TWI326271B - Methods and structures for promoting stable synthesis of carbon nanotubes - Google Patents

Methods and structures for promoting stable synthesis of carbon nanotubes Download PDF

Info

Publication number
TWI326271B
TWI326271B TW093134663A TW93134663A TWI326271B TW I326271 B TWI326271 B TW I326271B TW 093134663 A TW093134663 A TW 093134663A TW 93134663 A TW93134663 A TW 93134663A TW I326271 B TWI326271 B TW I326271B
Authority
TW
Taiwan
Prior art keywords
carbon nanotubes
layer
synthesis
synthetic
carbon
Prior art date
Application number
TW093134663A
Other languages
English (en)
Other versions
TW200526803A (en
Inventor
Toshiharu Furukawa
Mark Charles Hakey
Steven John Holmes
David Vaclav Horak
Charles William Koburger Iii
Peter H Mitchell
Larry Alan Nesbit
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Publication of TW200526803A publication Critical patent/TW200526803A/zh
Application granted granted Critical
Publication of TWI326271B publication Critical patent/TWI326271B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • H01J1/3044Point emitters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cold Cathode And The Manufacture (AREA)

Description

1326271 九、發明說明: 【發明所屬之技術領域】 本發明係關於半導體裝置的製造,更明確地說,係關 於促進碳奈米管之穩定合成的方法和結構。 【先前技術】 傳統場效電晶體(FET)為熟知傳統裝置,普遍當作 基礎建構方塊被包含至積體電路(1C)晶片之精密複二的 電路糸統中。FET的尺寸往下縮小促進了電路效能且增加 了封裝於丨C晶片上之FET的能力。然而,與傳統材料相 關的尺寸限制以及微影蝕刻光罩之成本,會阻礙尺寸的持 續縮減。 ' 碳奈米管為奈米大小之高深長寬比(h jgh_aspect_ratj〇) 的圓柱體,其係由碳原子的六角環(hexagona丨ringS)所組 成’而可呈現半導電子狀態(semiconducting electronic state)或傳導電子狀態(c_uctinge丨ectr〇njcstate)。在混 合FET的製造上,已經成功地使用半導碳奈米管來作為 通道區域,且在延伸於基質表面之金源電極(g〇|d s〇urce electrode)和金汲電極(gold drain e丨ectr〇de)之間的碳奈米 管兩端形成接觸。閘電極被定義於碳奈米管下方之基'質, 且通常介在源電極和;:及電極之間。基質之氧化表面定義一 閘”電物(gate dielectric) ’其係位於埋入式閘電極和碳奈 米管^間。由於碳奈米管之微小尺寸,奈米管混合FET 會X罪地切換’且相較於以石夕為基礎的裝置結構顯著地消 耗杈> 的功率。藉由使用原子力顯微鏡mic f〇rce microscope)的射定位來操作單—半導碳奈米f,或藉
理慈 4旧M/04129TW 5 ί電導碳奈米管卜巧合放置於源電極與 下成功地顧奈米管’便可以在實驗室的條件 礙米皆ί可用性和其合成的成本為-主要問題,阻 士二太導入至許多潛在之量產終端產品,如丨C晶片。人 方法為沉積—層催化材料於基質上,i 物(ca^bona: /成具有小點之陣列,以當作使用碳質前驅 ID P「eCU「S〇r)來進行化學氣相沉積(CVD) ίί„域。藉由在具有種子區域之催化材料(其附著 ^ ΐ 個奈米管介面插入活性化碳原子,碳奈米管便 成長嘴著碳奈米管增長,CVD反應物至種子區域 置變鼓到限制,尤其是對種子區域之密集陣列而 二明確地說’相鄰的碳奈㈣之間,開放給反應物流量 的工間可能會很狹窄。反應物必須從碳奈米管的前 (leading free end)附近,流過此開放空間以抵達催化材 料’以參與成長反應。流量限制減緩(甚至可能停止)在種 子區域之奈米管合成,峨於献速_断低且,可能 在奈米管長度增加後停止成長。 因此需要一種藉由CVD合成碳奈米管之方法,其係 不會受到反應物流量限制所限制,其係由基質所負載^催 化材料之種子塾(seed pads),而被流至具有催化材料的合 成介面之反應物流量。 【發明内容】 依照本發明之原則,製造碳奈米管之方法包括合成碳
理慈 4 旧 M/04129TW ϋ二丄:負載的複數個合成地點之上。而大量製造 度,於方法包括合成複數個碳奈綺至第一長 ΐ管之入‘斤負載之複數合成地點之上。複數個碳奈 個ί成持、。此方ΐ進一步包括從第-基質將複數 數個矿太乎二二丄並且於這些複數個合成地點回復進行複 一县;曰成,以將複數個碳奈米管增長至大於第 乎管:η的:ii。於是’每一個合成地點和對應的碳奈 ί 間的會持續不受阻礙(_—制),而可以被 反應乳體自由地存取,靖碳奈米管增長至有限的長度。 具有複數個碳奈米管的結構,每個碳 =和第二端之間。每—複數個碳奈米管 之弟一鈿係由基質所支持。每一複數個碳奈 _合於複數個合成地點其+之—。 4一% 央女之原理’碳奈米管可使用簡化的製備程序 製造來獲得。本發明以其許多實施例滿足對以高 成長率合成很長之碳奈米管的需求。本發明之方法可被用 來在任何潛在或實際應用上大量製造碳奈米管, 半導體元件製造或其他各種細。竣奈米管之密集;車列的 形成可以不受流至合成地點之反應物流量所影響。 【實施方式】 本發明以其不同實施例提供穩定合成碳奈米管的方 法,其合成或成長係藉由化學氣相沉積,沉積於具有用來 促進成長之催化材料的種子塾上。此方法一般包ς形成碳
理慈 4 旧 M/04129TW 1326271 f管於Ϊ一基質所支持的複數個合成地點、中斷夺乎管 以 之一 =弟-基質。因此’每一個碳奈米管由合成地點之一 ΓΓ之獨立結構’且合成地點對反應物之存取 奈米管所阻礙。在形成不會受阻礙之^構 後不未成於此合成地點回復進行,以增長碳奈米管。 於基供 $質12表面上之行和列的週期的陣列二: =f4括Ϊί用於合成碳奈米管(圖二)之催化材^的Ϊ 子墊14,八位於一平台或柱狀物16 ΙΠί,碳成長的適當4基質材^ ^ ,括但不限於晶圓或砍(si)、钟化 玻璃、碳化石夕(sic)、二氧化石夕(s \ 劑的適當金屬。柱狀物16是用;支以 f 14 ^支持元件,並且是由任何類 種付Μ週邊錄 、疋3隙土 18,其係由不支持碳夺米管人 2成〇長=斤組成。位於合成地點10 :下以Ϊ s iii作侧終止層,細除了釋放12〇之外: 供另外的蝕刻終止層(未顯示)。切割平面 &者釋放層20之水平平面被定義。 在本發明的-實施例中,釋放層2〇是可用 ”他熟此技能者所認知之傳統技術所移2之材 广'。圖樣化的種子墊14可藉由沉積催化材料之覆蓋層於
理慈 4IBM/04129TW 8 1326271 絕緣層12之上而形成,其可使用任何傳統沉積技術,包 括但不限於使用適合之前驅物例如金屬齒化物、金屬氧化 物、和碳基金屬化合物所進行之化學氣相沉積(CVD); 激鑛;和物理氣相沉積(PVD) ’並且接著使用標準微影 蝕刻和相減性(subtractive)钱刻程序來圖樣化此覆蓋層。 間隙壁18可由標準沉積和蝕刻程序來形成於種子 圍。間隔分開之柱狀物16則是可藉由進行自行對準的^ 方向性姓刻來定義,其係依靠種子塾14 罩,且對基質12的材料(相較於組成種抒14和間^ 18的材料)進行選擇性钱刻,直至釋放層2〇之深度。 物下催ΙΓϋ:?中之催化材料為曝露在適合的化學反應 此處所參照到的用語例如「垂 示範’而不是用於㈣丨 」平」等係用於 所用之用語「水平」被定義成、_、暸解本發明的參考。此處 之平面或絲,魏基質12 方向垂直於前述所定$ ,方向。用5吾垂直」指一 上」、「d「t 4的水平扣。其它帛語例如「之 低」、「超過」、「向7、」;:側(如『側壁』)」、「更高」、「更 義。在此應可暸解的」θ,ft」則是相對於水平平面所定 用而不離開本發明之多不同參考座標可以被使
理慈 4 旧 M/04129TW 9 而使官22可藉由任何適合之成長技術, 2 22之合成會暫時被停止。在本發 f :貝例十,當碳奈米管22具有大約100奈米至200 長度時,貞彳合成就會被情。碳奈米管 乂二=電_㈣料子雜之·。奈米管 斷時之特定長度’係較短於奈米管回復合成 η終長度’如下所詳述。間隙壁18係避免 ΐ橫向或水平的奈米管合成。較佳地, 積會被限制,或利用合成條件來使得每 /、曰有早一碳奈米管22之合成,而然本發明 ^不做如此之限制,種子墊14其中之—或更多可且^ 直延伸之多重碳奈米管22。 八 在本發明的-個實施例中,碳奈米管22是由化 或電f增強CVD所成長,其係使用任何適 口之軋體或氣化之奴質反應物,包括但 =、乙烯⑽)、甲_、乙块崎^ (腦)的混合物、乙块和氮(N2)的混合物、乙炔和氮㈤ ίΐ合物、以f二曱f⑽4(αί3)〇,並處於適當的成長 條件’以促物奈米管絲於催化獅_彡成的種子塾Μ 上。基質12可被加熱至足夠來促進且/或加速CVD成長 之溫度。添加物可以與反應物混合,以促進單壁夺米管之 合成、多壁奈米管之合成、輯加奈米管㈣長速^或長 度0 、 反應物被送至或供應隸-彳_子塾14,於此處反應
理慈 4 旧 M/04129TW 丄326271 =會=以 ϊί導;子奈㈤長= 壬ΐίίΓΐί 無法準確_已知種子龍上之 為;=2。可為相似於同心_體之多 石厌奈米管22從種子塾14平均實質地番吉a卜仙 高度預期其 耦:丄固2^;則端24測量至與對應種子墊14 3 口二在每一碳奈米管22和對應的種伟 Β日碳原子’便會開始進行成長。本發 上2的一部:咬全部可能會略微傾斜於本x 特徵,而在^均上‘ 質;;;管^ 12上參共軸沉積一層28於基質 10全覆盍碳奈米管22且填滿相鄰合成地點 (Sl〇2) * 源而進===:==驅物來
理慈 4 旧 M/04129TW 11 他適化學機械研磨(CMP)程序或任何並
Ϊ丨:ί 2技術’將層28之曝露表面30研磨至I 斧由在CMP程序涉及研磨或機械磨耗的動作,並 精由在研磨塾和層28間 序啊作’並 性的辅助。在本發明的研摩液’來進行化學 且其並非必需。摔作θ圓种,CMP程序是選用的, 技蓺者所孰二ϊϋ: die wafer)32可藉由任何熟 舉,技術,以鍵結至層2δ的曝露表面30。 可盥層28Ϊ士曰曰二可為f晶圓或金屬晶圓。操作晶圓32 執處i ^曰n使用—高溫黏著層或藉由適當加 顯示)進^;曰=2幫1=用地化物或其他層(未 ί 留合成地點1G和介電層W,因此掸 機械讀。例如,可藉由濕式钱 ’作晶圓32在製造程序之 h被反置,如_所指,_本發不以此為限。 多,’、、,五’層28被移除至一深度,以曝露出種子墊 的對奈米管22和相對應的一個種子塾14之間 _除^8社I如f層28是由Si〇2所組成’則選擇性地 的其令技術’是對合成地點10和碳奈米管 材料’進行等向濕式钱刻,其係使用適合的液 Πϊί例如緩衝氫氟酸(HF)溶劑。奈米管22和 j j = σ成地點10此時則形成相對於操作晶圓32為實質 垂直地延伸的結構。因為層28的 給奈米管献反驗的無阻贼祕(即《)路ΐ其 it於母—個碳奈米管22之基底26,以及介於每一個基 底26和相關種子塾14之間的介面27。
理慈 4IBM/04129TW 12 1326271 人面,山ΐ由供應成長反應物至相關種子塾14的 ί ;i;i; 22t^2〇7 ^ 介:使 s 的進行並不/受到正此,合成 地點==ΐίΐΐΓ=^,嗎從合成 者所習知的適當分類技術。此^,,孰此m熟此技藝 理解到,财料_ 22的^ 可輕易地 晶圓34上製造。 的耕結構也可以直接於操作 處理到=本:明=另一個實施例’基質12在 处主万凌進仃至]如圖一所不的階段時,以一 m基 = = 奈米管22,因轉露的表面為不規 參照圖八,使用CMP程序將層4〇之表面4 =序也可絲將碳奈^ 22 4㈣ 4〇之厚度減少,使得碳奈米管22之長度相等 =
理慈 4 旧 M/04129TW 13 1326271 度。然而可體認的是’某此碳夺 ^吕、22在GMP程序後可能有較短於前述的等化或二^ 度,亚且保持沉沒於表面42下的層4〇。 一 、 广’藉由反應離子糊程序⑽)將層40選 擇性地移除(相較於碳奈米管22),使得層4〇之^ ^ ?於是相對於碳奈米管22的進—步凹陷。^ = =_虱氣酸(HF)溶劑。接著以第二材料被沉積-層44於曝露表面42(如圖十所示)。碳奈米管以 雨二 端24則嵌入於層44中。層44可使用任材血祀士、:路刖 ^斗間’具有選擇性姉b的任何材料/並且^成曰= =多晶賴之間,可藉由伽含氯氣體HA0體 或其混合氣體,以RIE程序來進行選擇性_。3 /吴緒 爹照圖十一’可使用熟此技藝者所習知的任何傳 術將操作晶圓46(例如石夕晶圓或金屬晶圓)鍵結至声。 操作晶圓46可鍵結至層44,例如,使用—高溫黏曰著層 經由適當的加熱處理。操作晶圓46可以選擇性地余佈曰氧 化物或塗佈其他層(未顯示)來幫助鍵結。接著基I 12 藉由利用釋放層2G來移除’並保留合成地點1() ^層4〇 和層44 ’使得操作晶圓46提供必需之機械支持。典&地, 如圖十所示的操作晶圓46在製造程序之此階段會反 置,然而本發明並不以此為限。 曰
理慈 4 旧 M/04129TW 14 1326271 序以將層io移除,^有選擇性的蝕刻程 終止層。在侧程序中;^ 之作用為侧 H)和碳奈米管22中“^^1也對合成地點 4 6的水平面,夺米管2 2釦如M 陵。相對於操作晶圓 地幽伸的二 子墊14之間的介面27。;母111基底26和相關種 的仑’山ΐ由供應成長反應物至相關種子塾Μ ϊ+¥故奈米管22的成被重新起始,其中種子 U^、、、、會保持固定於每個碳奈米tf 22的基底26上。 ΐίΐ進行於相同的原始介面27’並且由催化材料來促成 ft較短的碳奈米管22的成長。在碳奈米管22 ϋ的土 輊=,成長介面27附近之反應物流動的環境保持相同且 不變。換言之,在碳奈米管22增長時,介於奈米管以和 ,關種子塾14之間的介面,其氣體雜並未被阻礙,或 =被成長程序所變更,即使在種子墊14以及增長的奈米 管22 ^離操作晶圓46時,對合成地點1〇之密集的^ ^ 陣列而言依然如此。因此,合成的進行並不會受到正在增 長之奈米管22所阻礙。碳奈米管22被合成至所需的長 度,且接著被取下或合併至元件結構中。依照本發明之具 體實施例,在成長終止時,碳奈米管22的任何長度都具 有實質均勻的長度分布。 〃 儘管本發明藉由不同實施例之敘述來說明,且儘管這
埋慈 4 旧 M/04129TW 15 貫施例她當詳細地敘述,申請人縣意_詳 2限制附加的巾請專利範圍。_ 藝 額外 將是顯而易見。因此,本發明的範圍 【圖式簡單說明】
分,於且構成本說明書的-部 本發明之實=明和貫施方式-側於描述與解釋 :實=處理方法’描述不同階 _=====細咖法,描述 12基質 16柱狀物 20釋放層 24前端 27介面 30表面 40層 44層
【主要元件符號說明】 1〇合成地點 14種子墊 18間隙壁 22碳奈米管 邡基底 28層 32操作晶圓 42表面 46操作晶圓
理慈 4 旧M/04129TW 16

Claims (1)

1326271 十、申請專利範圍: 1. 種量產碳奈米管的方法,包含: 心合成複數個碳奈米管於—第—基質所負載的複數個合成 地點至一第一長度; 中斷該複數個碳奈米管之合成; 基質支持每—該複數個碳奈米管的自由端; 为,該複數個合成地點與該第一基質;以及 ^回復合成該複數個合成地點的該複數碳奈米管,以增長該 複數個碳奈米管至大於該第-長度的-第二長度。 2.如5月求項1所述之方法,其中支持該自由端之步驟包含: 缺以一層(layer)覆蓋該複數個合成地點和該複數個碳奈米 官,該層具有相對的一第一和一第二表面; 鍵結該層的第一表面至該第二基質;以及 二入凹陷該,之第二表面至一深度,該深度足夠曝露一介面, 該介面位於每一該複數個碳奈米管,以及該複數個合成地點之 相對應的一個兩者之間。 3.^π請求項2所述之方法,其中每一該複數個碳奈米管包括 鲁 一前端,且其中凹陷該層之步驟包含: 限制該層之凹陷,使得每一該複數個碳奈米管之前端維持 沉沒於該層中。 4·如請求項1所述之方法,其中每一該複數個合成地點包括 一催化材料之種子墊’用於支持該碳奈米管之合成。 5_如請求項4所述之方法,其中合成該複數個碳奈米管之步 理慈 4IBM/04129TW 17 1326271 驟包含: 6.如^求項5所述之方法,其巾該巾斷合成之 中畊供應該反應物至該介面。 ^ 3 7包7請求項5所述之方法’其中回復該碳奈㈣之合成步驟 供應一反應物至該介面。 8.如請求項3所述之方法,進一步包含·· ,繞i隨於每—該複數個合成地 奈米管的合成實質地平行於具有該第—基質的種避免 i ^輸個合成地點與該 >,用-釋放相促轉放該第—基質’轉放層係介於今 弟一基質和該複數個合成地點之間。 '^ 10. 如請求項1所述之方法,進一步包含: 避免側向奈米管的合成發生於具有該第一基質的—水 面上’因此姆於具有該第—基_該水平面,每—該複 叙奈米管具有實質垂直之方向。 11. 如請求項1〇所述之方法,其中避免側向奈米管合成之步 理慈 4ΙΒΜ/04129TW 18 1326271 驟包含: 以間隙壁環繞每一該複數個合成地點,以禁止側向的奈米 管合成。 述之方法’其中每-該複數個合成地點係負 13.如睛求項1所述之方法,進一步包含: 形成該複數個合成地點於該第一基質上。 1丨1所述之方法,其中每一該複數個合成地點的大 小係用於支持该複數個碳奈米管其中之一的合成。 3包^明求項1所述之方法’其巾合成該複數個碳奈米管之步 進仃化學氣相沉雜序於該複數個合成地點。 項16所述之方法’其中該進行化學氣相沉積程序 化該種子塾受到該催化材料所催 二步項1所述之方法,其中回復合成該複數個碳奈米管 理慈 4 旧 M/04129TW 19 進行化學氣相沉積程序於該複數個合成地點D 項18所述之方法’其中每-該複數個合成地點包 催化材料的種子墊,用於支持該複數個碳奈米管之合成。 項19所述之方法,其中進行該化學氣相沉積程序 化,應物至雜子墊’該鮮塾受_催化材料所催 ,以合成該複數個碳奈米管Φ ί米ΐ請求項1所述之綠,其巾該複數個碳奈*管為多壁碳 實 2質2上Γί Si所述之方法,其中該複數個碳奈求管具有 23.由端之步驟包含: 個碳奈米管丨第—層覆I該複數個合成地點和該複數 鍵結該第二層至該苐二基質;以及 足约f ΐ 5亥第二層而選擇性地移除該第—層至一深产,兮、” 足夠曝路該複數個合成地點。 又該/木度 24.,:月^項23所述之方法,進一步包含: 度,兮、於該第一層上之前,移除該第—層至-'、粟 -該複數,奈米管之自由端,使得: 丁 ®之该自由端係嵌入於該第二層中。 理慈 4m_)4129TW 20 丄獨271 如請求項24所述之方法,其中移除該第一層係減短該複 數個碳奈米管至少其中之一的長度。 %· —種具複數個碳奈米管的結構,包含: 一基質; 複數個碳奈米管,每一個係延伸於一第一端和一第二端之 間’該第一端係耦合至該基質;以及 二…複數個合成地點,每一個係搞合至該第二端,該第二端係 该複數個碳奈米管相對應之一個。
明求項26所述之結構,其中每一該複數個合成地點的 小係用於支持該複數個碳奈米管其中之一的合成。 細时奈米管係 29.如請求項26所述之結構,其中該基質進一步包人.
管,二S複ΐ個合成地點和該複數:碳奈 吕这層具有二表面,該第—表面鍵結至該基負 30·如請求項29所述之結構,其中該複數個 一端被埋入於該層之内。 s的該 31. 如請求項29所述之結構,其中該層的該第二 至-深度,棘度足夠曝露該複油合成触。彳凹陷 32. 如請求項26戶斤狀結構,其中該複數個碳奈米管為多辟 理慈 4IBM/04129TW 21 1326271 碳奈米管。 33.如請求項26所述之結構,其中該複數個碳奈米管具有一 實質均勻的長度。 理慈 4 旧 M/04129TW 22
TW093134663A 2003-12-11 2004-11-12 Methods and structures for promoting stable synthesis of carbon nanotubes TWI326271B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/733,974 US7374793B2 (en) 2003-12-11 2003-12-11 Methods and structures for promoting stable synthesis of carbon nanotubes

Publications (2)

Publication Number Publication Date
TW200526803A TW200526803A (en) 2005-08-16
TWI326271B true TWI326271B (en) 2010-06-21

Family

ID=34653267

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093134663A TWI326271B (en) 2003-12-11 2004-11-12 Methods and structures for promoting stable synthesis of carbon nanotubes

Country Status (5)

Country Link
US (2) US7374793B2 (zh)
JP (1) JP4032083B2 (zh)
KR (1) KR100645410B1 (zh)
CN (1) CN1280186C (zh)
TW (1) TWI326271B (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038299B2 (en) * 2003-12-11 2006-05-02 International Business Machines Corporation Selective synthesis of semiconducting carbon nanotubes
US20050167655A1 (en) * 2004-01-29 2005-08-04 International Business Machines Corporation Vertical nanotube semiconductor device structures and methods of forming the same
US7211844B2 (en) 2004-01-29 2007-05-01 International Business Machines Corporation Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage
US7829883B2 (en) 2004-02-12 2010-11-09 International Business Machines Corporation Vertical carbon nanotube field effect transistors and arrays
US7109546B2 (en) 2004-06-29 2006-09-19 International Business Machines Corporation Horizontal memory gain cells
US7233071B2 (en) * 2004-10-04 2007-06-19 International Business Machines Corporation Low-k dielectric layer based upon carbon nanostructures
US20060258054A1 (en) * 2005-05-11 2006-11-16 Molecular Nanosystems, Inc. Method for producing free-standing carbon nanotube thermal pads
KR100645064B1 (ko) * 2005-05-23 2006-11-10 삼성전자주식회사 금속 산화물 저항 기억소자 및 그 제조방법
US7170055B1 (en) * 2005-08-18 2007-01-30 The Board Of Trustees Of The Leland Stanford Junior University Nanotube arrangements and methods therefor
KR100682952B1 (ko) * 2005-08-31 2007-02-15 삼성전자주식회사 나노탄성 메모리 소자 및 그 제조 방법
ATE474876T1 (de) * 2007-02-22 2010-08-15 Dow Corning Verfahren zur herstellung leitfähiger folien sowie in diesem verfahren hergestellte artikel
JP4224109B2 (ja) * 2007-03-02 2009-02-12 コーア株式会社 積層体およびその製造方法
JP5269352B2 (ja) * 2007-06-08 2013-08-21 学校法人早稲田大学 単層カーボンナノチューブ製造方法、半導体配線構造の製造方法、フィールドエミッションディスプレイ用電子部品の製造方法及び探針製造方法
FR2917893B1 (fr) * 2007-06-22 2009-08-28 Commissariat Energie Atomique Procede de fabrication d'une connexion electrique a base de nanotubes de carbone
US7985394B2 (en) * 2007-09-19 2011-07-26 Gideon Duvall System and method for manufacturing carbon nanotubes
US20100212727A1 (en) * 2009-02-26 2010-08-26 Ji Ung Lee Apparatus and methods for continuously growing carbon nanotubes and graphene sheets
CN102459727B (zh) 2009-04-17 2015-04-15 赛尔斯通股份有限公司 还原碳氧化合物生成固态碳的方法
CN102083075B (zh) * 2009-11-30 2014-02-26 中国移动通信集团江苏有限公司 一种基于邻区优先级的频率规划和扰码规划方法和设备
TW201119935A (en) * 2009-12-04 2011-06-16 Univ Nat Chiao Tung Catalytic seeding control method
US8878157B2 (en) 2011-10-20 2014-11-04 University Of Kansas Semiconductor-graphene hybrids formed using solution growth
JP2015514669A (ja) 2012-04-16 2015-05-21 シーアストーン リミテッド ライアビリティ カンパニー 二酸化炭素を還元することによって固体炭素を生成するための方法
EP2838844A4 (en) 2012-04-16 2015-10-28 Seerstone Llc METHOD FOR TREATING A GAS CLEARANCE CONTAINING CARBON OXIDES
CN104271498B (zh) 2012-04-16 2017-10-24 赛尔斯通股份有限公司 用非铁催化剂来还原碳氧化物的方法和结构
NO2749379T3 (zh) 2012-04-16 2018-07-28
WO2013158161A1 (en) 2012-04-16 2013-10-24 Seerstone Llc Methods and systems for capturing and sequestering carbon and for reducing the mass of carbon oxides in a waste gas stream
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
CN107651667A (zh) 2012-07-12 2018-02-02 赛尔斯通股份有限公司 包含碳纳米管的固体碳产物以及其形成方法
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
JP6025979B2 (ja) 2012-07-13 2016-11-16 シーアストーン リミテッド ライアビリティ カンパニー アンモニアおよび固体炭素生成物を形成するための方法およびシステム
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
WO2014085378A1 (en) 2012-11-29 2014-06-05 Seerstone Llc Reactors and methods for producing solid carbon materials
WO2014151144A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
WO2014151138A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Reactors, systems, and methods for forming solid products
EP3114077A4 (en) 2013-03-15 2017-12-27 Seerstone LLC Methods of producing hydrogen and solid carbon
EP3129133A4 (en) 2013-03-15 2018-01-10 Seerstone LLC Systems for producing solid carbon by reducing carbon oxides
WO2014151119A2 (en) 2013-03-15 2014-09-25 Seerstone Llc Electrodes comprising nanostructured carbon
WO2018022999A1 (en) 2016-07-28 2018-02-01 Seerstone Llc. Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796573A (en) 1997-05-29 1998-08-18 International Business Machines Corporation Overhanging separator for self-defining stacked capacitor
US6250984B1 (en) 1999-01-25 2001-06-26 Agere Systems Guardian Corp. Article comprising enhanced nanotube emitter structure and process for fabricating article
US6465132B1 (en) * 1999-07-22 2002-10-15 Agere Systems Guardian Corp. Article comprising small diameter nanowires and method for making the same
KR100360476B1 (ko) 2000-06-27 2002-11-08 삼성전자 주식회사 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법
DE10134866B4 (de) * 2000-07-18 2005-08-11 Lg Electronics Inc. Verfahren zum horizontalen Wachsenlassen von Kohlenstoff-Nanoröhren und Feldeffekttransistor, der die durch das Verfahren gewachsenen Kohlenstoff-Nanoröhren verwendet
DE10036897C1 (de) 2000-07-28 2002-01-03 Infineon Technologies Ag Feldeffekttransistor, Schaltungsanordnung und Verfahren zum Herstellen eines Feldeffekttransistors
DE60131036T2 (de) 2000-11-01 2008-02-14 Japan Science And Technology Agency, Kawaguchi Ein NOT-Schaltkreis
US6423583B1 (en) 2001-01-03 2002-07-23 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
EP1384322A1 (en) * 2001-03-30 2004-01-28 California Institute Of Technology Carbon nanotube array rf filter
US7084507B2 (en) 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
WO2003063208A2 (en) 2002-01-18 2003-07-31 California Institute Of Technology Array-based architecture for molecular electronics
DE60301582T2 (de) 2002-02-09 2006-06-22 Samsung Electronics Co., Ltd., Suwon Speicheranordnung mit Kohlenstoffnanoröhre und Verfahren zur Herstellung der Speicheranordnung
US6515325B1 (en) 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US6891227B2 (en) 2002-03-20 2005-05-10 International Business Machines Corporation Self-aligned nanotube field effect transistor and method of fabricating same
US20030211724A1 (en) 2002-05-10 2003-11-13 Texas Instruments Incorporated Providing electrical conductivity between an active region and a conductive layer in a semiconductor device using carbon nanotubes
DE10250984A1 (de) 2002-10-29 2004-05-19 Hahn-Meitner-Institut Berlin Gmbh Feldeffekttransistor sowie Verfahren zu seiner Herstellung
DE10250830B4 (de) 2002-10-31 2015-02-26 Qimonda Ag Verfahren zum Herstellung eines Schaltkreis-Arrays
KR100790859B1 (ko) 2002-11-15 2008-01-03 삼성전자주식회사 수직 나노튜브를 이용한 비휘발성 메모리 소자
KR100493166B1 (ko) 2002-12-30 2005-06-02 삼성전자주식회사 수직나노튜브를 이용한 메모리
US6933222B2 (en) 2003-01-02 2005-08-23 Intel Corporation Microcircuit fabrication and interconnection
JP4627188B2 (ja) 2003-05-22 2011-02-09 富士通株式会社 電界効果トランジスタ及びその製造方法
US7038299B2 (en) 2003-12-11 2006-05-02 International Business Machines Corporation Selective synthesis of semiconducting carbon nanotubes
US20050167655A1 (en) 2004-01-29 2005-08-04 International Business Machines Corporation Vertical nanotube semiconductor device structures and methods of forming the same
US7211844B2 (en) 2004-01-29 2007-05-01 International Business Machines Corporation Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage
US7829883B2 (en) 2004-02-12 2010-11-09 International Business Machines Corporation Vertical carbon nanotube field effect transistors and arrays

Also Published As

Publication number Publication date
US20080160312A1 (en) 2008-07-03
TW200526803A (en) 2005-08-16
JP4032083B2 (ja) 2008-01-16
CN1280186C (zh) 2006-10-18
KR20050058186A (ko) 2005-06-16
US20050129948A1 (en) 2005-06-16
KR100645410B1 (ko) 2006-11-15
CN1626438A (zh) 2005-06-15
US7851064B2 (en) 2010-12-14
JP2005170785A (ja) 2005-06-30
US7374793B2 (en) 2008-05-20

Similar Documents

Publication Publication Date Title
TWI326271B (en) Methods and structures for promoting stable synthesis of carbon nanotubes
US7211844B2 (en) Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage
US7691720B2 (en) Vertical nanotube semiconductor device structures and methods of forming the same
US7820502B2 (en) Methods of fabricating vertical carbon nanotube field effect transistors for arrangement in arrays and field effect transistors and arrays formed thereby
US8384069B2 (en) Semiconductor structure having blocks connected by nanowires
TWI280661B (en) CMOS fabricated on different crystallographic orientation substrates
JP5329800B2 (ja) 触媒ナノ粒子の制御および選択的な形成
JP4814487B2 (ja) 絶縁層の厚さが電極間の間隔を形成する単一電子トランジスタ及び製造方法
JP2005170787A (ja) 半導電性カーボン・ナノチューブの選択的な合成
CN101872730B (zh) 用碳纳米管簇填充硅通孔的方法
WO2014038243A1 (ja) グラフェン-cnt構造及びその製造方法
WO2014038244A1 (ja) グラフェン構造及びその製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees