TWI343491B - Multi-layer cell and method of filling up mediums into the multi-layer cell - Google Patents

Multi-layer cell and method of filling up mediums into the multi-layer cell Download PDF

Info

Publication number
TWI343491B
TWI343491B TW95103738A TW95103738A TWI343491B TW I343491 B TWI343491 B TW I343491B TW 95103738 A TW95103738 A TW 95103738A TW 95103738 A TW95103738 A TW 95103738A TW I343491 B TWI343491 B TW I343491B
Authority
TW
Taiwan
Prior art keywords
layer
medium
cell
media
field
Prior art date
Application number
TW95103738A
Other languages
Chinese (zh)
Inventor
Yoshihisa Kurosaki
Junji Tomita
Toshiaki Yoshihara
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to TW95103738A priority Critical patent/TWI343491B/en
Application granted granted Critical
Publication of TWI343491B publication Critical patent/TWI343491B/en

Links

Description

1343491 九、發明說明: C:發明戶斤屬之技術領域3 發明領域 本發明係有關於一種多層晶胞、電子終端及多層晶胞 5 之媒體填充方法,特別是有關於一種將液晶等媒體往多層 液晶晶胞之各層填充之技術。 C先前技系好;1 發明背景 近年來,即使沒有電源亦可保持顯示,又可電氣改寫 10 之電子紙的技術領域正急速的發展。電子紙目前正以實現 即使切斷電源亦可記憶顯示之超低消耗電力、與對眼睛較 為舒緩而不會感到疲勞之反射型的顯示以及具有如紙般可 撓性之撓性且薄型顯示體為目標。 而且,在各企業及大學等研究機關對於電子紙的開發 15 也積極的進行中。期待電子紙的應用市場係以電子書(電子 書籍)為排名第一,且提出了電子報或電子廣告、進一步通 信終端之次顯示或IC卡之顯示部等多樣應用型態。 然而,電子紙的顯示方式中,使帶電粒子在空氣中或 液體中移動之電氣泳動方式、使分成二色之帶電粒子旋轉 20 之扭轉電極方式、或者利用液晶層之干擾反射之具有雙安 定性之選擇反射型膽固醇狀液晶方式等的開發持續進行 中。 如此各種之方式中,在彩色顯示上具有壓倒性有利的 是膽固醇液晶方式。膽固醇狀液晶顯示方式以外的方式必 5 (¾ 須在每一畫素設置分塗3色之彩色過濾器因此即使明亮度 為最大,由於變成相當於分成3份之1/3,因此並不實際。 對此,膽固醇狀液晶方式係利用干擾液晶來反射色,因此 可僅藉積層來顯示色彩’具有可得到50百分比作有的明亮 度之優點。 如此,在電子紙被視為有利之膽固醇狀液晶具有半永 久性之顯示保持(記憶性)、及鮮豔的色彩顯示、高對比及高 解析性等優異特徵,亦可藉積層呈現R(紅色)、G(綠色)及 B(藍色)之各反射色之顯示層,達到鮮盤的全彩顯示。 然而,由於膽固醇狀液晶係具有記憶性之液晶,因此 可進行便宜且單純之矩形驅動,例如,A4尺寸以上之大型 話也比較容易。而且,膽固醇狀液晶僅在更新顯示内容(改 寫畫像)時會消耗電力’畫像之改寫結束後’其使將電源八 部關閉亦可原封不動地保持畫像。 又’本說明書中’主要係以R、G、B三層膽固醇狀液 晶多層化且可全彩顯示之電子紙為例來說明,但本發明 多層晶胞(顯示像子)並非限定於此種電子紙,例如,亦可廣 泛地適用於對於對電氣化學光電池等複數層(即,2層以上) 分別填充媒體而構成之多層晶胞。 首先,說明作為本發明所適用之顯示元件之— 例之膽 固醇狀液晶的驅動例。 狀液晶之配向狀 第1A圖及第1B圖係用以說明膽固醇 態者,第1A圖係表示平行螺旋狀態,第1B圖係表示垂直螺 旋狀態。 1343491 膽固醇狀液晶可在無電場下取得平行螺旋狀態及垂直 螺旋狀態之安定的二個狀態。 即,如第1A圖所示,在平行螺旋狀態時,入射光係利 用液晶反射,因此人的眼睛可看到該反射光。 5 又,如第1B圖所示,在垂直螺旋狀態時,入射光通過 液晶。而且,除了液晶層之外,還設置光吸收層,藉此在 垂直螺旋狀態時,可使黑色顯示。 其中,平行螺旋狀態時,因應於液晶分子之螺旋間距 的波長的光會反射,反射最大之波長λ係以液晶的平均屈 10 折率為η,令螺旋間距為ρ時,係表示為又=η · ρ。又,反射 光帶△ λ會隨著液晶之屈折率各異向性Δη而變大。 第2Α圖、第2Β圖及第2C圖係顯示用以驅動膽固醇狀液 晶之電壓特性(時間與電壓之間的關係)者,係顯示施加於液 晶之電場與各垂直狀態、垂直螺旋狀態及平行螺旋狀態之 15 變化的樣子。其中,令垂直狀態為Η、令螺旋垂直狀態為 FC、而且令平行螺旋狀態為Ρ。 首先,當對膽固醇狀液晶施加強的電場時,液晶分子 的螺旋構造會完全分解,全部的分子會成為跟隨電場方向 之垂直狀態Η。 20 如第2Β圖所示,當電場急速由垂直狀態Η為0時,液晶 的螺旋軸會與電極垂直,並且會成為可選擇性地反射因應 於螺旋間距之光的平行螺旋狀態Ρ。1343491 IX. Description of the invention: C: Technical field of inventions 3 FIELD OF THE INVENTION The present invention relates to a medium filling method for a multilayer cell, an electronic terminal and a multilayer cell 5, and more particularly to a medium such as a liquid crystal A technique of filling each layer of a multi-layer liquid crystal cell. C. The prior art is good; 1 Background of the Invention In recent years, the technical field of electronic paper that can be electrically rewritten 10 is rapidly developing even without a power supply. E-paper is currently being used to realize the ultra-low power consumption of the display even when the power is turned off, the reflective display that is soothing to the eyes without feeling tired, and the flexible display body that is flexible like paper. For the goal. In addition, research institutes such as companies and universities have been actively pursuing the development of electronic paper. The application market for electronic paper is expected to be ranked first in e-books (electronic books), and various application forms such as electronic newspapers or electronic advertisements, sub-displays for further communication terminals, and display portions of IC cards have been proposed. However, in the display mode of the electronic paper, the electric mobility mode in which the charged particles move in the air or in the liquid, the torsion electrode method in which the charged particles divided into two colors are rotated 20, or the double reflection stability by the interference reflection of the liquid crystal layer The development of the selective reflection type cholesteric liquid crystal method and the like continues. Among such various methods, it is advantageous to have an overwhelming color display on a color display. In addition to the cholesteric liquid crystal display method, it is necessary to apply a color filter of 3 colors in each pixel setting. Therefore, even if the brightness is maximum, it becomes equivalent to 1/3 of 3 parts, so it is not practical. In this regard, the cholesteric liquid crystal system uses the interference liquid crystal to reflect the color, so that it is possible to display the color 'with a brightness of 50% by the laminate layer. Thus, the electronic paper is regarded as a favorable cholesterol. The liquid crystal has semi-permanent display retention (memory), bright color display, high contrast and high resolution, and can also be used to present R (red), G (green) and B (blue) by stacking layers. The display layer of the reflective color reaches the full color display of the fresh disk. However, since the cholesteric liquid crystal has a memory liquid crystal, it is possible to carry out an inexpensive and simple rectangular drive, and for example, a large size of A4 or larger is also easy. Cholesterol-like liquid crystal consumes power only when the display content is rewritten (rewrites the image). 'After the rewriting of the image is finished', the power supply is turned off or the original is not sealed. In the present specification, the electronic paper which is multi-layered with R, G, and B cholesteric liquid crystals and can be displayed in full color is exemplified, but the multilayer cell (display image) of the present invention is not The electronic paper is limited to, for example, a multilayer cell which is formed by filling a plurality of layers (that is, two or more layers) of an electrochemistry photovoltaic cell, etc. First, a display to which the present invention is applied will be described. Examples of the driving conditions of the cholesteric liquid crystals of the examples. The alignment of the liquid crystals is shown in Fig. 1A and Fig. 1B for explaining the cholesterol state. Fig. 1A shows a parallel spiral state, and Fig. 1B shows a vertical spiral state. 1343491 Cholesterol-like liquid crystal can obtain two states of parallel spiral state and vertical spiral state without electric field. That is, as shown in Fig. 1A, in the parallel spiral state, the incident light system is reflected by liquid crystal, so the human eye The reflected light can be seen. 5 Further, as shown in Fig. 1B, in the vertical spiral state, the incident light passes through the liquid crystal. Moreover, in addition to the liquid crystal layer, light absorption is also provided. The layer, whereby the black color can be displayed in the vertical spiral state. In the parallel spiral state, the light of the wavelength corresponding to the helical pitch of the liquid crystal molecules is reflected, and the maximum wavelength of the reflection λ is the average yield of the liquid crystal. When η is such that the spiral pitch is ρ, it is expressed as η η ρ. Further, the reflected light band Δ λ becomes larger as the refractive index of the liquid crystal becomes Δη. The second figure and the second figure Fig. 2C shows a state in which the voltage characteristics (time-voltage relationship) of the cholesteric liquid crystal are driven, and the electric field applied to the liquid crystal changes with each of the vertical state, the vertical spiral state, and the parallel spiral state. Wherein, the vertical state is Η, the spiral vertical state is FC, and the parallel spiral state is Ρ. First, when a strong electric field is applied to the cholesteric liquid crystal, the spiral structure of the liquid crystal molecules is completely decomposed, and all the molecules become Follow the vertical state of the electric field direction Η. 20 As shown in Fig. 2, when the electric field jerk is zero from the vertical state, the helix axis of the liquid crystal will be perpendicular to the electrode and will become a parallel spiral state 可 that selectively reflects light in response to the helical pitch.

另一方面,如第2Α圖所示,當液晶分子之螺旋軸好不 容易分解之程度的弱電場形成後除去電場時,或者如第2C 7 圖所示,當施加,強的電場旅且緩慢地除去電場時,液晶的 螺旋軸會與電極平行’成為透過入射光之垂直螺旋狀態F(> 如此,膽固醇狀液晶為雙安定性’可利用該現象進行 情報的顯示。 第3圖係顯示膽固醇狀液晶的反射率特性(電壓與反射 率之間的關係),係將參照第2A圖〜第2C圖所說明之膽固醇 狀液晶的電壓應答性整理而加以顯示者。 如第3圖所不,當初期狀態為平行螺旋狀態p(第3圖之 左端之反射率高的部分)’當脈衝電壓上昇到某個範圍時, 會成為往垂直螺旋狀態FC(第3圖之反射率低的部分)之驅 動帶’進一步當脈衝電壓上昇時’會再次成為往平行螺旋 狀態P(右端之電壓高的部分)之驅動帶。 當初期狀態為垂直螺旋狀態FC(左端之反射率低的部 分)時’會隨著脈衝電壓上昇而慢慢成為往平行螺旋狀熊p 之驅動帶。 又,在平行螺旋狀態P時,僅反射右圓偏光或左圓偏 光,剩餘之圓偏光會透過,因此邏輯上反射率的最大值為 百分之50。 第4圖係概略顯示適用顯示元件之電子終端(顯示裝置) 之一例之區塊圖。第4圖中,參考符號丨係表示顯示元件(多 層晶胞)、3為電源電路、4為㈣電路、21為掃描側之驅動 益1C(掃描驅動$),且22係表示資料側之驅動IC(資料驅動 器)。 如第4圖所示,電源電路3具有昇壓部31、電壓生成部 32及調整1133。Μ部31係由如電池触+3〜+5左右之輸入 電壓,並升壓成可驅動顯示元件1之電壓後供給到電壓生成 4 32電①生成部32分別對掃瞄驅動器21及資料驅動器22 生成必須之電壓,調整器33係絲自電壓生成部32之電壓 安定化後供給到掃瞄驅動器21及資料驅動器22。 控制電路4具有運算部4卜控制資料生成部42及畫面資 料生成部43。運算部41制以運算由外部供給之畫面資料 及控制信號,畫面資料係、經由畫面資料生成部43作為適合 顯不兀件1之貢料而供給到資料驅動器22,又,控制信號係 經由控制信號生成部42作為適合顯示元件丨之各種控制信 號而供給到知稱驅動器21及資料驅動器22。 其中,由控制信號生成部42供給到掃猫驅動器21及資 料驅動1§ 2 2之控制信號係如用以反轉控制供給到顯示元件 1之脈衝電壓之極性之脈衝極性控制信號CS2、用以表示1 框架之畫面開始之框架開始信號CS2、由資料驅動器22進行 用以儲存資料之資料線及掃瞄驅動器21所選之線之同步控 制之數據鎖存•掃描轉換信號CS4、及用以切斷資料驅動器 22及掃瞄驅動器21之驅動輸出之驅動輸出切斷信號CS5 等。又’由控制信號生成部42往資料驅動器22亦供給用依 序接收1線份之資料之資料接收時脈CS1。 第5圖係概略顯示第4圖所示之顯示元件(液晶顯示元 件:多層晶胞)之一部分的截面圖,且為表示1層(r,G,b之個 別之層)者。第5圖中,參考符號11及15係表示基板(膜基 板)、12及14係透明電極(例如ιτο)、13係液晶組成物(膽固 1343491 醇狀液晶)、16係驅動電路、且17係密封劑。 顯示元件1含有液晶組成物13,透明之基板11及15之内 面(封入液晶組成物13之面)分別形成垂直交叉之複數透明 電極12及14。即,於對向之基板11及15,複數之掃描電極 5 12及複數之資料電極14形成矩陣狀。又,第5圖中,乍看之 下,掃描電極12與資料電極14係呈平行,但實際上就是例 如複數之資料電及14與1支掃描電極12交叉。又,各基板u 及15的厚度例如0.2mm左右,又,液晶組成物13之層的厚 度係如3μιη〜6μπι,但為了說明則忽略該等比例。 10 其中,各電極12及14上,以塗覆絕緣性薄膜或配向安 定化膜者為佳。又,與使最下層(例如R層)之光入射之側相 反之相反側之基板(12)的下部(表面)可視需要而設置可视 光吸收層。又,液晶組成物13係如在室溫下顯示膽固醇狀 液晶相之膽固醇狀液晶.。 15 密封劑17係將液晶組成物13封入基板11及15之間者。 又,驅動電路16係用以對電極12及14施加預定之脈衝狀之 電壓者。 基板11及15可例示如玻璃基板,但除玻璃基板之外, 亦可使用PET或PC等可撓性樹脂膜基板。又,電極12及14 20 係以如ITO(Indium Tin Oxide :氧化銦錫)為代表,但除此之 外可使用如IZO(Indium Zic Oxide:氧化銦鋅)等透明導電 膜、或者鋁及二氧化矽等金屬電極,或者非晶矽、 BSO(Bismuth Silicon Oxide :)等光導電性膜。 第5圖所示之液晶顯示元件中,係如前所述,於透明犋On the other hand, as shown in Fig. 2, when the electric field is removed after the weak electric field of the liquid crystal molecule is not easily decomposed, or as shown in Fig. 2C, when applied, the strong electric field travels slowly. When the electric field is removed, the spiral axis of the liquid crystal is parallel to the electrode, and it becomes a vertical spiral state F through the incident light (> Thus, the cholesteric liquid crystal is double-stable), the information can be displayed by using this phenomenon. Fig. 3 shows the cholesterol The reflectance characteristic (the relationship between the voltage and the reflectance) of the liquid crystal is displayed by referring to the voltage responsiveness of the cholesteric liquid crystal described with reference to FIGS. 2A to 2C. As shown in FIG. 3, When the initial state is the parallel spiral state p (the portion where the reflectance at the left end of the third graph is high) "When the pulse voltage rises to a certain range, it becomes the vertical spiral state FC (the portion where the reflectance of the third graph is low) The driving band 'further when the pulse voltage rises' will become the driving band to the parallel spiral state P (the portion where the voltage at the right end is high). When the initial state is the vertical spiral state FC (the opposite of the left end) When the rate is low, it will gradually become the driving belt to the parallel spiral bear p as the pulse voltage rises. Also, in the parallel spiral state P, only the right circular polarization or the left circular polarization is reflected, and the remaining circularly polarized light The maximum value of the logical reflectance is 50%. Fig. 4 is a block diagram showing an example of an electronic terminal (display device) to which a display element is applied. In Fig. 4, the reference symbol indicates Display element (multilayer cell), 3 is power supply circuit, 4 is (four) circuit, 21 is drive side drive benefit 1C (scan drive $), and 22 is data side drive IC (data drive). As shown in the figure, the power supply circuit 3 has a boosting unit 31, a voltage generating unit 32, and an adjustment 1133. The cymbal 31 is driven by an input voltage of about +3 to +5, and is boosted to drive the voltage of the display element 1. The supply voltage generator 4 32 generates a voltage necessary for the scan driver 21 and the data driver 22, and the voltage of the regulator 33 is stabilized from the voltage generating unit 32, and is supplied to the scan driver 21 and the data driver. 22. Control circuit 4 includes a calculation unit 4, a control data generation unit 42, and a screen data generation unit 43. The calculation unit 41 calculates a screen data and a control signal supplied from the outside, and the screen data system and the screen data generation unit 43 are suitable for display. The tribute of 1 is supplied to the data driver 22, and the control signal is supplied to the known driver 21 and the data driver 22 via the control signal generating unit 42 as various control signals suitable for the display element 。. The control signal supplied to the scan cat driver 21 and the data drive 1 § 2 2 is a pulse polarity control signal CS2 for inverting the polarity of the pulse voltage supplied to the display element 1, for indicating the start of the frame of the 1 frame. The frame start signal CS2, the data latch for the data storage by the data driver 22, and the synchronous control of the data selected by the scan driver 21, the data latch/scan conversion signal CS4, and the data driver 22 and the scan are cut off. The drive output of the drive 21 outputs a cutoff signal CS5 or the like. Further, the control signal generating unit 42 supplies the data receiving unit 22 with the data receiving clock CS1 for sequentially receiving the data of one line. Fig. 5 is a cross-sectional view schematically showing a part of a display element (liquid crystal display element: multi-layer cell) shown in Fig. 4, and is a layer showing one layer (a layer of r, G, and b). In Fig. 5, reference numerals 11 and 15 denote a substrate (film substrate), 12 and 14-type transparent electrodes (for example, ιτο), a 13-type liquid crystal composition (cholester 1343492 alcohol liquid crystal), a 16-series driving circuit, and 17 Sealant. The display element 1 contains a liquid crystal composition 13, and the inner surfaces of the transparent substrates 11 and 15 (the surface on which the liquid crystal composition 13 is sealed) form a plurality of transparent electrodes 12 and 14 which are vertically crossed. That is, in the opposite substrates 11 and 15, a plurality of scanning electrodes 5 12 and a plurality of data electrodes 14 are formed in a matrix. Further, in Fig. 5, at a glance, the scanning electrode 12 and the data electrode 14 are parallel, but actually, for example, a plurality of data electrodes and 14 and one scanning electrode 12 intersect. Further, the thickness of each of the substrates u and 15 is, for example, about 0.2 mm, and the thickness of the layer of the liquid crystal composition 13 is, for example, 3 μm to 6 μm, but the ratio is ignored for the sake of explanation. 10 In each of the electrodes 12 and 14, it is preferred to coat the insulating film or the alignment film. Further, a visible light absorbing layer may be provided as needed on the lower portion (surface) of the substrate (12) on the opposite side to the side on which the light of the lowermost layer (e.g., the R layer) is incident. Further, the liquid crystal composition 13 is a cholesteric liquid crystal which exhibits a cholesteric liquid crystal phase at room temperature. The sealant 17 seals the liquid crystal composition 13 between the substrates 11 and 15. Further, the drive circuit 16 is for applying a predetermined pulse-like voltage to the electrodes 12 and 14. The substrate 11 and 15 may be, for example, a glass substrate, but a flexible resin film substrate such as PET or PC may be used in addition to the glass substrate. Further, the electrodes 12 and 14 20 are represented by, for example, ITO (Indium Tin Oxide), but a transparent conductive film such as IZO (Indium Zic Oxide) or aluminum and two may be used. A metal electrode such as cerium oxide or a photoconductive film such as amorphous germanium or BSO (Bismuth Silicon Oxide:). In the liquid crystal display element shown in Fig. 5, as described above, in the transparent 犋

10 基板11及15之内表面形成互為平行之複數帶狀透明電極12 及14,該等電極12及14係面對面且在基板由垂直方向看為 互為交叉。 其中,顯不兀件亦可形成具有防止電極間的短路、或 作為氣體阻絕層提升液晶顯不元件之信賴性之機能之絕緣 性薄膜。X,配向安定化膜可例示聚醯亞胺樹脂、聚酿胺_ 酿亞胺樹脂、聚越酿亞胺樹脂、聚乙烯醇縮丁醛樹脂、亞 稀酸§日糾日等之有機膜,或者氡化切、氧化紹等無機材料。 又,塗覆於電極12及14之配向安定化膜亦可兼用為絕緣性 薄膜。 又,液晶顯示元件亦可於—對基板之間設置用以均— 保持基板間間隔件^該間隔件可將樹脂製或無機氧 化物製之球體例示為F。又,亦可使用表面塗覆有熱可塑性 樹脂之固定間隔件。 本發明作為對象之多層晶胞並不限定於具有RGB之液 晶層之液晶顯示晶胞,例如,可廣泛適用於如於電氣化學 光電池等複數層分別填充媒體而構成之多層晶胞,又,多 層晶胞當然可適用於電子書等電子紙、及上述之通信終端 專各種領域。 第6圖係顯示多層晶胞(顯示元件)之一例。第6圖中,參 考付號1G1絲Μ以反射藍色光之膝)層,1G2係表示用 以反射綠色光之綠(G)層,刪系表示用以反射紅色光之紅 ⑻層’且104係表示用以吸收光之黑(κ)層。 如第6圖所示,顯示元件1係構成為於Κ層104上依序積 1343491 層R層103、G層102及B層1(H°B層101係利用對向之基板(膜 基板)與透明電極(ΙΤΟ)111,112及115,114挾持液晶113之構 成,又,G層102係利用對向之基板與透明電極121,122及 125,124挾持液晶123的構成,且,R層103係利用對向之基 5 板與透明電極131,132及135,134挾持液晶133之構成。又, 由光入射之侧依序積層Β層101,G層102,R層103是因為可擴 大視野角,並且可適當表現來自各層之色的反射之色彩顯 示,但亦可以其他的順序排列。 B層101之透明電極112及114係連接B層用控制電路 10 110,又G層102之透明電極122及124係連接G層用控制電路 120,且R層103之透明電極132及134係連接G層用控制電路 130。又,各層之透明電極112,114 : 122,124 ; 132,134係分 別構成掃描電極及資料電極,並在互相對向之狀態下交 又。又,各層1〇1~1〇3中,掃描驅動器係連接掃描電極,又, 15資料驅動器係連接資料電極。藉以上構成,顯示元件1可進 行接近全彩之顯示。 以上’顯示元件1係構成為如A6尺寸的QVGA,B層 101,G層10 2及R層10 3之積層順序或液晶之偏光方向以及使 用驅動器專係與第5圖相關說明之A4尺寸之qvga之顯示 20元件相同。λ,第6圖+,尺仙各層之控制電路(掃描驅動 器)130〜110係另外設置,但可藉使該等RGB各層之掃描驅 動器(130~110)共通化,減少成本。 然而,習知提出各種膽固醇狀液晶方式之彩色的多層 晶胞(液晶光《元件),且提出—種清晰且對比及色純度良 12 1343491 好,並且雙安定性優異之液晶光調變元件(例如,參照專利 文獻1)。 又,習知可在短時間將液晶完全注入之液晶顯示面板 提出一種貫通基板形成將空間内排氣且注入液晶之至少1 5 各注入口,於具有包圍注入口之突出部之液晶顯示面板填 充液晶後,分隔且除去包含不要之注入部之部分的技術(參 照如專利文獻2)。 又’以往積層複數層之封入液晶材料之液晶顯不晶胞 之積層型液晶顯示晶胞中,也提出一種積層型液晶顯示晶 】〇 胞之製造方法(參照如專利文獻3),其係為了要充分地抑制 不純物混入各個液晶顯示晶胞之預定液晶材料,且以各液 晶顯示晶胞令之晶胞間隔為目的值,因此將對向之一對基 板的周緣部留下至少一個朝外部開口且連通知液晶材料注 入口部且加以密封,將其複數之空晶胞重疊後形成積層型 15 空晶胞’並且由液晶材料注入口部將液晶材料同時或大略 同時地真空注入於其積層型空晶胞之各空晶胞。 又,以往,提供包含藉液晶顯示晶胞或電氣化學光電 池等密封框架成對接合且複數疊合之基板之多層晶胞中, 亦提出一種多層晶胞係,對於多層晶胞至少有部分配置於 20 晶胞之面上,並且設置分別與不同之空洞連通之填充孔, 其填充孔係通過至少一個空洞而到達其等結合之空洞,並 且填充孔係被其等所通過之一個或複數個空洞隔離(參照 如專利文獻4)。該等專利文獻4所記載之多層晶胞可同時進 行對於各晶胞填充液晶等不同之液體。 13 【專利文獻l·】日本專利公開公報特開2002-116461 【專利文獻2】曰本專利公開公報特開2002-287157 【專利文獻3】曰本專利公開公報特開2〇〇3_]6196〇 【專利文獻4】曰本專利公開公報特開2004—029786 【發明内容】 發明概要 發明欲解決之課題 如前所述,近年來’電子紙已提出如使用膽固醇狀液 晶等者,R,G,B之三層膽固醇狀液晶多層化之可全彩顯示之 電子紙亦正實用化中。 要製作此等積層RGB三層之積層型彩色液晶顯示元件 (多層晶胞),一般係製作RGB個自之液晶面板,然後再利用 接著劑等將RGB之各面板接合使之積層。 該面板之積層步驟中,以往,例如為了要使使用之接 著劑等硬化而將各面板接合固定’必須對面板施加熱或 光。此等步驟則是成為對使用於面板之構件、特別是液晶 造成不良影響,且使液晶之特性劣化的主因。 又,在積層時,會經過對面板會過熱之步驟時,密封 部會因為各面板(晶胞)内之液晶的體積膨脹等而殘留,或者 面板破損使成品率降低。 又,為了不使多層晶胞(顯示裝置)之製作效率惡化,例 如,宜可同時對RGB之各層晶胞實施液晶填充。 本發明之主要目的在於可在更短的時間内輕易製作多 層晶胞。又,本發明之目的亦在於提供劣化少之多層晶胞。 用以解決課題之手段 根據本發明之第⑽態,係提供一種多層晶胞,該多層 晶胞係至少具有第】及第2層二層者,前述W層具有第】媒 入湏域,且邊第1媒體注入領域係用以對該第1層填充 5第1媒體者,而前述第2層具有第2媒體注入領域,且該第2 媒體注入領域係對應於與前述第1媒體注入領域不同之領 域’以對該第2層填充第2媒體者,又,該多層晶胞具有第i 貫通孔與第2貫通孔,前述第1貫通孔係位於前述第丨媒體注 湏域内,且朝層之厚度方向貫通前述多層晶胞,而可僅 10對則述第1層填充前述第i媒體者,前述第2貫通孔係位於前 述第2媒體注入領域内,且朝層之厚度方向貫通前述多層晶 胞,而可僅對前述第2層填充前述第2媒體者。 根據本發明之第2實施形態,係提供一種電子終端,其 係使用夕層晶胞者,且該多層晶胞係至少具有第1及第2層 15二層者,前述第1層具有第1媒體注入領域,該第1媒體注入 領域係用以對該第〗層填充第丨媒體者,前述第2層具有第2 媒體/主入領域,該第2媒體注入領域係對應於與前述第1媒 體注入領域不同之領域,且用以對該第2層填充第2媒體 者,又,該多層晶胞具有第1貫通孔與第2貫通孔,前述第1 2〇 貫通孔係位於别述第1媒體注入領域内,且朝層之厚度方向 貫通前述多層晶胞,並且僅對前述第丨層填充前述第丨媒體 者’則述第2貫通孔係位於前述第2媒體注入領域内,且朝 層之厚度方向貫通前述多層晶胞,並且僅對前述第2層填充 前述第2媒體者。 15 1343491 根據本發明之第3實施形態,係一種多層晶胞之媒體填 充方法,其係對具有至少第1及第2二層之多層晶胞媒體填 充者,且該方法係:於前述第1層形成用以對該第1層填充 第1媒體之第1媒體注入領域,於前述第2層形成對應於與前 5 述第1媒體注入領域不同之領域並且對該第2層填充第2媒 體之第2媒體注入領域,將前述第1及第2層積層,並且形成 位於前述第1媒體注入領域内且朝層之厚度方向貫通前述 多層晶胞之第1貫通孔、及位於前述第2媒體注入領域且朝 層之厚度方向貫通前述多層晶胞之第2貫通孔,又,對前述 10 第1及第2貫通孔分別注入前述第1及第2媒體,並且對前述 第1及第2層填充該第1及第2媒體。 根據本發明之第4實施形態,係一種多層晶胞之媒體填 充方法,其係對至少具有第1、第2及第3三層之多層晶胞填 充媒體者,該方法係:於前述第1層形成用以對該第1層填 15 充第1媒體之第1媒體注入領域,於前述第2層形成對應於與 前述第1媒體注入領域不同之領域並且對該第2層填充第2 媒體之第2媒體注入領域,於前述第3層形成對應於與前述 第1媒體注入領域不同之領域並且對該第3層填充第3媒體 之第3媒體注入領域,將前述第1、第2及第3層積層,並且 20 形成位於前述第1媒體注入領域内且朝層之厚度方向貫通 前述多層晶胞之第1貫通孔、位於前述第2媒體注入領域且 朝層之厚度方向貫通前述多層晶胞之第2貫通孔、及位於前 述第2媒體注入領域且朝層之厚度方向貫通前述多層晶胞 之第3貫通孔,又,對前述第1、第2及第3貫通孔分別注入 16 1343491 劑(17,117,127,13.7),並於液晶注入領域(118,128,138)的周圍 全面塗上接著劑(障壁119 ; 129a,129b ; 139)。 接著,將間隔件散佈於已塗布密封劑之側的基板或另 一基板,將兩方的基板貼合且晶胞化後,使用接著劑將三 5層積層(參照第8圖)。 進一步,將三層積層後,於各層之液晶的注入領域 〇18,128,138)設置貫通孔(151,152,153)(參照第10A圖、第 10B 圖)。 接著,例如將積層後空晶胞放入真空室内,令室内為 10 真空,並且在保持真空之狀態下,由分配器將預填充之 R,G,B的液晶分別住入到各貫通孔(151,152,153)。 然後,藉解除室内之真空狀態’ R,G,B之各液晶分別填 充到對應之晶胞。 又,亦可令三層之空晶胞為1個單元,重疊複數單元, 15 並同時對複數之單元注入液晶。 以下,參照附圖詳述本發明之多層晶胞及其媒體填充 方法之貫施例。 第7圖係概略顯示構成本發明之多層晶胞之各晶胞史 —例,並且顯示R,G,B之個別之層者。其中’第7圖所示之 20多層晶胞1係對應於前述第6圊所示之多層晶包(顯示元件) 者。 即,多層晶胞1係由上(由觀察面)依序積層用以反射藍 光之B層101、用以反射綠光之G層102、及用以反射紅光之 R層103而構成。又,亦可於最下層之R層103的下面設置用 19 1343491 以吸收未圖示之光之K層(104)。 Β層101之密封劑117係接合設置用以注入藍色用之膽 固醇狀液晶(藍色用媒體)之藍色用媒體注入領域118且對向 之基板’又,G層102之密封劑127係接合設置用以注入綠色 5用之膽固醇狀液晶(綠色用媒體)之綠色用媒體注入領域12 8 且對向之基板,而且R層103之密封劑137係接合設置用以注 入紅色用之膽固醇狀液晶(紅色用媒體)之紅色用媒體注入 領域138且對向之基板。 如第7圖所示,藍色用媒體注入領域118、綠色用媒體 10 注入領域128、及紅色用媒體注入領域138係配置成當以接 著劑接合固定Β曾1(H、G層102及R層103時,係位於互異之 位置。 又,接合三層時,Β層101中對應於綠色用媒體注入領 域128及紅色用媒體注入領域138之處設有障壁(填充 15 劑)119,又,G層102中對應於紅色用媒體注入領域138及藍 色用媒體注入領域118之處設有障壁129a及129b,接著,R 層103中對應於藍色用媒體注入領域118及綠色用媒體注入 領域128之處設有障壁139。其中,障壁119,129a,129b及139 係使用如熱硬化性或紫外線硬化性樹脂填充於BGR各層中 20 對向之基板(111,115,121,125及131,135)之間者。 第8圖係用以說明本發明之多層晶胞之媒體填充方法 之預備步驟者。10 The inner surfaces of the substrates 11 and 15 are formed with a plurality of strip-shaped transparent electrodes 12 and 14 which are mutually parallel, and the electrodes 12 and 14 are face-to-face and intersect each other as viewed in the vertical direction. Among them, the insulating film which can prevent the short circuit between the electrodes or the function of improving the reliability of the liquid crystal display element as a gas barrier layer can be formed. X, the alignment-stabilizing film can be exemplified by an organic film such as a polyimine resin, a polyacrylamide resin, a polyvinylidene resin, a polyvinyl butyral resin, or a dilute acid § day correction. Or inorganic materials such as dicing and oxidizing. Further, the alignment stabilized film applied to the electrodes 12 and 14 can also be used as an insulating film. Further, the liquid crystal display element may be provided between the substrates to uniformly hold the inter-substrate spacers. The spacers may be exemplified by a resin or inorganic oxide sphere. Further, a fixed spacer whose surface is coated with a thermoplastic resin can also be used. The multi-layer unit cell to which the present invention is applied is not limited to a liquid crystal display cell having a liquid crystal layer of RGB, and for example, can be widely applied to a multi-layer cell composed of a plurality of layers such as an electrochemistry photocell filled with a medium, and a plurality of layers. The cell can of course be applied to electronic paper such as an e-book, and various fields of the above-mentioned communication terminals. Fig. 6 shows an example of a multilayer cell (display element). In Fig. 6, reference is made to the 1G1 silk to reflect the blue light knee layer, 1G2 is the green (G) layer for reflecting green light, and the red is used to reflect the red light (8) layer 'and 104 It is a black (κ) layer for absorbing light. As shown in FIG. 6, the display element 1 is configured to sequentially store 1,343,491 R layers 103, G layers 102, and B layers 1 on the germanium layer 104 (H°B layer 101 uses a counter substrate (film substrate)) The transparent electrodes (ΙΤΟ) 111, 112 and 115, 114 are configured to hold the liquid crystal 113, and the G layer 102 is configured by sandwiching the liquid crystal 123 with the opposite substrate and the transparent electrodes 121, 122 and 125, 124, and the R layer 103 is The liquid crystal 133 is held by the opposite base plate 5 and the transparent electrodes 131, 132 and 135, 134. Further, the enamel layer 101, the G layer 102, and the R layer 103 are sequentially laminated from the side where the light is incident because the viewing angle can be enlarged, and The color display of the reflection from the color of each layer may be appropriately expressed, but may be arranged in other order. The transparent electrodes 112 and 114 of the B layer 101 are connected to the control circuit 10 110 of the B layer, and the transparent electrodes 122 and 124 of the G layer 102. The G layer control circuit 120 is connected, and the transparent electrodes 132 and 134 of the R layer 103 are connected to the G layer control circuit 130. Further, the transparent electrodes 112, 114: 122, 124; 132, 134 of each layer constitute a scan electrode and a data electrode, respectively. And in the state of mutual confrontation, and again, each layer 1〇1~1〇3 The scan driver is connected to the scan electrode, and the 15 data driver is connected to the data electrode. With the above configuration, the display element 1 can be displayed in close-to-full color. The above display element 1 is configured as a QVGA of the A6 size, and the B layer 101 The stacking order of the G layer 10 2 and the R layer 10 3 or the polarization direction of the liquid crystal and the display 20 elements of the Qvga of the A4 size described in the fifth figure are the same as the display 20 elements of the A4 size described in the fifth figure. λ, Fig. 6 The control circuits (scanning drivers) 130 to 110 are separately provided, but the scanning drivers (130 to 110) of the RGB layers can be shared to reduce the cost. However, various cholesteric liquid crystal color layers are proposed. A unit cell (liquid crystal light "element"), and a liquid crystal light modulation element which is excellent in contrast and good in color purity and excellent in double-stability (for example, refer to Patent Document 1). The liquid crystal display panel in which the liquid crystal is completely injected in a short time proposes a through substrate to form at least 15 injection ports for exhausting the space and injecting the liquid crystal into the protrusion having the protrusion surrounding the injection port. After the liquid crystal display panel is filled with liquid crystal, the technique of separating and removing the portion including the unnecessary injection portion is removed (see, for example, Patent Document 2). Further, the laminated liquid crystal display unit cell of the liquid crystal display cell in which the liquid crystal material is encapsulated in the plurality of layers is conventionally laminated. In addition, a method for producing a laminated liquid crystal display cell (see, for example, Patent Document 3) is proposed in order to sufficiently suppress impurities from being mixed into a predetermined liquid crystal material of each liquid crystal display cell, and display a unit cell in each liquid crystal. The cell spacing is set to the target value, so that at least one of the peripheral portions of the pair of opposite substrates is left open, and the liquid crystal material is injected into the mouth portion and sealed, and the plurality of empty cells are superposed to form a layer. The type 15 empty cell 'and the liquid crystal material is vacuum-injected simultaneously or substantially simultaneously into the respective empty cells of the laminated type empty cell by the liquid crystal material injection port. Further, in the prior art, a multilayer cell having a substrate in which a sealing frame such as a liquid crystal display cell or an electro-chemical photo cell is bonded in a plurality of layers and laminated in plural is provided, and a multilayer cell system is also proposed, and at least a part of the multilayer cell is disposed. 20 on the face of the unit cell, and providing filling holes respectively communicating with different cavities, the filling holes are passed through at least one cavity to reach the holes of the combination, and the filling holes are one or a plurality of holes through which the holes are passed. Isolation (refer to Patent Document 4). The multilayer cell described in Patent Document 4 can simultaneously fill different liquids such as liquid crystals for each unit cell. [Patent Document 1] Japanese Laid-Open Patent Publication No. 2002-116461 [Patent Document 2] Japanese Laid-Open Patent Publication No. 2002-287157 [Patent Document 3] Japanese Patent Laid-Open Publication No. 2〇〇3_]6196〇 [Patent Document 4] Japanese Laid-Open Patent Publication No. 2004-029786 SUMMARY OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION As described above, in recent years, 'electronic paper has been proposed to use condensed liquid crystal, etc., R, G, The three-layer cholesteric liquid crystal multi-layered full-color display electronic paper is also in practical use. In order to fabricate these laminated RGB three-layer laminated color liquid crystal display elements (multilayer cells), RGB liquid crystal panels are generally fabricated, and then the RGB panels are joined by a bonding agent or the like to be laminated. In the laminating step of the panel, conventionally, for example, in order to harden the adhesive to be used, the panels are joined and fixed. It is necessary to apply heat or light to the panel. These steps are the main cause of adversely affecting the components used in the panel, particularly the liquid crystal, and deteriorating the characteristics of the liquid crystal. Further, when the laminate is subjected to a step of overheating the panel, the sealing portion may remain due to volume expansion of the liquid crystal in each panel (cell), or the panel may be damaged to lower the yield. Further, in order not to deteriorate the production efficiency of the multilayer cell (display device), for example, liquid crystal filling of each of the RGB layer cells may be performed at the same time. The main object of the present invention is to easily produce a multi-layer cell in a shorter period of time. Further, it is an object of the present invention to provide a multilayer cell having little deterioration. Means for Solving the Problem According to a tenth aspect of the present invention, there is provided a multilayer unit cell having at least a second layer and a second layer, wherein the layer W has a first medium and a second layer, and The first medium injection field is for filling the first layer with the fifth medium, and the second layer has the second medium injection field, and the second medium injection field corresponds to the first medium injection field. In the different areas, the second layer is filled with the second medium, and the multi-layer cell has an i-th through hole and a second through hole, and the first through hole is located in the second media region, and The thickness direction of the layer penetrates the multilayer cell, and only the first layer may be filled with the first dielectric layer, and the second through hole is located in the second dielectric injection region, and penetrates the thickness direction of the layer. The multilayer cell may be filled with only the second layer described above. According to a second embodiment of the present invention, there is provided an electronic terminal which uses a layered cell, wherein the multilayer cell has at least a first layer and a second layer 15, and the first layer has a first layer In the field of media injection, the first media injection field is for filling the first layer with the media, and the second layer has the second media/main entry field, and the second media injection field corresponds to the first In the field of different media injection fields, and for filling the second layer with the second medium, the multi-layer cell has a first through hole and a second through hole, and the first through hole is located in another dimension. In the medium injection field, the plurality of unit cells are penetrated in the thickness direction of the layer, and the second through hole is filled only in the second layer of the second layer, and the second through hole is located in the second medium injection region. The thickness direction of the layer penetrates the multilayer cell, and only the second layer is filled in the second layer. 15 1343491 A third embodiment of the present invention is a method for filling a medium of a multi-layer cell, which is for a multi-layer cell media filler having at least a first and a second layer, and the method is the first The layer forms a first medium injection region for filling the first layer with the first medium, and the second layer forms a region different from the first medium injection region of the first five layers and fills the second layer with the second medium. In the second medium injection field, the first and second layers are laminated, and a first through hole that penetrates the multilayer cell in the thickness direction of the layer and that is located in the second medium is formed. In the injection field, the second through hole of the multilayer cell is penetrated in the thickness direction of the layer, and the first and second media are injected into the first and second through holes, respectively, and the first and second layers are applied to the first and second layers. The first and second media are filled. According to a fourth embodiment of the present invention, there is provided a method of filling a medium of a multi-layer cell, which comprises filling a medium with a plurality of first-, second-, and third-layered unit cells, wherein the method is the first The layer forms a first medium injection region for filling the first layer with the first medium, and the second layer forms a region different from the first medium injection region and fills the second layer with the second medium. In the second media injection field, the third layer is formed in the third layer corresponding to the field different from the first medium injection field, and the third layer is filled with the third medium. The third layer is laminated, and 20 is formed in the first dielectric injection region and penetrates the first through hole of the multilayer cell in the thickness direction of the layer, and is located in the second medium injection region and penetrates the multilayer crystal in the thickness direction of the layer. a second through hole of the cell and a third through hole penetrating the multilayer medium in the thickness direction of the layer in the second medium injection region, and injecting the first, second, and third through holes 16 1343491 Agent (17,117 127,13.7 around), and in the field of liquid crystal injection (118,128,138) fully coated with adhesive (barrier 119; 129a, 129b; 139). Next, the spacer is spread on the substrate or the other substrate on the side to which the sealant has been applied, and the two substrates are bonded and crystallized, and then three or five layers are laminated using an adhesive (see Fig. 8). Further, after three layers are laminated, through holes (151, 152, 153) are provided in the injection fields 〇 18, 128, 138) of the liquid crystals of the respective layers (see Figs. 10A and 10B). Then, for example, the laminated hollow cells are placed in a vacuum chamber, and the chamber is evacuated to a vacuum of 10, and the liquid crystals of the pre-filled R, G, and B are respectively placed in the through holes by the dispenser. 151, 152, 153). Then, the respective liquid crystals of the vacuum state 'R, G, B of the room are released to the corresponding unit cells. Alternatively, the three-layer empty cell may be one unit, and the plurality of cells may be overlapped, and the liquid crystal is injected into the plurality of cells at the same time. Hereinafter, a detailed embodiment of the multilayer cell of the present invention and its media filling method will be described in detail with reference to the accompanying drawings. Fig. 7 is a view schematically showing the history of each unit cell constituting the multilayer unit cell of the present invention, and shows the individual layers of R, G, and B. The 20-layer unit cell 1 shown in Fig. 7 corresponds to the multilayer crystal packet (display element) shown in the above-mentioned sixth aspect. That is, the multi-layer cell 1 is composed of a B layer 101 for reflecting blue light, a G layer 102 for reflecting green light, and an R layer 103 for reflecting red light, which are sequentially stacked (by the observation surface). Further, a K layer (104) for absorbing light (not shown) may be provided on the lower surface of the lowermost R layer 103. The sealant 117 of the ruthenium layer 101 is bonded to the blue medium for injecting blue cholesteric liquid crystal (blue medium) into the field 118 and the opposite substrate 'again, the sealant 127 of the G layer 102 The bonding medium is used to inject the green medium for chrome-like liquid crystal for green 5 (green medium) into the field 12 8 and the opposite substrate, and the sealant 137 of the R layer 103 is joined to form a cholesterol-like substance for injecting red The red color of the liquid crystal (media for red) is injected into the field 138 and opposed to the substrate by the medium. As shown in Fig. 7, the blue medium injection field 118, the green medium 10 injection field 128, and the red medium injection field 138 are arranged to be fixed by an adhesive bonding (H, G layer 102 and R). When the layer 103 is joined, the barrier layer (filled with 15 doses) 119 is provided in the layer 101 corresponding to the green medium injection field 128 and the red medium injection field 138. The G layer 102 is provided with barrier 129a and 129b corresponding to the red medium injection field 138 and the blue medium injection field 118. Then, the R layer 103 corresponds to the blue medium injection field 118 and the green medium injection. A barrier 139 is provided in the field 128. The barrier 119, 129a, 129b, and 139 are filled with 20 layers of the BGR layers (111, 115, 121, 125, and 131), such as thermosetting or ultraviolet curable resin. Between 135) Fig. 8 is a preliminary step for explaining the media filling method of the multilayer cell of the present invention.

首先,如第8圖左側之圖所示,使用密封劑117、127及 137、以及熱硬化性樹脂等障壁119、129a、129b及139將B 20 1343491 層101、G層102及R層103組合。此時’各層之媒體注入領 域118 ; 128 ; 138與障壁 119 ; 129a ’ 129b ; 139之間的位置 關係如參照第7圖所說明者。 其中,例如為了使密封劑117,127,137及障壁119 ; 5 129a,129b ; 139硬化,必須加熱或照射紫外線時,係在將 媒體(液晶)注入各層前進行。 其次,如第8圖之中間圖所示,係在不分別注入媒體之 下而以接著劑141,142接合空狀態之B層101、G層1〇2及R層 103,形成如第8圖之右側圖之多層晶胞。此時,亦有於各 10 層之間塗布使特定色(例如綠色)減弱之G裁止濾光膜等色 材。 其中,例如為了使接著劑140硬化以強化各層 101,102,103之接合而必須加熱或照射紫外線時,該等加熱 或照射紫外線等亦可在媒體注入各層之前進行。 15 又,如前所述’例如於R層1〇3之更下側設置光吸收層 時,在此階段使用接著劑等接合固定。如此’在媒體注入(填 充)於各層之前形成多層晶胞。 第9圖係藉第8圖之預備步驟而形成之多層晶胞之平面 圖,第9B圖係第9A圖所示之多層晶胞之A-A線戴面圖。 20 由第9A圖及第9B圖清楚可知’利用接著劑141,142接合 固定B層1(H、G層102及R層103時,B層101中對應於綠色用 媒體注入領域108及紅色用媒体注入領域138之處有障壁 119,又,G層102中對應於紅色用媒體注入領域138及藍色 用媒體注入領域118之處有障壁129a及129b ’而且R層1〇3 21 (§) 1343491 中對應於藍色用媒體注入領域118及綠色用媒体注入領域 128之處有障壁139。 第10圖係第9A圖及第9B圖所示之對多層晶胞注人媒 體之貫通孔者的平面圖,第10B圖係第10A圖所示之多層晶 5 胞之B-B線截面圖。又,第11A圖係顯示第10A圖及苐jog 圖所示之對多層晶胞注入媒體之樣子的平面圖,第11B圖係 第11A圖所示之多層晶胞之C-C線戴面圖。 如第10A圖及第10B圖所示,於B層101之藍色用媒趙注 入領域118形成貫通B,G,R三層101,102,103之藍色用貫通孔 10 151。如第11A圖及第11B圖所示,藍色用貫通孔151係構成 為,經由藍色用貫通孔151往B層101注入藍色用媒體(藍色 用膽固醇狀液晶)時,會僅對B層101注入藍色用媒體,對於 其他之G層102及R層103則利用障壁129b及139妨礙藍色用 媒體之注入。 15 同樣地,於G層1〇2之綠色用媒體注入領域1形成貫通 三層之綠色用貫通孔152。綠色用貫通孔152係構成為,經 由綠色用貫通孔152往G層102注入綠色用媒體(綠色用膽固 醇狀液晶)時,會僅對G層102注入綠色用媒體’對於其他之 r層103及B層102則利用障壁139及119妨礙綠色用媒體之 20 注入。 又,於R層103之紅色用媒體注入領域138形成貫通三層 之紅色用貫通孔153。紅色用貫通孔153係構成為,經由紅 色用貫通孔153往R層103注入紅色用媒體(紅色用膽固醇狀 液晶)時,會僅對R層103注入紅色用媒體,對於其他之B層 22 1343491 101及G層102則利用障壁119及129a妨礙紅色用媒體之注 入。 其中,對B層101 ' G層102及R層103注入(填充)藍色用 媒體、綠色用媒體及紅色用媒體時,可全部同時進行。又, 5 將該各媒體注入於對應之貫通孔之處理係在最下層之R層 101之下部基板135的下面配置如矽膠等遮蔽構件160。 第12圖係說明本發明之多層晶胞之媒體填充方法中媒 體注入步驟之一例者。第12圖中,參照符號200係表示真空 室,又,右上方之多層晶胞係對應於第10A圖及第10B圖所 10 示者,右下方之多層晶胞係對應於第11A圖及第11B圖者。 如第12圖之上方圖所示,將積層後之多層晶胞(空晶 胞)1放入真空室200内,令室200為真空。進一步,在室200 保持真空之下,將藍色用膽固醇狀液晶、綠色用膽固醇狀 液晶及紅色用膽固醇狀液晶注入(滴下)於藍色用貫通孔 15 151、綠色用貫通孔152、紅色用貫通孔153。又,於最下層 之R層101之下,配置如矽膠等遮蔽構件160。 進一步,如第12圖之上方圖所示,藉解除室内200内之 真空狀態,藍色用膽固醇狀液晶、綠色用膽固醇狀液晶及 紅色用膽固醇狀液晶填充於B層101、G層102及R層103。 20 第13圖係用以說明本發明之多層晶胞之媒體填充方法 中媒體注入步驟之其他例者。 由第13圖與第12圖之比較清楚可知,本實施例之多層 晶胞之媒體填充方法中,令第12圖所示之多層晶胞為1個單 元(多層晶胞單元),該2個多層晶胞單元la及lb挾持矽膠等 23 ⑧ 密接構件Π0疊合,同時對2個多層晶胞單元13及讣注入媒 體0 其中,由第13圖清楚可知,密接構件17〇於對應於貫通 孔丨51,152及153之位置設有孔。又,疊合之多層晶胞單元 5 之數目當然不限定於2個。 如此,根據本發明之多層晶胞之媒體填充方法,由於 係在積層液晶填充前之液晶晶胞後,於各晶胞内分別填充 液晶,因次可防止如為使接著劑硬化而加熱或照射紫外線 所造成之液晶劣化。又,根據本發明之多層晶胞之媒體填 10 充方法,由於射於各晶胞,彼此的液晶不會接觸混合而可 同時填充,因此可在短時間内輕易製作多層晶胞,又,亦 可減少填充時多餘之液晶量。又,由於亦可對複數之多層 晶胞(複數之多層晶胞單元)同時進行液晶的填充,因此可在 更短的時間内輕易製作多層晶胞。 15 本發明之多層晶胞及對多層晶胞之媒體填充方法主要 係適用於具有可顯示全彩之膽固醇狀液晶之複數層(例如 R、G、B三層)之電子紙’但並不限定於此,亦可廣泛適用 於如對電氣化學光電池等之複數層分別填充媒體所構成之 多層晶胞。 20 【圖式簡單說明】 第1A圖係用以說明膽固醇狀液晶之配向型態者(其1)。 第1B圖係用以說明膽固醇狀液晶之配向型態者(其2)。 第2 A圖係顯示用以驅動膽固醇狀液晶之電壓特性者 (其 1)。 24 1343491 【主要元件符號說明】 1…顯示元件(多層晶胞) 1 a, ]b...多層晶胞 3.. .電源電路 5 4...控制電路 11,15 ; 111, 115 ; 121,125 ; 131, 135...基板 12, 14 ; 112, 114 ; 122, 124 ; 132, 134··.掃描電極 13, 113, 123, 133...液晶組成物 16…驅動電路 10 17, 117, 127, 137...密封劑 21.. .掃描側驅動器1C(掃描驅動器) 22.. .資料側驅動器1C(資料驅動器) 31.. .昇壓部 32.. .電壓生成部 15 33...調整器 41.. .運算部 42.. .控制資料生成部 43.. .晝面資料生成部 101.. .藍(B)層 20 102…綠(G)層 103.. .紅(R)層 104.. .光吸收層(黑(B)層) 110.. .藍(B)層用控制電路 118.. .藍色用媒體注入領域 26 1343491 119, 129, 129a,129b, 139 …障壁 120.. .綠(G)層用控制電路 128.. .綠色用媒體注入領域 130.. .紅(R)層用控制電路 … 5 138...紅色用媒體注入領域 ' 151...藍色用貫通孔 152.. .綠色用貫通孔 153.. .紅色用貫通孔 ® 160…遮蔽構件 10 170...密接構件 200.. .真空室 FC...垂直螺旋狀態 H...垂直螺旋狀態 P...平行螺旋狀態 27First, as shown in the figure on the left side of Fig. 8, B 20 1343491 layer 101, G layer 102, and R layer 103 are combined using barrier 117, 127, and 137, and barrier 119, 129a, 129b, and 139 such as thermosetting resin. . At this time, the positional relationship between the media injection fields 118; 128; 138 and the barrier 119; 129a' 129b; 139 of each layer is as described with reference to FIG. Here, for example, in order to harden the sealants 117, 127, and 137 and the barrier 119; 5 129a, 129b; 139, it is necessary to heat or irradiate the ultraviolet rays before the medium (liquid crystal) is injected into each layer. Next, as shown in the middle diagram of Fig. 8, the B layer 101, the G layer 1〇2, and the R layer 103 in the empty state are joined by the adhesives 141, 142 without being separately injected into the medium, forming the right side as shown in Fig. 8. The multilayer cell of the figure. At this time, a coloring material such as a G-cut filter film that weakens a specific color (for example, green) is applied between the respective ten layers. Here, for example, in order to harden the adhesive 140 to strengthen the bonding of the respective layers 101, 102, 103, it is necessary to heat or irradiate ultraviolet rays, and the heating or irradiation of ultraviolet rays or the like may be performed before the medium is injected into each layer. Further, when the light absorbing layer is provided on the lower side of the R layer 1 〇 3 as described above, it is bonded and fixed at this stage using an adhesive or the like. Thus, a multilayer cell is formed before the medium is injected (filled) in each layer. Fig. 9 is a plan view of a multilayer cell formed by the preliminary steps of Fig. 8, and Fig. 9B is a view of the A-A line of the multilayer cell shown in Fig. 9A. 20 It is clear from FIGS. 9A and 9B that 'B layer 1 is bonded by the adhesives 141, 142 (H, G layer 102 and R layer 103, the B layer 101 corresponds to the green medium injection field 108 and the red medium is injected. There is a barrier 119 at the field 138. Further, in the G layer 102, there are barriers 129a and 129b' corresponding to the red medium injection field 138 and the blue medium injection field 118, and the R layer 1〇3 21 (§) 1343491 There is a barrier 139 corresponding to the blue medium injection field 118 and the green medium injection field 128. Fig. 10 is a plan view of the through hole of the multi-layer cell-injecting medium shown in Figs. 9A and 9B. Fig. 10B is a cross-sectional view taken along the line BB of the multilayer crystal cell shown in Fig. 10A. Further, Fig. 11A is a plan view showing the state in which the multilayer cell is injected into the medium as shown in Fig. 10A and the 苐jog diagram, section 11B. Figure CCA is a cross-sectional view of the multi-layer cell shown in Fig. 11A. As shown in Fig. 10A and Fig. 10B, the blue in the B layer 101 is filled with the medium 118 into the field 118 to form a through B, G, R Blue through holes 10 151 of layers 101, 102, 103. As shown in Figs. 11A and 11B, blue through holes 151 When the blue medium (blue cholesteric liquid crystal) is injected into the B layer 101 via the blue through hole 151, only the blue medium is injected into the B layer 101, and the other G layers 102 and R are added. In the layer 103, the blue dielectric medium is prevented from being interposed by the barrier 129b and 139. 15 Similarly, the green dielectric infusion hole 152 is formed in the green medium injection region 1 of the G layer 1〇2. The green through hole 152 is used. When the green medium (green cholesteric liquid crystal) is injected into the G layer 102 via the green through hole 152, only the green medium is injected into the G layer 102. For other r layers 103 and B, the barrier is used. 139 and 119 interfere with the injection of the green medium. Further, the red dielectric through-hole 153 is formed in the red medium injection region 138 of the R layer 103. The red through-hole 153 is configured to pass through the red through-hole 153. When the red medium (red cholesteric liquid crystal) is injected into the R layer 103, only the red medium is injected into the R layer 103, and the other B layers 22 1343491 101 and the G layer 102 are blocked by the red 119 by the barrier 119 and 129a. Injection When the blue medium, the green medium, and the red medium are injected (filled) into the B layer 101 'G layer 102 and the R layer 103, all of them can be simultaneously performed. Further, 5 each medium is injected into the corresponding through hole. The processing is disposed under the lower substrate 135 of the lowermost R layer 101 with a shielding member 160 such as silicone. Fig. 12 is a view showing an example of a medium injecting step in the medium filling method of the multilayer unit cell of the present invention. In Fig. 12, reference numeral 200 denotes a vacuum chamber, and further, the upper right multi-layer cell system corresponds to the 10A and 10B, and the lower right layer cell corresponds to the 11A and the 11B figure. As shown in the upper diagram of Fig. 12, the laminated multi-layer cell (empty cell) 1 is placed in the vacuum chamber 200 to make the chamber 200 a vacuum. Further, under the vacuum of the chamber 200, blue cholesterol liquid crystal, green cholesteric liquid crystal, and red cholesteric liquid crystal are injected (dropped) into the blue through hole 15151, the green through hole 152, and the red color. Through hole 153. Further, a shielding member 160 such as silicone rubber is disposed under the lowermost R layer 101. Further, as shown in the upper diagram of Fig. 12, by releasing the vacuum state in the chamber 200, blue cholesteric liquid crystal, green cholesteric liquid crystal, and red cholesteric liquid crystal are filled in the B layer 101, the G layer 102, and the R. Layer 103. Fig. 13 is a view showing another example of the medium injecting step in the medium filling method of the multilayer unit cell of the present invention. As is clear from the comparison between FIG. 13 and FIG. 12, in the medium filling method of the multilayer cell of the present embodiment, the multilayer cell shown in FIG. 12 is one unit (multilayer unit cell), and the two The multi-layer cell unit la and the lb-carrying rubber and the like are laminated, and the two multi-layer unit cells 13 and the crucible are injected into the medium 0. It is clear from Fig. 13 that the close-contact member 17 is corresponding to the through-hole. Holes are provided at the positions of 丨51, 152 and 153. Further, the number of stacked multi-layer unit cells 5 is of course not limited to two. As described above, according to the medium filling method of the multilayer unit cell of the present invention, since the liquid crystal cell is filled before the laminated liquid crystal is filled, the liquid crystal is filled in each of the unit cells, thereby preventing heating or irradiation such as hardening of the adhesive. The liquid crystal caused by ultraviolet rays is deteriorated. Moreover, according to the media filling method of the multi-layer cell of the present invention, since the liquid crystals of each of the cells are not contacted and mixed and can be filled at the same time, the multi-layer cell can be easily fabricated in a short time, and It can reduce the amount of excess liquid crystal during filling. Further, since a plurality of multi-layer cells (multiple multi-layer cell units) can be simultaneously filled with liquid crystal, a multi-layer cell can be easily fabricated in a shorter period of time. 15 The multi-layer unit cell of the present invention and the medium filling method for the multi-layer unit cell are mainly applied to an electronic paper having a plurality of layers (for example, R, G, and B layers) capable of displaying a full-color cholesteric liquid crystal, but is not limited thereto. Here, it can also be widely applied to a multilayer cell in which a plurality of layers of an electrochemistry photovoltaic cell are filled with a medium, respectively. 20 [Simple description of the diagram] Figure 1A is a diagram for explaining the alignment type of cholesteric liquid crystal (1). Fig. 1B is a diagram for explaining the alignment type of cholesteric liquid crystal (2). Figure 2A shows the voltage characteristics used to drive cholesteric liquid crystals (1). 24 1343491 [Description of main component symbols] 1...Display element (multilayer unit cell) 1 a, ]b...Multilayer cell 3.. Power supply circuit 5 4...Control circuit 11,15; 111, 115 ; 121 , 125; 131, 135... substrate 12, 14; 112, 114; 122, 124; 132, 134··. scan electrode 13, 113, 123, 133... liquid crystal composition 16... drive circuit 10 17, 117, 127, 137...sealing agent 21.. scanning side driver 1C (scanning driver) 22.. data side driver 1C (data driver) 31.. boosting unit 32.. voltage generating unit 15 33 ... adjuster 41.. computing unit 42.. control data generating unit 43.. face data generating unit 101.. blue (B) layer 20 102... green (G) layer 103.. (R) layer 104.. Light absorbing layer (black (B) layer) 110.. Blue (B) layer with control circuit 118.. Blue for media injection field 26 1343491 119, 129, 129a, 129b, 139 ... barrier 120.. green (G) layer control circuit 128.. green media injection field 130.. red (R) layer control circuit... 5 138... red media injection field '151. .. blue through hole 152.. green through hole 153.. red through hole ® 160... shielding member 1 0 170...tight member 200.. .vacuum chamber FC...vertical spiral state H...vertical spiral state P...parallel spiral state 27

Claims (1)

13434911343491 10 1510 15 20 第95103738號專利申請案 申請專利範圍替換本20關.1^ ^十、申請專利範圍: 1. 一種多層晶胞,係至少具有第1及第2層二層者, 前述第1層具有第1媒體注入領域,且該第1媒體注 入領域係用以對該第1層填充第1媒體者, 而前述第2層具有第2媒體注入領域,且該第2媒體 注入領域係對應於與前述第1媒體注入領域不同之領 域,以對該第2層填充第2媒體者, 又,該多層晶胞具有第1貫通孔與第2貫通孔,前述 第1貫通孔係位於前述第1媒體注入領域内,且朝層之厚 度方向貫通前述多層晶胞,而可僅對前述第1層填充前 述第1媒體者, 前述第2貫通孔係位於前述第2媒體注入領域内,且 朝層之厚度方向貫通前述多層晶胞,而可僅對前述第2 層填充前述第2媒體者, 前述第1層中,對應於前述第2媒體注入領域之處設 有第1障壁,且前述第2層中,對應於前述第1媒體注入 領域之處設有第2障壁。 2. 如申請專利範圍第1項之多層晶胞,更具有第3層,且該 第3層具有對應於與前述第1媒體注入領域及前述第2媒 體注入領域不同之領域且用以填充第3媒體之第3媒體 注入領域, 又,前述多層晶胞設有第3貫通孔,且該第3貫通孔 係位於前述第3媒體注入領域,朝層之厚度方向貫通前 述多層晶胞,而可僅對前述第3層填充前述第3媒體者。 28 1343491 3.如申請專利範圍第2項之多層晶胞,其中前述第i層中, 對應於前述第2及第3媒體注入領域之處設有第丨障壁, 而前述第2層中,對應於前述第3及第㈣體注入領域之 處設有第2障壁’且前述第3層中,對應於前述第丨及第2 5 媒體注入領域之處設有第3障壁。 (如申請專利範圍第2項之多層晶胞,其中前述第卜第2 及第3層係、分洲以反射藍色、綠色及紅色之膽固醇狀 液晶層,且,前述多層晶胞係構成可顯示全彩之電子紙 之液晶晶胞。 1〇 5.—種多層晶胞之媒體填充方法,係對具有至少第i及第2 二層之多層晶胞媒體填充者,且該方法係: 於别述第1層形成用以對該第1層填充第丨媒體之第 1媒體注入領域, 於前述第2層形成對應於與前述第1媒體注入領域 5 不同之領域並且對該第2層填充第2媒體之第2媒體注入 領域, 將前述第1及第2層積層,並且 开> 成位於則述第1媒體注入領域内且朝層之厚度方 向貫通刖述多層晶胞之第1貫通孔、及位於前述第2媒體 3 注入領域且朝層之厚度方向貫通前述多層晶胞之第2貫 通孔, 又,對前述第1及第2貫通孔分別注入前述第1及第2 媒體,並且對前述第丨及第2層填充該第丨及第2媒體, 前述第1層中,對應於前述第2媒體注入領域之處設 29 1343491 有第1障壁,-且前述第2層中’對應於前述第丨媒體注入 領域之處設有第2障壁。 6·如申請專利範圍第5項之多層晶胞之媒體填充方法,其 中畲於則述第1層形成前述第1媒體注入領域時,在對應 5 於前述第2媒體注入領域之處形成第1障壁,且 s於則述第2層形成前述第2媒體注入領域時,在對 應於前述第1媒體注入領域之處形成第2障壁。 7·如_請專職圍第5項之多層晶胞之媒體填充方法,其 中當對前述第1及第2貫通孔分別注入前述第1及第2媒 1P 體時,於最下層的下面配置遮蔽構件。 8.如申請專職項之多層晶社媒體填充方法,係 將則述第1及第2層構成為多層晶胞單元,並且將該多層 晶胞單元朝前述第丨及第2層之厚度方向積層,且同時處 理複數組前述多層晶胞單元。 15 9·-種多層晶胞之媒體填充方法,係對至少具有第1、第2 • 及第3三層之多層晶胞填充媒體者,該方法係: 於前述第丨層形成用以對該第1層填充第1媒體之第 1媒體注入領域, 於前述第2層形成對應於與前述第1媒體注入領域 不同之領域並且對該第2層填充第2媒體之第2媒體注入 領域, 於前述第3層形成對應於與前述第】媒體注入領域 不同之領域並且對該第3層填充第罐體之第3媒體注入 領域, 30 1343491 將前述第1、第2及第3層積層,並且 形成位於前述以媒體注入領域内且朝層之厚度方 向貫通前述多層晶胞之第!貫通孔、位於前述第2^注 入領域且朝層之厚度方向貫通前述多層晶胞之第2貫通 孔、及位於前述第2媒體注入領域且朝層之厚度方向貫 通前述多層晶胞之第3貫通孔, 又,對前述第1、第2及第3貫通孔分別注入前述第 卜第2及第3媒體,並且對前述第卜第2及第3層填充該 第卜第2及第3媒體, 前述第1層中,對應於前述第2媒體注入領域之處設 有第1障壁,且前述第2層中,對應於前述第丨媒體注入 領域之處設有第2障壁。 10. 如申請專利範圍第9項之多層晶胞之媒體填充方法,其 中當於前述第1層形成前述第丨媒體注入領域時,在對應 於前述第2媒體注入領域及第3媒體注入領域之處形成 第1障壁, 當於前述第2層形成前述第2媒體注入領域時,在對 應於前述第3媒體注入領域及第1媒體注入領域之處形 成第2障壁,且 當於前述第3層形成前述第3媒體注入領域時,在對 應於前述第1媒體注入領域及第2媒體注入領域之處形 成第3障壁。 11. 如申請專利範圍第9項之多層晶胞之媒體填充方法,其 中填充於前述第1、第2及第3層之媒體係分別用以反射 31 1343491 藍色、綠色及紅色之膽固醇狀液晶,且,前述多層晶胞 係構成可顯示全彩之電子紙之液晶晶胞。 12.如申請專利範圍第9項之多層晶胞之媒體填充方法,其 中當對前述第1、第2及第3貫通孔分別注入前述第1、第 5 2及第3媒體時,於最下層的下面配置遮蔽構件。20 Patent Application No. 95103738, the scope of patent application is replaced by the 20th. 1^^10, the scope of the patent application: 1. A multi-layer unit cell having at least a first layer and a second layer, the first layer having the first 1 in the field of media injection, wherein the first medium injection field is for filling the first layer with the first medium, and the second layer has the second medium injection field, and the second medium injection field corresponds to the In the field of the first medium injection field, the second layer is filled with the second medium, and the multilayer unit has the first through hole and the second through hole, and the first through hole is located in the first medium injection. In the field, the plurality of unit cells are penetrated in the thickness direction of the layer, and only the first layer may be filled in the first layer, and the second through hole is located in the second medium injection region and is in the thickness of the layer. The second layer is filled in the second layer, and the first layer is provided in the first layer corresponding to the second medium injection region, and the second layer is provided in the second layer. Corresponding to the aforementioned first media injection field There is a second barrier. 2. The multi-layer cell of claim 1 is further provided with a third layer, and the third layer has a field corresponding to the first media injection field and the second media injection field, and is used to fill the In the third medium injection field of the medium, the multilayer cell is provided with a third through hole, and the third through hole is located in the third medium injection field, and penetrates the multilayer cell in the thickness direction of the layer. Only the third layer is filled with the aforementioned third media. 28 1343491 3. The multilayer cell of claim 2, wherein in the ith layer, a second barrier is provided corresponding to the second and third media injection fields, and wherein the second layer corresponds to A second barrier rib is provided in the third and fourth body injection fields, and a third barrier rib is provided in the third layer corresponding to the second and second media injection fields. (For example, the multi-layer unit cell of claim 2, wherein the second and third layers of the second and third layers are cholesteric liquid crystal layers reflecting blue, green and red, and the multi-layer cell structure is A liquid crystal cell showing full color electronic paper. 1〇5. A multi-layer cell media filling method for a multi-layer cell media filler having at least an i-th and a second-layer, and the method is: The first layer is formed to form a first medium injection region for filling the first layer with the second medium, and the second layer is formed to correspond to a region different from the first medium injection region 5 and to fill the second layer. In the second medium injection field of the second medium, the first and second layers are layered and placed in the first medium injection region and penetrate the first through-layer cell in the thickness direction of the layer. a hole, and a second through hole that penetrates the multilayer cell in a thickness direction of the layer in the second dielectric 3 implantation region, and injects the first and second media into the first and second through holes, respectively Filling the first and second layers And the second medium, wherein the first layer corresponds to the second medium injection field, and the first barrier is provided, and the second layer has a portion corresponding to the second medium injection region. 2. A barrier filling method. The media filling method of the multi-layer cell of the fifth aspect of the patent application, wherein the first layer forms the first medium injection field, and corresponds to the second medium injection field. When the second barrier layer is formed, and the second layer is formed in the second medium injection region, the second barrier is formed corresponding to the first medium injection region. In the media filling method of the unit cell, when the first and second medium 1P bodies are respectively injected into the first and second through holes, the shielding member is disposed on the lower surface of the lowermost layer. In the media filling method, the first and second layers are formed as a plurality of unit cell units, and the plurality of unit cell units are laminated in the thickness direction of the second and second layers, and the plurality of the plurality of unit cells are simultaneously processed. Unit. 15 9·-Multilayer crystal The media filling method is for filling a medium with a plurality of first, second, and third layers of the unit cell, wherein the method is: forming the first layer by filling the first layer with the first layer. In the first medium injection field, the second layer is formed in the second layer corresponding to the field different from the first medium injection field, and the second layer is filled with the second medium, and the third layer is formed in accordance with the third layer. In the third medium injection field in which the media injection field is different and the third layer is filled with the third body, 30 1343491, the first, second, and third layers are laminated, and are formed in the aforementioned media injection field. And penetrate the first layer of the unit cell in the thickness direction of the layer! a through hole, a second through hole penetrating the multilayer cell in a thickness direction of the layer, and a third through hole located in the second medium injection region and penetrating the multilayer cell in a thickness direction of the layer And inserting the second and third media into the first, second, and third through holes, respectively, and filling the second and third media with the second and third media; In the first layer, a first barrier rib is provided corresponding to the second medium injection region, and a second barrier rib is provided in the second layer corresponding to the second dielectric injection region. 10. The medium filling method of a multi-layer cell of the ninth aspect of the patent application, wherein when the first layer is formed in the second media injection field, corresponding to the second media injection field and the third media injection field a first barrier layer is formed, and when the second layer is formed in the second medium injection region, a second barrier layer is formed corresponding to the third medium injection region and the first dielectric injection region, and the third barrier layer is formed When the third medium injection field is formed, the third barrier is formed in the field corresponding to the first medium injection region and the second medium injection region. 11. The media filling method of a multi-layer cell of claim 9 wherein the media layers filled in the first, second, and third layers are respectively used to reflect 31 1343491 blue, green, and red cholesteric liquid crystals. Further, the multi-layer cell system constitutes a liquid crystal cell which can display full-color electronic paper. 12. The medium filling method of a multilayer cell according to claim 9, wherein the first, second, and third through holes are injected into the first, second, and third through holes, respectively, at a lowermost layer The shielding member is disposed below. 10 1510 15 20 13. 如申請專利範圍第9項之多層晶胞之媒體填充方法,係 將前述第1、第2及第3層構成多層晶胞單元,並且將該 多層晶胞單元朝前述第1、第2及第3層之厚度方向積 層,且同時處理複數組前述多層晶胞單元。 14. 如申請專利範圍第13項之多層晶胞之媒體填充方法,係 在鄰接之2個前述多層晶胞單元之間配置前述第1、第2 及第3貫通孔所形成之密接構件。 15. —種多層晶胞,係各層具有用以填充媒體之媒體注入領 域者,且於前述各層注入媒體之媒體注入路徑係朝前述 多層晶胞之層的厚度方向貫通之貫通孔, 又,該貫通孔係僅與欲注入媒體之層之媒體注入領 域連接,且與其他層及前述媒體注入領域不連接, 前述第1層中,對應於前述第2媒體注入領域之處設 有第1障壁,且前述第2層中,對應於前述第1媒體注入 領域之處設有第2障壁。 32The media filling method of the multi-layer cell of the ninth aspect of the patent application, wherein the first, second, and third layers constitute a multi-layer cell unit, and the multi-layer cell unit faces the first and the 2 and the third layer are laminated in the thickness direction, and simultaneously process the complex array of the plurality of unit cells. 14. The medium filling method of the multilayer cell of claim 13 wherein the first, second and third through holes are formed between the two adjacent multilayer unit cells. A multi-layer cell in which each layer has a medium injection field for filling a medium, and a medium injection path for injecting a medium into each of the layers is a through hole penetrating in a thickness direction of the layer of the plurality of unit cells, and The through hole is connected only to the medium injection region of the layer to be injected into the medium, and is not connected to the other layer and the medium injection region. In the first layer, the first barrier is provided corresponding to the second medium injection region. Further, in the second layer, a second barrier is provided corresponding to the first medium injection region. 32
TW95103738A 2006-02-03 2006-02-03 Multi-layer cell and method of filling up mediums into the multi-layer cell TWI343491B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95103738A TWI343491B (en) 2006-02-03 2006-02-03 Multi-layer cell and method of filling up mediums into the multi-layer cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95103738A TWI343491B (en) 2006-02-03 2006-02-03 Multi-layer cell and method of filling up mediums into the multi-layer cell

Publications (1)

Publication Number Publication Date
TWI343491B true TWI343491B (en) 2011-06-11

Family

ID=45074885

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95103738A TWI343491B (en) 2006-02-03 2006-02-03 Multi-layer cell and method of filling up mediums into the multi-layer cell

Country Status (1)

Country Link
TW (1) TWI343491B (en)

Similar Documents

Publication Publication Date Title
US7110164B2 (en) Electro-optic displays, and processes for the production thereof
JP2003029293A (en) Layered display device and manufacturing method therefor
CN103091906B (en) A kind of mask plate
TW200832031A (en) E-paper apparatus and manufacturing method thereof
CN103728765A (en) Color liquid crystal display panel and manufacturing method thereof
US20020109812A1 (en) Reflection liquid crystal display and method for producing the same
CN103760709B (en) Liquid crystal display element, display device, and method for driving the same
US20130050622A1 (en) Liquid crystal display apparatus and method of fabricating the same
TWI795334B (en) Method for producing a display and method of integrating electrophoretic displays
WO2007110948A1 (en) Display element, its driving method, and electronic paper having the same
CN207216229U (en) Display panel and display device
WO2008041268A1 (en) Liquid crystal display element, process for producing the same and electronic paper having the element
JP5338671B2 (en) Liquid crystal display element and multilayer liquid crystal display element including the same
TWI343491B (en) Multi-layer cell and method of filling up mediums into the multi-layer cell
JP5273399B2 (en) Liquid crystal display
TW200941073A (en) Color cholesteric liquid crystal display devices and fabrication methods thereof
JPH1115012A (en) Display device and manufacture thereof
US8059251B2 (en) Multilayered cell, electronic terminal, and method of filling multilayered cell with media
JP4175598B2 (en) Display / dimming element, control method thereof, and manufacturing method thereof
JP3944678B2 (en) Cholesteric liquid crystal display element and cholesteric liquid crystal display device
JP3700756B2 (en) Cholesteric liquid crystal display device
TW200837425A (en) Liquid crystal display device and electronic paper using the same
TWI317032B (en) Liquid crystal composite, liquid crystal display element using the composite, and electronic parper having the element
KR20080085196A (en) Multilayered cell, electronic terminal, and method of filling multilayered cell with media
TWI421579B (en) Color cholesteric liquid crystal display devices and fabrication methods thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees