TWI325054B - Gas sensor with diffuse micro cavity structure and method thereof - Google Patents

Gas sensor with diffuse micro cavity structure and method thereof Download PDF

Info

Publication number
TWI325054B
TWI325054B TW95149450A TW95149450A TWI325054B TW I325054 B TWI325054 B TW I325054B TW 95149450 A TW95149450 A TW 95149450A TW 95149450 A TW95149450 A TW 95149450A TW I325054 B TWI325054 B TW I325054B
Authority
TW
Taiwan
Prior art keywords
microcavity
sensing
gas sensor
diffusion
unit
Prior art date
Application number
TW95149450A
Other languages
Chinese (zh)
Other versions
TW200730820A (en
Inventor
I Cherng Chen
Chich Shano Chang
Chao Jen Ho
Kuo Chuang Chiu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW95149450A priority Critical patent/TWI325054B/en
Publication of TW200730820A publication Critical patent/TW200730820A/en
Application granted granted Critical
Publication of TWI325054B publication Critical patent/TWI325054B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

1^25054 九、發明說明: 【發明所屬之技術領域】 腔單^ί關於—種龍錢器,特別是具擴散微空 &amp;早疋之氣體感測器。. 【先前技術】 射値^缝制11巾,使狀解質材料具有長期 f :號易於相容應用模組之整合。由於固= ΐ處ΪΪΓΪ向”體?小:質量輕之小型化設計,以使與 監測器而域亂體監測系統,或可使用於攜帶式之 浮動然受環競計擾導致不_溫度分布 2ΐ 風速擾流環境下要達到維純定卫作溫 ΐ作3 f 感測輸出訊號之再現穩定性易受該感測器 = f衫日。且由於目前使用固態電解質材料之感測 及維護,然、而其體積大小仍不^以滿足市場 1 3W,苴立勢t要求以及該感測器之耗電量-般皆大於 .,/、,電量過大亦不適合應用於攜帶式之產品。 參考第三圖為—習知之擴散式氣體感測器之結構示 忍圖,該擴散式氣體感測器30係利用一多孔結構層33將 電極32包覆於感測材料層31,使特定的氣體分子可以通 過該多孔結構層33而提高該感測器之可靠度。該多孔結構 層33係由燒結之方式來製作,但透過材料之燒結來控制孔 隙分佈與透氣率十分_,因此在運用上是有困難地。 立參考第四圖為一習知之微孔蓋氣體感測器之結構示 意圖,該微孔蓋氣體感測器4〇係利用一微孔陶瓷蓋“與 5 1325054 感測材料層41接合並包圍一電極42,使特定的氣體分子 可以通過微孔陶瓷蓋43而提高該感測器之可靠度。其中該 微孔陶瓷蓋43之上面係設置一孔洞431使欲偵測之氣體得 以通過,然而該孔洞431之直徑需小於20&quot; m,而厚膜製 作之最小精密度為50# m,因此製程上要在微孔陶瓷蓋43 製出精密度為20//m的孔洞是有困難的。 另,習知技術為陶瓷疊壓燒結,微空腔體體積與擴散 孔易形變不易控制。而且加熱器是轉印在感測基材上,所 以熱傳導並不均勻。 【發明内容】 本發明之目的在於提供一種不易受環境氣流之干擾 的可提高可靠度的具有擴散微空腔單元之氣體感測器。 本發明之次一目的是提供一種偵測氣體擴散取樣的 一致再現性的具有擴散微空腔單元之氣體感測器。 本發明之再一目的是提供一種小型化與省電的具有 擴散微空腔單元之氣體感測器。 為達到上述目的之一種氣體感測器,包括一感測單 元,包括有一感測基材,該感測基材具有一上表面與一下 表面,該上表面設置有一第一感測電極,而該下表面設置 有一第二感測電極,其中該感測基材内部埋設有複數個傳 導電極與複數個加熱器,該傳導電極與該加熱器連接;及 一微空腔單元,係固設於該感測單元上方,並於該微空腔 單元與該感測基材間形成一微空腔,該微空腔單元上係設 有一擴散孔。 為達到上述目的之氣體感測器的製作方法,包括製作 一微空腔單元,並於該微空腔單元上形成一擴散孔;製作 6 二”材:於該感測基材上下表面設置有-第-感測带 ° /、一第一感測電極,該感測基材内埋設有複數個^導二 麵與複數個加熱H;以及連接賴空腔單元與喊測基^ 較佳地,本發明以微機電加工方式製作一微空腔 k置一擴散孔,由該微空腔體與該擴散孔組成一微空腔單 二;以到刀成型技術將感測厚膜粉體製作一感測基: 機電加工之方式在感測基材中内埋複數個傳導 形成一感測單元;以及以該微空 體:頂部結構及以該感測單元為該氣 感測益之底邛結構,並以陽極結合或材料共熔 ^ 2該微空腔單元及該感測單元接合封裝成矽基陶::式 牛,以組成本發明具擴散微空腔單元之氣體感測哭Γ兀 枒料要將感測厚膜粉體高溫^之感測 ;rtrr中,來達到偵測氣體擴散取 -成凡件,内埋加熱器與傳導電極來製作氣體感測器基陶是 【實施方式】 =本發明將參閱含有本發明較佳實施例之 以充m ’但在此描述之前應瞭解熟悉本龜二人 士可修改本文巾麟述之發明,_獲致 人 =之:瞭解T描述對熟悉本行技藝之人士 =二 廣泛之揭不,且其内容不在於限制本發明。 。”,· ,作ίΓ=:;擴散微空腔單元之氣體感夠器及其 口/㈣免此成兀件,内埋加熱器與傳導電極 1325054 來製作氣體感測器。 請參考第一圖為本發明具擴散微空腔單元之氣體感測 器的結構圖,該氣體感測器10包括有一感測單元11及一 微空腔單元12,該微空腔單元12係為頂部結構及該感測 單元11係為底部結構,亦即該微空腔單元12固設於該感 測單元11上方。該微空腔單元12及該感測單元11間設有 一微空腔101,並將該微空腔單元12與該感測單元11封 裝成該氣體感測器10。其中,該感測單元11係包括一感 測基材(感測基材)13、一第一感測電極Μ、一 (¢5¾¾ ® 複數個傳導電極16及複數個加熱器17 °該感測 單元之感測基材13係為一厚度為5-30//m之陶瓷基感測 基材,將具功能性之感測厚膜粉體如氣化#氧離子導體 高溫製成該感測基材13,以感應該微空腔101中所含之特 定氣體如一氧化碳、二氧化碳、氧氣等之含量。於以下之 實施例,本發明係實施於一氧氣感測之氣體感測器。 該感測基材13具有一上表面131與一下表面132,該 上表面131設有一第一感測電極14,該下表面132則設有 一第二感測電極15。該第一與第二感測電極14、15係使 * 連接一外部電路(圖中未示),致使該外部電路得藉由感應 該第一與第二感測電極131、132的電流量大小以換算空氣 中之含氧濃度。該感測基材13内部埋設有複數個傻择 16與複數個加熱器17。較佳地,該感測基材13係於兩端 側設有該傳導電極16與該加熱器17。該加熱器17與該傳 導電極16連接並組合一起。因此,利用該傳導電極16提 供外部電源至該加熱器17,使該加熱器17產生熱源,以 提高該感測基材膜13之溫度並增加氣體感測之效率。換句 話說,藉一控制器(圖中未示)控制該加熱器17,使該感測 8 1325054 製作。 在詳細說明本發明的較佳實施例之後,熟悉該項技術 人士可清楚的瞭解,在不脫離下述申請專利範圍與精神下 進行各種變化與改變,且本發明亦不受限於說明書中所舉 實施例的實施方式。1^25054 IX. Description of the invention: [Technical field to which the invention belongs] The cavity is a single type of money machine, especially a gas sensor with a diffusion micro-air &amp; early detection. [Prior Art] The 値 値 sewing 11 towel, the cleavage material has a long-term f: number easy to be compatible with the application module integration. Because the solid = ΐ ΪΪΓΪ ” 体 体 体 体 体 : : : : : : : : : : : : : : : : : : : : : : 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量2ΐ Under the wind speed and spoiler environment, the reproduction stability of the 3 f sensing output signal is required to achieve the stability of the output signal. It is susceptible to the sensing and maintenance of the solid electrolyte material. However, its size still does not meet the market's 1 3W, and the demand for the potential and the power consumption of the sensor are generally greater than ., /, the power is too large and is not suitable for portable products. The three figures are structural diagrams of a conventional diffusion gas sensor 30 that utilizes a porous structural layer 33 to coat the electrode 32 to the sensing material layer 31 to make a specific gas The molecule can improve the reliability of the sensor through the porous structural layer 33. The porous structural layer 33 is made by sintering, but the pore distribution and the gas permeability are controlled by the sintering of the material, so that the application is It is difficult. The fourth figure is a schematic view of a conventional micropore cover gas sensor, which utilizes a microporous ceramic cover to "join 5 1325054 sensing material layer 41 and surround an electrode 42. The specific gas molecules can pass through the microporous ceramic cover 43 to improve the reliability of the sensor. Wherein the microporous ceramic cover 43 is provided with a hole 431 for allowing the gas to be detected to pass, but the diameter of the hole 431 is less than 20&quot; m, and the minimum precision of the thick film is 50# m, so the process It is difficult to produce a hole having a precision of 20/m in the microporous ceramic cover 43. In addition, the conventional technique is ceramic lamination sintering, and the microcavity volume and the diffusion hole are easily deformed and difficult to control. Moreover, the heater is transferred onto the sensing substrate, so the heat conduction is not uniform. SUMMARY OF THE INVENTION An object of the present invention is to provide a gas sensor having a diffusion microcavity unit which is less susceptible to interference from ambient airflow and which can improve reliability. A second object of the present invention is to provide a gas sensor having a diffusing microcavity unit that detects uniform reproducibility of gas diffusion sampling. It is still another object of the present invention to provide a gas sensor having a diffusion microcavity unit that is miniaturized and power-saving. A gas sensor for achieving the above object, comprising a sensing unit comprising a sensing substrate, the sensing substrate having an upper surface and a lower surface, the upper surface being provided with a first sensing electrode, and the upper surface a second sensing electrode is disposed on the lower surface, wherein the sensing substrate is embedded with a plurality of conductive electrodes and a plurality of heaters, the conductive electrodes are connected to the heater; and a microcavity unit is fixed on the Above the sensing unit, a microcavity is formed between the microcavity unit and the sensing substrate, and a diffusion hole is disposed on the microcavity unit. A method for fabricating a gas sensor for achieving the above object comprises: forming a microcavity unit, and forming a diffusion hole on the microcavity unit; and fabricating a 6" material: the upper and lower surfaces of the sensing substrate are disposed a first sensing strip, a first sensing electrode, a plurality of conductive surfaces and a plurality of heatings H embedded in the sensing substrate; and a connecting cavity unit and a sensing base. The micro-electromechanical processing method is used to fabricate a microcavity k to form a diffusion hole, and the microcavity body and the diffusion hole form a microcavity single; the sensing of the thick film powder is performed by a knife forming technique a sensing base: a method of electromechanical processing embedding a plurality of conductances in a sensing substrate to form a sensing unit; and using the microcavity: a top structure and using the sensing unit as a bottom of the gas sensing benefit Structure, and anodic bonding or material eutectic ^ 2 the microcavity unit and the sensing unit are jointly packaged into a ceramsite:: type cattle to form the gas sensing crying of the diffusion microcavity unit of the present invention It is necessary to sense the high temperature of the thick film powder; in rtrr, to detect the gas expansion Dissipating - forming a gas heater and conducting electrodes to fabricate a gas sensor base is an embodiment. [The present invention will be described with reference to a preferred embodiment of the present invention. Understand that the person familiar with this turtle can modify the invention of this article, _ get the person =: understand T describes the person who is familiar with the skill of the bank = two widely disclosed, and its content is not to limit the invention.", · , Γ Γ = : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Please refer to the first figure for a structural diagram of a gas sensor with a diffusion microcavity unit. The gas sensor 10 includes a sensing unit 11 and a microcavity unit 12, and the microcavity unit 12 is The top structure and the sensing unit 11 are bottom structures, that is, the microcavity unit 12 is fixed above the sensing unit 11 . A microcavity 101 is disposed between the microcavity unit 12 and the sensing unit 11, and the microcavity unit 12 and the sensing unit 11 are sealed as the gas sensor 10. The sensing unit 11 includes a sensing substrate (sensing substrate) 13, a first sensing electrode, and a plurality of conductive electrodes 16 and a plurality of heaters. The sensing substrate 13 of the unit is a ceramic-based sensing substrate having a thickness of 5-30/m, and the functional sensing thick film powder such as vaporized #oxygen conductor is made at a high temperature to make the sensing. The substrate 13 senses the content of a specific gas contained in the microcavity 101 such as carbon monoxide, carbon dioxide, oxygen, etc. In the following embodiments, the present invention is implemented in an oxygen sensing gas sensor. The measuring substrate 13 has an upper surface 131 and a lower surface 132. The upper surface 131 is provided with a first sensing electrode 14, and the lower surface 132 is provided with a second sensing electrode 15. The first and second sensing electrodes 14, 15 is connected to an external circuit (not shown) so that the external circuit can convert the oxygen concentration in the air by sensing the amount of current of the first and second sensing electrodes 131, 132. A plurality of silly 16 and a plurality of heaters 17 are embedded in the sensing substrate 13 . Preferably, the feeling is The measuring substrate 13 is provided with the conductive electrode 16 and the heater 17 on both end sides. The heater 17 is connected and combined with the conductive electrode 16. Therefore, an external power source is supplied to the heater 17 by the conductive electrode 16. The heater 17 generates a heat source to increase the temperature of the sensing substrate film 13 and increase the efficiency of gas sensing. In other words, the heater 17 is controlled by a controller (not shown) to make the heater 17 </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; It is limited to the embodiments of the embodiments set forth in the specification.

Claims (1)

1325054 十、申請專利範圍: 1. 一種具擴散微空腔單元之氣體感測器,包括: 一感測單元,包括有一感測基材,該感測基材具有 一上表面與一下表面,該上表面設置有一第一感測電 極,而該下表面設置有一第二感測電極,其中該感測基 材内部埋設有複數個傳導電極與複數個加熱器,該傳導 電極與該加熱器連接;及 一微空腔單元,係固設於該感測單元上方,並於該 微空腔單元與該感測基材間形成一微空腔,該微空腔單 元上係設有一擴散孔。 2. 如申請專利範圍第1項之具擴散微空腔單元之氣體感 測器,其中該微空腔單元係為以玻璃、矽晶組成及其表 面鑛膜之結構。 3. 如申請專利範圍第1項之具擴散微空腔單元之氣體感 測器,其中該擴散孔的直徑小於20#111。 4. 如申請專利範圍第1項之具擴散微空腔單元之氣體感 測器,其中該感測基材係為氧離子導體所組成。 5. 如申請專利範圍第4項之具擴散微空腔單元之氣體感 測器,其中該氧離子導體係為氧化鍅。 6. 如申請專利範圍第1項或第4項之具擴散微空腔單元之 氣體感測器’其1ί7該感測基材之厚度為5-30 // m。 7. —種具擴散微空腔單元之氣體感測器的製作方法,包 括: 製作一微空腔單元,並於該微空腔單元上形成一擴 散孔; 製作一感測基材,於該感測基材上下表面設置有一 第一感測電極與一第二感測電極,該感測基材内埋設 13 1325054 有複數個傳導電極與複數個加熱器;以及 連接該微空腔單元與該感測基材。 8. 如申請專利範圍第7項之具擴散微空腔單元之氣體感 測器的製作方法,其中該微空腔單元係為以玻璃、矽晶 組成及其表面鍍膜之結構。 9. 如申請專利範圍第7項之具擴散微空腔單元之氣體感 測器的的製作方法,其中該擴散孔的直徑小於20&quot;m。 10. 如申請專利範圍第7項之具擴散微空腔單元之氣體感 測器的的製作方法,其中該感測基材為氧離子導體所組 成。 11. 如申請專利範圍第10項之具擴散微空腔單元之氣體感 測器的的製作方法,其中該氧離子導體係為氧化锆。 12. 如申請專利範圍第7項或第10項之具擴散微空腔單元 之氣體感測器的的製作方法,其中該感測基材之厚度為 5-30 // m。 13. 如申請專利範圍第7項之具擴散微空腔單元之氣體感 測器的的製作方法,其中該微空腔單元的製法包括以一 微機電加工方式製作。 14. 如申請專利範圍第13項之具擴散微空腔單元之氣體感 測器的的製作方法,其中該微機電加工方式係為一低溫 CMOS/MEMS 加工法。 15. 如申請專利範圍第7項之具擴散微空腔單元之氣體感 測器的的製作方法,其中該感測基材係由一陶瓷粉體製 作。 16. 如申請專利範圍第7項之具擴散微空腔單元之氣體感 測器的的製作方法,其中該感測基材係以一刮刀成型方 法將該陶瓷粉體製作成該感測基材。 14 1325054 17. 如申請專利範圍第7項之具擴散微空腔單元之氣體感 測器的的製作方法,其中該加熱器係以共燒方式結合在 該感測基材内部。 18. 如申請專利範圍第7項之具擴散微空腔單元之氣體感 測器的的製作方法,其中該微空腔單元與該感測單元係 以一陽極結合。 19. 如申請專利範圍第7項之具擴散微空腔單元之氣體感 測器的的製作方法,其中該微空腔單元與該感測單元係 以一材料共熔點方式結合。1325054 X. Patent Application Range: 1. A gas sensor with a diffusion microcavity unit, comprising: a sensing unit comprising a sensing substrate, the sensing substrate having an upper surface and a lower surface, a first sensing electrode is disposed on the upper surface, and a second sensing electrode is disposed on the lower surface, wherein the sensing substrate is embedded with a plurality of conductive electrodes and a plurality of heaters, and the conductive electrode is connected to the heater; And a microcavity unit is fixed on the sensing unit, and forms a microcavity between the microcavity unit and the sensing substrate, and the microcavity unit is provided with a diffusion hole. 2. A gas sensor having a diffusion microcavity unit according to claim 1, wherein the microcavity unit is in the form of glass, twin crystal and its surface mineral film. 3. A gas sensor having a diffusion microcavity unit as claimed in claim 1 wherein the diameter of the diffusion hole is less than 20#111. 4. A gas sensor having a diffusion microcavity unit according to claim 1 wherein the sensing substrate is comprised of an oxygen ion conductor. 5. A gas sensor having a diffusing microcavity unit according to claim 4, wherein the oxygen ion guiding system is cerium oxide. 6. The gas sensor of the diffusing microcavity unit as claimed in claim 1 or 4, wherein the sensing substrate has a thickness of 5-30 // m. 7. A method of fabricating a gas sensor with a diffusion microcavity unit, comprising: fabricating a microcavity unit and forming a diffusion hole in the microcavity unit; and fabricating a sensing substrate a first sensing electrode and a second sensing electrode are disposed on the upper and lower surfaces of the sensing substrate, and 13 1325054 is embedded in the sensing substrate, and a plurality of conductive electrodes and a plurality of heaters are connected; and the microcavity unit is connected to the Sensing the substrate. 8. The method of fabricating a gas sensor having a diffusion microcavity unit according to claim 7, wherein the microcavity unit is a glass, a twin crystal structure and a surface coating film. 9. The method of fabricating a gas sensor having a diffusion microcavity unit according to claim 7 wherein the diameter of the diffusion hole is less than 20 &quot; m. 10. The method of fabricating a gas sensor having a diffusion microcavity unit according to claim 7, wherein the sensing substrate is an oxygen ion conductor. 11. The method of fabricating a gas sensor having a diffusion microcavity unit according to claim 10, wherein the oxygen ion guiding system is zirconia. 12. The method of fabricating a gas sensor having a diffusion microcavity unit according to claim 7 or 10, wherein the sensing substrate has a thickness of 5-30 // m. 13. The method of fabricating a gas sensor having a diffusing microcavity unit according to claim 7, wherein the method of fabricating the microcavity unit comprises fabricating in a microelectromechanical process. 14. The method of fabricating a gas sensor having a diffusion microcavity unit according to claim 13 wherein the MEMS processing method is a low temperature CMOS/MEMS processing method. 15. The method of fabricating a gas sensor having a diffusing microcavity unit according to claim 7, wherein the sensing substrate is made of a ceramic powder system. 16. The method of fabricating a gas sensor with a diffusion microcavity unit according to claim 7, wherein the sensing substrate is formed into the sensing substrate by a doctor blade forming method. . A method of fabricating a gas sensor having a diffusing microcavity unit according to claim 7 wherein the heater is co-fired in the interior of the sensing substrate. 18. The method of fabricating a gas sensor having a diffusion microcavity unit according to claim 7, wherein the microcavity unit and the sensing unit are combined with an anode. 19. The method of fabricating a gas sensor having a diffusion microcavity unit according to claim 7, wherein the microcavity unit and the sensing unit are combined in a eutectic manner. 15 1325054 .....·ι·…. 一..參· ·. . ”發明專兩說明書15 1325054 .....·ι·.... I..··· . . 丨 (本說明書格式、順序及粗體字,請勿任意更動,※記號部分諳勿填寫) ※申請案號: ※申請日期:' α、4 效1?&lt;:分類:ΙΑμ (2〇服〇1) 一、發明名稱:(中文/英文) 具擴散微空腔體之氣體感測器及其製作方法/Gas Sensor with Diffuse Micro Cavity Structure and Method thereof. 二、 申請人:(共1人) 姓名或名稱··(中文/英文)(簽章) 財團法人工業技術研究院/ Industrial Technology Research Institute 代表人··(中文/英文)(簽章)張進福/ CHANq JIN_FU 住居所或營業所地址:(中文/英文) 新竹縣竹東鎮中興路四段195號/ No.195,Sec.4,Chung Hsin Rd.,Chu Tung Town, Hsin Chu Hsien, Taiwan, R.O.C. 國籍:(中文/英文)中華民國/R.O.C. 三、 發明人:(共4人) 姓名··(中文/英文) 1·陳一誠/CHEN, I-CHERNG 2. 張志祥/CHANQCHICH-SHANO 3. 何朝仁/HO,CHAO-JEC 4·邱國創/CHIU, KUO-CHUANG 國籍:(中文/英文) 1〜4·中華民國/R.O.C. 1 1325054 一·一_ -一 . 1讳/!月日修正f换頁 恭材13的溫度受到控制’使在一定溫度範圍 破^ /般習知技術係將加熱器設在該感測基材表面,溫度丨 (The format, order and bold text of this manual should not be changed at any time. ※ Do not fill in the symbol part.) ※Application number: ※Application date: 'α, 4 effect 1?&lt;: Classification: ΙΑμ (2 〇 〇 〇1) 1. Name of the invention: (Chinese/English) Gas sensor with diffusion microcavity and its manufacturing method/Gas Sensor with Diffuse Micro Cavity Structure and Method thereof. II. Applicant: (1 in total) Name or name · (Chinese / English) (signature) Industrial Technology Research Institute Representative / (Chinese / English) (signature) Zhang Jinfu / CHANq JIN_FU Residence or business address: ( Chinese/English) No.195, Section 4, Zhongxing Road, Zhudong Town, Hsinchu County / No.195, Sec.4, Chung Hsin Rd., Chu Tung Town, Hsin Chu Hsien, Taiwan, ROC Nationality: (Chinese/English) Republic of China/ ROC III. Inventor: (4 in total) Name··(Chinese/English) 1·Chen Yicheng/CHEN, I-CHERNG 2. Zhang Zhixiang/CHANQCHICH-SHANO 3. He Chaoren/HO, CHAO-JEC 4·Qiu Guo创/CHIU, KUO-CHUANG Nationality: (Chinese/English) 1~4·Republic of China/ROC 1 1325054 一一一_-一. 1讳/! The date of the change of the day is changed to the temperature of the Gongcai 13 is controlled to make it break within a certain temperature range. The technology is to set the heater on the surface of the sensing substrate, the temperature 無法均勻傳導’且該加熱器需要另外附加而使成本增加。 本發明特別將該加熱器Π埋設在該感測基材13内部,使 加熱時溫度傳導達到均勻。因此於本發明之較佳實施例 匕,該感測基材13係利用積層電路的特性將該傳導電極 與該加熱器17以内埋方式埋入於該感測基材13内部, 以使該感測基材13的加熱溫度均勻並且内埋後可降低感 測基材13的體積。除主要控制電路之外其他所需的電阻^ 路設計於感測号材13内部,以達到製程簡化及降低成本。 該微空腔單tl 12包括有一微空腔體18與一設置於哕 微空腔體18上的擴散孔151。而該微空腔體18係用以^ 成一微空腔^01,以提供該氣體感測器10一穩定工作溫度 旅防止環境氣流之干擾。該微空腔體18上設置 151,並藉由該擴散孔151之孔徑大小來限制進人該微*腔 體18之氣體分子,於本發明之實施例係以氧氣為 ςIt is impossible to conduct evenly' and the heater needs additional addition to increase the cost. In particular, the heater is embedded in the interior of the sensing substrate 13 to achieve uniform temperature conduction during heating. Therefore, in the preferred embodiment of the present invention, the sensing substrate 13 is embedded in the sensing substrate 13 by embedding the conductive electrode and the heater 17 in a buried manner by using the characteristics of the laminated circuit. The heating temperature of the substrate 13 is measured to be uniform and the volume of the sensing substrate 13 can be lowered after being buried. In addition to the main control circuit, other required resistors are designed inside the sensing material 13 to achieve process simplification and reduce cost. The microcavity unit tl 12 includes a microcavity body 18 and a diffusion hole 151 disposed on the microcavity body 18. The microcavity 18 is used to form a microcavity ^01 to provide a stable operating temperature of the gas sensor 10 to prevent interference from ambient airflow. The microcavity body 18 is provided with 151, and the gas molecules entering the micro*cavity 18 are limited by the size of the pores of the diffusion hole 151. In the embodiment of the present invention, oxygen is used as the crucible. 體分子’當感測氧氣時’該擴散孔151之直徑需小於心 m以達到氧氣的自發擴散取樣之功能。 、μ 該氣體感測器10之微空腔單元的製作方法 CMOS/MEMS製程之微機電加工方式製作一材 璃、矽晶及其表面鍍膜之微空腔體18,以形成該微, 兀12。如第一圖所示,係為該微空腔體之微機電加工 的蝕刻步驟流程圖。首先,於該微空腔體18之上製 二 直徑小於20//m之擴散孔151,以使待測之氣體如 得以藉該擴散孔151流通並達到氣體自發擴散 二 能。其中’在該微空腔單元的製程上,係先以半導= 製程定義圖案大小後進行等向性㈣的方式製作該微二腔 9 04 丨月心日修正替换頁 18 ㈣沾體黃光製程定義圖案大小後進行非等向性 丨二、:該擴散孔151。其中該等向性細係以濕 ί:而非等向性蝕刻(異向性蝕刻)則以乾蝕 α 5 χ進行。非等向性蝕刻也可以單邊蝕刻或雙 邊蚀刻方式進行。 該氣,感測器10之感測單元的製作方法,係以刮刀成 =技術將!:J厚膜粉體如氧化锆等氧離子導體製成生胚 从並疊壓io製成厚度為5_3G&quot;m之感測基材13。該感測 二13之上、下表面131、132設置複數個感測電極15, ^連接該外部電路,致使料部電路㈣由感應該感測 2 15之電流大小以換算空氣中之含氧濃度。並以共燒或 電加工之方式在感測基材13中内埋複數個傳導電極 16與複數個加熱器I?。 最後以1%極結合或材料共溶點的方式將該微空腔單元 邊感測單元接合封裝成矽基陶瓷混成元件,以組成本發 具擴散微空腔單元之氣體感測器。 因此’本發明可達到下列功效: 2不易叉環境氣流之干擾,提高感測氣體的可靠度。 =具功能性的感測厚膜粉體高溫製程產品相互封裝整 二在低溫CM0S/MEMS製程製作一致化的微空腔結構 3 t ’來達到偵測氣體擴散取樣的一致再現性。 4提供小型化與省電的具微空腔體的氣體感測器。 5•,設加熱器可使溫度傳導均勻,厚膜的厚度降低。 •可使用微機電加工進行微空腔體體積與擴散孔的精密 加工’較昔知技術使用陶瓷疊壓燒結,微空腔體體積與 擴散孔易變形且不易控制。 .採用晶元級封裝(wafer level package)易於量產微小化 1325054 _一一一 • ^^年11月24日修正替故頁 【圖式簡單說明】 第一圖為本發明具擴散微空腔單元之氣體感測器示 意圖。 第二圖為本發明具擴散微空腔單元之氣體感測器的 微空腔單元的製作流程圖。 第三圖為一傳統擴散式氣體感測器結構示意圖。 第四圖為一傳統微孔蓋氣體感測器結構示意圖。 [主要元件符號說明] • 10…具擴散微空腔單元之氣體感測器 11…感測單元 12···微空腔單元 13…感測基材 131…上表面 132…下表面 14…第一感測電極 15…第二感測電極 16…導通電極 ® 17…加熱器 18…微空腔體 151…擴散孔 30…擴散式氣體感測器 40…微孔蓋氣體感測器 31、 41…感測材料層 32、 42…感測電極 431···孔洞結構 43…微孔陶瓷蓋 12The bulk molecule 'when sensing oxygen' is required to have a diameter smaller than the core m to achieve the function of spontaneous diffusion sampling of oxygen. μ The microcavity unit of the gas sensor 10 is fabricated by a micro-electromechanical processing method of a CMOS/MEMS process to form a micro-cavity 18 of a glass, twin and its surface coating to form the micro, 兀12 . As shown in the first figure, it is a flow chart of the etching steps of the microelectromechanical processing of the microcavity. First, two diffusion holes 151 having a diameter of less than 20/m are formed on the microcavity body 18, so that the gas to be tested can flow through the diffusion holes 151 and achieve spontaneous gas diffusion. In the process of the microcavity unit, the micro-cavity is made by first defining the pattern size by semi-conducting = process and then making the isotropic (four) 9 04 丨月心日修正 replacement page 18 (4) smear yellow light After the process defines the pattern size, the anisotropy is performed: the diffusion hole 151. Wherein the isotropic sequence is wet etched instead of isotropic etch (anisotropic etch) with dry etch α 5 χ. Anisotropic etching can also be performed by one-sided etching or double etching. The gas, the sensing unit of the sensor 10 is manufactured by a doctor blade = technology! : J thick film powder such as zirconia or other oxygen ion conductor made of green embryos and laminated io to make a thickness of 5_3G &quot; m sensing substrate 13 . The sensing electrodes 13 and the lower surfaces 131 and 132 are provided with a plurality of sensing electrodes 15 connected to the external circuit, so that the material circuit (4) senses the magnitude of the current of the sensing 2 15 to convert the oxygen concentration in the air. . A plurality of conductive electrodes 16 and a plurality of heaters I are embedded in the sensing substrate 13 by co-firing or electromachining. Finally, the microcavity unit side sensing unit is joint-bonded into a bismuth-based ceramic hybrid element by a 1% pole bond or material co-melting point to form a gas sensor of the present diffusing microcavity unit. Therefore, the present invention can achieve the following effects: 2 It is difficult to interfere with the ambient airflow, and the reliability of the sensing gas is improved. = Functionally sensed thick film powder high-temperature process products are packaged in each other. 2. The microcavity structure 3 t ′ is produced in a low-temperature CM0S/MEMS process to achieve consistent reproducibility of gas diffusion sampling. 4 Provides a miniaturized and power-saving gas sensor with a microcavity. 5•, the heater can make the temperature conduction uniform, and the thickness of the thick film is reduced. • Microelectromechanical machining can be used for precision machining of microcavity volume and diffusion holes. Ceramic lamination sintering is used in the prior art. The volume and diffusion hole of the microcavity are easily deformed and difficult to control. Using the wafer level package, it is easy to mass-produce miniaturization 1325054 _一一一• ^^年年月24日修正定定页 [Simple description] The first picture shows the diffusion microcavity of the present invention A schematic diagram of the gas sensor of the unit. The second figure is a flow chart for fabricating a microcavity unit of a gas sensor with a diffusion microcavity unit according to the present invention. The third figure is a schematic diagram of the structure of a conventional diffused gas sensor. The fourth figure is a schematic structural view of a conventional micro-hole cover gas sensor. [Main component symbol description] • 10... Gas sensor 11 with diffusion microcavity unit... Sensing unit 12··· Microcavity unit 13... Sensing substrate 131... Upper surface 132... Lower surface 14... a sensing electrode 15...a second sensing electrode 16...a conducting electrode®17...a heater 18...a microcavity body 151...a diffusion hole 30...a diffused gas sensor 40...a micropore cover gas sensor 31, 41 ...sensing material layer 32, 42...sensing electrode 431···hole structure 43...microporous ceramic cover 12
TW95149450A 2005-12-30 2006-12-28 Gas sensor with diffuse micro cavity structure and method thereof TWI325054B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95149450A TWI325054B (en) 2005-12-30 2006-12-28 Gas sensor with diffuse micro cavity structure and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW94147482 2005-12-30
TW95149450A TWI325054B (en) 2005-12-30 2006-12-28 Gas sensor with diffuse micro cavity structure and method thereof

Publications (2)

Publication Number Publication Date
TW200730820A TW200730820A (en) 2007-08-16
TWI325054B true TWI325054B (en) 2010-05-21

Family

ID=45074226

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95149450A TWI325054B (en) 2005-12-30 2006-12-28 Gas sensor with diffuse micro cavity structure and method thereof

Country Status (1)

Country Link
TW (1) TWI325054B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497069B (en) * 2013-11-18 2015-08-21 Nat Univ Tsing Hua Replaceable gas sensing module
TWI775361B (en) * 2021-03-23 2022-08-21 世創生物科技股份有限公司 Gas sensing device with replaceable sensor element carrier and sensing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497069B (en) * 2013-11-18 2015-08-21 Nat Univ Tsing Hua Replaceable gas sensing module
TWI775361B (en) * 2021-03-23 2022-08-21 世創生物科技股份有限公司 Gas sensing device with replaceable sensor element carrier and sensing method thereof

Also Published As

Publication number Publication date
TW200730820A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
Liang et al. Highly sensitive, flexible MEMS based pressure sensor with photoresist insulation layer
JP6403985B2 (en) Limit current type gas sensor, method for manufacturing the same, and sensor network system
JP6594230B2 (en) Sensor element and gas sensor
TW201224446A (en) Gas sensor and fabricating method thereof
JP6730280B2 (en) Limiting current type gas sensor
TWI325054B (en) Gas sensor with diffuse micro cavity structure and method thereof
CN111693587A (en) Integrated oxygen sensor chip for measuring oxygen partial pressure and preparation method thereof
TW200902970A (en) Gas sensor
CN101561414A (en) Limit-current type oxygen sensor and preparation method thereof
JP3572241B2 (en) Air-fuel ratio sensor element
CN106053576A (en) Zirconium-based sensor and organic volatile matter detection device with same
JP2003344348A (en) Oxygen sensor element
JP2006210122A (en) Ceramic heater element and detection element using it
TWI323344B (en) Gas sensor and method of manufacturing thereof
CN107976277A (en) Vacuum transducer based on graphene oxide and preparation method and application
TWI248511B (en) Ceramic gas sensor
CN202974923U (en) Novel structure of planar oxygen sensor
JP3935166B2 (en) Manufacturing method of ceramic heater element
KR102190862B1 (en) Manufacturing method of micro heater and Micro sensor and Manufacturing method of micro sensor
JP6546392B2 (en) Electrode for limiting current type gas sensor and method for manufacturing the same, limiting current type gas sensor and method for manufacturing the same, and sensor network system
JP2005300470A (en) Manufacturing method of layered gas sensor element
JP2003315303A (en) Oxygen sensor element
JP3850286B2 (en) Oxygen sensor
JP2005005057A (en) Ceramic heater and ceramic heater structural body
JP4721593B2 (en) Oxygen sensor