些第二電極341係可為金凸塊並金· 金鍵合於該些銲線330之該些第二端332。在另一實施 例中,如第12圖所示’另一種第二晶片340,之複數個 第二電極34Γ係可為銲料凸塊並回焊接合於該些銲線 / r·» ·、 20 1355065 330。再如第12圖所示,該些第二電極341’係可包覆該 些銲線330在該些第一電極32Γ上之第二端332並更焊 . 接至該些第一電極32Γ。因此,藉由上述之製程可減少 一半的打線製程與銲線數量,以縮短製程並節省銲線, 並增強該些銲線330在第一晶片320或320’上打線端 (即第二端33 2)的接合力,不會有斷線與沖線的問題。 如第10圖F所示,在設置該第二晶片340之後,可 烘烤固化該填充膠360,以使該填充膠360填滿該第一 晶片320與該第二晶片340之間隙。 更具體地,如第10圖G及第11圖所示,該多晶片 堆疊方法中可另包含一「形成一封膠體」步驟,一封膠 體350係形成於該載板310上,以密封該第一晶片320、 該第二晶片3 40以及該些銲線3 3 0。利用上述之多晶片 堆疊方法可以製咸一種卡片式或磚塊狀之多晶片堆疊 構造,例如各式記憶卡或是平面陣列封裝構造(LGA)等 參等。 本發明揭示另一種依前述方法所製成之多晶片堆疊 構造。請參閱第1 3圖所示,在第二實施例之變化例中, 除了第一晶片與第二晶片有所不同之外,該多晶片堆疊 構造之主要元件仍與第二實施例之基礎例相同,故沿用 相同圖號。該多晶片堆疊構造包含有至少一第一晶片 320A與至少一第二晶片340A。該第一晶片320A之複 數個第一電極321A與第二晶片340A之複數個第二電 極341A可皆為單邊配置。該載板310係具有複數個接 21 1355065 指3 11。該第一晶片320 A係設置於該載板310上。該 些銲線330之第一端331係連接該些接指311,第二端 332係連接該些第一電極321A。該第二晶片340A係設 置於該第一晶片320A上,該第二晶片340A之該些第 二電極341A係接合至該些銲線330在該些第一電極 321A上之第二端332,以使該第二晶片340A經由該些 銲線330電性連接至該載板3 10。一填充膠360係填滿 該第一晶片320A與該第二晶片340A之間隙。該封膠 體 350係形成於該載板 310上,以密封該第一晶片 320A、該第二晶片340A以及該些銲線330。 以上所述,僅是本發明的較佳實施例而已,並非對 本發明作任何形式上的限制,本發明技術方案範圍當依 所附申請專利範圍為準。任何熟悉本專業的技術人員可 利用上述揭示的技術内容作出些許更動或修飾為等同 變化的等效實施例,但凡是未脫離本發明技術方案的内 容,依據本發明的技術實質對以上實施例所作的任何簡 單修改、等同變化與修飾,均仍屬於本發明技術方案的 範圍内。 【圖式簡單說明】 第1圖:習知多晶片堆疊方法之流程圖。 第2圖:在習知多晶片堆疊方法中元件立體示意圖。 第3圖:繪示依照習知多晶片堆疊方法所製成之一多晶 片堆疊構造之截面示意圖。 第4圖:依據本發明之第一具體實施例,一種打線製程 22 1355065 減半之多晶片堆疊方法之流程圖。 第5圖:依據本發明之第一具體實施例,在多晶片堆疊 方法中元件立體示意圖。 第6圖:依據本發明之第一具體實施例,繪示依照該多 晶片堆疊方法所製成之一種多晶片堆疊構造 之戴面示意圖。 第7圖:依據本發明之第一具體實施例,繪示依照該多 晶片堆疊方法所製成之另一種多晶片堆疊構 造之截面示意圖。 第8圖:依據本發明之第一具體實施例,繪示主要依照 該多晶片堆疊方法所製成並堆疊更多晶片之 一種多晶片堆疊構造之截面示意圖。 第9圖:依據本發明之第一具體實施例,繪示依照該多 晶片堆疊方法所製成且可不使用填充膠之一 種多晶片堆疊構造之截面示意圖。 第10圖:依據本發明之第二具體實施例,在另一種打 線製程減半之多晶片堆疊方法中元件立體示 意圖。 第11圖:依據本發明之第二具體實施例,繪示依照該 多晶片堆疊方法所製成之一種多晶片堆疊構 -造之戴面示意圖。 第1 2圖:依據本發明之第二具體實施例,繪示依照該 多晶片堆疊方法所製成之另一種多晶片堆疊 構造之截面示意圖。 23 1355065 第1 3圖:依據本發明之第二具體實施例,繪示依照該 多晶片堆疊方法所製成之另一種多晶片堆疊 構造之截面示意圖。 【主要元件符號說明】 1 提供一載板 2 第一次設置晶片 3 第一次打線電性連接 4 設置一間隔片Optionally, in an embodiment, as in the first embodiment, the multi-wafer stacking method may further include a step of forming a filling adhesive. After the bonding wires 330 are formed, a point is utilized. The glue head 6 〇 forms a filling glue 360 on the active surface of the first wafer 320. Then, as shown in FIG. 10 and FIG. 1 , at least one second wafer 340 or 340 is disposed on the wafer nozzle 40, and the active surface of the second wafer 340 is disposed on the first wafer 320. The active surface faces the first wafer 320. The second wafer 340 has a plurality of second electrodes 341 ′ disposed on the active surface thereof, and the second electrodes 341 are coupled to the second ends of the solder wires 330 on the first electrodes 321 . 332, the second electrode 340 is electrically connected to the carrier 310 via the bonding wires 330. In this embodiment, the first electrodes 321 and the second electrodes 341 can be centrally disposed. In this embodiment, as shown in FIG. 11, the second electrodes 341 may be gold bumps and gold/gold bonds to the second ends 332 of the bonding wires 330. In another embodiment, as shown in FIG. 12, 'the other second wafer 340, the plurality of second electrodes 34 can be solder bumps and soldered back to the bonding wires /r·», 20 1355065 330. Further, as shown in FIG. 12, the second electrodes 341' may be coated with the second ends 332 of the bonding wires 330 on the first electrodes 32 and soldered to the first electrodes 32A. Therefore, by the above process, the number of wire bonding processes and the number of bonding wires can be reduced by half, the process can be shortened and the bonding wires can be saved, and the bonding wires 330 can be reinforced on the first wafer 320 or 320' (ie, the second end 33). 2) The joint force does not have the problem of disconnection and punching. As shown in FIG. 10F, after the second wafer 340 is disposed, the filler 360 may be baked and cured to fill the gap between the first wafer 320 and the second wafer 340. More specifically, as shown in FIG. 10G and FIG. 11 , the multi-wafer stacking method may further include a “forming a gel” step, and a gel 350 is formed on the carrier 310 to seal the same. The first wafer 320, the second wafer 340, and the bonding wires 340. The multi-wafer stacking method described above can be used to form a card-type or brick-like multi-wafer stack structure, such as various memory cards or planar array package structures (LGA). Another multi-wafer stack construction made in accordance with the foregoing method is disclosed. Referring to FIG. 13 , in the variation of the second embodiment, the main components of the multi-wafer stack structure are still the basic example of the second embodiment except that the first wafer and the second wafer are different. The same, so the same figure number is used. The multi-wafer stack configuration includes at least a first wafer 320A and at least a second wafer 340A. The plurality of first electrodes 321A of the first wafer 320A and the plurality of second electrodes 341A of the second wafer 340A may all be unilaterally arranged. The carrier 310 has a plurality of contacts 21 1355065 fingers 3 11 . The first wafer 320 A is disposed on the carrier 310. The first ends 331 of the bonding wires 330 are connected to the fingers 311, and the second ends 332 are connected to the first electrodes 321A. The second wafer 340A is disposed on the first wafer 320A, and the second electrodes 341A of the second wafer 340A are bonded to the second ends 332 of the bonding wires 330 on the first electrodes 321A. The second wafer 340A is electrically connected to the carrier 3 10 via the bonding wires 330. A fillant 360 fills the gap between the first wafer 320A and the second wafer 340A. The encapsulant 350 is formed on the carrier 310 to seal the first wafer 320A, the second wafer 340A, and the bonding wires 330. The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. The scope of the present invention is defined by the scope of the appended claims. Any person skilled in the art can make some modifications or modifications to the equivalent embodiments by using the technical content disclosed above, but the content of the technical solution of the present invention is made according to the technical essence of the present invention without departing from the technical solution of the present invention. Any simple modifications, equivalent changes and modifications are still within the scope of the technical solutions of the present invention. [Simple Description of the Drawing] Fig. 1: A flow chart of a conventional multi-wafer stacking method. Figure 2: A perspective view of the components in a conventional multi-wafer stacking process. Fig. 3 is a cross-sectional view showing a polycrystalline wafer stack structure constructed in accordance with a conventional multi-wafer stacking method. Figure 4 is a flow chart showing a method for stacking wafers by half of the wire bonding process 22 1355065 in accordance with a first embodiment of the present invention. Figure 5 is a perspective view of the components in a multi-wafer stacking method in accordance with a first embodiment of the present invention. Figure 6 is a schematic view showing the wearing of a multi-wafer stacking structure in accordance with the multi-wafer stacking method in accordance with a first embodiment of the present invention. Figure 7 is a cross-sectional view showing another multi-wafer stack structure fabricated in accordance with the multi-wafer stacking method in accordance with a first embodiment of the present invention. Figure 8 is a cross-sectional view showing a multi-wafer stack configuration in which a plurality of wafers are formed and stacked in accordance with the multi-wafer stacking method in accordance with a first embodiment of the present invention. Figure 9 is a cross-sectional view showing a multi-wafer stack configuration which is made in accordance with the multi-wafer stacking method and which does not use a filler, in accordance with a first embodiment of the present invention. Fig. 10 is a perspective view of the components in another method of stacking wafers halved in accordance with a second embodiment of the present invention. Figure 11 is a schematic view showing a multi-wafer stack structure constructed in accordance with the multi-wafer stacking method in accordance with a second embodiment of the present invention. Fig. 2 is a cross-sectional view showing another multi-wafer stack structure fabricated in accordance with the multi-wafer stacking method in accordance with a second embodiment of the present invention. 23 1355065 FIG. 1 3 is a cross-sectional view showing another multi-wafer stack structure fabricated in accordance with the multi-wafer stacking method in accordance with a second embodiment of the present invention. [Main component symbol description] 1 Provide a carrier board 2 Set the wafer for the first time 3 Connect the first time to the electrical connection 4 Set a spacer

5 第二次設置晶片 6 第二次打線電性連接 7 形成一封膠體 8 設置複數個外接端子5 Set the wafer for the second time. 6 The second wire is electrically connected. 7 Form a gel. 8 Set a plurality of external terminals.

11 提供一載板 12 第一次設置晶片 13 打線電性連接 14 形成一填充膠 15 第二次設置晶片並電性連接 16 形成一封膠體 17 設置複數個外接端子 20 晶片吸嘴 30 銲針 40 晶片吸嘴 50 銲針 110 載板 111 接指 120 第一晶片 121 第一電極 131 第一銲線 131A第一端 60 點膠針頭 131B第二端 24 135506511 Providing a carrier 12 First setting the wafer 13 Bonding the electrical connection 14 Forming a filling glue 15 Second setting the wafer and electrically connecting 16 Forming a gel 17 Setting a plurality of external terminals 20 Wafer nozzle 30 Solder pin 40 Wafer nozzle 50 solder pin 110 carrier plate 111 finger 120 first wafer 121 first electrode 131 first bonding wire 131A first end 60 dispensing needle head 131B second end 24 1355065

132 第二 銲線 132A 第- 一端 140 第二 晶片 141 第二 電極 150 封膠 體 170 外接端子 210 載板 211 接指 213 外露 表面 220 第一 晶片 221 第一 電極 220, 第一 •晶片 221’ 第一 •電極 231 第一 銲線 231A 第- 一端 232 第二 銲線 232A 第- 一端 240 第二 晶片 241 第二 電極 240, 第二 -晶片 241, 第二 -電極 250 封膠 體 260 填充 膠 280 第三 晶片 281 第三 電極 290 第四 晶片 291 第四 電極 310 載板 311 接指 320 第一 晶片 321 第一 電極 320’ 第一 -晶片 321, 第一 •電極 320A 第- 一晶片 321A 第- -電極 330 銲線 331 第一 端 340 第二 晶片 341 第二 電極 340, 第二 -晶片 341, 第二 -電極 340A 第- 二晶片 341A 第- 二電極 350 封膠 體 360 填充 膠 132B第二端 180間隔片 2 1 2黏晶表面 231B第二端 232B第二端 270外接端子 332第二端 25132 second bonding wire 132A first end 140 second wafer 141 second electrode 150 encapsulant 170 external terminal 210 carrier 211 finger 213 exposed surface 220 first wafer 221 first electrode 220, first • wafer 221 ' first • electrode 231 first bonding wire 231A first end 232 second bonding wire 232A first end 240 second wafer 241 second electrode 240, second wafer 241, second electrode 250 encapsulant 260 filling 280 third wafer 281 third electrode 290 fourth wafer 291 fourth electrode 310 carrier 311 finger 320 first wafer 321 first electrode 320' first-wafer 321, first electrode 320A first-die 321A first--electrode 330 solder Line 331 first end 340 second wafer 341 second electrode 340, second-wafer 341, second-electrode 340A second-second wafer 341A first-second electrode 350 encapsulant 360 filling glue 132B second end 180 spacer 2 1 2 the second end 232B of the second end 232B of the viscous surface 231B is externally connected to the second end 25 of the terminal 332

Claims (1)

1355065 十、申請專利範圍: 1、一種多晶片堆疊方法,包含: 提供一載板’係具有複數個接指;1355065 X. Patent application scope: 1. A multi-wafer stacking method comprising: providing a carrier board having a plurality of fingers; 數個第一電極;a plurality of first electrodes; 合至該些第一銲線在該些第一 二晶片經由該些第一銲線電性連接至該載板。 日曰片上,該第二晶片係具 同時’該些第二電極係接 電極上之一端’以使該第 2、如申請專利範圍第!項所述之多晶片堆疊方法,其中該 些第一銲線係為逆打銲線,而使該些第一銲線在該些第 一電極上之一端係為線尾端,以使該些第一銲線之最大 弧尚遠離該第一晶片且不超過該第二晶片。 • 3、如申請專利範圍第i項所述之多晶片堆疊方法,其中該 二第—電極係為金凸塊並金_金鍵合於該些第—銲線。 4、 如申請專利範圍第丨項所述之多晶片堆疊方法,其中該 些第二電極係為銲料凸塊並回焊接合於該些第—銲線。 5、 如申請專利範圍第4項所述之多晶片堆疊方法,其中該 些第二電極係包覆該些第一銲線在該些第—電極上之一 端並更焊接至該些第一電極。 6、 如申請專利範圍第1或5項所述之多晶片堆疊方法,其 中該些第一電極係為凸境。 26 〆· 1355065 7、 如申請專利範圍帛i項所述之多晶片堆疊方法其中該 些第一電極係為銲墊。 ^ 8、 如申請專利範圍帛1項所述之多晶片堆疊方法另包含 之步驟為:形成一封#體於該載板上,以密封該第一晶 片、該第二晶片以及該些第一銲線。 9、 如申請專利範圍第8項所述之多晶片堆疊方法,1令該 封膠體更填滿該第一晶片與該第二晶片之間隙。 /The first bonding wires are electrically connected to the carrier via the first bonding wires. On the corona piece, the second wafer is simultaneously "the second electrode is connected to one end of the electrode" to make the second, as claimed in the patent scope! The multi-wafer stacking method, wherein the first bonding wires are reverse bonding wires, and the first bonding wires are terminated at one end of the first electrodes to make the wires The maximum arc of the first bond wire is further away from the first wafer and does not exceed the second wafer. 3. The multi-wafer stacking method of claim i, wherein the two first electrodes are gold bumps and gold-gold bonds to the first wire bonds. 4. The multi-wafer stacking method of claim 2, wherein the second electrodes are solder bumps and are soldered back to the first bonding wires. 5. The multi-wafer stacking method of claim 4, wherein the second electrodes cover one end of the first bonding wires on the first electrodes and are further soldered to the first electrodes . 6. The multi-wafer stacking method of claim 1 or 5, wherein the first electrodes are convex. 26 13 1355065 7. The multi-wafer stacking method of claim 1, wherein the first electrodes are solder pads. The multi-wafer stacking method of claim 1, further comprising the steps of: forming a body on the carrier to seal the first wafer, the second wafer, and the first Welding wire. 9. The multi-wafer stacking method of claim 8, wherein the encapsulant further fills a gap between the first wafer and the second wafer. / 1〇、如申請專利範圍第U 8項所述之多晶片堆疊方法, 另包含以下步驟:在該些第-銲線形成之後,形成一埴 充膠於該第一晶片上;並在設置該第二晶片之後,烘烤 固化該填充膠’以使該填充膠填滿該第__晶片與該 晶片之間隙。 — 11、 如中請專利範㈣8項所述之多晶片堆疊方法,另包 含之步驟為:設置複數個外接端子於該載板外露於該: 膠體之一表面β 、1. The multi-wafer stacking method of claim U8, further comprising the steps of: after the forming of the first bonding wires, forming a filling on the first wafer; After the second wafer, the filler is cured to fill the gap between the wafer and the wafer. — 11 — The multi-wafer stacking method as described in claim 8 (4), further comprising the steps of: setting a plurality of external terminals exposed on the carrier plate: a surface of the colloid β, 12、 如申請專利範圍第1項所述之多晶片堆疊方法,其中 該第-晶係為複數個,該些接指係位於該些第一 之間。 日日乃 ’其中 ’其中 ’另包 該第三 13'如中請專利範Μ 1項所述之多晶片堆疊方法 該些第-電極與該些第二電極皆為周邊配置。 14、 如中請專㈣圍第1項所述之多晶片堆疊方法 該些第一電極盘該此笸_办, ,、π些第一電極皆為中央配置。 15、 如中請專利範圍第1項所述之多晶片堆疊方法 含之步驟為:設置一第三 晶片於該第二晶片上 27 晶片係具有複數個第三電極。 16、如申請專利範圍第15項所述之多晶片堆疊方法另包 . 含之步驟為:打線形成複數個第二銲線,係連接該些= • 二電極至該些接指。 如申請專利範圍第16項所述之多晶片堆疊方法,另包 ^之步驟為:設置一第四晶片於該第三晶片上該第四 晶片係具有複數個第四電極,在設置之同時,該些第四 • 電極係接合至該些第二銲線在該些第三電極上之一端, 18 以使該第四晶片經由該些第二銲線電性連接至該載板。 、一種多晶片堆疊構造,包含: 一载板’係具有複數個接指; 至少一第-晶片’係設置於該載板上,該第一晶片係且 有複數個第一電極; 曰片係具 複數個打線形成之第一銲線,係連 些接指,·以及 電極至該 φ 至少一第二晶片,#讯甚从u ** W 係-又置於該第一晶片上,該笛_曰 係具有複數個第:電極,其中該 片 些第-銲線在該些第―電極上之一端,=合:該 立由該二第一知線電性連接至該載板。 19、如申請專利範圍第丨 祀囷第18項所述之多晶片堆疊 該些第一銲線係為逆 再且構每’其中 第一電極上之一端_ _ _線在該些 大弧高遠離該第一a ~線之最 阳片且不超過該第二晶片。 2 0、如申請專利範圍第 項所述之多晶片堆疊構造,其中12. The multi-wafer stacking method of claim 1, wherein the first-crystal system is plural, and the fingers are located between the first ones. The multi-wafer stacking method described in the above-mentioned Patent No. 1 is a peripheral configuration of the first electrode and the second electrodes. 14. The multi-wafer stacking method described in the first item of the fourth (4), the first electrode discs, the first electrode, the first electrodes are centrally arranged. 15. The multi-wafer stacking method of claim 1, wherein the step of: placing a third wafer on the second wafer 27 has a plurality of third electrodes. 16. The multi-wafer stacking method of claim 15, wherein the method comprises the steps of: forming a plurality of second bonding wires by wire bonding, and connecting the two electrodes to the fingers. The multi-wafer stacking method of claim 16, wherein the step of: providing a fourth wafer on the third wafer has a plurality of fourth electrodes, and at the same time, The fourth electrode is bonded to one end of the second bonding wires on the third electrodes 18 so that the fourth wafer is electrically connected to the carrier via the second bonding wires. a multi-wafer stack structure comprising: a carrier board having a plurality of fingers; at least one first wafer is disposed on the carrier, the first wafer having a plurality of first electrodes; a first bonding wire formed by a plurality of wires, connecting a plurality of fingers, and an electrode to the φ at least a second wafer, the signal is even from the u ** W system - placed on the first wafer, the flute The 曰 system has a plurality of: electrodes, wherein the first wire-bonding wires are at one end of the first electrodes, and the wires are electrically connected to the carrier by the two first wires. 19. The multi-wafer stack according to claim 18, wherein the first bonding wires are reversed and each of the first electrodes has a ___ line at the large arc height. Far from the most positive piece of the first a ~ line and no more than the second wafer. 20. The multi-wafer stack construction of claim 1, wherein 28 1355065 該些第二電極係為金凸塊並金金鍵合於該些第一鲜線。 2卜如申請專利範圍第18項所述之多晶片堆疊構造,其中 . 該些第—電極係、為銲料凸塊並回焊接合於該些第-銲 線。 22、如中請專利範圍第21項所述之多晶片堆疊構造,其中 該些第=電極係包覆該些第-銲線在該些第-電極上之 一端並更焊接至該些第一電極。 φ 23、如申明專利範圍第18或22項所述之多晶片堆疊構造, 其中該些第一電極係為凸塊。 24'如巾請專利範圍第18項所述之多晶片堆疊構造,其中 該些第一電極係為銲墊。 25、 如申請專利範圍第18項所述之多晶片堆疊構造,另包 含一封膠體,係形成於該載板上,以密封該第〆晶片' 該第二晶片以及該些第一銲線。 26、 如申請專利範圍第25項所述之多晶片堆疊構造,其中 • 該封膠體更填滿該第一晶片與該第二晶片之間隙。 27、 如申請專利範圍第is或25項所述之多晶片堆疊構造, 另包含一填充膠’係形成於該第一晶片上,以填滿該第 一晶片與該第二晶片之間隙。 28、 如申請專利範圍第25項所述之多晶片堆疊構造’另包 含複數個外接端子’係設置於該載板外露於該封膠體之 一表面。 29、 如申請專利範圍第.is項所述之多晶片堆疊構造,其中 該第一晶片係為複數個,該些接指係位於該些第一晶片 < S 29 1355065 之間。 30、 如申請專利範圍第18項所述之多晶片堆疊構造,其中 該些第一電極與該些第二電極皆為周邊配置。 31、 如申請專利範圍第18項所述之多晶片堆疊構造,其中 該些第一電極與該些第二電極皆為中央配置。 32、 如申請專利範圍第18項所述之多晶片堆疊構造,另包 含一第三晶片,係設置於該載板上,該第三晶片係具有 複數個第三電極。 33、 如申請專利範圍第32項所述之多晶片堆疊構造,另包 含複數個打線形成之第二銲線,係連接該些第三電極至 該些接指。 34、 如申請專利範圍第33項所述之多晶片堆疊構造,另包 含一第四晶片,係設置於該第三晶片上,該第四晶片係 具有複數個第四電極,其中該些第四電極係接合至該些 第二銲線在該些第三電極上之一端,以使該第四晶片經 由該些第二銲線電性連接至該載板。 3028 1355065 The second electrodes are gold bumps and gold-bonded to the first fresh lines. The multi-wafer stack structure of claim 18, wherein the first electrode system is a solder bump and is reflow-bonded to the first-weld wires. The multi-wafer stack structure of claim 21, wherein the first electrode is coated on one of the first electrode and further soldered to the first electrode. The multi-wafer stack structure of claim 18 or 22, wherein the first electrodes are bumps. The multi-wafer stack construction of claim 18, wherein the first electrodes are solder pads. 25. The multi-wafer stack construction of claim 18, further comprising a gel formed on the carrier to seal the second wafer and the first bonding wires. 26. The multi-wafer stack construction of claim 25, wherein: the encapsulant further fills a gap between the first wafer and the second wafer. 27. The multi-wafer stack construction of claim i or claim 25, further comprising a filler layer formed on the first wafer to fill a gap between the first wafer and the second wafer. 28. The multi-wafer stack structure as described in claim 25, further comprising a plurality of external terminals disposed on the surface of the carrier. 29. The multi-wafer stack structure of claim 1, wherein the first wafer is plural, and the fingers are located between the first wafers < S 29 1355065. The multi-wafer stack structure of claim 18, wherein the first electrodes and the second electrodes are both peripherally disposed. The multi-wafer stack structure of claim 18, wherein the first electrodes and the second electrodes are centrally disposed. 32. The multi-wafer stack structure of claim 18, further comprising a third wafer disposed on the carrier, the third wafer having a plurality of third electrodes. 33. The multi-wafer stack structure of claim 32, further comprising a plurality of second wire formed by wire bonding, connecting the third electrodes to the fingers. 34. The multi-wafer stack structure of claim 33, further comprising a fourth wafer disposed on the third wafer, the fourth wafer having a plurality of fourth electrodes, wherein the fourth The electrode is bonded to one end of the second bonding wires on the third electrodes, so that the fourth wafer is electrically connected to the carrier via the second bonding wires. 30
TW097110889A 2008-03-26 2008-03-26 Method and device of multi-chip stack to halve wir TWI355065B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097110889A TWI355065B (en) 2008-03-26 2008-03-26 Method and device of multi-chip stack to halve wir

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097110889A TWI355065B (en) 2008-03-26 2008-03-26 Method and device of multi-chip stack to halve wir

Publications (2)

Publication Number Publication Date
TW200941692A TW200941692A (en) 2009-10-01
TWI355065B true TWI355065B (en) 2011-12-21

Family

ID=44868387

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097110889A TWI355065B (en) 2008-03-26 2008-03-26 Method and device of multi-chip stack to halve wir

Country Status (1)

Country Link
TW (1) TWI355065B (en)

Also Published As

Publication number Publication date
TW200941692A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
TWI330872B (en) Semiconductor device
TWI429050B (en) Stack die packages
TWI290365B (en) Stacked flip-chip package
TWI502723B (en) Multi-chip stack package structure
TWI415201B (en) Multiple chips stack structure and method for fabricating the same
TW201115659A (en) Back-to-back chip assembly stacked packaging method and structure
TW201025532A (en) Chip stacked package having single-sided pads on chips
CN101552214B (en) Multi-chip stacking method for halving routing procedure and structure thereof
TWI278079B (en) Pillar grid array package
TWI311806B (en) Cob type ic package for improving bonding of bumps embedded in substrate and method for fabricating the same
TW201025554A (en) Multiple flip-chip package
TW201017855A (en) Chip package with connecting extension of TSV
TWI355731B (en) Chips-between-substrates semiconductor package and
TWI355065B (en) Method and device of multi-chip stack to halve wir
CN112614830A (en) Encapsulation module and electronic equipment
TW201208035A (en) Multi-chip stacked assembly with ground connection of EMI shielding
TWI435434B (en) Semiconductor packaging method to save interposer and bottom chip utilized for the same
TWI390701B (en) Semiconductor package exempt with substrate and contact pins and its fabricating process
TW200933868A (en) Stacked chip package structure
CN110993517A (en) Chip stacking and packaging method and packaging structure
TW200834844A (en) Multi-chip face-to-face stack package
TW201347139A (en) Semiconductor package and method for fabricating the same
CN211238226U (en) Power semiconductor package device
TWI223879B (en) Package stack module with vertical conductive wires inside molding compound
TWI362731B (en) Semiconductor package