TWI320951B - Methods for in situ substrate temperature monitoring by electromagnetic radiation emission - Google Patents

Methods for in situ substrate temperature monitoring by electromagnetic radiation emission Download PDF

Info

Publication number
TWI320951B
TWI320951B TW092122165A TW92122165A TWI320951B TW I320951 B TWI320951 B TW I320951B TW 092122165 A TW092122165 A TW 092122165A TW 92122165 A TW92122165 A TW 92122165A TW I320951 B TWI320951 B TW I320951B
Authority
TW
Taiwan
Prior art keywords
substrate
plasma
temperature
measuring device
electromagnetic
Prior art date
Application number
TW092122165A
Other languages
Chinese (zh)
Other versions
TW200407999A (en
Inventor
Enrico Magni
Original Assignee
Lam Res Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Res Corp filed Critical Lam Res Corp
Priority claimed from US10/640,350 external-priority patent/US7341673B2/en
Publication of TW200407999A publication Critical patent/TW200407999A/en
Application granted granted Critical
Publication of TWI320951B publication Critical patent/TWI320951B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2001Maintaining constant desired temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Radiation Pyrometers (AREA)
  • Plasma Technology (AREA)

Description

1320951 Ο) 玖、發明說明 【發明所屬之技術領域】 本發明大致上關於基底製造技術,特別關於以電磁輻 射放射原地監視基底溫度之方法及裝置。 【先前技術】 在例如半導體晶圓或用於平面顯示器製造的玻璃面板 等基底的處理中’通常採用電漿。舉例而言,基底處理 · (化學汽相沈積、電漿增強化學汽相沈積、物理汽相沈 積、等等)的一部份是基底會被分成多個晶片、或長方形 區’每一晶片會變成積體電路。接著,以一系列步驟處理 基底’其中,選擇性地移除(蝕刻)材料及依序沈積以於其 上形成電元件。 在舉例說明的電漿處理中,在蝕刻之前,將基底塗以 固化的乳膠薄膜(亦即,例如光阻掩罩)。然後,選擇性 地移除固化的乳膠區域,使得部份下層曝露。然後將基底 φ 置於基底支撐結構上的電漿處理室中,基底支撐結構包括 稱爲夾具之單極或雙極電極。適當的蝕刻氣體源(舉例而 言,C4F8 ' C4F6 ' CHF3、CH2F3、CF4、CH3F、C2 F4 ' N 2 ' 〇 2 ' Ar、Xe、He、H 2 ' NH3、SF6、BF3、C12 等. 等)。會流入室內且被撞擊而形成電漿以蝕刻基底的曝露 區。 在可以被調整以使電漿處理最佳化的製程變數組中有 氣體成份、氣相、氣體流速、氣壓、RF功率密度、電 -4 - (2) (2)1320951 壓 '磁場強度、及晶圓溫度。雖然理論上對每一處理步驟 使每一變數最佳化是有利的,但是,實際上難以達成。 舉例而言’由於基底溫度會因改變晶圓表面上例如聚 氟碳等聚合膜的沈積速率而影響電漿選擇性,所以,基底 溫度是重要的。小心監視可以使變化最小,對其它參數允 許更寬的製程窗,並改進製程控制。但是,實際上,難以 直接決定溫度而不會影響電漿處理。 另一方面,舉例而言,有一技術係以溫度探針量測基 底溫度。現在參考圖1,其顯示電漿處理系統之簡化的剖 面視圖’其中’使用溫度探針以決定晶圓溫度。一般而 S ’使適當的蝕刻氣體源組流入室I 〇 〇中並使其被撞擊以 形成電漿]0 2 ’以便蝕刻例如半導體晶圓或玻璃面板等基 底]04的曝露區。基底1〇4通常設於夾具]〇6上。由電漿 1 0 2產生的電磁輻射與電漿本身轉換的動能相結合造成基 底104吸收熱能。爲了決定基底溫度,探針】08會從基底 104下方延伸至接觸基底。但是,探針]〇8也會使晶圓移 離夾具’因而ί貝毀昂貴的晶圓。 另一技術係以習知的高溫計,量測來自基底的紅外線 (IR)幅射。一般而言,經過加熱的材料會發射RF區的電 磁輻射。此區通常會比較8至14//m的波長範圍,或是 4 00至4 000 cm·1的頻率範圍,其中cm-丨係波數(丨/波長) 並等於頻率。量測到的IR輻射可以接著藉由使用蒲朗克 的黑體輻射之幅射定律以計算基底溫度。 現在參考圖】B ’其顯示電漿處理系統的簡化的剖面 -5 - (3) (3)1320951 視圖。如圖1 A所示,將適當的蝕刻氣體源流入室1 〇 〇中 並使其受撞擊以形成電漿]02,而飩刻基底1 04的曝露 區。基底Γ0 4 —般位於夾具1 0 6上。電漿1 0 2也可以產生 電磁輻射光譜,有些通常是IR。此輻射(伴隨電漿本身 轉換的動能)會造成基底104吸收熱能。基底104接著也 會產生對應於其溫度之IR輻射。但是,由於基底〗04的 IR輻射通常實質上小於電漿的溫度,所以,高溫計可能 無法分辨此二者。因此,計算的溫度會似近背景電漿本身 的溫度而非基底的溫度。 仍然有其它技術使用干涉儀以量測導因於吸收的熱能 而造成的基底厚度變化。一般而言,干涉儀藉由感測二表 面之間反射的電磁波的相位差以量測物理位移。在電漿處 理系統中,電磁波會以可透射基底的頻率發射,且以一角 度定位於基底之下。第一部份電磁波接著於基底的底面上 反射,而其餘部份的電磁波會於基底的上表面上反射。 現在參考圖]C,其顯示電漿處理系統的簡化的剖_面_ 視圖,其中,干涉儀用以決定晶圓溫度。如同圖1A所示 般,將適當的蝕刻氣體源組流入室1 0 0中,並使其受撞擊 以形成電漿1 02,藉以蝕刻例如半導體晶圓或玻璃面板等 基底104的曝露區。基底103通常設於夾具106上。電漿 1 02產生電磁輻射,有些是IR。此輻射(伴隨電漿本身轉 換的動態)使得基底1 04吸收熱能及以量1 1 8膨脹。例如 雷射等電磁波發射器108會發射頻率能透射基底104的電 磁波U 2。接著,電磁波的一部份Π 4會在基底的底面上 -6 - 1320951 附件3A :第 92122165 號專利申請案 中文說明書替換頁 民國98年4月17日修正 之點124反射,而電磁波的其餘部份116會在基底的上表 面上的點122反射。由於相同的電磁波112會在二點122 及124反射,所以,所造成的光束114及116會相位不 同,但是其它相同。干涉儀1 3 0接著量測相位移及決定基 底厚度118。藉由連續量測,可以決定基底厚度的改變。 但是.,基底厚度的改變僅可以用以決定溫度的對應變化, 而非特定溫度。此外,由於發射器也設於電漿處理系統 中,所以,其會被電漿102損傷,也可以產生影響產能之 污染。 由於這些困難,通常會從電漿處理系統的散熱率推斷 基底溫度。一般而言,電漿一旦被點燃,某些型式的冷卻 系統會耦合至夾具以取得熱平衡。亦即,雖然基底溫度通 常穩定於一範圍內,但是,通常不知道其準確値》舉例而 言,在產生用於製造特定基底之電漿處理步驟組時,會建 立對應的製程參數組、或配方。由於不會直接量測基底溫 度,所以,難以使配方最佳化。冷卻系統本身通常包括冷 卻器,其會經由夾具中的孔穴抽送冷媒,並在夾具與晶圓 之間抽送氦氣。爲了移除產生的熱,氦氣也允許冷卻系統 快速地校正散熱。亦即,接著增加氦氣壓力也會增加熱轉 移率。 現在參考圖1D,其顯示點燃之後基底之溫度相對於 時間的簡化圖。起初,基底處在周環境溫度182。當電漿 被點燃時,在穩定週期期間184,基底會吸收熱能。在一 段時間後,基底溫度穩定在186»由於穩定週期184的持 1320951 附件3A :第 92122165 號專利申請案 中文說明書替換頁 民國98年4月17日修正 續時間可以是整個電漿處理步驟的實質部份,所以降低穩 定週期184會直接增進產能。假使基底溫度可以在電漿處 理系統中被直接量測,則冷卻系統可以被最佳化以使穩定 週期1 8 4最小。 此外,取決於電漿處理活動力、其持續時間、或其相 對於其它步驟的次序,會產生及接著散失不同的熱量。由 於如同先前所述般,基底溫度會直接影響電漿處理,所 以,首先量測及接著調整基底溫度將會允許電漿處理步驟 被較佳地最佳化。 此外,電漿處理室本身的實體結構可以改變。舉例而 言,可以在無基底時以電槳撞擊,以將污染物從電漿處理 系統清除。但是,夾具不再由基底屏蔽,且接著被蝕刻。 當清洗製程重覆時,基底的表面粗糙度會增加,改變其熱 轉移效率。最後,冷卻系統無法適當地補償,且配方的參 數會無效。由於決定何時達到此點通常是不實際的,所 以,通常在一定的操作時數之後,更換夾具,而此一定的 操作時數通常僅爲其使用壽命的一部份。由於並非需要地 更換昂貴的夾具,所以,這會增加生產成本,且由於電漿 處理系統必須離線數小時以更換夾具,所以,會降低產 能。 再者,由於在不同時間安裝相同的製造設備,所以, 可能需要調整配方參數,或是使用程度不同,所以,其維 修週期與其它設備的維修週期無法配合。當移動製程至更 新的電漿處理系統時,或者,當製程轉換至處理較大的基 -8- (6)1320951 底尺寸(舉例而 時,配方參數可 數(舉例而言, 晶圓溫度是被推 由嘗試錯誤而被 慮及上述, 置。 【發明內容】 本發明在一 系統之方法。方 底係配置成吸收 組電磁頻率轉換 方法包含將基底 結構包含夾具; 漿反應器;及撞 漿包括第一組電 以產生第二組電 將量値轉換成溫 在另一實施 統中的裝置。裝 置成吸收包括第 磁頻率轉換成熱 也包含基底支撐 言’ 2 00 mm至3 0 0 mm)之電漿處理系統 能需要調整。理想上,維持相同的配方參 化學作用、1功率、及溫度)。但是,由於 論且並未被量測,所以,製程可能需要經 實質地調整,以取得類似的生產曲線。 需要改進的原地監視基底溫度之方法及裝 實施例中係關於決定基底溫度的電漿處理 法包含提供包括材料組之基底,其中,基 包括第一組電磁頻率之電磁輻射以將第一 成熱振動組,及傳送第二組電磁頻率。此 設置於基底支撑結構上,其中,基底支撐 使蝕刻氣體混合物流入電漿處理系統的電 擊蝕刻氣體混合物以產生電漿,其中,電 磁頻率。方法又包含以電漿處理基底,藉 磁頻率;計算第二組電磁頻率的量値;及 度値。 例中,本發明係關於用於決定電漿處理系 置包含包括材料組的基底,其中,基底配 一組電磁頻率的電磁輻射,以將第一組電_ 振盪組,以及發送第二組電磁頻率。裝置 結構,其中,基底支撐結構包含夾具,且 -S-BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to substrate fabrication techniques, and more particularly to a method and apparatus for monitoring substrate temperature in situ by electromagnetic radiation. [Prior Art] Plasma is usually employed in the processing of substrates such as semiconductor wafers or glass panels for flat panel display manufacturing. For example, part of the substrate treatment (chemical vapor deposition, plasma enhanced chemical vapor deposition, physical vapor deposition, etc.) is that the substrate is divided into multiple wafers, or rectangular regions. Become an integrated circuit. Next, the substrate is processed in a series of steps, wherein the material is selectively removed (etched) and sequentially deposited to form electrical components thereon. In the illustrated plasma treatment, the substrate is coated with a cured latex film (i.e., a photoresist mask, for example) prior to etching. The cured latex area is then selectively removed such that a portion of the lower layer is exposed. The substrate φ is then placed in a plasma processing chamber on a substrate support structure comprising a monopolar or bipolar electrode called a clamp. A suitable source of etching gas (for example, C4F8 'C4F6 'CHF3, CH2F3, CF4, CH3F, C2 F4 'N 2 ' 〇 2 ' Ar, Xe, He, H 2 'NH3, SF6, BF3, C12, etc. etc. ). It will flow into the chamber and be impacted to form a plasma to etch the exposed areas of the substrate. In a process variable array that can be adjusted to optimize plasma processing, there are gas components, gas phase, gas flow rate, gas pressure, RF power density, electricity -4 (2) (2) 1320951 pressure 'magnetic field strength, and Wafer temperature. While it is advantageous in theory to optimize each variable for each processing step, it is practically difficult to achieve. For example, the substrate temperature is important because the substrate temperature affects plasma selectivity by changing the deposition rate of a polymeric film such as polyfluorocarbon on the wafer surface. Careful monitoring minimizes variations, allows for wider process windows for other parameters, and improves process control. However, in practice, it is difficult to directly determine the temperature without affecting the plasma treatment. On the other hand, for example, one technique measures the base temperature with a temperature probe. Referring now to Figure 1, there is shown a simplified cross-sectional view of a plasma processing system 'where' a temperature probe is used to determine the wafer temperature. Typically, S' causes a suitable set of etching gas sources to flow into the chamber I' and cause it to strike to form a plasma'2''' to etch the exposed areas of the substrate, such as a semiconductor wafer or glass panel. The substrate 1〇4 is usually provided on the jig 〇6. The electromagnetic radiation generated by the plasma 102 combines with the kinetic energy of the plasma itself to cause the substrate 104 to absorb thermal energy. To determine the substrate temperature, the probe 08 will extend from beneath the substrate 104 to contact the substrate. However, the probe 〇8 also moves the wafer away from the fixture, thus destroying the expensive wafer. Another technique measures infrared (IR) radiation from a substrate using a conventional pyrometer. In general, the heated material emits electromagnetic radiation from the RF region. This area usually compares the wavelength range of 8 to 14//m, or the frequency range of 4 00 to 4 000 cm·1, where the cm-丨 wavenumber (丨/wavelength) is equal to the frequency. The measured IR radiation can then be calculated by using Planck's law of blackbody radiation to calculate the substrate temperature. Referring now to the figure, B' shows a simplified cross-section of the plasma processing system -5 - (3) (3) 1320951 views. As shown in Fig. 1A, a suitable source of etching gas flows into the chamber 1 and is impacted to form a plasma 02, and the exposed region of the substrate 104 is engraved. The substrate Γ 0 4 is generally located on the jig 1 0 6 . The plasma 1 0 2 can also produce a spectrum of electromagnetic radiation, some of which are usually IR. This radiation (with the kinetic energy of the plasma itself) causes the substrate 104 to absorb thermal energy. Substrate 104 will then also produce IR radiation corresponding to its temperature. However, since the IR radiation of the substrate 04 is typically substantially less than the temperature of the plasma, the pyrometer may not be able to distinguish between the two. Therefore, the calculated temperature will be similar to the temperature of the background plasma itself rather than the temperature of the substrate. Still other techniques use interferometers to measure changes in substrate thickness caused by absorbed thermal energy. In general, an interferometer measures physical displacement by sensing the phase difference of electromagnetic waves reflected between two surfaces. In a plasma processing system, electromagnetic waves are emitted at a frequency that is transmissive to the substrate and are positioned below the substrate at an angle. The first portion of the electromagnetic wave is then reflected on the bottom surface of the substrate, and the remaining portion of the electromagnetic wave is reflected on the upper surface of the substrate. Referring now to Figure C, which shows a simplified cross-sectional view of a plasma processing system, an interferometer is used to determine the wafer temperature. As shown in Fig. 1A, a suitable group of etching gas sources is introduced into the chamber 100 and subjected to impact to form a plasma 102, thereby etching an exposed region of the substrate 104 such as a semiconductor wafer or a glass panel. The substrate 103 is typically disposed on the fixture 106. Plasma 102 produces electromagnetic radiation and some are IR. This radiation (with the dynamics of the plasma itself) causes the substrate 104 to absorb thermal energy and expand at a rate of 1 18 . An electromagnetic wave transmitter 108 such as a laser emits an electromagnetic wave U 2 whose frequency is transmissive to the substrate 104. Then, a part of the electromagnetic wave Π 4 will be reflected on the bottom surface of the substrate -6 - 1320951 Annex 3A: Chinese Patent Specification No. 92122165 Replacement page 124, the point of correction of the Republic of China on April 17, 1998, and the rest of the electromagnetic wave The portion 116 will reflect at a point 122 on the upper surface of the substrate. Since the same electromagnetic wave 112 will be reflected at two points 122 and 124, the resulting beams 114 and 116 will be different in phase, but the others are the same. The interferometer 130 then measures the phase shift and determines the substrate thickness 118. By continuous measurement, the change in substrate thickness can be determined. However, changes in substrate thickness can only be used to determine the corresponding change in temperature, rather than a specific temperature. In addition, since the transmitter is also disposed in the plasma processing system, it may be damaged by the plasma 102, and may also cause pollution affecting productivity. Due to these difficulties, the substrate temperature is usually inferred from the heat dissipation rate of the plasma processing system. In general, once the plasma is ignited, some types of cooling systems are coupled to the fixture to achieve thermal equilibrium. That is, although the substrate temperature is generally stable within a range, it is generally not known to be accurate. For example, when generating a plasma processing step group for manufacturing a specific substrate, a corresponding process parameter set, or formula. Since the substrate temperature is not directly measured, it is difficult to optimize the formulation. The cooling system itself typically includes a cooler that draws refrigerant through the holes in the fixture and pumps helium between the fixture and the wafer. In order to remove the heat generated, helium also allows the cooling system to quickly correct heat dissipation. That is, increasing the helium pressure will also increase the heat transfer rate. Referring now to Figure 1D, a simplified view of the temperature of the substrate relative to time after ignition is shown. Initially, the substrate is at a peripheral ambient temperature of 182. When the plasma is ignited, the substrate absorbs thermal energy during the stabilization period 184. After a period of time, the substrate temperature is stable at 186» due to the stability period 184 holding 1320951. Annex 3A: Chinese Patent Application No. 92122165 Replacement page The revised date of April 17, 1998 may be the essence of the entire plasma processing step. Partly, so reducing the stability cycle 184 will directly increase production capacity. If the substrate temperature can be directly measured in the plasma processing system, the cooling system can be optimized to minimize the stabilization period 184. In addition, depending on the plasma processing activity, its duration, or its order relative to other steps, different amounts of heat are generated and subsequently lost. Since the substrate temperature directly affects the plasma treatment as previously described, first measuring and then adjusting the substrate temperature will allow the plasma processing step to be preferably optimized. Furthermore, the physical structure of the plasma processing chamber itself can vary. For example, an electric paddle can be struck without a substrate to remove contaminants from the plasma processing system. However, the fixture is no longer shielded by the substrate and is then etched. When the cleaning process is repeated, the surface roughness of the substrate increases, changing its heat transfer efficiency. Finally, the cooling system cannot be properly compensated and the recipe parameters will be invalid. Since it is often impractical to decide when this point is reached, the fixture is usually replaced after a certain number of operating hours, and this certain number of operating hours is usually only a fraction of its useful life. This reduces the cost of production because it is not necessary to replace expensive fixtures, and because the plasma processing system must be off-line for hours to change fixtures, production is reduced. Furthermore, since the same manufacturing equipment is installed at different times, it may be necessary to adjust the recipe parameters or the degree of use is different, so the maintenance cycle cannot be matched with the maintenance cycle of other equipment. When moving the process to a newer plasma processing system, or when the process is switched to handle a larger base-8-(6)1320951 bottom size (for example, the recipe parameters are countable (for example, the wafer temperature is The invention is embodied in a systematic method. The method of the invention is configured as an absorption group electromagnetic frequency conversion method comprising the base structure comprising a jig; a slurry reactor; and a slurry Included in the first set of electricity to produce a second set of electrical quantities, the device is converted into a device that is warm in another embodiment. The device is configured to absorb, including the magnetic frequency converted into heat, and also includes the substrate support '200 mm to 300 mm The plasma processing system can be adjusted. Ideally, the same formulation chemistry, power, and temperature are maintained. However, since the theory has not been measured, the process may need to be substantially adjusted to achieve a similar production curve. There is a need for an improved method of in situ monitoring of substrate temperature and a plasma processing method for determining substrate temperature in an embodiment comprising providing a substrate comprising a set of materials, wherein the base comprises electromagnetic radiation of a first set of electromagnetic frequencies to Thermal vibration group, and transmitting a second set of electromagnetic frequencies. This is disposed on the substrate support structure, wherein the substrate supports the flow of the etching gas mixture into the plasma etch gas mixture of the plasma processing system to produce a plasma, wherein the electromagnetic frequency. The method further comprises treating the substrate with a plasma, by magnetic frequency; calculating a quantity of the second set of electromagnetic frequencies; In one embodiment, the invention is directed to determining a plasma processing system comprising a substrate comprising a set of materials, wherein the substrate is coupled with a set of electromagnetic frequencies of electromagnetic radiation to pass the first set of electrical-oscillation groups, and to transmit a second set of electromagnetics frequency. Device structure, wherein the substrate support structure comprises a clamp, and -S-

(7) (7)1320951 基底設於基底支撐結構上;輸送機構,將蝕刻氣體混合物 流入電漿處理系統的電漿反應器;及撞擊機構,撞擊蝕刻 氣體混合物以產生電漿,其中,電漿包括第一組電磁頻 率。裝置又包含處理機構·,以電漿處理基底,藉以產生第 二組電磁頻率;計算機構,計算第二組電磁頻率的量値; 及轉換機構,將該量値轉換成溫度値。 在配合附圖之下述詳細說明中,將更詳細地說明本發 明的這些及其它特點。 【實施方式】 將參考如圖式中所示之本發明的數個較佳實施例以說 明本發明。在下述說明中,揭示眾多具體細節以便完整地 瞭解本發明。但是,習於此技藝者將瞭解本發明在無這些 特定細節的一些或全部時,仍可實施。在其它情形下,尙 未詳細說明習知的製程步驟及/或結構以免模糊本發明。 不希望受限於理論’本發明人於此深信電漿處理系統 中’聲子可以用於原地監視基底溫度。一般而言,聲子是 基底中的熱能振盪’其接著會產生電磁波。基底內分離的 fe α材料’特別是存在於結晶結構內的特別材料,通常會 發射電磁輻射’該電磁輻射具有對該材料而言是獨特的頻 率’且具有與基底中吸收的熱能總量有關連的量値。以非 顯而易知的方式,藉由量測頻率爲基底材料的特徵但是通 常會在電漿處理系統中的任意處發現之輻射量値,可以以 貝質上準確的方式5十算基底的溫度。在一實施例中,使用 -10 - 1320951 附件3A :第 92122 165 號專利申請案 中文說明書替換頁 民國98年4月17日修正 黑體輻射之蒲朗克輻射定律,但以基底的特定輻射率校 正,以完成計算。 可以使用某些頻率,較佳地在IR及遠IR區中。所選 取的頻率應實質上對應於基底材料具有強的吸收係數之光 譜區。可以使用大量的光譜區。大部份較受喜好的聲子是 在6/zm與50μιη的範圍之中。在一實施例中,對Si基 底而言,可由以16.4/zm之Si-Si振盪而產生可量測的輻 射。在另一實施例中,由9·1μιη之Si-0-Si振盪產生受監 視的聲子,其中間位氧參與原子運動。利用豐富的Si-Si、Si-O、及Si-C(替代碳)振動光譜,可以使用其它光 譜區。 現在參考圖2A,其係根據本發明的一實施例之製程 的簡化圖,其中,顯示聲子。在電漿處理系統中,電漿 20 1會被撞擊,產生橫越X光區至微波區之光譜。此輻射 的大部份202a會通過基底而無影響。這是透射光。實施 例是X光、大部份的紅外線光譜。此輻射的第二部份 20 2b會由基底206部份地吸收並部份地透射。實施例是 近紅外線中及適度紅外線中的光,基底對其頻率具有低的 吸收或消光係數。被吸收的部份實質上會被轉換成熱能。 其餘部份實質上整體被吸收並轉換成熱能。接著,聚集的 熱能會在基底的晶格結構內接合的材料中造成聲子210, 其接著造成輻射214以特定可量測的頻率產生。 現在參考圖2B,其顯示根據本發明的一實施例之製 程的簡化圖,其中,基底溫度被量測。如圖2A所示,電 -11 - 1320951 Ο) 發20]在電發處理系中統被撞擊’產生電磁輻射202。被 吸收的電磁輻射之一部份實質上會被轉換成熱能。此熱能 接者會在基底的晶格結構內接合的材料中產生聲子2 1 0, 其接著會造成輻射21 4產生並接著由偵測器2丨2量測。頓 射2 1 4與發射基底處於熱平衡。偵測器2 1 2由1)能夠根 據發射的電磁輻射的頻率(或波長)以區別發射的電磁輻 射之裝置’及2 )能夠量測在裝置1 )所選取之頻率(波長)的 電磁幅射強度之裝置。在一實施例中,偵測器2 1 2可以具 有例如單色器之光學色散元件(舉例而言,多層介電干射 濾光器 '稜鏡、光柵' Fabry-Perot干涉儀),其係被最 佳化以傳送對應於選取的材料之電磁頻譜帶的輻射強度。 在另一實施例中’使用適當頻帶的濾波器以選取有用的輻 射。在偵測器中可以使用任何能夠量測單色器所選取的輻 射強度之感光裝置。實施例是熱偵測器(熱電堆)、感光 的及光電伏打偵測器。 現在參考圖2C’其顯示根據本發明的一實施例之圖 2B更詳細的圖形。如圖2A所示般,在電漿處理系統2〇〇 中電漿201會被撞擊,產生電磁輻射202。被吸收之電磁 輻射的部份實質上會被轉換成熱能,接著會在基底2 0 6內 造成產生聲子。以偵測器22〇量測頻率對應於選取的材料 之輻射 214(亦即,之 Si-Si,9.1μηι 之 Si-0-Si、 等等),可以計算基底206的溫度。 電漿處理系統200又包含某種型式的冷卻系統,其糖 合至夾具以取得熱平衡。此冷卻系統通常包括冷卻器,其 -12 - (10) (10)1320951 會將冷媒抽送經過夾具內的孔穴,以及在夾具與晶圓之間 抽送氦氣。除了移除所產生的熱之外,氦氣也允許冷卻系 統快速地效正散熱。亦即,增加的氦氣壓力接著也會增加 熱轉換率。 與習知技藝相反,藉由調整冷卻器2 2 0的溫度設定及 氦氣22 0的壓力,可以以實質穩定的方式維持基底2 06的 溫度。特別地,由於在後續的電漿淸潔期間,夾具的熱轉 換效率會降低,所以,氦220的壓力會增加以補償,藉以 實質地維持基底溫度。這可以允許夾具具有實質上較長時 間的使用,減少夾具更換成本。此外,由於電漿處理系統 2 0 0在必須的維修之前可以操作較久,所以’可以維持或 增進產能。 此外,與對寬的基底溫度範圍次佳化相反’特定的電 漿處理步驟可以最佳化以用於窄的基底溫度範圍。此外’ 由於來自先前步驟之餘留的製程熱量可以快速地衰減’所 以,製程步驟可以更容易地互換。 現在參考圖3A-E ’其顯示根據本發明之一實施例之 Exelan HPT電漿處理系統中的碁底聲子量測。雖然在本 實施例中,顯示Exelan HPT電漿處理系統’但是’也可 以使用其它電漿處理系統。在下述製程條件下執行貞虫刻處 理: 壓力:5 0 Mt 功率:1800 W(2 M Hz)/1200W (27MHz) 電漿成份:Ar:270 seem; C4F8: 25 seem; 02: 10 (11) 1320951 seem 溫度:2 0 °C 持續時間:3 Ο Ο s e c 現在參考圖3 A,其顯示根據本發明的一 漿處理系統內訊號強度相對於時間之簡化圖。 試期間,無基底存在。一般而言,當電漿被撞 會隨著時間3〗6吸收熱能,產生聲子。在本實 1 6 · 4 // m的 s i - S i量測造成的電磁輻射。在 中’由Si-0-Si所產生的輻射也會產生實質 9·1μΐΏ的圖。此圖形顯示隨著電漿室壁因電漿 愈來愈熱,電磁輻射之強度會增加。當電漿宅 時,由於室壁關始冷卻,所以,對應的訊號 低。此圖形顯示室壁發射的電磁輻射假使未 理,將會干擾基底溫度量測。 現在參考圖3 Β,顯示根據本發明的一實 處理系統內波數相對於吸收率之簡化圖。曲据 2 0 °C時的基底之基底吸收率。曲線3 2 6顯示 底之基底吸收率。曲線3 2 8顯示90°C時的基 收率。一般而言,基底溫度愈高,對應的吸 負。在電漿處理系統中產生的IR輻射之頻譜 峰値變得明顯,第一峰値 3 3 0在 16.4 μ m, 生,第二峰値332在9.1 //on,由S i - Ο - S i產生 最大頻譜變化是在〗6_4;um及9·1μηι之峰値。 處,訊號強度對於基底溫度最靈敏。曲線3 2 4 實施例之電 在執行此測 擊時,室壁 施例中,對 另一實施例 上類似於在 作用而變得 Ε 320關閉 強度也會降 被正確地處 施例,電漿 I 324顯示 7 0 °C時的基 底之基底吸 收率變得愈 中,二吸收 由 Si-Si產 。觀察到之 在這些波長 顯不在]6 · -14 - 1320951 附件3A :第 92122165 號專利申請案 中文說明書替換頁 民國98年4月I7日修正 及9.Ιμιη爲正吸收,意指基底在這些波長處吸收的電 磁輻射比它發射的電磁輻射更多。曲線326及328在 16.4μιη及9.1 μιη顯示負吸收,表示基底在這些波長發射 的電磁輻射多於其吸收的電磁輻射。由基底發射的輻射及 由偵測器量測的輻射係在與基底熱平衡且與電漿發射及處 理室壁發射的輻射無關。 現在參考圖3C,其係顯示根據本發明的一實施例之 電漿處理系統內,在二溫度範圍內,波長相對於吸收率之 簡化圖。在20 °C的電漿處理系統中產生的IR輻射之頻譜 中,基底溫度係基底發射的輻射量類似於吸收量,因此, 無明顯的峰値。但是,在90 °C的基底溫度,二吸收峰値 變得明顯,第一峰値在l6.4/zm,由Si-Si產生,第二峰 値在由Si-0-Si產生。 現在參考圖3D,其顯示根據本發明的一實施例之電 漿處理系統內的訊號強度相對於溫度之簡化圖。曲線346 量測訊號強度342相對於溫度307,而曲線348量測訊號 強度相對於溫度3 0 7。如圖3 D所示,基底溫度愈高,則 對應的訊號強度愈高。 現在參考圖3E,其顯示根據本發明的一實施例之電 漿處理系統內二量測的波長之吸收率相對於溫度的簡化 圖。第一曲線330係Si-Si於16.4 μιη產生的,第二曲線 332係Si-0-Si於9.1 μιη產生的。隨著溫度307增加,對 應的吸收率3 05實質上以線性方式減少。 雖然以數個較佳實施例說明本發明,但是,可以有其 -15- (13) (13)1320951 它落在本發明的範圍內之改變、變更及均等性。舉例而 言,雖然配合ExeUn HPT電漿處理系統,說明本發明, 但是,可以使用其它電漿處理=系統。也應注意,有很多不 同方式以實施本發明的方法。 本發明的優點包含在電漿處理系統中原地量測基底的 溫度。其它優點包含最佳化例如夾具等電漿處理結構的更 換,增加電漿處理製程本身的產能,並便於決定及將配方 從第一電漿處理系統轉換至第二電漿處理系統。已揭示舉 例說明的實施例及最佳模式,在後附的申請專利範圍所界 定的發明之目的及精神之內,可對揭示的實施例作修改及 變化。 【圖式簡單說明】 以附圖中的實施例但非限定之方式,說明本發明,其 中’類似代號代表類似的元件,及其中: 圖I A係顯示電漿處理系統的簡化剖面視圖,其中使 用溫度探針以決定晶圓溫度; 圖1 B係顯示電漿處理系統的簡化剖面視圖,其中使 用高溫針以決定晶圓溫度; 圖I C係顯示電漿處理系統的簡化剖面視圖,其中使 用干涉儀以決定晶圓溫度; 圖1 D係顯示電漿點燃之後基底的溫度相對於時間之 簡化圖; 圖2 A係顯示根據本發明的一實施例之製程的簡化 -16 - (14) (14)1320951 圖,其中,顯示聲子; 圖2B係顯示根據本發明的一實施例之製程的簡化 圖,其中,量測基底溫度; ·’ 圖2 C係顯示根據本發明的一實施例之圖2 B的更詳 細之圖形; 圖3 A-3E係顯示根據本發明的一實施例之電漿處理系 統中的基底之聲子量測。 主要元件對照表 100 室 1 0 2 電漿 1 03 基底 1 04 基底 ]06 夾具 1 0 8 探針 1 3 0干涉儀 2 0 0電漿處理系統 201 電漿 2 0 6 基底 2 1 2偵測器 -17 -(7) (7) 1320951 The substrate is disposed on the substrate support structure; the transport mechanism flows the etching gas mixture into the plasma reactor of the plasma processing system; and the impact mechanism strikes the etching gas mixture to generate plasma, wherein the plasma Includes the first set of electromagnetic frequencies. The apparatus further includes a processing mechanism for processing the substrate with plasma to generate a second set of electromagnetic frequencies; a computing mechanism for calculating a second set of electromagnetic frequency quantities; and a converting mechanism for converting the quantity to temperature 値. These and other features of the present invention will be described in more detail in the detailed description which follows. [Embodiment] The present invention will be described with reference to a few preferred embodiments of the invention as illustrated in the drawings. In the following description, numerous specific details are disclosed in order to provide a However, it will be understood by those skilled in the art that the present invention may be practiced without some or all of these specific details. In other instances, well-known process steps and/or structures are not described in detail to avoid obscuring the invention. Without wishing to be bound by theory, the inventors hereby believe that the phonon can be used to monitor the substrate temperature in situ. In general, a phonon is a thermal energy oscillation in a substrate which in turn produces electromagnetic waves. The Fe α material separated in the substrate, in particular a special material present in the crystalline structure, typically emits electromagnetic radiation 'which has a unique frequency for the material' and is related to the total amount of thermal energy absorbed in the substrate. Even the amount of money. In a non-obvious manner, by measuring the frequency of the material of the substrate material, but usually at any point in the plasma processing system, the amount of radiation can be calculated in a shell-like accurate manner. temperature. In one embodiment, the use of -10 - 1320951 Annex 3A: Chinese Patent Specification No. 92122 165 replaces the page of the Law of the Republic of China on April 17, 1998, which corrects the law of blackbody radiation, but is corrected for the specific emissivity of the substrate. To complete the calculation. Certain frequencies may be used, preferably in the IR and far IR regions. The frequency chosen should correspond substantially to the spectral region of the substrate material having a strong absorption coefficient. A large number of spectral regions can be used. Most of the more popular phonons are in the range of 6/zm and 50μιη. In one embodiment, for a Si substrate, measurable radiation can be produced by oscillating at 16.4/zm of Si-Si. In another embodiment, the monitored phonon is generated by the oscillation of 9·1 μηη of Si-0-Si, wherein the meta oxygen participates in the atomic motion. Other spectral regions can be used with rich Si-Si, Si-O, and Si-C (alternative carbon) vibrational spectroscopy. Referring now to Figure 2A, which is a simplified diagram of a process in accordance with an embodiment of the present invention, wherein phonons are displayed. In the plasma processing system, the plasma 20 1 is struck to produce a spectrum that traverses the X-ray zone to the microwave zone. Most of the radiation 202a will pass through the substrate without affecting it. This is transmitted light. An example is X-ray, most of the infrared spectrum. The second portion 20 2b of the radiation is partially absorbed and partially transmitted by the substrate 206. The examples are light in near-infrared light and moderately infra-red light, the substrate having a low absorption or extinction coefficient for its frequency. The absorbed part is essentially converted into heat. The rest is substantially absorbed and converted into heat. The concentrated thermal energy then causes phonons 210 in the material that is bonded within the lattice structure of the substrate, which in turn causes the radiation 214 to be produced at a particular measurable frequency. Referring now to Figure 2B, there is shown a simplified diagram of a process in accordance with an embodiment of the present invention in which the substrate temperature is measured. As shown in Fig. 2A, the electric -11 - 1320951 Ο) 20] is impacted in the electric hair processing system to generate electromagnetic radiation 202. A portion of the absorbed electromagnetic radiation is substantially converted into thermal energy. This thermal energy source produces phonon 2 1 0 in the material that is bonded within the lattice structure of the substrate, which in turn causes radiation 21 4 to be generated and then measured by detector 2 丨 2 . The emitter 2 1 4 is in thermal equilibrium with the emitter substrate. The detector 2 1 2 can measure the electromagnetic amplitude of the frequency (wavelength) selected at the device 1 by means of 1) means (and 2) capable of distinguishing the emitted electromagnetic radiation according to the frequency (or wavelength) of the emitted electromagnetic radiation. The device for shooting intensity. In an embodiment, the detector 2 12 may have an optical dispersive element such as a monochromator (for example, a multilayer dielectric dry filter '稜鏡, a grating' Fabry-Perot interferometer), Optimized to deliver the intensity of the radiation of the electromagnetic spectrum band corresponding to the selected material. In another embodiment, a filter of the appropriate frequency band is used to select useful radiation. Any photosensitive device capable of measuring the intensity of the radiation selected by the monochromator can be used in the detector. Examples are thermal detectors (thermopiles), sensitized and photovoltaic voltaic detectors. Referring now to Figure 2C', there is shown a more detailed diagram of Figure 2B in accordance with an embodiment of the present invention. As shown in Figure 2A, the plasma 201 will be impacted in the plasma processing system 2 to produce electromagnetic radiation 202. The portion of the absorbed electromagnetic radiation is substantially converted into thermal energy, which in turn causes phonons to be generated within the substrate 206. The temperature of the substrate 206 can be calculated by the detector 22 measuring the radiation 214 corresponding to the selected material (i.e., Si-Si, Si-0-Si of 9.1 μη, etc.). The plasma processing system 200, in turn, includes some type of cooling system that is conjugated to the fixture for thermal equilibrium. This cooling system typically includes a chiller, -12 - (10) (10) 1320951 pumping refrigerant through the holes in the fixture and pumping helium between the fixture and the wafer. In addition to removing the heat generated, helium also allows the cooling system to quickly dissipate heat. That is, the increased helium pressure will then increase the heat transfer rate. Contrary to conventional techniques, the temperature of the substrate 206 can be maintained in a substantially stable manner by adjusting the temperature setting of the cooler 220 and the pressure of the helium 22 0 . In particular, since the heat transfer efficiency of the jig is lowered during the subsequent plasma cleaning, the pressure of the crucible 220 is increased to compensate, thereby substantially maintaining the substrate temperature. This can allow the fixture to have a substantially longer period of use, reducing fixture replacement costs. In addition, since the plasma processing system 200 can be operated for a long time before the necessary maintenance, the capacity can be maintained or increased. In addition, the specific plasma processing steps can be optimized for narrow substrate temperature ranges as opposed to suboptimal substrate temperature range suboptimization. In addition, process steps can be more easily interchanged because process heat from the previous steps can be quickly attenuated. Referring now to Figures 3A-E', there is shown a bottom phonon measurement in an Exelan HPT plasma processing system in accordance with an embodiment of the present invention. Although in the present embodiment, the Exelan HPT plasma processing system is shown 'but' other plasma processing systems may be used. Perform aphid treatment under the following process conditions: Pressure: 5 0 Mt Power: 1800 W (2 M Hz) / 1200 W (27 MHz) Plasma composition: Ar: 270 seem; C4F8: 25 seem; 02: 10 (11) 1320951 seem Temperature: 2 0 °C Duration: 3 Ο Ο sec Referring now to Figure 3A, a simplified diagram of signal strength versus time in a slurry processing system in accordance with the present invention is shown. No substrate was present during the test. In general, when the plasma is hit, it absorbs heat energy over time 3, producing phonons. The electromagnetic radiation caused by the measurement of the s i - S i of the actual 1 6 · 4 // m. The radiation produced by Si-0-Si in the middle also produces a map of substantially 9·1 μΐΏ. This graph shows that as the plasma chamber wall gets hotter and hotter, the intensity of the electromagnetic radiation increases. When the plasma house is installed, the corresponding signal is low because the chamber wall is cooled. This graph shows that the electromagnetic radiation emitted by the chamber wall is unreasonable and will interfere with the substrate temperature measurement. Referring now to Figure 3, there is shown a simplified diagram of wavenumber versus absorbance in a real processing system in accordance with the present invention. The base absorption rate of the substrate at 20 °C. Curve 3 2 6 shows the base absorbance of the bottom. Curve 3 2 8 shows the base yield at 90 °C. In general, the higher the substrate temperature, the corresponding absorption. The spectral peaks of the IR radiation generated in the plasma processing system become apparent, with the first peak 値3 3 0 at 16.4 μm, the second peak 値332 at 9.1 //on, by S i - Ο - S The maximum spectral variation produced by i is at the peak of 〖6_4; um and 9·1μηι. At the same time, the signal intensity is the most sensitive to the substrate temperature. Curve 3 2 4 The electric power of the embodiment is performed in the chamber wall application, and in another embodiment, similar to the effect, the 关闭 320 closing strength is also lowered, and the plasma is correctly applied. I 324 shows that the substrate absorbance at the substrate at 70 °C becomes more and more, and the second absorption is produced by Si-Si. It is observed that these wavelengths are not present]6 · -14 - 1320951 Annex 3A: Chinese Patent Specification No. 92122165 Replacement page Amendment of the Republic of China on April 7, I7 and 9.Ιμιη is positive absorption, meaning the substrate is at these wavelengths The electromagnetic radiation absorbed is more than the electromagnetic radiation it emits. Curves 326 and 328 show a negative absorption at 16.4 μηη and 9.1 μηη, indicating that the substrate emits more electromagnetic radiation at these wavelengths than it absorbs. The radiation emitted by the substrate and the radiation measured by the detector are independent of the heat balance with the substrate and with the radiation emitted by the plasma emission and processing chamber walls. Referring now to Figure 3C, there is shown a simplified diagram of wavelength versus absorbance over a range of temperatures in a plasma processing system in accordance with an embodiment of the present invention. In the spectrum of IR radiation generated in a plasma processing system at 20 °C, the amount of radiation emitted by the substrate at the substrate temperature is similar to the amount of absorption, and therefore, there is no significant peak. However, at a substrate temperature of 90 °C, the second absorption peak becomes apparent, the first peak l is at 16.4/zm, which is produced by Si-Si, and the second peak is produced by Si-0-Si. Referring now to Figure 3D, there is shown a simplified diagram of signal strength versus temperature in a plasma processing system in accordance with an embodiment of the present invention. Curve 346 measures signal strength 342 relative to temperature 307, while curve 348 measures signal strength relative to temperature 3 0 7. As shown in Figure 3D, the higher the substrate temperature, the higher the corresponding signal strength. Referring now to Figure 3E, there is shown a simplified graph of absorbance versus temperature for two measured wavelengths in a plasma processing system in accordance with an embodiment of the present invention. The first curve 330 is produced by Si-Si at 16.4 μηη, and the second curve 332 is produced by Si-0-Si at 9.1 μηη. As the temperature 307 increases, the corresponding absorbance 305 decreases substantially linearly. Although the present invention has been described in terms of several preferred embodiments, it is possible that there are variations, modifications, and equivalences within the scope of the invention as -15-(13) (13) 1320951. By way of example, although the invention is illustrated in conjunction with an ExeUn HPT plasma processing system, other plasma processing = systems can be used. It should also be noted that there are many different ways to implement the method of the present invention. An advantage of the present invention involves measuring the temperature of the substrate in situ in a plasma processing system. Other advantages include optimizing the replacement of plasma processing structures such as fixtures, increasing the throughput of the plasma processing process itself, and facilitating the decision and conversion of the recipe from the first plasma processing system to the second plasma processing system. Modifications and variations of the disclosed embodiments are possible within the spirit and scope of the inventions disclosed in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The present invention is illustrated by way of example, and not limitation, in the drawings, in which <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Temperature probe to determine wafer temperature; Figure 1 B shows a simplified cross-sectional view of the plasma processing system, using a high temperature needle to determine the wafer temperature; Figure IC shows a simplified cross-sectional view of the plasma processing system, using an interferometer To determine the wafer temperature; Figure 1D shows a simplified diagram of the temperature of the substrate relative to time after ignition of the plasma; Figure 2A shows a simplified process according to an embodiment of the invention -16 - (14) (14) 1320951, in which a phonon is displayed; FIG. 2B is a simplified diagram showing a process in accordance with an embodiment of the present invention, wherein the substrate temperature is measured; 'Figure 2 C shows Figure 2 in accordance with an embodiment of the present invention. A more detailed diagram of B; Figure 3 A-3E shows the phonon measurement of the substrate in a plasma processing system in accordance with an embodiment of the present invention. Main components comparison table 100 Room 1 0 2 Plasma 01 03 Substrate 1 04 Substrate] 06 Clamp 1 0 8 Probe 1 3 0 Interferometer 2 0 0 Plasma Processing System 201 Plasma 2 0 6 Substrate 2 1 2 Detector -17 -

Claims (1)

1320951 拾、申請專利範圍 附件5 :第92 1 22 1 6 5號專利申請案 中文申請專利範圍替換本 民國98年11月1〇日修正 1. 一種在電漿處理系統中決定基底溫度的方法,包 括: 設置基底; 將該基底設置於基底支撐結構上,其中,該基底支撐 結構包含夾具; 將蝕刻氣體混合物流入該電漿處理系統的電漿反應 器; 撞擊該蝕刻氣體混合物以產生電漿; 以該電漿處理該基底; 使用偵測器來量測選取訊號之發射聲子產生輻射之量 値,根據於該處理期間由該基底所強烈吸收之該基底之材 料組成,該選取訊號具有對應於事先預定之頻率之選取頻 率; 將該量値轉換成該溫度之溫度値,其未使用反射輻射 之量測;以及 藉由將該基底設置於該電漿與該偵測器之間,而保護 該偵測器免於接受到該電漿。 2. 如申請專利範圍第1項之方法,其中,該偵測器包 含電磁輻射識別裝置。 3. 如申請專利範圍第1項之方法,進一步包含藉由將 1320951 該偵測器設置於該基底支撐結構之內側,而保護該基底免 於接受到該偵測器所產生之污染物。 4 .如申請專利範圍第1項之方法,該將該量値轉換成 該溫度値之步驟係使用黑體輻射之浦朗克輻射定律。 5 .如申請專利範圍第1項之方法,進一步包含以電磁 量測裝置量測該量値之步驟。 6. 如申請專利範圍第5項之方法,其中,該電磁量測 裝置包括窄範圍高溫計。1320951 Picking up, patent application scope Annex 5: No. 92 1 22 1 6 5 Patent application Chinese patent application scope replacement November 1st, 1998, the amendment of the Republic of China 1. A method for determining the substrate temperature in a plasma processing system, The method includes: disposing a substrate; disposing the substrate on a substrate supporting structure, wherein the substrate supporting structure comprises a jig; flowing an etching gas mixture into a plasma reactor of the plasma processing system; and striking the etching gas mixture to generate a plasma; Treating the substrate with the plasma; using a detector to measure the amount of radiation generated by the emitted phonon of the selected signal, according to the material composition of the substrate strongly absorbed by the substrate during the processing, the selected signal has a corresponding a frequency selected at a predetermined frequency; converting the amount 成 to a temperature 该 of the temperature, which is not measured using reflected radiation; and by placing the substrate between the plasma and the detector The detector is protected from the plasma. 2. The method of claim 1, wherein the detector comprises an electromagnetic radiation recognition device. 3. The method of claim 1, further comprising protecting the substrate from contaminants generated by the detector by placing 1320951 on the inside of the substrate support structure. 4. The method of claim 1, wherein the step of converting the amount to the temperature is performed using Planck's law of blackbody radiation. 5. The method of claim 1, further comprising the step of measuring the amount of enthalpy by an electromagnetic measuring device. 6. The method of claim 5, wherein the electromagnetic measuring device comprises a narrow range pyrometer. 7. 如申請專利範圍第5項之方法,其中,該電磁量測 裝置包括單色器。 8. 如申請專利範圍第5項之方法,其中,該電磁量測 裝置包括光柵。 9. 如申請專利範圍第5項之方法,其中,該電磁量測 裝置包括帶通濾光器。 1 0 .如申請專利範圍第5項之方法,進一步包含調整 冷卻系統以維持該溫度値實質爲固定之步驟。 11. 一種在電漿處理系統中決定基底溫度的方法,包 括: 將該基底設置於基底支撐結構上; 將蝕刻氣體混合物流入該電漿處理系統的電漿反應 撞擊該蝕刻氣體混合物以產生電漿; 以該電漿處理該基底; 使用偵測器來量測選取訊號之發射聲子產生輻射之量 -2- 1320951 値,根據於該處理期間由該基底所強烈吸收之該基底之材 料組成,該選取訊號具有對應於事先預定之頻率之選取頻 率; 將該量値轉換成該溫度之溫度値,其未使用反射輻射 之量測;以及 藉由將該基底設置於該電漿與該偵測器之間,而保護 該偵測器免於接受到該電漿。 1 2 .如申請專利範圍第1 1項之方法,其中,該電漿處 理系統進一步包含電磁輻射量測裝置。 1 3 .如申請專利範圍第1 2項之方法,其中該基底係設 置於該電漿與該電磁輻射量測裝置之間。 1 4 .如申請專利範圍第1 1項之方法,該將該量値轉換 成該溫度値之步驟係使用黑體輻射之浦朗克輻射定律。 1 5 .如申請專利範圍第1 1項之方法,進一步包含以電 磁量測裝置量測該量値之步驟。 1 6 .如申請專利範圍第1 5項之方法,其中,該電磁量 測裝置包括窄範圍高溫計。 1 7 .如申請專利範圍第1 5項之方法,其中,該電磁量 測裝置包括單色器。 18. 如申請專利範圍第15項之方法,其中,該電磁量 測裝置包括光柵。 19. 如申請專利範圍第15項之方法,其中,該電磁量 測裝置包括帶通濾光器。 20. 如申請專利範圍第15項之方法,進一步包含調整 -3- 1320951 冷卻系統以維持該溫度値實質爲固定之步驟7. The method of claim 5, wherein the electromagnetic measuring device comprises a monochromator. 8. The method of claim 5, wherein the electromagnetic measuring device comprises a grating. 9. The method of claim 5, wherein the electromagnetic measuring device comprises a band pass filter. 10. The method of claim 5, further comprising the step of adjusting the cooling system to maintain the temperature substantially constant. 11. A method of determining a substrate temperature in a plasma processing system, comprising: disposing the substrate on a substrate support structure; and flowing a plasma gas mixture into the plasma processing system to strike the etching gas mixture to produce a plasma Treating the substrate with the plasma; using a detector to measure the amount of emitted phonon generated by the selected signal -2- 1320951 値, according to the material composition of the substrate strongly absorbed by the substrate during the processing, The selected signal has a selected frequency corresponding to a predetermined frequency; the amount 値 is converted to a temperature 该 of the temperature, which is not measured by the reflected radiation; and the substrate is placed on the plasma and the detection Between the devices, the detector is protected from the plasma. The method of claim 11, wherein the plasma processing system further comprises an electromagnetic radiation measuring device. The method of claim 12, wherein the substrate is disposed between the plasma and the electromagnetic radiation measuring device. 1 4. The method of converting the amount 値 into the temperature 如 according to the method of claim 11 is the use of Planck's law of black body radiation. The method of claim 11, further comprising the step of measuring the amount of enthalpy by means of an electromagnetic measuring device. The method of claim 15, wherein the electromagnetic measuring device comprises a narrow range pyrometer. The method of claim 15, wherein the electromagnetic measuring device comprises a monochromator. 18. The method of claim 15, wherein the electromagnetic measuring device comprises a grating. 19. The method of claim 15, wherein the electromagnetic measuring device comprises a band pass filter. 20. The method of claim 15, further comprising the step of adjusting the -3- 1320951 cooling system to maintain the temperature, which is substantially fixed -4--4-
TW092122165A 2002-08-13 2003-08-12 Methods for in situ substrate temperature monitoring by electromagnetic radiation emission TWI320951B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40297802P 2002-08-13 2002-08-13
US10/640,350 US7341673B2 (en) 2003-08-12 2003-08-12 Methods and apparatus for in situ substrate temperature monitoring by electromagnetic radiation emission

Publications (2)

Publication Number Publication Date
TW200407999A TW200407999A (en) 2004-05-16
TWI320951B true TWI320951B (en) 2010-02-21

Family

ID=31715916

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092122165A TWI320951B (en) 2002-08-13 2003-08-12 Methods for in situ substrate temperature monitoring by electromagnetic radiation emission

Country Status (6)

Country Link
JP (1) JP4980568B2 (en)
KR (1) KR20050050079A (en)
CN (1) CN1675406B (en)
AU (1) AU2003262685A1 (en)
TW (1) TWI320951B (en)
WO (1) WO2004015157A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7341673B2 (en) 2003-08-12 2008-03-11 Lam Research Corporation Methods and apparatus for in situ substrate temperature monitoring by electromagnetic radiation emission
JP2007134601A (en) * 2005-11-11 2007-05-31 Horiba Ltd Method for measuring temperature of silicon wafer, and radiation thermometer for measuring temperature
DE102006009460A1 (en) * 2006-03-01 2007-09-06 Infineon Technologies Ag Process device used in production of integrated circuits comprises process chamber, holder within chamber for holding substrate, radiation source, radiation detector and control and evaluation unit
US7651269B2 (en) * 2007-07-19 2010-01-26 Lam Research Corporation Temperature probes having a thermally isolated tip
CN102313599B (en) * 2010-06-29 2013-04-24 北京北方微电子基地设备工艺研究中心有限责任公司 Device and method for measuring temperature of coupling window, and plasma equipment
US10373794B2 (en) * 2015-10-29 2019-08-06 Lam Research Corporation Systems and methods for filtering radio frequencies from a signal of a thermocouple and controlling a temperature of an electrode in a plasma chamber
CN105841844B (en) * 2016-03-24 2018-07-24 中国科学院上海微系统与信息技术研究所 A kind of method that substrate surface actual temperature is demarcated in molecular beam epitaxy
CN109280899A (en) * 2018-11-27 2019-01-29 上海卫星装备研究所 The characterizing method of matrix temperature rise during a kind of vacuum coating

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959244A (en) * 1989-03-27 1990-09-25 General Electric Company Temperature measurement and control for photohermal processes
JPH03250642A (en) * 1989-12-06 1991-11-08 Hitachi Ltd Infrared ray thermometer
JP3093239B2 (en) * 1990-05-22 2000-10-03 東京エレクトロン株式会社 Semiconductor wafer heat treatment apparatus and heat treatment method
JPH0493730A (en) * 1990-08-09 1992-03-26 Sharp Corp Temperature measuring apparatus
JPH0691144B2 (en) * 1990-09-21 1994-11-14 株式会社日立製作所 Radiation thermometer for measuring wafer temperature and method for measuring wafer temperature
US5564830A (en) * 1993-06-03 1996-10-15 Fraunhofer Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method and arrangement for determining the layer-thickness and the substrate temperature during coating
US5549756A (en) * 1994-02-02 1996-08-27 Applied Materials, Inc. Optical pyrometer for a thin film deposition system
GB9411153D0 (en) * 1994-06-03 1994-07-27 Land Infrared Ltd Temperature monitoring
EP1124255A3 (en) * 1999-04-05 2001-10-17 Applied Materials, Inc. Etching process in the fabrication of electronic devices
US6328802B1 (en) * 1999-09-14 2001-12-11 Lsi Logic Corporation Method and apparatus for determining temperature of a semiconductor wafer during fabrication thereof
JP2001093882A (en) * 1999-09-22 2001-04-06 Ulvac Japan Ltd Temperature measuring device and vacuum treating device equipped with the same
JP2001153728A (en) * 1999-11-30 2001-06-08 Toppan Printing Co Ltd Method for measuring temperature of film, film forming device mounting the measurement system, and film forming method
US6352870B1 (en) * 2000-06-12 2002-03-05 Advanced Micro Devices, Inc. Method of endpointing plasma strip process by measuring wafer temperature

Also Published As

Publication number Publication date
JP4980568B2 (en) 2012-07-18
WO2004015157A3 (en) 2004-04-01
CN1675406B (en) 2010-05-12
AU2003262685A1 (en) 2004-02-25
WO2004015157A2 (en) 2004-02-19
CN1675406A (en) 2005-09-28
KR20050050079A (en) 2005-05-27
AU2003262685A8 (en) 2004-02-25
TW200407999A (en) 2004-05-16
JP2005536049A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US9945736B2 (en) Methods and apparatus for in situ substrate temperature monitoring by electromagnetic radiation emission
US20100252547A1 (en) System and method for reducing object deformation during a pulsed heating process
CN102668048B (en) Apparatus and method for enhancing the cool down of radiatively heated substrates
TWI343474B (en) Methods and apparatus for determining the temperature of a substrate
JPH11145148A (en) Apparatus and method for heat plasma annealing
TW200842332A (en) Substrate temperature measurement by infrared transmission
TWI320951B (en) Methods for in situ substrate temperature monitoring by electromagnetic radiation emission
KR20220161467A (en) Fast and accurate temperature control for thermal etching
JPH0263293B2 (en)
US10134612B2 (en) Semiconductor manufacturing apparatus and method of manufacturing semiconductor device
US20200234963A1 (en) Etching method and etching apparatus
TWI375978B (en) Method for characterizing an electron beam treatment apparatus
US20150221482A1 (en) Temperature measuring method and plasma processing system
TWI830598B (en) Temperature detection device and semiconductor processing device
US20240258115A1 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
KR20070045512A (en) A substrate support member and plasma processing apparatus including the same
JP2001289714A (en) Temperature measurement method and measurement device of substrate and treating device of the substrate
JPS6358913B2 (en)
KR101943179B1 (en) Semiconductor device manufacturing method
Giraud et al. Mesoscale thermal infrared sources
JPH05251397A (en) Measuring method for substrate temperature

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees