TWI352740B - Fe-based amorphous alloy ribbon and magnetic core - Google Patents

Fe-based amorphous alloy ribbon and magnetic core Download PDF

Info

Publication number
TWI352740B
TWI352740B TW094104741A TW94104741A TWI352740B TW I352740 B TWI352740 B TW I352740B TW 094104741 A TW094104741 A TW 094104741A TW 94104741 A TW94104741 A TW 94104741A TW I352740 B TWI352740 B TW I352740B
Authority
TW
Taiwan
Prior art keywords
amorphous alloy
atom
flux density
based amorphous
magnetic flux
Prior art date
Application number
TW094104741A
Other languages
Chinese (zh)
Other versions
TW200602499A (en
Inventor
Masamu Naoe
Yuichi Ogawa
Yoshihito Yoshizawa
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of TW200602499A publication Critical patent/TW200602499A/en
Application granted granted Critical
Publication of TWI352740B publication Critical patent/TWI352740B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Description

1352740 九、發明說明: 【發明所屬之技術領域】 •本發明係關於具有優異之磁特性的Fe-系非晶質合金 .帶,及由該Fe-系非晶質合金帶所構成之磁心;特別係關於 Fe-系非晶質合金帶與其可用於各種變壓器、反應器、減噪 零件(如用於主動濾波器之抗流線圈、平流抗流線圈、共模 抗流線圏等)、雷射電源供應器、加速器之磁脈衝電力零件、 馬達、發電機等的磁心。 © 【先前技術】 矽鋼與Fe-系非晶質合金帶係已知爲具有用於各種變壓 _ 器;反應器、減噪零件(如用於主動濾波器之抗流線圈、平 流抗流線圈、共模抗流線圈與電磁遮板)、雷射電源供應器、 加速器之磁脈衝能源零件、馬達、發電機等之高飽和磁通量 密度及低磁心損失的磁性合金。雖然矽鋼具有高磁通量密度 且成本低,但缺點是在高頻率應用中會承受磁心損失。Fe-系非晶質合金具有較矽鋼低之飽和磁通量密度,而導致有較 ® 大之磁心尺寸。該等亦具有大的磁致伸縮,且其特性易因應 力而劣化。 作爲用於變壓器之磁心材料,JP 9-31610 A揭示一種用 來製造非晶質Fe-Si-B-M合金帶之方法,其中Μ表示一種選 自包括Al、Ti、S、Μη與Zr之群組中至少一種之不可避免 的不純物。該非晶質合金在80A/m磁場中具有1.4Τ以上之 磁通量密度。1352740 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to an Fe-based amorphous alloy having excellent magnetic properties, and a magnetic core composed of the Fe-based amorphous alloy ribbon; In particular, it relates to Fe-based amorphous alloy ribbons and can be used in various transformers, reactors, noise-reducing parts (such as anti-flow coils for active filters, advection choke coils, common-mode anti-flow lines, etc.), A magnetic core of a power supply, a magnetic pulse power component of an accelerator, a motor, a generator, or the like. © [Prior Art] Tantalum and Fe-based amorphous alloy ribbons are known to have various transformers; reactors, noise-reducing parts (such as anti-flow coils for active filters, advection choke coils) Magnetic alloys with high saturation magnetic flux density and low core loss, common mode choke coils and electromagnetic shutters, laser power supplies, magnetic pulse energy components for accelerators, motors, generators, etc. Although Nd steel has high magnetic flux density and low cost, it has the disadvantage of being subjected to core loss in high frequency applications. Fe-based amorphous alloys have a lower saturation magnetic flux density than niobium steel, resulting in a larger core size. These also have large magnetostriction, and their characteristics are easily deteriorated by stress. As a core material for a transformer, JP 9-31610 A discloses a method for producing an amorphous Fe-Si-BM alloy ribbon, wherein Μ represents a group selected from the group consisting of Al, Ti, S, Μη and Zr. At least one of the inevitable impurities. The amorphous alloy has a magnetic flux density of 1.4 Torr or more in a magnetic field of 80 A/m.

作爲用於改善Fe-系非晶質合金之磁心損失的方法,JP 1352740 . 10-324961 A揭示一種用於製造Fe-Si-B-M非晶質合金帶的 方法,其中Μ爲選自包括Mn、Co、Ni與Cr之群組中至少 ' 一種。於該方法中’在磁場中'於中等或高溫下進行傳統熱 . 處理之前,於相對低溫下進行熱處理至少6小時以上。 • . · 然而,上述傳統之Fe-系非晶質合金帶因磁通量密度低 而不適合作爲用於變壓器之磁心材料。由於磁通量密度低則 最大操作磁通量密度必然爲低’故具有低磁通量密度之磁心 必然具有大的體積或重量。 0 雖然已有人在得自上述傳統Fe-系非晶質合金帶的平板 上硏究過磁心損失,但並未對於作用於磁心時所產生應力進 _ 行過硏究。再者,由於在由JP 10-3 24 961所提出之製造方法 中的熱處理需要長時間,其極爲不利於量產。 由於非晶質Fe-Si-B或Fe-Si-B-C合金在適合於高飽和 磁通量密度的組成物中具有低結晶溫度,故該等應在低溫下 進行熱處理。在此情況下,由於在作用於用於變壓器之磁心 的Fe-系非晶質合金中所產生之應力未充分鬆弛,故Fe-系 ® 非晶質合金之磁特性極爲不佳。 【發明內容】 發明之目的 因此,本發明之一目的係在於提供一種具有改善之飽和 磁通量密度及軟磁特性的Fe-系非晶質合金帶,其中藉由相 對短時間之熱處理來充分地鬆弛其應力。 本發明之另一目的係在於提供一種由該Fe-系非晶質合 金帶所構成之磁心。 -6- 1352740 發明之槪述 如本發明之具有優異磁特性之第一種Fe-系非晶質合金 .· 帶係藉由下列通式來表示:FeaSibBcMx ’其中Μ爲Cr及/或 . Ni,a爲78〜86原子%,b爲0.001〜5原子%’ c爲7〜20 原子%,X爲0.01〜5原子%,而(a+b+c+x)爲1〇〇。當 Μ爲Cr時,X以0.01〜1原子%爲佳;而Μ爲Ni時,則X 以0.1〜5原子%爲佳。在預定之條件下之熱處理可提供該具 有經改善之磁通量密度與已充分鬆弛之應力的系非晶質 # 合金帶。該Fe-系非晶質合金帶係以具有25〜40μπι之厚度、 1.6Τ以上之飽和磁通量密度、及在80A/m磁場中爲1.5Τ以 _ 上之磁通量密度爲佳》 以a爲78〜85原子%、b爲0.001〜3原子%、c爲1〇〜 20原子%、及X爲0.02〜4原子%來提供具有更加改善之磁 通量密度與充分鬆弛之應力的Fe-系非晶質合金帶爲較佳。 該Fe-系非晶質合金帶具有1.65T以上之飽和磁通量密度、 及於80A/m磁場中爲1.6T以上之磁通量密度。 ® 根據本發明之具有優異磁特性之第二種Fe-系非晶質合 金帶係以下列通式來表示:FeaSibBeCdMx,其中Μ爲Cr及/ 或Ni,a爲78〜86原子%,b爲0.001〜5原子%,(:爲7〜 20原子%,d爲0.001〜4原子%,及X爲001〜5原子%, 而(a+b+c+d+x)爲 100。當 Μ 爲 Cr 時,X 以 0.01 〜1 原子%爲佳,而Μ爲Ni時’則X以〇·ι〜5原子%爲佳。在 預定之條件下之熱處理可提供該具有經改善之磁通量密度 與已充分鬆弛之應力的Fe-系非晶質合金帶。該Fe_系非晶 1352740 質合金帶係以具有25〜40μηι之厚度、1.6T以上之飽和磁通 量密度、及在80A/m磁場中爲1.5Τ以上之磁通量密度爲佳。 •以a爲78〜85原子%、b爲0.001〜3原子%、c爲10〜 20原子%、d爲0.01〜3原子%、及x爲0.02〜4原子%來提 供具有更加改善之磁通量密度與充分鬆弛之應力的Fe-系非 晶質合金帶爲較佳。該Fe-系非晶質合金帶具有1.65T以上 之飽和磁通量密度、及於80 A/m磁場中爲1.6T以上之磁通 量密度。 B 本發明之磁心係由上述Fe-系非晶質合金帶之任一種藉 由截斷搭接(cut lap)或階式搭接(step lap)方法所構成而具 _ 有用於變壓器之形狀。 - 較佳樣熊之詳細說明 [1 ]組成 本發明之第一 Fe -系非晶質合金係以下列通式: FeaSibBcMx所表示,其中Μ爲Cr及/或Ni、a爲78〜86原 ^ 子%、b爲0.001〜5原子%、c爲7〜20原子%、及又爲〇.〇1 〜5原子%,其中(a+b+c+x)爲100。 本發明之第二 Fe-系非晶質合金係以下列通式: FeaSibBcCdMx所表示,其中Μ爲Cr及/或Ni、a爲78〜86 原子%、b爲0.001〜5原子%、c爲7〜20原子%、d爲0.001 〜4原子%、及X爲0.01〜5原子%,其中(a+b+c+d+x) 爲 1 0 0 0 當使用包含Cr及/或Ni之本發明的Fe-系非晶質合金 1352740 C 善 ο 改 力件 應條 之面 生表 產與 所輥 時隨 心及 磁、 造度 製黏 在融 弛熔 鬆之 分低 充減 來有 理具 處供 熱提 由來 藉用 ’作 時係 - 之濕潤度的合金。Cr與Ni亦具有加速在熱處理時Fe-系非 , 晶質合金中之應力鬆弛的效果,從而改善其軟磁特性。然 而,當所包含之Cr及/或Ni的量太小時則不能得到充分的 效果;而當其含量過多時則居禮溫度與飽和磁通量密度會明 顯劣化。因此,基於100原子%之合金主成份(a + b + c + x或 a + b + c + d + x)計,Cr及/或Ni的含量爲0.01〜5原子%,而 • 以〇.〇2〜4原子%爲佳,以0.1〜4原子%爲較佳。 當Μ爲Cr時,X範圍則以0.01〜1原子%爲佳,以〇.〇2 〜0.5原子%爲較佳。當Μ爲Ni時,X範圍則以0.1〜5原 子%爲佳,以0.3〜4原子%爲較佳。因此在必需量方面, . Cr與Ni有所不同。Cr係小量即能有效鬆弛在形成磁心時所 產生之應力,而Ni係較Cr大量始能有效鬆弛在形成磁心時 所產生之應力。可隨所要求之磁特性與應力鬆弛速度來適當 地選擇Cr和Ni。 # Si係爲了使該合金成爲非晶質、且將該合金之居禮溫度 維持在高至某個程度的必需元素。當Si含量過小時,該合 金之居禮溫度對實際應用來說過低。另一方面,當其含量過 ,多時,該合金之磁心損失增加,且在該合金中之Fe及/或B 的百分比減少,而造成磁通量密度與熱穩定度降低。因此, ' 基於1〇〇原子%之合金主成份計,Si含量爲0.001〜5原子 %,以0.001〜3原子%爲佳。 B係用來使合金變成非晶質之重要元素。當B含量過小 1352740. . 時,該合金不易變成非晶質,導致軟磁特性降低且磁心損失 増加。另一方面,當B含量過多時,合金中之Fe及/或Si - 的百分比減少,而造成磁通量密度與熱穩定度降低。因此, 基於100原子%之合金主成份計,B含量爲7〜20原子%, 以10〜20原子%爲佳。 C能有效於降低合金之熔融黏度和改善與輥之濕潤性。 然而,過多的C會導致因老化而造成之磁特性劣化。因此, 基於100原子%之合金主成份計,C含量爲0.001〜4原子 # %,以0.01〜3原子%爲佳,以0.1〜3原子%爲較佳。As a method for improving the core loss of an Fe-based amorphous alloy, JP 1352740. 10-324961 A discloses a method for producing an Fe-Si-BM amorphous alloy ribbon, wherein cerium is selected from the group consisting of Mn, At least one of the group of Co, Ni, and Cr. In the process, the conventional heat is applied to the medium or high temperature in the magnetic field. The heat treatment is carried out at a relatively low temperature for at least 6 hours or more before the treatment. • However, the above conventional Fe-based amorphous alloy ribbon is not suitable as a core material for a transformer due to a low magnetic flux density. Since the magnetic flux density is low, the maximum operating magnetic flux density is necessarily low. Therefore, a magnetic core having a low magnetic flux density necessarily has a large volume or weight. 0 Although the core loss has been studied on the flat plate obtained from the above-mentioned conventional Fe-based amorphous alloy ribbon, the stress generated when acting on the magnetic core has not been studied. Further, since the heat treatment in the manufacturing method proposed by JP 10-3 24 961 takes a long time, it is extremely disadvantageous for mass production. Since the amorphous Fe-Si-B or Fe-Si-B-C alloy has a low crystallization temperature in a composition suitable for a high saturation magnetic flux density, the heat treatment should be performed at a low temperature. In this case, since the stress generated in the Fe-based amorphous alloy applied to the core of the transformer is not sufficiently relaxed, the magnetic properties of the Fe-based ® amorphous alloy are extremely poor. DISCLOSURE OF THE INVENTION Accordingly, it is an object of the present invention to provide an Fe-based amorphous alloy ribbon having improved saturation magnetic flux density and soft magnetic properties, wherein it is sufficiently relaxed by heat treatment for a relatively short period of time. stress. Another object of the present invention is to provide a core comprising the Fe-based amorphous alloy ribbon. -6- 1352740 Description of the Invention A first Fe-based amorphous alloy having excellent magnetic properties according to the present invention. The band system is represented by the following formula: FeaSibBcMx 'where Μ is Cr and/or. Ni , a is 78 to 86 atom%, b is 0.001 to 5 atom%, c is 7 to 20 atom%, X is 0.01 to 5 atom%, and (a+b+c+x) is 1〇〇. When ruthenium is Cr, X is preferably 0.01 to 1 atom%; and when ruthenium is Ni, X is preferably 0.1 to 5 atom%. The heat treatment under the predetermined conditions provides the amorphous # alloy ribbon having an improved magnetic flux density and sufficient relaxation stress. The Fe-based amorphous alloy ribbon has a thickness of 25 to 40 μm, a saturation magnetic flux density of 1.6 Τ or more, and a magnetic flux density of 1.5 Å in a magnetic field of 80 A/m. A is 78~ 85 atom%, b is 0.001 to 3 atom%, c is 1 〇 to 20 atom%, and X is 0.02 to 4 atom% to provide an Fe-based amorphous alloy having a more improved magnetic flux density and sufficient relaxation stress. The belt is preferred. The Fe-based amorphous alloy ribbon has a saturation magnetic flux density of 1.65 T or more and a magnetic flux density of 1.6 T or more in a magnetic field of 80 A/m. The second Fe-based amorphous alloy ribbon having excellent magnetic properties according to the present invention is represented by the following formula: FeaSibBeCdMx, wherein Μ is Cr and/or Ni, a is 78 to 86 at%, and b is 0.001 to 5 atom%, (: 7 to 20 atom%, d is 0.001 to 4 atom%, and X is 001 to 5 atom%, and (a+b+c+d+x) is 100. When Μ is In the case of Cr, X is preferably 0.01 to 1 atom%, and when y is Ni, then X is preferably 〇·1 to 5 atom%. The heat treatment under the predetermined conditions can provide the improved magnetic flux density and Fe-based amorphous alloy ribbon with sufficient relaxation stress. The Fe_based amorphous 1352740 alloy ribbon has a thickness of 25 to 40 μηι, a saturation magnetic flux density of 1.6 T or more, and a magnetic field of 1.5 A in a magnetic field of 80 A/m. The magnetic flux density above Τ is preferably. • a is 78 to 85 atom%, b is 0.001 to 3 atom%, c is 10 to 20 atom%, d is 0.01 to 3 atom%, and x is 0.02 to 4 atom%. It is preferable to provide an Fe-based amorphous alloy ribbon having a more improved magnetic flux density and a sufficient relaxation stress. The Fe-based amorphous alloy ribbon has a wavelength of 1.65T or more. The saturation magnetic flux density and the magnetic flux density of 1.6 T or more in a magnetic field of 80 A/m. B The magnetic core of the present invention is formed by cutting off a lap or by any of the above Fe-based amorphous alloy ribbons. The step lap method is constructed to have a shape for a transformer. - A detailed description of a preferred bear [1] The first Fe-based amorphous alloy constituting the present invention has the following general formula: FeaSibBcMx, wherein Μ is Cr and/or Ni, a is 78 to 86%, b is 0.001 to 5 atom%, c is 7 to 20 atom%, and is 〇.〇1 to 5 atom%. Wherein (a+b+c+x) is 100. The second Fe-based amorphous alloy of the present invention is represented by the following formula: FeaSibBcCdMx, wherein Μ is Cr and/or Ni, and a is 78~86 The atomic %, b is 0.001 to 5 atom%, c is 7 to 20 atom%, d is 0.001 to 4 atom%, and X is 0.01 to 5 atom%, wherein (a+b+c+d+x) is 1 0 0 0 When using the Fe-based amorphous alloy 1352740 C of the present invention containing Cr and/or Ni, the surface of the modified part should be bonded to the roll and the magnetic and magnetic properties of the roll. Relaxation Low-reduction and reduction of the alloy for the heat supply. The Cr and Ni also have the effect of accelerating the stress relaxation in the Fe-based non-crystalline alloy during heat treatment, thereby improving Its soft magnetic properties. However, when the amount of Cr and/or Ni contained is too small, a sufficient effect cannot be obtained; and when the content is too large, the Curie temperature and the saturation magnetic flux density are remarkably deteriorated. Therefore, based on 100 atom% of the alloy main component (a + b + c + x or a + b + c + d + x), the content of Cr and/or Ni is 0.01 to 5 atom%, and • 〇. Preferably, 〇 2 to 4 atom% is preferably 0.1 to 4 atom%. When ruthenium is Cr, the X range is preferably 0.01 to 1 atom%, and more preferably 〇2 0.5 0.5 atom%. When yttrium is Ni, the X range is preferably 0.1 to 5 atom%, and preferably 0.3 to 4 atom%. Therefore, Cr is different from Ni in terms of necessary amount. A small amount of Cr can effectively relax the stress generated when the core is formed, and the Ni system can effectively relax the stress generated when the core is formed. Cr and Ni can be appropriately selected depending on the required magnetic characteristics and stress relaxation rate. # Si is an essential element for maintaining the alloy to an amorphous level and maintaining the alloy temperature to a certain level. When the Si content is too small, the temperature of the alloy is too low for practical use. On the other hand, when the content is too large, the core loss of the alloy increases, and the percentage of Fe and/or B in the alloy decreases, resulting in a decrease in magnetic flux density and thermal stability. Therefore, the Si content is 0.001 to 5 atom% based on 1 to 1 atom% of the alloy main component, preferably 0.001 to 3 atom%. B is an important element used to make an alloy amorphous. When the B content is too small, 1352740. , the alloy is not easily amorphous, resulting in a decrease in soft magnetic properties and a loss of core loss. On the other hand, when the B content is excessive, the percentage of Fe and/or Si - in the alloy is decreased, resulting in a decrease in magnetic flux density and thermal stability. Therefore, the B content is 7 to 20 atom%, preferably 10 to 20 atom%, based on 100 atom% of the alloy main component. C can effectively reduce the melt viscosity of the alloy and improve the wettability with the roll. However, excessive C causes deterioration in magnetic properties due to aging. Therefore, the C content is 0.001 to 4 atoms #% based on 100 atom% of the alloy main component, preferably 0.01 to 3 atom%, more preferably 0.1 to 3 atom%.

Fe爲平衡物質,其對於得到高磁通量密度爲重要元素。 .. 然而,過多Fe導致磁心損失提高與熱穩定性不佳。因此, 基於1〇〇原子%之合金主成份計,Fe含量爲78〜86原子%, 以78、85原子%爲佳。 本發明的Fe-系非晶質合金可包含基於100原子%之上 述合金主成份計爲約0.00 02〜0.2原子%含量之Μη、P、S、 Cu、Al、Sn、Pb、Ca、Ti與Zr中至少一種作爲不可避免的 •不純物。 [2]製造方法 藉由單輥法等來驟冷上.述組成物之熔融體、並在預定溫 . 度下熱處理所得之Fe-系非晶質合金來鬆弛合金中之應力, 而得到本發明的Fe-系非晶質合金。雖然藉由單輥法等來驟 冷通常是在空氣中、在Ar或He之大氣中、或減壓之大氣中 進行,其亦可在含有氮氣、一氧化碳或二氧化碳之大氣中進 行。雖然通常在Ar、He、N2等鈍氣之大氣中或在真空中進 -10- 1352740 , 行熱處理,其亦可在空氣中進行。 該熱處理係希望在通常具有-30°C以下之露點的鈍氣大 - 氣中進行。由於在熱處理後合金帶具有小的不均句度,故該 .. 熱處理係希望在具有-60°C以下之露點的鈍氣大氣中進行爲 較佳。從量產的觀點來看,在恆溫下之熱處理的情況下,該 溫度保持時間通常爲24小時以下,以4小時以下爲佳。在 熱處理當中,平均溫度提升速度係以0.1 -20 0°C /分爲佳,以 0.1-100°C /分爲較佳,而平均冷卻速度係以0.1-3000°C /分爲 # 佳,以0.1-l〇〇°C /分爲較佳。在該範圍內之熱處理可提供具 有低磁心損失之合金。該熱處理係可藉由單步驟或多步驟來 進行,或者可重複多次。再者,可供給DC、AC或脈衝電流 於該合金中,來產生用於熱處理的熱。 必要時,本發明的Fe-系非晶質合金帶可以用下列(1)〜 (3)進行被覆,來作爲夾層絕緣:(1) Si02、MgO、Al2〇3 等之粉末或薄膜、(2)由化學轉化處理所形成之絕緣層、 或(3)由陽極氧化處理所形成之絕緣氧化層。該等處理會 ® 減輕在高頻率中特別通過層間之渦電流的影響,從而減少在 高頻率之磁心損失。該等處理對由寬如5 0mm之具有良好表 面條件的合金帶所構成之磁心特別有效。再者,可在磁心之 製造中進行含浸、被覆等。 如第1、2圖所示,本發明的Fe-系非晶質合金帶可作成 用於變壓器、馬達與發電機等之磁心1之環。藉由截斷搭接 或階式搭接法將本發明的Fe-系非晶質合金帶10適當地形成 變壓器之形狀來提供磁心。 -11- 1352740 ^ 參照以下實施例來說明本發明,但本發明係不受其限制。 【實施方式】 • 實施例1 具有以如不於表1之FeaSibBcMx(a+b+c+x=l〇〇) 所表示之組成物的合金熔融體藉由單輥法來驟冷,來製造 5mm寬與25 μπι厚的非晶質合金帶。 將每種Fe -系非晶質合金帶捲繞形成外徑i9mm與內徑 15mm之環狀磁心,其中在Ar氣大氣中熱處理。於熱處理 _ 中,在隨該磁心之磁線所排列的方向上施加1 kA/m之磁場, 並提高溫度至320°C〜370°C間之最適熱處理溫度,於此得到 最高飽和磁通量密度及其他軟磁性質,在該溫度下超過2小 - 時、保持在每種熱處理溫度1小時、然後冷卻至200 °C超過 1小時。該熱處理後之合金帶主要爲非晶質。測量所得之環 狀磁心的飽和磁通量密度Bs、在80A/m磁場中之磁通量密 度B8G、在50Hz頻率之1.3T磁通量密度中之磁心損失 W13/5C)、與在50Hz頻率之1.4T磁通量密度中之磁心損失 W!4/50 ° • 如第4圖所示,將每種裁切成10.5(ti.R〇) cm之Fe-系非晶質合金帶10捲繞在具有R。cm直徑之石英管11上而 形成單片試樣,並在形成環時於如上之同樣條件下進行熱處 理來鬆弛應力。測量相當於從石英管11取下之C-形試樣10’ — 之圓形的直徑Ri,來測定以通式:Rs= ( Ro/R! ) xl〇〇[%] . 表示之應力鬆驰速度Rs,來作爲表示以退火(熱處理)所 鬆弛之延伸應力的參數。100 %之應力鬆弛速度Rs表示應力 完全被鬆弛。 該結果示於表1。 -12- 1352740 表1Fe is a balanced substance which is an important element for obtaining high magnetic flux density. However, too much Fe leads to increased core loss and poor thermal stability. Therefore, the Fe content is 78 to 86 at%, preferably 78 and 85 at%, based on 1 to 1 atom% of the alloy main component. The Fe-based amorphous alloy of the present invention may comprise Μη, P, S, Cu, Al, Sn, Pb, Ca, Ti in an amount of about 0.00 02 to 0.2 at% based on 100 atom% of the above-mentioned alloy principal component. At least one of Zr is inevitable • impure. [2] Manufacturing method: The molten body of the composition is quenched by a single roll method or the like, and the obtained Fe-based amorphous alloy is heat-treated at a predetermined temperature to relax the stress in the alloy, thereby obtaining the present invention. The Fe-based amorphous alloy of the invention. Although quenching by a single roll method or the like is usually carried out in the air, in an atmosphere of Ar or He, or in a reduced atmosphere, it may be carried out in an atmosphere containing nitrogen, carbon monoxide or carbon dioxide. Although heat treatment is usually carried out in an atmosphere of an inert gas such as Ar, He or N2 or in a vacuum, it can also be carried out in air. This heat treatment is desirably carried out in a blunt gas atmosphere which usually has a dew point of -30 ° C or lower. Since the alloy ribbon has a small unevenness after the heat treatment, it is preferred that the heat treatment be carried out in an atmosphere of a dull gas having a dew point of -60 ° C or less. From the viewpoint of mass production, in the case of heat treatment under a constant temperature, the temperature holding time is usually 24 hours or less, preferably 4 hours or less. In the heat treatment, the average temperature increase rate is preferably 0.1-20 ° C / min, preferably 0.1-100 ° C / min, and the average cooling rate is 0.1-3000 ° C / min # good, It is preferably 0.1-l 〇〇 ° C /. Heat treatment within this range provides an alloy with low core loss. The heat treatment can be carried out in a single step or in multiple steps, or can be repeated multiple times. Further, DC, AC or pulsed current may be supplied to the alloy to generate heat for heat treatment. When necessary, the Fe-based amorphous alloy ribbon of the present invention can be coated with the following (1) to (3) as interlayer insulation: (1) a powder or a film of SiO 2 , MgO, Al 2 〇 3 or the like, (2) An insulating layer formed by chemical conversion treatment, or (3) an insulating oxide layer formed by anodizing. These treatments ® mitigate the effects of eddy currents at high frequencies, especially through the layers, thereby reducing core losses at high frequencies. These treatments are particularly effective for a core composed of an alloy ribbon having a surface condition as wide as 50 mm. Further, impregnation, coating, and the like can be performed in the manufacture of the core. As shown in Figs. 1 and 2, the Fe-based amorphous alloy ribbon of the present invention can be used as a ring for a core 1 of a transformer, a motor, a generator, or the like. The Fe-based amorphous alloy ribbon 10 of the present invention is appropriately formed into a shape of a transformer by a cut-over lap or a step lap to provide a core. -11- 1352740 ^ The invention is illustrated by the following examples, but the invention is not limited thereto. [Embodiment] Example 1 An alloy melt having a composition represented by FeaSibBcMx (a+b+c+x=l〇〇) as shown in Table 1 was rapidly cooled by a single roll method to produce Amorphous alloy ribbon 5 mm wide and 25 μπ thick. Each of the Fe-based amorphous alloy ribbons was wound to form an annular core having an outer diameter of i9 mm and an inner diameter of 15 mm, wherein heat treatment was performed in an atmosphere of Ar gas. In the heat treatment _, a magnetic field of 1 kA/m is applied in a direction in which the magnetic wires of the core are arranged, and the temperature is raised to an optimum heat treatment temperature between 320 ° C and 370 ° C, thereby obtaining the highest saturation magnetic flux density and The other soft magnetic properties were kept at each heat treatment temperature for 1 hour at this temperature, and then cooled to 200 ° C for more than 1 hour. The alloy strip after the heat treatment is mainly amorphous. The measured saturation magnetic flux density Bs of the annular core, the magnetic flux density B8G in a magnetic field of 80 A/m, the core loss W13/5C in a 1.3 T magnetic flux density at a frequency of 50 Hz, and the 1.4 T magnetic flux density at a frequency of 50 Hz. Core loss W! 4/50 ° • As shown in Fig. 4, each of the Fe-based amorphous alloy ribbons 10 cut into 10.5 (ti. R 〇) cm was wound with R. A monolithic sample was formed on the cm-diameter quartz tube 11 and subjected to heat treatment under the same conditions as above to form a loop to relax the stress. The diameter R of the circle corresponding to the C-shaped sample 10' taken from the quartz tube 11 is measured to measure the stress relaxation expressed by the general formula: Rs = (Ro/R!) xl 〇〇 [%] The relaxation rate Rs is used as a parameter indicating the elongation stress relaxed by annealing (heat treatment). The 100% stress relaxation rate Rs indicates that the stress is completely relaxed. The results are shown in Table 1. -12- 1352740 Table 1

試樣 編號 組成 Bs [T] Beo [T] W 13/50 [W/kg] W14/50 [W/kg] Rs [%] 1-1 Fe82Si2B 15.95Cr0.05 1.64 1.62 0.27 0.35 92.5 1-2 Fe82Si2B ι5.9^γ0<1 1.64 1.63 0.20 0.26 95.7 1-3 Fe82Si2Bi5<5Cr〇.5 1.62 1.51 0.20 0.24 98.8 1-4 Fes2Si2B isCri 1.60 1.50 0.24 0.30 99.0 1-5 Feg2Si2B 15.9gNi0.02 1.64 1.60 0.28 0.36 92.3 1-6 Feg2Si2B i5.9Ni〇.i 1.64 1.57 0.21 0.28 95.1 1-7 Fes2Si2B 15.5N10.5 1.63 1.57 0.21 0.29 97.0 1-8 Feg2S I2B15N11 1.60 1.54 0.25 0.33 97.2 1-9 Fe82Si2Bi5,8Cr〇.iNi〇.i 1.62 1.58 0.27 0.37 93.1 1-10 Fe82Si2B15.5Cr〇.3Ni〇.2 1.61 1.56 0.23 0.31 95.2 1-11 Fe82Si2B15Cr〇.5Ni〇.5 1.60 1.52 0.25 0.33 97.3 1-12 Fe83.9Sio.1B15.9Cro.! 1.63 1.61 0.31 0.44 94.4 1-13 Feg3SiiB i5.9Cr〇.i 1.64 1.62 0.22 0.29 94.7 1-14 FegiSisB i5.9Cr〇.i 1.62 1.60 0.22 0.27 95.1 1-15 FC83.9S 12B uCro. 1 1.64 1.63 0.21 0.26 96.0 1-16 Feso.gSisB nCr0. i 1.61 1.56 0.22 0.29 95.6 1-17 Fe8l.5Si0.01B 17.99NI0.5 1.68 1.65 0.28 0.37 92.1 1-18 Fe8〇Si〇.〇iBi7.99Ni2 1.68 1.66 0.30 0.35 92.5 1-19 Fe77Si〇.〇iBi7.99Ni5 1.65 1.63 0.32 0.35 93.3 1-20 Fesi.sSilB i7Ni〇.5 1.67 1.65 0.29 0.35 93.4 1-21 Fe8〇S i 1B 17N12 1.67 1.65 0.29 0.36 93.3 1-22 Fe77Si,B17Ni5 1.65 1.63 0.31 0.38 95.6 1-23 F^81.5Si2B ifiNio.5 1.68 1.65 0.25 0.31 93.0 1-24 Fe8〇Si2B 16N12 1.67 1.65 0.24 0.29 93.2 1-25 Fe77Si2B16Ni5 1.65 1.62 0.28 0.37 93.1 1-26* Fe82Si〇.〇lBl7.99 1.64 1.63 0.38 0.49 90.2 1-27* Feg2SiiB 17 1.64 1.63 0.35 0.48 91.3 1-28* Fes2Si2B 16 1.64 1.62 0.30 0.41 92.2 1-29* Fe72Si〇.〇iBi7.99Nii〇 1.58 1.57 - - - 1-30* Fe72SiiBi7Nii〇 1.58 1.55 - - - 1-31* Fe72S 12B 1 gNi 1 〇 1.64 1.61 0.35 0.51 89.9 1-32* Fe82Si2B loCrg 1.55 1.49 - - - 1-33* Fe82Si2B i〇Nig 1.58 1.48 - - - 1-34* Fe82Si2B6Cr5Ni5 1.51 1.45 - - - 1-35* Fe79SieB 15.95Cr0.05 1.58 1.55 - - - 1-36* Fe76SigB 15.95Cr0.05 1.52 1.45 - - - 1-37* Fe84.9Sii〇B5Cr〇,i 1.61 1.57 0.39 0.59 92.4 1-38* Fe75.9Si2B22Cr〇i 1.50 1.45 - - - 註:*本發明之試樣外部 -13- 1352740 . 從表1當可明瞭試樣1-1〜1-25具有較試樣1-26〜 1- 28、1-31與1-37大的應力鬆弛速度Rs,以致於該等當其 " 形成環時所產生之應力會充分鬆弛。在磁心損失W13,與 ·- Wl4/5Q方面’試樣i-1〜1-25比試樣1-26〜1-38得到較多改 善。 當在1.3T以上之操作磁通量密度下使用具有低磁通量 密度之合金時,其承受極大之例如W14/5Q的磁心損失,而不 適用作爲磁心材料。然而,由於本發明之Fe-系非晶質合金 ® 帶具有高如i.6T以上之飽和磁通量密度,故可提高其操作 磁通量密度至1.4 T ’以致於其磁心損失w ! 4/5 〇小到可使得該 磁心能承受實際應用。因此,本發明之Fe-系非晶質合金帶 可提供比傳統者小及性能較高之磁心。 實施例2 · 以與實施例1同樣方法製造及熱處理各種組成之試樣 2- 1〜2-11與2-12〜2-16。每種所得之Fe-系非晶質合金帶之 磁心損失增加率Wr與組成、熱處理溫度、飽和磁通量密度 ® Bs、應力鬆弛速度Rs、平均表面粗糙度Ra、與空間參數同 時示於表2»以與實施例1同樣之方法測量該飽和磁通量密 度Bs與應力鬆弛速度RS » 該磁心損失增加率Wr係表示當操作磁通量密度從1 .3T 提高至1.4T時之磁心損失增加率的參數,其係以下式表示: Wr= ( W14/50 — W 13/50 ) /Wi 3/5〇X 100 [%] . . · (2), 其中Wi3/5()表示在1.3T磁通量密度與50Hz頻率下之磁 心損失,及W14/5()表示在1 ·4Τ磁通量密度與50Hz頻率下之 -14- 1352740. 磁心損失。於試樣2-12中,當形成環狀磁心時所產生之應 鑽 力未充分地鬆弛,且其飽和磁通量密度小。因此,其在1.4T - 之操作磁通量密度中具有大Wr的磁心損失有相當幅度地增 . 加。雖然試樣2-13具有高飽和磁通量密度,但其因爲在形 成環狀磁心時所產生之應力鬆弛速度低而具有大的Wr。由 於藉由熱處理而使包含適量Cr或Ni之試樣2-1〜2-11的應 力充分地鬆弛,以及高飽和磁通量密度之故,該等磁心損失 增加率Wr較試樣2-12〜2-13小。 Φ 爲了測量表面粗糙度,將每種Fe-系非晶質合金帶裁成 5mm寬、25μπι厚、與12cm長之長方形,並以與上述同樣方 法來進行熱處理。表面粗糙度的側量是在該合金帶之寬度方 向來進行算數平均。進一步測量由每種Fe-系非晶質合金帶 所構成之磁心的空.間參數。通常,表面粗糙度R a愈小·,該 磁心之空間參數愈大。適量添加C r及/或N i係作用來減少 該合金之溶融體黏度’從而該合金溶融體能使輕有良好之濕 潤性。因此,所得之非晶質合金帶具有比不包含C r或N i之 ® 傳統非晶質合金帶較平滑之表面。具有較平滑表面之Fe -系 非晶質合金帶提供具有較大空間參數之磁心,從而使該磁心 變得較小並且重量較輕。 -15- 1352740 表2 試樣 編號 組成 Bs [T] Wr [%] Rs [%] Ra⑴ [μιηΐ 空間參數 [%] 2-1 Fe82Si2Bj5.95Cr0.05 1.64 29.6 92.5 0.28 87 2-2 Fe82S I2B 1 5.9^Γ〇. 1 1.64 30.0 95.7 0.28 88 2-3 Fe82Si2Bi5.5Cr〇.5 1.62 20,0 98.8 0.26 87 2-4 F^83.9Si2B !4Cr〇.i 1.64 28.3 96.0 0.31 88 2-5 F^80.9Si2Bl7Cr〇.i 1.61 31.8 95.6 0.33 87 2-6 F®8 1.5S i iB 1 7NI0.5 1.67 20.7 93.4 0.25 91 2-7 Feg〇SiiB 17N12 1.67 24.1 93.3 0.26 90 2-8 Fe77SiiBi7Ni5 1.65 22.6 95.6 0.41 86 2-9 F681.5Si2Bi6Ni〇.5 1.68 24.0 93.0 0.29 93 2-10 Fe8〇Si2B 16N12 1.67 20.8 93.2 0.23 92 2-Π Fe77Si2B16Ni5 1.65 32.1 93.1 0.36 89 2-12* Fe79Si9B 12 1.58 32.5 90.1 0.44 86 2-13* Fee2S I2B1 $ 1.64 36.7 92.2 0.45 85 2-14* F^81.5Si2Bl6C〇〇.5 1.68 25.1 94.2 0.25 86 2-15* Feg〇S 12B 16C〇2 1.69 23.3 94.3 0.25 87 2-16* Fe77Sl2B I6CO5 1.71 31.2 93.1 0.28 90 註:*本發明之試樣外部Sample No. Composition Bs [T] Beo [T] W 13/50 [W/kg] W14/50 [W/kg] Rs [%] 1-1 Fe82Si2B 15.95Cr0.05 1.64 1.62 0.27 0.35 92.5 1-2 Fe82Si2B Iv5.9^γ0<1 1.64 1.63 0.20 0.26 95.7 1-3 Fe82Si2Bi5<5Cr〇.5 1.62 1.51 0.20 0.24 98.8 1-4 Fes2Si2B isCri 1.60 1.50 0.24 0.30 99.0 1-5 Feg2Si2B 15.9gNi0.02 1.64 1.60 0.28 0.36 92.3 1 -6 Feg2Si2B i5.9Ni〇.i 1.64 1.57 0.21 0.28 95.1 1-7 Fes2Si2B 15.5N10.5 1.63 1.57 0.21 0.29 97.0 1-8 Feg2S I2B15N11 1.60 1.54 0.25 0.33 97.2 1-9 Fe82Si2Bi5,8Cr〇.iNi〇.i 1.62 1.58 0.27 0.37 93.1 1-10 Fe82Si2B15.5Cr〇.3Ni〇.2 1.61 1.56 0.23 0.31 95.2 1-11 Fe82Si2B15Cr〇.5Ni〇.5 1.60 1.52 0.25 0.33 97.3 1-12 Fe83.9Sio.1B15.9Cro.! 1.63 1.61 0.31 0.44 94.4 1-13 Feg3SiiB i5.9Cr〇.i 1.64 1.62 0.22 0.29 94.7 1-14 FegiSisB i5.9Cr〇.i 1.62 1.60 0.22 0.27 95.1 1-15 FC83.9S 12B uCro. 1 1.64 1.63 0.21 0.26 96.0 1- 16 Feso.gSisB nCr0. i 1.61 1.56 0.22 0.29 95.6 1-17 Fe8l.5Si0.01B 17.99NI0.5 1.68 1.65 0.28 0.37 92.1 1-18 Fe8〇Si〇.〇iBi7.99Ni2 1.68 1.66 0. 30 0.35 92.5 1-19 Fe77Si〇.〇iBi7.99Ni5 1.65 1.63 0.32 0.35 93.3 1-20 Fesi.sSilB i7Ni〇.5 1.67 1.65 0.29 0.35 93.4 1-21 Fe8〇S i 1B 17N12 1.67 1.65 0.29 0.36 93.3 1-22 Fe77Si, B17Ni5 1.65 1.63 0.31 0.38 95.6 1-23 F^81.5Si2B ifiNio.5 1.68 1.65 0.25 0.31 93.0 1-24 Fe8〇Si2B 16N12 1.67 1.65 0.24 0.29 93.2 1-25 Fe77Si2B16Ni5 1.65 1.62 0.28 0.37 93.1 1-26* Fe82Si〇 .〇lBl7.99 1.64 1.63 0.38 0.49 90.2 1-27* Feg2SiiB 17 1.64 1.63 0.35 0.48 91.3 1-28* Fes2Si2B 16 1.64 1.62 0.30 0.41 92.2 1-29* Fe72Si〇.〇iBi7.99Nii〇1.58 1.57 - - - 1 -30* Fe72SiiBi7Nii〇1.58 1.55 - - - 1-31* Fe72S 12B 1 gNi 1 〇1.64 1.61 0.35 0.51 89.9 1-32* Fe82Si2B loCrg 1.55 1.49 - - - 1-33* Fe82Si2B i〇Nig 1.58 1.48 - - - 1 -34* Fe82Si2B6Cr5Ni5 1.51 1.45 - - - 1-35* Fe79SieB 15.95Cr0.05 1.58 1.55 - - - 1-36* Fe76SigB 15.95Cr0.05 1.52 1.45 - - - 1-37* Fe84.9Sii〇B5Cr〇,i 1.61 1.57 0.39 0.59 92.4 1-38* Fe75.9Si2B22Cr〇i 1.50 1.45 - - - Note: * The sample of the present invention is external - 13 - 1352740. From Table 1 It can be understood that the samples 1-1 to 1-25 have a stress relaxation rate Rs larger than that of the samples 1-26 to 1-28, 1-31 and 1-37, so that the same occurs when the ring is formed. The stress will be fully relaxed. In the core loss W13, and the --Wl4/5Q, the samples i-1 to 1-25 were more improved than the samples 1-26 to 1-38. When an alloy having a low magnetic flux density is used at an operating magnetic flux density of 1.3 T or more, it is subjected to a magnetic core loss such as W14/5Q, which is not suitable as a core material. However, since the Fe-based amorphous alloy® tape of the present invention has a saturation magnetic flux density as high as i.6T or more, the operating magnetic flux density can be increased to 1.4 T ' so that its core loss w 4/5 is small. It can make the core can withstand practical applications. Therefore, the Fe-based amorphous alloy ribbon of the present invention can provide a core having a smaller performance and higher performance than the conventional one. Example 2 - Samples of various compositions were prepared and heat-treated in the same manner as in Example 1 - 2 to 2-11 and 2 to 12 to 2-16. The core loss increase rate Wr and composition, heat treatment temperature, saturation magnetic flux density Bs, stress relaxation rate Rs, average surface roughness Ra, and spatial parameters of each of the obtained Fe-based amorphous alloy ribbons are shown in Table 2» The saturation magnetic flux density Bs and the stress relaxation rate RS are measured in the same manner as in the first embodiment. The core loss increase rate Wr is a parameter indicating a core loss increase rate when the operating magnetic flux density is increased from 1.3 T to 1.4 T. It is expressed as follows: Wr=( W14/50 — W 13/50 ) /Wi 3/5〇X 100 [%] . . . (2), where Wi3/5() indicates the magnetic flux density at 1.3T and the frequency of 50Hz The core loss is below, and W14/5() represents the magnetic flux loss at 1 -4 Τ magnetic flux density and 50 Hz frequency - 14 - 1352740. In Samples 2-12, the drilling force generated when the annular core was formed was not sufficiently relaxed, and its saturation magnetic flux density was small. Therefore, the core loss with a large Wr in the operating magnetic flux density of 1.4T - is considerably increased. Although the sample 2-13 had a high saturation magnetic flux density, it had a large Wr because of the low stress relaxation rate generated when the annular core was formed. Since the stress of the samples 2-1 to 2-11 containing an appropriate amount of Cr or Ni is sufficiently relaxed by heat treatment, and the high saturation magnetic flux density, the core loss increase rate Wr is higher than that of the sample 2-12 to 2 -13 small. Φ In order to measure the surface roughness, each Fe-based amorphous alloy ribbon was cut into a rectangle of 5 mm width, 25 μm thick, and 12 cm long, and heat-treated in the same manner as above. The side amount of the surface roughness is arithmetically averaged in the width direction of the alloy ribbon. Further, the space-to-space parameters of the core composed of each of the Fe-based amorphous alloy ribbons were measured. Generally, the smaller the surface roughness Ra, the larger the spatial parameter of the core. An appropriate amount of Cr and/or N i is added to reduce the viscosity of the molten alloy of the alloy, so that the alloy melt can be light and good in wetness. Therefore, the obtained amorphous alloy ribbon has a smoother surface than the conventional amorphous alloy ribbon which does not contain Cr or Ni. An Fe-based amorphous alloy ribbon having a relatively smooth surface provides a core having a large spatial parameter, thereby making the core smaller and lighter in weight. -15- 1352740 Table 2 Sample No. Composition Bs [T] Wr [%] Rs [%] Ra(1) [μιηΐ Spatial Parameters [%] 2-1 Fe82Si2Bj5.95Cr0.05 1.64 29.6 92.5 0.28 87 2-2 Fe82S I2B 1 5.9 ^Γ〇. 1 1.64 30.0 95.7 0.28 88 2-3 Fe82Si2Bi5.5Cr〇.5 1.62 20,0 98.8 0.26 87 2-4 F^83.9Si2B !4Cr〇.i 1.64 28.3 96.0 0.31 88 2-5 F^80.9Si2Bl7Cr 〇.i 1.61 31.8 95.6 0.33 87 2-6 F®8 1.5S i iB 1 7NI0.5 1.67 20.7 93.4 0.25 91 2-7 Feg〇SiiB 17N12 1.67 24.1 93.3 0.26 90 2-8 Fe77SiiBi7Ni5 1.65 22.6 95.6 0.41 86 2- 9 F681.5Si2Bi6Ni〇.5 1.68 24.0 93.0 0.29 93 2-10 Fe8〇Si2B 16N12 1.67 20.8 93.2 0.23 92 2-Π Fe77Si2B16Ni5 1.65 32.1 93.1 0.36 89 2-12* Fe79Si9B 12 1.58 32.5 90.1 0.44 86 2-13* Fee2S I2B1 $ 1.64 36.7 92.2 0.45 85 2-14* F^81.5Si2Bl6C〇〇.5 1.68 25.1 94.2 0.25 86 2-15* Feg〇S 12B 16C〇2 1.69 23.3 94.3 0.25 87 2-16* Fe77Sl2B I6CO5 1.71 31.2 93.1 0.28 90 Note: * The outside of the sample of the present invention

(1)算數平均後之表面粗糙度 因在形成磁心時所產生之應力之故,由試樣2-12與2-13 之合金帶所製作之環狀磁心比由相同組成之單板試樣所製 作之環狀磁心,具有較小飽和磁通量密度Bs。另一方面, 由於在由本發明範圍中之試樣2-1〜2-11的合金帶所製作之 環狀磁心中,應力會藉由熱處理而充分地鬆弛,故在飽和磁 通量密度方面僅有少許降低,且該等降低率比試樣2-12與 2-13之降低率小很多。 當添加用於改善磁心損失與抗腐蝕之元素於該Fe-系非 晶質合金中時,通常該合金之磁特性會同時劣化。然而,包 1352740 含適量能有效於鬆弛應力之Cr及/或Ni之本發明的Fe-系非 晶質合金帶對未包含Cr或Ni之合金來說,具有相似之飽和 - 磁通量密度。因此,本發明之Fe-系非晶質合金帶具有優異 之磁特性,由於在製造磁心中所產生之應力充分地鬆弛,故 適用於用於變壓器之磁心。 如所熟知,Co之添加會提高該Fe-系非晶質合金之飽和 磁通量密度。包含Co之試樣2-14〜2-16具有大的飽和磁通 量密度與空間參數。然而,由於Co爲稀有金屬,故Co之添 φ 加會提高該Fe-系非晶質合金的成本。另一方面,Ni與Cr 較Co廉價,如果以適量添加Ni或Cr,會使該Fe-系非晶質 合金帶具有如Co之添加之改善的磁通量密度與空間參數。 " 因此,適量之Ni及/或Cr之添加係有效於提供具有充分鬆 弛後之應力與優異磁性質的Fe-系非晶質合金帶,其使小、 重量輕之磁心的製造變成可行。 實施例3 藉由單輥法驟冷具有以如表3所示之FeaSibBeCdMx • (a + b + c + d + x=100)所表示之組成的合金熔融體,來形成 5mm寬與25 μιη厚的Fe-系非晶質合金帶。將每種所得之Fe-系非晶質合金帶捲繞形成外徑19mm與內徑15mm之環狀磁 心,並以與實施例1同樣方法來進行熱處理。該熱處理後之 - 合金主要爲非晶質。 _ 以與實施例1同樣之方法來測量各試樣之飽和磁通量密 度Bs、在80A/m磁場中之磁通量密度B8c、在1.3T磁通量密 度與50Hz頻率之磁心損失W13/5Q、在1.4T磁通量密度與50Hz 頻率之磁心損失W14/5Q、及應力鬆弛速度RS。結果示於表3。 -17- 1352740. 表3(1) The surface roughness after arithmetic averaging is due to the stress generated when the core is formed, and the annular core prepared by the alloy ribbons of the samples 2-12 and 2-13 has a single-plate sample of the same composition. The produced annular core has a small saturation magnetic flux density Bs. On the other hand, since the stress is sufficiently relaxed by the heat treatment in the annular core made of the alloy ribbon of the samples 2-1 to 2-11 in the scope of the present invention, there is only a small amount of saturation magnetic flux density. Decrease, and these reduction rates are much lower than the reduction rates of samples 2-12 and 2-13. When an element for improving core loss and corrosion resistance is added to the Fe-based amorphous alloy, the magnetic properties of the alloy are usually deteriorated at the same time. However, the Fe-based non-crystalline alloy ribbon of the present invention containing an appropriate amount of Cr and/or Ni effective for relaxation stress has a similar saturation-flux density for an alloy not containing Cr or Ni. Therefore, the Fe-based amorphous alloy ribbon of the present invention has excellent magnetic properties, and is suitable for use in a magnetic core for a transformer because the stress generated in the manufacturing of the core is sufficiently relaxed. As is well known, the addition of Co increases the saturation magnetic flux density of the Fe-based amorphous alloy. Samples 2-14 to 2-16 containing Co have large saturation magnetic flux density and spatial parameters. However, since Co is a rare metal, the addition of Co increases the cost of the Fe-based amorphous alloy. On the other hand, Ni and Cr are less expensive than Co. If Ni or Cr is added in an appropriate amount, the Fe-based amorphous alloy ribbon has an improved magnetic flux density and a spatial parameter such as the addition of Co. " Therefore, an appropriate amount of Ni and/or Cr is added to provide an Fe-based amorphous alloy ribbon having sufficient relaxation stress and excellent magnetic properties, which makes the manufacture of a small, lightweight core feasible. Example 3 An alloy melt having a composition represented by FeaSibBeCdMx • (a + b + c + d + x = 100) as shown in Table 3 was quenched by a single roll method to form a thickness of 5 mm and a thickness of 25 μm. Fe-based amorphous alloy ribbon. Each of the obtained Fe-based amorphous alloy ribbons was wound to form an annular core having an outer diameter of 19 mm and an inner diameter of 15 mm, and heat treatment was carried out in the same manner as in the first embodiment. After the heat treatment - the alloy is mainly amorphous. _ In the same manner as in Example 1, the saturation magnetic flux density Bs of each sample, the magnetic flux density B8c in a magnetic field of 80 A/m, the magnetic core loss at a frequency of 1.3 T and the core loss of W13/5Q at a frequency of 50 Hz, and the magnetic flux at 1.4 T were measured. Core loss W14/5Q with density and 50 Hz frequency, and stress relaxation rate RS. The results are shown in Table 3. -17- 1352740. Table 3

試樣 編號 組成 Bs [T] Beo [T] W13/50 [W/kg] W.3/50 [W/kg] Rs [%] 3-1 Feg2Si2B13.95C2Cr0.05 1·64 1.61 0.28 0.38 95.2 3-2 Feg2Si2Bi3.9C2Cr〇.i 1.64 1.61 0.20 0.23 97.2 3-3 Fe82Si2Bn.5C2Cr〇.5 1.63 1.60 0.21 0.25 99.5 3-4 Ρβ82δΐ2Βΐ3^2〇Γι 1.62 1.54 0.25 0.30 99.2 3-5 Fe82Si2B13.98C2Nl0.02 1.64 1.61 0.28 0,38 95.0 3-6 Fe82Si2Bi3.9C2Ni〇.i 1.63 1.59 0.23 0.29 95.1 3-7 Fe82Si2B 135C2Ni05 1.63 1.57 0.26 0.30 98.3 3-8 Fe82S 12B 13C2N11 1.62 1.55 0.27 0.33 99.0 3-9 Fe8i.5Si2Bi4C2Ni〇,5 1.67 1.63 0.28 0.31 94.9 3-10 Fe8〇Si2Bi4C2Ni2 1.67 1.64 0.25 0.31 95.1 3-11 Fe77Si2B 14C2N15 1.66 1.63 0.27 0.35 95.0 3-12 Fe82Si2B13.8C2Cro.1Nio.! 1.63 1.61 0.23 0.28 93.0 3-13 Fe82Si2Bi3.5C2Cr〇.3Ni〇.2 1.63 1.60 0.25 0.30 96.3 3-14 .Fe82Si2Bi3C2Cr〇.5Ni〇.5 1.60 1.57 0.28 0.35 97.3 3-15 Feg3.9Sio.1B 1 3.9C2Cr〇.i 1.64 1.60 0.35 0.47 94.5 3-16 Feg3SiiB π.9〇2〇γ0. ! 1.63 1.61 0.23 0.28 96.8 3-17 FegiSisB i3.9C2Cr〇.i 1.62 1.61 0.24 0.27 97.1 3-18 Feg〇.9Si2Bi5C2Cr〇.i 1.61 1.53 0.25 0.31 96*8 3-19 Ρβ78.9δΪ2Βΐ7〇2〇Γ〇.ι 1.60 1.52 0.26 0.32 95.4 3-20* Feg2Si2B u〇2 1.65 1.63 0.29 0.39 94.9 3-21* Fe79Si2BnC2Cr6 1.54 1.48 - - - 3-22* Fe79Sl2B \ ι〇2ΝΪ6 1.51 1.45 - - - 3-23* Fe7eSi2Bi〇C2Cr5Ni5 1.50 1.39 - - - 3-24* Fe77Si5Bn.87C0.08Cr0.05 1.57 1.45 - - - 3-25* Fe77Si5B14.95C3Cr0.05 1.58 1.46 - - - 3-26* Fe77Si5Bn.95C6Cr0.05 1.52 1.45 - - - 3-27* FevfiSigB i3.9C2Cr〇. 1 1.52 ' 1.44 - - - 3-28* Feg2.9Sii〇B5C2Cr〇,i 1.62 1,60 0.29 0.42 94.6 3-29* Fe73.9Si2B22C2Cr〇.! 1.51 1.44 - - - 註:*本發明之試樣外部 -1 8- 1352740, 從表3當可明瞭試樣3-1〜3-19具有比試樣3-21〜3-29 ψ 較改善之磁心損失"^3/50與114/50。 實施例4 藉由單輥法驟冷與實施例1〜3同樣之合金熔融體,得 到25 μιη厚與50mm寬的Fe-系非晶質合金帶。藉由截斷搭接 或階式搭接法將每種合金帶捲繞成爲外徑19mm與內徑 15mm之用於變壓器的環狀磁心,並以與實施例:同樣方法 來進行熱處理。由於在該非晶質合金中包含適量之Cr及/或 ® Ni’故在形成環時所產生之應力會藉由熱處理而分地鬆弛, 導致用於變壓器之磁心具有窄的間隙與優異之磁特性。 具有高飽和磁通量密度與低磁心損失之本發明F e -系非 .晶質合金帶係可使用於電源變壓器與反應器、減噪零件(如 用於主動濾波器之抗流線圈、平流抗流線圈、共模抗流線 圈、電磁遮板等)' 雷射電源供應器、用於加速器之脈衝電 力線路的零件、馬達、發電機等等。在本發明之包含適量之 φ Cr及/或Ni的Fe-系非晶質合金帶中,由於應力可在相當短 時間內藉由熱處理來充分鬆弛,故其適於量產。特別是在藉 由如第3圖所示之截斷搭接或階式搭接法所製成之用於電源 變壓器的磁心中,可使該磁特性劣化與磁心損失變得極小。 以適量Cr及/或Ni之添加來降低該合金熔融體之黏 度’從而藉由該合金熔融體來使輥具有良好濕潤性,因此改 善所得之Fe_系非晶質合金帶的表面條件。該具有平滑表面 之合金帶使得生產具有高空間參數之小的、重量輕的磁心變 -19- 1352740 _ 成可行。 【圖式簡單說明】 * 第Ka)圖係顯示由本發明之Fe-系非晶質合金帶所構成 . 之環狀磁心範例的平面圖示。 第1(b)圖係延著第1(a)圖之A-A直線的截面圖。 第2(a)圖係顯示由本發明之Fe-系非晶質合金帶所構成 之環狀磁心之另一範例的平面圖示。 第2(b)圖係延著第2(a)圖之B-B直線的截面圖。 • 第3(a)圖係顯示藉由截斷搭接或階式搭接方法所製造 之環狀磁心的局部放大平面圖。 第3(b)圖係延著第3(a)圖之C-C直線的截面圖》 第4圖係顯示測量應力鬆弛速度之方法的槪略圖。 【元件符號說明】 1 磁心 10 Fe-系非晶質合金帶 10' c-形試樣 11 石英管 R〇 直徑 Ri C-形試樣10’之直徑 -20-Sample No. Composition Bs [T] Beo [T] W13/50 [W/kg] W.3/50 [W/kg] Rs [%] 3-1 Feg2Si2B13.95C2Cr0.05 1·64 1.61 0.28 0.38 95.2 3 -2 Feg2Si2Bi3.9C2Cr〇.i 1.64 1.61 0.20 0.23 97.2 3-3 Fe82Si2Bn.5C2Cr〇.5 1.63 1.60 0.21 0.25 99.5 3-4 Ρβ82δΐ2Βΐ3^2〇Γι 1.62 1.54 0.25 0.30 99.2 3-5 Fe82Si2B13.98C2Nl0.02 1.64 1.61 0.28 0,38 95.0 3-6 Fe82Si2Bi3.9C2Ni〇.i 1.63 1.59 0.23 0.29 95.1 3-7 Fe82Si2B 135C2Ni05 1.63 1.57 0.26 0.30 98.3 3-8 Fe82S 12B 13C2N11 1.62 1.55 0.27 0.33 99.0 3-9 Fe8i.5Si2Bi4C2Ni〇,5 1.67 1.63 0.28 0.31 94.9 3-10 Fe8〇Si2Bi4C2Ni2 1.67 1.64 0.25 0.31 95.1 3-11 Fe77Si2B 14C2N15 1.66 1.63 0.27 0.35 95.0 3-12 Fe82Si2B13.8C2Cro.1Nio.! 1.63 1.61 0.23 0.28 93.0 3-13 Fe82Si2Bi3.5C2Cr〇.3Ni〇 .2 1.63 1.60 0.25 0.30 96.3 3-14 .Fe82Si2Bi3C2Cr〇.5Ni〇.5 1.60 1.57 0.28 0.35 97.3 3-15 Feg3.9Sio.1B 1 3.9C2Cr〇.i 1.64 1.60 0.35 0.47 94.5 3-16 Feg3SiiB π.9〇 2〇γ0. ! 1.63 1.61 0.23 0.28 96.8 3-17 FegiSisB i3.9C2Cr〇.i 1.62 1.61 0.24 0.27 97.1 3-18 Feg〇.9Si2Bi5C 2Cr〇.i 1.61 1.53 0.25 0.31 96*8 3-19 Ρβ78.9δΪ2Βΐ7〇2〇Γ〇.ι 1.60 1.52 0.26 0.32 95.4 3-20* Feg2Si2B u〇2 1.65 1.63 0.29 0.39 94.9 3-21* Fe79Si2BnC2Cr6 1.54 1.48 - - - 3-22* Fe79Sl2B \ ι〇2ΝΪ6 1.51 1.45 - - - 3-23* Fe7eSi2Bi〇C2Cr5Ni5 1.50 1.39 - - - 3-24* Fe77Si5Bn.87C0.08Cr0.05 1.57 1.45 - - - 3-25* Fe77Si5B14. 95C3Cr0.05 1.58 1.46 - - - 3-26* Fe77Si5Bn.95C6Cr0.05 1.52 1.45 - - - 3-27* FevfiSigB i3.9C2Cr〇. 1 1.52 ' 1.44 - - - 3-28* Feg2.9Sii〇B5C2Cr〇, i 1.62 1,60 0.29 0.42 94.6 3-29* Fe73.9Si2B22C2Cr〇.! 1.51 1.44 - - - Note: * The sample of the present invention is external -1 8- 1352740, from Table 3, when the sample 3-1 is identifiable 3-19 has a better core loss than the sample 3-21~3-29 &"^3/50 and 114/50. Example 4 The same alloy melts as in Examples 1 to 3 were quenched by a single roll method to obtain a Fe-based amorphous alloy ribbon having a thickness of 25 μm and a width of 50 mm. Each of the alloy ribbons was wound into a toroidal core for a transformer having an outer diameter of 19 mm and an inner diameter of 15 mm by a cut-and-lap or step-and-lap method, and heat treatment was carried out in the same manner as in the example. Since the amorphous alloy contains an appropriate amount of Cr and/or ® Ni', the stress generated when the ring is formed is loosened by heat treatment, resulting in a narrow gap and excellent magnetic properties for the core of the transformer. . The F e -based non-crystalline alloy ribbon with high saturation magnetic flux density and low core loss can be used for power transformers and reactors, noise reduction parts (such as anti-flow coils for active filters, advection flow resistance) Coils, common mode choke coils, electromagnetic shutters, etc.) 'Laser power supply, parts for the pulsed power line of the accelerator, motors, generators, etc. In the Fe-based amorphous alloy ribbon of the present invention containing an appropriate amount of φ Cr and/or Ni, since the stress can be sufficiently relaxed by heat treatment in a relatively short period of time, it is suitable for mass production. In particular, in the core for a power transformer which is formed by the cut-off lap or the step lap method as shown in Fig. 3, the deterioration of the magnetic characteristics and the core loss can be made extremely small. The addition of an appropriate amount of Cr and/or Ni reduces the viscosity of the molten alloy of the alloy, whereby the alloy is melted to impart good wettability to the roll, thereby improving the surface condition of the obtained Fe-based amorphous alloy ribbon. The alloy strip with a smooth surface makes it possible to produce a small, lightweight core change -19- 1352740 with high spatial parameters. BRIEF DESCRIPTION OF THE DRAWINGS * The Ka) figure shows a plan view of an example of a toroidal core formed of the Fe-based amorphous alloy ribbon of the present invention. Fig. 1(b) is a cross-sectional view taken along the line A-A of Fig. 1(a). Fig. 2(a) is a plan view showing another example of the annular core composed of the Fe-based amorphous alloy ribbon of the present invention. Fig. 2(b) is a cross-sectional view taken along the line B-B of Fig. 2(a). • Figure 3(a) shows a partially enlarged plan view of a toroidal core made by a truncated lap or step lap method. Fig. 3(b) is a cross-sectional view taken along line C-C of Fig. 3(a). Fig. 4 is a schematic diagram showing a method of measuring the rate of stress relaxation. [Explanation of component symbols] 1 Core 10 Fe-based amorphous alloy ribbon 10' c-shaped specimen 11 Quartz tube R〇 Diameter Ri C-shaped specimen 10' diameter -20-

Claims (1)

1352740 • · 修正本 第“ΙΟ4?4〗號「Fe-系非晶質合金帶及由其形成之磁心」專利案 (201 1年8月10日修正) ^ 十、申請專利範圍: • 種具有優異磁特性之Fe-系非晶質合金帶,其係由通 式:FeaSibBcCrx所表示,其中a爲78至86原子%,b爲 〇·〇〇1至5原子%’ c爲7至20原子%,及\爲〇.〇1至5 原子% ’而(a+b+c+x)爲1〇〇,其中以單—步驟於32〇 至3 7 0 °C之溫度下對F e -系非晶質合金帶進行熱處理。 2.如申請專利範圍第1項之Fe-系非晶質合金帶,其具有 - UT以上之飽和磁通量密度’且其在80 A/m磁場中具有 .- 1.5T以上之磁通量密度。 . 3 ·如申請專利範圍第1項之F e_系非晶質合金帶,其中3爲 78至85原子%,b爲0.001至3原子%,c爲1〇至20原 子%’及X爲0.02至4原子%,且其中該合金帶具有165T 以上之飽和磁通量密度’且其在80A/m磁場中具有1.6Τ 以上之磁通量密度。 4. 如申請專利範圍第1項之Fe-系非晶質合金帶,其中乂爲 〇 - 〇 1至1原子%。 5. —種磁心,其係由如申請專利範圍第1至4項中任一項之 ' F e-系非晶質合金帶所構成,其係藉由截斷搭接或階式搭 - 接法來提供用於變壓器之形狀。1352740 • · Amendment to this “ΙΟ4?4” “Fe-based amorphous alloy ribbon and the core formed by it” patent (as amended on August 10, 201) ^ X. Patent application scope: • An Fe-based amorphous alloy ribbon having excellent magnetic properties, which is represented by the general formula: FeaSibBcCrx, wherein a is 78 to 86 atom%, and b is 〇·〇〇1 to 5 atom%' c is 7 to 20 atoms. %, and \ is 〇.〇1 to 5 atomic %' and (a+b+c+x) is 1〇〇, where F e - in a single-step at a temperature of 32〇 to 370 °C The amorphous alloy ribbon is heat treated. 2. The Fe-based amorphous alloy ribbon of claim 1, which has a saturation magnetic flux density of - UT or more and which has a magnetic flux density of - 1.5 T or more in a magnetic field of 80 A/m. 3. The F e_ amorphous alloy ribbon according to item 1 of the patent application, wherein 3 is 78 to 85 atom%, b is 0.001 to 3 atom%, c is 1 to 20 atom%, and X is 0.02 to 4 atom%, and wherein the alloy ribbon has a saturation magnetic flux density of 165 T or more and it has a magnetic flux density of 1.6 Τ or more in a magnetic field of 80 A/m. 4. For the Fe-based amorphous alloy ribbon of claim 1, wherein 乂 is 〇 - 〇 1 to 1 atom%. 5. A magnetic core consisting of a 'F e-type amorphous alloy ribbon according to any one of claims 1 to 4, which is by a truncated lap or a step lap-joining method To provide the shape for the transformer.
TW094104741A 2004-07-05 2005-02-18 Fe-based amorphous alloy ribbon and magnetic core TWI352740B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004198197 2004-07-05
JP2004376872A JP4636365B2 (en) 2004-07-05 2004-12-27 Fe-based amorphous alloy ribbon and magnetic core

Publications (2)

Publication Number Publication Date
TW200602499A TW200602499A (en) 2006-01-16
TWI352740B true TWI352740B (en) 2011-11-21

Family

ID=35079340

Family Applications (2)

Application Number Title Priority Date Filing Date
TW094104741A TWI352740B (en) 2004-07-05 2005-02-18 Fe-based amorphous alloy ribbon and magnetic core
TW100128515A TWI444483B (en) 2004-07-05 2005-02-18 Fe-based amorphous alloy ribbon and magnetic core formed thereby

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW100128515A TWI444483B (en) 2004-07-05 2005-02-18 Fe-based amorphous alloy ribbon and magnetic core formed thereby

Country Status (4)

Country Link
US (1) US20060000525A1 (en)
EP (1) EP1615240A3 (en)
JP (1) JP4636365B2 (en)
TW (2) TWI352740B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558664B2 (en) 2006-02-28 2010-10-06 株式会社日立産機システム Amorphous transformer for power distribution
JP2007299838A (en) 2006-04-28 2007-11-15 Hitachi Metals Ltd Magnetic core for current transformer, current transformer using same, and electric power meter
JP5361149B2 (en) * 2007-06-28 2013-12-04 新日鐵住金株式会社 Fe-based amorphous alloy ribbon
DE102010036401B4 (en) * 2010-07-14 2023-08-24 Vacuumschmelze Gmbh & Co. Kg Device and method for manufacturing a metallic strip
US8974609B2 (en) 2010-08-31 2015-03-10 Metglas, Inc. Ferromagnetic amorphous alloy ribbon and fabrication thereof
US8968489B2 (en) * 2010-08-31 2015-03-03 Metglas, Inc. Ferromagnetic amorphous alloy ribbon with reduced surface defects and application thereof
US8968490B2 (en) 2010-09-09 2015-03-03 Metglas, Inc. Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof
CN102593969A (en) * 2012-03-01 2012-07-18 中山市艾克动力电机科技有限公司 Non-rare earth magnet motor
KR102596935B1 (en) * 2016-02-29 2023-11-02 가부시키가이샤 프로테리아루 Laminated block core, laminated block, and method of manufacturing laminated block
KR101977039B1 (en) * 2016-10-27 2019-05-10 주식회사 아모센스 Core for current transformer and manufacturing method for the same
CN111748754A (en) * 2020-07-09 2020-10-09 安徽工业大学 Oxygen-controllable iron-based magnetic refrigeration alloy and preparation method thereof
WO2023027087A1 (en) * 2021-08-25 2023-03-02 ユニチカ株式会社 Soft magnetic nanowires, coating material containing same, and multilayer body coated with said coating material
JP7426742B2 (en) * 2021-08-25 2024-02-02 ユニチカ株式会社 Soft magnetic nanowires, paints containing them, and laminates coated with the same
JP7402557B2 (en) * 2021-08-25 2023-12-21 ユニチカ株式会社 Soft magnetic nanowires, paints containing them, and laminates coated with the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581183B2 (en) * 1976-09-16 1983-01-10 東北大学金属材料研究所長 High magnetic permeability amorphous alloy with high magnetic flux density and large squareness ratio
JPS55161048A (en) * 1979-06-01 1980-12-15 Nippon Steel Corp Amorphous alloy for transformer
JPS5842759A (en) * 1981-08-21 1983-03-12 アライド・コ−ポレ−シヨン Metal glass having high permeability, low magnetostriction, low coersive force, low ac core loss, low excitation power and high thermostability
DE3274562D1 (en) * 1981-08-21 1987-01-15 Allied Corp Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
JPS58213857A (en) * 1982-06-04 1983-12-12 Takeshi Masumoto Amorphous iron alloy having superior fatigue characteristic
US4473413A (en) * 1983-03-16 1984-09-25 Allied Corporation Amorphous alloys for electromagnetic devices
JPS59208057A (en) * 1983-05-10 1984-11-26 Matsushita Electric Works Ltd Amorphous magnetic alloy and its manufacture
US5284528A (en) * 1983-05-23 1994-02-08 Allied-Signal Inc. Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
US5011553A (en) * 1989-07-14 1991-04-30 Allied-Signal, Inc. Iron-rich metallic glasses having high saturation induction and superior soft ferromagnetic properties
US5871593A (en) * 1992-12-23 1999-02-16 Alliedsignal Inc. Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications
US6057766A (en) * 1997-02-14 2000-05-02 Sensormatic Electronics Corporation Iron-rich magnetostrictive element having optimized bias-field-dependent resonant frequency characteristic
US7057489B2 (en) * 1997-08-21 2006-06-06 Metglas, Inc. Segmented transformer core
US6583707B2 (en) * 2001-04-25 2003-06-24 Honeywell International Inc. Apparatus and method for the manufacture of large transformers having laminated cores, particularly cores of annealed amorphous metal alloys

Also Published As

Publication number Publication date
US20060000525A1 (en) 2006-01-05
JP4636365B2 (en) 2011-02-23
EP1615240A3 (en) 2008-03-05
TWI444483B (en) 2014-07-11
JP2006045660A (en) 2006-02-16
TW200602499A (en) 2006-01-16
EP1615240A2 (en) 2006-01-11
TW201202439A (en) 2012-01-16

Similar Documents

Publication Publication Date Title
TWI352740B (en) Fe-based amorphous alloy ribbon and magnetic core
JP5327075B2 (en) Soft magnetic alloy ribbon, method of manufacturing the same, and magnetic component having soft magnetic alloy ribbon
JP5327074B2 (en) Soft magnetic alloy ribbon, method of manufacturing the same, and magnetic component having soft magnetic alloy ribbon
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
JP4402960B2 (en) Fe-based amorphous alloy ribbon with excellent soft magnetic properties, iron core produced using the same, and master alloy for producing rapidly solidified ribbon used therefor
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
US8298355B2 (en) Magnetic alloy, amorphous alloy ribbon, and magnetic part
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JP2573606B2 (en) Magnetic core and manufacturing method thereof
JP6077446B2 (en) Ferromagnetic amorphous alloy ribbons with reduced surface defects and their applications
JP4547671B2 (en) High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same
JP2007182594A (en) Amorphous alloy thin strip, nano-crystalline soft magnetic alloy, and magnetic core composed of nano-crystalline soft magnetic alloy
WO2013094690A1 (en) Process for producing microcrystalline-alloy thin ribbon
JP6077445B2 (en) Ferromagnetic amorphous alloy ribbons and their manufacture
CN1721567A (en) Fe-based amorphous alloy ribbon and magnetic core formed thereby
JP2000328206A (en) Soft magnetic alloy strip and magnetic core using the same, its apparatus and production
JP5645108B2 (en) Amorphous alloy ribbon and magnetic component having amorphous alloy ribbon
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP2721165B2 (en) Magnetic core for choke coil
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPH0332888B2 (en)
JP2004002949A (en) Soft magnetic alloy
JP4003166B2 (en) Co-based magnetic alloy and magnetic component using the same
JPH0693390A (en) Nanocrystal soft-magnetic alloy and magnetic core excellent in short pulse characteristic
JPH108224A (en) High saturation magnetic flux density and high perrmiability magnetic alloy, and magnetic core using the alloy

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees