TW201201355A - Light emitting diode package, lighting apparatus having the same, and method for manufacturing light emitting diode package - Google Patents

Light emitting diode package, lighting apparatus having the same, and method for manufacturing light emitting diode package Download PDF

Info

Publication number
TW201201355A
TW201201355A TW100112754A TW100112754A TW201201355A TW 201201355 A TW201201355 A TW 201201355A TW 100112754 A TW100112754 A TW 100112754A TW 100112754 A TW100112754 A TW 100112754A TW 201201355 A TW201201355 A TW 201201355A
Authority
TW
Taiwan
Prior art keywords
layer
led
package
light
led wafer
Prior art date
Application number
TW100112754A
Other languages
Chinese (zh)
Inventor
Kyu-Sang Kim
Jin-Ha Kim
Jae-Yoo Jeong
Moo-Youn Park
Chung-Bae Jeon
Original Assignee
Samsung Led Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Led Co Ltd filed Critical Samsung Led Co Ltd
Publication of TW201201355A publication Critical patent/TW201201355A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Abstract

A light emitting diode (LED) package, a lighting apparatus including the same, and a method for manufacturing an LED package are disclosed. The LED package includes: a package substrate; an LED chip mounted on the package substrate; and a wavelength conversion layer formed to cover at least a portion of an upper surface of the LED chip when a surface formed by the LED chip when viewed from above is defined as the upper surface of the LED chip, wherein the wavelength conversion layer is formed so as not to exceed the area of the upper surface of the LED chip and includes a flat surface parallel to the upper surface of the LED chip and curved surfaces connecting the corners of the upper surface of the LED chip.

Description

201201355 六、發明說明: [相關申請案之交互參照] 本申請案主張向韓國智慧財產局於2010年4月15曰 申請之韓國專利申請案第10-2010-0034693璩及於2010 年12月14日申請之第10-2010-0127774號的優先權’其 揭示内容併入本文作為參考資料。 【發明所屬之技術領域】 本發明係有關於發光二極體封裝件、具其之照明設 備、及製造發光二極體封裝件之方法。 【先前技術】 近來,發光二極體(LED)已應用於各種領城中的各式 裝置,例如鍵盤、背光、交通號誌、機場跑道的引導燈、 照明燈泡等。隨著LED應用於各種領域的各武裝置’封裝 LED技術的重要性已浮現。 在先前技術的LED封裝件中,第一及第二導線架係配 置於封裝件主體内,以及將LED晶片裝在第一導線架上。 第一及第二導線架用電線電氣連接。就此情形而言,封裝 件主體的形狀為杯狀,以及在杯子内形成樹脂部件以便保 護LED晶片、電線等。在樹脂部件中,用以轉換光線波長 以允許由LED晶片發出白光的螢光粉(或螢光材料)可分散 於該樹脂部件。 不過,在先前技術中,由LED晶片發出的光線在樹脂 部件中被反射及擴散多次以便入射至封裝件主體、第一及 第二導線架等,損失的能量等於每個表面的吸收率。亦即, 4 95182 201201355 當入射光的數量為1以及每個表面的反射率為R時,入射 \ 光中被吸收及消散(亦即,消失)的部份為(1_R)。 此外’填充樹脂部件於杯狀封袭件主體的整個内部以 . 及光線由樹脂部件的整個表面射出,可增加LED封裝件的 集光率(etendue)。因此,先前技術的LED封裝件無法應用 於需要低集光率光源的應用領域,例如,用於相機閃光燈、 相機頭燈、投影機等的光源。在此,集光率為轄射光的立 體角(solidangle)乘上光源面積所得到的數值’它會隨著 光源面積增加而增加。 此外,在先前技術中,在LED晶片的發光表面上產生 光線的色溫偏差,所以在通過透鏡觀看發射光線的轄射圖 案時,過度出現習稱牛眼的色彩模糊(col()r blur)。 【發明内容】 本發明之-種態樣提供一種有改良發光效率的發光 二極體⑽)封裝件,與其他的產品相比’其係由LED晶片 之發光表面發出有均勻色溫的光線,以及有減少的色溫變 化’-種製造該LED封農件的方法,以及一種有該封 裝件的照明設備。 根據本發明之-種態樣,提供一種發光二極體(led) 封裝件,其係包含:封裝基材;裝在該封裝基材上的哪 晶片;以及,波長轉換層,其係形成以覆蓋至少部份之該 LED晶片的上表面’而以從上俯視時該咖晶片形成之表 面定義為該LED晶片的上表面,其中該波長轉換層經形成 為不超出該LED晶片之該上表面的區域而且包含與該· 95182 5 201201355 曰曰片之該上表面平行的平坦面以及連接該LED晶片之該上 表面之轉角的曲面。 該LED封裝件可進一步包含:光反射層,其係形成於 該封裳基材上以包圍該LED晶片的側面。 該光反射層可由含有二氧化鈦⑺⑹的材料製成。 -亥LED封裝件可進—步包含:覆蓋該波長轉換層及該 光反射層的光分布層。 :亥光刀布層可由含有二氧化矽⑶⑹的材料製成。 该㈣封裝件可進一步包含:壩體(dam) ,其係形成 於該封裝基材上以界Μ腔用以容納該⑽晶片、該光反 射層、及該光分布層於其中。 該壩體可由含有樹脂的材料製成。 該LED封裝件可進一步包含:覆蓋該晶片的透明 覆蓋層。 該封裝基材可由含有陶瓷的材料製成。 該波長轉換層可含有透明樹脂及螢光粉的材料製成。 該螢光粉與該透明材料的重量比可等於2:丨或更大。 該LED晶片可包含:由導電材料製成的結構支持層; 以及,發光結構,其係形成於該結構支持層之表面上以及 包含P型半導體層、主動層、及n型半導體層。 該發光結構可形成於該結構支持層之表面的部份上, 以及該LED晶片之該上表面可包含該發光結構之表面與該 結構支持層之表面中未形成該發光結構的其他 該-晶片可包含:成長基材;以及,發=其 95182 6 201201355 =成於該成長基材之表面上以及包含n解導體層、主 曰及p型半導體層,其中該主動層與該p型半導體層 可形成於該n型半導體層之表_部份上。 該led晶片之該上表面可包含該p型半導體層之表面 ^ η型半導體層之表面中未形成該主動層及該p型半導 體層的其他剩餘區域。 該LED晶片之該上表面可為該成長基材之另一個表面。 該LED封裝件可進一步包含:形成於該⑽晶片之該 面上的電極塾,其中可形成覆蓋該電極塾的波長轉換 該封裝件可進一步包含:使該電極塾電氣連接至 該封裝基材的電線。 該波長轉換層可延伸至該led晶片的侧面。 可形成多個LED晶片與多個波長轉換層,以及該等多 個波長轉換層各自可形成於轉多個㈣晶片的上表面 上0 可提供—種包含前述LED封裝件的照明設備。 A -顧於製造LED縣件的方法,其係包含下列步驟: 安裝LED {於封裝基材上;以及,塗佈包含透明樹脂、 營光粉及溶劑的混合物於該LED晶片的上表面,其中在塗 佈《亥此&amp;物的製程中於由該混合物移除該溶劑後 ,該波長 轉換層經形成為不超出該谓晶片之該上表面的區域以及 包含與該LED晶片之上表面平行的平坦面以及連接該平坦 面與》亥LED日日片之該上表面之轉角的曲面,該·晶片之 95182 7 201201355 該上表面係於該led晶片形成表面時從上俯視定義。 該溶劑可由揮發材料製成。 該方法可進一步包含下列步驟:在該混合物的塗佈製 程中,加熱塗佈於該LED晶片之該上表面的該混合物藉此 蒸發該溶劑。 該混合物的塗佈可用分配器(diSpenser)來完成。 該混合物的塗佈可包含:連續塗佈該混合物以保持該 混合物由該分配器連續地塗佈於該LED晶片之該上表面的 狀態。 在該分配器以螺旋或Z字形方式在該LED晶片的上表 面上方移動時,可進行該混合物的塗佈。 該方法可進一步包含下列步驟:在該混合物的塗佈 後,形成光反射層於該職基材上以包圍該LED晶片的側 面0 該光反射層可由含有二氧化鈦的材料製成。 =法可進一步包含下列步驟:在該光反射層形成 後,形成覆錢波長轉制及該光反射層的光分布層。 該光分布層可由含有二氧化矽的材料製成。曰 •t 可進纟包含下列步驟:在形成該光反射層之 曰片H裝基材上形成壩體,以界定空㈣以容納該LED 曰曰片、該光反射層、及該光分布層於其中。 步包形成於該封裝基材的邊緣上,該方法可進一 3下列步驟·在光分布層形成後 封裝基材巾㈣壩體形纽其上的雜。除料體以及名 95182 8 201201355 該壩體可由含有樹脂的材料製成。 該壩體的形成可用分配器來完成。 該方法可進一步包含下列步驟:在該混合物的塗佈 後,形成覆蓋該LED晶片的透明覆蓋層。 該封裝基材可由含有陶瓷的材料製成。 該螢光粉與該透明樹脂的重量比可等於2: 1或更大。 該LED晶片可包含:由導電材料製成的結構支持層; 以及發光結構,其係形成於該結構支持層之表面上以及包 含P型半導體層、主動層、及η型半導體層。 該發光結構可形成於該結構支持層之表面的部份上, 以及該LED晶片之該上表面可包含該發光結構之表面以及 該結構支持層之表面中未形成該發光結構的其他剩餘區 域。 該LED晶片可包含:成長基材;以及,發光結構,其 係形成於該成長基材之表面上以及包含η型半導體層、主 動層、及ρ型半導體層,其中該主動層與該ρ型半導體層 可形成於該η型半導體層之表面的部份上。 該LED晶片之該上表面可包含該ρ型半導體層之表面 以其該η型半導體層之表面中未形成該主動層及該ρ型半 導體層的其他剩餘區域。 該LED晶片之該上表面可為該成長基材之另一個表 面。 電極墊可形成於該LED晶片之該上表面上,以及可執 行該混合物的塗佈以覆蓋該電極墊。 9 95182 201201355 該方法可進一步包含下列步驟:在該led晶片的安裝 與該混合物的塗佈之間,用電線使該電極墊電氣連接至該 封裝基材。 在該混合物的塗佈時’塗佈該混合物於該led晶片的 上表面及側面。 可形成多個LED晶片,以及在該混合物的塗佈時,各 自可塗佈該混合物於多個LED晶片的上表面。 【實施方式】 此時’用附圖詳述本發明的示範具體實施例。不過, 本發明可實作成為多種不同的形式而不應被視為受限於在 此所提到的具體實施例。反而’提供該等具體實施例使得 本文有全面完整的揭示内容,以及向熟諳此藝者完整地表 達本發明的範疇。附圖中’為了說明清楚而誇大形狀及尺 寸,而且相同或類似的組件都用相同的元件符號表示。 第1圖的剖面圖根據本發明之例示性具體實施例圖示 發光二極體(LED)封裝件。 根據本發明之例示性具體實施例,如第1圖所示,LED 封裝件1〇〇包含封裝基材110,用黏著層114裝在封裝基 材110上以及用電線130電氣連接至封裝基材HQ的led 曰曰片120 ’只形成於LED晶片120元件的上表面上的波長 轉換層140,經填充成可包圍LED晶片12〇的光反射層15〇, 以及覆蓋LED晶片120及光反射層15〇的光分布層16〇。 在此,LED晶片120元件的上表面係指在從上方俯視LED 曰曰片120時由LED晶片120形成的平面。從上方俯視時, 95182 10 201201355 在形成LED晶片120元件的上表面方面,它可經形成包含 •各有不同高度或由不同材料製成的區域。例如,參考第5 圖,LED晶片120之一上表面可由p型半導體層124、η型 ‘ 半導體層126、及中間的發光結構123形成。諸如‘上表 面,、‘下表面’及‘側面’之類用於本揭示内容的術語 係基於附圖,實際上它配置元件的方向可能不同。 根據本示範具體實施例,不像先前技術的LED封裝件 是模造含有螢光粉的樹脂部件於LED四周及上表面上,只 在LED晶片120的上表面上形成波長轉換層140,藉此可 最小化有一部份產生光線由於在樹脂部件反射及擴散而被 周遭結構吸收的現象’改善LED封裝件的發光效率以 及減少發光總面積’從而增加用於需要低集光率之各種照 明設備的可能性。 此外,形成波長轉換層140於LED晶片120的上表面 上使得它有與上表面平行的平坦面146,除了在LE])晶片 120上表面轉角附近的部份以外,藉此由LED晶片12〇產 生的光線在LED晶片120的上表面有均勻的色溫,顯著減 少產生光線内的色衫模糊(例如,色彩沾污或色斑)。 此外,在LED晶片12〇分成個別的LED晶片12〇後, 考慮每個LED晶片12G的特性’可形成有適當厚度的波長 轉換層140,從而也可有效減少可能產生於各個⑽封裝 件100產品之間的色溫變化。 此時根據本發明之此例示性具體實施例,參考第 至第6圖,詳述LED封裝件1〇〇的配置。 95182 11 201201355 如第1圖所示,電路圖案112形成於封裝基材11〇上, 以及LED晶片120裝在電路圖案112上,以及LED晶片12〇 的電極墊121通過打線接合(wire bonding)可電氣連接至 電路圖案112。 在此’為了改善它的散熱性能及發光效率,封裝基材 110可由陶竟材料製成’例如,諸如A12〇3、氧化铭之類有 高耐熱性、優異導熱率、高反射效率及其類似者的材料。 不過,封裝基材110的材料不限於此,以及考慮到LED封 裝件100的散熱性能、電氣連接及其類似者,可用各種材 料來形成封裝基材110。 此外,除了前述陶瓷基材以外’印刷電路板、導線架 及其類似物也可用作本例示性具體實施例的封裝基材110。 如第1圖所不’ LED晶片120係裝在封裝基材上。 亦即’ LED晶片120藉由黏著層114附著至封裝基材HQ, 以及形成於LED晶片120上的電極替121可藉由電線13〇 電氣連接至封裝基材110的電路圖案112。 在此’ LED晶片120可具有各種結構,例如垂直或水 平結構,以及LED晶片120可用各種方式電氣連接至封裝 基材110,例如打線接合、覆晶接合(flip-chipb〇nding^ 或其類似者。以下參考第4圖至第6圖,更詳細地描述LED 晶片12 0的特定結構。 根據刖述LED晶片120的結構’黏著層114可由導電 材料或不導電材料製成,以及參考第4圖至第6圖,也描 述黏著層114的材料。 95182 12 201201355 第2圖的示意圖根據本發明之例示性具體實施例圖示 LED封裝件1〇〇的波長轉換層ι4〇。 波長轉換層140可轉換由LED晶片120產生的光線中 之一部份的波長,以及在波長被轉換的光線與其他波長未 被轉換的光線混合時,LED封裝件1〇〇可發出白光。 例如,當LED晶片120發出藍光時,含有黃色螢光粉 144的波長轉換層140可用來產生白光,以及在LED晶片 120發出紫外光時,混合紅色、綠色、藍色螢光粉144的 波長轉換層140可用來形成白光。此外,可用可變方式來 組合各種類型的LED晶片120與各種類型的螢光粉144以 產生白光。 如第1圖及第2圖所示’波長轉換層140只形成於LED 晶片丨20的上表面上,以及波長轉換層ho的表面可包含 與上表面平行的平坦面146與連接平坦面146及上表面轉 角的曲面148。 亦即’如第1圖及第2圖所示,波長轉換層14〇經形 成為不超出LED晶片120上表面的區域’以及波長轉換層 140經形成為具有與LED晶片120上表面平行的平坦面146 以及經形成為在LED晶片120上表面轉角附近的區域有連 接平垣面146及LED晶片120上表面轉角的曲面Mg。 在此,如上述,LED晶片120的上表面係指提供作為 允許出於LED晶片120之光線通過它發射之路徑的發光表 面拫據LED晶片120的結構,該上表面可為有相同高户 的單〜表面,或可包含從上面俯視為一個表面的多個表^ 95182 13 201201355 然而該等多個表面彼此有階梯關係。以下參考第4圖至第 6圖來描述LED晶片120的結構。 波長轉換層140的平坦面146可意指在製程上高度有 不可避免差異的情形,而不是它與LED晶片120上表面實 際平行的情形。例如,波長轉換層140平坦面146的高度 可在平均值的約-10%至+10%之間變化。 此外,基於第1圖的剖面圖,波長轉換層140中形成 平坦面146之中央區的寬度可為對應至各自由LED晶片 120上表面中央至上表面兩邊轉角長度約70%的兩點間距 離,以及波長轉換層140平坦面146的寬度可隨著用以形 成波長轉換層140的製程條件而有所不同,例如材料的物 理特性,混合物的黏度,或混合物的加熱溫度。 如第2圖所示’波長轉換層14〇可由含有透明樹脂142 及螢光粉144的材料製成’以及形成於LED晶片120上表 面中央區上之波長轉換層14〇的厚度可設定成在例如3〇 微米至150微米的範圍内。 混合波長轉換層140所轉換的光線與由led晶片120 發出的光線以允許由LED封裝件!〇〇發出白光。例如,當 藍光由LED晶片120發出時,可使用黃色螢光粉,以及當 紫外光由LED晶片120發出時,可使用混合紅色、綠色及 藍色的螢光粉。此外,可以可變方式組合螢光粉的顏色與 LED晶片120以發射白光。此外,可單單應用波長轉換材 料(例如,綠色、紅色、及其類似物)來實作用於發射對應 色彩的光源,而不需白光。 95182 201201355 洋a之,當藍光由LED晶片120發出時,使用於宜中 的紅色螢光粉可包含MAlSiNx: Re(Uu5)氮化物螢光粉, 肋:Re硫化物螢光粉,及其類似物。在此,M係選自以下 元素中之至少一:Ba、Sr、Ca及Mg,而D選自以下元素中 之至少一 ·· S、Se及Te,以及Re係選自以下元素中之至少 一 · Eu、Y、La、Ce、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、201201355 VI. Invention Description: [Reciprocal Reference of Related Applications] This application claims Korean Patent Application No. 10-2010-0034693 filed on April 15, 2010 by the Korea Intellectual Property Office and December 14, 2010 Priority of Japanese Patent Application No. 10-2010-0127774, the disclosure of which is incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode package, a lighting device therewith, and a method of manufacturing the light emitting diode package. [Prior Art] Recently, a light-emitting diode (LED) has been applied to various devices in various cities, such as a keyboard, a backlight, a traffic sign, a guide light of an airport runway, a lighting bulb, and the like. With the application of LEDs in various fields, the importance of packaging LED technology has emerged. In prior art LED packages, the first and second leadframes are disposed within the package body and the LED wafer is mounted on the first leadframe. The first and second lead frames are electrically connected by wires. In this case, the package body has a cup shape and a resin member is formed in the cup to protect the LED chip, the electric wire, and the like. In the resin member, a phosphor powder (or a fluorescent material) for converting the wavelength of light to allow white light to be emitted from the LED wafer can be dispersed in the resin member. However, in the prior art, light emitted from the LED wafer is reflected and diffused a plurality of times in the resin member to be incident on the package body, the first and second lead frames, etc., and the energy lost is equal to the absorption rate of each surface. That is, 4 95182 201201355 When the amount of incident light is 1 and the reflectance of each surface is R, the portion of the incident light that is absorbed and dissipated (ie, disappears) is (1_R). Further, the 'filled resin member' is emitted from the entire inner surface of the cup-shaped seal member body and the light is emitted from the entire surface of the resin member, thereby increasing the etendue of the LED package. Therefore, prior art LED packages cannot be applied to applications requiring low etendue sources, such as light sources for camera flashes, camera headlights, projectors, and the like. Here, the etendue is the value obtained by multiplying the solid angle of the illuminating light by the area of the light source, which increases as the area of the light source increases. Further, in the prior art, the color temperature deviation of the light is generated on the light emitting surface of the LED wafer, so that when the ray pattern of the emitted light is viewed through the lens, the color blur (col()r blur) of the bull's eye is excessively appeared. SUMMARY OF THE INVENTION The present invention provides a light-emitting diode (10) package having improved luminous efficiency, which is compared with other products, which emits light having a uniform color temperature from the light-emitting surface of the LED chip, and There is a reduced color temperature change' - a method of manufacturing the LED closure, and a lighting device having the package. According to an aspect of the present invention, a light emitting diode (LED) package is provided, comprising: a package substrate; a wafer mounted on the package substrate; and a wavelength conversion layer formed by Covering at least a portion of the upper surface of the LED wafer and defining a surface of the LED wafer from a top view as the upper surface of the LED wafer, wherein the wavelength conversion layer is formed not to exceed the upper surface of the LED wafer The region also includes a flat surface parallel to the upper surface of the cymbal of the 95182 5 201201355 and a curved surface connecting the corners of the upper surface of the LED wafer. The LED package can further include a light reflecting layer formed on the sealing substrate to surround a side of the LED wafer. The light reflecting layer may be made of a material containing titanium oxide (7) (6). The LED package can further include: a light distribution layer covering the wavelength conversion layer and the light reflection layer. The Haiguang knife layer can be made of a material containing cerium oxide (3) (6). The (four) package may further include a dam formed on the package substrate to define a (10) wafer, the light reflecting layer, and the light distribution layer. The dam may be made of a material containing a resin. The LED package can further comprise: a transparent cover layer overlying the wafer. The package substrate can be made of a ceramic-containing material. The wavelength conversion layer may be made of a material containing a transparent resin and a fluorescent powder. The weight ratio of the phosphor powder to the transparent material may be equal to 2: 丨 or more. The LED chip may include: a structural support layer made of a conductive material; and a light emitting structure formed on a surface of the structural support layer and including a P-type semiconductor layer, an active layer, and an n-type semiconductor layer. The light emitting structure may be formed on a portion of the surface of the structural support layer, and the upper surface of the LED chip may include a surface of the light emitting structure and other of the surface of the structural support layer where the light emitting structure is not formed. And comprising: a growth substrate; and, a hair = 95182 6 201201355 = formed on the surface of the growth substrate and comprising an n-de-conducting layer, a main germanium and a p-type semiconductor layer, wherein the active layer and the p-type semiconductor layer It can be formed on the surface of the n-type semiconductor layer. The upper surface of the led wafer may include a surface of the p-type semiconductor layer. The active layer and other remaining regions of the p-type semiconductor layer are not formed in the surface of the n-type semiconductor layer. The upper surface of the LED wafer can be the other surface of the growth substrate. The LED package may further include: an electrode electrode formed on the surface of the (10) wafer, wherein a wavelength conversion covering the electrode electrode may be formed, the package may further include: electrically connecting the electrode electrode to the package substrate wire. The wavelength conversion layer can extend to the side of the led wafer. A plurality of LED wafers and a plurality of wavelength converting layers may be formed, and each of the plurality of wavelength converting layers may be formed on an upper surface of the plurality of (four) wafers. A lighting device including the foregoing LED packages may be provided. A - a method of manufacturing an LED article, comprising the steps of: mounting an LED {on a package substrate; and coating a mixture comprising a transparent resin, a camping powder, and a solvent on an upper surface of the LED chip, wherein The wavelength conversion layer is formed to not exceed a region of the upper surface of the wafer and includes a surface parallel to the upper surface of the LED wafer after the solvent is removed from the mixture in the process of coating the apparatus The flat surface and the curved surface connecting the flat surface and the corner of the upper surface of the "Hail LED" are 95182 7 201201355. The upper surface is defined from the top when the LED wafer is formed on the surface. The solvent can be made of a volatile material. The method may further comprise the step of heating the mixture applied to the upper surface of the LED wafer in the coating process of the mixture thereby evaporating the solvent. The coating of the mixture can be accomplished with a dispenser (diSpenser). Coating of the mixture may include continuously coating the mixture to maintain the mixture continuously applied to the upper surface of the LED wafer by the dispenser. The coating of the mixture can be carried out while the dispenser is moving in a spiral or zigzag manner over the upper surface of the LED wafer. The method may further comprise the step of forming a light reflecting layer on the substrate to coat the side of the LED wafer after coating of the mixture. The light reflecting layer may be made of a material comprising titanium dioxide. The method may further comprise the step of forming a light distribution layer and a light distribution layer of the light reflecting layer after the light reflecting layer is formed. The light distribution layer may be made of a material containing cerium oxide. The 曰•t can include the following steps: forming a dam on the cymbal H substrate on which the light reflecting layer is formed to define an empty (four) to accommodate the LED ruthenium, the light reflecting layer, and the light distributing layer In it. The step package is formed on the edge of the package substrate, and the method can be carried out as follows: 3. After the light distribution layer is formed, the substrate substrate (4) is entangled on the dam body. Dividing body and name 95182 8 201201355 The dam can be made of a resin-containing material. The formation of the dam can be accomplished with a dispenser. The method can further comprise the step of forming a transparent cover layer overlying the LED wafer after coating of the mixture. The package substrate can be made of a ceramic-containing material. The weight ratio of the phosphor powder to the transparent resin may be equal to 2:1 or more. The LED chip may include: a structural support layer made of a conductive material; and a light emitting structure formed on a surface of the structural support layer and including a P-type semiconductor layer, an active layer, and an n-type semiconductor layer. The light emitting structure may be formed on a portion of the surface of the structural support layer, and the upper surface of the LED chip may include a surface of the light emitting structure and other remaining regions of the surface of the structural support layer where the light emitting structure is not formed. The LED chip may include: a growth substrate; and a light emitting structure formed on a surface of the growth substrate and including an n-type semiconductor layer, an active layer, and a p-type semiconductor layer, wherein the active layer and the p-type A semiconductor layer may be formed on a portion of the surface of the n-type semiconductor layer. The upper surface of the LED chip may include a surface of the p-type semiconductor layer such that the active layer and other remaining regions of the p-type semiconductor layer are not formed in the surface of the n-type semiconductor layer. The upper surface of the LED wafer can be another surface of the growth substrate. An electrode pad may be formed on the upper surface of the LED wafer, and coating of the mixture may be performed to cover the electrode pad. 9 95182 201201355 The method may further comprise the step of electrically connecting the electrode pad to the package substrate between the mounting of the LED wafer and the coating of the mixture. The mixture was applied to the upper and side faces of the led wafer at the time of coating of the mixture. A plurality of LED wafers can be formed, and the coating can be applied to the upper surface of the plurality of LED wafers at the time of coating of the mixture. [Embodiment] At this time, an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings. However, the invention may be embodied in many different forms and should not be construed as being limited to the specific embodiments. Rather, the <RTI ID=0.0>> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; In the drawings, the shapes and dimensions are exaggerated for clarity of description, and the same or similar components are denoted by the same reference numerals. 1 is a cross-sectional view illustrating a light emitting diode (LED) package in accordance with an exemplary embodiment of the present invention. According to an exemplary embodiment of the present invention, as shown in FIG. 1, the LED package 1A includes a package substrate 110, is mounted on the package substrate 110 by an adhesive layer 114, and is electrically connected to the package substrate by wires 130. The LED chip 120' of the HQ is formed only on the wavelength conversion layer 140 on the upper surface of the LED chip 120, filled into the light reflection layer 15A surrounding the LED chip 12, and covers the LED wafer 120 and the light reflection layer. The 15 光 light distribution layer is 16 〇. Here, the upper surface of the LED chip 120 element refers to a plane formed by the LED wafer 120 when the LED chip 120 is viewed from above. When viewed from above, 95182 10 201201355 in forming the upper surface of the LED wafer 120 component, it can be formed to include regions each having a different height or made of a different material. For example, referring to FIG. 5, an upper surface of one of the LED chips 120 may be formed of a p-type semiconductor layer 124, an n-type 'semiconductor layer 126, and an intermediate light-emitting structure 123. Terms such as 'upper surface, 'lower surface' and 'side' are used in the present disclosure based on the drawings, and in fact the orientation of the elements may be different. According to the exemplary embodiment of the present invention, unlike the LED package of the prior art, the resin component containing the phosphor powder is molded on the periphery and the upper surface of the LED, and only the wavelength conversion layer 140 is formed on the upper surface of the LED wafer 120. Minimizing the phenomenon that light is absorbed by the surrounding structure due to reflection and diffusion of the resin member 'improves the luminous efficiency of the LED package and reduces the total area of light', thereby increasing the possibility of using various lighting devices requiring low etendue Sex. Further, the wavelength conversion layer 140 is formed on the upper surface of the LED wafer 120 such that it has a flat surface 146 parallel to the upper surface, except for the portion near the corner of the upper surface of the wafer 120, thereby being formed by the LED wafer 12 The resulting light has a uniform color temperature on the upper surface of the LED wafer 120, significantly reducing the color shade (e.g., color contamination or stain) within the resulting light. In addition, after the LED chip 12 is divided into individual LED chips 12, considering the characteristics of each LED wafer 12G, a wavelength conversion layer 140 having an appropriate thickness can be formed, thereby also effectively reducing the number of products that may be generated in each (10) package 100. The color temperature changes between. At this time, in accordance with this exemplary embodiment of the present invention, the configuration of the LED package 1A will be described in detail with reference to the first to sixth figures. 95182 11 201201355 As shown in FIG. 1, the circuit pattern 112 is formed on the package substrate 11A, and the LED chip 120 is mounted on the circuit pattern 112, and the electrode pad 121 of the LED chip 12 is electrically bonded by wire bonding. Electrically connected to the circuit pattern 112. Herein, in order to improve its heat dissipation performance and luminous efficiency, the package substrate 110 can be made of ceramic materials, for example, such as A12〇3, oxidized, high heat resistance, excellent thermal conductivity, high reflection efficiency, and the like. Material. However, the material of the package substrate 110 is not limited thereto, and the package substrate 110 may be formed of various materials in consideration of the heat dissipation performance, electrical connection, and the like of the LED package 100. Further, a printed circuit board, a lead frame, and the like can be used as the package substrate 110 of the present exemplary embodiment in addition to the aforementioned ceramic substrate. As shown in Fig. 1, the LED wafer 120 is mounted on a package substrate. That is, the LED wafer 120 is attached to the package substrate HQ by the adhesive layer 114, and the electrode 121 formed on the LED wafer 120 can be electrically connected to the circuit pattern 112 of the package substrate 110 by the wires 13A. Here, the 'LED wafer 120 can have various structures, such as vertical or horizontal structures, and the LED wafer 120 can be electrically connected to the package substrate 110 in various ways, such as wire bonding, flip chip bonding (flip-chipb〇nding^ or the like). The specific structure of the LED wafer 120 will be described in more detail below with reference to Figures 4 through 6. The adhesive layer 114 may be made of a conductive material or a non-conductive material according to the structure of the LED wafer 120, and reference is made to Figure 4 The material of the adhesive layer 114 is also described in Fig. 6. 95182 12 201201355 The schematic view of Fig. 2 illustrates a wavelength conversion layer ι4 of the LED package 1 根据 according to an exemplary embodiment of the present invention. The LED package 1 can emit white light when the wavelength of one of the light generated by the LED chip 120 is converted, and when the wavelength converted light is mixed with other wavelengths that are not converted. For example, when the LED chip 120 When blue light is emitted, the wavelength conversion layer 140 containing the yellow phosphor powder 144 can be used to generate white light, and when the LED wafer 120 emits ultraviolet light, the red, green, and blue phosphor powders 144 are mixed. The wavelength conversion layer 140 can be used to form white light. Further, various types of LED chips 120 and various types of phosphor powder 144 can be combined in a variable manner to produce white light. As shown in Figures 1 and 2, the wavelength conversion layer 140 Only formed on the upper surface of the LED wafer cassette 20, and the surface of the wavelength conversion layer ho may include a flat surface 146 parallel to the upper surface and a curved surface 148 connecting the flat surface 146 and the upper surface corner. That is, as shown in FIG. 1 and As shown in FIG. 2, the wavelength conversion layer 14 is formed so as not to extend beyond the upper surface of the LED wafer 120, and the wavelength conversion layer 140 is formed to have a flat surface 146 parallel to the upper surface of the LED wafer 120 and formed as an LED. The area near the upper corner of the wafer 120 has a curved surface Mg connecting the flat surface 146 and the upper surface of the LED wafer 120. Here, as described above, the upper surface of the LED wafer 120 is provided as a light allowing the LED wafer 120 to pass through it. The light emitting surface of the path of the emission is according to the structure of the LED wafer 120, which may be a single-surface having the same high level, or may include a plurality of tables viewed from above as a surface. 1201355 However, the plurality of surfaces have a stepped relationship with each other. The structure of the LED wafer 120 will be described below with reference to Figs. 4 to 6. The flat surface 146 of the wavelength conversion layer 140 may mean a case where there is an inevitable difference in height in the process. Rather than being in fact parallel with the upper surface of the LED wafer 120. For example, the height of the flat surface 146 of the wavelength conversion layer 140 may vary between about -10% and +10% of the average value. In the cross-sectional view, the width of the central region forming the flat surface 146 in the wavelength conversion layer 140 may be a distance between two points corresponding to a respective length of the corner from the center to the upper surface of the upper surface of the LED wafer 120 by about 70%, and the flat surface of the wavelength conversion layer 140. The width of 146 may vary depending on the process conditions used to form the wavelength conversion layer 140, such as the physical properties of the material, the viscosity of the mixture, or the heating temperature of the mixture. As shown in FIG. 2, the wavelength conversion layer 14 can be made of a material containing the transparent resin 142 and the phosphor powder 144, and the thickness of the wavelength conversion layer 14A formed on the central portion of the upper surface of the LED wafer 120 can be set to For example, in the range of 3 〇 to 150 μm. The light converted by the wavelength conversion layer 140 is mixed with the light emitted by the LED wafer 120 to allow for the LED package! The white light is emitted. For example, when blue light is emitted from the LED wafer 120, yellow phosphor powder can be used, and when ultraviolet light is emitted from the LED wafer 120, mixed red, green, and blue phosphors can be used. Further, the color of the phosphor powder and the LED wafer 120 may be combined in a variable manner to emit white light. In addition, wavelength conversion materials (e.g., green, red, and the like) can be applied to a light source that emits a corresponding color without white light. 95182 201201355 Ocean, when the blue light is emitted by the LED chip 120, the red fluorescent powder used in Yizhong may contain MAlSiNx: Re (Uu5) nitride fluorescent powder, rib: Re sulfide fluorescent powder, and the like Things. Here, the M system is selected from at least one of the following elements: Ba, Sr, Ca, and Mg, and D is selected from at least one of the following elements: S, Se, and Te, and the Re is selected from at least the following elements. 1. Eu, Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er,

Tm、Yb、Lu、F、Cl、Br、及I。此外’使用於其中的綠色 螢光粉可包含ISiO4 : Re矽酸鹽螢光粉,MAzD4 : Re硫化物 螢光粉’ /5 -SiAlON : Re螢光粉,以及MA,2〇4 : Re,基於氧 化物之螢光粉,及其類似物。在此,M可選自以下元素中 之至少一者:Ba、Sr、Ca及Mg,A可選自以下元素中之至 少一者:Ga、Al、及In,D可選自以下元素中之至少一者: S'Se、及Te’ A’可選自以下元素中之至少一者:sc、γ、 Gd、La、Lu、A卜及In ’ Re可選自以下元素中之至少一者:Tm, Yb, Lu, F, Cl, Br, and I. In addition, the green fluorescent powder used therein may include ISiO4: Rephthalate phosphor powder, MAzD4: Resulfide phosphor powder '/5-SiAlON: Re phosphor powder, and MA, 2〇4 : Re, Oxide-based phosphor powder, and the like. Here, M may be selected from at least one of the following elements: Ba, Sr, Ca, and Mg, and A may be selected from at least one of the following elements: Ga, Al, and In, and D may be selected from the following elements. At least one of: S'Se, and Te' A' may be selected from at least one of the following elements: sc, γ, Gd, La, Lu, A, and In 'Re may be selected from at least one of the following elements: :

Eu、Y、La、Ce、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Eu, Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm,

Yb、Lu、F、Cl、Br、及I ’以及Re’可選自以下元素中之 至少一者:Ce、Nd、Pm、Sm、Tb、Dy、Ho、Er、Tm、Yb、F、 Cl、Br、及 I。 波長轉換層140可包含取代螢光粉或加入螢光粉的量 子點(quantum dot)。量子點為有核心及殼的奈米結晶粒 子,以及其核心的大小可在2奈米至1〇〇奈米之間。該量 子點可用作發出各種色彩的螢光粉,例如藍色(B)、黃色 (Y)、綠色(G)、及紅色(R),以及可異質接合 (hetero-junction)以下半導體中之至少兩種:π_νι族化 95182 15 201201355 合物半導體(ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、 HgSe、HgTe、MgTe、等等),III-V族化合物半導體(GaN、Yb, Lu, F, Cl, Br, and I' and Re' may be selected from at least one of the following elements: Ce, Nd, Pm, Sm, Tb, Dy, Ho, Er, Tm, Yb, F, Cl , Br, and I. The wavelength conversion layer 140 may include a quantum dot in place of the phosphor powder or the addition of the phosphor powder. Quantum dots are nanocrystalline particles with a core and a shell, and their cores can range in size from 2 nm to 1 nm. The quantum dots can be used as phosphors emitting various colors, such as blue (B), yellow (Y), green (G), and red (R), and in hetero-junction semiconductors. At least two types: π_νι grouping 95182 15 201201355 Compound semiconductors (ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgTe, etc.), III-V compound semiconductors (GaN,

GaP、GaAs、GaSb、InN、InP、InAs、InSb、AlAs、A1P、GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlAs, A1P,

AlSb、A1S、等等),或IV族半導體(Ge、Si、Pb、等等) 以形成構成量子點的核殼結構。就此情形而言,為了終止 在量子點殼外緣處分子結合於殼面上,抑制量子點的凝聚 以及改善樹脂(例如,矽樹脂、環氧樹脂或其類似物)的分 散特性,或改善螢光粉功能,可用諸如油酸(oleic acid) 的材料形成有機配體。量子點容易受害於水分或空氣,特 別是,在它接觸基材的板狀圖案或封裝件的導線架時,會 發生化學反應。因此,波長轉換層14〇只塗佈於led晶片 120的上表面,而排除與板狀圖案或導線架接觸的可能 性’從而改善其可靠性《因此’雖然以螢光粉為例說明波 長轉換材料’然而螢光粉可換成量子點或添加量子點於螢 光粉。 螢光粉144與透明樹脂142的重量比可等於2 : 1或 更大。因此,如第2圖所示,透明樹脂142用來接合螢光 粉144顆粒’以及透明樹脂142可由例如矽、環氧樹脂, 或藉由混合矽及環氧樹脂所得到的材料製成。 相較於先前技術螢光粉與透明樹脂的比率只有1/10 或1,螢光粉144的比率非常南。因此,用如此高的比率, 螢光粉144與透明樹脂142的混合物可增加黏度,減少在 LED晶片120上表面上的流動性。因此,可防止波長轉換 層形成時受影響於螢光粉與透明樹脂之低黏度所造成的表 95182 16 201201355 面張力而有整個曲面,以及可經形成為在LED晶片120上 . 表面上有均勻厚度。以下在參考第18圖至第35圖解釋 封裝件2〇〇之製造方法時會有更詳細的描述。 根據本例示性具體實施例,相較於LED周遭及LED上 表面全部用螢光粉模造的先前技術LED封裝件,由於只形 成波長轉換層14〇於LED晶片12〇的上表面上,可最小化 被周圍結構吸收的光線以改善LED封裝件1〇〇的發光效 率此外,由於不需要如先前技術用於模造螢光粉的封裝 件主體’可顯著減少LED封裝件1 〇〇的尺寸。 此外’實質發光面積係限於LED晶片120的上表面, 這&quot;T k加光源的單位面積光線數量。因此,可更積極地運 用LED封裝件1〇〇於需要低集光率的各種照明設備。 此外,由於波長轉換層14〇有平行於LED晶片120上 表面的平坦面146, LED封裝件1〇〇可均勻地發光。亦即, 波長轉換層14〇經形成為有均勻的厚度,僅僅不包括Ud 晶片120上表面的轉角部份,以有均勻的光學路徑,藉此 LED晶片12〇所產生的光線有均勻的色溫,雖然在光線通 過波長轉換層140時改變它的波長。 第3圖根據本發明之例示性具體實施例圖示led封裝 件100的色溫特性曲線圖。前述效果會用第3圖詳述。 第3圖的曲線圖圖示LED封裝件1〇〇對於輻射角度的 比較色溫特性(A)’以及先前技術led封裝件對於輻射角度 的色溫特性(B)’先前技術係模造含有螢光粉的樹脂於封農 件主體的全部内部上。 95182 201201355 如第3圖所示,在先前技術(B)的情形下_ 產生最大值達皿的色溫變化,而造成嚴重的,射角度 相較之下,在猶裝件卿)的情形 色:賴糊° 具體實施例’輻射角度只有最大值達咖的色 於先前技術的一半,導致有均勻的發光而識支化,, 同時’波長轉換層14。可進一步包含 = 及透明樹脂142在一起的透明細顆粒。透明%九卷144 如二氧化石夕、二氧化鈦、Al2〇3或其類似物的材料=:由= 此方式,藉由適當地調整透明細顆粒包含於波長轉 140的比率,可將光線發射至外部的色溫設定成有的 程度,就此情形而言,例如,透明細顆粒與螢光粉144的 重量比可等於1 : 2或更小。 ” 如第1圖所示,光反射層150形成於封裝基材11()上 以包圍LED晶片120的側面。例如,藉由通過分配或模造 操作在LED晶片120四周填充含有反射入射光之反射材科 (例如’二氧化鈦或其類似物)的材料可形成該光反射層。 就此情形而§ ’如第1圖所不’光反射層15 〇可經形 成為有對應至形成於LED晶片120上表面上之波長轉換層 140之高度的高度’使得光反射層150不覆蓋波長轉換層 140。 因此,由於形成圍住LED晶片120的光反射層150, 光線在入射於光分布層160後,反射光不是射出外部而是 可再度向光分布層160反射以便射向外部’導致可改善LED 封裝件100的亮度。 18 95182 201201355 光反射層150可形成於用形成於封裝基材11〇上之壩 體(第9圖的170)界定的空腔172内。在形成光反射層15〇 及光分布層(將加以描述)後,在把LED封裝件1〇〇切成單 元LED封裝件的製程中,可移除壩體(第9圖的17〇)。 鉍體(第9圖的170)可由樹脂,緩衝材料製成。因此, 如上述,雖然由陶瓷材料製成的封裝基材110在製程的加 熱及冷卻操作中會膨脹或收縮,由於壩體可變形以對 應膨脹及收縮的程度,因此可有效防止封裝基材110彎曲 或其類似者的現象以及有優異熱阻(therraa丨resi stance) 的氧化鋁可用作封裝基材110的材料。 (j以下在參考第18圖至第35圖解釋LED封裝件200之 製造方法時奴詳細地贿觀m的形成與移除。 如第1圖所不’可形成覆蓋光反射層15G的光分布層 60以及不被光反射層⑽覆蓋的波長轉換層1价通過分 配操作塗佈含有分散人射光之分散劑(例如,二氧化石夕或其 物)的材料於光反射層15〇及波長轉換層刚,可形成 光分布層160。 也可形成光反射層15G㈣前輯體⑺界定的空腔 2中,以及在把.封料⑽切成單元封 中可移除它。 由於光分布層⑽經形成為可覆蓋光反射層15〇及波 =轉換層14〇,可散佈由LED晶片產生的光線以放射至外 和這可改善LED封㈣100的光線均句度。 乂下參考第4圓至第6圖,描述⑽晶片12{)可應用 95182 19 201201355 於本例示性具體實施例的各種結構。 第4圖至第6圖的剖面圖根據本發明之是具體實施例 圖示LED封裝件的LED晶片。 首先’參考第4圖,提出一種有垂直結構的LED晶片 120。 LED晶片120可包含結構支持層122與形成於結構支 持層122上的發光結構123,以及發光結構123可包含p 型半導體層124、主動層125、及η型半導體層126。 如第4圖所示,結構支持層122用來支持發光結構123 的結構,以及由於它用導電黏著層114接合至封裝基材11〇 的電路圖案(第1圖的112),也可用來實作封裝基材 與LED晶片120之間的電氣連接。 因此’結構支持層12 2由選自以下各物的導電材料製 成:Au、Ni、Al、Cu、W、Si、Se、GaAs 或其中兩種或更 多的組合,以及黏著層114由導電焊料、膏或其類似物製 成。 如第4圖所示,發光結構123的p型半導體層124、 主動層125及η型半導體層126以此順序在結構支持層122 上依序形成,以及由化合物半導體製成,例如GaAs、 AlGaAs、GaN、InGalnP或其類似物,以產生光線。 如第4圖所示,用作η型電極的電極墊12丨形成於n 型半導體層126上以及通過電線130連接至封裂基材11〇 的電路圖案112。 如第4圖所示’發光結構123可形成於結構支持層122 95182 20 201201355 * 之一個表面上,除了該表面的轉角部份以外。通過用於使 LED曰曰片120分離個別單元LED晶片的姓刻製程,可得到 有此配置的發光結構123。 就此情形而言’定義LED晶片120的上表面可用發光 結構123的—個表面,亦即,η型半導體層126的上表面, 以及結構支持層122之一個表面中不形成發光結構123的 轉角部份的區域。 因此,如第4圖所示’波長轉換層14〇可形成於η型 半導體層126之上表面及結構支持層122之一個表面的轉 角區上’兩者只在LED晶片120的上表面。如上述,中央 區係經配置成為平坦面146,以及轉角區被配置成為曲面 148即使在此情形下,波長轉換層140經形成為不超出結 構支持層122之一個表面的轉角部份。 波長轉換層140是在裝上LED晶片120以及電極塾121 與電路圖案112已被打線接合的狀態下形成,因此如第4 圖所示,部份電線130,亦即,作為與電極墊121耦合之 部份的接合部份’以及電極墊121,被埋入波長轉換層140。 隨後,如第5圖所示,提出一種有水平結構的LED晶 片 120。 圖示於第5圖的LED晶片120可包含成長基材127與 形成於成長基材127上的發光結構123。發光結構123可 包含η型半導體層126、主動層125及P型半導體層124。 藍寶石基材或其類似物可用作成長基材127 ’以及可 成長包含η型半導體層126、主動層125及ρ型半導體層 21 95182 201201355 124的發光結構123以形成於成長基材127上。由於成長 基材127緣緣體’⑽著層U4可將它實際接合至基材 110。 如第5圖所示’主動層125及ρ型半導體層124可形 成於η型半導體層126之-個表面的—部份上。形成此結 構可藉由成長主動層125及ρ型半導體層124於η型半導 體層126上’然後台面餘刻(mesa_etch)部份的主動層125 及p型半導體層124。 第5圖t以誇大的方式圖示台面银刻主動| 125及p 型半導體124所形成的台階’實際上對於成長基材127 的厚度而言,此台階很小。 如第5圖所示,各自用作n型電極與卩型電極的電極 墊121形成於η型半導體層126與{)型半導體層124上。 利用電線130,電極墊121可各自電氣連接至封裝基材11〇 的電路圖案112(第1圖)。 如第5圖所示,藉由ρ型半導體層124的上表面與η 型半導體層126之一個表面中經台面蝕刻後無主動層126 及Ρ型半導體層124的其他剩餘區域可定義LED晶片12〇 的上表面。 因此,如第5圖所示,波長轉換層140可形成於ρ型 半導體層124之上表面上及n型半導體層126中藉由台面 蝕刻主動層125及ρ型半導體層.124而暴露的部份上,ρ 型半導體層124之上表面與n型半導體層126的部份為[£1) 晶片120的上表面。如上述,波長轉換層14〇的中央區經 22 95182 201201355 形成為平坦面146以及其轉角區經形成為曲面148。此外, 即使在此情形下,波長轉換層140經形成為不超出n型半 導體層126的轉角。 如同有垂直結構的LED晶片120,波長轉換層ho是 在裝上LED晶片120以及電極墊121與電路圖案112已予 打線接合的狀態下形成,因此如第4圖所示,電極.塾121 與部份電線130被埋入波長轉換層140。 參考第6圖,提供一種根據覆晶方法(fHp_chip method)裝在基材110上的LED晶片12〇。 如第6圖所示,LED晶片120可包含成長基材17與形 成於成長基材127下面的發光結構123。該發光結構由上 而下可包含η型半導體層126、主動層125、及ρ型半導體 層 124。 圖示於第6圖的LED晶片12〇有類似於第5圖有水平 結構之LED晶片12 0的基本結構,就此情形而言,[Ερ晶 片120係根據覆晶方法電氣連接至封裝基材11 〇(第1圖), 而不是打線接合。 亦即,如第6圖所示,各自形成於n型半導體層Kg 與ρ型半導體層124上的電極墊ι21用導電黏著層U4(例 如,録錫凸塊或其類似物)實際接合至封裝基材丨1〇(第1 圖)的電路圖案112(第1圖)以便電氣連接。 就此情形而言,如第6圖所示,可將LED晶片12〇的 上表面定義成成長基材127的上表面。 因此’如第6圖所示,波長轉換層14〇可形成於成長 95182 23 201201355 基材127的上表面,LED晶片120的上表面上,以及如上 述,將波長轉換層140的中央區形成為平坦面146,以及 其轉角區形成為曲面148。就此情形而言,波長轉換層丄4〇 經形成為不超出成長基材127的轉角。 以下參考第7圖至第9圖,根據本發明之另一個例示 性具體實施例來描述LED封裝件100。 第7圖至第9圖的剖面圖根據本發明之例示性具體實 施例圖示LED 100封裝件的實施例。 在根據本發明之例示性具體實施例來描述LED 1〇〇封 裝件的實施例時,省略與上述相同或類似的配置說明以及 描述不同的配置。 參考第7圖,根據本發明之例示性具體實施例,lED 封裝件100經配置成係形成空腔172於封裝基材11 〇上, 以及空腔172容納LED晶片120、光反射層150及光分布 層 160。 請參考圖示於第1圖的LED封裝件1〇〇,在用壩體 Π0(第9圖)界定的空腔172中形成光反射層丨5〇與光分布 層160,以及通過將LED封裝件1〇〇分離成單元封裝件的 切割製程(dicing process)來移除壩體170。 相較之下’如第7圖所示,空腔172可形成於封裝基 材110本身上以形成光反射層150及光分布層160於其中, 以及LED封裝件1〇〇的最終產品保留空腔172。 參考第8圖’根據本發明之例示性具體實施例,LED 封裝件100經配置成封裝基材U0包含第一基材116與第 24 95182 201201355 二基材118,以及形成空腔172於第二基材118上以容納 LED晶片120、光反射層150及光分布層16〇於其中。 不像圖示於第1圖的LED封裝件1〇〇,在圖示於第8 • 圖的LED封裝件100中,有空腔Π2的第二基材118係叠 在第一基材116上,從而確保有空間可供安裝LED晶片12〇 ' 及形成光反射層150與光分布層160。 第一及第二基材116及118可由陶瓷材料製成,例如 AhCb,氧化鋁,或其類似物,其係具有諸如高熱阻、優異 導熱率、高反射效率及其類似者的特性。 參考第9圖’根據本發明之例示性具體實施例,led 封裝件100經配置成界定空腔172的壩體170形成於封裝 基材110上’以及將LED晶片120、光反射層150及光分 布層160容納於空腔172中。 如同圖示於第1圖的LED封裝件1〇〇,在根據本例示 性具體實施例的LED封裝件1 〇〇中,由樹脂製成的壩體17〇 係形成於基材上以界定空腔172供裝上LED晶片120及形 成光反射層150與光分布層160,但是圖示於第9圖的LED 封裝件100與第1圖LED封裝件1〇〇不同的地方在於壩體 170留在最終產品中。 如上述參考圖示於第1圖的Led封裝件1〇〇,壩體170 可由樹脂,緩衝材料製成。因此,雖然在LED封裝件1〇〇 的製耘期間或在led封裝件1〇〇的操作期間由陶瓷材料製 成的封裝基材110在加熱及冷卻操作中會膨脹或收縮,由 於%體170可變形以對應膨脹及收縮的程度,因此可有效 95182 25 201201355 防止封震基材110彎曲或其類似者的現象,以及有優異执 阻的氧化鋁可用作封裝基材110的材料。 、… 同時圖示於第7至9圖的LED封裝件100使用有第 4 ®之垂直結構的LED晶片120 ’然而本發明不限於此,以 及圖示於第5圖及第6圖的LED晶片12G與有任何其他基 材的LED晶片也可應用於led封裝件ι〇〇。 以下參考第10圖至第13圖,根據本發明之例示性具 體實施例,描述LED封裝件10{)的其他實施例。 第10圖的剖面圖本發明之另一個例示性具體實施例 圖不發光二極體(LED)封裝件,以及第u圖為第1〇圖LED 封裝件的平面圖。 在根據本發明之例示性具體實施例來描述LED封裝件 100的實施例時,省略與上述相同或類似的配置說明以及 描述不同的配置。 如第10圖所示’多個led晶片120係彼此隔開地配 置,因此,不同於第1圖的LED晶片120,多個波長轉換 層140形成於各個LED晶片120的上表面上。 在本例示性具體實施例中,如第1〇圖所示,可填充 光反射層150於包圍LED晶片120的各個侧面與在LED晶 片120之間的空間。AlSb, AlS, etc.), or Group IV semiconductors (Ge, Si, Pb, etc.) to form a core-shell structure constituting quantum dots. In this case, in order to terminate the binding of the molecules to the shell surface at the outer edge of the quantum dot shell, the aggregation of the quantum dots is suppressed, and the dispersion characteristics of the resin (for example, ruthenium resin, epoxy resin or the like) are improved, or the firefly is improved. The toner function can form an organic ligand using a material such as oleic acid. Quantum dots are susceptible to moisture or air, and in particular, chemical reactions occur when it contacts the plate-like pattern of the substrate or the lead frame of the package. Therefore, the wavelength conversion layer 14 is coated only on the upper surface of the LED wafer 120, and the possibility of contact with the plate pattern or the lead frame is eliminated, thereby improving the reliability thereof. Therefore, although the phosphor powder is used as an example to illustrate the wavelength conversion. The material 'however, the phosphor powder can be exchanged for quantum dots or quantum dots added to the phosphor powder. The weight ratio of the phosphor powder 144 to the transparent resin 142 may be equal to 2:1 or more. Therefore, as shown in Fig. 2, the transparent resin 142 is used to bond the phosphor powder 144 particles' and the transparent resin 142 can be made of, for example, tantalum, epoxy resin, or a material obtained by mixing tantalum and epoxy resin. The ratio of the phosphor powder 144 is very south compared to the ratio of the prior art phosphor powder to the transparent resin of only 1/10 or 1. Therefore, with such a high ratio, the mixture of the phosphor powder 144 and the transparent resin 142 can increase the viscosity and reduce the fluidity on the upper surface of the LED wafer 120. Therefore, it is possible to prevent the surface transition layer from being affected by the low viscosity of the phosphor powder and the transparent resin, and the entire surface is formed, and can be formed on the LED wafer 120. thickness. A more detailed description of the manufacturing method of the package 2A will be explained below with reference to Figs. 18 to 35. According to the exemplary embodiment, the prior art LED package molded with the phosphor powder and the upper surface of the LED is formed on the upper surface of the LED chip 12, since only the wavelength conversion layer 14 is formed. The light absorbed by the surrounding structure is improved to improve the luminous efficiency of the LED package 1 ′′. Further, since the package body “which is used for molding the phosphor as in the prior art” is not required, the size of the LED package 1 显 can be remarkably reduced. Further, the substantial light-emitting area is limited to the upper surface of the LED wafer 120, which is the number of light per unit area of the light source. Therefore, the LED package 1 can be used more actively in various lighting apparatuses requiring a low etendue. Further, since the wavelength conversion layer 14 has a flat surface 146 parallel to the upper surface of the LED wafer 120, the LED package 1 〇〇 can uniformly emit light. That is, the wavelength conversion layer 14 is formed to have a uniform thickness, and only includes the corner portion of the upper surface of the Ud wafer 120 to have a uniform optical path, whereby the light generated by the LED chip 12 has a uniform color temperature. While the light changes its wavelength as it passes through the wavelength conversion layer 140. Figure 3 is a graph showing the color temperature characteristics of the LED package 100 in accordance with an exemplary embodiment of the present invention. The foregoing effects will be detailed in Figure 3. The graph of Fig. 3 illustrates the comparison of the color temperature characteristics (A) of the LED package 1 辐射 with respect to the radiation angle and the color temperature characteristic (B) of the prior art LED package for the radiation angle. The resin is on the entire interior of the body of the agricultural product. 95182 201201355 As shown in Fig. 3, in the case of the prior art (B), _ produces a maximum color temperature change of the dish, resulting in a serious, contrasting angle, in the case of the case: The specific embodiment 'radiation angle is only a maximum of half the color of the prior art, resulting in uniform illumination and branching, while at the same time 'wavelength conversion layer 14. It may further comprise transparent fine particles of = and transparent resin 142 together. Transparent % Nine Volume 144 Material such as sulphur dioxide, titanium dioxide, Al 2 〇 3 or the like =: By this way, by appropriately adjusting the ratio of the transparent fine particles contained in the wavelength of 140, the light can be emitted to The external color temperature is set to such an extent that, in this case, for example, the weight ratio of the transparent fine particles to the phosphor powder 144 may be equal to 1:2 or less. As shown in Fig. 1, a light reflecting layer 150 is formed on the package substrate 11 () to surround the side of the LED wafer 120. For example, a reflection containing reflected incident light is filled around the LED wafer 120 by a dispensing or molding operation. A material of a material such as 'titanium dioxide or the like may form the light reflecting layer. In this case, 'the light reflecting layer 15 as shown in FIG. 1' may be formed to have a corresponding formation on the LED wafer 120. The height 'the height of the height of the wavelength conversion layer 140 on the surface is such that the light reflection layer 150 does not cover the wavelength conversion layer 140. Therefore, since the light reflection layer 150 surrounding the LED wafer 120 is formed, the light is reflected after being incident on the light distribution layer 160. The light is not emitted outside but can be reflected again to the light distribution layer 160 to be emitted toward the outside' resulting in improved brightness of the LED package 100. 18 95182 201201355 The light reflecting layer 150 can be formed on a dam formed on the package substrate 11 Inside the cavity 172 defined by the body (170 of Fig. 9), after forming the light reflecting layer 15 and the light distributing layer (which will be described), in the process of cutting the LED package 1 into a unit LED package , moveable Except for the dam body (17〇 of Fig. 9). The carcass (170 of Fig. 9) may be made of a resin or a cushioning material. Therefore, as described above, although the package substrate 110 made of a ceramic material is heated during the process and In the cooling operation, it expands or contracts. Since the dam can be deformed to correspond to the degree of expansion and contraction, it is possible to effectively prevent the package substrate 110 from being bent or the like and the alumina having excellent thermal resistance (therraa丨resi stance). It can be used as a material of the package substrate 110. (j The following describes the formation and removal of the m in detail when the manufacturing method of the LED package 200 is explained with reference to Figs. 18 to 35. As shown in Fig. 1 The light distribution layer 60 covering the light reflection layer 15G and the wavelength conversion layer 1 not covered by the light reflection layer (10) may be coated by a dispensing operation to apply a dispersant containing dispersed human light (for example, silica dioxide or its substance). The material may be formed on the light reflecting layer 15 and the wavelength converting layer to form the light distributing layer 160. The light reflecting layer 15G (4) may be formed in the cavity 2 defined by the front body (7), and the sealing material (10) may be cut into a unit seal. It can be removed. Due to the light distribution layer (10) Formed to cover the light reflecting layer 15 and the wave=conversion layer 14〇, the light generated by the LED chip can be dispersed to radiate to the outside and this can improve the uniformity of the light of the LED seal (4) 100. Figure 6 depicts (10) wafer 12{) applicable to various structures of the present exemplary embodiment of 95182 19 201201355. Sections 4 through 6 are cross-sectional views of LEDs illustrating LED packages in accordance with an embodiment of the present invention. First, referring to Fig. 4, an LED chip 120 having a vertical structure is proposed. The LED chip 120 may include a structural support layer 122 and a light emitting structure 123 formed on the structural support layer 122, and the light emitting structure 123 may include a p-type semiconductor. Layer 124, active layer 125, and n-type semiconductor layer 126. As shown in FIG. 4, the structural support layer 122 is used to support the structure of the light-emitting structure 123, and since it is bonded to the package substrate 11's circuit pattern by the conductive adhesive layer 114 (112 of FIG. 1), it can also be used. As an electrical connection between the package substrate and the LED wafer 120. Thus the 'structural support layer 12 2 is made of a conductive material selected from the group consisting of Au, Ni, Al, Cu, W, Si, Se, GaAs or a combination of two or more thereof, and the adhesive layer 114 is electrically conductive Made of solder, paste or the like. As shown in FIG. 4, the p-type semiconductor layer 124, the active layer 125, and the n-type semiconductor layer 126 of the light-emitting structure 123 are sequentially formed on the structure supporting layer 122 in this order, and are made of a compound semiconductor such as GaAs or AlGaAs. , GaN, InGalnP or the like to generate light. As shown in Fig. 4, an electrode pad 12, which serves as an n-type electrode, is formed on the n-type semiconductor layer 126 and is connected to the circuit pattern 112 of the cracked substrate 11A by the electric wires 130. As shown in Fig. 4, the light-emitting structure 123 may be formed on one surface of the structural support layer 122 95182 20 201201355 * except for the corner portion of the surface. The light-emitting structure 123 having this configuration can be obtained by a process for singulating the LED chips 120 to separate the individual unit LED chips. In this case, the surface defining the upper surface of the LED wafer 120 may be a surface of the light-emitting structure 123, that is, the upper surface of the n-type semiconductor layer 126, and the corner portion of the surface of the structural support layer 122 where the light-emitting structure 123 is not formed. Part of the area. Therefore, as shown in Fig. 4, the wavelength conversion layer 14 can be formed on the upper surface of the surface of the n-type semiconductor layer 126 and the surface of the structural support layer 122, both of which are only on the upper surface of the LED wafer 120. As described above, the central portion is configured as the flat surface 146, and the corner portion is configured as the curved surface 148. Even in this case, the wavelength conversion layer 140 is formed so as not to exceed the corner portion of one surface of the structural support layer 122. The wavelength conversion layer 140 is formed in a state in which the LED wafer 120 is mounted and the electrode electrode 121 and the circuit pattern 112 have been wire bonded. Therefore, as shown in FIG. 4, a part of the wire 130, that is, as the electrode pad 121, is coupled. The portion of the joint portion 'and the electrode pad 121 are buried in the wavelength conversion layer 140. Subsequently, as shown in Fig. 5, an LED wafer 120 having a horizontal structure is proposed. The LED wafer 120 shown in Fig. 5 may include a growth substrate 127 and a light-emitting structure 123 formed on the growth substrate 127. The light emitting structure 123 may include an n-type semiconductor layer 126, an active layer 125, and a P-type semiconductor layer 124. A sapphire substrate or the like can be used as the growth substrate 127' and the light-emitting structure 123 including the n-type semiconductor layer 126, the active layer 125, and the p-type semiconductor layer 21 95182 201201355 124 can be grown on the growth substrate 127. The layer U4 can be bonded to the substrate 110 by growing the substrate 127 edge body '(10). As shown in Fig. 5, the active layer 125 and the p-type semiconductor layer 124 may be formed on a portion of the surface of the n-type semiconductor layer 126. The formation of the structure can be performed by growing the active layer 125 and the p-type semiconductor layer 124 on the n-type semiconductor layer 126, and then the mesa_etch portion of the active layer 125 and the p-type semiconductor layer 124. Figure 5 is a diagrammatic representation of the stepped silver engraving active | 125 and the step formed by the p-type semiconductor 124 in an exaggerated manner. This step is actually small for the thickness of the grown substrate 127. As shown in Fig. 5, electrode pads 121 each serving as an n-type electrode and a 卩-type electrode are formed on the n-type semiconductor layer 126 and the {]-type semiconductor layer 124. With the electric wires 130, the electrode pads 121 can be electrically connected to the circuit patterns 112 of the package substrate 11A (Fig. 1). As shown in FIG. 5, the LED wafer 12 can be defined by the mesa after etching of the upper surface of the p-type semiconductor layer 124 and the surface of the n-type semiconductor layer 126 without the active layer 126 and the remaining regions of the germanium-type semiconductor layer 124. The upper surface of the crucible. Therefore, as shown in FIG. 5, the wavelength conversion layer 140 may be formed on the upper surface of the p-type semiconductor layer 124 and exposed in the n-type semiconductor layer 126 by mesa etching the active layer 125 and the p-type semiconductor layer .124. The upper surface of the p-type semiconductor layer 124 and the portion of the n-type semiconductor layer 126 are [£1) the upper surface of the wafer 120. As described above, the central portion of the wavelength conversion layer 14A is formed as a flat surface 146 via 22 95182 201201355 and its corner region is formed as a curved surface 148. Further, even in this case, the wavelength conversion layer 140 is formed not to exceed the corner of the n-type semiconductor layer 126. Like the LED chip 120 having a vertical structure, the wavelength conversion layer ho is formed in a state in which the LED chip 120 is mounted and the electrode pad 121 and the circuit pattern 112 are already wire bonded, and thus, as shown in FIG. 4, the electrode 塾121 and A portion of the wire 130 is buried in the wavelength conversion layer 140. Referring to Fig. 6, there is provided an LED chip 12A mounted on a substrate 110 in accordance with a fHp_chip method. As shown in Fig. 6, the LED wafer 120 may include a growth substrate 17 and a light-emitting structure 123 formed under the growth substrate 127. The light emitting structure may include an n-type semiconductor layer 126, an active layer 125, and a p-type semiconductor layer 124 from top to bottom. The LED chip 12 shown in Fig. 6 has a basic structure similar to that of the LED wafer 120 having a horizontal structure in Fig. 5. In this case, [Ερ wafer 120 is electrically connected to the package substrate 11 according to the flip chip method. 〇 (Fig. 1), instead of wire bonding. That is, as shown in FIG. 6, the electrode pads 119 formed on the n-type semiconductor layer Kg and the p-type semiconductor layer 124 are actually bonded to the package by the conductive adhesive layer U4 (for example, a tin bump or the like). The circuit pattern 112 (Fig. 1) of the substrate 丨1〇 (Fig. 1) is electrically connected. In this case, as shown in Fig. 6, the upper surface of the LED wafer 12A can be defined as the upper surface of the growth substrate 127. Therefore, as shown in FIG. 6, the wavelength conversion layer 14 can be formed on the upper surface of the growth substrate 95182 23 201201355 substrate 127, on the upper surface of the LED wafer 120, and as described above, the central region of the wavelength conversion layer 140 is formed as The flat surface 146, as well as its corner region, is formed as a curved surface 148. In this case, the wavelength conversion layer 丄4〇 is formed so as not to exceed the corner of the growth substrate 127. The LED package 100 will be described in accordance with another illustrative embodiment of the present invention with reference to Figures 7 through 9. Sections 7 through 9 illustrate an embodiment of an LED 100 package in accordance with an illustrative embodiment of the present invention. When the embodiment of the LED 1 〇〇 package is described in accordance with an exemplary embodiment of the present invention, the same or similar configuration descriptions as above and the different configurations are described. Referring to FIG. 7, in accordance with an exemplary embodiment of the present invention, the lED package 100 is configured to form a cavity 172 on the package substrate 11 and the cavity 172 houses the LED wafer 120, the light reflective layer 150, and the light. Distribution layer 160. Referring to the LED package 1A shown in FIG. 1, a light reflection layer 丨5〇 and a light distribution layer 160 are formed in the cavity 172 defined by the dam body (0 (Fig. 9), and the LED package is packaged. The dicing process of the unit package is separated into a dicing process to remove the dam 170. In contrast, as shown in FIG. 7, the cavity 172 may be formed on the package substrate 110 itself to form the light reflecting layer 150 and the light distributing layer 160 therein, and the final product of the LED package 1〇〇 is left empty. Cavity 172. Referring to FIG. 8 'in accordance with an exemplary embodiment of the present invention, the LED package 100 is configured such that the package substrate U0 includes a first substrate 116 and a 24 95182 201201355 two substrate 118, and a cavity 172 is formed in the second The substrate 118 is disposed to accommodate the LED wafer 120, the light reflecting layer 150, and the light distributing layer 16 therein. Unlike the LED package 1 shown in FIG. 1 , in the LED package 100 illustrated in FIG. 8 , the second substrate 118 having the cavity 2 is stacked on the first substrate 116 . Thereby, it is ensured that there is space for mounting the LED chip 12'' and forming the light reflecting layer 150 and the light distributing layer 160. The first and second substrates 116 and 118 may be made of a ceramic material such as AhCb, alumina, or the like, which has characteristics such as high thermal resistance, excellent thermal conductivity, high reflection efficiency, and the like. Referring to FIG. 9 'in accordance with an exemplary embodiment of the present invention, the LED package 100 is configured to define a dam 170 of the cavity 172 formed on the package substrate 110' and to the LED wafer 120, the light reflective layer 150, and the light The distribution layer 160 is received in the cavity 172. As in the LED package 1A illustrated in FIG. 1, in the LED package 1 according to the present exemplary embodiment, a dam body 17 made of a resin is formed on the substrate to define an empty space. The cavity 172 is provided with the LED chip 120 and the light reflecting layer 150 and the light distributing layer 160. However, the LED package 100 shown in FIG. 9 is different from the LED package 1 of FIG. 1 in that the dam 170 remains. In the final product. The dam body 170 may be made of a resin or a cushioning material as described above with reference to the Led package 1A shown in Fig. 1. Therefore, although the package substrate 110 made of a ceramic material during the fabrication of the LED package 1〇〇 or during the operation of the LED package 1〇〇 may expand or contract during heating and cooling operations, due to the % body 170 It can be deformed to correspond to the degree of expansion and contraction, and thus can effectively 95182 25 201201355 to prevent the phenomenon of the base material 110 from being bent or the like, and the alumina having excellent resistance can be used as the material of the package substrate 110. At the same time, the LED package 100 of FIGS. 7 to 9 is illustrated using the LED wafer 120 having the 4th vertical structure. However, the present invention is not limited thereto, and the LED chips shown in FIGS. 5 and 6 are shown. 12G and LED chips with any other substrate can also be applied to LED packages. Other embodiments of the LED package 10{) will be described below with reference to Figs. 10 through 13 in accordance with an exemplary embodiment of the present invention. Fig. 10 is a cross-sectional view showing another exemplary embodiment of the present invention. Fig. 5 is a plan view showing a non-light emitting diode (LED) package, and Fig. 5 is a first view of the LED package. When the embodiment of the LED package 100 is described in accordance with an exemplary embodiment of the present invention, the same or similar configuration descriptions as above and the different configurations are described. As shown in Fig. 10, the plurality of LED wafers 120 are disposed apart from each other. Therefore, unlike the LED wafer 120 of Fig. 1, a plurality of wavelength conversion layers 140 are formed on the upper surface of each of the LED wafers 120. In the exemplary embodiment, as shown in Fig. 1, the light reflecting layer 150 may be filled in a space surrounding each side of the LED wafer 120 and between the LED wafers 120.

根據本例示性具體實施例,光反射層150填充於LED 晶片120之間的空間,以及光分布層160形成於LED晶片 120及光反射層150上,藉此LED晶片120之間的空間可 改善光度(luminous intensity)導致可得到裝上多個LED 26 95182 201201355 * 晶片120之LED封裝件loo的整體均勻光度分布。 '亦即’在模造含有螢光粉之樹脂部件於封裝件主體内 的先前技術LED封裝件的情形下,在LED晶片之間的空間 1 中存在黑暗部份,但是本例示性具體實施例,如第10圖所 示’波長轉換層140係均勻地形成於二極體晶片120的上 表面上,以及光反射層150形成於LED晶片120之間的空 間,以及光分布層160形成於波長轉換層140及光反射層 ,150上’藉此可改善在LED晶片120間之空間的光度以形 成均句的光度分布。 更詳細言之,光分布層160均勻地散佈由LED晶片120 射出的光線’以及光反射層150再度反射由光分布層160 反射的光線至外部,藉此可顯著改善LED晶片120間之空 間(對應至先前技術LED封裝件的黑暗部份)的光度。According to the present exemplary embodiment, the light reflecting layer 150 is filled in the space between the LED wafers 120, and the light distributing layer 160 is formed on the LED wafer 120 and the light reflecting layer 150, whereby the space between the LED chips 120 can be improved. Luminous intensity results in an overall uniform photometric distribution of LED packages loo that are loaded with multiple LEDs 26 95182 201201355 * wafer 120. 'That is, in the case of molding a prior art LED package containing a resin component of phosphor powder in a package body, there is a dark portion in the space 1 between the LED chips, but this exemplary embodiment, As shown in FIG. 10, 'the wavelength conversion layer 140 is uniformly formed on the upper surface of the diode wafer 120, and the light reflection layer 150 is formed in the space between the LED wafers 120, and the light distribution layer 160 is formed in the wavelength conversion. The layer 140 and the light reflecting layer, 150, 'by this, the luminosity of the space between the LED chips 120 can be improved to form a photometric distribution of the uniform sentence. In more detail, the light distribution layer 160 uniformly spreads the light emitted by the LED wafer 120 and the light reflecting layer 150 reflects the light reflected by the light distributing layer 160 to the outside, whereby the space between the LED chips 120 can be remarkably improved ( Corresponds to the luminosity of the dark portion of prior art LED packages.

第12圖的曲線圖圖示沿著第11圖中直線χ_χ繪出之 LED封裝件100的二維光度分布。第12圖圖示本例示性具 體實施例之LED封裝件1〇〇的光度分布(c)與先前技術LED 封裝件(其中係含有螢光粉之樹脂模造於封裝件主體之整 個内部上)之光度分布(D)供比較。 如第12圖所示,與先則技術(d)相比,led封裝件(c) 的LED晶片120間之空間(對應至暗區)的光度增加,以及 詳言之,光度差(G)約有45光吸收強度(a.u )或更多。因 此,由於根據本示範具體實施例之LED封裝件100最小化 形成於多個LED晶片120間之區域的黑暗部份,結果LED 封裝件100的總光度有均勻的分布。 95182 27 201201355 此外’根據本例示性具體實祐 經形成為有適當厚度以考慮到各自長f換層刚可 片12 0的個別特性,所以可有效地滅刀少各個 ^曰曰片之L E D晶 產品之間的色溫變化。 封裝件100 亦即,在晶圓級螢光膜形成方 晶請分成單元晶片之前1形成螢先也:是說在把膽 :同::度的螢光膜而不想到或考慮各個晶片二::寺塗 2例中,如上述,波長轉換層⑽可經 不同的厚度,從而可有效地減少各個= 件100產。口之間的色溫變化。 第13圖的曲線圖圖示第10圖之LED封裝件議產品 的色彩散射。以下再次描述減少前述產品間之色溫變化的 效果。 特別是’第13圖的CIE色彩座標系統曲線圖圖示LED 封裝件1GG產品的色溫分布⑻與根據先前技術模造含有 螢光粉_脂部件於封裝件主體内之㈣封裝件產品的色 溫分布⑺’當農上LED晶片12〇的功率是在39〇毫瓦至 410毫瓦之間時’中心波長的分布是在445奈米至450奈 米之間’以及LED晶片120的驅動電流為75〇毫安。 如第13圖所示,在根據本例示性具體實施例之LED 封裝件1〇〇的情形⑻下,產品之間的色彩散射約為ι?6κ, 其係等&amp;於大約40%以下。ϋ此,在根據本例示性具體實 施例之LED封裝件丨⑽的情形下,如上述,在形成波長轉 95182 28 201201355 換層時,對於每個LED晶片120 ’可精確地個別調整波長 轉換層140的厚纟,因此可顯著減少各個⑽封裝件刚 產品之間的色溫變化。 • 以下參考第14圖至第17圖,根據本發明之例示性且 體實施例來描述LED封裝件100的其他實施例。 第14圖至第16圖的剖面圖根據本發明之例示性具體 實施例圖示不同的LED封裝件實施例。第17圖的示意圖根 據本發明之例示性具體實施例圖示不同的L E D封裝件實施 例0 在根據本發明之例示性具體實施例來描述LED封裝件 1 〇 〇的實施例時,省略與上述相同或類似的配置說明以及 描述不同的配置。 首先,凊參考第14圖,led封裝件1〇〇經配置成多個 LED晶片12〇係裝在有空腔172的封裝基材ιι〇上以及透 明覆蓋層180覆蓋空腔172。 不同於第10圖的LED封裝件,在如第14圖所示的本 示範具體實施例中,空腔172形成於封裝基材11〇本身上 以及透明覆蓋層18〇(例如,透鏡、玻璃層及其類似物)可 豐在封裝基材110上以覆蓋LED晶片12〇。 此外,在本例示性具體實施例中,如第14圖所示, 省略掉光分布層160(第1〇圖)與光反射層15〇 (第1〇圖), 以及有第5圖水平結構的多個UD晶片120可裝在封裝基 材110上。 參考第15圖’ LED封装件1〇〇經配置成壩體17〇形成 29 95182 201201355 於封裝基材110上,多個LED晶片120裝在用壩體17〇界 定的空腔172中,以及形成光反射層15〇與光分布層16〇。 不同於第10圖的LED封裝件100,在如第15圖所示 的本不範具體實施例中,由樹脂製成的壩體170留在乙肋 封裝件100的最終產品上。 此外,在如第15圖所示的本例示性具體實施例中, 圖示於第6圖的多個LED晶片120可以覆晶方式裝在封裝 基材110上。 參考第16圖,led封裝件丨00經配製成多個LED晶片 120係裝在封裝基材no上。 不同於第10圖的LED封裴件100,在如第16圖所示 的本例不性具體實施例中,可不形成光反射層15〇與光分 布層16’以及圖示於第6圖的多個led晶片120可以覆晶 方式裝在封裝基材110上。 參考第17圖’LED封裝件1〇〇經配置成多個led晶片 120係裝在有空腔172的封襞基材11〇上,以及多個波長 轉換層140形成於LED晶片12〇的側面及led晶片120的 上表面上。 在如第17圖所示的本例示性具體實施例中,波長轉 換層140可延伸形成甚至於各個led晶片120的侧面上以 及LED晶片120的上表面上。因此,可形成波長轉換層14〇 位於LED晶片120側面的部份表面是平行於LED晶片丨2〇 的側面,如第17圖所示。 亦即,如第17圖所示’可形成有均勻厚度的波長轉 30 95182 201201355 換層140以平行於LED晶片ι2〇的上表面與側面。就此情 形而言,第17圖的示意圖根據本例示性具體實施例圖示月 LED封裝件1〇〇,其中波長轉換層14〇的整個表面是以稍微 誇大的方式圖示成有平行於LED晶片120之上表面及側面 的表面,但是用LED封裝件1〇〇的製造製程(將會加以說明) 實際形成的波長轉換層140中鄰近LED晶片120上表面轉 角的部份與LED晶片120的部份侧面可以形成曲面(第1 〇 圖的148) ’如同前述例示性具體實施例。 根據本例示性具體實施例,由於波長轉換層14〇形成 於LED晶片120的側面上,根據外加LED晶片120的結構, LED封裝件1〇〇可實作成有優越的結構。亦即,在有第5 圖水平結構之LED晶片120的情形下,光線可部份發射通 過LED晶片120的側面’因此形成波長轉換層14〇於 晶片12 0的側面上更加有利。 同時’以各自圖示於第14圖至第17圖的LED封裝件 100而备,並非限定LED晶片120應用圖示結構,反而第4 圖至第6圖的LED晶片120與有任何其他結構的LED晶片 也可以可變方式應用於LED封裳件1〇〇。 已根據本發明例示性具體實施例描述LED封裝件1〇〇 的組態及功能。用LED封裝件1 〇〇可實作用於各種照明設 備的光源,例如’街燈、相機閃光燈、警告燈、情境燈、 車輛頭燈、醫用照明燈泡、背光單元、投影機及其類似物。 詳言之’如上述,根據本發明例示性具體實施例的L E D 封裝件100可產生有均勻色溫的光線而不導致色彩模糊, 95182 201201355 以及減少整個發光表面的面積以具有低集光率。因此,根 據本發明例示性具體實施例的LED封裝件10〇可積極用作 相機閃光燈、車輛頭燈、背光單元、投影機及其類似物的 光源。 以下參考第18圖至第35圖,根據本發明之例示性具 體實施例來描述用於製造LED封裝件2〇〇的方法。 在本例示性具體實施例中,LED封裝件2〇〇、封裝基 材210、電路圖案212、黏著層214、LED晶片220、電極 墊221、結構支持層222、發光結構223、電線230、波長 轉換層240、平坦面246、曲面248、光反射層250、光分 布層260、壩體270、及空腔272係相同或類似於leD封襄 件100、封裝基材110、電路圖案112、黏著層U4、led 晶片120、電極墊12卜結構支持層122、發光結構123、 電線130、波長轉換層140、平坦面146、曲面148、光反 射層150、光分布層160、壩體no、及空腔172,因此省 略該結構的詳細說明以及描述用於製造LED封裝件2〇〇 製程。 、 第18圖的流程圖根據本發明之例示性具體實施例圖 示LED封裝件200製造方法的流程。 根據本例示性具體實施例,如第18圖所示,led封裝 件200的製造方法包含安裝LED晶片於封裝基材21〇上的 步驟S110,電氣連接封裝基材210與咖晶片22〇的步驟 S130,用分配器294形成壩體270於封裴基材21〇上的步 驟S130,用分配器292塗佈混合物2妁於led晶片22〇 ς 95182 32 201201355 上表面以形成波長轉換層24〇的步驟sl4〇,形成光反射層 250於封裝基材210上的步驟315〇,形成光分布層26〇的 步驟S160,以及移除壩體270的步驟S170。The graph of Fig. 12 illustrates the two-dimensional luminosity distribution of the LED package 100 depicted along the line χ_χ in Fig. 11. Figure 12 is a view showing the photometric distribution (c) of the LED package 1 of the exemplary embodiment and the prior art LED package in which the resin containing the phosphor is molded over the entire interior of the package body. The luminosity distribution (D) is for comparison. As shown in Fig. 12, compared with the prior art (d), the luminosity of the space between the LED chips 120 of the led package (c) (corresponding to the dark area) is increased, and in detail, the luminosity difference (G) There are about 45 light absorption intensities (au) or more. Therefore, since the LED package 100 according to the present exemplary embodiment minimizes the dark portion of the region formed between the plurality of LED wafers 120, the total luminance of the LED package 100 is uniformly distributed. 95182 27 201201355 Furthermore, according to the exemplary embodiment, the specific thickness is formed to have an appropriate thickness to take into account the individual characteristics of the respective long-f-type layer-forming sheets, so that the LED crystals of each of the sheets can be effectively eliminated. Color temperature changes between products. The package 100, that is, before the wafer-level phosphor film is formed into a unit wafer, is formed into a flashlight first: it is said that the phosphor film of the same:: degree is not considered or considered for each wafer two: In the case of 2 cases of temple coating, as described above, the wavelength conversion layer (10) can be subjected to different thicknesses, thereby effectively reducing the yield of each piece. The color temperature changes between the mouths. The graph of Fig. 13 illustrates the color scattering of the LED package of Fig. 10. The effect of reducing the color temperature change between the aforementioned products will be described again below. In particular, the CIE color coordinate system graph of Fig. 13 illustrates the color temperature distribution (8) of the LED package 1GG product and the color temperature distribution of the (4) package product containing the phosphor powder_fat component in the package body according to the prior art (7) 'When the power of the LED chip on the farm is between 39 〇m and 410 mW, the 'central wavelength distribution is between 445 nm and 450 nm' and the driving current of the LED chip 120 is 75 〇. mAh. As shown in Fig. 13, in the case (8) of the LED package 1 according to the present exemplary embodiment, the color scattering between the products is about ι?6κ, which is equal to or less than about 40%. Thus, in the case of the LED package package (10) according to the present exemplary embodiment, as described above, the wavelength conversion layer can be precisely adjusted individually for each LED wafer 120' when forming a wavelength change 95182 28 201201355. The thick thickness of 140 can significantly reduce the color temperature variation between the individual (10) packages. • Other embodiments of the LED package 100 are described in accordance with illustrative and physical embodiments of the present invention with reference to Figures 14 through 17. The cross-sectional views of Figures 14 through 16 illustrate different LED package embodiments in accordance with an illustrative embodiment of the present invention. FIG. 17 is a schematic diagram showing different LED packages according to an exemplary embodiment of the present invention. Embodiment 0 When an embodiment of the LED package 1 is described in accordance with an exemplary embodiment of the present invention, the above is omitted. Same or similar configuration instructions and describe different configurations. First, referring to Fig. 14, the LED package 1 is configured such that a plurality of LED chips 12 are mounted on a package substrate ιι with a cavity 172 and a transparent cover 180 covers the cavity 172. Unlike the LED package of FIG. 10, in the exemplary embodiment as shown in FIG. 14, the cavity 172 is formed on the package substrate 11 itself and the transparent cover layer 18 (for example, a lens, a glass layer). And the like) can be deposited on the package substrate 110 to cover the LED wafer 12A. Further, in the present exemplary embodiment, as shown in FIG. 14, the light distribution layer 160 (the first drawing) and the light reflecting layer 15 (the first drawing) are omitted, and the horizontal structure of the fifth drawing is omitted. A plurality of UD wafers 120 can be mounted on package substrate 110. Referring to Fig. 15, the LED package 1 is configured as a dam body 17 〇 forming 29 95182 201201355 on the package substrate 110, a plurality of LED wafers 120 are mounted in the cavity 172 defined by the dam body 17〇, and formed The light reflecting layer 15 is separated from the light distributing layer 16A. Unlike the LED package 100 of Fig. 10, in the present embodiment as shown in Fig. 15, the dam 170 made of resin remains on the final product of the rib rib package 100. Further, in the present exemplary embodiment as shown in Fig. 15, the plurality of LED chips 120 illustrated in Fig. 6 may be flip-chip mounted on the package substrate 110. Referring to Fig. 16, the LED package 丨00 is formed into a plurality of LED chips 120 mounted on the package substrate no. Unlike the LED package 100 of FIG. 10, in the embodiment of the present embodiment as shown in FIG. 16, the light reflection layer 15 and the light distribution layer 16' may be formed and the image shown in FIG. A plurality of LED wafers 120 may be flip-chip mounted on the package substrate 110. Referring to FIG. 17, the LED package 1 is configured such that a plurality of led wafers 120 are mounted on the package substrate 11 having the cavity 172, and a plurality of wavelength conversion layers 140 are formed on the side of the LED chip 12A. And on the upper surface of the led wafer 120. In the exemplary embodiment as shown in Fig. 17, the wavelength conversion layer 140 may be extended to form even on the side of each of the LED wafers 120 and on the upper surface of the LED wafer 120. Therefore, a portion of the surface on which the wavelength conversion layer 14 can be formed on the side of the LED chip 120 is parallel to the side of the LED chip 丨 2 , as shown in FIG. That is, as shown in Fig. 17, a wavelength transition of a uniform thickness can be formed. 30 95182 201201355 The layer 140 is changed to be parallel to the upper surface and the side surface of the LED wafer ι2. In this case, the schematic diagram of FIG. 17 illustrates a monthly LED package 1 according to this exemplary embodiment, wherein the entire surface of the wavelength conversion layer 14 is illustrated in a slightly exaggerated manner parallel to the LED wafer. The surface of the upper surface and the side surface of the 120, but the manufacturing process of the LED package 1 will be described. The portion of the wavelength conversion layer 140 actually formed adjacent to the upper surface of the LED chip 120 and the portion of the LED wafer 120 The sides may form a curved surface (148 of Figure 1) 'as in the foregoing exemplary embodiment. According to the present exemplary embodiment, since the wavelength conversion layer 14 is formed on the side of the LED wafer 120, the LED package 1 can be constructed to have a superior structure according to the structure of the external LED chip 120. That is, in the case of the LED wafer 120 having the horizontal structure of Fig. 5, the light may be partially emitted through the side of the LED wafer 120. Therefore, it is more advantageous to form the wavelength conversion layer 14 on the side of the wafer 120. At the same time, 'the LED package 100 shown in FIGS. 14 to 17 is illustrated, and the LED wafer 120 is not limited to the illustrated structure. Instead, the LED chip 120 of FIGS. 4 to 6 has any other structure. The LED chip can also be applied in a variable manner to the LED package. The configuration and function of the LED package 1A have been described in accordance with an illustrative embodiment of the present invention. The LED package 1 can be used as a light source for various lighting devices, such as 'street lights, camera flashes, warning lights, situation lights, vehicle headlights, medical lighting bulbs, backlight units, projectors, and the like. DETAILED DESCRIPTION As described above, the L E D package 100 according to an exemplary embodiment of the present invention can produce light having a uniform color temperature without causing color blur, 95182 201201355 and reducing the area of the entire light emitting surface to have a low etendue. Therefore, the LED package 10A according to an exemplary embodiment of the present invention can be actively used as a light source of a camera flash, a vehicle headlight, a backlight unit, a projector, and the like. Referring now to Figures 18 through 35, a method for fabricating an LED package 2A will be described in accordance with an illustrative embodiment of the present invention. In the exemplary embodiment, the LED package 2, the package substrate 210, the circuit pattern 212, the adhesive layer 214, the LED wafer 220, the electrode pad 221, the structural support layer 222, the light-emitting structure 223, the wire 230, and the wavelength The conversion layer 240, the flat surface 246, the curved surface 248, the light reflecting layer 250, the light distributing layer 260, the dam body 270, and the cavity 272 are the same or similar to the leD sealing member 100, the package substrate 110, the circuit pattern 112, and the adhesive layer. Layer U4, led wafer 120, electrode pad 12, structural support layer 122, light emitting structure 123, electric wire 130, wavelength conversion layer 140, flat surface 146, curved surface 148, light reflecting layer 150, light distributing layer 160, dam body no, and The cavity 172, thus omitting the detailed description of the structure and describing the process for fabricating the LED package. The flowchart of Fig. 18 illustrates the flow of a method of fabricating the LED package 200 in accordance with an exemplary embodiment of the present invention. According to the exemplary embodiment, as shown in FIG. 18, the manufacturing method of the LED package 200 includes the step of mounting the LED chip on the package substrate 21, and the step of electrically connecting the package substrate 210 to the wafer 22 S130, the step S130 of forming the dam body 270 on the sealing substrate 21 by the distributor 294, and coating the mixture 2 with the distributor 292 on the upper surface of the led wafer 22 〇ς 95182 32 201201355 to form the wavelength conversion layer 24 〇 step s14 That is, the step S315 of forming the light reflecting layer 250 on the package substrate 210, the step S160 of forming the light distributing layer 26, and the step S170 of removing the dam 270.

根據本例不性具體實施例,由於波長轉換層24〇形成 為在LED晶片220之上表面上有均勻的厚度,可改善LED 封裴件200的發光效率,可減少集光率,以及可大幅減少 光線的色彩模糊。 此外,由於波長轉換層240可形成為有適當的厚度以 考慮到於LED晶片220分成單元LED晶片後各個LED晶片 的特性,也可有效地減少各個LED封裝件2〇〇之間的潛在 色溫變化。 首先,描述以混合透明樹脂(第2圖的142)、螢光粉(第 2圖的144)及溶劑來得到混合物249供形成波長轉換層 240於LED晶片220之上表面上。 為了形成螢光層於LED晶片之上表面上,可使用塗佈 透明樹脂及螢光粉的混合物於LED晶片以及固化該樹脂的 方法。不過,用此方法,難以形成有均勻厚度的螢光層, 因為塗上混合物整體上有凸曲面,這是由在固化之前有高 流動性之透明樹脂的表面張力造成。 因此’在本例示性具體實施例中,相較於透明樹脂(第 2圖的142),相對增加螢光粉(第2圖的144)的數量,以 增加混合物249的黏度來減少塗於LED晶片220上表面之 混合物249的流動性,因此,可形成有平坦面246的波長 轉換層240。就此情形而言’螢光粉(第2圖的144)與透明 95182 33 201201355 樹脂(第2圖的142)的重量比為2 : 1或更大。 就此情形而言,不過,為了增加黏度而增加螢光粉(第 2圖的144)的數量可能造成執行分配製程的,因此添加溶 劑於含有透明樹脂(第2圖的142)及螢光粉(第2圖的144) 的混合物249以暫時降低混合物249的黏度以便在用分配 器292塗佈混合物249時增加流動性。 以此方式,由於添加溶劑於含有透明樹脂(第2圖的 142)及螢光粉(第2圖的144)的混合物249以暫時提供流 動性給混合物249,在LED晶片220的上表面上可有效地 形成有均勻厚度的波長轉換層240。 該溶劑為用於提供暫時流動性給混合物249的材料。 例如,該溶劑可為在混合物249塗於LED晶片220上表面 後蒸發的揮發材料,以及有相對低分子量之有機溶劑族群 (例如,聚合物,單體、乙醇、丙酮或其類似物)的材料可 用作該溶劑。 此外,該溶劑為用於提供一定程度之流動性給已因螢 光粉(第2圖的144)數量增加而流動性減少之混合物249 的材料,因此不需要大量的溶劑,例如,以及基於重量比, 螢光粉(第2圖的144)的十分之一的程度混合該溶劑。 此外,混合物249更可包含由諸如二氧化矽、二氧化 鈦、及ai2〇3之材料製成的透明細顆粒以便調整色溫,以及 可組合透明細顆粒以對於螢光粉(第2圖的144)有1/2或 更小的重量比。 以下參考第19圖至第21圖,根據本發明之例示性具 34 95182 201201355 體實施例’描述LED封裝件咖製造方法中用含有透明樹 脂(第2圖的142)、勞光粉(第2 _ 144)及溶劑的混合物 249形成波長轉換層240的製程。 第W圖至第21圖的視圖根據本發明之例示性具體實 施例圖不LED封裝件製造方法巾形成波長轉換層的製程。 首先,如第19圖所示,包含透明樹脂(第2圖的142)、 螢光粉(第2圖的144)及溶劑的混合物⑽ 及294塗佈於LED晶片22〇的上表面。 在LED晶片220與封裝基材21〇打線接合後 晶片2㈣封裝基材210上,可分配混合物249,因此, ^件謂的電極221與部份電線咖可用混合物249埋 藏。 亦即,混合物249經配置成甚至可覆蓋電極塾221盘 晶片220的發光表面,以及在此製程中 電 線230可用波長轉換層覆蓋。同時,在本例示性且Hi 例中,該分配可意指麟浦施加壓力通料頭來連 螢光粉混合物(亦即,在大多數的情科 $ 佈榮光粉混合物於晶片上表面的狀態),這不=:= 的製程’其中材料係經顆粒化以錢於 如上述’初始因增加蟹光粉(第2圖二數類:者。 動性減J然而&amp;時在分配製程中添加溶劑二 性的混合物249可平順地由分配ϋ 292排出。良^動 就此情形而言,如第19圖所示,藉由以 動分配器292 ’可均勻地塗上混合物249,或如第m 95182 35 201201355 示’藉由以Z字形方式移動分配器292,可均勻地塗上混 合物249。 之後’如苐20圖所示,用加熱裝置296加熱混合物 249以使潞合物249中的溶劑蒸發。 如上述,該溶劑可由揮發材料製成,因此可加以蒸發 來移除而不使用加熱裝置296。因此,只有透明樹脂(第2 圖的142)與螢光粉(第2圖的144))留在LED晶片220的上 表面上以衫成由它們構成的波長轉換層240。 就此情%而言,為了防止波長轉換層240因溶劑蒸發 延遲可能造成遮合物249的流動性使其變形,可用加熱裝 置296加熱含有該溶劑的混合物249。例如’ LED晶片220 可在50 C至l7〇°c的溫度範圍内加熱,藉此可加熱混合物 249以及可更如有效地移除混合物249之中的溶劑。 以下參考第18圖至第35圖,根據本發明,各自描述 led封裝件製造方法的製程。 第2 2圖至第2 8圖的剖面圖根據本發明之例示性具體 實施例各自圖示LED封裝件製造方法的製程。第29圖至第 35圖的平面圖根據本發明之另一個例示性具體實施例各 自圖不LED封|件製造方法的製程。 首先’如第22圖至第29圖所示,多個LED晶片220 裝在封裝基材210上(步驟si 10)。亦即,安裝多個LED晶 片220於有電路圖案212形成於其中之一個表面的封裝基 材210,以及就此情形而言,LED晶片22〇可用黏著層214 實際接合及電氣連接至封裝基材210的電路圖案212。 36 95182 201201355 ,就此情形而言,LED晶片220可以串聯方式電氣連接 至形成於封骏基材210上的電路圖案212。不過,本發明 不限於此,而且LED晶片22〇可以並聯方式電氣連接至電 路圖案212,或可以串聯及並聯方式電氣連接至電路圖案 212。 在本例示性具體實施例中,如第22圖及第29圖所 示,總共有8個LED晶片220裝在封裝基材210上以形成 兩個單元封裝件,然後通過切割製程分開它們,然而本發 明不限於此,而且視實際需要,可改變LED晶片220的安 裝個數與單元封裝件的切割個數。 如第23圖及第30圖所示’電極墊221用電線230電 氣連接至封裝基材210(步驟S120)。在本例示性具體實施 例中’例如使用有第4圖之垂直結構的LED晶片220,以 及由於電極墊221形成於LED晶片220的上表面上,電極 塾221可用電線230電氣連接至封裝基材21〇的電路圖案 212。 當本例示性具體實施例中使用圖示於第6圖的LED晶 片120時’由於電極墊121不形成於LED晶片220的上表 面上,可省略此製程。 之後’如第24圖及第31圖所示,用分配器294形成 壩體270於封装基材21〇上以界定容納led晶片220、光 反射層250及光分布層260於其中的空腔272(步驟S130)。 亦即’在此製程中,用分配器294沿著封裝基材210的邊 緣塗佈樹脂材料來形成壩體270。壩體270的形成構成用 37 95182 201201355 於谷納LED晶片220、光反射層250及光分布層260於其 中的空腔272。 就此情形而言,用來形成壩體270的樹脂材料可為緩 衝材料。因此,雖然由陶瓷材料製成的封裝基材丨1〇在製 程的加熱及冷卻操作中會膨脹或收縮,由於壩體17〇可變 形以對應膨脹及收縮的程度,因此可有效防止封裝基材 210彎曲或其類似者的現象,以及有優異熱阻的氧化鋁可 用作封裝基材210的材料。 當如同第7或8圖的LED封裝件ι00 ,形成空腔172 於封裝基材110上時,或當封裝基材11〇包含第一及第二 基材116及118時,可省略此製程。 之後,如第25圖及第32圖所示,用分配器292塗佈 含有透明樹脂(第2圖的142)、螢光粉(第2圖的144)及溶 劑的混合物249於各個LED晶片22〇的上表面以形成波長 轉換層240(步驟S140)。 如上述參考第19圖至第21圖,藉由分配含有透明 樹月曰(第2圖的142)、螢光粉(第2圖的144)及溶劑的混合 物249至每個LED晶片220的上表面上,可形成波長轉換 層 240 〇 亦即,如上述,可增加螢光粉(第2圖的144)的數量 以在例如重量比上兩倍多於透明樹脂(第2圖的142)以減 少透明樹脂及螢光粉之混合物的流動性,從而形成的波長 轉換層240 #形成於其他部份的平坦面246而非鄰近⑽ 晶片220上表面之轉角的部份。不過,就此情形而言,用 95182 38 201201355 螢光粉(第2圖的144)增加混合物249的黏度可能妨礙混 合物249的平順塗佈,因此添加溶劑至混合物249以便有 平順的分配操作從而在分配製程中提供暫時的流動性給混 合物249。因此,可有效地塗佈混合物249於LED晶片220 的上表面,同時可精確地調整波長轉換層240的組態、厚 度或其類似者。 如上述,該溶劑可由揮發材料製成以提供暫時流動 性,以及該溶劑的數量在重量比上可約為螢光粉(第2圖的 144)的十分之一。 同時,以圖示於第17圖的u:D封裝件1〇〇而言,混 &amp;物249甚至塗佈於led晶片120的側面以及LED晶片120 的上表面,以形成由LED晶片12〇上表面延伸至LED晶片 120側面的波長轉換層14〇。 此外’就此情形而言,在塗佈混合物249於LED晶片 120的上表面及側面時,該溶劑可蒸發移除,因此,波長 轉換層140的表面可具有平行於LED晶片12〇之上表面及 侧面的平坦面246。 隨後,如第26圖至第33圖所示,光反射層250形成 於封裝基材210上以包圍LED晶片220的侧面(步驟S150)。 例如,通過分配或模造操作,用含有反射材料(或反射物) (例如,二氧化鈦或其類似物)的材料填充在LED晶片22〇 四周的區域,可形成光反射層250。 就此情形而言,由於形成於封裝基材21〇上的壩體27〇 界定用於形成光反射層250的空腔272,根據前述製程, 39 95182 201201355 可更容易形成光反射層250。 然後,如第27圖及第34圖所示,形成覆蓋波長轉換 層240及光反射層250的光分布層260(步驟S160)。例如, 通過分配操作將含有分散劑(例如,二氧化矽或其類似物) 的材料塗佈於光反射層250及波長轉換層240,可形成光 分布層260。 如同光反射層250,藉助於前述壩體270,也可輕易 形成光分布層260。 同時’在第14圖之LED封裝件100的情形下,省略 光反射層150與光分布層160,以及透明覆蓋層180形成 於LED晶片120上。因此,在第14圖之LED封裝件1〇〇 的情形下,省略形成光反射層15〇的製程與形成光分布層 160的製程’然而必須另外執行形成透明覆蓋層18〇於led 晶片上的製程。 之後’如第28圖及第35圖所示,移除壩體270與封 裝基材210中形成壩體270的邊緣(步驟S170)。亦即,在 光分布層260形成後,封裝基材210切成單元LED封裝件 200 ’以及可移除用來形成光反射層250及光分布層260 的壩體270與封裝基材210中形成壩體270的邊緣。 如上述,在本例示性具體實施例中,製造其中有多個 LED晶片220裝在封裝基材21()上以及通過切割製程來分 開的LED封裝件200的流程係舉例說明。不過,如第15 圖所不’在製造led封裝件有壩體170留在最終產品中的 情形下,可省略移除壩體270的製程。 40 95182 201201355 如前述,根據本發明的例示性具體實施例,由於LED 封裝件的發光表面總面積減少,可改善LED封裝件的發光 效率。此外,由於在LED晶片上表面由發光表面發出有均 勻色溫的光線,可減少光線的色彩模糊。此外,也可有效 地減少可能產生於產品之間的色溫變化。 儘管已用複數個例示性具體實施例圖解及描述本發 明,顯然熟諳此藝者明白仍可做出修改及變體而不脫離由 隨附申請專利範圍所定義的本發明精神及範疇。 【圖式簡單說明】 由以下結合附圖的詳細說明可更加明白本發明的上 述及其他方面、特徵及其他優點。 第1圖的剖面圖根據本發明之例示性具體實施例圖示 發光二極體(LED)封裝件; 第2圖的示意圖根據本發明之例示性具體實施例圖示 LED封裝件的波長轉換層; 第3圖根據本發明之例示性具體實施例圖示LED封裝 件的色溫特性曲線圖; 第4圖至第6圖的剖面圖根據本發明之例示性具體實 施例圖示LED封裝件的LED晶片; 第7圖至第9圖的剖面圖根據本發明另一個例示性具 體實施例圖示發光二極體(LED)封裝件; 第10圖的剖面圖根據本發明另一個例示性具體實施 例圖示發光二極體(LED)封裝件; 第11圖為第10圖LED封裝件的平面圖; 41 95182 201201355 第12圖的曲線圖圖示第10圖led封裝件的光分布圖 案; 第13圖為第10圖LED封裝件與產品的色彩散射圖.; 第圖至第16圖的剖面圖根據本發明之例示性具體 實施例圖示LED封裝件的實施例; 第17圖的示意圖根據本發明之例示性具體實施例圖 示LED封裝件; 第18圖的流程圖根據本發明之例示性具體實施例圖 示LED封裝件製造方法的流程; 第19圖至第21圖的視圖根據本發明之例示性具體實 施例圖不LED封裝件製造方法中形成波長轉換層的流程; 第22圖至第28圖的剖面圖根據本發明之例示性具體 實施例各自圖示LED封裝件製造方法的流程;以及 第29圖至第35圖的平面圖根據本發明另一個例示性 具體實施例各自圖示LED封裝件製造方法的流程。 【主要元件符號說明】 100 、 200 LED封裝件 110 、 210 封裝基材 112 、 212 電路圖案 114 、 214 黏著層 116 第一基材 118 第二基材 120 、 220 LED晶片 121 ' 221 電極墊 122 、 222 結構支持層 123 、 223 發光結構 124 P型半導體層 125 主動層 126 η型半導體層 127 成長基材 130 、 230 電線 140 、 240 波長轉換層 42 95182 201201355 142 透明樹脂 144 螢光粉 146 、 246 平坦面 148 、 248 曲面 150 、 250 光反射層 160 、 260 光分布層 170 、 270 壩體 172 、 272 空腔 180 透明覆蓋層 249 混合物 292 &gt; 294 分配器 296 加熱裝置 S110 安裝LED晶片於封裝基材上 S120 用電線電氣連接封裝基材與LED晶片 S130 用分配器形成壩體於封裝基材上以界定容納 LED晶片、光反射層及光分布層的空腔 S140 用分配器塗佈含有透明樹脂、螢光粉及溶劑的 混合物於LED晶片的上表面來形成波長轉換層 (由混合物移除溶劑係藉由加熱混合物來蒸發 溶劑) S150 形成光反射層於封裝基材上以包圍LED晶片的 侧面 S160 形成覆蓋波長轉換層及光反射層的光分布層 S170 移除壩體與封裝基材中形成壩體的邊緣 43 95182According to the embodiment of the present embodiment, since the wavelength conversion layer 24 is formed to have a uniform thickness on the upper surface of the LED wafer 220, the luminous efficiency of the LED package 200 can be improved, the etendue can be reduced, and the brightness can be greatly reduced. Reduce the color blur of the light. In addition, since the wavelength conversion layer 240 can be formed to have an appropriate thickness to take into account the characteristics of the individual LED chips after the LED wafer 220 is divided into unit LED chips, the potential color temperature variation between the individual LED packages 2〇〇 can also be effectively reduced. . First, a mixture 249 is prepared by mixing a transparent resin (142 of Fig. 2), phosphor powder (144 of Fig. 2), and a solvent to form a wavelength conversion layer 240 on the upper surface of the LED wafer 220. In order to form a phosphor layer on the upper surface of the LED wafer, a mixture of a transparent resin and a phosphor powder may be applied to the LED wafer and a method of curing the resin. However, with this method, it is difficult to form a phosphor layer having a uniform thickness because the coating mixture as a whole has a convex curved surface, which is caused by the surface tension of the transparent resin having high fluidity before curing. Therefore, in this exemplary embodiment, the amount of phosphor powder (144 of FIG. 2) is relatively increased compared to the transparent resin (142 of FIG. 2) to increase the viscosity of the mixture 249 to reduce the application to the LED. The fluidity of the mixture 249 on the upper surface of the wafer 220, therefore, the wavelength conversion layer 240 having the flat surface 246 can be formed. In this case, the weight ratio of the phosphor powder (144 of Fig. 2) to the transparent 95182 33 201201355 resin (142 of Fig. 2) is 2:1 or more. In this case, however, increasing the amount of phosphor powder (144 in Fig. 2) in order to increase the viscosity may cause the dispensing process to be performed, so the solvent is added to the transparent resin (142 of Fig. 2) and the phosphor powder ( Mixture 249 of 144) of Figure 2 temporarily reduces the viscosity of mixture 249 to increase fluidity when coating mixture 249 with dispenser 292. In this manner, since the solvent is added to the mixture 249 containing the transparent resin (142 of FIG. 2) and the phosphor powder (144 of FIG. 2) to temporarily provide fluidity to the mixture 249, the upper surface of the LED wafer 220 can be The wavelength conversion layer 240 having a uniform thickness is effectively formed. The solvent is the material used to provide temporary fluidity to the mixture 249. For example, the solvent may be a volatile material that evaporates after the mixture 249 is applied to the upper surface of the LED wafer 220, and a material having a relatively low molecular weight organic solvent group (eg, polymer, monomer, ethanol, acetone, or the like). Can be used as the solvent. Further, the solvent is a material for providing a certain degree of fluidity to the mixture 249 which has been reduced in fluidity due to an increase in the amount of the fluorescent powder (144 of Fig. 2), and therefore does not require a large amount of solvent, for example, and based on weight. This solvent is mixed to a degree that is one tenth of that of the phosphor powder (144 of Fig. 2). Further, the mixture 249 may further contain transparent fine particles made of a material such as cerium oxide, titanium oxide, and ai 2 〇 3 to adjust the color temperature, and may combine the transparent fine particles to have a fluorescent powder (144 of FIG. 2) 1/2 or less by weight. Referring to FIGS. 19 to 21, an exemplary embodiment of the present invention is described in the description of the present invention. The method for manufacturing an LED package is to use a transparent resin (142 of FIG. 2) and a lacquer powder (2nd). The mixture 249 of 144) and the solvent forms a process for the wavelength conversion layer 240. The views from the Wth to the 21st views illustrate a process for forming a wavelength conversion layer in accordance with an exemplary embodiment of the present invention. First, as shown in Fig. 19, a mixture (10) and 294 containing a transparent resin (142 of Fig. 2), phosphor powder (144 of Fig. 2), and a solvent are applied to the upper surface of the LED wafer 22A. After the LED wafer 220 is wire bonded to the package substrate 21, the wafer 2 (4) package substrate 210 can be dispensed with the mixture 249, so that the electrode 221 is partially buried with the portion of the wire coffee 249. That is, the mixture 249 is configured to cover even the light emitting surface of the electrode 221 disk wafer 220, and the wire 230 may be covered with a wavelength conversion layer during this process. Meanwhile, in this exemplary and Hi example, the distribution may mean that Lin Pu applies a pressure feed head to connect the phosphor powder mixture (that is, in the state of most of the sensible $ rong powder mixture on the upper surface of the wafer). ), this does not =:= process 'where the material is granulated to make money as above's initial increase in crab light powder (Fig. 2, second class: person. Dynamic reduction J however &amp; in the distribution process) The solvent-added mixture 249 can be smoothly discharged from the distribution 292. In this case, as shown in Fig. 19, the mixture 249 can be uniformly applied by the movable distributor 292', or as in the first m 95182 35 201201355 shows that by moving the dispenser 292 in a zigzag manner, the mixture 249 can be uniformly applied. Thereafter, as shown in FIG. 20, the mixture 249 is heated by a heating device 296 to cause the solvent in the composition 249. Evaporation. As described above, the solvent can be made of a volatile material, and thus can be removed by evaporation without using the heating device 296. Therefore, only the transparent resin (142 of Fig. 2) and the phosphor powder (144 of Fig. 2) ) remaining on the upper surface of the LED wafer 220 to form a shirt The wavelength conversion layer 240. In this case, in order to prevent the wavelength conversion layer 240 from being deformed by the solvent evaporation delay due to the solvent evaporation delay, the mixture 249 containing the solvent may be heated by the heating means 296. For example, the 'LED wafer 220 can be heated in a temperature range of 50 C to 17 〇 ° C, whereby the mixture 249 can be heated and the solvent in the mixture 249 can be removed more effectively. Referring now to Figures 18 through 35, in accordance with the present invention, the process of the method of fabricating a led package is separately described. The cross-sectional views of Figures 2 through 2 are each illustrating a process for fabricating an LED package in accordance with an exemplary embodiment of the present invention. The plan views of Figs. 29 to 35 are processes according to another exemplary embodiment of the present invention, which are independent of the LED package. First, as shown in Figs. 22 to 29, a plurality of LED chips 220 are mounted on a package substrate 210 (step si 10). That is, a plurality of LED wafers 220 are mounted on the package substrate 210 having the circuit pattern 212 formed on one of the surfaces thereof, and in this case, the LED wafer 22 can be physically bonded and electrically connected to the package substrate 210 by the adhesive layer 214. Circuit pattern 212. 36 95182 201201355 , in this case, the LED chips 220 can be electrically connected in series to the circuit pattern 212 formed on the sealing substrate 210. However, the present invention is not limited thereto, and the LED chips 22A may be electrically connected to the circuit pattern 212 in parallel, or may be electrically connected to the circuit pattern 212 in series and in parallel. In the exemplary embodiment, as shown in FIGS. 22 and 29, a total of eight LED chips 220 are mounted on the package substrate 210 to form two unit packages, and then separated by a cutting process, however The present invention is not limited thereto, and the number of mounting of the LED wafer 220 and the number of cuts of the unit package can be changed as needed. As shown in Figs. 23 and 30, the electrode pad 221 is electrically connected to the package substrate 210 by a wire 230 (step S120). In the exemplary embodiment, for example, the LED wafer 220 having the vertical structure of FIG. 4 is used, and since the electrode pad 221 is formed on the upper surface of the LED wafer 220, the electrode 221 can be electrically connected to the package substrate by the wire 230. 21〇 circuit pattern 212. When the LED wafer 120 illustrated in Fig. 6 is used in the exemplary embodiment, since the electrode pad 121 is not formed on the upper surface of the LED wafer 220, the process can be omitted. Thereafter, as shown in FIGS. 24 and 31, a dam body 270 is formed on the package substrate 21 by a dispenser 294 to define a cavity 272 in which the LED wafer 220, the light reflecting layer 250, and the light distribution layer 260 are accommodated. (Step S130). That is, in the process, the dam body 270 is formed by applying a resin material along the edge of the package substrate 210 by the dispenser 294. The formation of the dam 270 constitutes a cavity 272 in which the Guranna LED wafer 220, the light reflecting layer 250, and the light distributing layer 260 are used in 37 95182 201201355. In this case, the resin material used to form the dam 270 may be a buffer material. Therefore, although the package substrate 陶瓷1〇 made of a ceramic material expands or contracts during the heating and cooling operation of the process, since the dam body 17 can be deformed to correspond to the degree of expansion and contraction, the package substrate can be effectively prevented. The phenomenon of 210 bending or the like, and alumina having excellent heat resistance can be used as the material of the package substrate 210. When the cavity 172 is formed on the package substrate 110 as in the LED package ι00 of the seventh or eighth embodiment, or when the package substrate 11 〇 includes the first and second substrates 116 and 118, the process can be omitted. Thereafter, as shown in FIGS. 25 and 32, a mixture 249 containing a transparent resin (142 of FIG. 2), phosphor powder (144 of FIG. 2), and a solvent is applied to each LED wafer 22 by a dispenser 292. The upper surface of the crucible is formed to form the wavelength conversion layer 240 (step S140). As described above with reference to Figs. 19 to 21, a mixture 249 containing a transparent tree moon (142 of Fig. 2), phosphor powder (144 of Fig. 2), and a solvent is dispensed onto each of the LED wafers 220. On the surface, the wavelength conversion layer 240 may be formed. That is, as described above, the amount of the phosphor powder (144 of FIG. 2) may be increased to be, for example, twice as much as the weight ratio of the transparent resin (142 of FIG. 2). The fluidity of the mixture of the transparent resin and the phosphor powder is reduced, so that the wavelength conversion layer 240 # is formed on the flat portion 246 of the other portion than the portion adjacent to the corner of the upper surface of the wafer 220. However, in this case, increasing the viscosity of the mixture 249 with 95182 38 201201355 phosphor (144 of Fig. 2) may interfere with the smooth coating of the mixture 249, thus adding solvent to the mixture 249 for a smooth dispensing operation and thus dispensing Temporary fluidity is provided to the mixture 249 during the process. Therefore, the mixture 249 can be effectively coated on the upper surface of the LED wafer 220 while precisely adjusting the configuration, thickness or the like of the wavelength conversion layer 240. As described above, the solvent may be made of a volatile material to provide temporary fluidity, and the amount of the solvent may be about one tenth of the phosphor powder (144 of Fig. 2) by weight. Meanwhile, in the u:D package 1A shown in FIG. 17, the mixed material 249 is even coated on the side surface of the LED wafer 120 and the upper surface of the LED wafer 120 to be formed by the LED wafer 12 The upper surface extends to the wavelength conversion layer 14A on the side of the LED wafer 120. In addition, in this case, when the mixture 249 is applied to the upper surface and the side surface of the LED wafer 120, the solvent can be removed by evaporation, and therefore, the surface of the wavelength conversion layer 140 can have a surface parallel to the upper surface of the LED wafer 12 and Flat side 246 on the side. Subsequently, as shown in Figs. 26 to 33, the light reflecting layer 250 is formed on the package substrate 210 to surround the side surface of the LED wafer 220 (step S150). For example, the light reflecting layer 250 may be formed by a filling or molding operation by filling a region around the LED wafer 22 with a material containing a reflective material (or a reflective material) (e.g., titanium oxide or the like). In this case, since the dam body 27's formed on the package substrate 21'b defines the cavity 272 for forming the light-reflecting layer 250, the light-reflecting layer 250 can be more easily formed according to the aforementioned process, 39 95182 201201355. Then, as shown in Figs. 27 and 34, the light distribution layer 260 covering the wavelength conversion layer 240 and the light reflection layer 250 is formed (step S160). For example, a light distribution layer 260 can be formed by applying a material containing a dispersant (e.g., cerium oxide or the like) to the light reflecting layer 250 and the wavelength converting layer 240 by a dispensing operation. Like the light reflecting layer 250, the light distributing layer 260 can be easily formed by means of the aforementioned dam 270. Meanwhile, in the case of the LED package 100 of Fig. 14, the light reflecting layer 150 and the light distributing layer 160 are omitted, and the transparent cover layer 180 is formed on the LED wafer 120. Therefore, in the case of the LED package 1A of FIG. 14, the process of forming the light-reflecting layer 15A and the process of forming the light-distributing layer 160 are omitted. However, it is necessary to additionally perform the formation of the transparent cover layer 18 on the led wafer. Process. Thereafter, as shown in Figs. 28 and 35, the edge of the dam body 270 is removed from the dam body 270 and the package base material 210 (step S170). That is, after the light distribution layer 260 is formed, the package substrate 210 is cut into the unit LED package 200' and the dam body 270 that can be used to form the light reflection layer 250 and the light distribution layer 260 is formed in the package substrate 210. The edge of the dam body 270. As described above, in the exemplary embodiment, the flow of the LED package 200 in which a plurality of LED chips 220 are mounted on the package substrate 21 () and separated by a cutting process is exemplified. However, as in the case of Fig. 15, the process of removing the dam 270 may be omitted in the case where the LED package 170 has the dam body 170 left in the final product. 40 95182 201201355 As described above, according to an exemplary embodiment of the present invention, since the total area of the light emitting surface of the LED package is reduced, the luminous efficiency of the LED package can be improved. In addition, since light having a uniform color temperature is emitted from the light emitting surface on the upper surface of the LED wafer, the color blur of the light can be reduced. In addition, it is also possible to effectively reduce color temperature variations that may occur between products. Although the present invention has been illustrated and described with reference to the embodiments of the present invention, it is understood that modifications and variations may be made without departing from the spirit and scope of the invention as defined by the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other aspects, features and other advantages of the present invention will become more apparent from the detailed description of the appended claims. 1 is a cross-sectional view illustrating a light emitting diode (LED) package in accordance with an exemplary embodiment of the present invention; FIG. 2 is a schematic view showing a wavelength conversion layer of an LED package in accordance with an exemplary embodiment of the present invention 3 is a graph showing a color temperature characteristic of an LED package according to an exemplary embodiment of the present invention; and FIG. 4 to FIG. 6 are cross-sectional views illustrating an LED of an LED package according to an exemplary embodiment of the present invention. Wafer; FIGS. 7 through 9 are cross-sectional views illustrating a light emitting diode (LED) package in accordance with another exemplary embodiment of the present invention; FIG. 10 is a cross-sectional view according to another exemplary embodiment of the present invention FIG. 11 is a plan view of the LED package of FIG. 10; 41 95182 201201355 The graph of FIG. 12 illustrates the light distribution pattern of the LED package of FIG. 10; FIG. FIG. 10 is a cross-sectional view of the LED package according to an exemplary embodiment of the present invention; FIG. 17 is a schematic view of the LED package according to an exemplary embodiment of the present invention; Illustrative implementation Illustrated LED package; FIG. 18 is a flow chart illustrating a flow of an LED package manufacturing method according to an exemplary embodiment of the present invention; and FIGS. 19 to 21 are views according to an exemplary embodiment of the present invention A flow chart for forming a wavelength conversion layer in a method of manufacturing an LED package; a cross-sectional view of FIGS. 22 to 28 each illustrating a flow of a method of manufacturing an LED package according to an exemplary embodiment of the present invention; and FIG. 29 to 35. Plan view of the drawings each illustrates a flow of a method of fabricating an LED package in accordance with another exemplary embodiment of the present invention. [Main component symbol description] 100, 200 LED package 110, 210 package substrate 112, 212 circuit pattern 114, 214 adhesive layer 116 first substrate 118 second substrate 120, 220 LED wafer 121 '221 electrode pad 122, 222 structure support layer 123, 223 light-emitting structure 124 P-type semiconductor layer 125 active layer 126 n-type semiconductor layer 127 growth substrate 130, 230 wire 140, 240 wavelength conversion layer 42 95182 201201355 142 transparent resin 144 fluorescent powder 146, 246 flat Face 148, 248 Curve 150, 250 Light Reflective Layer 160, 260 Light Distribution Layer 170, 270 Dam 172, 272 Cavity 180 Transparent Cover Layer 249 Mixture 292 &gt; 294 Dispenser 296 Heating Device S110 Mounting the LED Wafer on the Package Substrate The upper S120 electrically connects the package substrate and the LED chip S130 with a wire, and forms a dam on the package substrate with a dispenser to define a cavity S140 for accommodating the LED chip, the light reflection layer and the light distribution layer, and coating the transparent resin with a dispenser, A mixture of phosphor powder and solvent is formed on the upper surface of the LED wafer to form a wavelength conversion layer (the solvent system is removed from the mixture) The solvent is evaporated by heating the mixture) S150 forms a light reflecting layer on the package substrate to surround the side surface S160 of the LED wafer to form a light distribution layer S170 covering the wavelength conversion layer and the light reflection layer. The dam body is formed in the dam body and the package substrate. Edge 43 95182

Claims (1)

201201355 七、申請專利範圍: 1. 一種發光二極體(LED)封裝件,包括: 封裝基材; 安裝在該封裝基材上的LED晶片;以及 波長轉換層,形成以覆蓋至少一部份之該led晶片 的上表面,而以從上方俯視時的該LED晶片所形成之表 面疋義為該LED晶片之該上表面,其中,該波長轉換層 形成以不超出該LED晶片之該上表面的區域且包含與 該LED晶片之該上表面平行的平坦面以及連接該led 晶片之該上表面之轉角的曲面。 2. 如申請專利範圍第1項所述之封裝件,復包括: 光反射層,形成於該封裝基材上以包圍該LED晶片 的侧面。 3·如申請專利範圍第2項所述之封裝件,其中,該光反射 層由含有二氧化鈦的材料所製成。 4. 如申請專利範圍第2項所述之封裝件,復包括: 覆蓋該波長轉換層及該光反射層的光分布層。 5. 如申請專利範圍第4項所述之封裝件,其中,該光分布 層由含有二氧化矽的材料所製成。 6. 如申請專利範圍第4項所述之封裝件,復包括: 壩體,形成於該封裝基材上以界定用以將該LED 晶片、該光反射層及該光分布層容納於其中的空腔。 7. 如申請專利範圍第6項所述之封裝件,其中,該壩體由 含有樹脂的材料所製成。 1 95182 201201355 8. 如申請專利範圍第1項所述之封裝件,復包括: 覆蓋該LED晶片的透明覆蓋層。 9. 如申請專利範圍第1項所述之封裝件,其中,該封裝基 材由含有陶瓷的材料所製成。 10. 如申請專利範圍第1項所述之封裝件,其中,該波長轉 換層由含有透明樹脂及螢光粉的材料所製成。 11. 如申請專利範圍第10項所述之封裝件,其中,該螢光 粉與該透明樹脂的重量比為2 : 1或更大。 12. 如申請專利範圍第2項所述之封裝件,其中,該LED 晶片包括. 由導電材料所製成的結構支持層;以及 發光結構,形成於該結構支持層之一個表面上且包 含P型半導體層、主動層及η型半導體層。 13. 如申請專利範圍第12項所述之封裝件,其中,該發光 結構形成於該結構支持層之一個表面之一部份上,且該 LED晶片之該上表面包括該發光結構之一個表面及該 結構支持層之一個表面之於其中未形成有該發光結構 的其他剩餘區域。 14. 如申請專利範圍第1項所述之封裝件,其中,該LED 晶片包括. 成長基材;以及 發光結構,形成於該成長基材之一個表面上且包含 η型半導體層、主動層及p型半導體層,其中,該主動 層及該ρ型半導體層形成於該η型半導體層之一個表面 2 95182 201201355 之一部份上。 15. 如申請專利範圍第2項所述之封裝件,其中,該LED 晶片之該上表面包括該p型半導體層之一個表面和該η 型半導體層之一個表面之於其中未形成有該主動層及 該Ρ型半導體層的其他剩餘區域。 16. 如申請專利範圍第14項所述之封裝件,其中,該LED 晶片之該上表面係該成長基材之另一個表面。 17. 如申請專利範圍第1項所述之封裝件,復包括: 形成於該LED晶片之該上表面上的電極墊,其中, 該波長轉換層形成來覆蓋該電極墊。 18. 如申請專利範圍第17項所述之封裝件,復包括: 將該電極墊電氣連接至該封裝基材的電線。 19. 如申請專利範圍第1項所述之封裝件,其中,該波長轉 換層延伸至該LED晶片的側面。 20. 如申請專利範圍第1項所述之封裝件,其中,形成多個 LED晶片及多個波長轉換層,且該多個波長轉換層各自 形成於該多個LED晶片的上表面上。 21. —種照明設備,包括如申請專利範圍第1項所述之LED 封裝件。 22. —種用於製造LED封裝件的方法,該方法包括下列步 驟: 安裝LED晶片於封裝基材上;以及 塗佈包含透明樹脂、螢光粉及溶劑的混合物至該 LED晶片之上表面, 95182 201201355 其中,在塗佈該混合物的製程中將該溶劑從該混合 物移除後,該波長轉換層形成以不超出該LED晶片之該 上表面的區域且包含與該LED晶片之該上表面平行的 平坦面以及連接該平坦面與該LED晶片之該上表面之 轉角的曲面,而以從上方俯視時的該LED晶片所形成之 表面定義為該LED晶片之該上表面。 23. 如申請專利範圍第22項所述之方法,其中,該溶劑由 揮發材料所製成。 24. 如申請專利範圍第22項所述之方法,復包括下列步驟: 在塗佈該混合物的製程中,加熱塗佈至該LED晶片 之該上表面的該混合物藉此蒸發該溶劑。 25. 如申請專利範圍第22項所述之方法,其中,使用分配 器來執行該混合物的塗佈。 26. 如申請專利範圍第25項所述之方法,其中,該混合物 的塗佈包括:連續塗佈該混合物以保持將該混合物由該 分配器連續地塗佈至該LED晶片之該上表面的狀態。 27. 如申請專利範圍第25項所述之方法,其中,在該分配 器以螺旋或Z字形方式在該LED晶片的上表面上方移動 時,執行該混合物的塗佈。 28. 如申請專利範圍第22項所述之方法,復包括下列步驟: 在該混合物的塗佈後,形成光反射層於該封裝基材 上以包圍該LED晶片的侧面。 29. 如申請專利範圍第28項所述之方法,其中,該光反射 層由含有二氧化鈦的材料所製成。 4 95182 201201355 30.如申請專利範圍第28項之方、本 ^ 復包括下列步驟: 在形成該纽射輕,以 = 光反射層的光分布層。 是蓋該波長轉換層及該 3L如申請專利範圍第3〇項所述之方法,其中, 層由含有二氧化矽的材料所製成。 、 九刀布 32. 如申請專利範圍第30項所述之 .y 方法,復包括下列步驟: 在形賴狀職之前,錢料歸上形成壤體 以將該LED晶片、該光反射層及該光分布層容 納於其中的空腔。 33. 如申請專利範圍第32項所述之方法,其中,該壤體形 成於該封裝基材的邊緣上,該方法復包括下列㈣: 在形㈣光分布層後,移除該壩體及該封裝基材之 於其上形成有該域體的邊緣。 34·如申請專利範圍第32項所述之方法,其中,該壤體由 含有樹脂的材料所製成。 35. 如申請專利範圍第32項所述之方法,其中,使用分配 器來執行該壩體的形成。 36. 如申請專利範圍第32項所述之方法,復包括下列步驟: 在該混合物的塗佈後’形成覆蓋該LED晶片的透明 覆蓋層。 3 7.如申明專利範圍第2 2項所述之方法,其中,該封裝基 材由含有陶瓷的材料所製成。 38.如申請專利範圍第22項所述之方法,其中,該螢光粉 及該透明樹脂的重量比為2 : 1或更大。 95182 5 201201355 39. 如申請專利範圍第22項所述之方法,其中,該LED晶 片包括: 由導電材料所製成的結構支持層;以及 發光結構,形成於該結構支持層之一個表面上且包 含P型半導體層、主動層及η型半導體層。 40. 如申請專利範圍第39項所述之方法,其中,該發光結 構形成於該結構支持層之一個表面之一部份上,且該 LED晶片之該上表面包括該發光結構之一個表面及該 結構支持層之一個表面之於其中未形成有該發光結構 的其他剩餘區域。 41. 如申請專利範圍第22項所述之方法,其中,該LED晶 片包括: 成長基材,以及 發光結構,形成於該成長基材之一個表面上且包含 η型半導體層、主動層及p型半導體層,其中,該主動 層及該ρ型半導體層形成於該η型半導體層之一個表面 的一部份上。 42. 如申請專利範圍第41項所述之方法,其中,該LED晶 片之該上表面包括該ρ型半導體層之一個表面和該η 型半導體層之一個表面之於其中未形成有該主動層及 該ρ型半導體層的其他剩餘區域。 43. 如申請專利範圍第41項所述之方法,其中,該LED晶 片之該上表面係該成長基材之另一個表面。 44. 如申請專利範圍第22項所述之方法,其中,形成電極 6 95182 201201355 墊於該LED晶片之該上表面上,以及執行該混合物的塗 佈以覆蓋該電極墊。 45. 如申請專利範圍第41項所述之方法,復包括下列步驟: 在該LED晶片的安裝與該混合物的塗佈之間,使用 電線將該電極墊電氣連接至該封裝基材。 46. 如申請專利範圍第22項所述之方法,其中,在該混合 物的塗佈中,塗佈該混合物至該LED晶片的該上表面及 該側面。 47. 如申請專利範圍第22項所述之方法,其中,形成多個 LED晶片,以及在該混合物的塗佈中,各自塗佈該混合 物至該多個LED晶片之該上表面。 95182201201355 VII. Patent Application Range: 1. A light emitting diode (LED) package comprising: a package substrate; an LED chip mounted on the package substrate; and a wavelength conversion layer formed to cover at least a portion The upper surface of the LED wafer, and the surface formed by the LED chip when viewed from above is defined as the upper surface of the LED chip, wherein the wavelength conversion layer is formed not to exceed the upper surface of the LED chip And a region including a flat surface parallel to the upper surface of the LED wafer and a curved surface connecting the corners of the upper surface of the LED wafer. 2. The package of claim 1, further comprising: a light reflecting layer formed on the package substrate to surround a side of the LED wafer. 3. The package of claim 2, wherein the light reflecting layer is made of a material containing titanium dioxide. 4. The package of claim 2, further comprising: a light distribution layer covering the wavelength conversion layer and the light reflection layer. 5. The package of claim 4, wherein the light distribution layer is made of a material containing cerium oxide. 6. The package of claim 4, further comprising: a dam formed on the package substrate to define a LED wafer, the light reflective layer, and the light distribution layer received therein Cavity. 7. The package of claim 6, wherein the dam is made of a resin-containing material. 1 95182 201201355 8. The package of claim 1, further comprising: a transparent cover layer covering the LED wafer. 9. The package of claim 1, wherein the package substrate is made of a ceramic-containing material. 10. The package of claim 1, wherein the wavelength conversion layer is made of a material containing a transparent resin and a phosphor. 11. The package of claim 10, wherein the weight ratio of the phosphor to the transparent resin is 2:1 or greater. 12. The package of claim 2, wherein the LED wafer comprises: a structural support layer made of a conductive material; and a light-emitting structure formed on one surface of the structural support layer and comprising P A semiconductor layer, an active layer, and an n-type semiconductor layer. 13. The package of claim 12, wherein the light emitting structure is formed on a portion of one surface of the structural support layer, and the upper surface of the LED chip includes a surface of the light emitting structure And a surface of the structural support layer is located in other remaining regions in which the light-emitting structure is not formed. 14. The package of claim 1, wherein the LED wafer comprises: a growth substrate; and a light emitting structure formed on one surface of the growth substrate and comprising an n-type semiconductor layer, an active layer, and The p-type semiconductor layer, wherein the active layer and the p-type semiconductor layer are formed on one surface of one surface 2 95182 201201355 of the n-type semiconductor layer. 15. The package of claim 2, wherein the upper surface of the LED chip comprises a surface of the p-type semiconductor layer and a surface of the n-type semiconductor layer in which the active is not formed The layer and other remaining regions of the germanium-type semiconductor layer. 16. The package of claim 14, wherein the upper surface of the LED wafer is the other surface of the growth substrate. 17. The package of claim 1, further comprising: an electrode pad formed on the upper surface of the LED wafer, wherein the wavelength conversion layer is formed to cover the electrode pad. 18. The package of claim 17, further comprising: an electrical wire electrically connecting the electrode pad to the package substrate. 19. The package of claim 1 wherein the wavelength conversion layer extends to a side of the LED wafer. 20. The package of claim 1, wherein a plurality of LED chips and a plurality of wavelength conversion layers are formed, and the plurality of wavelength conversion layers are each formed on an upper surface of the plurality of LED wafers. 21. A lighting device comprising the LED package of claim 1 of the patent application. 22. A method for manufacturing an LED package, the method comprising the steps of: mounting an LED chip on a package substrate; and coating a mixture comprising a transparent resin, a phosphor, and a solvent onto an upper surface of the LED wafer, 95182 201201355 wherein, after the solvent is removed from the mixture in a process of applying the mixture, the wavelength converting layer is formed to not exceed a region of the upper surface of the LED wafer and includes a parallel to the upper surface of the LED wafer A flat surface and a curved surface connecting the flat surface and a corner of the upper surface of the LED chip, and a surface formed by the LED wafer when viewed from above is defined as the upper surface of the LED wafer. 23. The method of claim 22, wherein the solvent is made of a volatile material. 24. The method of claim 22, further comprising the step of: heating the solution applied to the upper surface of the LED wafer by evaporation of the solvent during the coating of the mixture. 25. The method of claim 22, wherein the dispensing of the mixture is performed using a dispenser. 26. The method of claim 25, wherein the coating comprises: continuously coating the mixture to maintain the mixture continuously applied from the dispenser to the upper surface of the LED wafer. status. 27. The method of claim 25, wherein the coating of the mixture is performed while the dispenser is moving over the upper surface of the LED wafer in a spiral or zigzag manner. 28. The method of claim 22, further comprising the step of: after coating the mixture, forming a light reflective layer on the package substrate to surround the side of the LED wafer. 29. The method of claim 28, wherein the light reflecting layer is made of a material containing titanium dioxide. 4 95182 201201355 30. As in the 28th paragraph of the patent application scope, the following steps are included: In forming the light beam, the light distribution layer of the light reflecting layer is formed. The method of covering the wavelength conversion layer and the method of the third aspect of the invention, wherein the layer is made of a material containing cerium oxide.九刀布32. The method of claim y, as described in claim 30, includes the following steps: Before the affiliation, the money is returned to form a soil to the LED wafer, the light reflecting layer and The light distribution layer houses a cavity therein. 33. The method of claim 32, wherein the soil is formed on an edge of the package substrate, the method further comprising the following (4): after the (four) light distribution layer, removing the dam and The package substrate has an edge on which the domain body is formed. 34. The method of claim 32, wherein the lobe is made of a resin-containing material. The method of claim 32, wherein the dispenser is used to perform the formation of the dam. 36. The method of claim 32, further comprising the step of: forming a transparent cover layer overlying the LED wafer after coating of the mixture. The method of claim 2, wherein the package substrate is made of a ceramic-containing material. 38. The method of claim 22, wherein the weight ratio of the phosphor powder to the transparent resin is 2:1 or greater. The method of claim 22, wherein the LED chip comprises: a structural support layer made of a conductive material; and a light-emitting structure formed on one surface of the structural support layer and A P-type semiconductor layer, an active layer, and an n-type semiconductor layer are included. 40. The method of claim 39, wherein the light emitting structure is formed on a portion of a surface of the structural support layer, and the upper surface of the LED chip includes a surface of the light emitting structure and One surface of the structural support layer is for other remaining regions in which the light-emitting structure is not formed. The method of claim 22, wherein the LED chip comprises: a growth substrate, and a light emitting structure formed on one surface of the growth substrate and including an n-type semiconductor layer, an active layer, and p The semiconductor layer, wherein the active layer and the p-type semiconductor layer are formed on a portion of one surface of the n-type semiconductor layer. The method of claim 41, wherein the upper surface of the LED chip comprises a surface of the p-type semiconductor layer and a surface of the n-type semiconductor layer, wherein the active layer is not formed therein And other remaining regions of the p-type semiconductor layer. 43. The method of claim 41, wherein the upper surface of the LED wafer is the other surface of the growth substrate. 44. The method of claim 22, wherein the electrode 6 95182 201201355 is formed on the upper surface of the LED wafer, and the coating of the mixture is performed to cover the electrode pad. 45. The method of claim 41, further comprising the step of: electrically connecting the electrode pad to the package substrate between the mounting of the LED wafer and the coating of the mixture. 46. The method of claim 22, wherein the coating is applied to the upper surface and the side of the LED wafer in the coating of the mixture. 47. The method of claim 22, wherein a plurality of LED wafers are formed, and in the coating of the mixture, the mixture is each applied to the upper surface of the plurality of LED wafers. 95182
TW100112754A 2010-04-15 2011-04-13 Light emitting diode package, lighting apparatus having the same, and method for manufacturing light emitting diode package TW201201355A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100034693 2010-04-15
KR1020100127774A KR20110115506A (en) 2010-04-15 2010-12-14 Light emitting diode package, lighting apparatus having the same and method of manufacturing a light emitting diode package

Publications (1)

Publication Number Publication Date
TW201201355A true TW201201355A (en) 2012-01-01

Family

ID=45030164

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112754A TW201201355A (en) 2010-04-15 2011-04-13 Light emitting diode package, lighting apparatus having the same, and method for manufacturing light emitting diode package

Country Status (3)

Country Link
JP (1) JP2011228703A (en)
KR (1) KR20110115506A (en)
TW (1) TW201201355A (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084126A1 (en) * 2011-12-08 2013-06-13 Koninklijke Philips Electronics N.V. Semiconductor light emitting device with thick metal layers
KR101921127B1 (en) * 2012-02-29 2018-11-22 엘지이노텍 주식회사 Lighting device
KR20130099313A (en) * 2012-02-29 2013-09-06 엘지이노텍 주식회사 Lighting device
EP2917938B1 (en) * 2012-11-07 2020-05-06 Lumileds Holding B.V. Wavelength converted light emitting device
JP5979494B2 (en) * 2012-12-20 2016-08-24 パナソニックIpマネジメント株式会社 Lighting device and light emitting module
DE102012113003A1 (en) * 2012-12-21 2014-04-03 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor component and optoelectronic semiconductor component
KR101490394B1 (en) * 2013-10-29 2015-02-06 (주)포인트엔지니어링 Array substrate for mounting a chip and method for manufacturing the same
CN104576883B (en) 2013-10-29 2018-11-16 普因特工程有限公司 Chip installation array substrate and its manufacturing method
KR102167942B1 (en) * 2013-12-27 2020-10-20 엘지디스플레이 주식회사 Light emitting diode assembly and method of fabricating the same and liquid crystal display device having the same
JP6187277B2 (en) 2014-01-21 2017-08-30 豊田合成株式会社 Light emitting device and manufacturing method thereof
KR102098594B1 (en) 2014-03-14 2020-04-08 삼성전자주식회사 LED package
JP6229574B2 (en) * 2014-03-31 2017-11-15 日亜化学工業株式会社 Method for manufacturing light emitting device
JP6464877B2 (en) * 2014-05-21 2019-02-06 日亜化学工業株式会社 Method for manufacturing light emitting device
CN107946441A (en) * 2016-10-12 2018-04-20 亿光电子工业股份有限公司 Light-emitting device and light-emitting diode encapsulation structure
KR20180090002A (en) 2017-02-02 2018-08-10 서울반도체 주식회사 Light emitting diode package
KR20180090006A (en) * 2017-02-02 2018-08-10 서울반도체 주식회사 Light emitting diode unit
JP6399132B2 (en) * 2017-03-27 2018-10-03 日亜化学工業株式会社 Light emitting device
KR102555234B1 (en) * 2018-04-27 2023-07-14 주식회사 루멘스 flexible LED lighting apparatus
JP7257247B2 (en) * 2019-05-16 2023-04-13 スタンレー電気株式会社 light emitting device
US11735569B2 (en) 2020-06-03 2023-08-22 Seoul Viosys Co., Ltd. Light emitting device module and display apparatus having the same
WO2021246776A1 (en) * 2020-06-03 2021-12-09 서울바이오시스주식회사 Light-emitting diode module and display device comprising same
TWI762071B (en) * 2020-12-07 2022-04-21 友達光電股份有限公司 Light emitting diode structure, method of forming the same, and backlight module

Also Published As

Publication number Publication date
KR20110115506A (en) 2011-10-21
JP2011228703A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
TW201201355A (en) Light emitting diode package, lighting apparatus having the same, and method for manufacturing light emitting diode package
US10411175B2 (en) Light emitting element package and method of manufacturing the same
US9012950B2 (en) Light emitting device package
US20110254039A1 (en) Light emitting diode package, lighting apparatus having the same, and method for manufacturing light emitting diode package
US11031532B2 (en) Light emitting device
US9249963B2 (en) Light emitting device
US8558246B2 (en) Light emitting diode, method for fabricating phosphor layer, and lighting apparatus
KR20120097477A (en) Led packages with scattering particle regions
KR20100080423A (en) Light emitting device package and method of fabricating thereof
KR20110066202A (en) Led with particles in encapsulant for increased light extraction and non-yellow off-state color
TWI523192B (en) Lighting apparatus and method of fabricating the same, and photonic lighting module
KR20160024534A (en) Light emitting device module and vehicle lighting device including the same
KR20150095430A (en) Light emitting diode package and light emitting device using the same
JP2015012144A (en) Light-emitting device and method of manufacturing the same
KR101893996B1 (en) Light Emitting Device Package
KR101666844B1 (en) Optical device and light source module having the same
US20160356453A1 (en) Optical device and light source module including the same
KR20130105313A (en) Light emitting device package and method of manufacturing the same
US9680074B2 (en) Optical device and light emitting device package including the same
US8455900B2 (en) Semiconductor light-emitting device having an optical member, and method of manufacturing the same
KR101338704B1 (en) Light emitting apparatus
KR101916282B1 (en) Light emitting device
KR101543725B1 (en) Manufacturing method of semiconductor light emitting device
TWI626403B (en) Lighting apparatus
TW202329486A (en) Light-emitting device and manufacturing method thereof