TWI343664B - Light-blending light-emitting diode - Google Patents

Light-blending light-emitting diode Download PDF

Info

Publication number
TWI343664B
TWI343664B TW96124699A TW96124699A TWI343664B TW I343664 B TWI343664 B TW I343664B TW 96124699 A TW96124699 A TW 96124699A TW 96124699 A TW96124699 A TW 96124699A TW I343664 B TWI343664 B TW I343664B
Authority
TW
Taiwan
Prior art keywords
light
layer
emitting diode
semiconductor structure
mixing
Prior art date
Application number
TW96124699A
Other languages
Chinese (zh)
Other versions
TW200903843A (en
Inventor
Shyi Ming Pan
wei kang Cheng
Kuo Chin Huang
Yin Cheng Chu
Original Assignee
Formosa Epitaxy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Formosa Epitaxy Inc filed Critical Formosa Epitaxy Inc
Priority to TW96124699A priority Critical patent/TWI343664B/en
Publication of TW200903843A publication Critical patent/TW200903843A/en
Application granted granted Critical
Publication of TWI343664B publication Critical patent/TWI343664B/en

Links

Description

1343664 九、發明說明: 【發明所屬之技術領域】 /本發明係關於一種混光型發光二極體,並且特別地,本 侧於-種使㈣絲薄膜取代縣粉狀混光型縣二極體' 【先前技術】1343664 IX. Description of the invention: [Technical field to which the invention pertains] / The present invention relates to a light-mixing type light-emitting diode, and in particular, the present side replaces the county powder-like light-mixing county diode with the (four) silk film Body' [previous technique]

止-ϋ二極體多僅能輕射—定波長範圍的规,原則上單 權止並無法產生白光。在先前技術中,藉由混合多種光線^ 二^例如混合藍光、黃光即可獲得近似的白光。該 ^可絲自不同的發光二極體,或可能來自由單—發光二極^ 处線^及部分原始光線經螢光粉轉換的光線,亦可 $線。早—發光二鋪11射之原始光_不同的螢絲轉換的 粒。中’螢光粉係先製成踢狀,再包覆發光二極體晶 光線經、尚佈於螢光粉膠中’因此發光二極體輻射出之 光線盘ϊίίίΓί ’部分的光線將被螢光粉轉換。未被轉換的 成分即可控制被轉 二極i的!卻難=混。然而,螢光粉膠包覆發光 枯俺φ,控希進而不易控制混合效果。另外,在先前 入吨覆發* 發光二極體晶粒峡於—載台上後,再注 一次加工,增加製程的不穩定性。 仏曰祖而口此你屬 或螢種發光"極體,有效㈣螢光粉層 1J436&4 【發明内容】 ㈣irf之—範嗜在於提供—種混光型發光二極體,使用螢光 ^。、取代#絲膠’並且反射雜與發辭賴結構間有-間 提供—種混光型發光二極體,在基板 形錢絲層,並且可在發光半賴結構之上 麟在於提供—觀光型發光二極體,僅在發 光半導體、,、„構下方與載台間塗佈螢光粉膠。 ㈣本發光型發光二極體包含—透光基板一發光半導體 、-反射電極以及-第―螢錄層。該透光基板具有一第一 表面相對之—第二表面。該發光半導體結構形 該f—表面上。該反射電極位於該發光半導體結構之上且盘 ϊίίίίϊ結構間有'"間隙’其中該反射電極與該發光半導體 、.·。構電性連接。該第-螢光粉層形成於該第二表面上。 發光半導體結構_之—光線被該反射電極反射而 ΐι^ΐίί板,該第一勞光粉層行進。部分光線將被該第一螢 先私s轉換,鋪換的級再與未被轉制光糕合。另外,該 3ίϊίίίίΤ光半導體結構連接,可避免或減少該發光 發先時所產生之熱對該發光半導體結構及該反射電 極產生I、脹冷縮而衍生的問題。例如該空隙可容許該發光 體結構及該反射電極變形以減少擠壓喊生缺陷之機會。 此外’該間隙亦可填充一單層介電質或一多層介電質,可加 強極Ϊ該發光半導體結構間之附著’或可提供繞射效膚 介電質可由數種不同的介電質構成。該 此先U先-極體亦可進—步包含—第二榮光粉層,形成於該發 . f半導體結構與該反射電極之間。該第二螢光粉層亦可填充該間 隙0 本發明之另一混光型發光二極體包含一透光基板、—發光丰 導體結構、-第-螢光粉層以及—反射電極。該透光基板具有— 第二表面以,與該第一表面相對之一第二表面。該發光半導體結 構形成於該第-表面上。該第-螢光粉層形成於該發光半導體結 構上。該反射電極位於該第一螢光粉層之上且與該第一螢光粉層 間有一間隙,其中該反射電極與該發光半導體結構電性連接。 • 因此,該發光半導體結構輻射之一光線穿越該第一螢光粉層 後,被該反射電極反射而向該第一螢光粉層以及該透光基板& 進。部分光線將被該第一螢光粉層轉換,被轉換的光線再與未被 轉換的光線混合。另外,該反射電極與該第一螢光粉層間之該間 隙,可填充一單層介電質或一多層介電質,可加強該反射電極與 該第一螢光粉層間之附著,或可提供繞射效應以提高反射效果。 該多層介電質可由數種不同的介電質構成。此外,該發光二極體 亦可進一步包含一第二螢光粉層,形成於該透光基板之該第二表 面上。 • 本發明之另一混光型發光二極體包含一載台、一發光半導體 結構以及一透光基板。該發光半導體結構設置於該載台之上且與 該載台間有一間隙’其中該發光半導體結構與該載台電性連接。 該透光基板位於該發光半導體結構上。此外,一螢光粉膠僅填充 於該發光半導體結構正下方之該間隙。 因此’該發光半導體結構輻射之一光線穿越該螢光粉膠後, 被該載台反射而向該透光基板行進。部分光線將被該螢光粉膠轉 換’被轉換的光線再與未被轉換的光線混合。此外,該載台可具 有一反射層以加強反射效果,而該發光半導體結構則設置於該反 射層之上。另外,該發光二極體可進一步包含一螢光粉層,形成 7 1343664 於該透光基板上。 料^其^光型發光二極體進—步包含—選擇性反射層形成 於該透先基板之上。該選雜反射層得以—單層介電質或声 ϊίϊΓ由數種不同的介電㈣成。該發二 M射之3絲之—部分被該選擇性反射層反射而向 ⑽膽絲膠行進。魏射 ί °藉此’可增加被轉換光線的^The stop-turn diodes can only be lightly fired—the gauges of the fixed wavelength range are, in principle, monopolized and cannot produce white light. In the prior art, approximate white light can be obtained by mixing a plurality of light rays, for example, a mixture of blue light and yellow light. The light may be from a different light emitting diode, or may be from a light converted from a single light-emitting diode and a portion of the original light through the phosphor powder, or may be a line. Early-lighting two-spray 11 shot of the original light _ different filament converted particles. The 'fluorescent powder is made into a kick shape, and then the light-emitting diode crystal light is covered, and it is still in the fluorescent powder glue. Therefore, the light emitted by the light-emitting diode is ϊίίίΓί. Light powder conversion. The unconverted component can control the dipole i! It is difficult to mix. However, the phosphor powder is coated with luminescence, and the control effect is difficult to control. In addition, after the previous ton of illuminating * illuminating diode gorge on the stage, a further processing is performed to increase the instability of the process.仏曰祖和口你你属 or fluorescent light "polar body, effective (four) fluorescent powder layer 1J436 & 4 [invention content] (four) irf-fan is to provide a kind of mixed light-emitting diode, using fluorescent ^. , instead of #丝胶' and between the reflection and the speech structure, there is a kind of light-mixing light-emitting diode, which is on the substrate-shaped money layer, and can be provided on the light-emitting structure. The light-emitting diode is coated with a phosphor powder only between the light-emitting semiconductor and the underside of the light-emitting semiconductor. (4) The light-emitting light-emitting diode comprises a light-transmitting substrate, a light-emitting semiconductor, a reflective electrode, and a - a light-emitting substrate having a first surface opposite to a second surface. The light-emitting semiconductor structure is formed on the surface of the light-emitting semiconductor structure. The reflective electrode is located above the light-emitting semiconductor structure and has a '&quot a gap 'where the reflective electrode is electrically connected to the light emitting semiconductor. The first phosphor powder layer is formed on the second surface. The light emitting semiconductor structure _ the light is reflected by the reflective electrode ΐι^ ΐ ίί board, the first layer of light powder travels. Part of the light will be converted by the first firefly, and the graded layer will be combined with the untransformed light cake. In addition, the 3ίϊίίίί light semiconductor structure connection can be avoided or Reduce this The heat generated by the luminescence is caused by the I, expansion and contraction of the luminescent semiconductor structure and the reflective electrode. For example, the void can allow the illuminant structure and the reflective electrode to be deformed to reduce the squeezing defects. Opportunity. In addition, the gap can also be filled with a single layer of dielectric or a multilayer dielectric to enhance adhesion between the luminescent semiconductor structures or to provide a diffractive skin dielectric that can be varied from several different The first U-pole body may further include a second glory powder layer formed between the semiconductor structure and the reflective electrode. The second phosphor layer may also be Filling the gap 0 Another light-mixing light-emitting diode of the present invention comprises a light-transmitting substrate, a light-emitting conductor structure, a -th phosphor powder layer, and a reflective electrode. The light-transmitting substrate has a second surface a second surface opposite to the first surface. The light emitting semiconductor structure is formed on the first surface. The first phosphor powder layer is formed on the light emitting semiconductor structure. The reflective electrode is located at the first phosphor powder Above the layer and with the first fluorescent There is a gap between the layers, wherein the reflective electrode is electrically connected to the light emitting semiconductor structure. • Therefore, one of the light radiating from the light emitting semiconductor structure passes through the first phosphor layer, and is reflected by the reflective electrode to the first fluorescent layer. The powder layer and the light transmissive substrate & a portion of the light will be converted by the first phosphor layer, and the converted light is mixed with the unconverted light. In addition, the reflective electrode and the first phosphor layer The gap may be filled with a single layer of dielectric or a multilayer dielectric to enhance the adhesion between the reflective electrode and the first phosphor layer, or may provide a diffraction effect to enhance the reflection effect. The illuminating electrode may further comprise a second phosphor layer formed on the second surface of the transparent substrate. The light-mixing light-emitting diode comprises a stage, a light-emitting semiconductor structure and a light-transmissive substrate. The light emitting semiconductor structure is disposed on the stage and has a gap with the stage. The light emitting semiconductor structure is electrically connected to the stage. The light transmissive substrate is located on the light emitting semiconductor structure. In addition, a phosphor powder is only filled in the gap directly below the light emitting semiconductor structure. Therefore, one of the radiation of the light-emitting semiconductor structure passes through the phosphor powder, and is reflected by the stage to travel toward the light-transmitting substrate. Part of the light will be converted by the phosphor powder. The converted light is then mixed with the unconverted light. Additionally, the stage may have a reflective layer to enhance the reflective effect, and the light emitting semiconductor structure is disposed over the reflective layer. In addition, the light emitting diode may further comprise a phosphor layer to form 7 1343664 on the transparent substrate. The photo-emitting diode further includes a selective reflection layer formed on the transparent substrate. The selected reflective layer can be formed from a single dielectric or acoustic layer. The portion of the filament of the second shot is reflected by the selectively reflective layer and travels toward the (10) biliary gel. Wei shot ί ° by this can increase the converted light ^

混合光線的色溫等CIE座標值。此外,該選擇 性反射層包3-通孔或-圖形遮罩,以控制選擇性反射的面積。 本發明之另—混光型發光二極體包含—載台、—第一榮光粉 層、-發林導體結構以及—透光基板。 該載台上。紐光半導懸構設置_第—#絲狀 ii榮ίίΐΓΐ一間隙’其中該發光半導體結構與該載台電性 連接。該透光基板位於該發光半導體結構上。The CIE coordinate value of the color temperature of the mixed light. In addition, the selective reflective layer includes a through-hole or a pattern mask to control the area of selective reflection. The other-light-mixing type light-emitting diode of the present invention comprises a stage, a first glory layer, a hairline conductor structure, and a light-transmitting substrate. On the stage. The illuminating semiconductor structure is electrically connected to the stage, wherein the illuminating semiconductor structure is electrically connected to the stage. The light transmissive substrate is located on the light emitting semiconductor structure.

因此,該發辭導縣構歸之—光線穿越該第—螢光粉層 後,被該載台反射而㈣透光基板行進。部分光線將被該第 光粉層轉換,被轉換的光線再與未被轉換的光線混合。此外,該 具有-反射層以加強反射’而該第—螢絲制形成於該 反射層上。於一具體實施例中,該發光二極體可進一步包含一 二螢光粉層,形成於該透光基板上。 另外,該絲型發光二極體進—步包含—選擇性反射層形成 於該透光基板之上。該選擇性反射層得以一單層介電質或一多層 ’I電質形成。該多層介電質可由數種不同的介電質構成。該發光 半導體結構輻射之另-光線之—部分被該選擇性反射層反射而向 該透光基板以及該第-螢絲層行進。被反射的缝之後亦將如 前述光線,部分被該第一螢光粉層轉換。藉此,可增加被轉換光 線的比例,進而達到調節混合光線的色溫等CIE座標值。此外, 8 該選擇性反射層包含一通孔或一圖形遮罩,以控制選擇性反射的 面積。 本發明之另一混光型發光二極體包含一透光基板、一發光半 ,體結構、一選擇性反射層以及一螢光粉層。該透光基板具有一 第二表面以及與該第一表面相對之一第二表面。該發光半導體結 構形成於該第一表面上。該選擇性反射層位於該發光半導體結構 上。該螢光粉層形成於該第二表面上。該選擇性反射層得以一單 層介電質或一多層介電質形成。該多層介電質可由數種不同的介 電質構成。 因此,該發光半導體結構輻射之一光線之一部分被該選擇性 反射層反射而向該透光基板以及該螢光粉層行進。此外,該選擇 巧反射層包含一通孔或一圖形遮罩,以控制選擇性反射的面積。 藉此,可增加被轉換光線的比例,進而達到調節混合光線的色溫 等CIE座標值。另外’於實際應用中,承載該混光型發光二極體 之載台可視需要形成-反射層,以反翻向該載台行進的光線。 '本發明之另一混光型發光二極體包含一基板、一第一螢光粉 層以及一發光半導體結構。該第一螢光粉層形成於該基板上。該 發光半導體結構形成於該第一螢光粉層上。於一具體實施例中, 該發光半導體結構之上可先形成—選擇性反騎,再於該選擇性 反射層上形成一第二螢光粉層。同樣地,於另一具體實施例,該 發光半導體結構之上可再形成—第三榮光粉層。該第三榮光粉層 上可再形成一選擇性反射層。 、因此,由該發光半導體結構輻射之一光線將被該選擇性反射 層L擇I1 生地反射以及被該等榮光粉層部分地轉換。被換 與未被轉換的光線混合以形成所需的光線。補充說明,該混光型 ,光-極體之基板不以透明為必要。另外,光線轉換以及光線路 從之主要·贿述’在此不再贅述。該聊性反射層得以一單 1343664 層介電質或一多層介電質形成。該多層介電質可由數種不同的介 電質構成。該選擇性反射層包含一通孔或一圖形遮罩,以控制選 擇性反射的面積。 上、 综上所述,根據本發明,該螢光粉層係可直接 半導體結構或該透光基板上,且可於半導體製程中完 成控制混光的目的。此外,該反射電極與該發光半導 連接,但之間有一間隙,可避免若該反娜與該 $接接觸時產生的介面問題。另外,於包含該載台之該混光型 =二極財’該榮光粉制可形成於該載台上,同樣能避免傳 ,·樣程_螢絲軸裝方式而造成混光控财㈣問題。於僅 該混光型發光二極體中,該螢光粉膠僅填充於該 ΐΐίί構正下方之該’,可有效控制登光粉膝的使用量 ΐ:ΐ控制了混光效果。更進一步地,利用選擇性反 曾加破轉換光線的量,以達到控制混光的效果。並且,選 亦可包含複數個通孔或由幾何形狀形成圖形的遮罩, 1控椒光的效果。根據本發明之混細發光二極體,先 則技彳“i的缺點均已獲得解決或減輕其影響程度。 式得點與精神可以藉由以下的發明詳述及所附圖 【實施方式】 之混=:』7!=據=:卜佳具體實施例 18。透絲板^且有^構j反射電極16以及第一螢光粉層 第二表面12Ϊ。發體2】122以及與第一絲122相對之 電極16位於發形成於第—表面町。反射 存有間隙G丨,構之上且與發光半導體結構14間 ’,、中反射電極16以導體162與發光半導體結構14Therefore, the deductive county is constructed to pass light through the first phosphor powder layer and then reflected by the stage and (4) the transparent substrate travels. Part of the light will be converted by the first layer of light, and the converted light will be mixed with the unconverted light. Further, the reflective layer is provided to enhance reflection and the first filament is formed on the reflective layer. In one embodiment, the light emitting diode may further include a phosphor powder layer formed on the light transmissive substrate. In addition, the wire-type light-emitting diode further includes a selective reflection layer formed on the light-transmitting substrate. The selective reflective layer is formed from a single layer of dielectric or a plurality of layers of 'I. The multilayer dielectric can be composed of several different dielectrics. The other portion of the illuminating semiconductor structure that is radiated is reflected by the selectively reflective layer and travels toward the transparent substrate and the first-filament layer. The reflected slit will also be partially converted by the first phosphor layer as described above. Thereby, the ratio of the converted light lines can be increased, and the CIE coordinate value such as the color temperature of the mixed light can be adjusted. In addition, the selective reflection layer includes a through hole or a pattern mask to control the area of selective reflection. Another light-mixing light-emitting diode of the present invention comprises a light-transmitting substrate, a light-emitting half, a body structure, a selective reflection layer and a phosphor powder layer. The light transmissive substrate has a second surface and a second surface opposite the first surface. The light emitting semiconductor structure is formed on the first surface. The selective reflective layer is on the light emitting semiconductor structure. The phosphor layer is formed on the second surface. The selective reflective layer is formed from a single layer of dielectric or a multilayer dielectric. The multilayer dielectric can be composed of several different dielectrics. Therefore, a portion of one of the rays of the light emitting semiconductor structure is reflected by the selective reflective layer to travel toward the light transmissive substrate and the phosphor layer. In addition, the selective reflective layer includes a via or a patterned mask to control the area of selective reflection. Thereby, the proportion of the converted light can be increased, and the CIE coordinate value such as the color temperature of the mixed light can be adjusted. In addition, in practical applications, the stage carrying the light-mixing type light-emitting diode may form a reflection layer to reverse the light traveling toward the stage. Another light-mixing type light-emitting diode of the present invention comprises a substrate, a first phosphor layer and a light-emitting semiconductor structure. The first phosphor layer is formed on the substrate. The light emitting semiconductor structure is formed on the first phosphor layer. In a specific embodiment, a selective anti-riding can be formed on the light emitting semiconductor structure, and a second phosphor layer is formed on the selective reflective layer. Similarly, in another embodiment, a third glory layer can be formed over the light emitting semiconductor structure. A selective reflection layer may be further formed on the third glory layer. Thus, a light ray radiated by the illuminating semiconductor structure will be reflected by the selective reflective layer L and partially converted by the luminescent phosphor layers. It is mixed with unconverted light to form the desired light. In addition, the light-mixing type and the substrate of the light-polar body are not required to be transparent. In addition, the light conversion and the optical line from the main bribes will not be repeated here. The reflective reflective layer can be formed by a single layer of 1343664 dielectric or a multilayer dielectric. The multilayer dielectric can be composed of several different dielectrics. The selective reflective layer includes a via or a patterned mask to control the area of the selective reflection. In summary, according to the present invention, the phosphor layer can be directly on the semiconductor structure or the light-transmissive substrate, and the purpose of controlling the light mixing can be completed in the semiconductor process. In addition, the reflective electrode is connected to the light-emitting semi-conductor, but there is a gap between them to avoid an interface problem if the anti-contact is in contact with the contact. In addition, in the light-mixing type including the stage, the glory powder can be formed on the stage, and the same can avoid the transmission, the sample process, the filament winding method, and the light mixing control (4) problem. In the light-mixing type light-emitting diode, the fluorescent powder is only filled under the structure of the ΐΐ ί , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Further, the effect of controlling the light mixing is achieved by selectively reducing the amount of converted light. Moreover, the selection may also include a plurality of through holes or a mask formed by a geometric shape, and the effect of controlling the light of the pepper. According to the mixed light-emitting diode of the present invention, the disadvantages of the technique "i" have been solved or mitigated. The point and spirit of the present invention can be illustrated by the following detailed description and the accompanying drawings. Mixed =: 』 7! = according to =: Bu Jia specific embodiment 18. The wire plate ^ and the structure of the reflective electrode 16 and the first surface of the first phosphor layer 12 Ϊ. Hair 2] 122 and A wire 122 opposite electrode 16 is formed on the surface of the first surface. The reflection has a gap G丨, and is disposed between the light emitting semiconductor structure 14 and the middle reflective electrode 16 is a conductor 162 and a light emitting semiconductor structure 14

S 10 電性連接。第一螢光粉層18形成於第二表面124上。 因此’發光半導體結構14輻射之光線u被反射電極16反 射而向透絲板12以及第-縣粉層18行進(以空心箭頭表 示)。部分,光線L1將被第-螢光粉層18轉換,被轉換的光線 L12再與未被轉換的光線L14混合。另外,反射電極16未直接 與發光半導縣構Μ連接,可避免或減少發光半導體結構14於 發光時產生之鱗發光半導體結構W及反職極16產生执服冷 縮而衍生關題。例如空隙G1可容許發光半導體結構14及反射 電極16變形以減少擠壓產生缺陷之機會。 一此外,赚G1亦可填充—單層介電質或一多層介電質(未繪 示於圖-鱗介電質可加献射電極16與發光半導體結構 I4間之附著’或可提供繞射效應(例如布拉格繞射鏡)以提高反射 效果:該錢介電質可由數種不同的介電質構成。另外,混光型 發光二極體1亦可進-步包含第二勞光粉層,碱於發光半導體 結構1巧反射電極I6之間(未繪示於圖一中〉。亦即光線L1在被 反身2之前即有部分已被第二螢光粉層轉換,藉此螢光粉層的厚度 邏輯上增加了,有助於控制混光效果。補充說明的是,第一螢光 粉層18以及第二螢光粉層可併入發光半導體結構14及透光基板 12之製程以黃光微影形成。 補充說明,前述說明僅指出發光半導體結構14朝向反射電 極16輻射之光線L1之路經,發光半導體結構14當然亦輻射直 接朝向透光基板12以及第一螢光粉層18之光線,此光線亦將部 分被第一螢光粉層18轉換,並與前述的被轉換的光線U2以及 未被轉換的光線L14混合。另外,混光型發光二極體丨並不限於 覆晶式(flip chip)封裝應用。於實際應用中,承載混光型發光二極 體1之載台可視需要形成一反射層,以反射朝向載台行進的光 線。 1343664S 10 Electrical connection. The first phosphor layer 18 is formed on the second surface 124. Therefore, the light u radiated by the light-emitting semiconductor structure 14 is reflected by the reflective electrode 16 to travel toward the light guide plate 12 and the first-county powder layer 18 (indicated by a hollow arrow). In part, the light ray L1 is converted by the first phosphor powder layer 18, and the converted light ray L12 is mixed with the unconverted light ray L14. In addition, the reflective electrode 16 is not directly connected to the illuminating semiconductor structure, and the luminescent semiconductor structure W generated by the illuminating semiconductor structure 14 during illuminating and the counter-polarity 16 to be subjected to shrinkage can be avoided or reduced. For example, the gap G1 may allow the light emitting semiconductor structure 14 and the reflective electrode 16 to be deformed to reduce the chance of defects caused by extrusion. In addition, the G1 can also be filled—a single-layer dielectric or a multi-layer dielectric (not shown in the figure-scale dielectric can be attached between the emitter electrode 16 and the light-emitting semiconductor structure I4) or can be provided A diffractive effect (such as a Bragg mirror) to improve the reflection effect: the dielectric material can be composed of several different dielectric materials. In addition, the light-mixing LED 2 can further include a second light. The powder layer is mixed with the reflective semiconductor electrode I6 (not shown in FIG. 1). That is, the light L1 is partially converted by the second phosphor layer before being reflexed. The thickness of the powder layer is logically increased to help control the light mixing effect. It is added that the first phosphor layer 18 and the second phosphor layer can be incorporated into the light emitting semiconductor structure 14 and the transparent substrate 12 The process is formed by yellow light lithography. In addition, the foregoing description only points out the path of the light-emitting semiconductor structure 14 to the light L1 radiated toward the reflective electrode 16, and the light-emitting semiconductor structure 14 is of course radiated directly toward the transparent substrate 12 and the first phosphor layer 18 Light, this light will also be partially illuminated by the first The layer 18 is converted and mixed with the aforementioned converted light U2 and the unconverted light L14. In addition, the light-mixing light-emitting diode is not limited to a flip chip packaging application. In practical applications, The stage carrying the light-mixing type light-emitting diode 1 may form a reflective layer to reflect the light traveling toward the stage.

I 之混極以身i根據本發明之第二較佳具體實施例 及第二螢板^且^第36矣第—螢光粉㈣以 矣而&迟尤暴板32具有苐—表面322以及盥笫一 面322上。第-°發光半導體結構34形成於第、一表 螢光粉層t 8形成於發光半導體結構34上。第二 is. Q/C v 'S- ΒΛ 愛光叙層38間存有間隙G3,其中反射雪 極36以導體362與發光半導體結構34電性連接。The second embodiment of the present invention is based on the second preferred embodiment of the present invention and the second phosphor plate and the third phosphor powder (four). And 盥笫 on one side 322. The first-th light-emitting semiconductor structure 34 is formed on the first and second phosphor powder layers t 8 on the light-emitting semiconductor structure 34. The second is. Q/C v 'S- ΒΛ There is a gap G3 between the layers 38, wherein the reflective snow 36 is electrically connected to the light-emitting semiconductor structure 34 by a conductor 362.

因此’發光半導體結構34輻射之光線U經過第 光分的光線以被第一營光粉層38轉換。未被轉g 二線L34於被反射電極36反射之後,將再次經過第一螢 換’仍夫未被轉換的光線U4將被第一螢光粉層38 ‘ ^Ϊίί轉換的光線副於經過第二螢光粉層40時,將有部 的光線U44被第二蝥光粉層4G轉換。最後,所有 未被轉換的光線L3444以及被轉換的光線L32、L342、L3442將 所需的光線,此包含由發光半導體結構34轄射但未 36反射而直接經過第二螢光粉4g之被轉換的和未i 光圖三巾)。所㈣混紐删可藉由控制螢 光卷的/農度及螢光粉層的厚度來獲得。 ,充說明的是’根據前述關於第二較佳具體實施例之描述, 糸以 螢光粉層38與第二螢光粉層4〇相同為前提。但本發明 不以此為限。當第一螢光粉層38與第二螢光粉層40不同時,光 線轉換程序將鶴複雜。基本上混合的光線包含被第—螢光粉層 38轉換的光線、被第二螢光粉層40轉換的光線以及由發光半導 體結構34輻射出但未被轉換的光線。再補充說明的是,前述說 明同樣適用於第—較佳具體實施例。另外,第一螢光粉層38以 及第二螢光粉層40可併入發光半導體結構34及透光基板32之 製程以黃光微影形成。 12 根據第二較佳具體實施例,間隙G3亦可填充一單層介電質 t少層介電質(未繪*於圖二_)。該等介電質可加強反射電極 第一螢光粉層38間之附著,或可提供繞射效應以提高反射 ίί道該多層介ff可由數種不同的介電質構成。另外,關於發 ,導體結構34之光祕徑之補充卿,與第_較佳具體實施 二,’不再贅述。並且’混光型發光二極體3之應用說明亦同 一較佳具體實施例之混光型發光二極體丨,亦不再贅述。 切參閱圖二A,圖三A係繪示根據本發明之第三較佳具體實 =混光型發光二極體5之示意圖。混光型發光二極體5包含 ίΪΐ板52、發光半導體結構54、載台56、螢光粉膠58以及勞 „ t 6G。發光半導體結構54設置於載台56之上且與載台56 、二隙G5 ’其中發光半導體結構54以凸塊542與載台56電 。透光基板52位於發光半導體結構54上。螢光粉勝58 日發光半導體結構54正下方之_G5。此舉除了減少並 二^光粉膠58的制量’並且更進—步地控制混光的效 。此外,螢光粉層6〇形成於透光基板52上。 4 2 ’發光半導體結構54輕射之光線L5穿越螢光粉勝58 台56反射而向透光基板52行進。部分光線L5將被該 拖的^二58或榮光粉層6〇轉換,被轉換的光線L52再與未被轉 :的$ L54混合以產生所需的光線。光線轉換的細節已如前 Ϊ贅述。此外,載台56可具有反_ 562以加強反 1導體結構54則設置於反_ 562之上。補充 黃可併入發光半導體結構%及透光基板52 混光ΐί=圖S i姆示本發明之根據—具體實施例之 目^混光型發光二極體5,進一步包含選擇性反射 層62形成於透絲板52之上。選擇性反Therefore, the light U radiated by the light-emitting semiconductor structure 34 passes through the light of the first light to be converted by the first camp powder layer 38. After being not reflected by the second line L34, after being reflected by the reflective electrode 36, it will pass through the first flashover again. The light U4 that is still unconverted will be converted by the first phosphor layer 38' ^Ϊίί. In the case of the two phosphor layers 40, the partial light U44 is converted by the second phosphor layer 4G. Finally, all unconverted light L3444 and the converted light L32, L342, L3442 are converted by the desired light, which is reflected by the light-emitting semiconductor structure 34 but not reflected by 36, directly through the second phosphor 4g. And not i light map three towels). The (4) mixed mark can be obtained by controlling the thickness of the fluorescent roll/agricultural layer and the phosphor layer. It is to be noted that, based on the foregoing description of the second preferred embodiment, the phosphor powder layer 38 is identical to the second phosphor layer 4A. However, the invention is not limited thereto. When the first phosphor layer 38 is different from the second phosphor layer 40, the light conversion process complicates the crane. The substantially mixed light comprises light converted by the first phosphor layer 38, light converted by the second phosphor layer 40, and light radiated by the light emitting semiconductor structure 34 but not converted. Incidentally, the foregoing description is equally applicable to the first preferred embodiment. In addition, the first phosphor powder layer 38 and the second phosphor powder layer 40 can be incorporated into the light emitting semiconductor structure 34 and the transparent substrate 32 to form a yellow light lithography. According to a second preferred embodiment, the gap G3 can also be filled with a single layer of dielectric t dielectric (not shown in Figure 2). The dielectrics may enhance adhesion between the reflective phosphor layer 38 of the reflective electrode or may provide a diffractive effect to enhance reflection. The multilayer dielectric may be comprised of several different dielectrics. In addition, with regard to the hair, the light path of the conductor structure 34, and the second embodiment, will not be described again. Further, the application description of the light-mixing type light-emitting diode 3 is also the same as that of the light-mixing type light-emitting diode of the preferred embodiment, and will not be described again. Referring to FIG. 2A, FIG. 3A is a schematic diagram showing a third preferred embodiment of the light-mixing light-emitting diode 5 according to the present invention. The light-mixing light-emitting diode 5 includes a squeezing plate 52, a light-emitting semiconductor structure 54, a stage 56, a phosphor powder 58 and a luminescent layer 58. The light-emitting semiconductor structure 54 is disposed on the stage 56 and on the stage 56, The two-gap G5' is in which the light-emitting semiconductor structure 54 is electrically connected to the stage 56 by the bump 542. The light-transmitting substrate 52 is located on the light-emitting semiconductor structure 54. The phosphor powder wins _G5 directly below the light-emitting semiconductor structure 54. And the amount of the light-powder glue 58 is 'and the effect of the light mixing is further controlled. Further, the phosphor layer 6 is formed on the light-transmitting substrate 52. 4 2 'Light-emitting semiconductor structure 54 light rays L5 traverses the phosphor powder to win 58 sets of 56 reflections and travels toward the transparent substrate 52. Part of the light L5 will be converted by the dragged 258 or glory layer 6 ,, and the converted light L52 is not transferred: The L54 is mixed to produce the desired light. The details of the light conversion have been described above. In addition, the stage 56 may have an inverse _ 562 to strengthen the reverse 1 conductor structure 54 and be placed over the reverse _ 562. Light-emitting semiconductor structure % and light-transmitting substrate 52 mixed light ΐ 图 = Figure S i shows the basis of the present invention - Example embodiments of the mesh-type ^ mixed light emitting diode 5, further comprising a selectively reflective layer 62 is formed over the transparent plate 52 filaments. Selective trans

(S 13 1343664 * . $或-多層介電質形成。該多層介電質可由數種不同的介電質 g 過的光線l62其波長範圍係由選擇性反射層 特性決疋。被反射的光線L64之後亦將如第三較佳具體實施 之光線L5,部分被螢光粉膠58轉換。藉此,可^加被轉 換光線的比例’進而達到調節混合光線的色溫等αΕ座桿值。例(S 13 1343664 * . $ or - multilayer dielectric formation. The multilayer dielectric can be illuminated by several different dielectrics. The wavelength range is determined by the characteristics of the selective reflective layer. After L64, the light L5, which is preferably embodied in the third preferred embodiment, is partially converted by the phosphor powder 58. Thereby, the ratio of the converted light can be added to further adjust the color of the mixed light to the alpha-seat bar value.

光ίΐ體中,增加黃光比例,使得混合後的白光看 選擇性反射層62其上可形成複數個通孔 或由4何雜喊卿的遮罩以作為調節選擇性反㈣面積,亦 ,為=混光比例的手段。其中,該等通孔的戴面不以圓形為 限’且該等通孔亦可為狹縫或其他幾何形狀 =體^例之混光型發光二極體5尚包含—榮光粉丄第= f光極體5·之選擇性反射層62亦可形成於榮光粉層60 上’不待賢述。 。月參閱圖四A,圖四A係繪示根據本發明之第四較佳且體實 施例之混光型發光二極體7之示意圖。發光二極體7包含透光基In the light body, the proportion of yellow light is increased, so that the mixed white light sees the selective reflection layer 62 on which a plurality of through holes or a mask of 4 screaming can be formed to adjust the selective inverse (four) area. For = means of mixing proportions. Wherein, the wearing faces of the through holes are not limited to a circle, and the through holes may also be slits or other geometric shapes=the mixed light emitting diodes 5 of the body are still included - the glory powder The selective reflection layer 62 of the f-electrode body 5· can also be formed on the glory powder layer 60'. . Referring to Figure 4A, Figure 4A is a schematic view showing a fourth preferred embodiment of the light-mixing type light-emitting diode 7 according to the present invention. The light-emitting diode 7 includes a light-transmitting base

ίΙΙ、ί光半_結構74、載台76、第—螢光粉層78以及第二 螢光粉層80。第-螢光粉層78形成於載台%上。發光 結 =4設置於第-縣歸78之上且與第—螢絲層78間存^ 間隙G7,其中發光半導體結構74以凸塊如與載台%電性連 Ϊ:、ίίίΪ 72位於發光半導體結構74上。第二螢光粉層8〇 形成於透光基板72上。 因此 '發光半導體結構74輻射之光線L7穿越第一螢光粉層 载纟76反射而向透光基板72行進。部分光線L7將被 、、”層78或第一螢光粉層80轉換’被轉換的光線L72再 與未^轉換的光線L74混合以產生所需的光線。光雜換的細節 已如別述,在此不再贅述。此外,载台76可具有反射層呢以 加強反射,而第-螢光粉層78則形成於反射層762上。補充說 14 1343664 明的是,第二螢光粉層80可併入發光半導體結構74及透光基板 72之製程以黃光微影形成。 ^睛參閱圖四B,圖四B係繪示根據一具體實施例之混光型發 光一極體7’之示意圖。與第四較佳具體實施例之混光型發光二極 體7相較,混光型發光二極體τ進一步包含 2 於透光基板72之上。選擇性反射層&得以一單層介電質或一^ 層介電質戦。該多層介電質可由數種不_介料構成。由發 光半導體結構74朝向透絲板72 n射之光線L8,僅部分光線 L82可穿過選擇性反射層82,其他的則被選擇性反射層82反 射。被,許穿過的光線L82其波長範圍係由選擇性反射層幻之 ^生°被反射的光線U4之後亦將如第四較佳具體實施例所 f之光線L7(如圖四A所示),部分被第一螢光粉層78轉換。藉 卜^增加被轉換光線的比例。另外,選擇性反射層82其上可 數個通孔或由幾何形狀形成圖形的遮罩以作為調節&擇性 选品面ί亦可作為控制混光比例的手段。其中,該等通孔的 孔亦可為狹縫或其他幾何形狀。補 混光型發光二極體7'之選擇性反射層I “ί 成於螢光粉層80上,不待贅述。 之混= 雜錄縣㈣之第五較佳具體實施例 其i 極體9之示意圖°混光型發光二極體9包含透光 ί第%透=板第—表面922以及與第—表 ίΞ 半導體結構94形成於第一表面922上。選 擇/ 生反射層%形成於發光半導體 層”電質形成該多層介電質可由數種不同的介電質構成 因此’發光半導體結構94 _之一光線L9被選擇性反射層ίΙΙ, ί光半_structure 74, stage 76, first phosphor powder layer 78 and second phosphor layer 80. The first phosphor powder layer 78 is formed on the stage %. The light-emitting junction=4 is disposed above the first-county-score 78 and is separated from the first-silver layer 78 by a gap G7, wherein the light-emitting semiconductor structure 74 is electrically connected to the stage by a bump, and the ίίί 72 is located in the light-emitting layer. On the semiconductor structure 74. The second phosphor layer 8 is formed on the light-transmitting substrate 72. Therefore, the light L7 radiated by the light-emitting semiconductor structure 74 is reflected by the first phosphor layer carrier 76 and travels toward the light-transmitting substrate 72. Part of the light ray L7 will be converted by the "layer 78 or the first phosphor layer 80". The converted light ray L72 is mixed with the unconverted light ray L74 to produce the desired light. The details of the optical noise exchange are as described above. Further, the stage 76 may have a reflective layer to enhance reflection, and a first phosphor powder layer 78 is formed on the reflective layer 762. Supplement 14 1343664 shows that the second phosphor The process of the layer 80 being incorporated into the light-emitting semiconductor structure 74 and the light-transmitting substrate 72 is formed by yellow light lithography. See Figure 4B, and Figure 4B shows the light-mixing light-emitting diode 7' according to an embodiment. The light-mixing light-emitting diode τ further includes 2 on the light-transmitting substrate 72. The selective reflection layer & a single sheet is compared with the light-mixing light-emitting diode 7 of the fourth preferred embodiment. a layer of dielectric material or a layer of dielectric material. The multilayer dielectric material may be composed of a plurality of non-materials. The light beam L8 emitted from the light-emitting semiconductor structure 74 toward the light-transmitting plate 72 n, only part of the light L82 may pass through. The selective reflection layer 82, and the others are reflected by the selective reflection layer 82. L82 has a wavelength range which is reflected by the selective reflection layer. The light U4 is also reflected as the light L7 of the fourth preferred embodiment (as shown in FIG. 4A), and is partially replaced by the first firefly. The toner layer 78 is converted to increase the proportion of the converted light. In addition, the selective reflection layer 82 may have a plurality of through holes or a mask formed by a geometric shape as an adjustment & It can also be used as a means for controlling the mixing ratio, wherein the holes of the through holes can also be slits or other geometric shapes. The selective reflection layer I of the complementary light-emitting diode 7' " On the powder layer 80, it will not be described. Mixing = The fifth preferred embodiment of Misan County (4) is a schematic diagram of the i-pole body 9. The light-mixing type light-emitting diode 9 includes a light-transmitting ί%% through plate-surface 922 and with the first table Semiconductor structure 94 is formed on first surface 922. The selective/reflective layer % is formed on the light emitting semiconductor layer. "Electro-mass forming the multilayer dielectric can be composed of several different dielectrics. Thus the light-emitting semiconductor structure 94_one light L9 is selectively reflective.

S 15 1343664 » 96部分反射而向透光基板92以及螢光粉層98行進。 的光線L92其波絲圍係由轉性反㈣%之特性°S 15 1343664 » 96 partially reflects and travels toward the light transmissive substrate 92 and the phosphor layer 98. The light of the L92 is characterized by the transversal inverse (four)%.

射的光線L94將被螢絲層98部分轉換,其轉賴制已如 述,不再#述。此外’選擇性反射層96可包含複數個通孔或由 幾何形狀形成圖形的鮮’以㈣選雜反射的面積。其中,該 等通孔的截面不關形為限,且該等通孔亦可為狹縫或&他幾g 形狀。藉此’可增加被轉換光線的比例,進而達_節混合光線 的色溫等CIE座標值。另外,發光半導體結構%之光線路 徑之補充說明,與第一較佳具體實施例相同,不再贅述。並且, 混光型發光二極體9之應用_制於第—触具體實施例之混 光型發光—極體1 ’亦不再贅述。例如,第五較佳具體實施例之 混光型發光二極體9以面朝上(face up)結構封裝時,承載混光型 發光二極體9之載台其表面可形成—反射層,以加強朝向載台行 進的光線的反射(包含被反射的練L94),反射的光線最後將盘 被容許穿級L92混合,_摘_光線。 ^The emitted light L94 will be partially converted by the filament layer 98, and its conversion system has been described as no more. Further, the 'selectively reflective layer 96' may comprise a plurality of vias or areas that are patterned by geometry to (4) select the area of the reflection. Wherein, the cross-sections of the through holes are not limited to the shape, and the through holes may also be slits or & By this, the ratio of the converted light can be increased, and the CIE coordinate value such as the color temperature of the mixed light of the section can be reached. In addition, the supplementary description of the optical path of the light-emitting semiconductor structure % is the same as that of the first preferred embodiment, and will not be described again. Further, the application of the light-mixing type light-emitting diode 9 will not be described again in the case of the light-mixing type light-emitting body 1 of the first embodiment. For example, when the light-mixing type light-emitting diode 9 of the fifth preferred embodiment is packaged in a face up structure, the surface of the stage carrying the light-mixing type light-emitting diode 9 may form a reflective layer. In order to enhance the reflection of the light traveling toward the stage (including the reflected L94), the reflected light finally allows the disk to be allowed to pass through the stage L92, _ picking light. ^

請參閱圖六A ’圖六A係繪示根據本發明之第六較佳具體 ,例之混光型發光二極體2之示意圖。混光型發光二極體2包含 基板22、螢光粉層26以及發光半導體結構%。螢光粉層%形 成於基板22上。發光半導體結構%形成於營光粉層%上。進 一^地,發光轉體結構24之上可再形成另—螢光粉層28,並 且螢光粉層28上可再形成選擇性反射層29。 因,’由發光半導體結構24賴射朝向選擇性反射層29之光 ,二無論是否被螢光粉層28轉換,均將被選擇性反射層29選擇 立反射。另外,由於選擇性反射層29係允許特定波長範圍之 2穿過’其餘將被反射,因此有可能被轉換的光線可通過選擇 1+ Ϊ層29 ’而未被轉換的光制否。此種選擇伽整個產品設 »而疋。被反射的光線將再被螢光粉層26、28部分轉換,然後 ^^基板22反射(若基板22非透光時,但本發明不以此為限)。 在被反射的光線之後將再次被選擇性反射層29選擇性地反射。 13436,64 ' .. * ·. 最後通過選擇性反射層29的光線混合成所需的光線。 - 、另外’選擇性反射層29可包含複數個通孔或由幾何形狀形 成圖形的遮罩,以控制選擇性反射的面積。其中,該等通孔的截 面不以圓形為限’且該等通孔亦可為狹縫或其他幾何形狀。藉 此’可增加被轉換光線的比例。選擇性反射層29得以一單層^ 電質或一多層介電質形成。該多層介電質可由數種不同的介電質 構成。此外’光線轉換以及光線路徑之主要說明同前述,在此不 再贅述。 • 請參閱圖六B,圖六B係繪示根據一具體實施例之混光型發 光一極體2’之示意圖。與第六較佳具體實施例比較,混光型發光 二極體2’之螢光粉層28係位於選擇性反射層29之上。因此,通 過選擇性反射層29之光線將被螢光粉層28部分轉換,之後再混 合形成所需的光線。 補充說明的是,於前述實施例中,通過選擇性反射層之光線 包含因經由選擇性反射層之鏤空處(即前述之通孔及遮罩空隙)之 光線,非僅包含被選擇性反射層所容許通過之特定波長範圍之光 線。另外,本發明之混光型發光二極體不限於產生白光的應用。 # 本發明之混光型發光二極體亦可依需求而混合出不同顏色的光。 综上所述,該等螢光粉層係可直接形成於發光半導體結構或 透光基板上’且可於半導體製程中完成以有效達成控制混光的目 的。此外,反射電極與發光半導體結構電性連接,但之間存有間 隙,可避免若反射電極與發光半導體結構直接接觸時產生的介面 問題。另外,於包含載台之混光型發光二極體中,螢光粉層則可 形成於載台上,同樣能避免傳統製程因以螢光粉膠封裝方式而造 成混光控制不易的問題。於僅使用螢光粉膠之混光型發光二極體 中,螢光粉膠僅填充於發光半導體結構正下方之間隙,可有效控 制螢光粉膠的使用量及其分佈,進而亦控制了混光效果。更進_ 17 用f擇性反射層以增加被轉換光線的量,以達到押制爷 ί开ίΓ严,選擇性反射層亦可包含複數個通孔或由t 明之混光型發光-極f,上士先的效果。因此’根據本發 影響程ΐ 體,先讀術的缺_已獲得解決或減輕i 發明具體實關之詳述,係希望能更加清楚描迷本 及^日限制。相反地,其目的是希望能涵蓋各種 性的女排於本發明所欲中請之專利範_範_内。ί 廣的ii明所:ϊί專利範圍的範疇應該根據上述的說明作最ΐ 廣的解釋’以致使其涵蓋所有可能的改變以及具相等性的安排芄 【圖式簡單說明】 一圖—係繪示根據本發明之第一較佳具體實施例之混光型發光 二極體之示意圖。 一圖二係繪示根據本發明之第二較佳具體實施例之混光型發光 二極體之示意圖。 圖二A係繪示根據本發明之第三較佳具體實施例之混光型發 光二極體之示意圖。 圖二β係繪示根據一具體實施例之混光型發光二極體之示意 圖0 ^四Α係繪示根據本發明之第四較佳具體實施例之混光型發 九二極體之示意圖。 圖。圖四B鱗示根據—具體實施例之混光型發光二極體之示意 二;係繪讀據本發明之第五難倾實關之混光型發光 —愧锻之_示意圖。 # -ΞϋA 根據本㈣之第六較佳具體實施例之混光型發 尤一極體之示意圖。 圖。圖’、B係繚示根據—具體實關之混想發光二極體之示意 【主要元件符號說明】 )、7、7、9:混光型發光二極體 12m52'72、92:透絲板 1343664 14、24、34、54、74、94 :發光半導體結構 16、36:反射電極 18、38、78 :第一螢光粉層 40、80 ··第二螢光粉層 56、76 :載台 58 :螢光粉膠 26、28、60、98 :螢光粉層 29、62、82、96 :選擇性反射層 122、322、922 :第一表面 124、324、924 :第二表面 • 162、362 :導體 542、742 :凸塊 562、762 :反射層 U、L3、L5、L6、L7、L9 :光線 L12、L32、L52、L72、L342、L3442 :被轉換光線 L14、L34、L54、L74、L344、L3444 :未被轉換的光線 L62、L82、L92 :穿透的光線 ® L64、L84、L94 :被反射的光線 G 卜 G3、G5、G7 :間隙 20Please refer to FIG. 6A'. FIG. 6A is a schematic view showing a sixth preferred embodiment of the light-mixing light-emitting diode 2 according to the present invention. The light-mixing type light-emitting diode 2 includes a substrate 22, a phosphor powder layer 26, and a light-emitting semiconductor structure %. The phosphor layer % is formed on the substrate 22. The light-emitting semiconductor structure % is formed on the camping powder layer %. Further, a further phosphor layer 28 can be formed on the luminescent body structure 24, and a selective reflection layer 29 can be formed on the phosphor layer 28. Therefore, the light that is incident on the selective reflection layer 29 by the light-emitting semiconductor structure 24 is selectively reflected by the selective reflection layer 29 regardless of whether it is converted by the phosphor layer 28. In addition, since the selective reflection layer 29 allows a specific wavelength range of 2 to pass through, the rest will be reflected, so that it is possible that the converted light can be made by selecting the 1+ layer 29' without the converted light. This choice is the whole product set » and 疋. The reflected light will be partially converted by the phosphor layers 26, 28 and then reflected by the substrate 22 (if the substrate 22 is not transparent, but the invention is not limited thereto). After being reflected, the light will be selectively reflected again by the selective reflection layer 29. 13436, 64 ' .. * ·. Finally, the light passing through the selective reflection layer 29 is mixed into a desired light. - Further, the selective reflection layer 29 may comprise a plurality of vias or masks patterned by geometry to control the area of selective reflection. Wherein, the cross-sections of the through holes are not limited to a circle' and the through holes may also be slits or other geometric shapes. By this, you can increase the proportion of the converted light. The selective reflection layer 29 is formed of a single layer of a dielectric or a multilayer dielectric. The multilayer dielectric can be composed of several different dielectric materials. Further, the main descriptions of the "light conversion" and the light path are the same as those described above, and will not be described again here. • Referring to FIG. 6B, FIG. 6B is a schematic diagram showing a light-mixing light-emitting diode 2' according to an embodiment. In comparison with the sixth preferred embodiment, the phosphor layer 28 of the light-mixing type LED 2' is positioned above the selective reflection layer 29. Therefore, the light passing through the selective reflection layer 29 will be partially converted by the phosphor layer 28 and then mixed to form the desired light. It should be noted that, in the foregoing embodiment, the light passing through the selective reflection layer contains light rays passing through the hollow portions of the selective reflection layer (ie, the aforementioned through holes and the mask gaps), and includes only the selectively reflective layer. Light that is allowed to pass through a specific range of wavelengths. Further, the light-mixing type light-emitting diode of the present invention is not limited to the application for generating white light. # The light-mixing light-emitting diode of the present invention can also mix light of different colors according to requirements. In summary, the phosphor layers can be formed directly on the light emitting semiconductor structure or the light transmissive substrate and can be completed in the semiconductor process to effectively achieve the purpose of controlling the light mixing. In addition, the reflective electrode is electrically connected to the light-emitting semiconductor structure, but there is a gap therebetween, which avoids the interface problem caused when the reflective electrode is in direct contact with the light-emitting semiconductor structure. In addition, in the light-mixing type light-emitting diode including the stage, the phosphor powder layer can be formed on the stage, and the problem that the conventional process is difficult to control the light mixing by the phosphor powder packaging method can be avoided. In the light-mixing light-emitting diode using only the fluorescent powder, the fluorescent powder is only filled in the gap directly under the light-emitting semiconductor structure, which can effectively control the usage and distribution of the fluorescent powder, and thus control Mixed light effect. Further _ 17 use f selective reflective layer to increase the amount of converted light, in order to achieve the embossed, the selective reflection layer can also contain a plurality of through holes or a mixed light-emitting type The effect of the sergeant first. Therefore, according to the scope of the present invention, the lack of prior reading has been solved or reduced the details of the specific implementation of the invention, and it is hoped that the limitations of this and the day will be more clearly described. On the contrary, the purpose is to envisage a variety of female volleyballs in the patent scope of the present invention. ί 广 ii Ming: 范畴ί The scope of the patent scope should be interpreted according to the above descriptions so that it covers all possible changes and equal arrangements 芄 [Simple diagram] One map A schematic view of a light-mixing light-emitting diode according to a first preferred embodiment of the present invention. Fig. 2 is a schematic view showing a light-mixing type light-emitting diode according to a second preferred embodiment of the present invention. Figure 2A is a schematic view showing a light-mixing light-emitting diode according to a third preferred embodiment of the present invention. 2 is a schematic view showing a light-mixing type light-emitting diode according to a specific embodiment. FIG. 4 is a schematic view showing a light-mixing type nine-diode according to a fourth preferred embodiment of the present invention. . Figure. Figure 4B is a schematic view of a light-mixing type light-emitting diode according to a specific embodiment; a schematic diagram of a light-mixing type light-emitting type according to the fifth difficulty of the present invention. # -ΞϋA A schematic view of a light-mixing type one-pole body according to a sixth preferred embodiment of the present invention. Figure. Figure ', B' shows the schematic of the complex light-emitting diode according to the specific reality [main component symbol description], 7, 7, 9: mixed light-emitting diode 12m52'72, 92: silk Plate 1344664 14, 24, 34, 54, 74, 94: Light-emitting semiconductor structures 16, 36: reflective electrodes 18, 38, 78: first phosphor layer 40, 80 · second phosphor layer 56, 76: Stage 58: phosphor powder 26, 28, 60, 98: phosphor layer 29, 62, 82, 96: selective reflective layer 122, 322, 922: first surface 124, 324, 924: second surface • 162, 362: Conductors 542, 742: Bumps 562, 762: Reflective layers U, L3, L5, L6, L7, L9: Light L12, L32, L52, L72, L342, L3442: Converted light L14, L34, L54, L74, L344, L3444: unconverted light L62, L82, L92: penetrating light® L64, L84, L94: reflected light G Bu G3, G5, G7: gap 20

Claims (1)

13430641343064 υ0年3方1€修正替換頁 十、申請專利範圍: 1 _ 一種混光型發光二極體,包含: 一透光基板,該透光基板具有—第一表面以及與該第一表 面相對之一第二表面; 一發光半導體結構形成於該第一表面上; 一反射電極位於該發光半導體結構之上且與該發光半導體 結構間有-間隙’其中該反射電極與該發光半導體結構電 性連接,其中該間隙填充一單層介電質或一多層介電質。 ;以及 一第一螢光粉層形成於該第二表面上; 其中’該發光半導體結馳射之—紐被該反射電極反射 而向該透光基板以及該第一螢光粉層行進。 2. 如申請專利範圍第i項所述之混光型發光二極體,其中 該多層介電質包含至少兩種以上的介電質。 3. 如申請專利範圍第i項所述之混光型發光二極體,進一 步包含一第二螢光粉層形成於該發光半導體結構與該反射 電極之間。 4.-種混光型發光二極體,包含:—透光基板 ,該透光基 板八有第表面以及與該第一表面相對之一第二表面; 一發光半導體結構形成於該第一表面上; 一第一螢光粉層形成於該發光半導體結構上; 以及 一反射電極位於該第—螢光粉層之上且與該第—榮光粉層 間有隙’其中該反射電極與該發光半導體結構電性連 21 接; 其中,該發光半導體結構輻 層後,被該反射電極反射而 基板行進。 射之一光線穿越該第一螢光粉 向該第一螢光粉層以及該透光 5.如申請專利範圍第4 六丫 ^ n . 、斤述之混光型發光二極體 ⑽填充一單層介電質或-多層介電質。 利範圍第5項所述之混光型發光二極體,其中 该夕層介電質包含至少兩種以上的介電質。 申吻專利範圍第4項所述之混光型發光二極體,進一 第—螢光粉層形成於該第二表面上。 8.一種混光型發光二極體,包含: 一载台; 發光半導體結構設置於該载台之上且與該載台間有一間 隙其中δ亥發光半導體結構與該載台電性連接;以及 透光基板位於該發光半導體結構上;其中,一螢光粉膠 僅填充於該發光半導體結構正下方之該間隙。 9. 如申請專利範圍第8項所述之混光型發光二極體,其中 邊裁台包含一反射層’該發光半導體結構係設置於該反射 層之上。 10. 如申請專利範圍第8項所述之混光型發光二極體,進一 步包含一選擇性反射層形成於該透光基板之上。 11·如申請專利範圍第10項所述之混光型發光二極體,其 中該選擇性反射層係以一單層介電質或一多層介電質形 22 1,00. 3 4L5- 年月日修正替換頁 12.如申印專利範圍第u項所述之混光型發光二極體,其 中該多層介電質包含至少兩種以上的介電質。 13·如申μ專利範圍第1()項所述之混光型發光二極體,其 中4選擇性反射層包含一通孔或一圖形遮罩。 14’如申呀專利範圍第8項所述之混光型發光二極體,進一 步匕3螢光粉層形成於該透光基板上。 15.—種混光型發光二極體,包含: 一载台; 一第一螢光粉層形成於該載台上; 一發光半導體結構設置於該第—螢光粉層之上且與該勞光 私層間有-間隙’其中該發光半導體結構與該載台電性連 接;以及 , 一透光基板位於該發光半導體結構上。 •如申明專利範圍第1 5項所述之混光型發光二極體,其 中該載台包含-反射層,該第—螢光粉層係形成於該反射 層上。 17·如申明專利範圍第1 5項所述之混光型發光二極體,進 -步包含-選擇性反射層形成於該透光基板之上。 18·如申印專利範圍第17項所述之混光型發光二極體,其 中。玄選擇性反射層係以一單層介電質或一多層介電質形 成。 19·如申明專利範圍第1 8項所述之混光型發光二極體,其 中》亥夕層介電質包含至少兩種以上的介電質。 2〇·如申請專利範圍第17項所述之混光型發光二極體,其 23 1343.664 1(0·礴·月修正替換頁 中該選擇性反射層包含一通孔或一圖形遮罩。 21. 如申請專利範圍第丨5項所述之混光型發光二極體,進 一步包含一第二螢光粉層形成於該透光基板上。 22. —種混光型發光二極體,包含: 一透光基板,該透光基板具有一第一表面以及與該第一表 面相對之一第二表面; , 一發光半導體結構形成於該第一表面上; 一選擇性反射層位於該發光半導體結構上;以及 一螢光粉層形成於該第二表面上; 其中,該發光半導體結構輻射之一光線之一部分被該選擇 性反射層反射而向該透光基板以及該螢光粉層行進。 23. 如申請專利範圍第22項所述之混光型發光二極體,其 中该選擇性反射層係以一單層介電質或一多層介電質形 成。 24. 如申請專利範圍第23項所述之混光型發光二極體,其 中該多層介電質包含至少兩種以上的介電質。 25. 如申請專利範圍第22項所述之混光型發光二極體,其 中該選擇性反射層包含一通孔或一圖形遮罩。 26·—種混光型發光二極體,包含: 一基板; 一第一螢光粉層形成該基板上; 一發光半導體結構形成於該第一螢光粉層上;以及 一選擇性反射層形成於該發光半導體結構上。 27.如申請專利範圍第26項所述之混光型發光二極體,進 24 ·月11修正雜頁 步I3帛一螢光粉層形成該選擇性反射層上。 二如申請專利範圍第26項所述之混光型發光二極體,其 成錢擇性反射層係以_單層介電質或—多層介電質形' 以如申請專利範圍第28項所述之混光型發光二極體,其 中4夕層介電質包含至少兩種以上的介電質。 30. 如申請專利㈣第26項所述之浪光型發光二極體,其 中”亥選擇性反射層包含—通孔或_圖形遮罩。 31. 如申凊專利範圍第26項所述之混光型發光二極體,進 步包含一第三螢光粉層形成該發光半導體結構上。 32♦如申請專利範圍第31項所述之混光型發光二極體進 —步包含一選擇性反射層形成於該第三螢光粉層上。 33·如申請專利範圍第32項所述之混光型發光二極體,其 中。玄選擇性反射層係以一單層介電質或一多層介電質形 成。 34,如申請專利範圍第33項所述之混光型發光二極體,其 中該多層介電質包含至少兩種以上的介電質。 35·如申請專利範圍第32項所述之混光型發光二極體,其 中該選擇性反射層包含一通孔或一圖形遮罩。 25Υ0年3方1€Revision and replacement page X. Patent application scope: 1 _ A light-mixing light-emitting diode comprising: a light-transmitting substrate having a first surface and opposite to the first surface a second surface; a light emitting semiconductor structure is formed on the first surface; a reflective electrode is disposed on the light emitting semiconductor structure and has a gap between the light emitting semiconductor structure and wherein the reflective electrode is electrically connected to the light emitting semiconductor structure Wherein the gap is filled with a single layer of dielectric or a multilayer dielectric. And a first phosphor layer is formed on the second surface; wherein the light-emitting semiconductor junction is reflected by the reflective electrode to travel toward the transparent substrate and the first phosphor layer. 2. The light-mixing light-emitting diode according to claim i, wherein the multilayer dielectric comprises at least two or more dielectrics. 3. The light-mixing light-emitting diode of claim i, further comprising a second phosphor layer formed between the light-emitting semiconductor structure and the reflective electrode. 4. A light-mixing light-emitting diode comprising: a light-transmitting substrate having a first surface and a second surface opposite to the first surface; a light-emitting semiconductor structure formed on the first surface a first phosphor layer is formed on the light emitting semiconductor structure; and a reflective electrode is located on the first phosphor powder layer and has a gap between the first and second phosphor layers, wherein the reflective electrode and the light emitting semiconductor The structure is electrically connected to the cathode; wherein, after the radiation layer of the light emitting semiconductor structure is reflected by the reflective electrode, the substrate travels. Passing one of the light rays through the first phosphor powder to the first phosphor powder layer and the light transmissive 5. Filling a light-mixing light-emitting diode (10) as described in the Patent Application No. 4-6. Single layer dielectric or - multilayer dielectric. The light-mixing type light-emitting diode according to Item 5, wherein the dielectric layer contains at least two or more kinds of dielectric materials. In the light-mixing type light-emitting diode according to Item 4 of the patent application, a first-fluorescent powder layer is formed on the second surface. 8. A light-mixing light-emitting diode comprising: a carrier; a light-emitting semiconductor structure disposed on the stage and having a gap therebetween; wherein the germanium light-emitting semiconductor structure is electrically connected to the stage; The light substrate is located on the light emitting semiconductor structure; wherein a phosphor powder is only filled in the gap directly under the light emitting semiconductor structure. 9. The light-mixing type light-emitting diode according to claim 8, wherein the side cutting stage comprises a reflective layer, and the light-emitting semiconductor structure is disposed on the reflective layer. 10. The light-mixing type light-emitting diode according to claim 8, further comprising a selective reflection layer formed on the light-transmitting substrate. 11. The light-mixing light-emitting diode according to claim 10, wherein the selective reflection layer is a single layer dielectric or a multilayer dielectric material 22 1,00. 3 4L5- </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; 13. The light-mixing type light-emitting diode according to the first aspect of the invention, wherein the selective reflection layer comprises a through hole or a pattern mask. 14' The light-mixing type light-emitting diode according to the eighth aspect of the patent application, further comprising a phosphor powder layer formed on the light-transmitting substrate. 15. A light-mixing light-emitting diode comprising: a carrier; a first phosphor layer formed on the stage; a light-emitting semiconductor structure disposed on the first phosphor layer and There is a gap between the private layers of the work light, wherein the light emitting semiconductor structure is electrically connected to the stage; and a light transmissive substrate is located on the light emitting semiconductor structure. The light-mixing type light-emitting diode according to the fifteenth aspect of the invention, wherein the stage comprises a reflective layer, and the first phosphor layer is formed on the reflective layer. 17. The light-mixing type light-emitting diode according to the fifteenth aspect of the invention, wherein the step-selective-selective reflection layer is formed on the light-transmitting substrate. 18. The light-mixing type light-emitting diode according to item 17 of the patent application, wherein. The mysterious selective reflection layer is formed by a single layer of dielectric or a multilayer dielectric. 19. The light-mixing type light-emitting diode according to claim 18, wherein the dielectric layer comprises at least two or more dielectric materials. 2. The mixed light-emitting diode according to claim 17, wherein the selective reflection layer comprises a through hole or a graphic mask. The light-mixing type light-emitting diode according to claim 5, further comprising a second phosphor powder layer formed on the light-transmitting substrate. 22. A light-mixing light-emitting diode comprising a transparent substrate having a first surface and a second surface opposite to the first surface; a light emitting semiconductor structure is formed on the first surface; a selective reflective layer is located in the light emitting semiconductor Structurally; and a phosphor layer is formed on the second surface; wherein a portion of the light radiated by the light emitting semiconductor structure is partially reflected by the selective reflective layer to travel toward the transparent substrate and the phosphor layer. 23. The light-mixing light-emitting diode according to claim 22, wherein the selective reflection layer is formed by a single layer of dielectric or a multilayer dielectric. Mixed light as described in 23 items A light-emitting diode, wherein the multilayer dielectric comprises at least two or more dielectric materials. 25. The light-mixing light-emitting diode according to claim 22, wherein the selective reflection layer comprises a pass. a light-filling type light-emitting diode, comprising: a substrate; a first phosphor layer formed on the substrate; a light-emitting semiconductor structure formed on the first phosphor layer And a selective reflection layer is formed on the light-emitting semiconductor structure. 27. The light-mixing type light-emitting diode according to claim 26 of the patent application, in the 24th month, the modified page step I3, a fluorescent powder The layer is formed on the selective reflection layer. 2. The light-mixing type light-emitting diode according to claim 26, wherein the selective reflection layer is a single layer dielectric or a multilayer dielectric material. The light-mixing light-emitting diode according to claim 28, wherein the dielectric material comprises at least two or more dielectric materials. 30. The wave according to claim 26 of claim (4) Light-emitting diode, wherein "Hai selective reflection layer includes - through hole _Graphic mask 31. The light-mixing type light-emitting diode according to claim 26 of the patent application, the progress comprising a third phosphor layer to form the light-emitting semiconductor structure. The light-mixing light-emitting diode further comprises a selective reflection layer formed on the third phosphor layer. 33. The light-mixing light-emitting diode according to claim 32 The sinusoidal selective reflective layer is formed by a single layer of dielectric material or a multilayer dielectric material. 34. The light-mixing type light-emitting diode according to claim 33, wherein the multilayer dielectric material The material includes at least two or more kinds of dielectric materials. The light-emitting type light-emitting diode according to claim 32, wherein the selective reflection layer comprises a through hole or a pattern mask. 25
TW96124699A 2007-07-06 2007-07-06 Light-blending light-emitting diode TWI343664B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96124699A TWI343664B (en) 2007-07-06 2007-07-06 Light-blending light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96124699A TWI343664B (en) 2007-07-06 2007-07-06 Light-blending light-emitting diode

Publications (2)

Publication Number Publication Date
TW200903843A TW200903843A (en) 2009-01-16
TWI343664B true TWI343664B (en) 2011-06-11

Family

ID=44722206

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96124699A TWI343664B (en) 2007-07-06 2007-07-06 Light-blending light-emitting diode

Country Status (1)

Country Link
TW (1) TWI343664B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343831B2 (en) 2009-04-16 2013-11-13 日亜化学工業株式会社 Light emitting device
TWI401786B (en) * 2009-11-11 2013-07-11 Optromax Electronics Co Ltd Package structure
TWI398968B (en) * 2010-02-03 2013-06-11 Formosa Epitaxy Inc Light emitting diode structure and method of manufacturing the same

Also Published As

Publication number Publication date
TW200903843A (en) 2009-01-16

Similar Documents

Publication Publication Date Title
CN104205377B (en) Light-emitting device
TWI239659B (en) Light emitting apparatus
CN104205371B (en) LED module and method, the illuminator of preparing LED module
KR100683364B1 (en) A light emitting diode device that produces white light by performing complete phosphor conversion
JP5666715B2 (en) Optoelectronic semiconductor chip and manufacturing method thereof
JP5491438B2 (en) Optical element that generates white light or color light
JP2008219057A (en) Method for manufacturing light emitting diode light source with luminescence conversion layer
TW200921948A (en) A light emitting element and thereof method
TWI378575B (en) Light emitting diode device and manufacturing method thereof
CN105940508B (en) Luminescent device and light emitting device
JP6286026B2 (en) Light emitting diode components
TWI569479B (en) Light emitting device
TW200836382A (en) White light emitting device and white light source module using the same
JP2006319333A (en) Ac light-emitting device and method of fabricating the same
TW200908386A (en) Illumination system
TW201108390A (en) Quasioptical LED package structure for increasing color render index and brightness
JP2010130000A (en) Optical film
TW201201355A (en) Light emitting diode package, lighting apparatus having the same, and method for manufacturing light emitting diode package
TW201242097A (en) Package substrate having light-emitting element and fabrication method thereof
TWI343664B (en) Light-blending light-emitting diode
KR20120136340A (en) Light-emitting diode and method for manufacturing the same
JP2013118244A (en) Semiconductor light-emitting device and lighting apparatus using the same
JP2011114097A (en) Illuminator
TW201001759A (en) Method and apparatus for generating white light from solid state light emitting devices
CN111430526B (en) Semiconductor light source