TWI352219B - An optical filter and a method of making the same - Google Patents

An optical filter and a method of making the same Download PDF

Info

Publication number
TWI352219B
TWI352219B TW94106537A TW94106537A TWI352219B TW I352219 B TWI352219 B TW I352219B TW 94106537 A TW94106537 A TW 94106537A TW 94106537 A TW94106537 A TW 94106537A TW I352219 B TWI352219 B TW I352219B
Authority
TW
Taiwan
Prior art keywords
filter
refractive index
index material
cavity
sub
Prior art date
Application number
TW94106537A
Other languages
Chinese (zh)
Other versions
TW200632385A (en
Inventor
Ga-Lane Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW94106537A priority Critical patent/TWI352219B/en
Publication of TW200632385A publication Critical patent/TW200632385A/en
Application granted granted Critical
Publication of TWI352219B publication Critical patent/TWI352219B/en

Links

Landscapes

  • Optical Filters (AREA)

Description

1.352219 _ 100年04月27日核正替换頁 六、發明說明: ^ 【發明所屬之技術領域】 [0001] 本發明係關於一種濾光裝置,特別涉及一種能過濾紫外 及紅外光而讓可見光透過之濾光裝置。 【先前技術】 [0002] 濾光片係一種較為簡單、帶通較寬之分光裝置,其作用 在於把不需要的光濾掉,讓需要的光帶透過去。如應用 於汽車之隔熱玻璃,即採用能過濾紫外或紅外光之濾光 片,可消除不必要光線,減少陽光進入車内之能量,從 而降低車内溫度。最簡單薄膜窄帶濾光片係根據法布裡 —珀珞(Fabry-Perot)多光束干涉儀製成之干涉膜。如 第一圖所示,其基本架構為兩個高反射四分之一波膜層 堆1,中間夾一層空間層2(Spacer),如此形成之濾光片 為單腔型(Single Cavity)窄帶濾光片,其光譜圖趨近 於三角形,與窄帶濾光所需求之通帶定位精度及邊緣陡 度相差甚遠,因此需要使用其他方法。目前,通常於該 單腔型窄帶濾光片加鍍相同中心波長之多個窄帶濾光片 ,疊成多腔窄帶濾光裝置,可提高通帶邊緣陡度,從而 使預定範圍内波長透射,而把通帶邊緣外之波長範圍高 度反射。 [0003] 王利等人在《光學精密工程》,2003,Vll(6), 643-646,“基於Fabry-Perot結構的多通道濾光片的 設計” 一文中介紹多層膜濾光片之理論基礎及其設計方 法。文中之多層膜濾光片理論基礎表明:濾光片採用交 替沈積之高折射率及低折射率之薄膜,組成多層組合膜 094106537 表單编號A0101 第4頁/共25頁 1003146323-0 1352219 100年04月27日梭正替换頁 濾光裝置。當選定某種材料膜層,該膜層兩側的合振幅 透過率、反射率及兩反射膜層之反射相移不變時,此時 能改變的量係選定膜層的有效位相厚度。因而,關於濾 光裝置之設計方法,該文提出通過改變間隔層之結構, 即中間膜層之厚度,從而改變通道間波通帶之寬度。惟 ,其所獲得光譜圖中波通帶寬度較大時,其波形中波紋 較大,邊緣坡度也不夠陡直。 [0004] 為提高該種多腔濾光裝置之光譜性能,有些設計出與傳 統對稱性多層膜不同結構之濾光裝置,如2005年2月1日 公告之美國第6, 850, 366號專利提供一種具有預定中心 波長之多腔渡光器,如通帶遽光器或者一種交錯器 (I nter 1 eaver )。該濾光器包括多個腔,每個腔包括兩 個部分反射膜,通過一層介質材料彼此分開。兩個部分 反射層由具有交替的高與低折射率的材料層形成。每個 介質材料層具有中心波長半波長整數倍之厚度。該濾光 器係將不對稱性引入到濾光器結構中,使從濾光器一側 之反射色散相對於另一側之反射色散減小,而對於光學 薄膜之厚度及性能並未有所改進。而且該濾光器光譜效 果圖上波帶很窄,如僅在1549.8nm~1550.2nm間之光才 可透過,難以實現寬波通帶之濾光效果。 [0005] 另,1998年2月1日公告之美國第5, 719, 989號專利提供 一種多層薄膜帶通濾光器,通過將1/4波長厚度之濾光腔 多次重複,藉以達到形成方形譜帶,且減少波紋之目的 。如第二圖所示,該濾光器10包括一透明基板6 ;第一外 部濾光腔10a,其具有n(n 2 3)層結構,某些層的厚度為 094106537 表單编號A0101 第5頁/共25頁 1003146323-0 1352219 100年04月27日梭正脊 三倍1/4波長;複數低反射率層12 ; —系列中心濾光腔 - l〇b,每個都具有n + 4層結構;第二外部濾光腔l〇c ’其 具有n(n23)層結構,某些層的厚度為三倍1/4波長。其 中,複數低反射率層12分別介於相鄰之第一外部濾光腔 10a與系列濾片中心腔10b之間。濾光腔1〇3、l〇b ' l〇c分別包括交替疊加1/4波長之高折射率(η)及低折射 率材料(L)。濾光腔l〇a之第一層材料為高折射率材料, 接著為低折射率材料,具體排列如HLLH,為提高光譜圖 之邊緣坡度,高折射率材料層可變更為HHH層,LL層可變 更為LLLL層;為減少由於添加半波長而產生光譜圖之波 紋,中心濾光腔l〇b可重複多次。通過上述結構設計,其 波通帶寬度較大’如在1270nm〜1330nm間之光線。惟該 濾光器之光譜圖中波紋較小時,兩側邊緣坡度較緩直; 而能控制邊緣坡度較陡直時,波紋卻較大;即不能獲得 波紋小且邊緣坡度陡直之波通帶譜圖。 [0006] 有鑑於此,有必要提供一種具有微小波紋及陡直邊緣坡 度之濾光波通帶,並能精確截止紫外及紅外光通過,僅 讓可見光透過之濾光裝置。 【發明内容】 [0007] 以下,將以若干實施例說明一種具有微小波紋及陡直邊 緣坡度之濾光波通帶,並能精確截止紫外及紅外光通過 ,僅讓可見光透過之濾光裝置。 [0008] 以及通過這些實施例說明一種濾光裝置之製造方法》 [0009] 為實現上述内容,提供一種濾光裝置,其包括:一基底 ;複數第一濾光腔,其順序疊加於所述基底表面;及複 「表單编號A0101 第6頁/共25頁 1003146323-0 1352219 [0010] [0011] [0012] [0013] [0014] [0015] [0016] [0017] [0018] 100年04月27日修正替換頁 數第二濾光腔,其順序疊加於所述第一濾光腔表面;所 述第一濾光腔及第二濾光腔分別由高折射率材料膜層及 低折射率材料膜層交替疊加而成,且該等第一濾光腔及 第二濾光腔各膜層之厚度係經過相應厚度係數優化所得 ,相鄰兩第一濾光腔的相互接觸的兩膜層均為高折射率 材料膜層。 其中,所述第一濾光腔厚度係數為0. 5,其高折射率材料 膜層採用;1/8波長,低折射率材料膜層採用λ/4波長; 所述第二濾光腔厚度係數選自1.666、1.4、1.6、1.8, 其低折射率材料膜層採用;L/8波長,高折射率材料膜層 採用又/ 4波長*又為設計波長。 所述高折射率材料選自五氧化二钽或氧化鈦;低折射率 材料選自氧化鈦或氧化鋁。 所述高折射率材料選自奈米級五氧化二钽或氧化鈦;低 折射率材料選自奈米級氧化鈦或氧化鋁。 所述濾光裝置之短波截止波長為410 ± 1 0 nra,長波截止 波長為680±20 nm。 所述濾光裝置中膜層總數為30~60層。 所述濾光裝置可用於車輛窗戶玻璃中作為過濾紫外及紅 外光之濾光裝置。 、 以及,一種濾光裝置之製造方法,其包括以下步驟: 提供一基底; 於基底表面交替沈積具有經厚度係數優化之厚度之高折 094106537 表單編號A0101 第7頁/共25頁 1003146323-0 1352219 __ 100年04月27日梭正替換頁 射率材料膜層及低折射率材料膜層,以形成複數第一濾 — 光腔,相鄰兩第一濾光腔的相互接觸的兩膜層均為高折 射率材料膜層;及 [0019] 於第一濾光腔表面交替沈積具有經厚度係數優化之厚度 之低折射率材料膜層及高折射率材料膜層,以形成複數 第二濾光腔。 [0020] 其中,所述沈積採用電子束蒸鍍方式,且沈積之同時採 用離子束或電漿為輔助鍍源。 [0021] 所述第一濾光腔之厚度係數為0. 5,其中高折射率材料膜 層採用;1/8波長膜層,低折射率材料膜層採用λ/4波長 膜層。 [0022] 所述第二濾光腔厚度係數選自1.666、1.4、1·6、1.8, 其中低折射率材料膜層採用;1/8波長膜層,高折射率材 料膜層採用;1/4波長膜層。 [0023] 所述高折射率材料選自五氧化二鈕或氧化鈦,低折射率 材料選自二氧化矽或氧化鋁。 [0024] 與先前技術之濾光裝置相較,本技術方案提供之濾光裝 置利用厚度係數來優化濾光腔中各膜層厚度,通過對薄 膜厚度之優化,使各層均達到良好濾光效果,從而在整 體上改善濾光裝置之透射光譜,以獲得具有微小波紋且 邊緣坡度陡直之方形光譜。此外,該濾光裝置能精確截 止紫外及紅外光通過,僅讓可見光透過,從而即能實現 散熱又能保護人眼及皮膚等不受傷害。 【實施方式】 094106537 表單編號 Α0101 第 8 頁/共 25 頁 1003146323-0 •1352219 [0025] [0026] [0027] [0028] [0029] 1100 年 下面結合附圖對本發明作進一步詳細說明。 清參閱第二圖,為本發明技術方案之遽光裝置2〇〇結構示 思圖。濾光裝置200包括一基底210以及順序疊加其上之 複數第一濾光腔220及複數第二濾光腔23〇。可先依次堆 疊第—濾光腔220,然後依次堆疊第二濾光腔23〇於第一 濾光腔220上,也可交替堆疊第一濾光腔22〇及第二濾光 腔230 〇 第;慮光腔220形成於基底210—表面上,其由多層薄膜( 如Ν層)組成,包括交替疊加之高折射率材料膜層221及低 折射率材料膜層222。該第一濾光腔22〇中多層薄膜採用 厚度係數來優化常用λ/8波長厚度之高折射率材料膜層 221及;1/4波長厚度之低折射率材料膜層222,即其實際 厚度為λ/8波長或又/4波長與厚度係數之乘積。如該厚 度係數為0. 5 ’則對於—兩折射率材料膜層厚度實際為 〇.5x;l/8,又為各臈層之設計波長。 第二濾光腔230疊加形成於第一渡光腔22〇上,其由多層 薄膜(如Μ層)組成’包括交替疊加之低折射率材料膜層 232及高折射率材料膜層23卜與第一滤光腔相同,低折 射率材料膜層232及高折射率材料膜層231分別採用又/8 波長厚度及λ/4波長厚度之薄膜,並採用厚度係數來優 化各膜層之厚度’該厚度係數可選自i i 4、上6 ' h 8等。同樣’各膜層之實際厚度為又/8波長或λ/4波 長與厚度係數之乘積。 本發明技#r方案之*低折射率材料及其折射率可參考以 094106537 表單編號Α0101 第9頁/共25頁 1003146323-0 1352219 下材料選擇:氟切(1.38)、氟㈣(1.47)、冰晶石 (1.35)、二氣化石夕(U7)、氧化銘(1.63)、氧化姶 (1. 85)五氣化二每(2. 2)、氧化銳(2. 19)、硫化鋅 (2.27)、礼化鈦(2.33)、矽(3.5)、鍺(4.。)以及碲化 ’(,)其中,優選高折射率材料為五氧化二钽或氧化 欽低折射率材料為二氧化石夕或氧化叙,還可採用上述 之不米級氧化物。當高低折射率材料分別採用奈米氧化 鈦及奈米氧化_,則㈣絲置具有殺菌及自潔功能 〇 [0030] 请參閱第四圖’為本發明技術方案之濾光裝置之透射譜 圖。通過上述優化,該濾光裝置波通帶之波長範圍約為 400nm〜700nm,即其短波截止波長為41〇±1〇,長波截止 波長為680±20 »即其可將紫外及紅外光反射,而讓可見 光通過,而將波長約在200ηιη〜400nm間之紅外光及約在 700nm〜1200nm間之紫外光反射,且紫外及红外光透過率 低於2%,最佳時可達1%。濾光裝置之透射譜圖波紋微小 ’且邊緣坡度陡直,如該濾光裝置在長波段達到半透射 率時,其截止波長為650±10(如圖中B點所示)。當陽光 直射該濾光裝置時,紫外及紅外光線將被反射(參見第三 圖中箭頭U及I所示),而可見光(參見第三圖中箭頭V所示 )可透過。 [0031] 100年U4月27日按正替換頁 請參閱第五圖,為依照本發明之第一具體實施方式之濾 光裝置300示意圖。該濾光裝置300包括一玻璃基底310 以及形成於其上表面之複數第一濾光腔320及複數第二濾 光腔330。在該等第一濾光腔320及該等第二濾光腔330 094106537 表單編號A0101 第10頁/共25頁 1003146323-0 1352219 100年04月27日按正替换頁 之所具有4膜總層數為54,高折射率材料選用五氧化二 叙’低折射率材料選擇二氧化石夕。 [0032] 该第-渡光腔320具有兩個,其依次疊加形成於玻璃基底 310上表面。每個第一濾光腔32〇均包括交替疊加之高折 射率材料膜層321及低折射率材料膜層322。該兩第一濾 光腔320具有相同厚度係數〇.5以及膜層結構,其膜層排 列結構均為〇· 5HL0. 5H,如前述計算方式,可獲得相應 實際膜層厚度。 [0033] 該等第二濾光腔330分成渡光腔33〇a、330b、330c、 33〇d四組,每個均包括交替疊加之低折射率材料膜層332 及南折射率材料膜層331。每組膜層基本排列結構相同, 均為0. 5LH0. 5L ’但分別具有獨立之厚度係數,濾光腔 330a、330b、330c、330d四組厚度係數分別為丨666、 1. 4、1. 6、1. 8。通過該等厚度係數即可計算出相應濾 光腔實際膜層厚度,則各膜層均逹到厚度優化之目的, 使各層均達到良好濾光效果,從而在整體上改善遽光裝 置之透射光譜’獲得具有微小波紋且邊緣坡度陡直之方 形光譜 [0034] 請參閱第六圖’為依照本發明之第二具體實施方式之濾 光裝置400示意圖。該濾光裝置400包括一玻璃基底410 以及形成於其上表面之複數第一濾光腔420及複數第二濾 光腔430。該等第一濾光腔420及該等第二濾光腔430所 具有薄膜總層數為38 ’高折射率材料選用五氧化二钽, 低折射率材料選擇二氧化矽。與第一實施方式之厚度係 數相同。第一濾光腔420之厚度係數均為〇. 5,而且具有 094106537 表早蝙號A0101 第11頁/共25頁 1003146323-0 1352219 _ 100年04月27日核正替换頁 五個膜層,中間第三層較厚,可均分成兩層(如圖中虛線 · 所示),從而形成一對高折射率材料膜層(圖中深色層)夾 一低折射率材料膜層(圖中白色層)之結構。根據其厚度 係數,計算出膜層厚度依次為:28. 2nm,89. 3nm, 56. 3nm, 89. 3nm, 28. 2nm。第二渡光腔430 中各組滤 光腔430a、430b、430c、430d各膜層之厚度係數同樣 可選自1.666、1.4、1.6、1.8,其中,濾光腔430a具 有兩低折射率材料膜層夾一高材料折射膜層之層狀結構 ,其厚度係數取1. 666,則可計算出各膜層厚度依次為: 148.8nm, 187.7nm, 273.8nm。渡光腔430b具有 11 層 結構,起始膜層為高折射率材料膜層,爾後依次交替疊 加低折射率材料膜層及高折射率材料膜層。其厚度係數 取1. 4,則可計算出各膜層厚度依次為:157. 7nm, 250.Onm, 157. 7nm, 250.Onm, 157.7nm, 250.Onm, 157.7nm, 250.Onra, 157.7nm, 250.Onra, 157.7nm 。滤光腔430c具有兩低折射率材料膜層夾一高材料折射 膜層之層狀結構,其厚度係數取1. 6,則可計算出各膜層 /^度依次為:268.411111,181.411111,304.511111。慮光腔 430d具有16層結構,起始膜層為高折射率材料膜層,爾 後依次交替疊加低折射率材料膜層及高折射率材料膜層 ,各低折射率材料膜層具有相同厚度,及各高折射率材 料膜層具有相同厚度,直至最後一層低折射率材料膜層 厚度較薄。其厚度係數取1. 8,則可計算出各膜層厚度依 次為:202.8nm,321.4nm,202.8nm,321.4nm, 202.8nm, 321.4nra, 202.8nm, 321.4nm, 202.8nm, 321.4nm, 202.8nm, 321.4nm, 202.8nm, 321.4nm, 094106537 表單編號A0101 第12頁/共25頁 1003146323-0 .1352219 ___ 100年04月27日梭正替换頁 202.8nm,160.7nme如此,則各膜層均達到厚度優化 之目的,使各層均達到良好濾光效果,從而在整體上改 善濾光裝置之透射光譜,獲得具有微小波紋且邊緣坡度 陡直之方形光譜。 [0035] 請參閱第七圖,為本發明技術方案之濾光裝置之製造方 法,包括以下步驟: [0036] (1)提供一基底。該基底可為透明基底,如玻璃基底,並 將基底表面拋光。 [0037] (2)於基底表面順序沈積第一濾光腔。採用電子束蒸鑛技 術,於基底表面交替沈積又/8波長之高折射率材料膜層 及又/4波長之低折射率材料膜層,各膜層之沈積厚度為 經過厚度係數優化之又/8波長或又/4波長之基層厚度, 該厚度係數為0.5。並於電子束蒸鍵同時,以離子束或電 漿為輔助鍍源,以提高氧化膜層間粘合力。 [0038] (3)於第一濾光腔上順序沈積第二濾光腔。該第二濾光腔 各膜層採用與步驟(2)相同方法形成之。其中,高折射率 材料膜層採用;1/4波長之基層,低折射率材料膜層採用 又/8波長之基層’然後再通過相應厚度係數優化之又/8 波長或λ /4波長之基層厚度,該厚度係數可選自1.666、 1. 4、1. 6、1. 8 » [0039] 通過上述步驟,即可獲得本發明技術方案之濾光裝置。 [0040] 由於本發明技術方案之濾光裝置採用厚度係數來優化渡 光腔中各膜層厚度,可獲得具有微小波紋且邊緣坡度陡 直之方形光譜。並設計成過濾紫外及紅外光線之多層膜 094106537 表單編號Α0101 第13頁/共25頁 1003146323-0 1352219 100年04月27日核正替換頁 結構,其可應用於各種車輛窗戶之濾光裝置,以阻止紫 外及紅外光線進入車内,而讓人體可接受之可見光進入 ,即能減少陽光直射入車内熱能,降低車輛暴露與陽光 下時車内溫度,又不損害人眼及皮膚等。另,該濾光裝 置截止紫外及紅外光後,可減少電子噪音(Electronic Noise)及熱致電子噪音(Thermal-Induced Elec-tronic Noise),從而降低儀器之信脅比 (Sign-Noise-Ratio,SNR),同時還可增加車内電子儀 器之使用壽命。 [0041] 綜上所述,本發明符合發明專利之要件,爰依法提出專 利申請。惟,以上所述者僅為本發明之較佳實施例,自 不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士,在援依本案發明精神所作之等效修飾或變化, 皆應包含於以下之申請專利範圍内。 【圖式簡單說明】 [0042] 第一圖係法布裡一珀珞干涉膜基本結構示意圖。 [0043] 第二圖係先前技術之濾光裝置膜層結構示意圖。 [0044] 第三圖係本發明技術方案之濾光裝置示意圖。 [0045] 第四圖係本發明技術方案之濾光裝置之透射譜圖。 [0046] 第五圖係本發明第一具體實施方式之濾光裝置示意圖。 [0047] 第六圖係本發明案第二具體實施方式之濾光裝置示意圖 〇 [0048] 第七圖係本發明技術方案之濾光裝置製造方法流程圖。 094106537 表單编號A0101 第14頁/共25頁 1003146323-0 100年04月27日修正替換頁 • 1352219 【主要元件符號說明】 [0049] 濾光裝置 200, 300, 400 [0050] 第一濾光腔 220, 320, 420 [0051] 高折射率材料膜層221,231,321, 331 [0052] 基底 210, 310, 410 [0053] 第二濾光腔 230, 330a〜d,430a~d [0054] 低折射率材料膜層222,232,322,332 094106537 表單編號A0101 第15頁/共25頁 1003146323-01.352219 _April 27, 2006 Nuclear replacement page VI, invention description: ^ [Technical field of invention] [0001] The present invention relates to a filter device, and more particularly to a device capable of filtering ultraviolet and infrared light and transmitting visible light Filter device. [Prior Art] [0002] A filter is a relatively simple light-emitting device with a wide band pass, which functions to filter out unwanted light and allow the required light band to pass through. For example, in automotive insulation glass, filters that filter ultraviolet or infrared light can eliminate unnecessary light and reduce the amount of sunlight entering the car, thus reducing the temperature inside the car. The simplest thin-film narrow-band filter is an interference film made by a Fabry-Perot multi-beam interferometer. As shown in the first figure, the basic structure is two high-reflection quarter-wave film layer stacks 1 with a space layer 2 (Spacer) interposed therebetween, and the filter thus formed is a single cavity type (Single Cavity) narrow band. The filter, whose spectral pattern is close to a triangle, is far from the passband positioning accuracy and edge steepness required for narrowband filtering, so other methods are needed. At present, the single-cavity narrow-band filter is usually plated with a plurality of narrow-band filters of the same center wavelength, and stacked into a multi-cavity narrow-band filter device, which can increase the edge edge steepness and transmit the wavelength in a predetermined range. The wavelength range outside the edge of the passband is highly reflected. [0003] Wang Li et al., "Optical Precision Engineering", 2003, Vll (6), 643-646, "Design of Multichannel Filters Based on Fabry-Perot Structure", introduces the theory of multilayer membrane filters Foundation and design method. The theoretical basis of the multilayer film filter in this paper shows that the filter adopts a film of high refractive index and low refractive index which is alternately deposited to form a multilayer composite film 094106537 Form No. A0101 Page 4 / Total 25 Page 1003146323-0 1352219 100 years On April 27th, Shuttle is replacing the page filter. When a film layer of a certain material is selected, the combined amplitude transmittance, reflectance, and reflection phase shift of the two reflective film layers on both sides of the film layer are changed, and the amount that can be changed at this time is the effective phase thickness of the selected film layer. Thus, with regard to the design method of the filter device, it is proposed to change the width of the passband between the channels by changing the structure of the spacer layer, that is, the thickness of the intermediate film layer. However, when the width of the wave band in the obtained spectrum is large, the ripple in the waveform is large and the slope of the edge is not steep enough. [0004] In order to improve the spectral performance of such a multi-chamber filter device, some filter devices having a different structure from the conventional symmetric multilayer film are designed, such as the US Patent No. 6,850,366 issued on February 1, 2005. A multi-cavity optical concentrator having a predetermined central wavelength, such as a passband chopper or an interleaver, is provided. The filter includes a plurality of cavities, each cavity including two partially reflective films separated from each other by a layer of dielectric material. The two partial reflective layers are formed from a layer of material having alternating high and low refractive indices. Each dielectric material layer has a thickness that is an integer multiple of a half wavelength of the center wavelength. The filter introduces asymmetry into the filter structure such that the reflected dispersion from one side of the filter is reduced relative to the other side, while the thickness and performance of the optical film are not Improve. Moreover, the band on the spectral effect diagram of the filter is very narrow. For example, the light is only permeable between 1549.8 nm and 1550.2 nm, and it is difficult to achieve the filtering effect of the wide pass band. [0005] In addition, U.S. Patent No. 5,719,989 issued to U.S. Patent No. 5,719,989, issued to A.S. Square band and reduce the purpose of ripples. As shown in the second figure, the filter 10 includes a transparent substrate 6; a first outer filter chamber 10a having an n(n 2 3) layer structure, and some layers have a thickness of 094106537. Form No. A0101 No. 5 Page / Total 25 pages 1003146323-0 1352219 April 27, 2014 shuttle ridge three times 1/4 wavelength; complex low reflectivity layer 12; - series central filter cavity - l〇b, each with n + 4 Layer structure; the second outer filter cavity 10c' has an n(n23) layer structure, and some layers have a thickness of three times 1/4 wavelength. The plurality of low reflectivity layers 12 are respectively interposed between the adjacent first outer filter chambers 10a and the series of filter center chambers 10b. The filter chambers 1〇3, l〇b 'l〇c respectively include a high refractive index (η) and a low refractive index material (L) alternately superimposed on 1/4 wavelength. The first layer of the filter cavity l〇a is a high refractive index material, followed by a low refractive index material, such as HLLH. To improve the edge slope of the spectrogram, the high refractive index material layer can be changed to a more HHH layer, LL layer. The variable LLLL layer can be changed; in order to reduce the ripple of the spectrogram due to the addition of half wavelength, the central filter cavity 10b can be repeated multiple times. Through the above structural design, the width of the wave band is large, such as light between 1270 nm and 1330 nm. However, when the corrugation of the filter is small, the slopes of both sides are relatively straight and straight; while the edge of the edge can be controlled to be steep, the ripple is large; that is, the corrugated strip with small corrugation and steep slope is not obtained. Spectrum. [0006] In view of the above, it is necessary to provide a filter passband having a fine corrugation and a steep edge gradient, and to precisely cut off the ultraviolet and infrared light passage, and only the visible light is transmitted through the filter device. SUMMARY OF THE INVENTION [0007] Hereinafter, a filter wave passband having a small corrugation and a steep edge slope, and a filter device capable of accurately blocking the passage of ultraviolet and infrared light and allowing only visible light to pass through will be described in several embodiments. [0008] And a method for manufacturing a filter device according to these embodiments. [0009] To achieve the above, a filter device is provided, comprising: a substrate; a plurality of first filter chambers, which are sequentially superimposed on the [0018] [0018] [0018] [0018] 100 years [0018] [0018] [0018] [0018] [0018] [0018] On April 27, the second filter chamber of the replacement page number is modified, and the sequence is superimposed on the surface of the first filter cavity; the first filter cavity and the second filter cavity are respectively made of a high refractive index material layer and low The film layers of the refractive index material are alternately stacked, and the thicknesses of the film layers of the first filter cavity and the second filter cavity are optimized by corresponding thickness coefficients, and two adjacent first filter chambers are in contact with each other. The film layer is a high refractive index material film layer, wherein the first filter cavity thickness coefficient is 0.5, and the high refractive index material film layer is used; 1/8 wavelength, and the low refractive index material film layer adopts λ/ 4 wavelength; the second filter cavity thickness coefficient is selected from 1.666, 1.4, 1.6, 1.8, and the low refractive index material film The L/8 wavelength, high refractive index material film layer is again /4 wavelength* and is the design wavelength. The high refractive index material is selected from tantalum pentoxide or titanium oxide; the low refractive index material is selected from titanium oxide or oxide. The high refractive index material is selected from the group consisting of nanometer antimony pentoxide or titanium oxide; the low refractive index material is selected from the group consisting of nano titanium oxide or aluminum oxide. The short wavelength cutoff wavelength of the filter device is 410 ± 1 0 Nra, long-wave cut-off wavelength is 680±20 nm. The total number of layers in the filter device is 30~60 layers. The filter device can be used as a filter device for filtering ultraviolet and infrared light in vehicle window glass. A method of manufacturing a filter device, comprising the steps of: providing a substrate; alternately depositing a high fold with a thickness coefficient optimized on the surface of the substrate 094106537 Form No. A0101 Page 7 of 25 1003146323-0 1352219 __ 100 On April 27th, the shuttle was replacing the film of the radiance material and the film of the low refractive index material to form a plurality of first filter-optical chambers, and the two membrane layers in the adjacent two first filter chambers were in contact with each other. Refractive index material film And [0019] depositing a low refractive index material film layer and a high refractive index material film layer having a thickness optimized by a thickness coefficient on the surface of the first filter cavity to form a plurality of second filter cavities. The high-refractive-index material layer is 0. 5, wherein the first filter chamber has a thickness coefficient of 0.5, wherein the high-refractive-index material film layer is formed by the electron beam evaporation method, and the ion beam or the plasma is used as the auxiliary plating source. A 1/8-wavelength film layer is used, and a low-refractive-index material film layer is a λ/4 wavelength film layer. [0022] The second filter cavity thickness coefficient is selected from 1.666, 1.4, 1.6, 1.8, wherein the low refractive index material film layer; 1 / 8 wavelength film layer, high refractive index material film layer; 4 wavelength film layer. [0023] The high refractive index material is selected from the group consisting of pentoxide or titanium oxide, and the low refractive index material is selected from the group consisting of cerium oxide or aluminum oxide. [0024] Compared with the filter device of the prior art, the filter device provided by the technical solution utilizes the thickness coefficient to optimize the thickness of each film layer in the filter cavity, and optimizes the thickness of the film to achieve good filtering effect of each layer. Thereby, the transmission spectrum of the filter device is improved as a whole to obtain a square spectrum having a fine corrugation and a steep slope of the edge. In addition, the filter device can accurately block the passage of ultraviolet and infrared light, and only transmit visible light, thereby achieving heat dissipation and protecting the human eye and skin from damage. [Embodiment] 094106537 Form No. Α0101 Page 8 of 25 1003146323-0 • 1352219 [0025] [0029] [0029] The present invention will be further described in detail below with reference to the accompanying drawings. Referring to the second figure, it is a schematic diagram of the structure of the calender device according to the technical solution of the present invention. The filter device 200 includes a substrate 210 and a plurality of first filter chambers 220 and a plurality of second filter chambers 23 that are sequentially superposed thereon. The first filter chamber 220 may be sequentially stacked, and then the second filter chamber 23 may be sequentially stacked on the first filter chamber 220, or the first filter chamber 22 and the second filter chamber 230 may be alternately stacked. The light-receiving cavity 220 is formed on the surface of the substrate 210, which is composed of a multilayer film such as a germanium layer, and includes a high-refractive-index material film layer 221 and a low-refractive-index material film layer 222 which are alternately stacked. The multilayer film in the first filter cavity 22 采用 uses a thickness coefficient to optimize a high refractive index material film layer 221 of a common λ/8 wavelength thickness and a 1/4 wavelength thickness low refractive index material film layer 222, that is, its actual thickness. It is the product of the λ/8 wavelength or the /4 wavelength and the thickness coefficient. If the thickness coefficient is 0.5 Å, the thickness of the film layer of the birefringent material is actually 〇.5x; l/8, which is the design wavelength of each ruthenium layer. The second filter chamber 230 is superposed on the first directional cavity 22, which is composed of a multilayer film (such as a ruthenium layer), including an alternating layer of the low refractive index material layer 232 and the high refractive index material layer 23 The first filter cavity is the same, and the low refractive index material film layer 232 and the high refractive index material film layer 231 respectively use a film having a thickness of /8 wavelength and a thickness of λ/4 wavelength, and the thickness coefficient is used to optimize the thickness of each film layer. The thickness coefficient can be selected from ii 4, upper 6' h 8 and the like. Similarly, the actual thickness of each film layer is the product of the /8 wavelength or λ/4 wavelength and the thickness coefficient. The low refractive index material of the present invention and its refractive index can be referred to as 094106537 Form No. 1010101 Page 9 / Total 25 Page 1003146323-0 1352219 Material selection: Fluorine cut (1.38), fluorine (four) (1.47), Cryolite (1.35), two gas fossils (U7), oxidized Ming (1.63), yttrium oxide (1. 85) five gasification two per (2.2), oxidized sharp (2. 19), zinc sulfide (2.27 ), ceremonial titanium (2.33), bismuth (3.5), bismuth (4.), and bismuth (where), preferably the high refractive index material is bismuth pentoxide or oxidized low refractive index material is dioxide In the case of eve or oxidation, the above-mentioned non-meter oxides may also be used. When the high and low refractive index materials are respectively made of nano titanium oxide and nanometer oxidation, the (four) wire has a sterilization and self-cleaning function. [0030] Please refer to the fourth figure, the transmission spectrum of the filter device of the technical solution of the present invention. . Through the above optimization, the wavelength band of the filter device has a wavelength range of about 400 nm to 700 nm, that is, the short-wavelength cut-off wavelength is 41 〇±1 〇, and the long-wave cut-off wavelength is 680±20 » that is, the ultraviolet and infrared light can be reflected. The visible light is passed through, and the infrared light having a wavelength between about 200 nm and 400 nm and the ultraviolet light between about 700 nm and about 1200 nm are reflected, and the ultraviolet and infrared light transmittance is less than 2%, and the optimum is 1%. The transmission spectrum of the filter has a small ripple and the edge slope is steep. If the filter reaches half transmittance in the long wavelength band, the cutoff wavelength is 650 ± 10 (as shown by point B in the figure). When the sunlight is directed at the filter, the ultraviolet and infrared rays are reflected (see arrows U and I in the third figure), while visible light (see arrow V in the third figure) is permeable. [0031] 100 years U4, 27th, according to the replacement page, please refer to the fifth figure, which is a schematic diagram of the filter device 300 according to the first embodiment of the present invention. The filter device 300 includes a glass substrate 310 and a plurality of first filter chambers 320 and a plurality of second filter chambers 330 formed on an upper surface thereof. In the first filter chamber 320 and the second filter chambers 330 094106537 Form No. A0101 Page 10 / Total 25 pages 1003146323-0 1352219 On April 27, 2007, according to the replacement page, there are 4 membrane layers. The number is 54, and the high refractive index material is selected from the pentoxide II low refractive index material to select the dioxide. [0032] The first acacia cavity 320 has two, which are sequentially stacked on the upper surface of the glass substrate 310. Each of the first filter chambers 32A includes an alternately superposed high refractive index material film layer 321 and a low refractive index material film layer 322. The two first filter chambers 320 have the same thickness coefficient 〇.5 and the film structure, and the film arrangement structure is 〇·5HL0. 5H. According to the foregoing calculation method, the actual film thickness can be obtained. [0033] The second filter chambers 330 are divided into four groups of light-passing cavities 33〇a, 330b, 330c, and 33〇d, each of which includes an alternating layer of the low refractive index material layer 332 and the south refractive index material layer. 331. The basic arrangement structure of each film layer is the same, both are 0. 5LH0. 5L 'but each has an independent thickness coefficient, and the thickness coefficients of the four groups of filter chambers 330a, 330b, 330c, 330d are 丨666, 1. 4, 1. 6, 1.8. Through the thickness coefficients, the actual film thickness of the corresponding filter cavity can be calculated, and each film layer is optimized for thickness optimization, so that each layer achieves a good filtering effect, thereby improving the transmission spectrum of the calender device as a whole. 'Using a square spectrum with a slight corrugation and a steep slope of the edge [0034] Please refer to the sixth figure ' is a schematic view of a filter device 400 according to a second embodiment of the present invention. The filter device 400 includes a glass substrate 410 and a plurality of first filter chambers 420 and a plurality of second filter chambers 430 formed on an upper surface thereof. The first filter chamber 420 and the second filter chambers 430 have a total film thickness of 38 ′. The high refractive index material is selected from tantalum pentoxide, and the low refractive index material is selected from cerium oxide. The thickness coefficient is the same as that of the first embodiment. The thickness coefficient of the first filter chamber 420 is 〇. 5, and has 094106537 table early bat number A0101 page 11 / total 25 pages 1003146323-0 1352219 _ 100 years of April 27 nuclear replacement page five layers, The middle third layer is thicker and can be divided into two layers (shown by the dashed line in the figure) to form a pair of high refractive index material layers (dark layers in the figure) sandwiching a low refractive index material layer (in the figure) The structure of the white layer). The thickness of the film is calculated according to the thickness coefficient thereof: 28. 2 nm, 89. 3 nm, 56.3 nm, 89. 3 nm, 28. 2 nm. The thickness coefficients of the film layers of each of the filter chambers 430a, 430b, 430c, and 430d in the second light-receiving chamber 430 may also be selected from 1.666, 1.4, 1.6, and 1.8, wherein the filter chamber 430a has two films of low refractive index material. The layer is sandwiched by a layered structure of a high-material refractive film layer, and the thickness coefficient thereof is 1.666, and the thickness of each film layer can be calculated as follows: 148.8 nm, 187.7 nm, and 273.8 nm. The light-passing cavity 430b has an 11-layer structure, and the initial film layer is a high-refractive-index material film layer, and then a low-refractive-index material film layer and a high-refractive-index material film layer are alternately stacked in this order. The thickness coefficient is 1.4, and the thickness of each film layer can be calculated as follows: 157.7 nm, 250. Onm, 157. 7 nm, 250. Onm, 157.7 nm, 250. Onm, 157.7 nm, 250. Onra, 157.7 Nm, 250.Onra, 157.7nm. The filter chamber 430c has a layered structure of two low refractive index material layers sandwiching a high material refractive film layer, and the thickness coefficient thereof is 1.6, and the film layers can be calculated as: 268.411111, 181.411111, 304.511111 . The light-receiving cavity 430d has a 16-layer structure, and the initial film layer is a high-refractive-index material film layer, and then the low-refractive-index material film layer and the high-refractive-index material film layer are alternately superposed, and the low-refractive-index material film layers have the same thickness. And each of the high refractive index material film layers has the same thickness until the last layer of the low refractive index material film layer is thin. The thickness coefficient is 1.8, and the thickness of each film layer can be calculated as: 202.8 nm, 321.4 nm, 202.8 nm, 321.4 nm, 202.8 nm, 321.4 nra, 202.8 nm, 321.4 nm, 202.8 nm, 321.4 nm, 202.8. Nm, 321.4nm, 202.8nm, 321.4nm, 094106537 Form No. A0101 Page 12 of 25 1003146323-0 .1352219 ___ On April 27, 100, the shuttle is replacing 202.8nm, 160.7nme, then each film layer To achieve the purpose of thickness optimization, each layer achieves a good filtering effect, thereby improving the transmission spectrum of the filter device as a whole, and obtaining a square spectrum having a fine corrugation and a steep slope of the edge. [0035] Please refer to the seventh figure, which is a manufacturing method of a filter device according to the technical solution of the present invention, comprising the following steps: [0036] (1) A substrate is provided. The substrate can be a transparent substrate, such as a glass substrate, and the surface of the substrate is polished. [0037] (2) sequentially depositing a first filter cavity on the surface of the substrate. The electron beam evaporation technique is used to alternately deposit a /8 wavelength high refractive index material layer and a /4 wavelength low refractive index material film on the surface of the substrate, and the deposition thickness of each film layer is optimized by the thickness coefficient. The thickness of the base layer of 8 wavelengths or again / 4 wavelengths, the thickness coefficient being 0.5. At the same time as the electron beam evaporation key, the ion beam or the plasma is used as an auxiliary plating source to improve the adhesion between the oxide film layers. [0038] (3) sequentially depositing a second filter cavity on the first filter cavity. The film layers of the second filter chamber are formed in the same manner as in the step (2). Wherein, the high refractive index material layer adopts a 1/4 wavelength base layer, the low refractive index material film layer adopts a base layer of /8 wavelengths, and then the base layer of /8 wavelength or λ /4 wavelength optimized by the corresponding thickness coefficient is further adopted. Thickness, the thickness coefficient may be selected from 1.666, 1.4, 1.6, 1. 8 » [0039] Through the above steps, the filter device of the technical solution of the present invention can be obtained. [0040] Since the filter device of the technical solution of the present invention uses the thickness coefficient to optimize the thickness of each film layer in the emissive cavity, a square spectrum having a fine corrugation and a steep slope of the edge can be obtained. Multilayer film 094106537 designed to filter ultraviolet and infrared light Form No. 1010101 Page 13 of 25 1003146323-0 1352219 On April 27, 100, the nuclear replacement page structure can be applied to various vehicle window filter devices. In order to prevent ultraviolet and infrared light from entering the vehicle, and allowing visible light to enter, it can reduce the direct sunlight into the vehicle and reduce the temperature of the vehicle when exposed to sunlight and without damaging the human eye and skin. In addition, the filter device can reduce the electronic noise (Electronic Noise) and the thermal-induced electronic noise (Thermal-Induced Electronic Noise) after the ultraviolet and infrared light are cut off, thereby reducing the signal-to-risk ratio of the instrument (Sign-Noise-Ratio, SNR), while also increasing the life of the electronic instrument in the car. [0041] In summary, the present invention complies with the requirements of the invention patent and submits a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Anyone who is familiar with the skill of this case, equivalent modifications or changes made in the spirit of the invention shall be included in the scope of the following patent application. [Simple description of the figure] [0042] The first figure is a schematic diagram of the basic structure of the Fabry-Perot interference film. [0043] The second figure is a schematic structural view of a membrane layer of a prior art filter device. [0044] The third figure is a schematic diagram of a filter device of the technical solution of the present invention. [0045] The fourth figure is a transmission spectrum of the filter device of the technical solution of the present invention. [0046] FIG. 5 is a schematic view of a filter device according to a first embodiment of the present invention. 6 is a schematic view of a filter device according to a second embodiment of the present invention. [0048] FIG. 7 is a flow chart of a method for manufacturing a filter device according to a technical solution of the present invention. 094106537 Form No. A0101 Page 14 of 25 1003146323-0 Correction Replacement Page of April 27, 100 • 1352219 [Description of Main Component Symbols] [0049] Filter Device 200, 300, 400 [0050] First Filter Cavity 220, 320, 420 [0051] High refractive index material film layer 221, 231, 321, 331 [0052] substrate 210, 310, 410 [0053] Second filter cavity 230, 330a~d, 430a~d [0054 Low refractive index material film layer 222, 232, 322, 332 094106537 Form No. A0101 Page 15 / Total 25 Page 1003146323-0

Claims (1)

七、申請專利範圍: 1 .—種濾光裝置,其包括: 一基底; 複數第-渡光腔,其順序疊加於所述基底表面;及 複數第m其順序疊加於所述第ϋ腔表面; 述複數第;絲腔由高折射特贿層及低折射率材料 '層交替疊加而成,所述複數第n腔分別由低折射率 材料膜層及高折射率材料膜層交替疊加而成,其改進在於 述第;慮光腔及第二渡光腔各臈層之厚度係經過相應 厚度係數優化所件,相鄰兩第一渡光腔的相互接觸的兩膜 層均為尚折射率材料膜層。 如申4專利範圍第1項所述之渡光裝置,其中所述第一渡 光腔之厚度係數為〇. 5。 申月專利範圍第1或2項所述之渡光裝置,其中所述第一 慮光腔之高折射率材料膜層採用λ/8波長,低折射率材料 膜層採用Λ/4波長,λ為設計波長。 .如申明專利範圍第1項所述之壚光裝置,其中所述複數第 一渡光腔包括順序4加於所述第H腔表面之第-子渡 光腔順序疊加於所述第—子濾光腔表面之第二子濾光腔 、順序疊加於所述第二子攄光腔表面之第三子遽光腔及順 序且加於所述第二子瀘、光腔表面之第四子濾光腔,所述第 子濾光腔之厚度係數為1.66,所述第二子濾光腔之厚 度係數為1.4,所述第三子遽光腔之厚度係數為L 6,所 述第四子濾光腔之厚度係數為丨8。 .如申請專利範圍第丨或4項所述之濾光裝置,其中所述第二 094106537 表單編號A0101 第16頁/共25頁 1003146323-0 •1352219 100年04月27日修正替换頁 濾光腔之低折射率材料膜層採用λ/8波長,高折射率材料 膜層採用λ/4波長,;I為設計波長。 6 .如申請專利範圍第1項所述之濾光裝置,其中所述高折射 率材料選自五氧化二鈕或氧化鈦。 7.如申請專利範圍第1項所述之濾光裝置,其中所述低折射 率材料選自二氧化矽或氧化鋁。 8 .如申請專利範圍第6項所述之濾光裝置,其中所述高折射 率材料選自奈来五氧化二组或奈米氧化鈦。 9 .如申請專利範圍第7項所述之濾光裝置,其中所述低折射 率材料選自奈求二氧化矽或奈米氧化鋁。 10 .如申請專利範圍第1項所述之濾光裝置,其中所述濾光裝 置之短波截止波長為410±10 nm,長波截止波長為680土 20 nm 〇 11 .如申請專利範圍第1項所述之濾光裝置,其中所述濾光裝 置中膜層總數為30~60層。 12 .如申請專利範圍第1項所述之濾光裝置,其中所述濾光裝 置用於車輛窗戶玻璃中作為過濾紫外及紅外光之濾光裝置 〇 13 . —種濾光裝置之製造方法,其包括以下步驟: 提供一基底; 於基底表面交替沈積具有經厚度係數優化之厚度之高折射 率材料膜層及低折射率材料膜層,以形成複數第一濾光腔 ,相鄰兩第一濾光腔的相互接觸的兩膜層均為高折射率材 料膜層;及 於第一濾光腔表面交替沈積具有經厚度係數優化之厚度之 094106537 低折射率材料膜層及高折射率材料膜層,以形成複數第二 表單編號A0101 第17頁/共25頁 1003146323-0 1352219 14 15 16 17 18 19 20 21 . 遽光腔。 .如申請專利範圍第13項所述之濾光裝置之製造方法,其中 所述沈積採用電子束蒸鍍方式。 .如申請專利範圍第14項所述之濾光裝置之製造方法,其中 所述沈積之同時採用離子束或電漿為輔助鍍源。 .如申請專利範圍第13項所述之濾光裝置之製造方法,其中 所述第一濾光腔之厚度係數為〇. 5。 .如申請專利範圍第13或16項所述之濾光裝置之製造方法 ’其中所述第一濾、光腔之高折射率材料膜層採用λ/8波長 ’低折射率材料膜層採用又/4波長,λ為設計波長。 .如申請專利範圍第13項所述之濾光裝置之製造方法,其中 所述複數第二濾光腔包括順序疊加於所述第一濾光腔表面 之第一子濾光腔、順序疊加於所述第一子濾光腔表面之第 二子慮光腔、順序疊加於所述第二子濾光腔表面之第三子 渡光腔及順序疊加於所述第三子濾光腔表面之第四子濾光 腔’所述第一子濾光腔之厚度係數為1. 66,所述第二子 濾光腔之厚度係數為1. 4,所述第三子濾光腔之厚度係數 為1.6,所述第四子濾光腔之厚度係數為丨.8。 .如申吻專利範圍第13或18項所述之濾光裝置之製造方法 其中所述第二渡光腔之低折射率材料膜層採用λ/8波長 ,高折射率材_層採用λ/4波長,λ為設計波長。 如申„月專利範圍第13項所述之濾光裝置之製造方法其中 所述高折射率材料選自五氧化二鈕或氧化鈦。 如申請專利範園第13項所述之遽光裝置之製造方法,其中 所述低折射率材料選自二氧切或氧化紹。 094106537 表單編號Α0101 苐丨8買/共25頁 1003146323-0VII. Patent application scope: 1. A filter device comprising: a substrate; a plurality of photo-transmission chambers superimposed on the surface of the substrate; and a plurality of m-th order superimposed on the surface of the second cavity The plural is formed by alternately superimposing a layer of a high refractive index layer and a low refractive index material layer, wherein the plurality of nth cavities are alternately superposed by a film layer of a low refractive index material and a film layer of a high refractive index material. The improvement is in the description; the thickness of each layer of the optical cavity and the second directional cavity is optimized by the corresponding thickness coefficient, and the two layers of the adjacent two first directional cavity are in contact with each other. Material film layer. The light-receiving device according to the first aspect of the invention, wherein the first emissive cavity has a thickness coefficient of 〇. The illuminating device of the first or second aspect of the invention, wherein the first refractive cavity has a high refractive index material film layer of λ/8 wavelength, and the low refractive index material film layer adopts Λ/4 wavelength, λ To design the wavelength. The calendering device of claim 1, wherein the plurality of first emissive chambers include a fourth sub-irradiation cavity sequentially added to the surface of the H-th cavity, sequentially superimposed on the first sub-portion a second sub-filter cavity on the surface of the filter cavity, a third sub-cylinder cavity sequentially superimposed on the surface of the second sub-cylinder cavity, and a fourth sub-sequence added to the surface of the second sub-cylinder and the cavity a filter cavity, a thickness coefficient of the first sub-filter cavity is 1.66, a thickness coefficient of the second sub-filter cavity is 1.4, and a thickness coefficient of the third sub-cylinder cavity is L 6, the fourth The thickness coefficient of the sub-filter chamber is 丨8. The filter device of claim 4 or 4, wherein the second 094106537 Form No. A0101 Page 16 / Total 25 Page 1003146323-0 • 1352219 Correction of the replacement page filter chamber on April 27, 100 The low refractive index material film layer adopts λ/8 wavelength, and the high refractive index material film layer adopts λ/4 wavelength; I is a design wavelength. 6. The filter device of claim 1, wherein the high refractive index material is selected from the group consisting of pentoxide or titanium oxide. 7. The filter device of claim 1, wherein the low refractive index material is selected from the group consisting of ceria or alumina. 8. The filter device of claim 6, wherein the high refractive index material is selected from the group consisting of Niele pentoxide or titanium oxide. 9. The filter device of claim 7, wherein the low refractive index material is selected from the group consisting of cerium oxide or nano alumina. 10. The filter device of claim 1, wherein the filter device has a short-wavelength cutoff wavelength of 410±10 nm and a long-wavelength cutoff wavelength of 680 ± 20 nm 〇11. The filter device, wherein the total number of film layers in the filter device is 30 to 60 layers. 12. The filter device of claim 1, wherein the filter device is used in a window glass of a vehicle as a filter device for filtering ultraviolet and infrared light, and a method for manufacturing the filter device. The method comprises the following steps: providing a substrate; alternately depositing a high refractive index material film layer and a low refractive index material film layer having a thickness coefficient optimized thickness on the surface of the substrate to form a plurality of first filter walls, adjacent to the first two The two membrane layers in contact with each other of the filter chamber are high refractive index material layers; and 094106537 low refractive index material layer and high refractive index material film having a thickness coefficient optimized thickness are alternately deposited on the surface of the first filter cavity Layer to form a complex second form number A0101 Page 17 / Total 25 pages 1003146323-0 1352219 14 15 16 17 18 19 20 21 . The method of manufacturing a filter device according to claim 13, wherein the depositing is by electron beam evaporation. The method of manufacturing a filter device according to claim 14, wherein the depositing uses an ion beam or a plasma as an auxiliary plating source. The method of manufacturing the filter device according to claim 13, wherein the thickness coefficient of the first filter chamber is 〇. The method for manufacturing a filter device according to claim 13 or claim 16, wherein the first filter and the optical cavity have a high refractive index material film layer using a λ/8 wavelength 'low refractive index material film layer. /4 wavelength, λ is the design wavelength. The method of manufacturing a filter device according to claim 13, wherein the plurality of second filter chambers comprise a first sub-filter chamber sequentially superimposed on a surface of the first filter chamber, sequentially superimposed on a second sub-caliber cavity of the surface of the first sub-filter cavity, a third sub-cathode cavity superimposed on the surface of the second sub-filter cavity, and sequentially superposed on the surface of the third sub-filter cavity The fourth sub-filter chamber has a thickness coefficient of 1.66, a thickness coefficient of the second sub-filter chamber of 1.4, and a thickness coefficient of the third sub-filter chamber. For 1.6, the thickness coefficient of the fourth sub-filter chamber is 丨.8. The method for manufacturing a filter device according to claim 13 or 18, wherein the low refractive index material film layer of the second directional cavity is λ/8 wavelength, and the high refractive index material layer is λ/ 4 wavelength, λ is the design wavelength. The method for manufacturing a filter device according to Item 13 of the present invention, wherein the high refractive index material is selected from the group consisting of a pentoxide or a titanium oxide. A manufacturing method, wherein the low refractive index material is selected from the group consisting of dioxo or oxidized. 094106537 Form No. Α0101 苐丨8 Buy/Total 25 Pages 1003146323-0
TW94106537A 2005-03-04 2005-03-04 An optical filter and a method of making the same TWI352219B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94106537A TWI352219B (en) 2005-03-04 2005-03-04 An optical filter and a method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94106537A TWI352219B (en) 2005-03-04 2005-03-04 An optical filter and a method of making the same

Publications (2)

Publication Number Publication Date
TW200632385A TW200632385A (en) 2006-09-16
TWI352219B true TWI352219B (en) 2011-11-11

Family

ID=46728019

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94106537A TWI352219B (en) 2005-03-04 2005-03-04 An optical filter and a method of making the same

Country Status (1)

Country Link
TW (1) TWI352219B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866851A (en) * 2020-06-30 2021-12-31 宸美(厦门)光电有限公司 Film structure and light-transmitting substrate

Also Published As

Publication number Publication date
TW200632385A (en) 2006-09-16

Similar Documents

Publication Publication Date Title
CN108680981B (en) Preparation method of deep ultraviolet narrow-band optical filter
CN1828345A (en) Light-filtering device and its production method
JP4404568B2 (en) Infrared cut filter and manufacturing method thereof
JP3290629B2 (en) Optical multilayer filter
TW202111294A (en) Metal mirror based multispectral filter array
CN115586597A (en) Optical filter and sensor system
JP2011242437A (en) Multilayer film filter and fluorescence microscope using the same
EP1258745A2 (en) Optical filter
JPH10512975A (en) Multilayer thin film bandpass filter
JP2000329933A (en) Multilayered film filter
CN109491001B (en) Polarization-independent grating based on covering refractive index matching layer and preparation method thereof
US20130215499A1 (en) Notch filter system using spectral inversion
TWI352219B (en) An optical filter and a method of making the same
JP3381150B2 (en) Infrared transmission filter and manufacturing method thereof
JP5132902B2 (en) Antireflection film for passband of photonic band gap crystal
JP2005031298A (en) Transparent substrate with antireflection film
JP2000111702A (en) Antireflection film
JP2017009704A (en) Optical element using multi-layer film, optical system and optical device
JP5834694B2 (en) Bandpass filter
JP2001100024A (en) Multilayered optical filter
JP2003043245A (en) Optical filter
US11226503B2 (en) Tunable spectral filters
JP2018197854A (en) Mixed spacer multispectral filter
CN114325910B (en) Step characteristic passband narrowband optical filter
JP2002277606A (en) Antireflection film and optical element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees