TWI327130B - Bubble-type micro-pump and indirect bubble-generating device thereof - Google Patents

Bubble-type micro-pump and indirect bubble-generating device thereof Download PDF

Info

Publication number
TWI327130B
TWI327130B TW96124835A TW96124835A TWI327130B TW I327130 B TWI327130 B TW I327130B TW 96124835 A TW96124835 A TW 96124835A TW 96124835 A TW96124835 A TW 96124835A TW I327130 B TWI327130 B TW I327130B
Authority
TW
Taiwan
Prior art keywords
bubble
flow path
passage
liquid
generating device
Prior art date
Application number
TW96124835A
Other languages
Chinese (zh)
Other versions
TW200902431A (en
Inventor
Cheng Hsien Liu
Long Hsu
Sheng Hung Chiu
Chih Ming Cheng
Chung Cheng Chou
Wai William Wang
Original Assignee
Raydium Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raydium Semiconductor Corp filed Critical Raydium Semiconductor Corp
Priority to TW96124835A priority Critical patent/TWI327130B/en
Priority to US12/014,813 priority patent/US20080186801A1/en
Publication of TW200902431A publication Critical patent/TW200902431A/en
Application granted granted Critical
Publication of TWI327130B publication Critical patent/TWI327130B/en

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Reciprocating Pumps (AREA)

Description

1327130 九、發明說明: 【發明所屬之技術領域】 • 本發明是有關於一種氣泡式微幫浦及其氣泡產生裝 . 置,且特別是有關於一種間接產生氣泡之氣泡式微幫浦及 其氣泡產生裝置。 【先前技術】 Φ 目前,微機電領域所採用之微幫浦大致上區分為兩大 類:第一類幫浦是利用機械推動之方式達成’例如氣泡式 幫浦(bubble pump )、薄膜式幫浦(membrane pump )、擴 散式幫浦(diffuser pump )等。第二類幫浦則是利用感應 電場去驅動液體,例如電滲式幫浦(electro-osmotic pump )、電泳式幫浦(electrophoretic pump )與電濕式幫 浦(electro-wetting pump )等。 然而,前述之第一類幫浦必須在微流道系統中架構複 φ 雜之機械元件,這些機械元件之尺寸必須非常微細才可滿 足要求,於技術上產生許多限制。另外,第二類幫浦需要 由複雜之電信號控制,且必須在微流道系統中裝設感測器 以偵測流體之特性,亦具有許多與製程技術相關之限制。 在所有微幫浦中,電解氣泡式微幫浦具有低耗能、低 驅動電壓、常溫操作環境等優點,其最適合在微流道系統 中發展。但是此類型之微幫浦都是在微流道中直接電解液 體以產生氣泡,不僅會造成液體之酸鹼值改變,況且於通 電到微幫浦之電極時,電極會產生電場影響流體之驅動。 6 1327130 另外,目前電解氣泡式微幫浦仍無法有效排除其所產生之 電解氣泡。 【發明内容】 本發明係有關於一種氣泡式微幫浦及其間接式氣泡 產生裝置,係於氣泡式微幫浦中利用間接產生之氣泡生滅 以驅動液體流動,並可解決因電解氣泡導致液體產生酸解 Φ 值之問題。 本發明提出一種間接式氣泡產生裝置,此裝置包括一 基板與一氣泡產生單元。基板具有一流道、至少一排氣通 道、一進氣通道與一氣泡出口,其中排氣通道連接流道前 段,進氣通道連接流道後段,氣泡出口則位於流道末端。 進氣通道係引入氣體填充於部分之流道後段。氣泡產生單 元設置於流道前段。當氣泡產生單元於流道前段之液體中 產生一第一氣泡時,流道後段上之液體係被推向流道末 • 端,流道後段中之氣體會被液體推向氣泡出口以產生一第 二氣泡。 本發明再提出一種氣泡式微幫浦,其包括一主部件與 一驅動部。主部件具有一主流道與一侧向排氣通道,此側 向排氣通道連接主流道。主流道之一第一區域具有一第一 表面,主流道之一第二區域則具有一第二表面,其中第一 區域與第二區域係鄰近側向排氣通道,且第一表面之親疏 水性係不同於第二表面之親疏水性。驅動部包括一間接式 氣泡產生裝置,此間接式氣泡產生裝置之一流道係連接於 7 1327130 前述之主流道,且間接式氣泡產生裝置係於第一區域與第 二區域中產生氣泡。當氣泡由側向排氣通道開始散失時, 由於第一表面之親疏水性與第二表面之親疏水性之差 異,使第一區域之液體回填速度不等於第二區域之液體回 填速度,藉此以驅動液體流動。 為讓本發明之上述内容能更明顯易懂,下文特舉較佳 實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 請參照第1圖,其繪示依照本發明一較佳實施例的氣 泡式微幫浦之爆炸圖。如第1圖所示,氣泡式微幫浦1包 括一基板100與一蓋板110,氣泡式微幫浦1於基板100 上設有一主部件120與一驅動部。主部件120具有一主流 道122與一側向排氣通道124,此側向排氣通道124連接 主流道122。主流道122之一第一區域(未標示於第1圖) φ 具有一第一表面122A,主流道122之一第二區域(未標 示於第1圖)則具有一第二表面122B,其中第一區域與第 二區域係鄰近側向排氣通道124,且第一表面122A之親 疏水性係不同於第二表面122B之親疏水性。驅動部包括 一間接式氣泡產生裝置130,此間接式氣泡產生裝置130 之一流道132係連接於主部件120之主流道122。間接式 氣泡產生裝置130係於第一區域與第二區域中產生氣泡。 當氣泡由側向排氣通道124開始散失時,由於第一表面 122A之親疏水性與第二表面122B之親疏水性之差異,使 8 1327130 第一區域之液體回填速度不等於第二區域之液體回填速 度1猎此以驅動液體流動。 氣泡式微幫浦1之蓋板110係設置於基板100上。蓋 .板110較佳為透明材料製成。藉此於氣泡式微幫浦1運作 時,可清楚觀察基板100上液體流動狀態。蓋板110之材 質例如是高乙烯基含量石夕橡膠(Polydimethylsioxane, PDMS)或玻璃等。另外,本實施例之蓋板110並具有一 I 第一流入孔112、第二流入孔114與一流出孔116,以供液 體流入與流出基板100,但本發明並不以此為限定。 基板100上之第一表面122A之親疏水性以及第二表 面122B之親疏水性可以藉由至少二種方式達成。其一, 係使第一表面122A為具一第一粗链因子01之粗糙表面, 並使第二表面122B為具一第二粗链因子之粗縫表面。 根據發表在電氣與電子工程師學會期刊(IEEE, pp 694-697, 30 Jan〜3 Feb 2005, Ashutosh Shastry,· etc)之論文「用以 鲁 操控微流系統中的液滴之工程表面粗梭度」(engineering surface roughness to manipulate droplets in micro-fluidic systems)其論點:表面之粗链度調整可改變液滴與此表面 之親疏程度,以控制微流系統中之液滴流動。因此,第一 表面122A之第一粗糙因子必!與第二表面122B之第二粗 糙因子02之大小係與液體及第一表面122A與第二表面 122B之接觸面積相關。如此一來’本實施例可藉由在平面 上製造出許多微型矽柱體以改變此平面之表面粗糙度,其 中,粗縫因子0之定義為「石夕柱體之表面積(與液滴接觸 9 1327130 ^面積)與平面總面積之比」。當平面之表面粗縫度改變 後’液滴與平面之⑽角料細作用力將隨之改變,致使 液滴於平面上之可動性改變。 粗輪表面之粗糙因子係與液體之接觸角相關。當表面 之粗_子越大時,液面之接觸角越小。而液面之接觸角 糸景二響其毛細個力之以、,進*料錢泡散失時液體1327130 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a bubble micro-pump and a bubble generating device thereof, and more particularly to a bubble micro-pump that indirectly generates bubbles and bubble generation thereof Device. [Prior Art] Φ At present, the micro-pulls used in the micro-electromechanical field are roughly divided into two categories: the first type of pump is achieved by means of mechanical pushing, such as bubble pump and membrane pump. (membrane pump), diffuser pump (diffuser pump), etc. The second type of pump uses an induced electric field to drive liquids, such as electro-osmotic pumps, electrophoretic pumps, and electro-wetting pumps. However, the first type of pump described above must construct complex mechanical components in the microchannel system. These mechanical components must be very small in size to meet the requirements and have many technical limitations. In addition, the second type of pump needs to be controlled by complex electrical signals, and sensors must be installed in the micro-channel system to detect the characteristics of the fluid, and there are many limitations related to the process technology. Among all micro-pulls, electrolytic bubble micro-pull has the advantages of low energy consumption, low driving voltage and normal temperature operating environment, and it is most suitable for development in micro-channel systems. However, this type of micro-pump is directly in the micro-flow channel to generate bubbles, which not only causes the pH value of the liquid to change, but also when the electrode is connected to the electrode of the micro-pump, the electrode generates an electric field to affect the driving of the fluid. 6 1327130 In addition, the current electrolytic bubble micro-pump is still unable to effectively eliminate the electrolytic bubbles generated by it. SUMMARY OF THE INVENTION The present invention relates to a bubble micro-pump and an indirect bubble generating device thereof, which utilizes indirectly generated bubble generation to drive liquid flow in a bubble micro-pump, and can solve the liquid acid generated by the electrolytic bubble. Solve the problem of Φ value. The present invention proposes an indirect bubble generating device comprising a substrate and a bubble generating unit. The substrate has a first-class channel, at least one exhaust passage, an intake passage and a bubble outlet, wherein the exhaust passage is connected to the front portion of the flow passage, the intake passage is connected to the rear portion of the flow passage, and the bubble outlet is located at the end of the flow passage. The intake passage is introduced into the rear portion of the flow passage in which the gas is filled. The bubble generating unit is disposed in front of the flow path. When the bubble generating unit generates a first bubble in the liquid in the front stage of the flow path, the liquid system on the rear stage of the flow path is pushed toward the end of the flow path, and the gas in the rear stage of the flow path is pushed by the liquid toward the bubble outlet to generate a The second bubble. The present invention further provides a bubble type micro-pump comprising a main part and a driving portion. The main component has a main flow path and a side exhaust passage, and the lateral exhaust passage is connected to the main flow path. One of the main channels has a first surface, and the second region of the main channel has a second surface, wherein the first region and the second region are adjacent to the lateral exhaust passage, and the first surface is hydrophobic It is different from the hydrophilicity of the second surface. The driving portion includes an indirect bubble generating device, and one of the indirect bubble generating devices is connected to the main channel of the aforementioned 1 1327130, and the indirect bubble generating device generates bubbles in the first region and the second region. When the bubble starts to be dissipated from the lateral exhaust passage, the liquid backfilling speed of the first region is not equal to the liquid backfilling speed of the second region due to the difference between the hydrophilicity of the first surface and the hydrophilicity of the second surface. Drive liquid flow. In order to make the above-mentioned contents of the present invention more comprehensible, the following detailed description of the preferred embodiments and the accompanying drawings will be described in detail as follows: [Embodiment] Referring to Figure 1, there is shown a first embodiment of the present invention. The exploded view of the bubble micro-pump of the preferred embodiment. As shown in Fig. 1, the bubble type micro-pump 1 includes a substrate 100 and a cover plate 110. The bubble type micro-pump 1 is provided with a main part 120 and a driving part on the substrate 100. The main component 120 has a main flow passage 122 and a side exhaust passage 124 which is connected to the main flow passage 122. The first region of the main channel 122 (not shown in FIG. 1) φ has a first surface 122A, and the second region of the main channel 122 (not shown in FIG. 1) has a second surface 122B, wherein One region and the second region are adjacent to the lateral exhaust passage 124, and the hydrophilicity of the first surface 122A is different from the hydrophilicity of the second surface 122B. The driving portion includes an indirect bubble generating device 130, and one of the indirect bubble generating devices 130 is connected to the main flow path 122 of the main member 120. The indirect bubble generating device 130 generates bubbles in the first region and the second region. When the bubble begins to be dissipated by the lateral exhaust passage 124, the liquid backfilling speed of the first region of 8 1327130 is not equal to the liquid backfill of the second region due to the difference between the hydrophilicity of the first surface 122A and the hydrophilicity of the second surface 122B. Speed 1 hunts this to drive liquid flow. The cover plate 110 of the bubble type micro-pump 1 is disposed on the substrate 100. The cover plate 110 is preferably made of a transparent material. Thereby, when the bubble type micro-pump 1 is operated, the liquid flow state on the substrate 100 can be clearly observed. The material of the cover plate 110 is, for example, a high vinyl content (Polydimethylsioxane, PDMS) or glass. In addition, the cover plate 110 of the embodiment has a first inflow hole 112, a second inflow hole 114 and a first-class outlet hole 116 for the liquid to flow into and out of the substrate 100, but the invention is not limited thereto. The hydrophilicity of the first surface 122A on the substrate 100 and the hydrophilicity of the second surface 122B can be achieved in at least two ways. First, the first surface 122A is a rough surface having a first thick chain factor of 01, and the second surface 122B is a rough surface having a second thick chain factor. According to the paper published in the Journal of the Institute of Electrical and Electronics Engineers (IEEE, pp 694-697, 30 Jan~3 Feb 2005, Ashutosh Shastry, · etc), "The rough surface of the engineering surface used to control the droplets in the microfluidic system." (engineering surface roughness to manipulate droplets in micro-fluidic systems): The coarse chain adjustment of the surface changes the degree of contact of the droplets with the surface to control the flow of droplets in the microfluidic system. Therefore, the first roughness factor of the first surface 122A must be! The magnitude of the second roughness factor 02 with the second surface 122B is related to the liquid and the contact area of the first surface 122A with the second surface 122B. In this way, the present embodiment can change the surface roughness of the plane by manufacturing a plurality of micro-cylinders on a plane, wherein the rough seam factor 0 is defined as "the surface area of the stone cylinder (contact with the droplet) 9 1327130 ^ area) and the ratio of the total area of the plane. When the surface roughness of the plane changes, the fine force of the (10) angle of the droplet and the plane will change, causing the mobility of the droplet to change on the plane. The roughness factor of the surface of the coarse wheel is related to the contact angle of the liquid. The larger the contact angle of the liquid surface, the smaller the contact angle of the liquid surface. And the contact angle of the liquid surface 糸 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二

回填之速度’其中’毛細作用力越大,液體回填之速度越 快。於大氣壓力下’毛細作用力與接觸角約成反比,因而 當液面之接觸角越小(粗糙因子越大),毛細作用力越大, 液體之回填速度越快。 其二,第一表面122Α之親疏水性係為主部件12〇於 該第一表面122Α上設有一疏水材料形成,而第二表面 122Β之親疏水性係為於第二表面122Β設有一親水材料形 成。親水材料與疏水材料對於液滴之作用力不相同,其 中,疏水材料對於液滴之毛細作用力大於親水材料對於液 滴之毛細作用力,使得疏水、親水材料之作用非常類似於 前述之表面粗造度之概念,因此親水材料與疏水材料之吸 計亦可作為控制微流系統中液滴流動之方式。 在本實施例中,於主流道122第一區域之苐一表面 122Α係由一疏水材料製成,於第二區域之第二表面122Β 係由一親水材料製成。疏水材料與親水材料係可於主流道 122製作完成後再形成於主流道122上。或者,第一表面 122Α上之疏水材料與第二表面122Β上之親水材料可與主 流道122之製程一併完成。 1327130 如前所述,由於第一表面122A之疏水特性以及第二 表面122B之親水特性,使第一 域之液體回填速度大於 第二區域之液體回填速度,以產生圖示中X方向上之液體 淨流量。 較佳地,基板1〇〇於側向排氟通道124上亦設有一疏 水材料,防止液體由側向排氣通道124流出基板100。其 中,疏水材料例如是鐵氟龍,親水材料則例如是玻璃、二 氧牝矽等。基板100更包括一第〆液體入口 1〇2、一第二 • 液雜入口 104與一液體出口 106。第一液體入口 102位於 流道132前端,並對應於蓋板110之第一流入孔112設置。 第二液體入口 104係連接於主流道122,並對應於蓋板I10 之第二流入孔114設置。液體出口 106亦連接於主流道 122,並對應於蓋板11〇之流出孔116設置。主流道122 上之第一粗糙表面122A、第二粗較表面122B與側向排氣 通道124係例如位於主流道122上之中段位置。 • 如第1圖所示,本實施例之間接式氣泡產生裝裏13 〇 包栝在基板上設置之流道132、至少一排氣通道134、一 進氣通道136 —氣泡出口 138與一氣泡產生單元14〇。本 實施例是以多個連接到流道前段132A之排氣通道134作 說明,排氣通道134用以使基板1〇〇上之氣體排出。進氣 通道136連接到流道後段132B’進氣通道136係引八氣體 填充於部分之流道後段132B。氣泡出口 138位於流遘132 之末端,並對應於主流道122上之第一區域與第二隱威设 置。基板1〇〇於排氣通道134、進氣通道136與部分之流 11 1327130 - .蓄後段132B上皆設有疏水材料,以防止液體從排氣通道 134、進氣通道I36與流道後段132B流出基板100。當然’ 疏水材料亦可以是鐵氟龍。流道前段132A之寬度係實質 上不等於流道後段132B之寬度’本實施例係以流道前段 l32A之寬度小於流道後段132B之寬度作說明,且連接到 主流道122之部分流道後段132B之寬度係逐漸減縮直到 氟泡出口 138處。 於間接式氣泡產生裝置130之流道132上之液體較佳 • 是一電解質水溶液或一去離子水溶液。氣泡產生單元140 係咬ϊ於流道前段132A並電性連接至一驅動電源(未繪 示氣泡產生單元140用以於流道前段132A中電解液體 以產生氣泡43氟泡產生單元140包括至少一電極組,在本 實施例中是電極組包括四個電極142、144、146、148作 說明。每個電極142、144、146、148各別電性連接到驅 動電源,驅動電源係提供電壓到各電極142、144、146、 Φ 148,並適時調整驅動之電接位置與電極極性。電極142、 144、146、I48之材質例如是金屬,但較佳係金、鉑等鈍 態金屬,較不易參與反應。依需求以驅動流道前段132A 上之任二個電極’係可選擇氣泡所要產生之位置與大小。 請參照第2A〜2C圖,其繪示第1圖的氣泡式微幫浦 運作之連續系意圖°如第2A圖所示’當液體L1由蓋板 110 (見第1圈)之第—流入孔112與基板100之第一液 體入口 102進入流道132中,由於部分流道後段132B、排 氣通道134與進氣通道136上設有疏水材料’液體L1係 12 1327130 【圖式簡單說明】 第1圖繪示依照本發明一較佳實施例的氣泡式微幫 浦之爆炸圖。 第2A〜2C圖繪示第1圖的氣泡式微幫浦運作之連續 示意圖。The speed of backfilling 'where' the greater the capillary force, the faster the liquid backfilling. At atmospheric pressure, the capillary force is inversely proportional to the contact angle. Therefore, the smaller the contact angle of the liquid surface (the larger the roughness factor), the larger the capillary force and the faster the backfilling speed of the liquid. Secondly, the hydrophilicity of the first surface 122 is mainly formed by a hydrophobic material on the first surface 122, and the hydrophilicity of the second surface 122 is formed by providing a hydrophilic material on the second surface 122. The hydrophilic material and the hydrophobic material have different forces for the droplets, wherein the capillary material exerts a capillary force on the droplets greater than the capillary material of the hydrophilic material, so that the hydrophobic and hydrophilic materials function very similarly to the aforementioned surface roughness. The concept of build-up, so the suction of hydrophilic and hydrophobic materials can also be used as a means of controlling the flow of droplets in a microfluidic system. In the present embodiment, the first surface 122 of the first region of the main channel 122 is made of a hydrophobic material, and the second surface 122 of the second region is made of a hydrophilic material. The hydrophobic material and the hydrophilic material may be formed on the main channel 122 after the main channel 122 is fabricated. Alternatively, the hydrophobic material on the first surface 122 and the hydrophilic material on the second surface 122 can be completed in conjunction with the process of the main flow path 122. 1327130 As previously described, due to the hydrophobic nature of the first surface 122A and the hydrophilic nature of the second surface 122B, the liquid backfill velocity of the first domain is greater than the liquid backfill velocity of the second region to produce a liquid in the X direction as illustrated. Net flow. Preferably, the substrate 1 is also provided with a hydrophobic material on the lateral exhaust passage 124 to prevent liquid from flowing out of the substrate 100 from the lateral exhaust passage 124. Among them, the hydrophobic material is, for example, Teflon, and the hydrophilic material is, for example, glass, dioxin or the like. The substrate 100 further includes a second liquid inlet port 2, a second liquid inlet 104 and a liquid outlet 106. The first liquid inlet 102 is located at the front end of the flow path 132 and is disposed corresponding to the first inflow hole 112 of the cap plate 110. The second liquid inlet 104 is connected to the main flow path 122 and is disposed corresponding to the second inflow hole 114 of the cover plate I10. The liquid outlet 106 is also connected to the main flow path 122 and is disposed corresponding to the outflow hole 116 of the cover 11A. The first rough surface 122A, the second coarser surface 122B, and the lateral exhaust passage 124 on the main flow path 122 are, for example, located at a mid-stage position on the main flow path 122. • As shown in FIG. 1 , the in-line bubble generating device 13 of the present embodiment is provided with a flow path 132 disposed on the substrate, at least one exhaust passage 134 , an intake passage 136 — a bubble outlet 138 and a bubble. The unit 14 is generated. This embodiment is illustrated by a plurality of exhaust passages 134 connected to the front section 132A of the flow path for exhausting the gas on the substrate 1 . The intake passage 136 is connected to the flow passage rear section 132B'. The intake passage 136 is filled with eight gas filling portions of the flow passage rear section 132B. The bubble outlet 138 is located at the end of the flow raft 132 and corresponds to the first area on the main flow path 122 and the second hidden setting. The substrate 1 is disposed on the exhaust passage 134, the intake passage 136, and a portion of the flow 11 1327130 -. The rear portion 132B is provided with a hydrophobic material to prevent liquid from the exhaust passage 134, the intake passage I36, and the flow passage rear portion 132B. The substrate 100 flows out. Of course, the hydrophobic material can also be Teflon. The width of the front portion 132A of the flow path is substantially not equal to the width of the rear portion 132B of the flow path. In this embodiment, the width of the front portion of the flow path l32A is smaller than the width of the rear portion 132B of the flow path, and is connected to the rear portion of the flow path of the main flow path 122. The width of 132B is gradually reduced until the fluorobubble outlet 138. The liquid on the flow path 132 of the indirect bubble generating device 130 is preferably an aqueous electrolyte solution or a deionized aqueous solution. The bubble generating unit 140 is entangled in the front section 132A of the flow path and electrically connected to a driving power source (the bubble generating unit 140 is not shown for the electrolyte body in the front section 132A of the flow path to generate the bubble 43. The fluorobubble generating unit 140 includes at least one The electrode group, in this embodiment, the electrode group includes four electrodes 142, 144, 146, 148. Each of the electrodes 142, 144, 146, 148 is electrically connected to the driving power source, and the driving power source supplies the voltage to Each electrode 142, 144, 146, Φ 148 adjusts the position of the electrical connection and the polarity of the electrode in a timely manner. The material of the electrodes 142, 144, 146, and I48 is, for example, a metal, but is preferably a passive metal such as gold or platinum. It is not easy to participate in the reaction. According to the demand, any two electrodes on the front section of the flow channel 132A can be selected to select the position and size of the bubble. Please refer to the 2A~2C figure, which shows the operation of the bubble micro-pump of FIG. The continuous system is intended to enter the flow channel 132 as the liquid L1 enters the flow path 132 from the first liquid inlet 102 of the substrate 100 by the first inflow port 112 of the cover plate 110 (see the first turn) as shown in FIG. 2A, due to the partial flow path. Rear section 132B, exhaust passage 13 4 and the inlet passage 136 is provided with a hydrophobic material 'liquid L1 system 12 1327130. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing an explosion diagram of a bubble micro-pump according to a preferred embodiment of the present invention. 2A-2C A continuous schematic diagram of the operation of the bubble micro-pump of Figure 1 is shown.

16 1327130 【主要元件符號說明】 1 :氣泡式微幫浦 100 :基板 102 :第一液體入口 104 :第二液體入口 106 :液體出口 110 :蓋板 112 :第一流入孔 114 :第二流入孔 116 :流出孔 120 :主部件 122 :主流道 122A :第一表面 122B :第二表面 124 :側向排氣通道 130 :氣泡產生裝置 132 :流道 132A :流道前段 132B :流道後段 134 :排氣通道 136 :進氣通道 138 :氣泡出口 140 :氣泡產生單元 142、144、146、148 :電極 1716 1327130 [Description of main component symbols] 1: Bubble type micro-pump 100: Substrate 102: First liquid inlet 104: Second liquid inlet 106: Liquid outlet 110: Cover plate 112: First inflow hole 114: Second inflow hole 116 : Outflow hole 120 : Main part 122 : Main flow path 122A : First surface 122B : Second surface 124 : Lateral exhaust passage 130 : Bubble generating device 132 : Flow path 132A : Flow path front section 132B : Flow path rear section 134 : Row Air passage 136: intake passage 138: bubble outlet 140: bubble generation unit 142, 144, 146, 148: electrode 17

Claims (1)

1327130 十、申請專利範圍: 1. 一種間接式氣泡產生裝置,包括: 一基板,具有一流道、至少一排氣通道、一進氣通道 與一氣泡出口,該排氣通道連接該流道前段,該進氣通道 連接該流道後段,該氣泡出口位於該流道末端,該進氣通 道係引入氣體填充於部分之該流道後段;以及 一氣泡產生單元,設置於該流道前段; 其中,當該氣泡產生單元於該流道前段之液體中產生 一第一氣泡時,該流道後段上之液體係被推向該流道末 端,藉此該流道後段中之氣體係被液體推向該氣泡出口以 形成一第二氣泡。 2. 如申請專利範圍第1項所述之氣泡產生裝置,其 中當該第一氣泡從該排氣通道向外散失而該流道前段之 液體回填時,該流道後段上之液體係回流至該流道前段, 藉此使外部氣體藉由該進氣通道進入該流道後段。 3. 如申請專利範圍第1項所述之氣泡產生裝置,其 中該氣泡產生單元係包括至少一電極組,該電極組包括極 性相反之一第一電極與一第二電極。 4. 如申請專利範圍第1項所述之氣泡產生裝置,其 中該液體係一電解質水溶液或一去離子水溶液。 5. 如申請專利範圍第1項所述之氣泡產生裝置,其 中該基板於該排氣通道上係設有一疏水材料。 6. 如申請專利範圍第1項所述之氣泡產生裝置,其 中該基板於該進氣通道上係設有一疏水材料。 1327130 7. 如申請專利範圍第1項所述之氣泡產生裝置,其 中該基板於該流道後段上係設有一疏水材料。 8. 如申請專利範圍第1項所述之氣泡產生裝置,其 中該流道前段之寬度係實質上不等於該流道後段之寬度。 9. 如申請專利範圍第1項所述之氣泡產生裝置,其 中該基板更具有一液體入口,係位於該流道前端。 10. —種氣泡式微幫浦,包括: 0 —主部件,具有一主流道與一側向排氣通道,該側向 排氣通道連接該主流道,該主流道之一第一區域具有一第 一表面,該主流道之一第二區域具有一第二表面,該第一 區域與該第二區域係鄰近該側向排氣通道,且該第一表面 之親疏水性係不同於該第二表面之親疏水性;以及 一驅動部,包括一如申請專利範圍第1項所述之間接 式氣泡產生裝置,該間接式氣泡產生裝置之該流道係連接 該主流道,該間接式氣泡產生裝置係於該第一區域與該第 Φ 二區域中產生一氣泡; 其中,當該氣泡由該侧向排氣通道開始散失時,由於 該第一表面之親疏水性與該第二表面之親疏水性之差 異,使該第一區域之液體回填速度不等於該第二區域之液 體回填速度,藉此驅動液體流動。 11. 如申請專利範圍第1〇項所述之氣泡式微幫浦, 其中該第一表面之親疏水性係為具一第一粗糙因子之粗 糙表面形成’第二表面之親疏水性係為具一第二粗糖因子 之粗链表面形成。 1327130 12. 如申請專利範圍第10項所述之氣泡式微幫浦, 其中該第一表面之親疏水性係為該主部件於該第一表面 上設有一疏水材料形成,該第二表面之親疏水性係為於該 第二表面設有一親水材料形成。 13. 如申請專利範圍第10項所述之氣泡式微幫浦, 其中該主部件於該側向排氣通道上係設有一疏水材料。 14. 如申請專利範圍第10項所述之氣泡式微幫浦, 其中當該間接式氣泡產生裝置產生之一氣泡從該排氣通 道向外散失而該流道前段之液體回填時,該流道後段之液 體係回流至該流道前段,藉此使外部氣體藉由該進氣通道 進入該流道後段。 15. 如申請專利範圍第10項所述之氣泡式微幫浦, 其中該氣泡產生單元係包括至少一電極組,該電極組包括 極性相反之一第一電極與一第二電極。 16. 如申請專利範圍第10項所述之氣泡式微幫浦, 其中該流道中之液體係一電解質水溶液或一去離子水溶 液。 17. 如申請專利範圍第10項所述之氣泡式微幫浦, 其中該基板於該排氣通道上係設有一疏水材料。 18. 如申請專利範圍第10項所述之氣泡式微幫浦, 其中該基板於該進氣通道上係設有一疏水材料。 19. 如申請專利範圍第10項所述之氣泡式微幫浦, 其中該基板於該流道後段上係設有一疏水材料。 20 1327130 _ 20. 如申請專利範圍第10項所述之氣泡式微幫浦, 其中該流道前段之寬度實質上不等於該流道後段之寬度。 21. 如申請專利範圍第10項所述之氣泡式微幫浦, 其中該基板更具有一液體入口,係位於該流道前端。 211327130 X. Patent application scope: 1. An indirect bubble generating device, comprising: a substrate having a first-class track, at least one exhaust passage, an intake passage and a bubble outlet, the exhaust passage connecting the front portion of the flow passage, The air inlet passage is connected to the rear portion of the flow passage, the air bubble outlet is located at the end of the flow passage, and the air inlet passage is filled with a gas filling portion of the flow passage rear portion; and a bubble generating unit is disposed at the front portion of the flow passage; When the bubble generating unit generates a first bubble in the liquid in the front stage of the flow path, the liquid system on the rear stage of the flow path is pushed toward the end of the flow path, whereby the gas system in the rear stage of the flow path is pushed toward the liquid The bubble outlet is formed to form a second bubble. 2. The bubble generating device of claim 1, wherein when the first bubble is dissipated outward from the exhaust passage and the liquid in the front portion of the flow path is backfilled, the liquid system on the rear portion of the flow path is returned to The front section of the flow path, whereby external air enters the rear section of the flow path through the intake passage. 3. The bubble generating device of claim 1, wherein the bubble generating unit comprises at least one electrode group comprising one of a polarity opposite first electrode and a second electrode. 4. The bubble generating device of claim 1, wherein the liquid system is an aqueous electrolyte solution or a deionized aqueous solution. 5. The bubble generating device of claim 1, wherein the substrate is provided with a hydrophobic material on the exhaust passage. 6. The bubble generating device of claim 1, wherein the substrate is provided with a hydrophobic material on the inlet passage. The bubble generating device of claim 1, wherein the substrate is provided with a hydrophobic material on the rear portion of the flow path. 8. The bubble generating device of claim 1, wherein the width of the front portion of the flow path is substantially not equal to the width of the rear portion of the flow path. 9. The bubble generating device of claim 1, wherein the substrate further has a liquid inlet located at a front end of the flow path. 10. A bubble type micro-pump comprising: 0 - a main part having a main flow path and a side exhaust passage, the lateral exhaust passage connecting the main flow path, the first area of the main flow path having a first a surface, a second region of the main channel has a second surface, the first region and the second region are adjacent to the lateral exhaust passage, and the first surface has a hydrophilicity different from the second surface And a driving portion comprising an inter-connected bubble generating device according to claim 1, wherein the flow channel of the indirect bubble generating device is connected to the main flow channel, and the indirect bubble generating device is Generating a bubble in the first region and the Φ second region; wherein, when the bubble begins to be dissipated from the lateral exhaust channel, due to the difference between the hydrophilicity of the first surface and the hydrophilicity of the second surface The liquid backfilling velocity of the first zone is not equal to the liquid backfilling velocity of the second zone, thereby driving the liquid flow. 11. The bubble micro-pump according to claim 1, wherein the hydrophilicity of the first surface is a rough surface having a first roughness factor forming a hydrophilic surface of the second surface. The thick chain surface of the two crude sugar factors is formed. The blister-type micro-pump according to claim 10, wherein the hydrophilicity of the first surface is formed by the main component being provided with a hydrophobic material on the first surface, and the hydrophilicity of the second surface The second surface is formed with a hydrophilic material. 13. The bubble micro-pump of claim 10, wherein the main component is provided with a hydrophobic material on the lateral exhaust passage. 14. The bubble micro-pump according to claim 10, wherein the indirect bubble generating device generates a bubble from the exhaust passage and the liquid is backfilled in the front portion of the flow passage, the flow passage The liquid system in the latter stage is returned to the front section of the flow path, whereby external air enters the rear section of the flow path through the intake passage. 15. The bubble micro-pump of claim 10, wherein the bubble generating unit comprises at least one electrode group comprising a first electrode and a second electrode having opposite polarities. 16. The bubble micro-pump according to claim 10, wherein the liquid system in the flow channel is an aqueous electrolyte solution or a deionized aqueous solution. 17. The bubble micro-pump of claim 10, wherein the substrate is provided with a hydrophobic material on the exhaust passage. 18. The bubble micro-pump of claim 10, wherein the substrate is provided with a hydrophobic material on the air inlet passage. 19. The bubble micro-pump of claim 10, wherein the substrate is provided with a hydrophobic material on the rear portion of the flow path. The bubble micro-pump of claim 10, wherein the width of the front section of the flow path is substantially not equal to the width of the rear section of the flow path. 21. The bubble micro-pump of claim 10, wherein the substrate further has a liquid inlet located at the front end of the flow path. twenty one
TW96124835A 2007-02-06 2007-07-06 Bubble-type micro-pump and indirect bubble-generating device thereof TWI327130B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW96124835A TWI327130B (en) 2007-07-06 2007-07-06 Bubble-type micro-pump and indirect bubble-generating device thereof
US12/014,813 US20080186801A1 (en) 2007-02-06 2008-01-16 Bubble micro-pump and two-way fluid-driving device, particle-sorting device, fluid-mixing device, ring-shaped fluid-mixing device and compound-type fluid-mixing device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96124835A TWI327130B (en) 2007-07-06 2007-07-06 Bubble-type micro-pump and indirect bubble-generating device thereof

Publications (2)

Publication Number Publication Date
TW200902431A TW200902431A (en) 2009-01-16
TWI327130B true TWI327130B (en) 2010-07-11

Family

ID=44721895

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96124835A TWI327130B (en) 2007-02-06 2007-07-06 Bubble-type micro-pump and indirect bubble-generating device thereof

Country Status (1)

Country Link
TW (1) TWI327130B (en)

Also Published As

Publication number Publication date
TW200902431A (en) 2009-01-16

Similar Documents

Publication Publication Date Title
US8037903B2 (en) Micromachined electrowetting microfluidic valve
JP4341372B2 (en) Liquid mixing method, mixing apparatus and mixing system
US9011663B2 (en) Electrowetting-based valving and pumping systems
JP2005519751A (en) Microfluidic channel network device
WO2006083598A2 (en) Method and apparatus for pumping liquids using directional growth and elimination of bubbles
KR20050063358A (en) Microfluidic control device and method for controlling microfluidic
WO2007024410A2 (en) Fluidic mixing structure, method for fabricating same, and mixing method
US20080186801A1 (en) Bubble micro-pump and two-way fluid-driving device, particle-sorting device, fluid-mixing device, ring-shaped fluid-mixing device and compound-type fluid-mixing device using the same
US20220331794A1 (en) Electroosmotic Micropump Apparatus and Electroosmotic Micropump Apparatus Group
CN103170265A (en) Piezoelectric micro-mixer
CN100540896C (en) A kind of mini self-priming pump
US8500964B2 (en) Method of fabricating bubble-type micro-pump
TWI327130B (en) Bubble-type micro-pump and indirect bubble-generating device thereof
JP4059073B2 (en) Method for pumping liquid in merging device and merging device
KR100826584B1 (en) Fluidic channeling actuator for the biochip analysis
CN110354926A (en) Electric osmose Micropump device
CN101348232B (en) Bubble type micropump and indirect type bubble generating apparatus thereof
Kedzierski et al. New generation of digital microfluidic devices
JP2013005460A (en) Pump
TWI310021B (en) Bubble-type micro-pump and two-way fluid driving device, particles sorting device, fluids mixing device, ring-shaped fluids mixing device and compound-type fluids mixing device using the same
US20210170408A1 (en) Microfluidic valves
CN101259949A (en) Air bubble type micro-pump and device applying the same
Wu et al. Electrokinetically driven flow control using bare electrodes
Ribetto Microfabricated All-Around-Electrode AC Electro-osmotic Micropump
Chiu et al. Enhanced droplet mixer by LDEP on spiral microelectrodes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees