TWI339560B - Heat dissipation structure of expanded and laminated architecture - Google Patents

Heat dissipation structure of expanded and laminated architecture Download PDF

Info

Publication number
TWI339560B
TWI339560B TW97131650A TW97131650A TWI339560B TW I339560 B TWI339560 B TW I339560B TW 97131650 A TW97131650 A TW 97131650A TW 97131650 A TW97131650 A TW 97131650A TW I339560 B TWI339560 B TW I339560B
Authority
TW
Taiwan
Prior art keywords
heat
expansion
heat dissipation
motherboard
board
Prior art date
Application number
TW97131650A
Other languages
Chinese (zh)
Other versions
TW201010584A (en
Inventor
Tzu Cheng Lin
Original Assignee
Moxa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moxa Inc filed Critical Moxa Inc
Priority to TW97131650A priority Critical patent/TWI339560B/en
Publication of TW201010584A publication Critical patent/TW201010584A/en
Application granted granted Critical
Publication of TWI339560B publication Critical patent/TWI339560B/en

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

申請補充、修正之曰期:99年12月30曰 九、發明說明: 【發明所屬之技術領域】 一種散熱結構,尤其係指一種應用於擴充疊板架構之 散熱結構。 【先前技術】 隨著科技的進步,電子裝置之效能日益增強,然而由 於電子裝置運斜’皆會產生熱能,如果這些熱能不加以 適當地散逸,會導致電子裝置效能降低,更甚至於會造成 電子裝置的燒毀,因此散熱裝置已成為現今電子裝置中不 可或缺的配備之一。 以往的散熱裝置皆為針對發熱元件進行設計,在較低 工作鮮㈣熱元件㈣,發熱元件的賴量可以控制在 散熱裝置僅朗散触>}來滿足迅速散熱的需求,以「第 1圖」為例’「第1圖」係為習知散熱裝置側視圖。在「第 1圖」中’是以設有許多制狀之高熱傳導係數散熱轉片 ⑴緊貼於印刷電路板u上之發熱元件12,藉以增^發 熱7L件12與空氣接觸之面積,並透過自麟流的方式, 使高導熱錄散細片13接觸冷空氣,將發熱元件以所 產生的熱驗逸,進而朗财散熱的功效。 、但,,現在許多的電子產品均逐漸朝向輕薄短小、快 速化、冋功献以及軸化的需求下進行設計,其中,工 業電如由於工俩境需要,其機體的尺寸也較辦公用或 用電腦來的精緻、嬌小。 因此,需要將上述的散熱裝置加以改良,以滿足輕薄 申請補充、修正之日期:99年丨2月30日 短小的設計目的,並請參照「第2圖」以及「第3圖所 示,「第2圖」係為習知工業電腦散熱立體組合圖;「第3 圖」係為習知工業電腦散熱立體分解圖。 工業電腦20包含散熱外殼21、導熱塊22以及主機板 23 ’其中,散熱外殼21以_型製成,外表面向外延伸 成複數個散熱韓片231,散熱鰭片231係為縱向或橫向排 列’其目的在於增加散熱外殼21與外界空氣接觸的面積, 散熱外殼21前後可透過固定元件211與前蓋板212以及 後蓋板213固定連接,散熱外殼21内部與導熱塊η相接 觸,導熱塊22的另一端則與主機板23上發熱元件24相 接觸,導熱塊22的形狀可以是數個需要傳導熱能的電子 元件形狀組合。 當發熱元件24運作產生出熱能,隨即可以透過導熱 塊22將熱能傳導至散熱外殼21,再透過散熱外殼21表面 的散熱鰭片231透過自然對流方式,將發熱元件24所產 生的熱能加以散逸。 對於先前技術所提出的散熱結構而言,由於需要分別 對政熱外设21、導熱塊22以及主機板23分別進行固定, 使得在每一次固定時皆會產生出組裝公差,進行越多次的 組裝,所累積的組裝公差也就越大,對於先前技術而言, 將會產生出四次的公差,所累積的四次公差將會影響到元 件之間的貼合情況,導致工業電腦的散熱效率降低。 然而’這種散熱裝置由於藉由貼合於發熱元件24上 的導熱塊22進行散熱,為了達到預定的散熱效率,導熱 申請補充、修正之曰期;99年12月30曰 塊22必須佔用一定的空間,因此也不適合所有的工業電 腦設計,特別是對於採用擴充疊板架構的工業電腦而言, 這種工業電腦可以依照使用者的需要隨時安插擴充板來 擴充新功能。 對於這種採用擴充疊板架構的工業電腦而言,由於主 機板以及擴充板之間的空間有限,採用先前技術的散熱方 式需要一定的空間’才能將散熱結構接觸於發熱元件,進 行散熱的方式將不適用於擴充疊板架構,當發熱元件剛好 設置於主機板以及擴充板間的空間時,將無法透過現有散 熱裝置的散熱方式將擴充板上發熱元件所產生的熱能有 效散逸’因此,將需要提出不同的散熱結構,除了需要配 合擴充疊板架構有限的空間之外,並且需要是可以有效對 主機板或是擴充板上發熱元件進行熱能散逸的散熱結構。 綜上所述,可知先前技術中長期以來一直存在散熱結 構佔用空間較大導致無法有效被應用在擴充疊板架構中 處理主機板及擴充板之間發熱元件的熱能散逸,以及容易 產生組裝公差的問題,因此有必要提出改進的技術手段, 來解決此一問題。 【發明内容】 有鑒於先前技術存在散熱結構佔用空間較大導致無 法有效被應用在擴充疊板架構中處理主機板及擴充板之 間發熱元件的熱能散逸,以及容易產生組裝公差的問題, 本發明遂揭露一種擴充疊板架構之散熱結構,其中·· 本發明所揭露之擴充疊板架構之散熱結構,擴充疊板 申請補充、修正之日期;99年丨2月30日 架構包含主機板及第—擴充板,主機板設有至少一第一擴 充插槽’第-擴充板設有至少一第一擴充匯流排,第一擴 充匯流排電性連接於擴充赌,主敵及第―擴充板 相向面設有至少-發熱元件,擴充魏_之散熱結構包 含:吸熱基板以及至少一散熱板。 其中,吸熱基板設有至少一第一固定元件,透過第一 固疋元件將主機板以及第一擴充板固定於吸熱基板,並且 使得發熱元件貼合於吸熱基板之吸熱面,以及至少一散熱 板,政熱板自吸熱基板所延伸設置,並且散熱板延伸設置 複數個散熱鳍片。 本發明所揭露之結構如上,與先前技術之間的差異在 於本發明透過設置於吸熱基板之第一固定元件,直接將主 機板以及第一擴充板固定於吸熱基板,並且使得發熱元件 δ又置於主機板或第一擴充板皆可貼合於吸熱基板之吸熱 面上,使吸熱基板直接吸收發熱元件的熱能,並且將熱能 傳導至側邊的散熱板,再經由吸熱基板所延伸之散熱板上 的散熱鰭片,以自然對流方式將吸熱基板所吸收的熱能加 以散逸’可以使得在疊板架構可以透過吸熱基板以及散熱 板節省散熱的空間,以及主機板及第一擴充板直接固定於 吸熱基板僅為一次組裝,減少多次組裝所累積的組裝公 差’並且可以對設置於主機板及擴充板之間的發熱元件熱 進行散熱的功效。 透過上述的技術手段,本發明可以達成減少散熱裳置 佔用空間、減少組裝公差’以及在擴充疊板架構中有效進 申請補充、修正之日期;99年丨2月30曰 行散熱的技術功效。 【實施方式】 以下將配合圖式及實施例來詳細說明本發明之實施 方式’藉此對本發明如何應用技術手段來解決技術問題並 達成技術功效的實現過程能充分理解並據以實施。 首先,說明本發明擴充疊板架構之散熱結構,並同時 參考「第4圖」以及「第5圖」所示,「第4圖」係為本 發明擴充疊板架構之散熱結構立體分解圖;「第5圖」係 為本發明擴充疊板架構之散熱結構立體組合圖。 本發明所揭露之擴充疊板架構之散熱結構,擴充疊板 架構包含主機板30及第一擴充板4〇,主機板30設有至少 一第一擴充插槽32,第一擴充板40設有至少一第一擴充 匯流排42,第一擴充匯流排42電性連接於第一擴充插槽 32,主機板30及第一擴充板40相向面設有至少一發熱元 件,擴充疊板架構之散熱結構包含:吸熱基板5〇以及至 少一散熱板60。 其中,吸熱基板50設有至少一第一固定元件911,透 過第一固定元件911將主機板30以及第一擴充板々ο固定 於吸熱基板50 ’發熱元件設於主機板3〇上定義為第一發 熱元件31,發熱元件設於第一擴充板4〇上定義為第二發 熱元件41 ’第一發熱元件31貼合於吸熱基板5〇之吸熱面 定義為第一吸熱面51,以及第二發熱元件41貼合於吸熱 基板50之吸熱面定義為第二吸熱面52。 至少一散熱板60’散熱板60自吸熱基板5〇所延伸設 申請補充、修正之日期;99年丨2月30曰 置,並且散熱板60延伸設置複數個散熱鰭片61,上述元 件經過組合後,請參照「第5圖」所示。 本發明應用於擴充疊板架構,所謂的擴充疊板架構即 為除了主機板30的基本功能之外,更透過第一擴充板4〇 上的第一擴充匯流排42插接於主機板3 〇上的第一擴充插 槽32,形成層次的架構,並且第一擴充板4〇係疊於主機 板30上方或下方。 通常第一擴充板40設計使用的電子元件而言,並無 預期會產生出超過自然對流散熱方式所容許的散熱量,但 是,在封裝技術快速的成長下,會使得第一擴充板4〇所 使用的電子元件也會同時產生出高熱能,並且無法透過自 然對流方式直接對電子元件進行散熱。 因此,可以將主機板30上的第一發熱元件31與第一 擴充插槽32設於主機板30之同一面,並且第一擴充板 40上的第二發熱元件41與第一擴充匯流排42設於第一 擴充板40之同一面,因此,在主機板3〇以及第一擴充板 40形成擴充疊板架構時,第一發熱元件31以及第二發熱 元件41係為相向的方向。 為了解決類似上述擴充疊板架構的散熱問題,本發明 便在主機板30以及第一擴充板4〇之間,設置吸熱基板 5〇,在吸熱基板50設有至少一第一固定元件911,用以 將主機板30以及第一擴充板4〇直接固定於吸熱基板上, 由於’第一發熱元件31以及第二發熱元件41係為相向的 方向’因此,主機板30上的第一發熱元件31可以貼合於 1339560 申請補充、修正之日期;99年12月30曰 吸熱基板50之第一吸熱面51,而第一擴充板40上的第 二發熱元件41可以貼合於吸熱基板50之第二吸熱面52, 透過吸熱基板50的第一吸熱面51以及第二吸熱面52, 可以在擴充疊板架構上同時吸收第一發熱元件31以及第 一發熱元件41所產生的熱能,並且透過一次固定主機板 30、第一擴充板40以及吸熱基板50,可以有效的減少多 次組裝所累積的組裝公差。 接著,透過自吸熱基板50所延伸設置的至少一散熱 板60,以及散熱板60延伸設置複數個散熱鰭片61,將吸 熱基板50自第一發熱元件31以及第二發熱元件41所吸 收的熱能,透過吸熱基板50、散熱板60以及散熱板60 所設置的複數個散熱鰭片61,以自然對流的方式以及熱 輪射的方式進行散熱,使得第一發熱元件31以及第二發 熱元件41所產生的熱能可以加以散逸。 上述的散熱板60可以自吸熱基板50單一側面延伸設 置’或疋散熱板60可以自吸熱基板50相對兩側面延伸設 置’使其外觀形成T形形狀或是Η形形狀(其外觀可以 參照「第6Α圖」、「第6Β圖」以及「第6C圖」所示)。 散熱板60可以以吸熱基板50為中心延伸設置,並且 使得吸熱基板50位於散熱板60的中間位置,使得吸熱基 板50到散熱板60上下兩側的距離是相同的,使得散熱板 60的溫度分部可以達到上下兩側的平均,由於散熱板 上下兩側的溫度達到平均,使得散熱板6〇上下兩側的散 熱效率是_的,可以有效㈣免散熱板6G上下兩側形 12 1339560 申請補充、修正之曰期:99年12月30 3 成的溫度差異所造紐熱效率的不同’藉此可以增加散熱 板60的散熱效率。 本發明擴充疊板架構之散熱結構,除了透過吸熱基板 5〇以及散滅60可將熱錄逸之外,在、賴上由於吸熱 基板50設置於主機板30以及第一擴充板4〇之間,並且 主機板30以及第一擴充板4〇之間的空間所受到限制,因 此,吸熱基板50所佔用的空間減少不少,同時,自吸熱 基板50側邊所延伸設置的至少一散熱板6〇,可以將吸熱 基板50所吸收的熱能加以散逸,可以有效的減少直接貼 合於發熱元件吸熱基板50所佔用的空間,並且依然可以 達到散熱的功效,可以解決散熱結構佔用空間的問題,並 且同時滿足散熱的功效。Application for Supplementary and Correction Period: December 30, 1999 IX. Invention Description: [Technical Field of the Invention] A heat dissipation structure, in particular, a heat dissipation structure applied to an expansion stack structure. [Prior Art] With the advancement of technology, the performance of electronic devices is increasing. However, since electronic devices are used to generate heat, if these heat energy is not properly dissipated, the performance of the electronic device will be reduced, and even more The electronic device is burned, so the heat sink has become one of the indispensable devices in today's electronic devices. In the past, the heat dissipating device was designed for the heating element. In the lower working (four) thermal element (4), the heating element can be controlled in the heat dissipating device only to meet the demand for rapid heat dissipation. Fig. 1 is a side view of a conventional heat sink. In the "Fig. 1", the heat-generating component 12 which is attached to the printed circuit board u with a high heat transfer coefficient heat-dissipating fin (1) having a plurality of specifications is used to increase the area of contact with the air by the heat-generating 7L member 12, and Through the way of the lining flow, the high-heat-conducting recording fine film 13 is in contact with the cold air, and the heat-generating component is taken out by the generated heat, thereby further reducing the heat dissipation effect. However, many electronic products are gradually designed to meet the needs of light, short, fast, sturdy, and axial. Among them, industrial power is more suitable for office use due to the needs of the workers. Exquisite and petite with a computer. Therefore, it is necessary to improve the above-mentioned heat dissipating device to meet the design and date of the application for replenishment and correction of the light and thin application: the design purpose of the short period of 99 years and February 30, and please refer to "Fig. 2" and "Fig. 3," Figure 2 is a three-dimensional combination diagram of the industrial computer heat dissipation; "3rd figure" is a three-dimensional exploded view of the industrial computer heat dissipation. The industrial computer 20 includes a heat-dissipating housing 21, a heat-conducting block 22, and a motherboard 23'. The heat-dissipating housing 21 is formed in a _ shape, and the outer surface extends outward to form a plurality of heat-dissipating Korean sheets 231, and the heat-dissipating fins 231 are arranged in a longitudinal or lateral direction. The purpose of the heat dissipating outer casing 21 is to be fixedly connected to the front cover 212 and the rear cover 213 through the fixing member 211. The heat dissipating outer casing 21 is in contact with the heat conducting block η, and the heat conducting block 22 is The other end is in contact with the heating element 24 on the motherboard 23, and the shape of the thermal block 22 can be a combination of a plurality of shapes of electronic components that require conduction of thermal energy. When the heating element 24 operates to generate thermal energy, the thermal energy can be transmitted to the heat dissipating outer casing 21 through the heat conducting block 22, and the heat radiating fins 231 on the surface of the heat dissipating outer casing 21 can be dissipated by the natural convection. For the heat dissipation structure proposed by the prior art, since the thermal insulation peripheral 21, the thermal conduction block 22, and the main board 23 are separately fixed, the assembly tolerance is generated every time the fixing is performed, and the multiple times are performed. As assembly, the accumulated assembly tolerances will be larger. For the prior art, four tolerances will be generated. The accumulated four tolerances will affect the fit between the components, resulting in the heat dissipation of industrial computers. Reduced efficiency. However, the heat dissipating device is dissipated by the heat conducting block 22 attached to the heating element 24, and in order to achieve the predetermined heat dissipating efficiency, the heat conduction application is supplemented and corrected. The block 22 must occupy a certain amount on December 30, 1999. The space is therefore not suitable for all industrial computer designs, especially for industrial computers with an extended stack architecture, which can be expanded at any time to expand the new features according to the user's needs. For such an industrial computer with an extended stack structure, due to the limited space between the motherboard and the expansion board, the prior art heat dissipation method requires a certain amount of space to contact the heat dissipation structure to the heat generating component for heat dissipation. It will not be used to expand the stacking structure. When the heating element is just placed in the space between the motherboard and the expansion board, the heat generated by the heating elements on the expansion board cannot be effectively dissipated through the heat dissipation method of the existing heat sink. Different heat dissipation structures need to be proposed, in addition to the limited space required to expand the stack structure, and a heat dissipation structure that can effectively dissipate heat from the heating elements on the motherboard or the expansion board. In summary, it can be seen that in the prior art, there has been a large space occupied by the heat dissipation structure for a long time, which cannot be effectively applied to the heat dissipation of the heat generating component between the motherboard and the expansion board in the expansion stack structure, and the assembly tolerance is easy to occur. Problems, so it is necessary to propose improved technical means to solve this problem. SUMMARY OF THE INVENTION In view of the prior art, there is a problem that the heat dissipation structure occupies a large space, which cannot be effectively applied to the heat dissipation of the heat generating component between the motherboard and the expansion board in the expansion stack structure, and the assembly tolerance is easily generated.遂Exposing a heat dissipation structure of an expansion stack structure, wherein the heat dissipation structure of the expanded stack structure disclosed in the present invention is added to the date of application and supplementation of the stack application; the structure of the motherboard includes the motherboard and the first on February 30, 1999. - an expansion board, the motherboard is provided with at least one first expansion slot. The first expansion board is provided with at least one first expansion bus, and the first expansion bus is electrically connected to the expansion bet, and the main enemy and the expansion board face each other. The surface is provided with at least a heating element, and the heat dissipation structure of the expansion device comprises: a heat absorption substrate and at least one heat dissipation plate. Wherein, the heat absorbing substrate is provided with at least one first fixing component, the motherboard and the first expansion board are fixed to the heat absorbing substrate through the first fixing component, and the heat generating component is attached to the heat absorbing surface of the heat absorbing substrate, and at least one heat dissipation plate The heat board is extended from the heat absorbing substrate, and the heat sink extends a plurality of heat sink fins. The structure disclosed in the present invention is as above, and the difference from the prior art is that the present invention directly fixes the main board and the first expansion board to the heat absorbing substrate through the first fixing member disposed on the heat absorbing substrate, and causes the heat generating element δ to be set again. The motherboard or the first expansion board can be attached to the heat absorbing surface of the heat absorbing substrate, so that the heat absorbing substrate directly absorbs the heat energy of the heat generating component, and conducts heat energy to the side heat sink board, and then the heat sink board extends through the heat absorbing substrate. The heat-dissipating fins dissipate the heat absorbed by the heat-absorbing substrate in a natural convection manner, so that the heat dissipation space can be saved through the heat-absorbing substrate and the heat-dissipating plate, and the motherboard and the first expansion board are directly fixed to the heat absorption. The substrate is only assembled once, reducing the assembly tolerance accumulated by multiple assemblies' and can dissipate heat from the heat generating components disposed between the motherboard and the expansion board. Through the above technical means, the present invention can achieve the reduction of the space occupied by the heat dissipation, reduce the assembly tolerance, and the date of effective application for supplementation and correction in the expansion of the stack structure; the technical effect of heat dissipation in the year of February 30, 1999. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings and the embodiments. The present invention can be fully understood and implemented by the technical means for solving the technical problems and achieving the technical effects. First, the heat dissipation structure of the expansion stack structure of the present invention will be described, and reference is made to "Fig. 4" and "5th diagram" at the same time, and "4th diagram" is an exploded perspective view of the heat dissipation structure of the expansion stack structure of the present invention; "Fig. 5" is a three-dimensional combination diagram of the heat dissipation structure of the expanded stack structure of the present invention. The heat dissipation structure of the expansion stack structure disclosed in the present invention, the expansion stack structure includes a motherboard 30 and a first expansion board 4, and the motherboard 30 is provided with at least one first expansion slot 32, and the first expansion board 40 is provided. At least one first expansion bus bar 42 is electrically connected to the first expansion socket 32. The main board 30 and the first expansion board 40 are provided with at least one heating element on opposite sides thereof to expand the heat dissipation of the stack structure. The structure comprises: a heat absorbing substrate 5 〇 and at least one heat sink 60. The heat absorbing substrate 50 is provided with at least one first fixing component 911. The main board 30 and the first expansion board 々 are fixed to the heat absorbing substrate 50 through the first fixing component 911. The heating element is disposed on the motherboard 3 定义. a heat generating component 31, the heat generating component is disposed on the first expansion board 4〇 as a second heat generating component 41. The heat absorbing surface of the first heat generating component 31 attached to the heat absorbing substrate 5 is defined as a first heat absorbing surface 51, and a second The heat absorbing surface of the heat generating element 41 bonded to the heat absorbing substrate 50 is defined as the second heat absorbing surface 52. At least one heat dissipating plate 60 ′ heat dissipating plate 60 extends from the heat absorbing substrate 5 申请 to the date of application for supplementation and correction; 99 years 丨 February 30 曰, and the heat dissipating plate 60 extends a plurality of heat dissipating fins 61, the above components are combined After that, please refer to "Figure 5". The present invention is applied to an expansion stack structure. The so-called expansion stack structure is in addition to the basic functions of the motherboard 30, and the first expansion bus bar 42 on the first expansion board 4 is plugged into the motherboard 3. The first expansion slot 32 on the top forms a hierarchical structure, and the first expansion board 4 is stacked above or below the motherboard 30. Generally, the electronic components used in the design of the first expansion board 40 are not expected to generate heat dissipation exceeding the natural convection heat dissipation mode. However, in the rapid growth of the packaging technology, the first expansion board 4 The electronic components used also generate high thermal energy at the same time, and cannot directly dissipate the electronic components through natural convection. Therefore, the first heating element 31 on the motherboard 30 and the first expansion slot 32 can be disposed on the same side of the motherboard 30, and the second heating element 41 and the first expansion bus 42 on the first expansion board 40 can be The first heat generating component 31 and the second heat generating component 41 are in opposite directions when the main board 3A and the first expansion board 40 form an extended stacking structure. In order to solve the heat dissipation problem similar to the above-mentioned expansion stack structure, the present invention provides a heat absorbing substrate 5 〇 between the motherboard 30 and the first expansion board 4 〇, and at least one first fixing component 911 is disposed on the heat absorbing substrate 50. The main board 30 and the first expansion board 4 are directly fixed to the heat absorbing substrate. Since the first heat generating element 31 and the second heat generating element 41 are in the opposite direction, the first heat generating element 31 on the motherboard 30 is provided. The first heat absorbing surface 51 of the heat absorbing substrate 50 can be attached to the first heat absorbing surface 51 of the heat absorbing substrate 50 on December 30, 1999, and the second heat generating component 41 on the first expansion board 40 can be attached to the heat absorbing substrate 50. The second heat absorbing surface 52, through the first heat absorbing surface 51 and the second heat absorbing surface 52 of the heat absorbing substrate 50, can simultaneously absorb the heat energy generated by the first heat generating component 31 and the first heat generating component 41 on the expansion stack structure, and pass through once. Fixing the motherboard 30, the first expansion board 40, and the heat absorbing substrate 50 can effectively reduce the assembly tolerance accumulated by multiple assembly. Then, the heat dissipation of the heat absorbing substrate 50 from the first heat generating component 31 and the second heat generating component 41 is performed by extending at least one heat dissipating plate 60 extending from the heat absorbing substrate 50 and the heat radiating plate 60 to form a plurality of heat radiating fins 61. The heat dissipation substrate 50, the heat dissipation plate 60, and the plurality of heat dissipation fins 61 disposed on the heat dissipation plate 60 dissipate heat in a natural convection manner and a heat radiation manner, so that the first heat generating component 31 and the second heat generating component 41 are The heat generated can be dissipated. The heat dissipation plate 60 may extend from a single side surface of the heat absorbing substrate 50 or the heat dissipation plate 60 may extend from the opposite side surfaces of the heat absorbing substrate 50 to form a T shape or a Η shape. 6Α图,“6Β图” and “6C图”). The heat dissipation plate 60 may extend around the heat absorption substrate 50, and the heat absorption substrate 50 is located at an intermediate position of the heat dissipation plate 60 such that the distance between the heat absorption substrate 50 and the upper and lower sides of the heat dissipation plate 60 is the same, so that the temperature of the heat dissipation plate 60 is divided. The upper part can reach the average of the upper and lower sides. Since the temperature of the upper and lower sides of the heat dissipation plate is averaged, the heat dissipation efficiency of the upper and lower sides of the heat dissipation plate 6〇 is _, which can be effective (4) free of heat dissipation plate 6G upper and lower sides shape 12 1339560 The revised period: the difference in the temperature of the heat generated by the temperature difference of 30% in December, 1999. This can increase the heat dissipation efficiency of the heat sink 60. The heat dissipation structure of the stacked board structure of the present invention is provided, except that the heat-receiving substrate 5 〇 and the smashing 60 can be used to record heat, and the heat absorbing substrate 50 is disposed between the motherboard 30 and the first expansion board 4 在. The space between the motherboard 30 and the first expansion board 4 is limited. Therefore, the space occupied by the heat absorption substrate 50 is reduced, and at least one heat dissipation plate 6 extending from the side of the heat absorption substrate 50 is provided. 〇, the heat energy absorbed by the heat absorbing substrate 50 can be dissipated, and the space occupied by the heat absorbing substrate 50 of the heat generating component can be effectively reduced, and the heat dissipation effect can still be achieved, and the space occupied by the heat dissipation structure can be solved, and At the same time, it can meet the heat dissipation effect

接著,請參考「第7A圖」以及「第7B圖」,「第7A 圖」係為本發明擴充疊板架構之散熱結構特徵立體圖;「第 7B圖」係為本發明擴充疊板架構之散熱結構特徵侧視圖。 對於不同的主機板3〇以及第一擴充板40而言,由於 使用的發熱元件會不同,不同的發熱元件會有些微的高度 落差,而會間接的影響到主機板3〇上的第一發熱元件31 以及第一擴充板40上的第二發熱元件41無法緊密的貼合 於吸熱基板上50。 因此,為了避免上述的問題,在吸熱基板5〇的第一 吸熱面51以及第二吸熱面52分別更可以包含至少一第一 吸熱部53以及至少—第二吸熱部54,即可以透過第一吸 熱部53或是第二吸熱部54貼合於主機板30 JL的第一發 13 1339560 申請補充、修正之曰期;99年丨2月30曰 熱元件31以及第一擴充板4〇上的第二發熱元件41,藉 此可以透過第一吸熱部53以及第二吸熱部54將第一發熱 元件31以及第二發熱元件41所產生的熱能加以吸收,並 將所吸收的熱能傳導至吸熱基板5〇。 除了可以避免主機板3〇上的第一發熱元件31以及第 一擴充板40上的第二發熱元件無法貼合於吸熱基板5〇上 的問題之外,第一吸熱部53以及第二吸熱部54更增加了 吸熱的體積,增加吸熱基板50可以吸收的熱能,另外, 也可以透過吸熱基板5〇上的第一吸熱部53以及第二吸熱 部54,減少主機板30以及第一擴充板4〇在擴充疊板架 構上與吸熱基板50所產生的結構誤差。 而對於不同的主機板30以及第一擴充板4〇 ,由於使 用的電子元件會不同’對於高度較高的電子元件有電容、 輸入/輸出介面元件…等等的電子元件,因此,會間接的 衫響到主機板30上的第一發熱元件31以及第一擴充板 40上的第二發熱元件41無法貼合於吸熱基板上5〇。 則需要對吸熱基板50 it行設計,使吸減板50上更 包含設置至少-電子元件凹陷部55或至少—電子元件配 :孔(圖中未繪示)’即可以使得高度較高的電子元件或 是輸入/輸㈣面元件可絲紐5G,使得吸熱基 板50與主機板30上的第一發熱元件31錢第一擴充板 40上的第二發熱元件可以相互貼合。 、 另外,請參考「第8圖」所示,「第8圖」係為擴充 疊板架構之賴、轉魏續®。由概絲板5〇上設 14 1339560 申請補充、修正之日期;99年12月30曰 有至乂帛m定元件9U,並且主機板以及第一擴 充板40可以透過第一固定元件9i!將吸熱基板以及主 機板30相互固定’或是將吸熱基板%以及第一擴充板 40相互固定’使得第―發熱元们丨、第二發熱元件、 第-吸熱部53、第二吸熱部54、電子元件凹陷部55或電 子元件配合孔相對位置得到定位。 上述位於吸熱基板50上的第一固定元件911,可以 為具有公螺紋的第一固定元件911,而主機板3〇或是第 一擴充板40上的第一固定元件911可以為具有母螺紋的 第一固定元件911,透過公螺紋以及母螺紋的螺合,可以 將吸熱基板50以及主機板3〇相互固定,或是將吸熱基板 50以及第一擴充板40相互固定,但不以此侷限本發明, 現有固定技術如:卡合固定方式、扣合固定方式、螺合固 定方式…等,皆可以為本發明固定方式。 以上所述為擴充疊板架構之散熱結構基本元件說 明’接著,請參考「第9A圖」以及「第9B圖」所示,「第 9A圖」係為主機板、散熱基板以及第二擴充板結構特徵 立體圖;「第9B圖」係為第一擴充板、散熱基板以及第 二擴充板結構特徵立體圖。 除了主機板30、第一擴充疊板40以及吸熱基板50 的基本疊層架構之外,更可以於主機板30與第一擴充板 40相向面的另一面,或是第一擴充疊板40與主機板30 相向面的另一面,分別更包含至少一第三發熱元件33及 至少一第二擴充插槽34或是第四發熱元件43及至少一第 15 申’青補充、修正之日期:99年12月30日 三擴充插槽44。 其中第一發熱元件33及第二擴充插槽34設於主機 板30之另-面’第四發熱元件43及第三擴充插槽料設 於第一擴充板40之另一面。 並且本發明更包含第二擴充板7〇,第二擴充板70具 有至少-第五發熱元件71 &至少—第二擴充匯流排72, 第五發熱元件71及帛二擴紐流排72設於帛二擴充板 之同-面’而第二擴充板7〇可以透過第二擴充匯流排 72插接於主機板30之第二擴充插槽34,或是第二擴充板 70可以透過第二擴充匯流排72插接於第一擴充板4〇之 第二擴充插槽44 ’以形成對主機板4〇或是第一擴充板4〇 的電性連接。 由於主機板30、第一擴充板40以及第二擴充板7〇 的相互疊層’使得擴充疊板架構可不斷的加以疊層,並 且,主機板30上的第三發熱元件33與第二擴充插槽34 設於主機板30之另一面,並且第一擴充板40上的第四發 熱元件43與第三擴充匯流排44設於第一擴充板4〇之另 —面’因此,在主機板3〇以及第二擴充板70,或是第一 擴充板40以及第二擴充板70形成擴充疊板架構時,第三 發熱元件33以及第五發熱元件71係為相向的方向,或是 第四發熱元件43以及第五發熱元件71係為相向的方向。 並且為了解決類似上述可不斷加以疊層的擴充疊板 架構散熱問題,本發明可以在主機板30以及第二擴充板 70之間’或是在第一擴充板4〇以及第二擴充板70之間, 1339560 申請補充、修正之日期;99年12月30曰 設置吸熱板80,由於’第三發熱元件33以及第五發熱元 件71係為相向的方向,因此,主機板3〇上的第三發熱元 件33可以貼合於吸熱板8〇之第一吸熱面81,而第二擴 充板70上的第五發熱元件71可以貼合於吸熱板8〇之第 二吸熱面82,透過吸熱板80的第一吸熱面81以及第二 吸熱面82,可以在不斷加以疊層的擴充疊板架構上同時 吸收第三發熱元件33以及第五發熱元件71所產生的熱 另外,第四發熱元件43以及第五發熱元件71係為相 向的方向,因此,第一擴充板40上的第四發熱元件43可 以貼合於吸熱板80之第一吸熱面81,而第二擴充板7〇 上的第五發熱元件71可以貼合於吸熱板80之第二吸熱面 82,透過吸熱板80的第一吸熱面μ以及第二吸熱面μ, 可以在不斷加以疊層的擴充疊板架構上同時吸收第四發 熱元件43以及第五發熱元件所產生的熱能。 而散熱板80係由散熱板60所沿著主機板30以及第 二擴充板70之間的方向延伸設置,或是第一擴充板4〇以 及第二擴充板70之間的方向延伸設置,並且可以分別在 吸熱板80之第一吸熱面81以及吸熱板8〇之第二吸熱面 82,更可以包含至少一第三吸熱部幻以及至少一第四吸 熱部84,可以達到第一吸熱部53以及第二吸熱部54的 功效,因此,在此不再贅述。 同時,也可以對吸熱板80進行設計,使吸熱板上更 包含設置至少-電子元件凹陷部85或至少—電子元件配 17 1339560 申請補充、修正之日期;99年12月30曰 合孔’其所達到的功效以及目的,如吸熱基板50上所設 計的電子元件凹陷部55或電子元件配合孔(圖中未繪示) 功效目的相同,因此,在此不再贅述。 並且,吸熱板80更包含至少一第二固定元件912, 第二擴充板70更包含至少一第二固定元件912,並且可 以透過第二固定元件912將吸熱板80以及主機板30相互 固定,或是將吸熱板80以及第二擴充板70相互固定,或 是將吸熱板80以及第一擴充板40相互固定,使得第三發 熱元件33、第四發熱元件43、第三吸熱部83、第四吸熱 部84、電子元件凹陷部85或電子元件配合孔相對位置得 到定位,並且,第二固定元件912可以參考上述第一固定 元件911的說明,在此不再贅述第二固定元件912的固定 方式。 接著,請參考「第10A圖」以及「第10B圖」所示, 「第10A圖」係為應用本發明擴充疊板架構之散熱結構 的工業電腦組裝立體分解圖;「第10B圖」係為應用本發 明擴充疊板架構之散熱結構的工業電腦組裝立體組合圖。 在使用擴充疊板架構的工業電腦90,可以應用本發 明擴充疊板架構之散熱結構對工業電腦9〇内的主機板3〇 以及第一擴充疊板40進行散熱,透過工業電腦90的外殼 92將擴充疊板架構之散熱結構加以包覆,並且透過第一 固定疋件911將工業電腦90的外殼92固定於散熱板6〇, 並且,工業電腦90的外殼92更包含至少一配合孔93, 用以配a主機板30上的輸入/輸出介面元件之用,將工業 18 1339560 申請補充、修正之日期:99年 電腦9〇的外殼92將擴充疊板架構之散熱結構包覆並固定 組合,組合後的工業電腦9〇立體外觀圖請參照「第_ 圖J所示。 「另外’請參考「第UA圖」以及「第11Β圖」所示, 「第11Α ®」係為應財發明擴充疊板_之散熱結構 的工業電腦散熱殼體立體分解圖;「第11Β圖」係ϋ用 本發明擴充疊板架構之散熱結構的玉#電腦散熱殼體立 體組合圖。 除了以工業電腦9〇的外殼92將擴充疊板架構之散熱 結構加以包覆之外,更可以採用散熱殼體94以替代咬體 92,所代替體92係為不包含配合孔%的平面,散熱 殼體94更設有負數個散熱則95,則可以透過第一固^ 兀件9U,將散熱殼體94固定於散熱板6〇上,更能增加 散熱面積,有效的加強散熱效率。 θ 最後,除了在縣#板架構何料_擴充疊板架 構之外,本發蚊相將不_助舰餘架構之散熱 架構的工業電腦90進行疊加’並請參考「第12圖」所示, 「第12圖」係為應用本發明擴充疊板架構之散熱結構的 工業電腦疊加立體圖。 於散熱板60上下兩财,透過第三固u件913可 以將不同的顧賊疊链構之散熱結構的I業電腦9〇 進行疊加,並且可以不斷的疊加不同的工業電腦9〇,應 用本發明齡疊錢構之散減構以她㈣疊加結 果如「第12圖」所示。 19 申請補充、修正之曰期:99年12月30曰 綜上所述,可知本發明與先前技術之間的差異在於具 有透過設置於吸熱基板之固定元件,直接將主機板以及第 一擴充板固定於吸熱基板,並且使得發熱元件設置於主機 板或第一擴充板皆可貼合於吸熱基板之吸熱面上,使吸熱 基板直接吸收發熱元件的熱能’並且將熱能傳導至側邊的 散熱板,再經由吸熱基板所延伸之散熱板上的散熱鰭片, 以自然對流方式將吸熱基板所吸收的熱能加以散逸,可以 使得在疊板架構可以透過吸熱基板以及散熱板節省散熱 的空間,以及主機板及第一擴充板直接固定於吸熱基板, 僅為一次組裝,減少多次組裝所累積的組裝公差,並且可 以對設置於主機板及擴充板之間的發熱元件熱進行散熱 的功效。 藉由此一技術手段可以來解決先前技術所存在散熱 結構佔用空間較大導致無法有效被應用在擴充疊板架構 中處理主機板及擴充板之間發熱元件的熱能散逸,以及容 易產生組裝公差的問題,進而達成減少散熱裝置佔用空 間、減少組裝公差,以及在擴充疊板架構中有效進行散熱 的技術功效。 雖然本發明所揭露之實施方式如上’惟所述之内容並 非用以直接限定本發明之專利保護範圍。任何本發明所屬 技術領域中具有通常知識者,在不脫離本發明所揭露之精 神和範圍的前提下,可以在實施的形式上及細節上作些許 之更動。本發明之專利保護範圍,仍須以所附之申請專利 範圍所界定者為準。 【圖式簡單說明】 申請補充、修正之日期-年川。日 第1圖為習知散熱裝置側視圖。 第2圖為習知工業電腦散熱立體組合圖。 第3圖為習知工業電腦散熱立體分解圖。 圖 第4圖林發充4板_之散_構立體分解 圖 第5圖為本發簡充親之散熱結構立體組合 第6A圖為本發明散熱結構H形態樣形狀外觀側視 第6Β圖為本發明散熱結構第一 τ形態樣形狀外觀側 〇 第6C圖為本發明散熱結構第二丁形態樣形狀外觀側 〇 葶7Α圖為本發明擴充疊板架構之散熱結構特徵立體 第7Β圖為本發明擴充疊板架構之散熱結構特徵側視 圖。 第8圖為本發明擴充疊板架構之散熱結構特徵立體 圖。 第9Α圖為本發明主機板、散熱基板以及第二擴充板 結構特徵立體圖。 第9Β圓為本發明第一擴充板、散熱基板以及第二擴 充板結構特徵立體圖。 21Next, please refer to "7A" and "7B". "7A" is a perspective view of the heat dissipation structure of the expansion stack structure of the present invention; "7B" is the heat dissipation of the expansion stack structure of the present invention. Side view of structural features. For different motherboards 3〇 and 1st expansion board 40, because the heating elements used will be different, different heating elements will have a slight height difference, which will indirectly affect the first heating on the motherboard 3 The element 31 and the second heat generating element 41 on the first expansion board 40 cannot be closely attached to the heat absorbing substrate 50. Therefore, in order to avoid the above problem, the first heat absorbing surface 51 and the second heat absorbing surface 52 of the heat absorbing substrate 5 更 may further include at least one first heat absorbing portion 53 and at least one second heat absorbing portion 54 respectively. The heat absorbing portion 53 or the second heat absorbing portion 54 is attached to the first plate 13 1339560 of the motherboard 30 JL to apply for supplementation and correction; 99 years 丨 February 30 曰 heat element 31 and the first expansion plate 4 The second heat generating component 41 can absorb the heat energy generated by the first heat generating component 31 and the second heat generating component 41 through the first heat absorbing portion 53 and the second heat absorbing portion 54, and conduct the absorbed heat energy to the heat absorbing substrate. 5〇. In addition to avoiding the problem that the first heat generating component 31 on the motherboard 3 and the second heat generating component on the first expansion panel 40 cannot be attached to the heat absorbing substrate 5, the first heat absorbing portion 53 and the second heat absorbing portion 54 further increases the volume of heat absorption, increases the heat energy that the heat absorbing substrate 50 can absorb, and can also reduce the motherboard 30 and the first expansion board 4 through the first heat absorbing portion 53 and the second heat absorbing portion 54 on the heat absorbing substrate 5 The structural error caused by the heat sink substrate 50 on the extended stack structure. For different motherboards 30 and the first expansion board 4, since the electronic components used will be different, there are electronic components such as capacitors, input/output interface components, etc. for higher-level electronic components, and therefore, indirect The first heat generating component 31 on the main board 30 and the second heat generating component 41 on the first expansion board 40 cannot be attached to the heat sink substrate. Therefore, it is necessary to design the heat absorbing substrate 50 so that the absorbing plate 50 further includes at least the electronic component recess 55 or at least the electronic component: the hole (not shown), so that the electronic device with higher height can be made. The component or the input/output (four) surface component can be wire 5G, so that the heat absorbing substrate 50 and the first heat generating component 31 on the motherboard 30 can be attached to each other. In addition, please refer to "Figure 8", which is the extension of the stack structure, and the transition to the Wei. The date of application for supplementation and correction shall be 14 1339560 from the top of the silk plate; on December 30, 1999, there shall be 9U for the fixed component, and the motherboard and the first expansion plate 40 may pass through the first fixing component 9i! The heat absorbing substrate and the motherboard 30 are fixed to each other 'or the heat absorbing substrate % and the first expansion plate 40 are fixed to each other' such that the first heat generating element, the second heat generating element, the first heat absorbing portion 53, the second heat absorbing portion 54, and the electrons The element recess 55 or the electronic component matching hole relative position is positioned. The first fixing component 911 on the heat absorbing substrate 50 may be a first fixing component 911 having a male thread, and the first fixing component 911 on the motherboard 3 or the first expansion board 40 may be a female thread. The first fixing member 911 can fix the heat absorbing substrate 50 and the motherboard 3 〇 to each other through the screwing of the male screw and the female screw, or fix the heat absorbing substrate 50 and the first expansion board 40 to each other, but the limitation is not limited thereto. According to the invention, the existing fixing techniques such as the snap-on fixing method, the fastening fixing method, the screwing fixing method, and the like can all be the fixing manner of the invention. The above is a description of the basic components of the heat dissipation structure of the expansion stack structure. Next, please refer to "9A" and "9B", and "9A" is the motherboard, the heat sink substrate, and the second expansion board. A structural feature perspective view; "9B" is a perspective view of the first expansion board, the heat dissipation substrate, and the second expansion board. In addition to the basic stacking structure of the motherboard 30, the first expansion stack 40, and the heat absorbing substrate 50, the other side of the motherboard 30 opposite to the first expansion board 40, or the first expansion stack 40 and The other side of the opposing surface of the motherboard 30 further includes at least one third heating element 33 and at least one second expansion slot 34 or the fourth heating element 43 and at least one of the 15th. On December 30, the third expansion slot 44. The first heating element 33 and the second expansion slot 34 are disposed on the other surface of the main board 30. The fourth heating element 43 and the third expansion slot are disposed on the other surface of the first expansion board 40. And the second expansion board 70 has at least a fifth heating element 71 & at least a second expansion bus 72, a fifth heating element 71 and a second expansion line 72. The second expansion board 7 can be inserted into the second expansion slot 34 of the motherboard 30 through the second expansion bus 72, or the second expansion board 70 can pass through the second The expansion bus bar 72 is inserted into the second expansion slot 44 ′ of the first expansion board 4 以 to form an electrical connection to the motherboard 4 〇 or the first expansion board 4 。. Due to the mutual stacking of the motherboard 30, the first expansion board 40 and the second expansion board 7〇, the expansion stack structure can be continuously laminated, and the third heating element 33 and the second expansion on the motherboard 30 are The slot 34 is disposed on the other side of the motherboard 30, and the fourth heating element 43 and the third expansion busbar 44 on the first expansion board 40 are disposed on the other side of the first expansion board 4, thus 3〇 and the second expansion board 70, or the first expansion board 40 and the second expansion board 70 form an expansion stack structure, the third heating element 33 and the fifth heating element 71 are in opposite directions, or fourth The heating element 43 and the fifth heating element 71 are in opposite directions. And in order to solve the heat dissipation problem of the expansion stack structure similar to the above-mentioned continuous stacking, the present invention can be between the motherboard 30 and the second expansion board 70 or in the first expansion board 4 and the second expansion board 70. Between 1339560 and the date of application for replenishment and revision; the heat absorbing plate 80 is provided on December 30, 1999. Since the third heating element 33 and the fifth heating element 71 are in opposite directions, the third on the motherboard 3 The heating element 33 can be attached to the first heat absorbing surface 81 of the heat absorbing plate 8 , and the fifth heat generating element 71 of the second expansion board 70 can be attached to the second heat absorbing surface 82 of the heat absorbing plate 8 , through the heat absorbing plate 80 . The first heat absorbing surface 81 and the second heat absorbing surface 82 can simultaneously absorb the heat generated by the third heat generating component 33 and the fifth heat generating component 71 on the continuously stacked stacking structure, and the fourth heat generating component 43 and The fifth heating element 71 is in the opposite direction. Therefore, the fourth heating element 43 on the first expansion board 40 can be attached to the first heat absorption surface 81 of the heat absorbing plate 80, and the fifth expansion board 7 is fifth. The heating element 71 can be attached The second heat absorbing surface 82 of the heat absorbing plate 80, through the first heat absorbing surface μ of the heat absorbing plate 80 and the second heat absorbing surface μ, can simultaneously absorb the fourth heat generating component 43 and the fifth on the continuously stacked laminated stack structure. The thermal energy generated by the heating element. The heat dissipation plate 80 is extended by the heat dissipation plate 60 along the direction between the main board 30 and the second expansion board 70, or extends in a direction between the first expansion board 4〇 and the second expansion board 70, and The first heat absorbing surface 81 of the heat absorbing plate 80 and the second heat absorbing surface 82 of the heat absorbing plate 8 respectively may further include at least one third heat absorbing portion and at least one fourth heat absorbing portion 84, and the first heat absorbing portion 53 may be reached. And the efficiency of the second heat sink 54 and therefore will not be described again here. At the same time, the heat absorbing plate 80 can also be designed such that the heat absorbing plate further includes at least an electronic component recessed portion 85 or at least - an electronic component with a 17 1339560 application for supplementation and correction date; The efficacies and the purpose, such as the electronic component recess 55 or the electronic component matching hole (not shown) designed on the heat absorbing substrate 50, have the same purpose and are not described herein again. Moreover, the heat absorbing plate 80 further includes at least one second fixing member 912, the second expansion plate 70 further includes at least one second fixing member 912, and the heat absorbing plate 80 and the motherboard 30 can be fixed to each other through the second fixing member 912, or The heat absorbing plate 80 and the second expansion plate 70 are fixed to each other, or the heat absorbing plate 80 and the first expansion plate 40 are fixed to each other, so that the third heat generating component 33, the fourth heat generating component 43, the third heat absorbing component 83, and the fourth The heat absorbing portion 84, the electronic component recessed portion 85 or the electronic component matching hole relative position is positioned, and the second fixing component 912 can refer to the description of the first fixing component 911, and the second fixing component 912 is not described herein. . Next, please refer to "10A" and "10B", which is an exploded view of the industrial computer assembly using the heat dissipation structure of the expansion stack structure of the present invention; "10B" is The industrial computer assembled stereo combination diagram of the heat dissipation structure of the stacked board structure is applied by the invention. In the industrial computer 90 using the expansion stack structure, the heat dissipation structure of the expansion stack structure of the present invention can be used to dissipate heat from the motherboard 3A and the first expansion stack 40 in the industrial computer 9 through the outer casing 92 of the industrial computer 90. The heat dissipation structure of the expansion stack structure is covered, and the outer casing 92 of the industrial computer 90 is fixed to the heat dissipation plate 6 through the first fixing member 911, and the outer casing 92 of the industrial computer 90 further includes at least one matching hole 93. For the purpose of matching the input/output interface components on the motherboard 30, the application of the industrial 18 1339560 application is supplemented and revised. The 99-inch computer casing 9 covers and fixes the heat dissipation structure of the expansion stack structure. For the stereoscopic appearance of the assembled industrial computer, please refer to "The _ Figure J. "In addition, please refer to the "UA map" and "11th map", and the "11th Α ®" is an extension of the financial invention. The stereoscopic exploded view of the industrial computer heat dissipation housing of the heat dissipation structure of the stacking plate; the "11th drawing" is a three-dimensional combination diagram of the jade computer cooling housing of the heat dissipation structure of the stacked board structure. In addition to covering the heat dissipation structure of the expansion stack structure with the outer casing 92 of the industrial computer, a heat dissipation housing 94 may be used instead of the bite body 92, and the replacement body 92 is a plane that does not include the fitting hole %. The heat dissipation housing 94 is further provided with a negative heat dissipation member 95. The heat dissipation housing 94 can be fixed to the heat dissipation plate 6 through the first fixing member 9U, thereby increasing the heat dissipation area and effectively enhancing the heat dissipation efficiency. θ Finally, in addition to the expansion of the stacking structure in the county's board structure, the mosquito-repellent phase will not be superimposed on the industrial computer 90 of the heat-dissipating structure of the ship's remaining structure, and please refer to Figure 12 The "12th figure" is an industrial computer superimposed perspective view of the heat dissipation structure of the expansion stack structure to which the present invention is applied. On the heat sink 60, the upper and lower sides of the heat sink can be superimposed on the I-computer 9〇 of the heat dissipation structure of the different thieves, and the industrial computer can be stacked continuously. The scattered reduction of the invention of the age of money is based on her (4) superposition results as shown in Figure 12. 19 Application Supplementary, Amendment Period: December 30, 1999, in summary, it can be seen that the difference between the present invention and the prior art is that there is a fixed component disposed on the heat absorbing substrate, and the motherboard and the first expansion board are directly connected. Fixed to the heat absorbing substrate, and the heat generating component is disposed on the main board or the first expansion board can be attached to the heat absorbing surface of the heat absorbing substrate, so that the heat absorbing substrate directly absorbs the heat energy of the heat generating component and transmits the heat energy to the side heat sink. And through the heat dissipation fins on the heat dissipation plate extended by the heat absorbing substrate, the heat energy absorbed by the heat absorbing substrate is dissipated in a natural convection manner, so that the heat dissipation space can be saved through the heat absorbing substrate and the heat dissipation plate in the stack structure, and the host The board and the first expansion board are directly fixed to the heat absorbing substrate, and are only assembled once, which reduces the assembly tolerance accumulated by the multiple assembly, and can heat the heat of the heat generating component disposed between the motherboard and the expansion board. The technical solution can solve the problem that the heat dissipation structure occupied by the prior art has a large space, which cannot be effectively applied to the heat dissipation of the heating element between the motherboard and the expansion board in the expansion stack structure, and the assembly tolerance is easy to occur. The problem is to achieve the technical effect of reducing the space occupied by the heat sink, reducing assembly tolerances, and effectively dissipating heat in the expansion stack structure. The above described embodiments of the present invention are not intended to directly limit the scope of the invention. Any changes in the form and details of the embodiments may be made without departing from the spirit and scope of the invention. The scope of the invention is to be determined by the scope of the appended claims. [Simple description of the schema] The date of application for supplementation and revision - Nakagawa. Day 1 is a side view of a conventional heat sink. Figure 2 is a three-dimensional combination of the heat dissipation of the industrial computer. Figure 3 is a three-dimensional exploded view of the heat dissipation of the industrial computer. Figure 4: Linfa's 4th _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The first τ shape-like shape appearance side of the heat dissipation structure of the present invention is the sixth side view of the heat dissipation structure of the second aspect of the present invention. The heat dissipation structure of the invention is the three-dimensional diagram of the heat dissipation structure of the invention. The invention expands the side view of the heat dissipation structure feature of the stacked board structure. Figure 8 is a perspective view showing the heat dissipation structure of the expanded laminated board structure of the present invention. Figure 9 is a perspective view showing the structural features of the motherboard, the heat dissipation substrate, and the second expansion board of the present invention. The ninth round is a perspective view showing the structural features of the first expansion board, the heat dissipation substrate, and the second expansion board of the present invention. twenty one

板架構之散熱結構的 10A圖為應用本發明擴充疊 工業電腦組裝立體分解圖。 第10B圖為應用本發明擴充疊The 10A diagram of the heat dissipation structure of the board structure is an exploded view of the assembled industrial computer assembly using the present invention. Figure 10B is an application of the present invention to expand the stack

圖為應縣發明齡疊板架構之散熱結構的 工業電腦散熱殼體立體組合圖。 第12圖為應用本發明擴充#板_之散熱結構的工 業電腦疊加立體圖。 【主要元件符號說明】 11 印刷電路板 12 發熱元件 13 散熱鰭片 20 工業電腦 21 散熱外殼 211 固定元件 212 前蓋板 213 後蓋板 22 導熱塊 23 主機板 231 散熱鰭片 24 發熱元件 30 主機板 22 1339560 申請補充' 修正之曰期;99年12月30曰 31 第一發熱元件 32 第一擴充插槽 33 第三發熱元件 34 第二擴充插槽 40 第一擴充板 41 第二發熱元件 42 第一擴充匯流排 43 第四發熱元件 44 第三擴充插槽 50 吸熱基板 51 第一吸熱面 52 第二吸熱面 53 第一吸熱部 54 第二吸熱部 55 電子元件凹陷部 60 散熱板 61 散熱鰭片 70 第二擴充板 71 第五發熱元件 72 第二擴充匯流排 80 吸熱板 81 第一吸熱面 82 第二吸熱面 83 第三吸熱部 23 1339560 申請補充、修正之曰期;99年12月30曰 84 第四吸熱部 85 電子元件凹陷部 90 工業電腦 911 第一固定元件 912 第二固定元件 913 第三固定元件 92 外殼 93 配合孔 94 散熱殼體 95 散熱鰭片 24The picture shows a three-dimensional combination of industrial computer heat dissipation shells of the heat dissipation structure of the county-aged stacking structure. Fig. 12 is an enlarged perspective view of an industrial computer to which the heat dissipation structure of the #板_ is applied by the present invention. [Main component symbol description] 11 Printed circuit board 12 Heating element 13 Heat sink fin 20 Industrial computer 21 Heat sink housing 211 Fixing component 212 Front cover 213 Rear cover 22 Thermal block 23 Motherboard 231 Heat sink fins 24 Heat generating component 30 Motherboard 22 1339560 Application for supplemental 'Revision period; December 30, 31, first heating element 32, first expansion slot 33, third heating element 34, second expansion slot 40, first expansion board 41, second heating element 42 A expansion bus bar 43 fourth heating element 44 third expansion slot 50 heat absorption substrate 51 first heat absorption surface 52 second heat absorption surface 53 first heat absorption portion 54 second heat absorption portion 55 electronic component recess portion 60 heat dissipation plate 61 heat dissipation fin 70 second expansion board 71 fifth heating element 72 second expansion bus 80 heat absorption board 81 first heat absorption surface 82 second heat absorption surface 83 third heat absorption part 23 1339560 application for supplementary, revised period; December 30, 1999 84 Fourth heat sink 85 Electronic component recess 90 Industrial computer 911 First fixing component 912 Second fixing component 913 Third fixing component 92 Housing 9 3 mating holes 94 heat sink housing 95 heat sink fins 24

Claims (1)

申請補充、修正之曰期;99年丨2月30曰 十、申請專利範圍: 1. 一種触疊板賴讀熱_,該敍架構包含 -主機板及-第-擴充板,該主機板設有至少一第一 擴充插槽’該第-擴充板設有至少—第—擴充匯流 排’該些第-擴充匯流排電性連接於該些第一擴充插 槽,該主機板及該第一擴充板相向面設有至少一發熱 元件,該擴充疊板架構之散熱結構包含: 吸熱基板,該吸熱基板設有至少一第一固定元 件,透過該些第一固定元件將該主機板以及該第一擴 充板固定於該吸熱基板,並且使得該些發熱元件貼合 於該吸熱基板之吸熱面;及 至少一散熱板,該些散熱板自該吸熱基板所延伸 設置’並且該些散熱板延伸設置複數個散熱鰭片。 2. 如申請專利範圍第1項所述之擴充疊板架構之散熱結 構’其中該吸熱面更包含至少一吸熱部。 3. 如申請專利範圍第1項所述之擴充疊板架構之散熱結 構’其中該散熱板自該吸熱基板之一或二側面延伸, 以形成T形形狀或是Η形形狀。 4. 如申請專利範圍第1項所述之擴充疊板架構之散熱結 構,其中該些發熱元件設於該主機板與該第一擴充板 相向面上定義為第一發熱元件,該些發熱元件設於該 第一擴充板與該主機板相向面上定義為第二發熱元 件。 5. 如申請專利範圍第4項所述之擴充疊板架構之散熱結 25 1339560 申請補充、修正之日期;99年12月3〇日 構,其中該第一發熱元件貼合於該吸熱基板之吸熱面 定義為第一吸熱面,以及5玄第一發熱元件貼合於該吸 熱基板之吸熱面定義為第二吸熱面。 6. 如申請專利範圍第1項所述之擴充疊板架構之散熱結 構,其中該吸熱基板更包含設置至少一電子元件凹陷 部或至少一電子元件配合孔。 7. 如申請專利範圍第1項所述之擴充疊板架構之散熱結 構’其中該主機板更包含至少一第三發熱元件及至少 一第二擴充插槽,該些第三發熱元件及該些第二擴充 插槽設於該主機板與該第一擴充板相向面之另一面。 8. 如申請專利範圍第7項所述之擴充疊板架構之散熱結 構’其中該第一擴充板更包含至少一第四發熱元件及 至少一第三擴充插槽,該些第四發熱元件及該些第三 擴充插槽設於該第一擴充板與該主機板相向面之另一 面。 9. 如申請專利範圍第8項所述之擴充疊板架構之散熱結 構,其中更包含至少一吸熱板,該些吸熱板自該些散 熱板延伸’該些第三發熱元件貼合於該吸熱板之一第 三吸熱面。 10. 如申清專利範圍第9項所述之擴充疊板架構之散熱結 構’該些第四發熱元件貼合於該吸熱板之一第四吸熱 面。 11. =申請專鄕圍第1G項所狀擴充架構之散熱 、’Ό構’其中該些吸熱板更包含至少-第二固定元件, 26 1339560 申請補充、修正之曰期;99年12月30日 透過該些第二固定元件用以將該主機板或該第一擴充 板固定於該吸熱板。 12. 如申請專利範圍第11項所述之擴充疊板架構之散熱 結構,其中更包含一第二擴充板,該第二擴充板包含 至少一第二擴充匯流排,該些第二擴充匯流排電性連 接於該些第二擴充插槽或該些第三擴充插槽。 13. 如申請專利範圍第12項所述之擴充疊板架構之散熱 結構’其中該第二擴充板更包含至少一第五發熱元 件’該些第五發熱元件與該些第二擴充匯流排設於該 第二擴充板之同一面。 如申請專利範圍第13項所述之擴充疊板架構之散熱 結構’該些第五發熱元件貼合於該些吸熱板之一第四 吸熱面。 如申請專利範圍第12項所述之擴充疊板架構之散熱 結構,其中透過該些第二固定元件將該第二擴充板固 定於該吸熱板。 如申請專利範圍第1項所述之擴充疊板架構之散熱結 構’該些散熱板上下兩側更包含至少一第三固定元 件’用以將該擴充疊板架構之散熱結構進行疊加固定。 17.如申請專利範圍第1項所述之擴充疊板架構之散熱結 構’更包含至少一散熱殼體,透過該些第一固定元件 將該些散熱殼裡固定於該些散熱板。 如申請專利範圍第1項所述之擴充疊板架構之散熱結 構,其中該些散熱板以該吸熱基板為中心延伸設置, 27 1339560 申請補充、修正之日期;99年12月30曰 使得該吸熱基板位於散熱板之中間位置。 28The application period for supplementation and amendment; 99 years, February 30, 10, and the scope of application for patents: 1. A touch-up board reading heat _, the architecture includes - the motherboard and the - expansion board, the motherboard At least one first expansion slot, the first expansion board is provided with at least a first expansion bus, and the first expansion bus is electrically connected to the first expansion slots, the motherboard and the first The heat dissipating structure of the expansion board comprises: a heat absorbing substrate, wherein the heat absorbing substrate is provided with at least one first fixing component, and the motherboard and the first An expansion board is fixed to the heat absorbing substrate, and the heat generating components are attached to the heat absorbing surface of the heat absorbing substrate; and at least one heat dissipation plate extending from the heat absorbing substrate and extending the heat dissipation plates A plurality of heat sink fins. 2. The heat dissipation structure of the expansion stack structure of claim 1, wherein the heat absorption surface further comprises at least one heat absorption portion. 3. The heat dissipation structure of the expanded laminated structure according to claim 1, wherein the heat dissipation plate extends from one or both sides of the heat absorbing substrate to form a T shape or a dome shape. 4. The heat dissipation structure of the expansion stack structure according to the first aspect of the invention, wherein the heat generating components are disposed on the opposite surface of the motherboard and the first expansion board as first heat generating components, and the heat generating components The first expansion board and the surface of the motherboard are defined as second heating elements. 5. The heat-dissipating junction of the extended stacking structure described in the fourth paragraph of the patent application, No. 25 1339560, the date of application for supplementation and correction; the structure of the first heat-generating component attached to the heat-absorbing substrate The heat absorbing surface is defined as a first heat absorbing surface, and the heat absorbing surface of the fifth heat generating element attached to the heat absorbing substrate is defined as a second heat absorbing surface. 6. The heat dissipation structure of the expansion stack structure of claim 1, wherein the heat absorbing substrate further comprises at least one electronic component recess or at least one electronic component matching hole. 7. The heat dissipation structure of the expansion stack structure according to claim 1, wherein the motherboard further comprises at least one third heat generating component and at least one second expansion slot, the third heat generating component and the The second expansion slot is disposed on the other side of the motherboard opposite to the first expansion board. 8. The heat dissipation structure of the expansion stack structure according to claim 7, wherein the first expansion board further comprises at least a fourth heating element and at least a third expansion socket, and the fourth heating element and The third expansion slots are disposed on the other side of the first expansion board facing the motherboard. 9. The heat dissipation structure of the expansion stack structure according to claim 8 , further comprising at least one heat absorption plate extending from the heat dissipation plates, wherein the third heat generating elements are attached to the heat absorption layer One of the third heat absorption surfaces of the board. 10. The heat dissipation structure of the expansion stack structure as described in claim 9 is applied to the fourth heat absorption surface of one of the heat absorption plates. 11. = Apply for the heat dissipation of the expansion structure of the 1G item, where the heat sinks contain at least - the second fixed component, 26 1339560 application for supplement, amendment period; December 30, 1999 The second fixing component is used to fix the motherboard or the first expansion board to the heat absorbing plate. 12. The heat dissipation structure of the expansion stack structure of claim 11, further comprising a second expansion board, the second expansion board comprising at least one second expansion bus, the second expansion bus Electrically connected to the second expansion slots or the third expansion slots. 13. The heat dissipation structure of the expansion stack structure according to claim 12, wherein the second expansion board further comprises at least a fifth heating element, the fifth heating elements and the second expansion bus On the same side of the second expansion board. The heat dissipation structure of the expansion stack structure as described in claim 13 is applied to the fourth heat absorption surface of one of the heat absorption plates. The heat dissipation structure of the expansion stack structure according to claim 12, wherein the second expansion plate is fixed to the heat absorption plate through the second fixing members. The heat dissipation structure of the expansion stack structure as described in claim 1 further includes at least one third fixing element </ RTI> for superimposing and fixing the heat dissipation structure of the expansion stack structure. 17. The heat dissipation structure of the expansion stack structure of claim 1 further comprising at least one heat dissipation housing through which the heat dissipation housings are fixed. The heat dissipation structure of the expansion stack structure according to claim 1, wherein the heat dissipation plates are extended around the heat absorption substrate, and the date of application and supplementation is 27 1339560; the heat absorption is made on December 30, 1999. The substrate is located in the middle of the heat sink. 28
TW97131650A 2008-08-19 2008-08-19 Heat dissipation structure of expanded and laminated architecture TWI339560B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97131650A TWI339560B (en) 2008-08-19 2008-08-19 Heat dissipation structure of expanded and laminated architecture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97131650A TWI339560B (en) 2008-08-19 2008-08-19 Heat dissipation structure of expanded and laminated architecture

Publications (2)

Publication Number Publication Date
TW201010584A TW201010584A (en) 2010-03-01
TWI339560B true TWI339560B (en) 2011-03-21

Family

ID=44828231

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97131650A TWI339560B (en) 2008-08-19 2008-08-19 Heat dissipation structure of expanded and laminated architecture

Country Status (1)

Country Link
TW (1) TWI339560B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626523B (en) * 2013-05-23 2018-06-11 超眾科技股份有限公司 Portable electronic device with exposed heat dissipation structure
TWI774268B (en) * 2021-03-12 2022-08-11 啟碁科技股份有限公司 Electronic device

Also Published As

Publication number Publication date
TW201010584A (en) 2010-03-01

Similar Documents

Publication Publication Date Title
US7773378B2 (en) Heat-dissipating structure for expansion board architecture
TWM243912U (en) Heating dissipating device
US20100142154A1 (en) Thermally Dissipative Enclosure Having Shock Absorbing Properties
TWI465885B (en) Heat sink
JP2001119181A (en) Cooling unit for electronic component and electronic apparatus
TWM377062U (en) Electronic device with a heat insulating structure
TWM359141U (en) Connector assembly
JP2009212390A (en) Attachment structure of heating element mounted component
TWM285193U (en) Heat spreader
TW201204227A (en) Heat dissipation apparatus
TWI700025B (en) Multi-layer circuit board structure
TWI339560B (en) Heat dissipation structure of expanded and laminated architecture
WO2014140098A1 (en) Heat spreader with flat pipe cooling element
US20120085527A1 (en) Heat spreader with mechanically secured heat coupling element
TWM325532U (en) System module without fan for heat dissipation
TWI328736B (en) Radiation structure for processors
TWI503656B (en) Heat dissipating structure
JP2012129379A (en) Radiation fin
TW201439734A (en) Flat panel electronic device, auxiliary heat-dissipating means thereof and assembly of both
TWM242773U (en) Electronic card structure having heat sink device
JP2009295626A (en) Heat radiation structure of electronic device
TWM337966U (en) Flat plate heat sink
EP2180774B1 (en) Heat-dissipating structure for expansion board architecture
TWI298619B (en) Electronic devices and heat sink for preventing electromagnetic interference thereof
CN101661314B (en) Radiating structure for expanding laminated plate framework