TWI309914B - - Google Patents

Download PDF

Info

Publication number
TWI309914B
TWI309914B TW095121870A TW95121870A TWI309914B TW I309914 B TWI309914 B TW I309914B TW 095121870 A TW095121870 A TW 095121870A TW 95121870 A TW95121870 A TW 95121870A TW I309914 B TWI309914 B TW I309914B
Authority
TW
Taiwan
Prior art keywords
electronic switch
winding
energy storage
end point
diode
Prior art date
Application number
TW095121870A
Other languages
English (en)
Other versions
TW200803141A (en
Inventor
Ming-Han Huang
Original Assignee
Hipro Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hipro Electronic Co Ltd filed Critical Hipro Electronic Co Ltd
Priority to TW095121870A priority Critical patent/TW200803141A/zh
Priority to US11/652,118 priority patent/US7760521B2/en
Priority to JP2007019402A priority patent/JP4521574B2/ja
Publication of TW200803141A publication Critical patent/TW200803141A/zh
Application granted granted Critical
Publication of TWI309914B publication Critical patent/TWI309914B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Description

1309914 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種電壓轉換器,尤指一種可達到零電 . 壓轉換以及低電能損耗之同步半波整流轉換器。 【先前技術】 傳統上半橋式轉換器為使用二個功率開關並做正向 功率轉換之轉換器,可適用於較小之變壓器,而高效率電 源轉換供電器為其開發追求目標,以LLC諧振電路可降低 _ 功率切換損失,提升電源轉換效率減少能源損失,為目前 相關電源業界所開發之產品。 傳統的轉換器以二極體為二次側電路電子開關之元 件,由於二極體會產生一可觀之電能損耗,使得轉換器之 轉換效率無法提升,因此改善二次側電路之電子開關,避 免大量之電能損耗成為轉換器之技術開發目標。 【發明内容】 本發明之目的在於提供一電壓轉換器,利用以電晶體 Φ 代替二極體組成二次側之電子開關,以降低電壓轉換之電 ' 能損耗。 - 達到本發明目的之半橋共振轉換器,包含:一次側繞 組;二次侧繞組,具有第一與第二端點以及一中央端點; 一第一電子開關,具有第一及第二端點,前述第一端點與 前述二次側繞組之第一端點連接;一第二電子開關,具有 第一及第二端點,前述第一端點與前述二次側繞組之第二 端點連接;一第一儲能元件,具有第一及第二端點,前述 第一端點與前述第一電子開關之第二端點連接;一第二儲 5 1309914 月匕元件A有第及第二端點’前述第一端點與前述第二 電子開關之第二端點連接;以及一負載端,具有第一及第 二端點,前述第1點同時與前述第—儲能元件之第二端 點及第二儲能元件之第二端點連接,前述第二端點與前述 二次側繞組之中央端點連接。 、藉由設。置儲能元件可避免電子開關因逆向偏壓造成 過大之能量損耗’因此可使本發明半橋共振轉換器達到最 低能量損耗之目的。 、本發明之前述目的或特徵,將依據後附圖式加以詳細 說明’惟需明瞭的是,後附圖式及 明而非在限制或縮限本發明。 職马况 【實施方式】 剌冑錢含彳本㈣較佳施例 但在此描述之前應瞭解熟悉本行技藝C 士可修改本文中所描述之創作, 人 Ξ此,;瞭解以下之描述對熟悉本行技藝 廣泛之揭不,且其内容不在於限制本創作。 。為 路包ίίΓ圖ίίΓ半橋共振轉換器之電路圖,該電 一端點以及一中央端點;一第一 ^第與第 二端點,前述第一端點盎二’具有第一及第 接;,二電子開關,具有第一及第二端之^-端點連 點與琢述二次側繞組之第二端點連接;一贫’别述第-端 具J第7及第二端點,前述第-端點與前元件, 之第二端點連接;-第二錯能元件,且有/第—電子開關 前述第一端點與前述第二電子開關之第二;及第二端點, ^點連接;以及 6 1309914 一負载端,具有第一及第二端點,前述第一端點同時與前 述第一儲能元件之第二端點及第二儲能元件之第二端點連 接,前述第二端點與前述二次側繞組之中央端點連接。 • 其中,二次侧繞組之第一電子開關係為一 MOSFET功 . 率電晶體Q+與一繞組N3之結合,而第二電子開關係為一 MOSFET功率電晶體Q_與一繞組N3之結合,以達到同步 整流之目的,且該第一電子開關與該第二電子開關之作動 關係為反向,致使該二次側繞組之第一端點或第二端點與 負載端導通,以達到半波整流之目的,並第一電子開關之 φ 繞組N3與第二電子開關之繞組N3係為具有相同圈數之相 同繞組。 在該第一電子開關與第二電子開關分別連接一濾波電 感、Z_,以對從第一電子開關與第二電子開關輸出之電 流進行整流,且為了克服在負載端之輸出電壓與二次侧 繞組之第一端點電壓广之間的壓降,在濾波電感L+並聯一 二極體與電阻及+之串聯組合以形成第一儲能元件,及 在濾波電感L_並聯一二極體Ζλ與電阻足之串聯組合以形 成第二儲能元件,用以提供濾波電感、Ζ_之釋能路徑。 • 本發明係改善一傳統半橋式轉換器之電能損耗及轉換 ' 效率,參考第二圖為一傳統半橋式轉換器之電路架構圖, - 該轉換器包含一一次側電路及一二次側電路,其中6為輸 入電壓,R則為輸出之待測電壓,一次側繞組TV;與二次 ’ 側繞組鸠之圈數比為。 參考第三圖為該半橋式轉換器運作之波形圖,由於其 正半週期及負半週期為對稱之運作模式,因此可將該半橋 式轉換器以正半週期分為以下幾個作業模式: 7 1309914 模組1 : (t〇〜tl) 在模組1的狀態,電晶體及么皆不導通,令共振 電感I,及磁化電感之初始電流為/0,共振電容cr之初 始電壓為,由於/0小於0,因此其電流導通波形如第四 圖所示,由於磁化電感4之跨壓固定為,因此該磁化 電感4可視為一穩定直流電壓源,並該共振電流心^與共 振電容cr電流為相等,因此可得:
J diLrit) r~dT+ hr (^〇) = -^0 K(f〇) = K (& nV0 % 2 步求得共振電以及共振電容。之電流及電壓 J0l \ ' nV〇 ~MF〇~K〇Jcos[^i(i~io)]+V〇,sin[®rXi-/0)]L(i-/〇) 2 並根據該方程式可得第三圖時間~料之共振電感以共 振電容&之電流及電壓波形圖。 士一^中ί目該磁化電感&可視為—穩^直流電壓源’因 振;之共振電感4與共振電容。可視為共振,其共 ^itcr 並得一特性阻抗心7為: 8 1309914
n. Vo Lm
Lr
< K’l) = 〇 VC{U) = VX 而磁化電感之電流方程式並可推導如下: * Lm dt ~ nV〇 => hm= fc)+ f =I〇 + ^{t-10) h(t〇) = h 〇L- L-且該磁化電感心之電流的斜率可表示為:
Slope(ILm) = 根據該方程式可得第三圖時間~至G之磁化電感電流 波形圖。 當共振電流/i;·大於0 ’該共振電流之電流方向反 向,因此二極體/½被終止,並該半橋式轉換器之工作模 式進入模式2。 模組 2 : (tck) 在模組2的狀態,由於共振電流反向,因此電晶體 δ//導通,其電流導通波形如第五圖所示,雨模組1相同, 該磁化電感可視為·~~稳定直流電壓源*並該共振電流 /ir與共振電容G電流為相等,因此可得: ~nV0 且可進一步求得共振電感及共振電容cr之電流及電壓 方程式: 9
sink丨(㈠丨 並根據該方程式可得第三圖中時間1 及共振電容c,之電流及電壓a U G之共振電感八 厂·、 VlrCr 且f共振頻率及特性阻抗皆與圖根 - 1 [27 、、'且1 相同: Ία 而磁化電感£w之電流方程式 並可推導如下:J~'nV〇^ ^ ^ nv r )=/1 J〇I« ι+7^(“0 且該磁化電感之電流的斜率可表示cv—、η·ν〇 , ·、、、*
L sloP<hm) η Ύο Lm 方程式可得第三圖時^至R錢電感‘電痛 由於二次側電路之電晶體極性 不得反向,因此相狀—⑽電^ —侧之電% 電流&相等時,該半橋式轉換器即進 模組3 ·· (t2〜t3) 在模組3的㈣,由於共振錢[肩魏電流^相 寻,此時一次側電流心為〇,其電流波形圖如第六圖所示, 共振電感Zr與磁化電感串聯並與共振電容〔共 可得一電流關係式: 1309914 dt
(Lr +^w)—T~+ VC K(t2) = v2 了步求得共振電感4及共振電容&之電流及電壓 hr (0:
L·—
/2c〇SK2(卜i2)]+^_sinkU Z〇2 c〇sK2 (’ - ί2)]+J2Z02 sin[〇)r2 (ί - ί2)] 心以之共㈣仏及共 電容共振因為因=電得感4=電仏串聯並與*振 >j{Lr + Lm)Cr 並得一特性阻抗ZG2為:
Zn \Lr + Lm ~~~Cr~ 電財料並可轉如下: 根據該方程式可得第三圖時間 波形圖,且得-次側電流心為〇 3 :化電⑤Z^電流 一次側電流/;係為正比,因此可得二由於二次侧電流心與 /2 = —-/j = 0 N2 11 ’模組3即結束。
1309914 -比Γ ί可組3,共振電感4與磁化電感4之電 仙·白相等,且其斜率較模組i與模組2為小: C7 /r X ^'V〇 si〇zt^ 當一次側電晶體•關閉 鐘始f"考圖為本發明半橋共振轉換器與習知半橋共振 ,換裔70件V通情形,在習知半橋共振轉換器之二次側繞 、'且之電路,由於以二極體乃+及^為電子開關,因此產生 一可觀之電能損耗,以16A的電流為例,參考第八圖為使 用蕭特基二滅作為電子_二極體队及狀損耗電流
波形圖,其中若是傳統蕭特基二極體,因其順向壓降約為 0-5V ’因此其功率損失約為: pd =yFxI〇 = 0.5x16 = SW 若是使用低壓降型蕭特基二極體,因其順向壓降約為 0.3V ’因此其功率損失約為: pd = ^κχί〇= 03x16 = 4.W 而以MOSFET場效電晶體ρ+及&代替二極體及 乃-可大幅降低其電能損耗,參考第九圖為使用MOSFET功 率二極體作為電子開關二極體乃+及之損耗電流波形 圖,其中M0SFET功率電晶體導通之順向壓降約為 0.07V,Body Diode導通時之壓降約為0.6V,而M0SFET 功率電晶體導通時間約為Body Diode導通時間2倍,因此 其功率損失約為:
Pd =VFxI0 =〇.〇7xl6x- + 〇.6xl6x^- = 3.9fF 3 3 但由於利用M0SFET場效電晶體取代二極體成為電 12 1309914 子開關將面臨一逆向偏壓之問題,在模組3的狀態下,二 次侧電流h為0 ’而F’與κ存在一壓差,使得該m〇SfeT 場效電晶體可能導致逆偏,此逆向偏壓會造成B〇dyDi〇de 導通,致使電能損耗大幅上升,因此本發明於電子開關之 後串聯一儲能元件’利用濾波電感及乙消除P與K之 間所存在之壓差: di2(〇 _ V〇~V' dt L+ 於該儲能元件利用一電阻串聯一二極體,串聯R+以及 φ 从串聯及_,以形成濾波電感及之釋能路徑,當模組3 結束時’濾波電感1+及乙便依队串聯R+以及2)串聯只 之釋能路徑將該電感内所儲存之電能釋放,因此本發明之 半橋共振轉換器便可克服逆向偏壓造成Body Diode導通 之問題’參考第十圖為本發明半橋共振轉換器之損耗電流 波形圖’其中MOSFET功率電晶體導通之順向壓降約為 0.07V,因此其功率損失約為:
巧=❼ x t = 〇·〇7χ 16 = 1.12F 因此由以上功率損失之數值比較可知,本發明半橋典 φ 振轉換器可達到最低功率損耗之目的。 在詳細說明本發明的較佳實施例之後’熟悉該項技術 人士可清楚的瞭解,在不脫離下述申請專利範圍與精神下 進行各種變化與改變,且本發明亦不受限於說明書中所舉 實施例的實施方式。 1309914 【圖式簡單說明】 第一圖為本發明半橋共振轉換器之電路圖; 第二圖為習知半橋共振轉換器之電路圖; • 第三圖為習知半橋共振轉換器之電流波形圖; 第四圖為習知半橋共振轉換器於模組1之電流導通 路徑圖; 第五圖為習知半橋共振轉換器於模組2之電流導通 路徑圖; 第六圖為習知半橋共振轉換器於模組3之電流導通 路徑圖; 第七圖為本發明半橋共振轉換器與習知半橋共振轉 換器元件導通波形圖; 第八圖為使用蕭特基二極體作為電子開關二極體乃+ 及Ζλ之損耗電流波形圖; 第九圖為使用MOSFET功率二極體作為電子開關二 極體乃+及·之相耗電流波形圖 第十圖為本發明半橋共振轉換器之損耗電流波形圖。 Φ 主要元件符號說明: 無 14

Claims (1)

1309914 十、申請專利範圍: 1. 一種半橋共振轉換器,包含: . 一次侧繞組; 二次側繞組,具有第一與第二端點以及一中央端點; 一第一電子開關,具有第一及第二端點,前述第一 端點與前述二次側繞組之第一端點連接; 一第二電子開關,具有第一及第二端點,前述第一 端點與前述二次側繞組之第二端點連接; g| —第一儲能元件,具有第一及第二端點,前述第一 端點與前述第一電子開關之第二端點連接; 一第二儲能元件,具有第一及第二端點,前述第一 端點與前述第二電子開關之第二端點連接;以及 一負載端,具有第一及第二端點,前述第一端點同 時與前述第一儲能元件之第二端點及第二儲能元件之 第二端點連接,前述第二端點與前述二次側繞組之中央 端點連接。 • 2.如申請專利第1項之半橋共振轉換器,其中前述第一電 ' 子開關與前述第二電子開關之作動關係為反向,致使前 -述二次側繞組之第一端點或第二端點與前述負載端導 通。 3.如申請專利第1項之半橋共振轉換器,其中前述第一電 子開關係包含一 MOSFET功率電晶體以及一跨接於前 述MOSFET功率電晶體之閘極(G)及源極(S)的第三繞 組,並且第一電子開關之第一端點係為MOSFET功率 15 1309914 電晶體之源極(S),以及第二端點係為MOSFET功率電 晶體之沒極(D)。 • 4.如申請專利第1項之半橋共振轉換器,其中前述第二電 子開關係包含一 MOSFET功率電晶體以及一跨接於前 述MOSFET功率電晶體之閘極(G)及源極(S)的第三繞 „ 組,並且第二電子開關之第一端點係為MOSFET功率 電晶體之源極(S),以及第二端點係為MOSFET功率電 晶體之没極(D)。 5.如申請專利第3項或第4項之半橋共振轉換器,其中前 述第一電子開關之第三繞組與前述第二電子開關之第 三繞組係為具有相同圈數之相同繞組。 6·如申請專利第1項之半橋共振轉換器,其中前述第一儲 能元件係由一電感並聯一二極體與一電阻串聯之組 合,使前述電感可經由前述二極體與電阻串聯之組合進 行釋能,並且第一儲能元件之第一端點係為前述二極體 Φ 之正極端,第一儲能元件之第二端點係為前述電阻與前 ' 述電感結合之端點。 7.如申請專利第1項之半橋共振轉換器,其中前述第二儲 能元件係由一電感並聯一二極體與一電阻串聯之組 合,使前述電感可經由前述二極體與電阻串聯之組合進 行釋能,並且第二儲能元件之第一端點係為前述二極體 之正極端,第二儲能元件之第二端點係為前述電阻與前 述電感結合之端點。 16
TW095121870A 2006-06-19 2006-06-19 Half-bridge resonant converter TW200803141A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW095121870A TW200803141A (en) 2006-06-19 2006-06-19 Half-bridge resonant converter
US11/652,118 US7760521B2 (en) 2006-06-19 2007-01-11 Half-bridge resonant converter
JP2007019402A JP4521574B2 (ja) 2006-06-19 2007-01-30 半ブリッジ共振変換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095121870A TW200803141A (en) 2006-06-19 2006-06-19 Half-bridge resonant converter

Publications (2)

Publication Number Publication Date
TW200803141A TW200803141A (en) 2008-01-01
TWI309914B true TWI309914B (zh) 2009-05-11

Family

ID=38861358

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095121870A TW200803141A (en) 2006-06-19 2006-06-19 Half-bridge resonant converter

Country Status (3)

Country Link
US (1) US7760521B2 (zh)
JP (1) JP4521574B2 (zh)
TW (1) TW200803141A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463782B (zh) * 2012-08-15 2014-12-01 Ind Tech Res Inst 用於能量採集之電源轉換裝置及能量採集方法
TWI596880B (zh) * 2014-06-30 2017-08-21 光寶科技股份有限公司 準諧振半橋轉換器及其控制方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7948775B2 (en) * 2008-06-16 2011-05-24 Lu wei-chun Duty-cycle-controlled half-bridge resonant converter
KR100966972B1 (ko) * 2008-07-17 2010-06-30 삼성전기주식회사 가변 스위칭 주파수 방식 전원 공급 장치
TWI408898B (zh) * 2009-08-25 2013-09-11 Delta Electronics Inc 用於同步整流控制之補償裝置及其方法
JP5088386B2 (ja) * 2010-01-29 2012-12-05 株式会社村田製作所 スイッチング電源装置
JP2013005547A (ja) * 2011-06-15 2013-01-07 Sanken Electric Co Ltd スイッチング電源装置
ITBO20110529A1 (it) * 2011-09-14 2013-03-15 Filippo Bastianini Generatore elettrico di corrente continua alimentato da vibrazioni meccaniche ambientali
ITBO20110527A1 (it) * 2011-09-14 2013-03-15 Filippo Bastianini Circuito a basso consumo rettificatore a valore assoluto adatto all' impiego in un campo di temperatura esteso
EP2634904A3 (de) * 2012-03-01 2015-05-06 Akdogan Oezkan AC/DC, DC/DC LED Treiber mit hohem Leistungsfaktor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920001705Y1 (ko) * 1990-01-19 1992-03-09 이상우 형광등의 점등장치
US5303137A (en) * 1991-12-04 1994-04-12 Dawn Technologies, Ltd. Multiresonant self-oscillating converter circuit
US5268830A (en) * 1992-04-20 1993-12-07 At&T Bell Laboratories Drive circuit for power switches of a zero-voltage switching power converter
US5500576C1 (en) * 1993-11-08 2001-12-18 Energy Savings Inc Low height ballast for fluorescent lamps
JPH07337005A (ja) * 1994-06-03 1995-12-22 Hitachi Ltd Dc/dcコンバータおよび電源装置
JPH09205776A (ja) * 1996-01-26 1997-08-05 Hitachi Ltd 回生チョッパ装置の保護装置
DE19650110A1 (de) * 1996-12-03 1998-06-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Betriebsschaltung für eine elektrodenlose Niederdruckentladungslampe
US6072710A (en) * 1998-12-28 2000-06-06 Philips Electronics North America Corporation Regulated self-oscillating resonant converter with current feedback
US6400584B1 (en) * 2001-03-23 2002-06-04 Koninklijke Philips Electronics N.V. Two stage switching power supply for connecting an AC power source to a load
US7061188B1 (en) * 2002-03-29 2006-06-13 Technical Consumer Products, Inc. Instant start electronic ballast with universal AC input voltage
AU2003300039A1 (en) * 2002-12-31 2004-07-29 Apogee Technology, Inc. Adaptive resonant switching power system
JP2005094980A (ja) * 2003-09-19 2005-04-07 Sony Corp スイッチング電源回路
US7095183B2 (en) * 2004-07-07 2006-08-22 Osram Sylvania Inc. Control system for a resonant inverter with a self-oscillating driver
TWM301461U (en) * 2006-05-09 2006-11-21 Hipro Electronics Taiwan Co Lt Half-bridge LLC resonant transformer having a synchronizing rectifying function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463782B (zh) * 2012-08-15 2014-12-01 Ind Tech Res Inst 用於能量採集之電源轉換裝置及能量採集方法
TWI596880B (zh) * 2014-06-30 2017-08-21 光寶科技股份有限公司 準諧振半橋轉換器及其控制方法

Also Published As

Publication number Publication date
JP4521574B2 (ja) 2010-08-11
US20070291515A1 (en) 2007-12-20
US7760521B2 (en) 2010-07-20
JP2007336794A (ja) 2007-12-27
TW200803141A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
TWI309914B (zh)
TWI326963B (en) Resonant converter and synchronous rectification driving circuit thereof
TWI326154B (en) Switching power supply circuit
TWI309498B (en) Resonant converter and voltage stabilizing method thereof
TWI596880B (zh) 準諧振半橋轉換器及其控制方法
TWI361549B (zh)
TWI437410B (zh) 降壓式功率因數修正系統
TW200304721A (en) Combined transformer-inductor device for application to DC-to-DC converter with synchronous rectifier
TW201106599A (en) Resonant converter having over current protection apparatus and controlling method thereof
TWI427912B (zh) 交錯式零電壓切換dc-dc轉換器
TW556395B (en) Resonant reset dual-switch forward DC-to-DC converter
Oeder et al. ZVS investigation of llc converters based on FHA assumptions
TW200527805A (en) Switching power supply device
TW200836050A (en) Soft switching circuit of power supply
CN105144562B (zh) 开关电源装置
TW201128915A (en) Single-stage single-switch high power factor converter for driving piezoelectric ceramic transducer
TWM365013U (en) Portable high-voltage power supply device
TWI482411B (zh) Current fed single load switch series resonant converter doubler
Jang et al. Isolated boost converters
WO2014063591A1 (zh) 一种功率因数校正电路
TWI501527B (zh) 單輔助開關之交錯式高升壓比柔切式轉換器
TWI462449B (zh) 交錯式高升壓比軟開關式轉換器
TWI466423B (zh) High boost power converter
TWI433438B (zh) 電流饋入式半橋單級電力轉換器
Medina-Garcia et al. Hybrid-flyback and GaN enable ultra-high power density 240W USB-PD EPR adaptor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees