TWI335664B - Semiconductor device including a floating gate memory cell with a superlattice channel and associated methods - Google Patents
Semiconductor device including a floating gate memory cell with a superlattice channel and associated methods Download PDFInfo
- Publication number
- TWI335664B TWI335664B TW096115983A TW96115983A TWI335664B TW I335664 B TWI335664 B TW I335664B TW 096115983 A TW096115983 A TW 096115983A TW 96115983 A TW96115983 A TW 96115983A TW I335664 B TWI335664 B TW I335664B
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor
- layer
- superlattice
- layers
- channel
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims description 83
- 238000000034 method Methods 0.000 title claims description 31
- 238000007667 floating Methods 0.000 title claims description 19
- 239000010410 layer Substances 0.000 claims description 113
- 239000002356 single layer Substances 0.000 claims description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 13
- 238000012986 modification Methods 0.000 claims description 9
- 230000004048 modification Effects 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- CSJDCSCTVDEHRN-UHFFFAOYSA-N methane;molecular oxygen Chemical compound C.O=O CSJDCSCTVDEHRN-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 description 36
- 210000004027 cell Anatomy 0.000 description 14
- 230000008569 process Effects 0.000 description 10
- 239000002800 charge carrier Substances 0.000 description 9
- 238000009413 insulation Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000000151 deposition Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000004575 stone Substances 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- 241000282320 Panthera leo Species 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000002052 molecular layer Substances 0.000 description 2
- 230000008450 motivation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 210000002858 crystal cell Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/788—Field effect transistors with field effect produced by an insulated gate with floating gate
- H01L29/7881—Programmable transistors with only two possible levels of programmation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/15—Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
- H01L29/151—Compositional structures
- H01L29/152—Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
- H01L29/155—Comprising only semiconductor materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42324—Gate electrodes for transistors with a floating gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66825—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
1335664 九、發明說明: 【發明所屬之技術領域】 本發明係有關於半導體之領域,且特別是有關於依據能帶工程 (energy band engineering)而具有增進特性之半導體及其相關方法。 【先前技術】 利用諸如增強電荷載體(charge carriers)之動性(mobility),以便增進 半導體元件性能之相關結構及技術,已多有人提出。例如,Currie等人 之美國專利申請第2003/0057416號案中揭示了矽,矽-鍺 (silicon-germanium),與釋力石夕(relaxed silicon),以及包括了原本將會導 致性能劣退的無雜質區(impurity-free zones)等的形變材質層(strained material layers)。其在上矽層中所形成的雙轴向形變㈨狀如stfain)改變 了載體的動性’並得以製作較高速與/或較低功率的元件。Fitzgerald等 人的美國專利申請公告第2003/0034529號案中則揭示了同樣亦以類似 的形變石夕技術(strained silicon technology)為基礎的一種CMOS反向器 (CMOS inverter) °1335664 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to the field of semiconductors, and more particularly to semiconductors having enhanced characteristics in accordance with energy band engineering and related methods. [Prior Art] Various structures and techniques for enhancing the performance of a semiconductor device, such as enhancing the mobility of a charge carrier, have been proposed. For example, U.S. Patent Application Serial No. 2003/0057416 to Currie et al. discloses the disclosure of silicon-germanium, and relaxed silicon, and includes those that would otherwise cause performance degradation. Strained material layers such as imperative-free zones. The biaxial deformation (nine) such as stfain formed in the upper layer changes the mobility of the carrier and enables the fabrication of higher speed and/or lower power components. A CMOS inverter based on a similar strained silicon technology is also disclosed in U.S. Patent Application Publication No. 2003/0034529 to Fitzgerald et al.
Takagi的第6,472,685 B2號美國專利中揭示了一種半導體元件,包 含有夾在矽層之間的一層矽及碳層,以使其第二矽層的傳導能帶 (conduction band)及鍵結能帶(vaience band)承受伸張形變(tensileU.S. Patent No. 6,472,685, issued to U.S. Pat. (vaience band) withstand tensile deformation (tensile
StFain)。具有較小等效質量(effective mass),並由施加於閘電極上的電 場所誘發的電子,便會被限制在其第二矽層内,因此即可假定其n通 道MOSFET得以具有較高的動性。StFain). An electron having a smaller effective mass and induced by an electric field applied to the gate electrode is confined in its second layer, so that an n-channel MOSFET can be assumed to have a higher Motivation.
Ishibashi等人的第4,937,204號美國專利中揭示了一種超晶格,其 中包含一整層的或部份層的雙元化合物c〇mp〇und)的半導體層 多層(少於八個單層(m〇n〇layer))結構’係交替地以蟲晶成長㈣ growth)的方切長喊。其㈣主電紐動方向係垂直於超晶格令的 各層平面。 s Wang等人的第5,357,119號美國專利中揭曱了 si Ge的一種短週期 超晶格(short period superlattice),利用減低超晶格中的合金散佈㈣〇y scattering),達成其較高的動性。依據類似的原理,Canddaria的美國第 5,683,943號專利中揭示了一種具增進動性之MOSFET,其通道層 5 (flannel layer)包括有矽之一種合金與第二種物質,此第二種速質係以 月b使通道層處於伸張應力(tensile stress)況態下的百分比而於矽晶格之 中替代性地出現。U.S. Patent No. 4,937,204 to the disclosure of U.S. Patent No. 4,937,,,,,,,,,,,,,,,,,,,,,,,, 〇n〇layer)) The structure 'sends alternately with the growth of the insect crystal (4) growth). The (4) main electric movement direction is perpendicular to the plane of each layer of the superlattice. A short period superlattice of si Ge is disclosed in U.S. Patent No. 5,357,119 to the disclosure of U.S. Patent No. 5,357,119, which is incorporated herein by reference. Motivation. In accordance with a similar principle, a MOSFET with enhanced mobility is disclosed in U.S. Patent No. 5,683,943, the entire disclosure of which is incorporated herein by reference. The channel layer is in the form of a percentage of tensile stress in the month b and instead appears alternately in the germanium lattice.
Tsu的第5,216,262破美國專利中揭示了 一種量子井(quantum well) 構造,其包含有兩個屏蔽區(banker regi〇n),以及夾於其間的一薄層的 磊晶長成半導體層。其每一屏蔽區各係由厚度範圍大致在二至六個交 疊SiCVSi之單層所構成。屏蔽區之間另亦夾有矽材質的一段遠為較厚 的段落。 2000年9月6日線上發行的應用物理及材料科學及製程(AppliedA quantum well structure is disclosed in U.S. Patent No. 5,216,262, the entire disclosure of which is incorporated herein by reference. Each of the shielded regions is composed of a single layer having a thickness ranging from approximately two to six overlapping SiCVSi. A section of the material that is too thick is also placed between the shielded areas. Applied Physics and Materials Science and Processes (Applied), published online September 6, 2000
Physics and Materials Science & Processing) pp. 391 _ 402 之中,Tsu 於一 篇通為碎質奈米構造元件中之現象」(“Phenomena in silicon nanostructure devices”)的文章之中揭示了矽及氧的一種半導體_原子超 晶格(semiconductor-atomic superlattice,SAS)。此 Si/O 超晶格構造被揭 露是為一種有用的石夕量子及發光元件。其中特別揭示了如何製作並測 试一種綠色電輝光二極體(electroluminescence diode)的結構。該二極體 結構中的電流流動方向是垂直的,亦即,垂直於SAS的層面。該文中 所揭示的SAS可以包含由諸如氧原子及C0分子等的被吸收雜質 (adsorbedspecies)所分離開的半導體層。在氧的此被吸收單層以外所長 成的梦’被描述是為磊晶層,並具有相當低的缺陷密度(defect density)。 其中的一種SAS結構包含有一個ι·ι nm厚度的石夕質部份,其係約為八 個原子層的矽,而其另一種結構中的矽質部份的厚度則有此厚度的兩 倍。物理評論通訊(Physics Review Letters),Vol. 89, No, 7 (2002 年 8 月 12日)中,Luo等人所發表的一篇題為「直接間隙發光碎之化學設計」 (“Chemical Design of Direct-Gap Light-Emitting Silicon”)的文章,更進一 步地討論了 Tsu的發光SAS構造。Physics and Materials Science & Processing) pp. 391 _ 402, Tsu in a "Phenomena in silicon nanostructure devices" article reveals helium and oxygen A semiconductor-atomic superlattice (SAS). This Si/O superlattice structure is revealed to be a useful Shixi quantum and luminescent element. In particular, it is disclosed how to fabricate and test the structure of a green electroluminescence diode. The direction of current flow in the diode structure is vertical, i.e., perpendicular to the level of the SAS. The SAS disclosed herein may comprise a semiconductor layer separated by adsorbed species such as oxygen atoms and C0 molecules. The dream that grows outside of this absorbed single layer of oxygen is described as an epitaxial layer and has a relatively low defect density. One of the SAS structures comprises a stone-like portion of a thickness of ι·ι nm, which is about eight atomic layers, and the thickness of the enamel portion of the other structure has two thicknesses. Times. Physics Review Letters, Vol. 89, No, 7 (August 12, 2002), published by Luo et al., entitled "Chemical Design of Direct Gap Light Fragmentation" ("Chemical Design of The article "Direct-Gap Light-Emitting Silicon") further discusses the luminescent SAS structure of Tsu.
Wang,Tsu及Lofgren等人的國際申請公報W0 02/1〇3 767 A1號案 中揭示了薄碎及氧’碳’ H,構,録,珅或氫的一種屏蔽建構區塊, 其可以將垂直流經晶格的電流減小超過四個十之次方冪次尺度(four orders of magnitude)。其絕緣層/屏蔽層可容許在鄰接著絕緣層之處所要 沉積的磊晶矽層中形成較少的缺陷。Wang, Tsu and Lofgren et al., International Application Bulletin No. WO 02/1〇3 767 A1, discloses a shielded construction block of thin and oxygen 'carbon' H, structure, recording, helium or hydrogen, which can The current flowing vertically through the crystal lattice is reduced by more than four ten orders of magnitude. The insulating/shielding layer allows for the formation of fewer defects in the epitaxial layer to be deposited adjacent to the insulating layer.
Mears等人的英國專利申請第2,347,520號案中揭示,非週期性光 子能帶間隙構造(aperiodic photonic band-gap, APBG)可應用於電子能帶 間隙^^lectronic bandgap engineering)之中。特別是,該申請案中揭 =,材料參數(materialparameters),例如,能帶最小值的位置,等效質 可Γ調節’以便獲致具有所要能帶結構特性的,新的 =期_料。其他的參數’諸如㈣執傳 導性伽恤conducti邮及介電係數(dielectrfc pen咖吻)或導磁係激 (magnetic permeability),皆被宣稱亦可能被設計於材料之中。 娜料1領域令已有相當努力’企圖增加半導體元件中電荷 辦進元件的有更大改進的需求。較高的電荷載體動性可以 ‘件括ίϊίΐ 件的功率消耗。若有較高的動性,則雖然 耕持續躺更小的元件尺絲進,其性能仍得以維持。 【發明内容】 基於前述背景’本發明之一目的即在於提供—種 苴 已括有具有相龍高電荷健·之—衫 ,、 靜上;目的:特徵及優點,依據本發明係由4導體元件所 更:定二3, 非揮發性記憶胞’記憶胞則包含有—超晶格通道。 -Τ >4人士 I Sx7°牛可包含一半導體底材’該至少一非揮發性纪慢胞 祕區4超晶格通道可在雜與没極ί之 二ϊ;;=Γί在半導體底材上,雜與没極區之間的複數 基底“體部份之複數?二通⑶ 導可r 動門ί至性記憶胞更可包括有相鄰機超晶格通道之一浮 至工-非i發性二:動閘極電極之:控制閘極。在-實施例中,該 第-絕緣層(例如°,二’?可包含有在浮動閘極與該控制閘極之間的--第二絕,im層氣化物層)。超晶格通道與浮動閘極之間亦可有 超晶^緣層,°與控·極之間亦可有一 ff有彳秘供鴻與控糊極之_垂直絕緣。 有比沒有於帶;故思=格通道之中可有一共同能帶結構,並且可以擁 i底半為較高的電荷載體動性。作為實例,每-_ 〃 °匕3有石夕與鍺之至少其中之-,且每-能帶修改 層各可包含有氧。此外,每一能帶修改層可各為一單一單層之厚度, 且每一基底半導體部份可各為少於八個單層之厚度。 又 超晶格通道更可具有一實質的直接能帶間隙,且盆亦可於一最頂 上層群組之上包含有一基底半導體蓋層。在一實施例之中,所有的基 底半導體部份T皆為相同數目單層之厚度。依據另—實施例,基底^ 導體部份其巾之至少某些可為不同數目單層之厚度^此外,每一能帶 f改層各可包含有由’例如,氧,氮,氟及碳·氧所組成之群組中所選 定之一非半導體。一接觸層亦可被包含於源極與汲極區之至少其中之 —之上。 、 本發明之另一要點係指向製作半導體元件之一種方法,其包括有 包含了一超晶格通道的至少一非揮發性記憶胞。更特定而言,、該方法 可^括利用形成分離之源極與汲極區,以及形成源極與汲極區之間之 超晶格通道,而形成至少一非揮發性記憶胞。超晶格通道可包含在半 導體底材上,源極與汲極區之間之複數個堆疊層群組。此外,超晶格 通道之ΐ一層群組各可包含有界定了一基底半導體部份之複數個堆疊 半導體單層,以及其上之一能帶修改層,再者,能帶修改層可包含有 被限定在相鄰基底半導體部份之一晶體晶格内的至少一非半導體單 層。 幵^成該至少一非揮發性記憶胞更可包含形成相鄰於該超晶格通道 之一洋動,極,與形成相鄰於該浮動閘極之一控制間極。在一實施例 之中’一第一絕緣層(例如,一層氧化物層)可被形成於浮動閘極與揸制 閘極之間。一第二絕緣層亦可被形成於超晶格通道與浮動閘極之間。 在另一實施例中,浮動閘極與控制閘極之間亦可有一超晶格絕緣層, 以便有利地提供閘極之間的垂直絕緣。 【實施方式】 配合本發明說明書所附圖式,後面的說明文字段落之中將詳細說 明本發明’而圖式之中所顯示的係為本發明之較佳實施例。不過,本 發,仍可崎彡鮮同轉式實地施行,目此本發明之範4當然不應 限定於圖式中所顯示之實施例上。相反的,此些實施例僅是被提供來 使本發明所揭示之發明内容更為完整詳盡,並得使習於本技藝者能夠 1335664 完全地瞭解本發明之範疇。在本發明的整篇說明文字之中,相同的圖 式參考標號係用以標示相同或相當的元件,而加撇符號 以標示不同實施例中的類似元件。 本發明係相關於在原子或分子的位階上控制半導體材料的特性, 以便達成半導體元件性能之增it。此外,本發明亦係有祕性能增進 材料的辮別,創造以及使用,以便將其應用於半導體元件之導電路徑 之中。 本發明案申請人所提之理論顯示,本發明此地所揭示描述的某些 超晶,構造,可以減小電荷載體的等效質量,並可由於此種減小而導 致電荷載體的較高動性,但申請人同時聲明本發明之範疇不應限定於 此理論上。本發明所屬技藝領域内的文獻之中,對於等效質量有多種 # 定義加以描述說明。作為等效質量上之增進的一種量測尺度,申請人 分別為電子及電洞分別使用「導電性反等效質量張量」(“conductivity reciprocal effective mass tensor”) Μ/1 及 Mh·1 的定義: Σ /(▽/(Μ)),(▽厚為煙 X; lf(E(k,n),EF,T)d\ E>Ejr b.Z. 為電子之定義,以及: • ' Σ f (Vt£(k,»)),.(Vt£(k,n)), ^E{Kn\EF,T)^ -ifte:_d±_ \{\-f{E^,n),EF,T))dlVi • E<Ef b.Z. 則為電洞之定義,其中,係為費米-狄拉克分佈(Fermi-Dirac distribution) ’ EF為費米能量(Fermi energy),Τ為温度,E(kjn)為電子在 對應於波向量k及第η個能帶的狀態之中的能量,下標i及j係指直交 座標X,y及z,積分係在布里羅因區(B.Z·,Brillouinzone)内進行,而 加總則是在電子及電洞的能帶分別高於及低於費米能量的能帶之中進 行。 申請人對導電性反等效質量張量之定義,係使得材料之導電性反 9 1335664 等效質量張量之對應分量中的較大數值者’其導電性的一張量分量 (tensorial component)亦得以較大些。在此申請人再度提起下二里 即此地所描述說明之超晶格所設定導電性反等效質量張量之數值_係 可增進材料的導電性質,諸如電荷載體傳輸的典型較佳方向之性質 不過’同樣地’申請人仍聲明本發明之範疇不應限定於此理論上= 當張量項數的倒數,在此#皮稱為是導電性等效質量。換句話說,若 描述半導體材料構造的特性,則前述電子/電洞的導電性等效質量,以 及在載體預疋要傳輸的;ίτ向上的計算結果,便可用來分辮出其功效已 有增進的該些材料。 應用刖述方式’可以為了特定目的而選擇具有增進能帶構造 料。這樣的-種龍是為_半導體元件通道區情使用的超晶格Μ之 材料。下硫合圖1首先包含有依據本侧之超晶格之— 性記憶元件2G。不過,f於本技藝者將可理解,此鱗獅 可應用於許多不同雜的半導體元件之中,諸如離散元件及/或積體電 路0 圖中所示之記憶胞20包括有形成於一底材21上之非揮發性記憶 胞。記憶胞被描繪為包括有淡摻雜之源極/沒極延伸區22,23, ^ 雜的源祝祕區26,27 ’以及由超晶格25所提供之其間之—通道區: 超晶格25的一些部份,當形成淡摻雜之源極/沒極延伸區22,23 ❿ 為清楚顯現起見’ ®帽讀線獅,而未被掺雜的部份 則^實線雜/祕金射化歸3。,31與雜^極接觸32, 33疊蓋了源極/汲極區26,27,如同習於本技藝者所可理解。 -=極結構35如圖所示,包括有相鄰於由超晶格25所提供之通 2二第-絕緣層36 ’以及在第—絕緣層之上的—浮動閘極”。間極 紹^包括有在浮動閘極37之上的一第二絕緣層38,以及在第二 之上的-控制閘極39。作為—實例,浮動及控制閘極37,39可 而第一及第二絕緣層%%則可為氧化物層(即,石夕氧化物 層)。為清楚說明起見,第-及第二絕緣層36,38在圖i十係以點線標 不之記憶胞2〇亦被顯示提供有側壁隔絕層40, 4卜以及在控制 閘極39上的—金財化物層34,如同習於本技藝者所可理解者。 笛一參考圖2以說明依據本發明另—實施例記憶元件2〇”,前述之 -及第二絕緣層36 ’ 38可由閘極結構35,,之中省略掉,而可以替代 10 使用超晶格25”的垂直絕緣特性。亦即,在此圖示說明之實例之中,浮 動閘極37”係直接形成於超晶格25”之上而不需絕緣(即‘,氧化物)層的 介入。如同以下所將進一步討論的,由於在此所說明的超晶格25”材料 不只在側向方向(即’源極/汲極區26”,27”之間)上提供了增進之動性, 其亦對垂直方向上的電流有利地發揮了一絕緣體的作用,故此種組構 是為可能的。 ,,同樣的,一第二超晶格絕緣層55”可被形成於浮動及控制閘極 37 ’ 39”之間,以提供其間的垂直絕緣。超晶格絕緣層55,,可為與超晶 格25”相同的組構,或者其可為不同的組構,其實例將於下面進一步討 論。當然,氧化物或其他的絕緣層,在此組構之中亦可被用來替代超 晶格絕緣層55” ’如同習於本技藝者所可理解者。 申凊人已分辮出可供記憶元件20之通道區使用的改良材料或結 構。更特定而言,申請人已分辮出一些材料或構造,其能帶結構之中, 電子與/或電洞之適當導電性等效質量,較之石夕的對應數值,乃是相當 低得多。 接著同時參考圖3及4’其中的材料或結構係屬超晶格25的形式, 其構造係在原子或分子的尺度上加以控制的,並可以利用習知的原子 或分子層沉積的技術(techniques of atomic or molecular layer deposition) 製作形成。超晶格25包括有以堆疊形式安排的多個層組(layergr〇ups) 45a-45η,由圖3中的示意橫截面圖即可以瞭解其堆疊關係。 超晶格25的每一個層組45a-45n,如圖所示包含有界定了 一個別 基底半導體部份(base semiconductor portion) 46a - 46η的多個堆疊基底 半導體草層(basesemiconductormonolayer)46,以及其上的一個能帶修 改層(energy-band modifying layer) 50。為了說明清楚之故,能帶修改層 50於圖3之中係以雜點加以標示。 乂 圖中之能帶修改層50包含有被限制於其鄰接基底半導體部份的晶 體晶格内的一個非半導體單層(non_semiconduct〇r m〇n〇iayer)。在其他 之實施例之中,多於一個的此種單層亦是可行的。應注意此地所稱之 非半導體或半導體單層,係指單層所使料材料,若以整體方式形成, 則是為一非半導體或半導體。亦即,諸如半導體的一材料的單一單層, 並不必然會顯現若其在一相對為厚的材料中以整體形態的方式形成時 相同的性質’如同習於本技藝者所可以理解的。 133.5664 申請人再度提起下述理論,但同樣地申請人仍聲明本發明之範疇 不應限定於此理論上,即能帶修改層5〇及其所鄰接之基底半導體部份 46a-46η ’會使超晶格25在平行於層面之方向上的電荷載體,較之無 此者,具有較低的適當導電性等效質量。考慮另一種方式,其中 此平行方向係與堆疊的方向直交。能帶修改層5〇亦可能使超晶格25 具有一般常見的能帶構造》 本發明之理論顯示,諸如圖示之記憶元件20之類的半導體元件, 基於較之-般者為低的導電性等效質量,亦可以享有I冑的電荷載體 ,性。在某些實施例之中,,亦由於本發明所達成的能帶工程成果,超 ,格25亦可以具有一個實質的直接能帶間隙,其對光電元件而言乃係 特別地適合,如同後面所將詳細說明的情形。A non-periodic photonic band-gap (APBG) can be applied to the electronic bandgap engineering, as disclosed in U.S. Patent Application Serial No. 2,347,520, the disclosure of which is incorporated herein by reference. In particular, the application discloses that the material parameters (for example, the position of the band with the minimum value, the equivalent quality can be adjusted to obtain a new = period material having the desired band structure characteristics. Other parameters, such as (4) the conduct of the conductor, the conductance and the dielectric coefficient (dielectrfc pen) or magnetic permeability, are all claimed to be designed into the material. The field of Nano 1 has made considerable efforts to increase the demand for more improved charge-in components in semiconductor components. Higher charge carrier kinetics can be used to include the power consumption of the device. If there is a high degree of kinetics, the performance is maintained even though the ploughing continues to lie smaller components. SUMMARY OF THE INVENTION Based on the foregoing background, one of the objects of the present invention is to provide a type of 苴 which has a high-charged body with a phase of a high-strength, a static, a purpose, a feature, and an advantage. According to the present invention, a 4-conductor is provided. The components are more: fixed two 3, non-volatile memory cells 'memory cells contain - superlattice channels. - Τ > 4 people I Sx7 ° cattle can contain a semiconductor substrate 'the at least one non-volatile slow cell secret zone 4 superlattice channel can be mixed with no ambiguity;; = Γί at the bottom of the semiconductor On the material, the complex base between the impurity and the immersion zone "the plural of the body part? The two-way (3) guide can be moved to the door. The memory can also include one of the adjacent superlattice channels." Non-i-second: the gate electrode: the control gate. In the embodiment, the first-insulation layer (for example, °, '' may include between the floating gate and the control gate - -Second, im layer vaporized layer). There may also be a super-crystal layer between the superlattice channel and the floating gate. There is also a ff between the ° and the control electrode. The pole is _ vertical insulation. There is no ratio than the belt; therefore, there can be a common energy band structure in the channel, and it can have a higher charge carrier dynamics. As an example, every -_ 〃 °匕3 There are at least one of Shi Xi and Yu, and each of the modified layers may contain oxygen. Further, each of the modified layers may each have a thickness of a single single layer, and each of the base semiconductor portions Each of the superlattice channels may have a substantial direct band gap, and the basin may also include a base semiconductor cap layer over a topmost layer group. In the embodiment, all of the base semiconductor portions T are of the same number of single layers. According to another embodiment, at least some of the base portions of the substrate may be different thicknesses of a single layer. Each of the energy-receiving layers may include a non-semiconductor selected from the group consisting of, for example, oxygen, nitrogen, fluorine, and carbon and oxygen. A contact layer may also be included in the source and drain regions. At least one of the above - another point of the present invention is directed to a method of fabricating a semiconductor device comprising at least one non-volatile memory cell comprising a superlattice channel. More specifically, The method may comprise forming a separated source and a drain region, and forming a superlattice channel between the source and the drain region to form at least one non-volatile memory cell. The superlattice channel may be included in the semiconductor bottom Material, between the source and the bungee a plurality of stacked layer groups. Further, each of the superlattice channels may comprise a plurality of stacked semiconductor monolayers defining a base semiconductor portion, and one of the upper layers of the modified layer, and The energy band modifying layer may include at least one non-semiconductor monolayer defined in a crystal lattice of one of the adjacent base semiconductor portions. The at least one non-volatile memory cell may further comprise adjacent to the super One of the lattice channels is oceanic, pole, and formed adjacent to one of the floating gates. In one embodiment, a first insulating layer (eg, an oxide layer) can be formed in the floating Between the gate and the gate, a second insulating layer may also be formed between the superlattice channel and the floating gate. In another embodiment, there may be a between the floating gate and the control gate Superlattice insulation to advantageously provide vertical insulation between the gates. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail in the following description of the accompanying drawings in which: FIG. However, the present invention can still be practiced in a sturdy manner, and the invention is of course not limited to the embodiment shown in the drawings. Rather, these embodiments are provided so that this disclosure will be thorough of the scope of the invention. Throughout the description of the present invention, the same drawing reference numerals are used to designate the same or equivalent elements, and the same reference numerals are used to identify similar elements in the different embodiments. The present invention relates to controlling the characteristics of a semiconductor material at the level of an atom or molecule in order to achieve an increase in the performance of the semiconductor element. In addition, the present invention is also directed to the identification, creation, and use of the property enhancing materials for use in the conductive paths of semiconductor components. The theory proposed by the Applicant of the present invention shows that certain supercrystals and structures disclosed herein can reduce the equivalent mass of the charge carriers and can cause higher movement of the charge carriers due to such reduction. Sex, but the applicant also states that the scope of the invention should not be limited to this theory. Among the documents in the art to which the present invention pertains, there are various definitions for equivalent quality. As a measure of the improvement in equivalent quality, the applicants respectively used "conductivity reciprocal effective mass tensor" Μ/1 and Mh·1 for electrons and holes. Definition: Σ /(▽/(Μ)), (▽ thickness is smoke X; lf(E(k,n), EF,T)d\ E>Ejr bZ is the definition of electrons, and: • ' Σ f ( Vt£(k,»)),.(Vt£(k,n)), ^E{Kn\EF,T)^ -ifte:_d±_ \{\-f{E^,n),EF, T)) dlVi • E<Ef bZ is the definition of the hole, where is the Fermi-Dirac distribution 'EF is Fermi energy, Τ is temperature, E(kjn ) is the energy of the electron in the state corresponding to the wave vector k and the nth band, the subscripts i and j refer to the orthogonal coordinates X, y and z, and the integral is in the Brillouin zone (BZ·, Brillouinzone) The process is carried out in the energy band of the electron and hole energy bands higher and lower than the Fermi energy. Applicant's definition of the conductivity inverse equivalent mass tensor is such that the conductivity of the material is greater than the larger value of the corresponding component of the equivalent mass tensor of the material's tensorial component of its conductivity. It can also be larger. The applicant hereby again mentions the value of the conductivity inverse equivalent mass tensor set by the superlattice described in the following two paragraphs, which can improve the conductive properties of the material, such as the typical preferred direction of charge carrier transport. However, the 'same applicant' still states that the scope of the invention should not be limited to this theory = when the reciprocal of the number of tensor items is referred to herein as the conductive equivalent mass. In other words, if the characteristics of the structure of the semiconductor material are described, the conductivity equivalent of the aforementioned electron/hole, and the calculation result of the carrier pre-distribution can be used to separate the effects. Enhance the materials. The application mode can be selected to have an enhanced energy band structure for a specific purpose. Such a kind of dragon is a material of the superlattice used for the semiconductor component channel region. Sulphurization Figure 1 first contains a memory element 2G based on the superlattice of this side. However, it will be understood by those skilled in the art that the lion can be applied to many different semiconductor components, such as discrete components and/or integrated circuits. The memory cell 20 shown in the figure includes a bottom formed thereon. Non-volatile memory cells on material 21. The memory cell is depicted as comprising a source region with a lightly doped source/dipole extension 22, 23, a source of impurities 26, 27' and a channel region provided by the superlattice 25: a supercrystal Some parts of the grid 25, when forming a lightly doped source/pole extension 22, 23 ❿ for the sake of clarity, the '® cap reading line lion, while the undoped part is ^ solid line / The secret gold is turned into 3. , 31 and the impurity contacts 32, 33 overlap the source/drain regions 26, 27, as will be understood by those skilled in the art. The -= pole structure 35, as shown, includes a pass-and-two-insulator layer 36' provided by the superlattice 25 and a floating gate above the first insulating layer. ^ includes a second insulating layer 38 over the floating gate 37, and a control gate 39 above the second. As an example, the floating and control gates 37, 39 can be first and second. The insulating layer %% may be an oxide layer (ie, a stone oxide layer). For the sake of clarity, the first and second insulating layers 36, 38 are in the form of a dotted line of memory cells 2 The crucible is also shown to be provided with sidewall insulating layers 40, 4b and a gold layer 34 on the control gate 39, as would be understood by those skilled in the art. Flute is described with reference to Figure 2 to illustrate another in accordance with the present invention. - Embodiment Memory Element 2", the aforementioned - and second insulating layer 36' 38 may be omitted from the gate structure 35, and may instead use 10 the vertical insulating property of the superlattice 25". In the illustrated example, the floating gate 37" is formed directly over the superlattice 25" without insulation (ie, ', oxide) layer Intervention. As will be discussed further below, the superlattice 25" material described herein provides enhanced motion not only in the lateral direction (ie, between the 'source/drain regions 26', 27'). This also makes it possible to exert an insulator effect on the current in the vertical direction, so this configuration is possible. Similarly, a second superlattice insulating layer 55" can be formed between the floating and control gates 37''" to provide vertical insulation therebetween. The superlattice insulating layer 55, may be the same structure as the superlattice 25", or it may be a different organization, examples of which will be discussed further below. Of course, an oxide or other insulating layer, here The fabric may also be used in place of the superlattice insulating layer 55"' as understood by those skilled in the art. The applicant has extracted the improved material or structure available for the channel region of the memory element 20. More specifically, the Applicant has delineated some materials or structures in which the appropriate conductivity equivalent mass of electrons and/or holes is relatively low compared to the corresponding value of Shi Xi. many. Referring now to Figures 3 and 4' simultaneously, the material or structure is in the form of a superlattice 25 whose structure is controlled at the atomic or molecular scale and which utilizes conventional atomic or molecular layer deposition techniques ( Techniques of atomic or molecular layer deposition) The superlattice 25 includes a plurality of layer stacks 45a-45n arranged in a stacked form, the stacking relationship of which can be understood from the schematic cross-sectional view in FIG. Each of the layers 45a-45n of the superlattice 25, as shown, includes a plurality of stacked base semiconductor layers 46 defining a plurality of base semiconductor portions 46a - 46n, and An energy-band modifying layer 50 is provided. For clarity of explanation, the band modification layer 50 is indicated by a dotted line in FIG. The band modification layer 50 in the figure includes a non-semiconductor monolayer (non-semiconduct〇r m〇n〇iayer) confined within the crystal lattice of the adjacent base semiconductor portion. Among other embodiments, more than one such single layer is also possible. It should be noted that what is referred to herein as a non-semiconductor or semiconductor monolayer refers to a single layer of material that, if formed in a holistic manner, is a non-semiconductor or semiconductor. That is, a single monolayer of a material such as a semiconductor does not necessarily exhibit the same properties as it would be formed in a relatively sturdy manner in a relatively thick material, as would be understood by those skilled in the art. 133.5664 The Applicant again mentions the following theory, but likewise the Applicant has stated that the scope of the invention should not be limited to the theory that the band-modified layer 5 and its adjacent base semiconductor portions 46a-46n' will The charge carriers of the superlattice 25 in a direction parallel to the layer have a lower proper conductivity equivalent quality than none of them. Consider another way where this parallel direction is orthogonal to the direction of the stack. The band modification layer 5 can also enable the superlattice 25 to have a generally common band structure. The theory of the present invention shows that a semiconductor element such as the illustrated memory element 20 is based on a lower conductivity. The equivalent mass can also enjoy the charge carrier of I胄. In some embodiments, also due to the energy band engineering achievements achieved by the present invention, the ultra-cell 25 may also have a substantial direct energy band gap, which is particularly suitable for the photovoltaic element, as behind The situation will be explained in detail.
如同習於本技藝者所可理解,記憶元件20之源極/沒極區22,23, ^ ’ 27及_結構35可被考量是為導致電荷紐以姆於堆疊群组 他的的各此層类=方向的傳輸而通過的區域。本發明同樣亦構思提 圖中亦顯示超晶格25包括有頂部層組45n之上的一個蓋 二yer) 52。蓋層52亦可包含多個的基底半導體單層46。蓋層52 ^ =至1GG個單層的基底半導體’且最佳應有⑴至%個單層。在前As will be appreciated by those skilled in the art, the source/no-polar regions 22, 23, ^ '27 and _ structures 35 of the memory element 20 can be considered to result in the charge Newcomer in the stacking group. Layer class = the area through which the direction passes. The invention also contemplates that the superlattice 25 is also shown to include a cover yer 52 above the top layer set 45n. The cap layer 52 can also include a plurality of base semiconductor monolayers 46. The cap layer 52 ^ = to 1GG single-layered base semiconductors ' and preferably should have (1) to % single layers. in front
中’浮動_37可利用形成蓋層52,,至所 摻雜至所需之摻雜質漠度而形成。同樣的,控 適當地控制超晶格絕緣層55’,之蓋層52,,的大小及“ 石夕及鍺其中之至少其_。 w干导額Τ包含,例如, 每-層的麟修改層50可以包含有由諸如氧,氮,氣, 組^中選定的一種非半導體(n〇n_semicondu咖)。非半導ιΐ 利用對接續的-層進行沉積以利製程的進行,而亦 =可 ,穩定性(them· stable)。在其他的實施 者所可以理解的,非半導體亦可為相容於特定半導體製 12 1335664 另-種域或有麟或化合物。更歡而言,基底半導 如,矽及鍺其中之至少其一·。 w 以;的是’單層一詞在此亦應包含單原子層㈣le伽恤layer) 以及早为子層(smgle m〇lecular layer)。另亦應注意的是, 該些能帶修改層5〇 ,亦應包含其層令並未完全填滿所有可能原 =置的·單層。例如’參考圖4,其中顯示了以砂作為基底半導體 材質,及以氧作為能帶修改材質的,一種4/1的 數的氧的可能位置被佔滿。 再把,、中”有丰 在其他的實施例之中及/或在不同的材質情況之下,如同 解的’其中並不必絲此種半佔滿的特定情況。即如同 圖中所顯現的,在-特料層之中,氧的個別原子並未 面=地排列,如同習於原子沉積之技藝者所可以理解的情形 一實例’-較佳的佔滿範圍是可能氧位置的由約人分之_至_ 置被^占據’雖然在某些特定實施例中可能可以應用其他的佔滿數值。 由於石夕及氧目前係被廣泛地應用於一般的半導體製程 商因此即得以使用本發明所描·方絲制此 =解=目ί:;泛r的技術。因此,如同習於 即得以立即而方舰應用本發明所揭示 請明之齡不應限定 好應為七廣或更少,以使超晶格的能帶在整體範圍内皆丘通或 更獲=要:優點。圖3及4中所顯示的4/1重覆構造, 二i 的㈣言具等向性)經計算過的導電性等 H 0超晶格則為0.12 ’其結果,兩者的比例 為0.46。同樣的’電洞方面輯算所縣果, 4/1,超晶格則為0.16,兩者比例為〇.44。 7的數值為㈣ 在取ϊ上的特⑽某些半導體元件而言可能有利,但 均句增加:則可能更為有利,習於本技藝者而言任== 性的同時增加’或只有其中一種電荷載體動挺的增加,亦皆可能有其 13 133.5664 好處。 超晶格25之4/1 Si/O實施例的較低導電性等效質量 超晶格者之導雜纽質量的三分之二之_轉低,錢情形= 子及電洞兩者而言皆然。當然,超晶格25其中更亦可以包含一^ 型態的導電性摻雜質(conductivitydop㈣,如同習於本技藝者所^ 解的。 迎 25, 考接著描述依據本發明具有不同性質的超晶格 的另一實施例。在此實綱之中,其重覆模式是為3/1/5/1 而吕’取底下的基底半導體部份46a,具有三個單層,而第二最底層 基底半導卿份4613’财五解層。此歡合模式在整個超晶格25, 之中重覆。每-能帶修改層5〇,則各可以包含—個單—的單層。就包含 了 Si/O的此種超晶格25,而言,其電荷紐祕的增進是與各声 ,二的ί向無關的。圖5之中在此未特別提及的其他構造部份係與前 述圖2中所討論者類似,故在此不再重覆討論。 、 在某些元件實施例之中,超晶格的所有基底半導體部份,产 可能為相同數目單層疊合的厚度。在其他的實施例之中,超晶格^ 少某些基底半導體部份,其厚度可能是為不同數目單層疊合之厚度。 在另外的實施例之中,超晶格的所有基底半導體部份,其厚度則$ 元全是為不同數目單層疊合之厚度。 ' 圖6A-6C顯示應用密度功能理論(Densily Functi〇nal巧 d 所計算職帶構造。本技藝巾所廣為f知岐,DF 於 能帶間_絕對值。嶋以上的所有能帶皆可·;^^^ 」Lsclssors correction”)加以偏移。不過,能帶的形狀則是公認 退較為可靠。縱軸的能帶尺度應在此等認知之下加以考量。 圖6^為習知技藝中之整體區塊石夕㈣,實線表示〕以及圖 雌不之4/1 Si/O超晶格(虛線),兩者由迦碼點⑹之處計算得之能 帶構造之鱗®。其抑触4/1 Si/Q結構之秘晶元㈣t响 而非Si的-般單位晶元,雖然圖中其(〇〇1)之方向係與&之一般單位晶 =的(001)方向符合,並因而顯示了 Si傳導能帶最小值的期待位置。圖 ^的(1〇〇)及(〇1〇)方向係與Si之一般單位晶元的⑽)及( ιι〇)方向符 :。習於本技藝者可以理解,圖中Si之能帶係以摺合方向顯示,以便 4/1 Si/O構造的適當反晶格方向(recipr〇cal触⑵此細咖)上表現出 14 來 圖中可以見至丨丨命 · 係位於迦碼點區塊矽相較之下,4/1 Si/0構造傳導能帶最小值 上,布里羅因區的邊缝’,:其鍵結能帶的最小值則是出現在_)方向 構造的傳魏帶最小點之處。^料職朗,4/1 Si/O 下,其較大的曲率率’與Si的傳導能帶最小值曲率比較之 之故。 ,、起因於額外氧層引入了擾亂所造成的能帶分離 線)技藝中之整體區塊石夕(實線)以及4/1 ’超晶格25(虛 _)方向上鍵結帶構造之蝴。_所顯示的是 整體區塊矽(實線)以及圖5中所顯示之 '傳導能帶最小值及臟 裳兮的增加是為等效質量減小的一個指標’但經由導電性反 咕人ί量Ϊ4的計算’仍可鱗行適#的比較及_。此使得本案申 的超晶格25’實肚應是為直接雜帶間隙。 本技藝者所可㈣解的,可供光學轉移(_altransition)的適 :矩陣早々matrix dement)7^直接關接能帶_行躺之的 另一種指標。 、現j同時參考圖7A-7E,以下將說明製作記憶元件2〇之方法。此 方法以提供石夕底材21作為開始。作為實例,其底材可為具<1〇〇>指向, 淡摻雜P型或N型單晶2卜_其他適合的紐亦可應 用。依據此一實例,一層超晶格25的材料接著便在底材21的整個上 表面之上形成。 更特定而言’超晶格25材料係利用原子層沉積而被沉積於底材21 的整個表面上,且遙晶石夕蓋層52亦被形成,如同先前所討論者,其表 面接著再被平坦化以達成圖7A之結構。應注意的是,在某些實施i列之 中’超晶格25材料可選擇性地沉積在通道所將形成的該些區域,而不 15 U3、5664 是涵蓋整_底材21,如同f於本技#者所可轉^此外,並非所有 實施例中皆需進行平坦化。 y磊晶矽蓋層52可具有較佳厚度以避免於閘極氧化物生長,或任何 後續氧練序期間超晶格的消耗,關時又可以财蓋層的厚度減低 或降,最低丄以減少與超晶格平行的任何導電路徑。就給定的氧化物 生長,序而言’依據眾所週知之下麵之約45%的消細係,石夕蓋層 52可此a大於所生長氧化物厚度的45%加上一個小增量以便涵蓋習於 本技藝者所習知之製程公差。就本發明而言,並且假定生長25埃 (angstrom)的閘極,便可選用大約13_15埃的矽蓋層厚度。 圖7B所顯示的是第一絕緣層閘極氧化物37,浮動閘極38,以及 形成之後的記憶元件2G。更特定而言,其執行了兩次閘極氧 ,物及夕4沉積的步驟,其後再進行成像及域侧以形成閑堆疊。 夕晶矽沉義指低壓化學氣相沉積(LpcvD, ’其將魏積於氧化物之上(其因此縣了多晶石夕材 :’二、,驟。3 了以P+或As·進行摻雜以使其導電,其後該層即約為, ^ 厚。側壁隔絕層4〇,41接著便可以在LDD成形之後亦 成^ ίΪί於超晶格25之上,如㈣於本賴者所可理解。 給思日了實ft例之中’第"'閘極絕緣層36可被省略掉’而超晶格絕 = 形成。這可以提供圖2帽顯示㈣-種間極 構w,如同習於本技藝者所可理解。 掉及f材21的某些部份在源極/沒極區中可以被去除 所可理解。如同相見朗,此轉亦會形成 利用盘‘、f ρ卩搞°雄\ ,其可為超晶格25提供下墊。超晶格25材料可 ΐ= ’氧,存在於超晶格25之中,超晶格仍可利用 ί si 劑來進行侧,除非氧的程度高到足以形 ί進 而非切所配製的侧劑,可能更容易 材21所二^Γμ二作法的適纽刻方式會依超晶格25及底 此,如同習於本技藝者所可理解。 次微男步驟)以及朵阳〇 ^包括執行一光阻旋塗,烘烤,曝光(即,一 微〜步驟)’从細之齡彡。通常,其轉倾轉_另-層(氧化 16 1335664 物或氮化物),其在蝕刻步驟之中是作為蝕刻遮罩之用。蝕刻的步驟典 型是為具材料針對性(例如,蝕刻矽比氧化物要快上十倍)的電漿蝕刻 (非等向性,乾蝕刻),並將微影圖像轉移進入所要的材料之中。 參考圖7C,淡摻雜源極及汲極(“LDD,” lightly_d〇ped s〇urce細 drain)延伸22 ’ 23,利用n型或p型的LDD植入,回火,以及清洗即 可,成。在LDD植入之前或之後,可能可以使用一次回火步驟,但依 特定製程而定,其亦可能可以省略掉。清洗的步驟是為—次化學银刻, 其係用以在沉積一層氧化物層之前移除金屬及有機物。 源極與没極區26,27的植入係顯示於圖7D之中。一別〇2層先被 =積。適當的N型或P型軒植人觀絲成祕與汲極區 g二此結構接著再予回火並清洗。接著可以執行自動對準金屬矽 化物的成形以形成金屬石夕化物層3〇,31及34,而源極/雌接觸%, 33^被形成峨供圖丨麵示的最終半導體元件2()。金屬雜物的形 f〇為金屬石夕化物化㈣祕㈣。金屬石夕化物化製程包括金屬的 讀(例如T!),氮氣回火,金屬钱刻,以及一第二次的回火。 當然,前面說明僅是本發明所可能使用的一種製程及元件的一個 f φ & ϊί技藝者將可瞭解其_並將之仙在料其他製程及元 Ϊ ί竇及元件之中,本發明之結構可以在—晶圓的局 二晶圓之上形成。此外,在某些實_之中,形 曰格25時,原子層沉積工具的使用可能並不必要。例如, 之控制的製程條件之下’利用-cv〇工具“ 成,如同習於本技藝者所可理解。 描-藝者在瞭解了本案於前述說败字及關所描述的發明 =内合的情況之下,當可推知瞭解針對本發_許多修改變動以及 ίίΪΞΪίΪ例作法。因此’應予瞭觸是,本發明之财不應限 本發例的翻,其他的修改變動及其他實施例仍應是屬 【圖式簡單說明】 圖1為依據本發明,包含有呈一招曰这db -te 2Sr IJ. 導體元件之橫截面示意^ ^格非揮發性記憶:胞之一半 圓2為圖1半導體元件另—實施例之賊面示意圖。 17 1335664 圖3為圖1中所顯示超晶格之大比例放大橫截面圖。 圖4之^體圖顯示圖1中超晶格之一部份之原子結構。 應用於®1之元件之超晶格另—實施例之大比 圖6Α為習知技藝中之整體區塊矽以及圖1 - 3中所顯示之4/1 迦碼點(g)之處計算得之能帶構造之曲線圖。 4/1 圖 6C 為習: s^/〇 z f 7今-7D為一系列示意橫截面圖’其說明製作圓丨半導體元件之The 'float _37 can be formed by forming the cap layer 52 to dope to the desired doping gradient. Similarly, the control appropriately controls the superlattice insulating layer 55', the size of the cap layer 52, and the "Shi Xi and 锗 at least its _. w dry derivation Τ contains, for example, per-layer lining modification The layer 50 may comprise a non-semiconductor (n〇n_semicondu coffee) selected from the group consisting of oxygen, nitrogen, gas, etc. The non-semiconducting ITO is deposited by successive layers to facilitate the process, and also = Stability (them·stable). As can be understood by other implementers, the non-semiconductor can also be compatible with a specific semiconductor system 12 1335664 another species or a lining or compound. For example, 矽 and 锗 at least one of them. w; the word 'single layer should also include the monoatomic layer (4) le gamma layer) and the early smgle m〇lecular layer. It should be noted that the band modification layer 5〇 should also include a layer that does not completely fill all possible original layers. For example, 'refer to FIG. 4, which shows sand as a base semiconductor material. And using oxygen as the energy band to modify the material, a 4/1 number of possible positions of oxygen is Full. ,, then the "abundance of the specific case in other embodiments and / or materials under different circumstances, as Solution 'wherein the wire does not have to fill half of this. That is, as shown in the figure, in the special layer, the individual atoms of oxygen are not arranged in the surface, as in the case of the artisan who can understand the example of the atomic deposition. It is possible that the position of the oxygen is divided by the occupant's _ _ _ _ _ _ while other specific values may be applied in some specific embodiments. Since Shixi and Oxygen are currently widely used in general semiconductor process manufacturers, it is possible to use the technique described in the present invention to solve the problem. Therefore, as soon as the application is ready, the invention can be applied to the invention. The age of the invention should not be limited to seven or less, so that the energy band of the superlattice is all over the whole range or more = To: advantage. The 4/1 repeating structure shown in Figs. 3 and 4, the (i) (is) isotropic of the second i), the calculated H 0 superlattice of conductivity, etc. is 0.12', and the ratio of the two is 0.46. . The same 'holes' calculation of the county, 4/1, superlattice is 0.16, the ratio of the two is 〇.44. The value of 7 is (iv) may be advantageous in some (10) certain semiconductor components on the ϊ, but the increase in the average sentence may be more advantageous, as the skilled person would add == sex while increasing 'or only An increase in the dynamic charge of a charge carrier may also have its 13 133.5664 benefits. The lower conductivity of the 4/1 Si/O embodiment of the superlattice 25 is less than two-thirds of the quality of the conductivity of the superlattice of the superlattice, the money case = both the sub-hole and the hole All right. Of course, the superlattice 25 may further comprise a conductive doping (conductivitydop), as is well known to those skilled in the art. Ying 25, and then describe a supercrystal having different properties according to the present invention. Another embodiment of the cell. In this embodiment, the repeat mode is 3/1/5/1 and the underlying base semiconductor portion 46a has three single layers and the second lowest layer. The base semi-conductor is 4613's five-layer solution. This mode of rejoicing is repeated throughout the superlattice 25. Each layer of modified band 5 can contain a single-single layer. In the case of such a superlattice 25 containing Si/O, the enhancement of the charge timbre is independent of the sounds of the sounds, and the other structural parts not specifically mentioned in FIG. Similar to those discussed above in Figure 2, and therefore will not be discussed again. In some of the component embodiments, all of the base semiconductor portions of the superlattice may be of the same number of monolithic thicknesses. In other embodiments, the superlattice is less than some of the base semiconductor portions, and the thickness may be a different number The thickness of the overlap. In other embodiments, all of the base semiconductor portions of the superlattice have a thickness of $1 for a different number of monolithic laminates. 'Figures 6A-6C show the theory of applied density function ( Densily Functi〇nal is the calculated structure of the belt. This technique is widely known as FF, and DF is between the energy bands _ absolute value. All the above bands can be used; ^^^ "Lsclssors correction") Offset. However, the shape of the band is recognized as more reliable. The band scale of the vertical axis should be considered under such cognition. Figure 6 is the overall block of the prior art (4), solid line Indicates the 4/1 Si/O superlattice (dashed line) of the figure, and the scale of the energy band structure calculated by the point of the code point (6). It suppresses the 4/1 Si/Q structure. The crystal cell (4) t-ratio rather than the Si-like unit cell, although the direction of the (〇〇1) in the figure is consistent with the (001) direction of the general unit crystal of & and thus shows the Si conduction band. The expected position of the minimum value. The (1〇〇) and (〇1〇) directions of the figure ^ are in the (10)) and ( ιι〇) direction of the general unit cell of Si: It will be understood by those skilled in the art that the energy band of Si in the figure is displayed in a folded direction so that the appropriate anti-lattice direction of the 4/1 Si/O structure (recipr〇cal touch (2) this fine coffee) is shown in the figure. It can be seen that the command line is located in the block of the code point, the minimum of the 4/1 Si/0 structure conduction band, the edge of the Brilon zone, and the bond band The minimum value is the minimum point of the propagation of the Wei-band in the _) direction. ^Material, 4/1 Si/O, the larger curvature rate' is compared with the minimum curvature of the conduction band of Si For the sake of it. , due to the extra oxygen layer introduced by the disruption caused by the energy band separation line) in the overall block of the stone (solid line) and 4/1 'superlattice 25 (virtual_) direction bonding band structure butterfly. _ shows that the overall block 矽 (solid line) and the increase in the conduction band minimum and the dirty 兮 显示 shown in Figure 5 are an indicator of the equivalent mass reduction, but via conductivity The calculation of ί Ϊ 4 can still be compared with _. This makes the superlattice 25' of the present application should be a direct hybrid gap. The skill of the artist can (4) solve the problem of optical transfer (_altransition): matrix early matrior dement) 7^ directly close the band to _ line lying another indicator. Now, referring to FIGS. 7A-7E at the same time, a method of fabricating the memory element 2A will be described below. This method begins with the provision of a stone substrate 21 . As an example, the substrate may be a <1〇〇> pointing, a lightly doped P-type or an N-type single crystal 2 other suitable neonates may also be used. According to this example, a layer of superlattice 25 material is then formed over the entire upper surface of the substrate 21. More specifically, the 'superlattice 25 material is deposited on the entire surface of the substrate 21 by atomic layer deposition, and the telecrystalline capping layer 52 is also formed. As previously discussed, the surface is subsequently Planarization to achieve the structure of Figure 7A. It should be noted that in some implementations, the 'superlattice 25 material can be selectively deposited in the regions where the channels will be formed, while 15 U3, 5664 is the entire substrate 21, as is f. In addition, it is not necessary to perform flattening in all of the embodiments. The y-deposited cap layer 52 may have a preferred thickness to avoid the growth of the gate oxide, or the consumption of the superlattice during any subsequent oxygen training, and the thickness of the cap layer may be reduced or decreased at the time of closing, the lowest Reduce any conductive paths parallel to the superlattice. For a given oxide growth, in order to follow the well-known following about 45% of the fines, the axillary layer 52 can be greater than 45% of the thickness of the grown oxide plus a small increment to cover Process tolerances as known to those skilled in the art. For the purposes of the present invention, and assuming an angstrom gate, a thickness of the crucible layer of about 13-15 angstroms can be selected. Shown in Fig. 7B is a first insulating layer gate oxide 37, a floating gate 38, and a memory element 2G after formation. More specifically, it performs two steps of gate oxygen, material and eve 4 deposition, followed by imaging and domain side to form a free stack. Xijing 矽 Shenyi refers to low-pressure chemical vapor deposition (LpcvD, 'which will be deposited on the oxide (which is therefore the county of polycrystalline stone: 'II, s. 3) mixed with P+ or As· Miscellaneous to make it conductive, after which the layer is approximately ^ thick. The sidewall insulating layer 4, 41 can then be formed on the superlattice 25 after the LDD is formed, as in (4) in the Lai It is understandable. In the case of the real ft, the 'th" 'gate insulating layer 36 can be omitted' and the superlattice is absolutely formed. This can provide the cap of Figure 2 (four) - the inter-species configuration w, As can be understood by those skilled in the art, it is understandable that some parts of the falling material 21 can be removed in the source/polar region. As seen, this turn will also be formed using the disk ', f卩 卩 ° ° male \ , which can provide the underlying pad for the superlattice 25 . Superlattice 25 material can be ΐ = 'oxygen, present in the superlattice 25, the superlattice can still use the ί si agent to carry out the side Unless the degree of oxygen is high enough to form a side agent that is not cut, it may be easier to use the second method of the second method, which will depend on the superlattice 25 and the bottom. It will be understood by those skilled in the art. The sub-microman step) and the Dou Yang 〇^ include performing a photoresist spin coating, baking, and exposure (ie, a micro-step) from a fine age. Usually, it is tilted. _ another layer (oxidation 16 1335664 or nitride), which is used as an etch mask during the etching step. The etching step is typically material-specific (for example, etching 矽 is faster than oxide) Plasma etching (non-isotropic, dry etching) and transfer of the lithographic image into the desired material. Referring to Figure 7C, the lightly doped source and drain ("LDD," lightly_d〇ped S〇urce fine drain) extends 22 ' 23, using n-type or p-type LDD implantation, tempering, and cleaning. It may be possible to use a tempering step before or after LDD implantation, but Depending on the specific process, it may also be omitted. The cleaning step is a chemical etching, which is used to remove metals and organics before depositing an oxide layer. Source and immersion areas 26, 27. The implant system is shown in Figure 7D. A different layer of 2 is first = product. Appropriate N-type or P-type The structure of the wire and the bungee region g2, the structure is then tempered and cleaned. Then, the automatic alignment of the metal halide can be performed to form the metallization layer 3, 31 and 34, and the source / The female contact %, 33^ is formed into the final semiconductor element 2() shown in Fig. 3. The shape of the metal impurity is the metal crystallization (4) secret (4). The metal crystallization process includes metal reading ( For example, T!), nitrogen tempering, metal money engraving, and a second tempering. Of course, the foregoing description is only one of the processes and components that may be used in the present invention, and a f φ & The structure of the present invention can be formed on the wafer-to-wafer wafer in other processes and in the sinus and components. In addition, in some real cases, the use of atomic layer deposition tools may not be necessary. For example, under the control of the process conditions, 'use the -cv〇 tool', as can be understood by those skilled in the art. The artist-in-law understands the invention described in the above-mentioned words and deeds. In the circumstances, it can be inferred that there are many changes to the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Still referred to as a simple description of the drawings. Fig. 1 is a schematic diagram of a cross section of a db-te 2Sr IJ. conductor element in accordance with the present invention. Figure 1 is a schematic view of a thief surface of another embodiment of the semiconductor device. 17 1335664 Figure 3 is a large scale enlarged cross-sectional view of the superlattice shown in Figure 1. Figure 4 is a partial view of the superlattice of Figure 1. The atomic structure is applied to the superlattice of the element of the ®1. The larger than the embodiment, Fig. 6 is the overall block in the prior art, and the 4/1 ga code point shown in Fig. 1-3. The calculated curve of the energy band structure. 4/1 Figure 6C is the ha: s^/〇zf 7 -7D is a series of schematic cross-sectional views illustrating the fabrication of a round germanium semiconductor component
【主要元件符號說明】[Main component symbol description]
20 非揮發性記憶元件/記憶胞 20” 記憶元件 21 底材/層 22 源極 23 汲極延伸區 24 下墊部份 25、25,、25,: 超晶格 26、26” 源極 27'27,5 沒極區 30 源極 31 汲極金屬矽化物層 32 源極 33 汲極接觸 34 金屬矽化物層 35 ' 35” 閘極結構 36 第一絕緣層 37、37” 浮動閘極 38 第二絕緣層 39、39” 控制閘極 40'41 侧壁隔絕層 45η 頂部層組 45a-45n 堆疊群組 46 半導體單層 18 133-5664 46a’、46b’ 50、50, 52、52,, 55” 、46a-46n基底半導體部份 能帶修改層 蓋層 超晶格絕緣層20 Non-volatile memory element/memory cell 20” Memory element 21 Substrate/layer 22 Source 23 Tungsten extension 24 Under pad part 25, 25, 25,: Superlattice 26, 26” Source 27' 27,5 No-pole region 30 Source 31 Deuterium metal telluride layer 32 Source 33 Deuterium contact 34 Metal telluride layer 35 ' 35" Gate structure 36 First insulating layer 37, 37" Floating gate 38 Second Insulation layer 39, 39" control gate 40'41 sidewall isolation layer 45n top layer group 45a-45n stack group 46 semiconductor single layer 18 133-5664 46a', 46b' 50, 50, 52, 52, 55" , 46a-46n base semiconductor part with modified layer cover superlattice insulation
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/381,794 US20060263980A1 (en) | 2003-06-26 | 2006-05-05 | Method for making a semiconductor device including a floating gate memory cell with a superlattice channel |
US11/381,787 US7659539B2 (en) | 2003-06-26 | 2006-05-05 | Semiconductor device including a floating gate memory cell with a superlattice channel |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200807699A TW200807699A (en) | 2008-02-01 |
TWI335664B true TWI335664B (en) | 2011-01-01 |
Family
ID=38480514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096115983A TWI335664B (en) | 2006-05-05 | 2007-05-04 | Semiconductor device including a floating gate memory cell with a superlattice channel and associated methods |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2016624A1 (en) |
JP (1) | JP2009536463A (en) |
AU (1) | AU2007247953A1 (en) |
CA (1) | CA2650809A1 (en) |
TW (1) | TWI335664B (en) |
WO (1) | WO2007131117A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10879356B2 (en) | 2018-03-08 | 2020-12-29 | Atomera Incorporated | Method for making a semiconductor device including enhanced contact structures having a superlattice |
CN113838911B (en) * | 2021-08-31 | 2023-03-21 | 电子科技大学 | FinFET integrated circuit basic unit |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2709374B2 (en) * | 1986-10-08 | 1998-02-04 | 株式会社 半導体エネルギー研究所 | Insulated gate field effect semiconductor device |
JPH09219459A (en) * | 1996-02-13 | 1997-08-19 | Toshiba Corp | Non-volatile semiconductor memory device and manufacture thereof |
US6060723A (en) * | 1997-07-18 | 2000-05-09 | Hitachi, Ltd. | Controllable conduction device |
DE10158018A1 (en) * | 2001-11-27 | 2003-06-12 | Infineon Technologies Ag | Layer arrangement and method for operating a layer arrangement as data storage |
JP3840207B2 (en) * | 2002-09-30 | 2006-11-01 | 株式会社東芝 | Insulating film and electronic device |
AU2004300982B2 (en) * | 2003-06-26 | 2007-10-25 | Mears Technologies, Inc. | Semiconductor device including MOSFET having band-engineered superlattice |
US6830964B1 (en) * | 2003-06-26 | 2004-12-14 | Rj Mears, Llc | Method for making semiconductor device including band-engineered superlattice |
KR100539158B1 (en) * | 2004-04-20 | 2005-12-26 | 주식회사 하이닉스반도체 | Method for forming dielectric layer of inter gates of flash memory device |
-
2007
- 2007-05-03 EP EP07761833A patent/EP2016624A1/en not_active Withdrawn
- 2007-05-03 AU AU2007247953A patent/AU2007247953A1/en not_active Abandoned
- 2007-05-03 WO PCT/US2007/068155 patent/WO2007131117A1/en active Application Filing
- 2007-05-03 CA CA002650809A patent/CA2650809A1/en not_active Abandoned
- 2007-05-03 JP JP2009510077A patent/JP2009536463A/en active Pending
- 2007-05-04 TW TW096115983A patent/TWI335664B/en active
Also Published As
Publication number | Publication date |
---|---|
WO2007131117A1 (en) | 2007-11-15 |
AU2007247953A1 (en) | 2007-11-15 |
CA2650809A1 (en) | 2007-11-15 |
TW200807699A (en) | 2008-02-01 |
JP2009536463A (en) | 2009-10-08 |
EP2016624A1 (en) | 2009-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI309085B (en) | Method for making a semiconductor device including band-engineered superlattice using intermediate annealing | |
TWI648855B (en) | Semiconductor component including resonant tunneling diode structure with electron mean free path control layer and related method | |
TWI734093B (en) | Device and method for making an inverted t channel field effect transistor (itfet) including a superlattice | |
TWI694613B (en) | Semiconductor device and method including vertically integrated optical and electronic devices and comprising a superlattice | |
US7446002B2 (en) | Method for making a semiconductor device comprising a superlattice dielectric interface layer | |
TWI297530B (en) | Method for making a semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction | |
TWI360185B (en) | Semiconductor device including a metal-to-semicond | |
US20190279868A1 (en) | Semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice | |
TW201725609A (en) | Methods for making a semiconductor device including atomic layer structures using N2O as an oxygen source | |
EP1902472B1 (en) | Semiconductor device comprising a superlattice dielectric interface layer | |
JP2011044727A (en) | Method of making semiconductor device | |
TWI335664B (en) | Semiconductor device including a floating gate memory cell with a superlattice channel and associated methods | |
TWI311373B (en) | Method for making a semiconductor device having a semiconductor-on-insulator (soi) configuration and including a superlattice on a thin semiconductor layer | |
Bernard et al. | Multi-channel field-effect transistor (MCFET)—Part I: Electrical performance and current gain analysis | |
TWI720587B (en) | Method and device for making superlattice structures with reduced defect densities | |
Bernard et al. | Multi-Channel Field-Effect Transistor (MCFET)—Part II: Analysis of Gate Stack and Series Resistance Influence on the MCFET Performance | |
Stepina et al. | Pulsed ion-beam induced nucleation and growth of Ge nanocrystals on SiO2 | |
Striemer et al. | The development of nanocrystalline silicon for emerging microelectronic and nanoelectronic applications | |
US20240322025A1 (en) | Nanostructure transistors with flush source/drain dopant blocking structures including a superlattice | |
TWI239647B (en) | Semiconductor device including band-engineered superlattice | |
JP2018032662A (en) | Diamond contact structure and electronic element using the same | |
Ecoffey | Ultra-thin nanograin polysilicon devices for hybrid CMOS-NANO integrated circuits | |
Banerjee | New materials and structures for transistors based on spin, charge and wavefunction phase control | |
Bonnaud et al. | Vertical Conduction in the New Field Effect Transistors: p-Type and n-Type Vertical Channel Thin Film Transistors | |
Bonnaud | Vertical Channel Thin Film Transistor Technology: Similar Approach with 3D-ULSI Monolithic Technology |