TWI328052B - Electrolyte and method for depositing tin-bismuth alloy layers - Google Patents

Electrolyte and method for depositing tin-bismuth alloy layers Download PDF

Info

Publication number
TWI328052B
TWI328052B TW095113052A TW95113052A TWI328052B TW I328052 B TWI328052 B TW I328052B TW 095113052 A TW095113052 A TW 095113052A TW 95113052 A TW95113052 A TW 95113052A TW I328052 B TWI328052 B TW I328052B
Authority
TW
Taiwan
Prior art keywords
electrolyte
tin
concentration
thiadiazole
coating
Prior art date
Application number
TW095113052A
Other languages
Chinese (zh)
Other versions
TW200643231A (en
Inventor
Manfred Jordan
Original Assignee
Schlotter Gmbh & Co Kg Max Dr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlotter Gmbh & Co Kg Max Dr filed Critical Schlotter Gmbh & Co Kg Max Dr
Publication of TW200643231A publication Critical patent/TW200643231A/en
Application granted granted Critical
Publication of TWI328052B publication Critical patent/TWI328052B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin

Description

九、發明說明: 【發明所屬之技術領域】 —種使用此電解質之方法,使用該方法獲得之塗層及該電 解質用於塗佈電子組件之用途。 【先前技術】IX. Description of the invention: [Technical field to which the invention pertains] A method of using the electrolyte, a coating obtained by the method, and the use of the electrolyte for coating an electronic component. [Prior Art]

製造電學及電子總成經常需要使用含有(出於功能原因) 具有電解沈積之錫-錯層之塗層的組件。即使在相當長之 儲存期後,此等塗層仍4保該等組件可容易地加以軟谭。 然而i電學及電子設備之製造中使用則起每當將此設 備儲存於廢料堆上時料境污染之風險。腐#處理能使焊 接點之錯轉化為水溶性形式,㈣最終造成地下水污染。 因此自2006年7月1日,歐洲聯盟指令將不再准許(除少數 例外)使用含鉛焊料及電解沈積錫制⑽3年丨㈣日歐Manufacturing electrical and electronic assemblies often requires the use of components containing (for functional reasons) coatings with electrolytically deposited tin-stagger layers. Even after a relatively long shelf life, these coatings ensure that the components can be easily softened. However, the use of i electrical and electronic equipment is the risk of contamination of the material whenever the equipment is stored on a waste heap. The treatment of rot # can convert the fault of the solder joint into a water-soluble form, and (4) eventually cause groundwater pollution. Therefore, as of July 1, 2006, the European Union Directive will no longer permit (with a few exceptions) the use of lead-containing solder and electrolytically deposited tin (10) 3 years 四 (4)

本發明係關於一種用於沈積錫·鉍合金之酸性電解質 洲議會和歐盟理事會關於電學及電子設備令某些有害物質 之使用限制的2002/95/EC號指令)。 甘饿狻電解沈積 _ ’ -V …▲里虿 y〇 之 Uu)、 =叫重量。之Ag)或錫叫4重量%之叫之錫合金層作 :替代塗層。以處理而言,純锡塗層為簡易技術,因而為 錫7層之經濟替代品的首選。但是不能完全排除之鬚晶 形成之風險為其缺點。鬚晶界 。。s 介疋為錫之針形單晶體《該等 早的體通常具有幾微米 冷丄^ 但可達到若干毫米之長 度。由電子組件小型化之發展 道之發展步伐,鬚晶形成可導致鄰近 导¥,.且件短路。此可導致電學 次電子s又備發生故障而造成 I09703.doc 1328052 相當大之經濟損失。 錫層中之鬚晶形成可藉由共沈積極少量之另一種金屬加 以預防。此處已證實共沈積少量之鉛(至少3重量%)為有效 . 之處理。然而如上文所解釋,此共沈積僅允許少量應用。 此外,已證實沈積含有約2-4重量。/。之鉍之錫_鉍合金為 另一避免鬚晶之可靠方法。較高量之鉍係不利的,因為此 沈積層之延展性降低,因而引起若電子組件之插腳機械地 φ 工作則塗層中將有出現裂痕之風險。因而,該沈積層之特 性諸如易於焊接及抗腐蝕之價值下降。若共沈積少於2重 量0/〇之Bi ’則不能完全排除鬚晶形成。 在電子組件之製造中已使用適當之用於沈積錫鉍之市售 方法且其描述於(例如)歐洲專利〇 255 558、歐洲專利〇 715 003、日本專利2983548及日本專利2132894之專利說明書 中。 然而’由於錫之電化電位(·〇·12伏特)與鉍之電化電位 隹 (+0.35伏特)差異頗大’因此在電解質中以則3 +離子之溶解 形式存在之鉍在電荷交換期間會沈積於更具負電性之錫陽 - 極上。 .此反應依據以下反應式發生: 3Sn° + — 3Sn2* + 2Bi& i 在此電荷-交換反應中沈積之鉍以經歷時間自陽極剝落 的多孔、海綿狀塗層之形式沈積,藉此滲透電解質且因此 亦滲透待塗佈組件。在此情況下,此等鉍微粒可能會併入 109703.doc 1328052 電解沈積層中,因而產生在技術方面無用之極端樹枝狀 層。此同樣可導致生產中斷。 此外’上述電荷-交換反應使電解質中溶解之鉍持續地 喪失,因此不得不添加溶解之祕’因而增加處理成本。為 確保在2-4重量%之要求範圍内共沈積鉍,需要持續分析電 解質内之錢含里並相應地補足其量。此過程包含大量時間 及工作。 • 若有可能防止由電荷-交換反應導致之鉍損失,則可經 由自動計量泵與安培-小時計之組合注滿符合經過之電流 量之鉍化合物所需量。該方法因此將實施更加簡單且更為 經濟。在此情況下,僅需要以較低頻繁之間隔進行電解質 中更加精確之鉍分析。 與上述電荷-交換反應相關之另一缺陷為每當塗佈操作 中斷(例如由於系統故障)且組件在無任何電流負載下短時 間浸潰於電解質中時,此反應不僅發生於錫陽極之上,而 • 1亦發生於已經塗佈之組件之上。此可導致表面染黑。若 電鍍隨後繼續進行,則產生所謂之夾心塗層。由電荷交換 • 產生之薄鉍層將在兩個電解沈積之錫-鉍層之間形成。若 聊機械工作’則此層序可導致裂痕形成且其可引起層之 剝落且導致不良之可焊性。 ^ 了防止由電荷-交換反應引起之鉍沈積,建議使用由 曱碩酸及此酸之錫及鉍鹽組成之電解質’此電解質含有作 為有機添加劑之不飽和羧酸及來自聚氧化乙烯/聚氧化丙 烯八聚物之群的非離子性界面活性劑(美國2003/0132122 109703.doc 1328052 A1)。在此電解質之情況下,雷 €何乂換期間之鉍沈積確實 實質地減少,但在塗層中继 潛肀幾手不能達成2重量%之扪的所需The present invention relates to an acid electrolyte for depositing tin-bismuth alloys. The State Council and the Council of Europe Directive 2002/95/EC on the use of certain hazardous substances in electrical and electronic equipment).狻 ’ 狻 狻 _ _ _ _ _ _ U U U U U U U U U U U U U U U U U U The Ag) or tin is called 4% by weight of the tin alloy layer as an alternative coating. In terms of processing, pure tin coating is a simple technology and therefore the first choice for an economical alternative to tin 7 layers. However, the risk of crystal formation cannot be completely ruled out as a disadvantage. Must be grain boundary. . s refers to the needle-shaped single crystal of tin. These early bodies usually have a few micrometers of cold 丄 but can reach a length of several millimeters. The development of miniaturization of electronic components has led to the formation of crystals that can cause adjacent leads and short circuits. This can cause the electrical sub-electronics to fail again and cause a considerable economic loss of I09703.doc 1328052. The whisker formation in the tin layer can be prevented by co-depositing a very small amount of another metal. It has been confirmed here that co-depositing a small amount of lead (at least 3% by weight) is effective. However, as explained above, this co-deposition allows only a small amount of application. In addition, it has been confirmed that the deposit contains about 2-4 weights. /. The tin-bismuth alloy is a reliable method to avoid whiskers. Higher amounts of tantalum are disadvantageous because the ductility of the deposited layer is reduced, causing a risk of cracking in the coating if the pins of the electronic component are mechanically operated. Thus, the properties of the deposited layer such as ease of soldering and corrosion resistance are degraded. If co-deposited less than 2 weights of 0/〇 Bi ’, the formation of whiskers cannot be completely ruled out. A suitable commercially available method for depositing tin bismuth has been used in the manufacture of electronic components and is described in, for example, European Patent No. 255 558, European Patent No. 715 003, Japanese Patent No. 2 983 548, and Japanese Patent No. 2,132,894. However, 'the electrochemical potential of tin (·〇·12 volts) differs greatly from the electrochemical potential 隹 (+0.35 volts) of yttrium. Therefore, the yttrium in the form of dissolved metal ions in the electrolyte is deposited during charge exchange. For the more negative-powered Xiyang-pole. This reaction occurs according to the following reaction formula: 3Sn° + - 3Sn2* + 2Bi& i The ruthenium deposited in this charge-exchange reaction is deposited in the form of a porous, sponge-like coating that has undergone time to peel off from the anode, thereby permeating the electrolyte And therefore also penetrate the component to be coated. In this case, these ruthenium particles may be incorporated into the electrolytically deposited layer of 109703.doc 1328052, thus creating an extremely dendritic layer that is technically useless. This can also lead to production disruptions. Further, the above charge-exchange reaction causes the enthalpy of dissolution in the electrolyte to be continuously lost, so that the secret of dissolution has to be added, thereby increasing the processing cost. To ensure that the ruthenium is co-deposited within the required range of 2-4% by weight, it is necessary to continuously analyze the amount of money in the electrolyte and make up the amount accordingly. This process involves a lot of time and work. • If it is possible to prevent the loss caused by the charge-exchange reaction, the amount of the bismuth compound that meets the passing current can be filled by the combination of the automatic metering pump and the ampere-hour meter. This approach therefore makes the implementation simpler and more economical. In this case, only a more accurate analysis of the enthalpy in the electrolyte is required at lower frequent intervals. Another drawback associated with the charge-exchange reaction described above is that the reaction occurs not only on the tin anode, but also whenever the coating operation is interrupted (eg, due to system failure) and the assembly is immersed in the electrolyte for a short period of time without any current load. , and 1 also occurs on the already coated components. This can result in blackening of the surface. If the plating is subsequently continued, a so-called sandwich coating is produced. The thin layer of tantalum produced by charge exchange will be formed between two electrolytically deposited tin-germanium layers. If you talk about mechanical work, this sequence can cause crack formation and it can cause delamination of the layer and lead to poor solderability. ^ To prevent the deposition of ruthenium caused by the charge-exchange reaction, it is recommended to use an electrolyte composed of ruthenium acid and a tin and bismuth salt of the acid. This electrolyte contains an unsaturated carboxylic acid as an organic additive and is derived from polyethylene oxide/polyoxidation. A nonionic surfactant of the group of propylene octamers (US 2003/0132122 109 703. doc 1328052 A1). In the case of this electrolyte, the deposition of 雷 乂 确实 确实 确实 确实 确实 确实 确实 确实 确实 确实 确实 确实 铋 铋 铋 铋 铋 铋 铋 铋 铋 铋 铋 铋 铋 铋 铋 铋 铋 铋 铋 铋 铋

共沈積量。即使電解質中在A 子在相對於總金屬含量J 〇重量% . 之引’沈積層中之鉍含量仍僅約415-2重量%。 【發明内容】 * 因而本發明基於之目的係担糾 扪係k供一種用於沈積具有至少2 - 4重量%之合金含量的錫'叙合金之電解質,在此電解質 • 若電流中斷在電荷交換期間無祕沈積在已塗佈之表面 上。 此目的以用於沈積錫-鉍人 级〇金之含水酸性電解質來解 決’此電解質由一或多種、 禮坑基磧酸及/或烷醇磺酸、一 多種可溶錫(II)鹽、一啖落锸π w 一 4夕種可溶鉍(ΠΙ)鹽、一或多種非 離子性界面活性劑及一赤夕你— 劑及或多種噻唑及/或噻二唑化合物组 成。 因而藉助本發明之電解皙 解質對以上目的之解決如熟習此項 技術者所關心的那樣今人替 依7人驚岈,因為該電解質中所含之化 ο物無一將錢之電極電位趙 冤4轉移為負向,此為熟習此項技術 者斤J待之作為用於防止貴^ ^ ^ ^ ^ ^ ^ ^ ^ 貝隹屬沈積於更具負電性之金屬 承預處理。即使在組合時,電解質中所含之組份亦不引 =衡f位㈣陰極。“防㈣沈積於新鮮沈積之錫_ =面:不能在電化學方面得到解釋。可能存在-種抑制 欢應,即所使用之物質之組合 °丨且斷無冤極黏結,但不阻斷 M之電解沈積。 Ή坐或嗟—唾化合物未加以特殊限制。術語"嗟。坐化 109703.doc 1328052 在於電解質中。該等無機酸鹽之實例包括硫酸鹽及四氟硼 酸鹽。較佳之烷基磺酸鹽包括(例如)甲磺酸鹽、乙項酸 鹽、正_及異-丙確酸鹽、甲二續酸鹽、乙二續酸鹽、2,3_ 丙二磺酸鹽及1,3-丙二磺酸鹽。適合之烷醇磺酸鹽包括2· 經基乙磺酸鹽、2-羥基丙磺酸鹽及3-羥基丙磺酸鹽。尤其 較佳者為甲磺酸錫(Π) ^ 錫(Π)鹽較佳以5至200 g/丨電解質之量存在於電解質中, 尤其較佳為10至100 g/Ι電解質之量(以錫(π)計算)。 鉍(III)鹽可以任何允許在電解質内溶解為Bi(In)離子之 足夠溶解度之形式加入電解質中。加入可以溶解則⑴〗)鹽 之形式或以在游離酸存在下可在電解質中轉變為可溶 Βι(ΙΠ)化合物之固體化合物之形式進行。適合之則⑴〗)鹽 之實例為無機酸鹽(諸如氣化物 '四氟硼酸鹽或硝酸鹽)、 烷基磺酸鹽(諸如甲磺酸鹽、乙磺酸鹽、甲二磺酸鹽、乙 一鹽、2,3-丙二磺酸鹽及l53_丙二磺酸鹽)、烷醇磺酸 鹽(諸如2-羥基乙磺酸鹽及3·羥基丙磺酸鹽)。尤其較佳者 為甲磺酸鉍(in)。當以固體形式加入則(111)時,較佳可使 用奴自文鉍(in)或氧化鉍(111) ^此等化合物在烷基及/或烷醇 硕酸存在下溶解於電解質中以形成可溶Bi(in)化合物。 鉍濃度取決於所得錫_鉍合金中所需之則量及選定之錫 ⑼鹽濃度。電解質較佳含有使得能夠沉積具有2屬則之 合金組成之錫鉍合金之濃度的鉍(ΙΠ)鹽。在此情況下,Bi 離子之濃度相對於選定之錫(II)濃度較佳為36%,尤其較 佳為5%。 109703.doc 1328052 烷基%酸及烷醇磺酸較佳具有1至10個碳原子,尤其較 佳為1至5個碳原子。作為實例,曱4酸、乙續酸、正·丙 續酸、異’績酸m乙:磺酸、2,3•丙二續酸及 ,丙一碩馼可用作烷基磺酸。適合之烷醇磺酸之實例包 括2-fe基乙續酸、2經基丙續酸及3經基丙續酸。 烷基及/或烷醇磺酸較佳以5〇至3〇〇 g/1電解質之範圍内 之濃度存在於電解質中,尤其較佳為100至200 g/1電解 質。 此外,為防止錫氧化,電解f可含有習知之抗氧化劑, 例如單-或多元紛化合物(諸如兒茶紛、氮酉昆及料酸)。較 佳使用兒命紛。此等抗氧化劑之濃度可為5〇至2,_ ¥ 電解質,較佳為500至i,00〇 mg/卜 電解質亦可含有各種通常用於沈積錫合金之酸性電解質 t的添加劑’諸如晶粒細化添加劑、濕潤劑及/或增亮 劑。 晶粒細化添加劑較佳以〇1至5〇的電解質之量存在,較 佳為I至1 0 g/Ι電解質。 濕潤劑可以(M至5G g/1電解f之量存在,較佳為〇5至1〇 g/Ι電解質。 酸性電解質之ρίί值較佳為〇至小於1。 此外’以本發明為基礎提供一種用於以錫叙合金電解 =基板之方法,此方法使用本發明之電解質、金屬錫陽 =待塗佈基板製成之陰極用以沈積該塗層,在此方法 °。中通以直桃電,亦以本發明為基礎提供使用此方法 J09703.doc 丄 3.28052 獲得之塗層。 電流密度可為(M A/dm2(滾鍍或掛鍍方法)高達1〇〇 A/dm2(高速系統)。 電解質之溫度較佳在〇至7(rc之範圍内,尤其較佳在 至5〇。(:之範圍内。 任何通常用於製造電子組件之材料(諸如銅、含銅合Co-deposition amount. Even in the electrolyte, the content of ruthenium in the deposited layer of A in the deposited layer relative to the total metal content is only about 415 to 2% by weight. SUMMARY OF THE INVENTION Accordingly, the present invention is based on the object of providing an entanglement system k for depositing an electrolyte of a tin alloy having an alloy content of at least 2 to 4% by weight, in which the electrolyte is interrupted in charge exchange. No secret deposits on the coated surface during this period. This object is solved by the use of an aqueous acidic electrolyte for depositing tin-manganese sheet metal. The electrolyte consists of one or more, pit-based decanoic acid and/or alkanolsulfonic acid, a plurality of soluble tin(II) salts. , a 锸 w w w a 4 夕 可 soluble 铋 (ΠΙ) salt, one or more non-ionic surfactants and a chelating agent and or a variety of thiazole and / or thiadiazole compounds. Therefore, by means of the electrolytic enthalpy of the present invention, the above object is solved as the one skilled in the art is concerned with the convulsions of seven people, because the electrolyte contained in the electrolyte has no electrode potential. Zhao Yu 4 shifts to a negative direction, which is used by the skilled person to prevent the deposition of the ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ shellfish in a more negative metal pretreatment. Even when combined, the components contained in the electrolyte are not cited as the (f) cathode. "Anti-(4) deposited on freshly deposited tin _ = face: can not be explained electrochemically. There may be a kind of inhibition of joy, that is, the combination of the materials used, and no bond, but does not block M Electrolytic deposition. The squat or sputum-salt compound is not particularly limited. The term " 嗟. sitting 109098.doc 1328052 is in the electrolyte. Examples of such inorganic acid salts include sulfates and tetrafluoroborates. The sulfonate includes, for example, a methanesulfonate, an ethyl sulphate, a n- and iso-propionate, a methanesulfonate, a bromide, a 2,3-propanedisulfonate, and , 3-propanedisulfonate. Suitable alkanol sulfonates include 2. ethanesulfonate, 2-hydroxypropane sulfonate and 3-hydroxypropane sulfonate. Particularly preferred is methanesulfonic acid. Tin (Π) ^ The tin (Π) salt is preferably present in the electrolyte in an amount of 5 to 200 g / 丨 electrolyte, particularly preferably 10 to 100 g / Ι electrolyte (calculated as tin (π)). (III) The salt may be added to the electrolyte in any form which allows dissolution of the Bi(In) ion in the electrolyte. The addition can be dissolved (1) The form of the salt or in the form of a solid compound which can be converted into a soluble oxime compound in the presence of a free acid. Suitable examples of the salt of the compound (1) are inorganic acid salts (such as vaporized 'tetrafluorocarbon). Borate or nitrate), alkyl sulfonate (such as methanesulfonate, ethanesulfonate, methanedisulfonate, ethyl salt, 2,3-propanedisulfonate and l53-propanedisulfonate) An alkanol sulfonate (such as 2-hydroxyethanesulfonate and 3-hydroxypropane sulfonate). Particularly preferred is ruthenium methanesulfonate (in). When added as a solid (111), Preferably, slaves (in) or cerium oxide (111) are used. These compounds are dissolved in the electrolyte in the presence of an alkyl and/or alkanol acid to form a soluble Bi(in) compound. The amount required for the obtained tin-bismuth alloy and the selected tin (9) salt concentration. The electrolyte preferably contains a ruthenium (ΙΠ) salt which enables deposition of a tin-bismuth alloy having an alloy composition of two genera. The concentration of Bi ions is preferably 36%, particularly preferably 5%, relative to the selected tin (II) concentration. 109703.doc 132 8052 The alkyl-based acid and the alkanolsulfonic acid preferably have 1 to 10 carbon atoms, particularly preferably 1 to 5 carbon atoms. As an example, 曱4 acid, ethyl benzoic acid, n-propionic acid, and different ' Mic acid m B: sulfonic acid, 2,3 • propionate acid, and propyl sulfonate can be used as alkyl sulfonic acid. Examples of suitable alkanol sulfonic acids include 2-feyl hexanoic acid, 2 thiol Alkanoic acid and 3 or alkanoic acid. The alkyl group and/or the alkanolsulfonic acid is preferably present in the electrolyte in a concentration ranging from 5 Å to 3 Åg/1 of the electrolyte, particularly preferably from 100 to 200. In addition, in order to prevent oxidation of tin, the electrolysis f may contain a conventional antioxidant such as a mono- or poly-compound compound (such as catechu, niobium and acid). Better use of life. The concentration of such antioxidants may be from 5 Å to 2, _ ¥ electrolyte, preferably from 500 to 1, 00 〇 mg/b. The electrolyte may also contain various additives such as crystal grains commonly used for depositing an acidic electrolyte t of a tin alloy. Refine additives, wetting agents and/or brighteners. The grain refining additive is preferably present in an amount of from 1 to 5 Torr of the electrolyte, preferably from 1 to 10 g / Torr of the electrolyte. The humectant may be present in an amount of from M to 5 G g/1 of electrolytic f, preferably from 〇5 to 1 〇g/Ι of the electrolyte. The value of ρίί of the acidic electrolyte is preferably from 〇 to less than 1. Further 'provided on the basis of the present invention A method for electrolyzing a substrate with a tin alloy, which uses the electrolyte of the present invention, a metal tin anode, a cathode made of a substrate to be coated, for depositing the coating, in this method, a straight peach The coating obtained by using this method J09703.doc 丄3.28052 is also provided on the basis of the present invention. The current density can be (MA/dm2 (barrel plating or rack plating method) up to 1 〇〇A/dm2 (high speed system). The temperature of the electrolyte is preferably in the range of 〇 to 7 (rc), particularly preferably in the range of up to 5 Å. Any material commonly used in the manufacture of electronic components (such as copper, copper containing)

金、鎳-鐵合金(如合金42)或鍍鎳材料)皆可用作待塗佈之 基板。 根據本發明之電解質可用於塗佈電子組件。 【實施方式】 現以如下實例及比較實例為基礎來解釋本發明。 實例 製備包含以下物質之電解質: 15〇 g/Ι 甲磺酸,70重量〇/0 80 g/1 錫[Sn(CH3S〇3)2)]之形式]Gold, a nickel-iron alloy (e.g., alloy 42) or a nickel-plated material can be used as the substrate to be coated. The electrolyte according to the invention can be used to coat electronic components. [Embodiment] The present invention will now be explained on the basis of the following examples and comparative examples. EXAMPLES An electrolyte was prepared containing: 15 〇 g / 甲 methanesulfonic acid, 70 〇 / 0 80 g / 1 tin [Sn (CH3S 〇 3) 2)]

3·5 g/Ι 鉍[Bi(CH3S03)3)]之形式] 1 g/1 兒茶酚3·5 g/Ι 铋[Bi(CH3S03)3)]] 1 g/1 catechol

4 g/1 E〇/PO嵌段聚合物(來自BASF之Pluronic PE 6400,分子量約2,9〇〇) 1 g/1 甲基丙烯酸 200 mg/1 2-巯基苯并噻唑。 在此電解質中’銅薄片之塗佈在如下條件下進行:4 g/1 E〇/PO block polymer (Pluronic PE 6400 from BASF, molecular weight about 2,9 〇〇) 1 g/1 methacrylic acid 200 mg/1 2-mercaptobenzothiazole. In this electrolyte, the coating of the copper flakes was carried out under the following conditions:

溫度· 4 0 °C 電流遗度· lOA/dm》 109703.doc 12 13-28052 運動: 磁性攪拌,700 rpm 持續時間: 2分鐘 以此方式獲得之錫-叙塗層具有1〇 之層厚及2 8 % Bi(殘餘Sn)之合金含量。Temperature · 40 °C Current Rating · lOA/dm 109703.doc 12 13-28052 Movement: Magnetic Stirring, 700 rpm Duration: 2 minutes The tin-sand coating obtained in this way has a layer thickness of 1〇 and 2 8 % Bi (residual Sn) alloy content.

為檢測電荷交換期間之鉍沈積,在同樣之條件下塗佈其 它測試薄片。在2分鐘之沈積之後,關閉電流且分別將該 等薄片置留於電解質中歷經30、6〇、120及180秒。隨後藉 助X -光登光分析測定合金組成。 停電暴露之持續時間(s) 合金組成 f重量%Bi]* 0 2.8 30 2.9 60 2.9 1 〇Λ -- 12U 3.0 1 ΟΛ iiSU *殘餘Sn - 3.0To test the ruthenium deposition during charge exchange, other test sheets were coated under the same conditions. After 2 minutes of deposition, the current was turned off and the sheets were respectively left in the electrolyte for 30, 6 Torr, 120, and 180 seconds. The alloy composition was then determined by X-ray light analysis. Duration of power failure exposure (s) Alloy composition f% by weight Bi]* 0 2.8 30 2.9 60 2.9 1 〇Λ -- 12U 3.0 1 ΟΛ iiSU *Residual Sn - 3.0

所有表面均具有均一半光之金屬外觀。 比較實例 在與實例1相同之條件下自 沈積: 具有如下組成之電解質執行 150g/l 曱項酸,70重量% 8〇g/1 錫[Sn(CH3S03)2)]之形式] 3.5 g/Ι 鉍[Bi(CH3S〇3)3)]之形式] 1 δ71 兒茶酚 5 g/1 具有12個EO基 BASF之 Lugalva 團之萘酚乙氧基化物(來自n bn〇.12) 109703.doc -13* 0.5 g/1 萘磺酸甲醛縮合物(來自BASF之Tamol NN 4501) 停電暴露之持續時間(S) 合金組成 [重量%丑1]* 0 2.08 30 2.21 60 2.73 120 4.00 180 6.15 殘餘Sn 13.28052 以此方式沈積之此等樣品的表面在停電暴露之後展示出 隨暴露持續時間改變的相當程度之暗變色。在暴露持續 1 80秒後,表面為天鵝絨黑色。All surfaces have a metallic appearance that is half the light. Comparative Example Self-deposition under the same conditions as in Example 1: Electrolyte having the following composition was carried out in the form of 150 g/l of citric acid, 70% by weight of 8 〇g/1 of tin [Sn(CH3S03)2)] 3.5 g/Ι铋[Bi(CH3S〇3)3)]] 1 δ71 catechol 5 g/1 Naphthol ethoxylate of Lugalva group with 12 EO-based BASF (from n bn〇.12) 109703.doc -13* 0.5 g/1 Naphthalenesulfonic acid formaldehyde condensate (Tamol NN 4501 from BASF) Duration of power failure exposure (S) Alloy composition [% by weight ug 1]* 0 2.08 30 2.21 60 2.73 120 4.00 180 6.15 Residual Sn 13.28052 The surface of such samples deposited in this manner exhibits a substantial degree of dark discoloration as a function of exposure duration after a power outage exposure. After the exposure lasted for 180 seconds, the surface was velvet black.

109703.doc 14-109703.doc 14-

Claims (1)

A • 13^805^〇95113052號專利申請案 中文申請專利範圍替換本(98年11月) 十、申請專利範圍: 1. 一種用於沈積錫-絲合金之水溶性酸性電解質,其包含. . 一或多種烷基磺酸及/或烷醇磺酸,為50至300 g/丨電解 質之範圍内之濃度, 9 一或多種可溶錫(II)鹽,為50至2〇〇 g/l電解質之量(以 錫(Π)計算), 一或多種可溶鉍(m)鹽,其中Bi離子之濃度相對於選 - 定之錫(Π)濃度為3%至6%, 一或多種非離子性界面活性劑,為j至5〇 g/1電解質之 範圍内之濃度,及 或夕種噻唑及/或噻二唑化合物,為5至1〇〇〇 電 解質之範圍内之濃度。 % 2.如請求項丨之電解質,其中該噻唑化合物係選自笨并噻 唑、2-胺基苯并噻唑、6_胺基苯并噻唑、2_羥基苯并噻 唑、6-羥基苯并噻唑、2_甲基笨并噻唑、2·巯基笨并噻 唑、6-甲氧基_2-胺基苯并噻唑及2_噻唑啉硫醇_2。 月长項1之電解質’其中該噻二唑化合物係選自2·胺 基-5-f基-1,3,4_嗟二。坐、2_胺基_5_疏基^心嗟二唑、 2_缒基甲基_1,3,4-噻二唑、2-胺基-1,3,4-噻二唑及2 5 二疏基-i,3,4-售二唾。 , 4’如°月求項1之電解質,#中該噻唑及/或噻二唑化八物俜 以避⑽聊之濃度存在於該電解質中。°物係 5.=凊求項!之電解質,其中該非離子性界面活性劑為聚 氧化乙烯/聚氧化丙烯共聚物。 109703-981126.doc 6. == 之電解質’其中該聚氧化乙缔/聚氧化两缔共 -^ 式 H-(〇CH2-CH2)m-(〇CH(CH3)-CH2)n_〇H之聚氧 化:烯/聚氧化丙烯共聚物,其中_為介於5與6〇之間 之整數,該共聚物具有2,000至1〇,〇〇〇之重量平均分 量。 刀于 7. =請求項6之電解f ’其中該聚氧化乙…聚氧化丙稀共 聚物具有大於30°C之濁點。 8·如請求们之電解質,其中額外存在一或多種多元酚化 合物。 9‘如請求項8之電解質,其中該多元酚化合物為兒茶酚。 10.種用於以錫-鉍合金電解塗佈基板之方法,其中藉由使 用如請求項1至9中任一項之該電解質通以直流電,另外 藉由使用一金屬錫陽極且藉由使用由該待塗佈基板製成 之一陰極來執行塗佈。 U· 一種如請求項1至9中任一項之該電解質之用途,其係用 於塗佈電子組件。 109703-981126.docA • 13^805^〇95113052 Patent Application Replacement of Chinese Patent Application (November 1998) X. Patent Application Range: 1. A water-soluble acidic electrolyte for depositing tin-silver alloy, which contains. One or more alkyl sulfonic acids and/or alkanol sulfonic acids in a concentration range of 50 to 300 g/丨 electrolyte, 9 or more soluble tin (II) salts, 50 to 2 〇〇 g/l The amount of electrolyte (calculated as tin (Π)), one or more soluble cerium (m) salts, wherein the concentration of Bi ions is 3% to 6% relative to the selected tin (Π) concentration, one or more nonionic The surfactant is a concentration in the range of j to 5 〇g/1 of the electrolyte, and or a concentration of the thiazole and/or thiadiazole compound in the range of 5 to 1 Torr of the electrolyte. % 2. The electrolyte of claim 1, wherein the thiazole compound is selected from the group consisting of benzothiazole, 2-aminobenzothiazole, 6-aminobenzothiazole, 2-hydroxybenzothiazole, 6-hydroxybenzothiazole 2-methyl benzothiazole, 2 mercapto benzothiazole, 6-methoxy 2 -aminobenzothiazole and 2 thiazoline thiol-2. The electrolyte of month length 1 wherein the thiadiazole compound is selected from the group consisting of 2·amino-5-fyl-1,3,4_嗟2. Sit, 2_amino _5_ thiol^cardiac diazole, 2_mercaptomethyl-1,3,4-thiadiazole, 2-amino-1,3,4-thiadiazole and 2 5 two sparse-i, 3, 4- sold two saliva. 4', such as ° electrolyte, the electrolyte of #1, the thiazole and / or thiadiazole octopus is present in the electrolyte at a concentration of (10). ° System 5.= Begging! The electrolyte, wherein the nonionic surfactant is a polyethylene oxide/polyoxypropylene copolymer. 109703-981126.doc 6. == Electrolyte 'where the polyoxyethylene acetylene/poly oxidized two-co-H-(〇CH2-CH2)m-(〇CH(CH3)-CH2)n_〇H Polyoxidation: an olefin/polyoxypropylene copolymer wherein _ is an integer between 5 and 6 Å and the copolymer has a weight average component of 2,000 to 1 Torr. Knife 7. 7. Electrolysis f of claim 6 wherein the polyoxyethylene propylene oxide copolymer has a cloud point greater than 30 °C. 8. The electrolyte of the request, wherein one or more polyphenolic compounds are additionally present. 9' The electrolyte of claim 8, wherein the polyhydric phenol compound is catechol. 10. A method for electrolytically coating a substrate with a tin-bismuth alloy, wherein the electrolyte is passed by using the electrolyte according to any one of claims 1 to 9, additionally by using a metal tin anode and by using Coating is performed by making one of the cathodes of the substrate to be coated. U. The use of the electrolyte according to any one of claims 1 to 9 for coating an electronic component. 109703-981126.doc
TW095113052A 2005-04-12 2006-04-12 Electrolyte and method for depositing tin-bismuth alloy layers TWI328052B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510016819 DE102005016819B4 (en) 2005-04-12 2005-04-12 Electrolyte, process for the deposition of tin-bismuth alloy layers and use of the electrolyte
PCT/EP2006/002183 WO2006108476A2 (en) 2005-04-12 2006-03-09 Electrolyte and method for depositing tin bismuth alloy layers

Publications (2)

Publication Number Publication Date
TW200643231A TW200643231A (en) 2006-12-16
TWI328052B true TWI328052B (en) 2010-08-01

Family

ID=36527525

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095113052A TWI328052B (en) 2005-04-12 2006-04-12 Electrolyte and method for depositing tin-bismuth alloy layers

Country Status (5)

Country Link
JP (1) JP5278675B2 (en)
KR (1) KR20070120592A (en)
DE (1) DE102005016819B4 (en)
TW (1) TWI328052B (en)
WO (1) WO2006108476A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106072A2 (en) * 2009-03-18 2010-09-23 Basf Se Electrolyte and surface-active additives for the galvanic deposition of smooth, dense aluminum layers from ionic liquids
CN102656735A (en) * 2009-12-15 2012-09-05 巴斯夫欧洲公司 Thiazol compounds as additives in electrolyte solutions for electrochemical cells and batteries
CN112701351B (en) * 2020-12-29 2022-08-19 中国科学院宁波材料技术与工程研究所 Non-aqueous electrolyte, preparation method thereof and lithium ion battery
CN113293409B (en) * 2021-05-28 2022-06-24 中南大学 Method for preparing compact and flat bismuth metal through electrolysis
CN115029745A (en) * 2022-07-08 2022-09-09 云南锡业集团(控股)有限责任公司研发中心 Method capable of reducing element plating process steps and improving welding spot reliability

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781196B2 (en) * 1986-07-04 1995-08-30 株式会社大和化成研究所 Bismuth and bismuth alloy plating baths from organic sulfonates
US5174887A (en) * 1987-12-10 1992-12-29 Learonal, Inc. High speed electroplating of tinplate
WO1990004048A1 (en) * 1988-10-14 1990-04-19 Atochem North America, Inc. A method, bath and cell for the electrodeposition of tin-bismuth alloys
JP3274232B2 (en) * 1993-06-01 2002-04-15 ディップソール株式会社 Tin-bismuth alloy plating bath and plating method using the same
JPH1025595A (en) * 1996-07-12 1998-01-27 Ishihara Chem Co Ltd Tin and tin alloy plating bath
JP3292055B2 (en) * 1996-09-03 2002-06-17 上村工業株式会社 Tin-bismuth alloy electroplating bath and plating method using the same
JP2000100850A (en) * 1998-09-24 2000-04-07 Ebara Udylite Kk Formation of low-melting point metal bump
JP4077119B2 (en) * 1999-06-30 2008-04-16 エヌ・イーケムキャット株式会社 Tin-bismuth alloy electroplating bath and plating method
JP2001040497A (en) * 1999-07-27 2001-02-13 Ne Chemcat Corp Electronic parts coated with tin-bismuth alloy plated film
DE60113333T2 (en) * 2000-07-01 2006-07-06 Shipley Co., L.L.C., Marlborough Metal alloy compositions and associated plating methods
US6726827B2 (en) * 2002-01-17 2004-04-27 Lucent Technologies Inc. Electroplating solution for high speed plating of tin-bismuth solder
JP4441726B2 (en) * 2003-01-24 2010-03-31 石原薬品株式会社 Method for producing tin or tin alloy aliphatic sulfonic acid plating bath
JP4441725B2 (en) * 2003-11-04 2010-03-31 石原薬品株式会社 Electric tin alloy plating method
JP4524483B2 (en) * 2004-04-28 2010-08-18 石原薬品株式会社 Tin or tin alloy plating method
JP4389083B2 (en) * 2004-08-10 2009-12-24 石原薬品株式会社 Lead-free tin-bismuth alloy electroplating bath
JP4605359B2 (en) * 2004-10-20 2011-01-05 石原薬品株式会社 Lead-free acid tin-bismuth alloy electroplating bath
JP4273266B2 (en) * 2005-03-23 2009-06-03 石原薬品株式会社 Dissolving current suppression type tin alloy electroplating method

Also Published As

Publication number Publication date
WO2006108476A3 (en) 2007-05-31
JP5278675B2 (en) 2013-09-04
WO2006108476A2 (en) 2006-10-19
KR20070120592A (en) 2007-12-24
TW200643231A (en) 2006-12-16
DE102005016819A1 (en) 2006-10-19
JP2008536011A (en) 2008-09-04
DE102005016819B4 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
TW589413B (en) Seed layer repair method
TWI296289B (en) Electroplating solution containing organic acid complexing agent
JP4812365B2 (en) Tin electroplating solution and tin electroplating method
JP2005523995A (en) Minimizing whisker growth in tin electrodeposits
WO2007008369A1 (en) Tin electrodeposits having properties or characteristics that minimize tin whisker growth
KR102332676B1 (en) Cyanide-free acidic matte silver electroplating compositions and methods
WO2016157713A1 (en) Silver plating material and method for producing same
TWI328052B (en) Electrolyte and method for depositing tin-bismuth alloy layers
KR101712960B1 (en) Cyanide-free electroplating baths for white bronze based on copper (i) ions
JPS6254397B2 (en)
JP6869252B2 (en) Aqueous indium or indium alloy plating bath, and method of depositing indium or indium alloy
KR102174876B1 (en) Tin alloy plating solution
KR20140033908A (en) Nickel plating solution and method for nickel plate layer formation using the same
KR20140020829A (en) Process for electroless deposition of metals using highly alkaline plating bath
Han et al. Electrochemical composite deposition of Sn–Ag–Cu alloys
EP3312308A1 (en) Nickel plating solution
JP2008536011A5 (en)
TWI417429B (en) An electroplating bath using the electroplating bath, and a substrate deposited by the electrolytic plating
CN111485262A (en) Indium electroplating compositions and methods for electroplating indium on nickel
KR20130044661A (en) Electroless ni-p plating solution and plating method using the same
US20070037005A1 (en) Tin-silver electrolyte
KR101284367B1 (en) Plating method of magnesium alloy using alkali etchant
JPH10204676A (en) Tin-silver alloy electroplating bath and tin-silver alloy electroplating method
JP2972867B2 (en) Tin / zinc alloy plating bath using tetravalent stannate ion and plating method using the same
JP2905873B1 (en) Tin / zinc alloy plating bath and plating method using the same