TWI302755B - Group iii nitride semiconductor light-emitting device, forming method thereof,and lamp using same - Google Patents

Group iii nitride semiconductor light-emitting device, forming method thereof,and lamp using same Download PDF

Info

Publication number
TWI302755B
TWI302755B TW94107410A TW94107410A TWI302755B TW I302755 B TWI302755 B TW I302755B TW 94107410 A TW94107410 A TW 94107410A TW 94107410 A TW94107410 A TW 94107410A TW I302755 B TWI302755 B TW I302755B
Authority
TW
Taiwan
Prior art keywords
light
nitride semiconductor
emitting device
layer
crystal substrate
Prior art date
Application number
TW94107410A
Other languages
Chinese (zh)
Other versions
TW200539481A (en
Inventor
Kazuhiro Mitani
Takashi Udagawa
Katsuki Kusunoki
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW200539481A publication Critical patent/TW200539481A/en
Application granted granted Critical
Publication of TWI302755B publication Critical patent/TWI302755B/en

Links

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

1302755 九、發明說明: 【發明所屬之技術領域】 本發明係有關可同時發射來自發光層之光與波長異於 先前光線之光的m族氮化物半導體發光裝置。 【先前技術】 被稱爲多波長LED的發光裝置爲熟知之可發射不同波 長光的發光二極體(LED)(諸如JP- SHO 49-19783)。可 發射不同波長之短波可見光束的多波長LED,包含由氮化銦 ® 鎵(GaYInzN : OSY,ZS1,Y+Z=l)製成之射出不同波長 光束的發光層,其中銦組成物比例(=Ζ )相異(JP-A SHO 49- 1 97 83 )。例如,多波長LED係由銦組成物比例經調整而 發射藍、綠、紅三原色光的GaYInzN( OSY,ZS 1,Y+Z=l) 發光層所形成(諸如 JP-A HEI 0 8 - 8 8407及 JP-A HEI 08-88408)。 熟知的雷射二極體(LD )爲另一種多波長發光裝置,其 中含多種V族元素(諸如氮、砷、銻)的瓜族氮化物半導體 I 層係作爲發光層(諸如JP-A HEI 07-07223 )。再者,在習 用多波長 LD 中,發光層包含具不同組成物比例的 AlSbaAspNY ( 0< α,β,γ< 1,α + β+γ=1),以發出不同波長 的雷射束(諸如JP- ΗΕΙ 07-07223)。 然而,在習用的多波長發光裝置中,必須個別形成發出 對應波長光的發光層。因此,爲發出三原色光,必須個別形 成具不同銦組成物比例的三種GaYInzN ( OS Υ,Ζ‘ 1,Υ + Z=1 )發光層。 1302755 t. * .彳吏用蝕刻或類似方法電隔離具不同組成物比例的發光 層亦相當麻煩。在習用多波長發光裝置中,必須提供歐姆電 極於各電隔離發光層上。因此,爲形成習用多波長發光裝 置’則須執行諸如發光層晶體成長步驟及形成發光裝置的裝 置形成步驟等極麻煩的步驟。 本發明已鑑於前揭習用技術的問題而完成,且本發明提 供一種多波長發光裝置,其無須使用個別提供各波長之發光 層的習用方法便可形成。亦即,本發明提供無須隔離發光層 ® 而可輕易形成且發出多波長光的DI族氮化物半導體發光裝 置。 本發明依據硏究結果而完成,以提供半導體發光裝置。 【發明內容】 本發明提供具堆疊結構的m族氮化物半導體發光裝 置,該堆疊結構包含··具正表面、背表面的透明結晶基板、 形成於透明結晶基板正表面之第一導電型的第一瓜族氮化 物半導體層、第二導電型(與第一導電型對面)的第二瓜族 ® 氮化物半導體層、位於第一與第二瓜族氮化物半導體層間之 由m族氮化物半導體組成的發光層及裝附於透明結晶基板 背表面之含螢光材料的板材本體。 在m族氮化物半導體發光裝置中,板材本體由熱膨脹係 數實質等於透明結晶基板的熱膨脹係數的材料所形成。 在第一或第二個m族氮化物半導體發光裝置中,板材本 體由來自發光層的光可穿透的透明材料所形成。 在第一至第三個in族氮化物半導體發光裝置的任一個 1302755 中,板材本體由非晶質材料形成。 在第一至第四個瓜族氮化物半導體發光裝置的任一個 中,板材本體由玻璃材料形成。 在第一至第五個m族氮化物半導體發光裝置的任一個 中,板材本體由折射係數小於透明結晶基板的折射係數的材 料形成。 本發明亦提供一種形成瓜族氮化物半導體發光裝置的 方法,包含的步驟有:使用氣相磊晶法連續沈積第一導電型 ® 的第一瓜族氮化物半導體層、由第一導電型或第二導電型 鲁 (與第一導電型對面)之πι族氮化物半導體所形成的發光層 及第二導電型的m族氮化物半導體層於透明結晶基板表面 上,以形成堆疊結構;將與堆疊結構表面對面的結晶基板的 背表面拋光,以薄化結晶基板;以及藉陽極氧化法將含螢光 材料的板材本體裝附於前記薄化後的基板的經拋光後的背 表面。 在形成瓜族氮化物半導體發光裝置的方法中,板材本體 ® 由熱膨脹係數實質等於透明結晶基板的熱膨脹係數的材料 鲁 所形成。 在第一或第二個形成m族氮化物半導體發光裝置的方 法中,板材本體由來自發光層的光可穿透的透明材料所形 成。 在第一至第三個形成m族氮化物半導體發光裝置之方 法的任一個中,板材本體由非晶質材料形成。 在第一至第四個形成瓜族氮化物半導體發光裝置之方 1302755 、 '· 法的任一個中,板材本體由玻璃材料形成。 在第一至第五個形成瓜族氮化物半導體發光裝置之方 法的任一個中,板材本體由折射係數小於透明結晶基板的折 射係數的材料形成。 在第一至第六個形成瓜族氮化物半導體發光裝置之方 法的任一個中,拋光結晶基板背表面的步驟包含有使用硬粒 硏磨以薄化結晶基板的粗拋光及拋光成鏡面。 在第一至第七個形成ΠΙ族氮化物半導體發光裝置之方 ® 法的任一個中,拋光結晶基板背表面的步驟包含蝕刻至鏡 Φ 面。 本發明亦提供由第一至第十四個瓜族氮化物半導體發 光裝置之任一個所形成的燈,其中來自發光層的光與由該光 進行光泵激(〇 p t i c a 11 y p u m p e d )而由板材本體發出的光係 同時發出。 在m族氮化物半導體發光裝置所形成的燈中,來自板材 本體的光對來自發光層的光具有互補色。 ® 在第一或第二個m族氮化物半導體發光裝置所形成的 鲁 燈中,該燈射出由來自發光層的光與來自板材本體的光之色 彩混合成的白光。 本發明亦提供含第一至第三個燈之任一個的光源。 根據本發明,瓜族氮化物半導體發光裝置係形成爲通常 使用單一發光層的結構,並可發射來自發光層的光與來自螢 光材料由該光進行光泵激的螢光。因此’不同於習用技術’ 其得以輕易提供無須個別電隔離相應光色發光區並可射出 1302755· t 不同波長光束的多波長發光裝置。 特別地是,倘若使用裝附有板材本體的m族氮化物半導 體LED (該板材本體含發出的光對來自發光層的光具有互補 色之螢光材料),則可輕易提供具白光的LED燈。 在本發明中,倘若藉陽極接合法將含螢光材料的板材本 體裝附於結晶基板背表面時,便可輕易形成可發射來自發光 層的光與來自螢光材料的螢光之m族氮化物半導體LED。 【實施方式】 •執行本發明的最佳模式 本發明的m族氮化物半導體發光裝置,包含πι族氮化物 半導體層形成於透明結晶基板之一表面上的堆疊結構。來自 發光層的光可穿經透明晶體。透明晶體最好爲透明單晶。其 實施例爲氧化物晶體(諸如藍寶石,α-氧化鋁單晶)與寬能 隙晶體,諸如氧化鋅(ΖηΟ)以及碳化矽(SiC )。部分皿族氮 化物半導體須高溫成長。因此,可使用諸如矽單晶之耐熱單 晶作爲基板。 ® 爲獲強光,堆疊結構最好設有pn雙異質接面(DH )結 構的發光部位。該發光部位爲含DH結構之結構’該DH結 構包含η型與p型覆層及夾合於覆層間的η型或p型發光 層。覆層由諸如氮化鋁鎵銦(AlxGaYInzN: 0$Χ5 Υ5 ZS 1, X+Y+Z=l)形成。發光層由諸如氮化鎵銦(GaYInzN: OSY, ZS1,Y+Z=l)形成。覆層與發光層可由含氮Π族氮化物 半導體與氮以外的V族元素所形成。 發光層最好爲含單一量子井(SQW)結構或多量子井 1302755 c t1302755 IX. Description of the Invention: [Technical Field] The present invention relates to a group m nitride semiconductor light-emitting device which can simultaneously emit light from a light-emitting layer and light having a wavelength different from that of a previous light. [Prior Art] A light-emitting device called a multi-wavelength LED is a well-known light-emitting diode (LED) capable of emitting light of different wavelengths (such as JP-SHO 49-19783). A multi-wavelength LED capable of emitting short-wave visible beams of different wavelengths, comprising a light-emitting layer made of indium nitride gallium (GaYInzN: OSY, ZS1, Y+Z=l) that emits beams of different wavelengths, wherein the proportion of indium composition ( =Ζ) is different (JP-A SHO 49- 1 97 83 ). For example, a multi-wavelength LED is formed by a GaYInzN (OSY, ZS 1, Y + Z = 1) luminescent layer that adjusts the ratio of indium composition to emit light of three primary colors of blue, green, and red (such as JP-A HEI 0 8 - 8). 8407 and JP-A HEI 08-88408). The well-known laser diode (LD) is another multi-wavelength light-emitting device in which a melon-based nitride semiconductor I layer containing a plurality of group V elements such as nitrogen, arsenic, antimony is used as a light-emitting layer (such as JP-A HEI). 07-07223). Furthermore, in conventional multi-wavelength LDs, the luminescent layer contains AlSbaAspNY (0<[alpha], [beta], gamma < 1, [alpha] + [beta] + [gamma] = 1) with different composition ratios to emit different wavelengths of laser beams (such as JP- ΗΕΙ 07-07223). However, in a conventional multi-wavelength light-emitting device, it is necessary to separately form a light-emitting layer that emits light of a corresponding wavelength. Therefore, in order to emit the three primary colors, three kinds of GaYInzN (OS Υ, Ζ ' 1, Υ + Z = 1 ) light-emitting layers having different indium composition ratios must be separately formed. 1302755 t. * . It is also quite troublesome to electrically isolate a light-emitting layer having a different composition ratio by etching or the like. In conventional multi-wavelength illuminators, an ohmic electrode must be provided on each of the electrically isolating luminescent layers. Therefore, in order to form a conventional multi-wavelength light-emitting device, it is necessary to perform extremely troublesome steps such as a step of forming a light-emitting layer crystal and a step of forming a device for forming a light-emitting device. The present invention has been accomplished in view of the problems of the prior art, and the present invention provides a multi-wavelength illuminating device which can be formed without the use of conventional methods of individually providing luminescent layers of respective wavelengths. That is, the present invention provides a Group III nitride semiconductor light-emitting device which can be easily formed and emits multi-wavelength light without isolating the light-emitting layer ® . The present invention has been completed in accordance with the results of the investigation to provide a semiconductor light-emitting device. SUMMARY OF THE INVENTION The present invention provides a group m nitride semiconductor light-emitting device having a stacked structure, comprising: a transparent crystal substrate having a front surface and a back surface, and a first conductivity type formed on a front surface of the transparent crystal substrate a melon-based nitride semiconductor layer, a second conductivity type (opposite the first conductivity type), a second melon-based nitride semiconductor layer, and a m-type nitride semiconductor between the first and second meridium nitride semiconductor layers A light-emitting layer composed of the light-emitting layer and a plate material containing a fluorescent material attached to the back surface of the transparent crystal substrate. In the group m nitride semiconductor light-emitting device, the plate body is formed of a material having a coefficient of thermal expansion substantially equal to a coefficient of thermal expansion of the transparent crystal substrate. In the first or second m-nitride semiconductor light-emitting device, the sheet body is formed of a light-transmissive transparent material from the light-emitting layer. In any one of the first to third indium nitride semiconductor light-emitting devices 1302755, the plate body is formed of an amorphous material. In any of the first to fourth cuban nitride semiconductor light-emitting devices, the plate body is formed of a glass material. In any of the first to fifth m-nitride semiconductor light-emitting devices, the sheet body is formed of a material having a refractive index smaller than that of the transparent crystalline substrate. The present invention also provides a method of forming a ceramide nitride semiconductor light-emitting device, comprising the steps of: continuously depositing a first quaternary nitride semiconductor layer of a first conductivity type by a vapor phase epitaxy method, by a first conductivity type or a light-emitting layer formed of a second conductivity type Lu (opposite the first conductivity type) and a second conductivity type m-group nitride semiconductor layer on the surface of the transparent crystal substrate to form a stacked structure; The back surface of the crystal substrate opposite to the surface of the stacked structure is polished to thin the crystal substrate; and the plate material containing the phosphor material is attached to the polished back surface of the pre-thinned substrate by anodization. In the method of forming a cassava nitride semiconductor light-emitting device, the sheet body ® is formed of a material having a coefficient of thermal expansion substantially equal to a coefficient of thermal expansion of the transparent crystal substrate. In the first or second method of forming an m-group nitride semiconductor light-emitting device, the sheet body is formed of a light-transmissive transparent material from the light-emitting layer. In any of the first to third methods of forming the group m nitride semiconductor light-emitting device, the plate body is formed of an amorphous material. In any of the first to fourth methods of forming a cassava nitride semiconductor light-emitting device, 1302755, ', the plate body is formed of a glass material. In any of the first to fifth methods of forming the quaternary nitride semiconductor light-emitting device, the sheet body is formed of a material having a refractive index smaller than a refractive index of the transparent crystalline substrate. In any of the first to sixth methods of forming the quaternary nitride semiconductor light-emitting device, the step of polishing the back surface of the crystal substrate includes rough polishing using a hard honing to thin the crystal substrate and polishing into a mirror surface. In any of the first to seventh methods of forming a bismuth nitride semiconductor light-emitting device, the step of polishing the back surface of the crystal substrate includes etching to the mirror Φ surface. The present invention also provides a lamp formed by any one of the first to fourteenth cuban nitride semiconductor light-emitting devices, wherein light from the luminescent layer is optically pumped by the light (〇ptica 11 ypumped) The light emitted by the body is emitted simultaneously. In the lamp formed by the group m nitride semiconductor light-emitting device, light from the plate body has a complementary color to light from the light-emitting layer. ® In the lamp formed by the first or second m-nitride semiconductor light-emitting device, the lamp emits white light mixed with light from the light-emitting layer and light from the body of the plate. The present invention also provides a light source comprising any of the first to third lamps. According to the present invention, a cuban nitride semiconductor light-emitting device is formed into a structure in which a single light-emitting layer is generally used, and light emitted from the light-emitting layer and fluorescent light which is optically pumped by the light from the fluorescent material can be emitted. Therefore, it is easy to provide a multi-wavelength light-emitting device that does not need to individually electrically isolate the corresponding light-color light-emitting regions and can emit 1302755·t beams of different wavelengths. In particular, if a m-type nitride semiconductor LED to which a plate body is attached is used (the plate body contains a light-emitting material having a complementary color to light emitted from the light-emitting layer), the white light LED lamp can be easily provided. . In the present invention, if the plate material containing the fluorescent material is attached to the back surface of the crystal substrate by the anodic bonding method, the m-type nitrogen which can emit light from the light-emitting layer and the fluorescent material from the fluorescent material can be easily formed. Semiconductor LEDs. [Embodiment] The best mode for carrying out the invention The group-m nitride semiconductor light-emitting device of the invention comprises a stacked structure in which a π-type nitride semiconductor layer is formed on one surface of a transparent crystal substrate. Light from the luminescent layer can pass through the transparent crystal. The transparent crystal is preferably a transparent single crystal. Examples thereof are oxide crystals (such as sapphire, α-alumina single crystal) and wide-gap crystals such as zinc oxide (ΖηΟ) and tantalum carbide (SiC). Some of the family of nitride semiconductors must grow at a high temperature. Therefore, a heat resistant single crystal such as a germanium single crystal can be used as the substrate. ® For glare, the stacked structure is preferably provided with a pn double heterojunction (DH) structure. The light-emitting portion is a structure containing a DH structure. The DH structure includes an n-type and p-type cladding layer and an n-type or p-type light-emitting layer sandwiched between the cladding layers. The cladding layer is formed of, for example, aluminum gallium indium nitride (AlxGaYInzN: 0$Χ5 Υ5 ZS 1, X+Y+Z=l). The light emitting layer is formed of, for example, gallium indium nitride (GaYInzN: OSY, ZS1, Y+Z=l). The cladding layer and the light-emitting layer may be formed of a nitrogen-containing lanthanide nitride semiconductor and a group V element other than nitrogen. Preferably, the luminescent layer comprises a single quantum well (SQW) structure or a multiple quantum well 1302755 c t

(MQW )結構的量子井(QW )結構。量子井結構係使用 GaYInzN(〇SY,Z$l,Y+Z=l)作爲井層且 AlxGaYInzN (0€ X,Y,Zg 1,X + Y + Z=1 )作爲阻障層而形成。此外, 磷化鎵氮(GaNhPa : OS a< 1 )形成爲井層。井層與阻障層 •可由未刻意添加雜質的未摻雜m族氮化物半導體層所形 成,或可由摻有雜質的m族氮化物半導體層所形成,或可由 未摻雜井層與摻雜阻障層所形成。摻有IV族元素(諸如Si 或Ge )的η型阻障層將減少影響井層的扭曲(由壓電效果 _引起)並穩定發光波長。 # 因爲晶格常數不同,發光部位最好形成於結晶基板的一 表面上,並以得在低溫成長的緩衝層(低溫緩衝層)促成晶 格匹配。當低溫緩衝層爲Α1Ν時,層厚爲1 nm至1 00 nm, 最好爲2 nm至50 nm,且2 nm至5 nm爲更佳。倘若低溫 緩衝層置於其中,則可獲具極佳結晶度的ΠΙ族氮化物半導體 層。因此,具有強光的發光部位可由藉由低溫緩衝層進行成 長的m族氮化物半導體層獲得,縱使光由結晶基板透出時亦 鲁然。 # 在本發明中,多波長發光裝置係使用穿經對發光層之光 爲透明之結晶基板的光而獲得。穿經結晶基板的光強度係隨 著結晶基板層厚的減小而增加。然而,倘若結晶基板厚度變 小,則變得難以在裝置形成步驟中處理結晶基板。因此,縱 使當厚度從一開始就相當小,或藉由拋光或蝕刻而變小時, 厚度仍最好爲等於或大於4 0 // m以及等於或小於2 0 0 // m,而 等於或大於5 0 // m及等於或小於1 5 0 // m爲更佳。爲薄化結 -10- 1302755 1 晶基板 行硏磨 石硬粒The quantum well (QW) structure of the (MQW) structure. The quantum well structure is formed using GaYInzN (〇SY, Z$l, Y+Z=l) as a well layer and AlxGaYInzN (0€ X, Y, Zg 1, X + Y + Z=1 ) as a barrier layer. Further, gallium phosphide nitride (GaNhPa: OS a < 1 ) is formed as a well layer. The well layer and the barrier layer may be formed of an undoped m-group nitride semiconductor layer not intentionally added with impurities, or may be formed of an impurity-doped group-m nitride semiconductor layer, or may be doped with an undoped well layer and doped The barrier layer is formed. An n-type barrier layer doped with a Group IV element such as Si or Ge will reduce the distortion (caused by the piezoelectric effect) that affects the well layer and stabilize the wavelength of the light. # Because the lattice constant is different, the light-emitting portion is preferably formed on one surface of the crystal substrate, and promotes lattice matching with a buffer layer (low-temperature buffer layer) which grows at a low temperature. When the low temperature buffer layer is Α1Ν, the layer thickness is from 1 nm to 100 nm, preferably from 2 nm to 50 nm, and more preferably from 2 nm to 5 nm. If a low temperature buffer layer is placed therein, a bismuth nitride semiconductor layer having excellent crystallinity can be obtained. Therefore, the light-emitting portion having strong light can be obtained by the m-group nitride semiconductor layer which is grown by the low-temperature buffer layer, even when light is transmitted from the crystal substrate. # In the present invention, a multi-wavelength light-emitting device is obtained by using light passing through a crystal substrate transparent to light of the light-emitting layer. The light intensity of the through-crystal substrate increases as the thickness of the crystal substrate decreases. However, if the thickness of the crystal substrate becomes small, it becomes difficult to process the crystal substrate in the device forming step. Therefore, even when the thickness is relatively small from the beginning, or becomes small by polishing or etching, the thickness is preferably equal to or greater than 40 // m and equal to or less than 2 0 0 // m, and equal to or greater than or equal to 5 0 // m and equal to or less than 1 5 0 // m is better. Thinning junction -10- 1302755 1 crystal substrate row honing stone hard grain

r ,可使用諸如金_砂(Carborundum )之一般硬粒執 。諸如藍寶石與碳化矽(Si C)之高硬度晶體可使用鑽 進行硏磨拋光或鏡面拋光。 卜 藉由使用氫氟酸與硝酸(HN〇3)之液體混合物的濕式蝕 刻便可薄化矽單晶基板。藉由使用氟化銨(nh4f)、過氧化氫 (h2o2)及水(H2o)之液體混合物的濕式蝕刻便可薄化砷化鎵 結晶基板。藉由使用鹵氣(諸如氯(Cl2))或鹵化物氣體(諸 如三氯化硼(BC13)以及四氯化矽(SiCl4 )之高頻電漿蝕刻便 • 可薄化基板。使用濕式蝕刻或電漿蝕刻便可將已受機械拋光 (諸如硏磨)之具大粗糙度的晶體表面形成光滑鏡面。 含螢光材料(會吸收穿經結晶基板的光,並發出螢光) 的板材本體係裝附於結晶基板背表面(與堆疊結構表面對面 的結晶基板的表面)。倘若發出的光爲較靠近長波長端的另 一可見光區’則亦可再使用另一板材本體。例如,可裝附含 添有鈽(Ce )之釔鋁榴石(YAG )微粒的板材本體。添有 Ce的YAG螢光材料可吸收約460 nm波長的藍光並發出黃 ^光。因此,同時發出藍光與黃光的多波長LED可由具發光 層(發出藍光)與板材本體(含螢光材料)的LED堆疊結 構所形成。亦即,根據本發明,僅將含螢光材料的板材本體 裝附於結晶材料便可形成發出多色光的m族氮化物半導體 LED。 在該狀況中,倘若含螢光材料的板材本體部位係由來自 發光層的藍光可穿透的透明材料所形成,則得以藉由藍光與 對來自螢光材料的黃光互補之互補色的混合而提供諸如發 -11- 1302755 射白光的瓜族氮化物半導體LED。藉由提供含發射紅、綠、 藍螢光之螢光材料的板材本體,亦可形成發白光的LED。倘 若使用含發射三原.色之螢光材料的板材本體,則無須如習用 技術般隔離各三原色的發光區,而得以提供可使用單一發光 層輕易發出多種顏色的m族氮化物半導體發光裝置。r can be used as a general hard grain such as Carborundum. High hardness crystals such as sapphire and tantalum carbide (Si C) can be honed or mirror polished using a drill. The tantalum single crystal substrate can be thinned by wet etching using a liquid mixture of hydrofluoric acid and nitric acid (HN〇3). The gallium arsenide crystal substrate can be thinned by wet etching using a liquid mixture of ammonium fluoride (nh4f), hydrogen peroxide (h2o2), and water (H2o). By using a halogen gas (such as chlorine (Cl2)) or a halide gas (such as boron trichloride (BC13) and high-frequency plasma etching of silicon tetrachloride (SiCl4), the substrate can be thinned. Wet etching is used. Or plasma etching can form a smooth mirror surface of a crystal having a large roughness that has been mechanically polished (such as honing). A plate material containing a fluorescent material (which absorbs light passing through the crystal substrate and emits fluorescence) The system is attached to the back surface of the crystal substrate (the surface of the crystal substrate opposite to the surface of the stacked structure). If the emitted light is another visible light region closer to the longer wavelength end, another plate body may be used. For example, it may be mounted. A plate body containing yttrium aluminum garnet (YAG) particles added with cerium (Ce). The YAG fluorescing material with Ce added absorbs blue light of about 460 nm and emits yellow light. Therefore, both blue and yellow light are emitted simultaneously. The light multi-wavelength LED can be formed by an LED stack structure having a light-emitting layer (emitting blue light) and a plate body (including a fluorescent material). That is, according to the present invention, only the plate material containing the fluorescent material is attached to the crystalline material. Can form Multi-color light m-type nitride semiconductor LED. In this case, if the main body portion of the plate material containing the phosphor material is formed by a blue light-transmissive transparent material from the light-emitting layer, it can be obtained by blue light and light a mixture of complementary colors of yellow light complementary of the optical material to provide a melamine nitride semiconductor LED such as -11-1302755 white light. By providing a plate body containing a fluorescent material emitting red, green, and blue phosphors, It can form a white light-emitting LED. If a plate body containing a fluorescent material emitting three colors is used, it is not necessary to isolate the light-emitting areas of the three primary colors as in the conventional technique, and it is possible to provide a group of m which can easily emit a plurality of colors using a single light-emitting layer. Nitride semiconductor light-emitting device.

當使用含多種螢光材料(可發出不同波長的螢光)的單 一板材本體形成多波長發光裝置時,藉由改變含於板材本體 內的螢光材料便可獲得發出不同色調光的發光裝置。根據螢 光材料的激發效率,含於板材本體內的螢光材料濃度最好爲 等於或大於〇 · 5重量%以及等於或小於8 0重量%。濃度爲等 於或大於20重量%以及等於或小於40重量%爲更佳。再者, 在發出同色螢光之螢光材料的狀況中,倘若含有具不同激發 效率的螢光材料,則可改變光色調。當藉由使用相同光源以 混合來自激態螢光材料之光色而獲得發白光的ΙΠ族氮化物 半導體發光裝置時,發出各顏色的螢光材料含量須經調整, 並同時考量激發效率及光源波長可見度。例如,在相同激發 光源下激發效率依紅、綠、藍順序降低之螢光材料的狀況 中,螢光材料含量係以發光效率的相反順序增加。亦即,在 本實施例中,發紅色螢光的螢光材料含量設爲最大,且發綠 色螢光的螢光材料含量設爲最小。 可使用任何熟知的螢光材料。 可使用含發出螢光之螢光材料的晶體作爲起始基板,惟 爲獲得強螢光,必須添加足以使基板不適作爲單晶基板的螢 光材料。具極佳結晶度的皿族氮化物半導體層無法穩定成長 -12- 1302755 於具不佳結晶度的基板上。爲獲發強光且具極佳結晶度的m 族氮化物半導體層,最好使用具極佳結晶度與微量螢光材料 的晶體作爲基板。因此,在本發明中,發光裝置的堆疊結構 係先作爲未刻意添加螢光材料的基板晶體,接著再將該結晶 基板薄化。然而,厚度係設定爲結晶基板可以機械方式充分 支撐堆疊結構的數値。其次,藉由將含大量螢光材料的板材 本體裝附於直立的結晶基板,便可獲得多波長發光裝置。 在本發明中,含螢光材料之板材本體的裝附亦包含施加 > 含螢光材料溶液並固化所施加溶液的方法。含大量螢光材料 的板材本體可由二氧化矽(Si〇2)製成,該板材本體係將摻有 大量螢光材料的有機矽化合物溶液施加於結晶基板背表面 並使用溶膠凝膠法固化所施加的溶液而獲得。此外,藉由固 化使用溶膠凝膠法所形成的含螢光材料銦錫化合物氧化物 (I τ 0 )膜亦可形成含大量螢光材料的板材本體。該非晶質 材料在組成材料間不具強接合,可減緩對結晶基板的晶格失 配,並可獲得不具晶格失配所造成之破裂的板材本體。 > 板材本體可在相當低溫熔解,並可由摻有大量螢光材料 的非晶質玻璃材料製成。非晶質玻璃的實施例爲氧化矽玻璃 (Kogyo Kagaku Ki so Koza 5“Muki Kogyo Kagaku” 5 Shiro YOSHIZAWA 著,Asa Shoten 公司出版,1973 年 2 月 25 日,第 6版,第169頁)、諸如碳酸鈉石灰玻璃(前揭“Muki Kogyo Kagaku”,第20 5-206頁)之矽酸鹽玻璃及部分氧化矽已爲 氧化硼所取代的硼酸玻璃(前揭“Muki Kogyo Kagaku”,第 2 0 7頁)。非晶質玻璃爲9 6 %的氧化矽玻璃。特別地是,諸 1302755.· 如低膨脹硼酸玻璃(前揭“ M u k i K o g y ο K a g a k u ”,第2 0 8頁) 之低膨脹玻璃材料及玻璃陶瓷可降低裝附有該材料之結晶 基板的熱應力而不會產生破裂,因而可有效形成m族氮化物 半導體發光裝置。近來,已開發出使用溶膠凝膠法製備5nm 或更小直徑之超細粉末並將其固定於玻璃中的技術,而得以 使用具較佳發光效率的材料作爲螢光材料,並最好使用該材 料製成的板材本體。 含螢光材料的板材本體最好由線性膨脹係數同結晶基 ® 板的熱膨脹係數的材料製成。例如,具等於或大於3 X 1 (Γ6/Κ 以及等於或小於8 X 1 0_6/Κ之線性膨脹係數的非晶質玻璃係 裝附於由線性膨脹係數約5 X 1 0·6/Κ之碳化矽(SiC )晶體製 成之基板的背表面(“瓜族氮化物化合物半導體”BAIFUKAN 公司,1994年5月20日出版,第1版,第148頁)。所裝 附之非晶質玻璃的厚度較佳爲等於或大於1 00 // m以及等於 或小於3 0 0 // m。 含螢光材料的板材本體最好由折射係數小於結晶基板 ® 的材料所製成。例如,裝附於折射係數約2.0之藍寶石基板 的板材本體可由折射係數等於或大於1 .3以及等於或小於 2 · 0的玻璃製成。板材本體最好由折射係數介於基板晶體與 密封發光裝置之環氧數脂間的玻璃所製成。板材本體最好由 折射係數等於或大於1 .5以及等於或小於1 . 8的玻璃製成。 折射係數1.5-1.8 (相對於鈉(Na)的d-線)的玻璃實 施例爲光學玻璃’諸如冕玻璃(K )、矽酸硼冕玻璃(B K )、 鋇冕玻璃(BaK )、火石(ρ )、鋇火石(BaF )、鑭系冕玻 1302755 , 、 璃(LaK )、鑭系火石(LaF )基玻璃(前揭“Muki Kogyo Kagaku,,,第 214 頁)。 爲將諸如玻璃之板材本體裝附於結晶基板,可使用陽極 接合法。在本方法中,施加於玻璃板材本體的負電壓最好爲 等於或大於100V以及等於小於1 200V。倘若外加電壓更高, 則有助於裝附作業,但良率會下降。因此,較佳的外加電壓 爲2 0 0 - 7 0 0 V之範圍,且以等於或大於3 0 0 V以及等於或小於 5 00V爲更佳。倘將結晶基板或板材本體加熱,則更有助於 Φ 裝附作業。加熱溫度最好爲等於或大於200°C以及等於或小 φ 於7 0 0 °C。當裝附溫度較高時,施加於結晶基板與板材本體 的電壓可設較低。當裝附溫度設較低時,則必須將外加電壓 設較高。適於使用陽極接合法裝附的玻璃爲含鹼玻璃。諸如 碳酸鈉石灰玻璃之矽酸鹽玻璃爲適當的。 設於結晶基板表面的堆疊結構係於裝附含螢光材料的 板材本體後便進行處理,形成η型與p型歐姆電極而製成發 光裝置。例如,雖然具任何極性的歐姆電極並未設於結晶基 ® 板上,但是具雙極性的電極則配置於堆疊結構表面上,以形 · 成發光裝置。例如,ρ型歐姆電極設於第一導電型m族氮化 物半導體(諸如P型層)製成的P型接觸層(爲堆疊結構最 上層)上。在本發明m族氮化物半導體發光裝置的狀況中, 來自發光層的光並未透出堆疊結構的接觸層,而是在裝附板 材本體的方向上射出。因此,配置在透光方向對面側之p型 接觸層上的P型歐姆電極無須具有半透明或透明的功能,且 可使用厚金屬膜配置於整個接觸層表面上之所謂的墊式電 • 1 5 - 1302755‘ « , < 極。 另一方面,在p型接觸層或發光層移除部分的P型接觸 層區域且第二導電型(因爲第一導電型暫設爲P型,而第二 導電型爲η型)之η型m族氮化物半導體層暴露出之後,形 成η型歐姆電極。η型歐姆電極可由諸如鋁、鈦、鉻之過渡 金屬或其合金製成。 倘若發光層的最上表面層(亦即設於與透光方向對面之 接觸層上的墊式電極)係由可反射光並形成歐姆電極的金屬 ® 製成,則該電極得使電流順利流至發光層,並得使光反射至 含螢光材料的板材本體。因此,有助於激發螢光材料,而可 獲強螢光。適於反射來自m族氮化物半導體發光層之短波光 的金屬反射膜最好爲雙層結構,其包含可形成半導體層與歐 姆接觸並可穿透光的薄金屬層及可反射穿透光的金屬層。歐 姆接合金屬的實施例爲諸如鍺(Rh),鈀(Pd),(鉑)Pt之鉑族 中的六個元素(“Duffy Mukikagaku”,Hirokawa Shoten 公司 出版,1971年4月15日,第5版,第249頁),及諸如Ni, ^ Au,Co, Ti5 Cr,W,Ta之金屬與其合金。反射膜的實施例爲 諸如铑(Rh),鈀(Pd),鉑(Pt)之鉑族中的六個元素(前揭 “Duffy Mukikagaku”,第 249 頁),及諸如 Ag,Au 之金屬與 其合金。 本發明的發光裝置可同時由含m族氮化物半導體的發 光層與含螢光材料的板材本體發出光。因此,由本發明的瓜 族氮化物半導體發光裝置便可形成可發出多波長光的燈(雖 僅爲單一裝置)。特別地是,由具有板材本體的本發明m族 -16- 1302755 » * 氮化物半導體發光裝置便可形成發出白光的燈,其中該板材 本體可發出與ΙΠ族氮化物半導體發光層所發射之光色互補 的螢光。倘若使用含DI族氮化物半導體發光層與板材本體並 發出三原色光的瓜族氮化物半導體發光裝置,則可提供發光 的燈。倘若改變發出螢光之板材本體中的螢光材料含量,則 可提供發出不同色調白光的燈。 倘若使用η型與p型歐姆電極設於堆疊結構表面上之本 發明ΠΙ族氮化物半導體發光裝置(晶片)時,便可形成以覆 ® 晶方式安裝晶片的燈。倘若螢光材料安裝於本發明m族氮化 鲁 物半導體發光裝置且裝附於結晶基板背表面的板材本體係 以覆晶方式安裝於上表面時,得以形成同時由發光層發出 光,由所裝附板材本體發出螢光並由所安裝螢光材料發出螢 光的燈。縱使螢光材料未安裝於板材本體,倘若其係以含發 出螢光之螢光材料的樹脂進行密封,則得以形成同時由裝附 於發光層之板材本體發出螢光且由密封樹脂中之螢光材料 發出螢光的燈。 ® 倘若將來自發光層之光與來自所裝附板材本體之螢光 · 進行混色而發出白光的燈做結合,則可形成白光源。根據本 發明,其得以使用單一發光層形成發白光的燈。亦即,不同 於習用技術,其無須結合發出三原色光的三個發光裝置或準 備由一晶片發出三原色的大晶片。因此’因爲可將多個燈安 裝於一有限的平面上,所以得以形成發強白光的光源。倘若 非使用發出白光的燈,而是使用本發明瓜族氮化物半導體多 色發光裝置時,可將多個燈安裝於有限的平面上’而得以提 1302755 4 1· 供較大圖素的彩色光源。 藉由陽極接合法裝附於薄化結晶基板背表面的扳材本 體係作爲接收來自m族氮化物半導體發光層的光並發出光 的照明器。 實施例 本發明將根據由形成於藍寶石基板上的led發出光並 由含螢光材料的板材本體(裝附於藍寶石基板上)發出光的 燈做說明。 • 第1圖爲本實施例之LED 10的示意平面圖。第1圖爲 用於形成LED 1 0之第2圖所示堆疊結構1 1表面的平面圖。 第3圖爲沿著第1圖所示led 1 〇的虛線m - m切開的示意剖 面圖。第4圖爲使用本發明半導體發光裝置之燈的示意剖面 圖。 用於形成LED 1 0之堆疊結構1 1係以薄層1 0 i i 〇連續 沈積於(000 1 )藍寶石基板100上的方式形成。下列(1)至(7) 段的薄層得藉由金屬有機化學氣相沈積(MOCVD )進行成 ® 長。特別地是,GaN緩衝層1 0 1得藉由播種製程(SP )進形 成長(JP-A 2003 -243 3 02 )。 (1 )未摻雜GaN緩衝層101 (厚度=5 nm) (2 )未摻雜A1N緩衝層1 02 (厚度=1 5nm ) (3 )摻矽 η 型 GaxlIn !·Χ1Ν( 0$ Χι $ 1 )接觸層 l〇3(厚 =度 2.5//m,n = 8><1018/cm3) (4)摻矽 η 型 GaX2In bX2N (Χ1$Χ2$1)覆層 1〇4(厚 度 0.5//m,n = 4xl018/cm3) -18- 1302755 f正替換βWhen a multi-wavelength light-emitting device is formed using a single plate body containing a plurality of fluorescent materials (fluorescence capable of emitting different wavelengths), a light-emitting device that emits light of different hues can be obtained by changing the fluorescent material contained in the body of the sheet. The concentration of the fluorescent material contained in the sheet body is preferably equal to or greater than 5% by weight and equal to or less than 80% by weight, based on the excitation efficiency of the fluorescent material. More preferably, the concentration is equal to or more than 20% by weight and equal to or less than 40% by weight. Further, in the case of emitting a fluorescent material of the same color, if the fluorescent material having different excitation efficiencies is contained, the color tone can be changed. When a bismuth nitride semiconductor light-emitting device that emits white light is obtained by using the same light source to mix the light color from the excited fluorescent material, the content of the fluorescent material emitting each color is adjusted, and the excitation efficiency and the light source are simultaneously considered. Wavelength visibility. For example, in the case of a fluorescent material whose excitation efficiency is lowered in the order of red, green, and blue under the same excitation light source, the content of the fluorescent material increases in the reverse order of luminous efficiency. That is, in the present embodiment, the content of the fluorescent material which emits red fluorescence is set to the maximum, and the content of the fluorescent material which emits green fluorescence is set to the minimum. Any well known fluorescent material can be used. A crystal containing a fluorescent material that emits fluorescence can be used as a starting substrate, but in order to obtain strong fluorescence, it is necessary to add a fluorescent material sufficient to make the substrate unsuitable as a single crystal substrate. The dish nitride semiconductor layer with excellent crystallinity cannot grow stably -12-1302755 on a substrate with poor crystallinity. For the m-type nitride semiconductor layer which emits strong light and has excellent crystallinity, it is preferable to use a crystal having excellent crystallinity and a trace amount of fluorescent material as a substrate. Therefore, in the present invention, the stacked structure of the light-emitting device is first used as a substrate crystal in which the fluorescent material is not intentionally added, and then the crystal substrate is thinned. However, the thickness is set such that the crystal substrate can mechanically sufficiently support the number of stack structures. Secondly, a multi-wavelength light-emitting device can be obtained by attaching a plate body containing a large amount of fluorescent material to an upright crystal substrate. In the present invention, the attachment of the body of the plate material containing the fluorescent material also includes a method of applying > a solution containing the fluorescent material and curing the applied solution. The body of the plate containing a large amount of fluorescent material may be made of cerium oxide (Si〇2), which is applied to a back surface of a crystalline substrate by a sol-gel method using a solution of an organic cerium compound doped with a large amount of fluorescent material. Obtained by applying the solution. Further, a plate material containing a large amount of fluorescent material can be formed by a film containing a phosphorescent material indium tin compound oxide (I τ 0 ) formed by a sol-gel method by curing. The amorphous material does not have strong bonding between the constituent materials, can slow the lattice mismatch to the crystal substrate, and can obtain a sheet body without cracking caused by lattice mismatch. > The sheet body can be melted at a relatively low temperature and can be made of an amorphous glass material doped with a large amount of fluorescent material. An example of amorphous glass is bismuth oxide glass (Kogyo Kagaku Ki so Koza 5 "Muki Kogyo Kagaku" 5 Shiro YOSHIZAWA, published by Asa Shoten, February 25, 1973, 6th edition, page 169), such as Sodium carbonate lime glass (previously "Muki Kogyo Kagaku", pp. 20 5-206), bismuth silicate glass and partial cerium oxide have been replaced by boron oxide glass (previously "Muki Kogyo Kagaku", No. 2 0 7 pages). The amorphous glass is 9 6 % of yttrium oxide glass. In particular, the 13022755.· low-expansion glass materials and glass ceramics such as low-expansion boric acid glass (previously “M uki K ogy ο K agaku”, p. 208) can reduce the crystal substrate to which the material is attached. The thermal stress does not cause cracking, so that the group m nitride semiconductor light-emitting device can be effectively formed. Recently, a technique of preparing an ultrafine powder of 5 nm or less in a sol-gel method and fixing it in a glass has been developed, and a material having a preferable luminous efficiency is used as a fluorescent material, and it is preferable to use the same. A sheet body made of material. The body of the plate material containing the fluorescent material is preferably made of a material having a linear expansion coefficient similar to that of the crystalline base plate. For example, an amorphous glass system having a linear expansion coefficient equal to or greater than 3 X 1 (Γ6/Κ and equal to or less than 8 X 1 0_6/Κ is attached to a linear expansion coefficient of about 5 X 1 0·6/Κ The back surface of a substrate made of tantalum carbide (SiC) crystal ("Guamel Nitride Compound Semiconductor" BAIFUKAN, Inc., May 20, 1994, 1st edition, p. 148). Attached amorphous glass The thickness of the sheet is preferably equal to or greater than 100 // m and equal to or less than 3 0 0 // m. The sheet body containing the fluorescent material is preferably made of a material having a refractive index smaller than that of the crystalline substrate®. The sheet body of the sapphire substrate having a refractive index of about 2.0 may be made of glass having a refractive index equal to or greater than 1.3 and equal to or less than 2.0. The sheet body is preferably made of an epoxy having a refractive index between the substrate crystal and the sealed light-emitting device. Made of glass between several greases. The plate body is preferably made of glass having a refractive index equal to or greater than 1.5 and equal to or less than 1.8. Refractive index 1.5-1.8 (relative to sodium (Na) d-line An example of a glass is an optical glass such as neodymium glass (K) Boron bismuth silicate glass (BK), bismuth glass (BaK), flint (ρ), enamel (BaF), lanthanum lanthanum 1302755, glaze (LaK), lanthanum flint (LaF) based glass "Muki Kogyo Kagaku,,, page 214." In order to attach a sheet material such as glass to a crystal substrate, an anodic bonding method may be used. In the method, the negative voltage applied to the glass sheet body is preferably equal to or greater than 100V and equal to less than 1 200V. If the applied voltage is higher, it will help the mounting work, but the yield will decrease. Therefore, the preferred applied voltage is in the range of 2 0 0 - 7 0 0 V, and equal to or It is more preferably greater than 300 V and equal to or less than 500 V. If the crystal substrate or the sheet body is heated, it is more advantageous for the Φ attaching operation. The heating temperature is preferably equal to or greater than 200 ° C and equal to or small φ. At 70 ° C. When the mounting temperature is high, the voltage applied to the crystal substrate and the plate body can be set lower. When the mounting temperature is lower, the applied voltage must be set higher. The glass to which the anodic bonding method is attached is an alkali-containing glass such as carbon. The soda lime glass tellurite glass is suitable. The stacked structure provided on the surface of the crystal substrate is processed after attaching the body of the plate material containing the fluorescent material, and the n-type and p-type ohmic electrodes are formed to form a light-emitting device. For example, although an ohmic electrode having any polarity is not provided on a crystalline base plate, a bipolar electrode is disposed on the surface of the stacked structure to form a light-emitting device. For example, a p-type ohmic electrode is provided at the first A P-type contact layer (which is the uppermost layer of the stacked structure) made of a conductive type m nitride semiconductor such as a P-type layer. In the case of the group m nitride semiconductor light-emitting device of the present invention, light from the light-emitting layer does not pass through the contact layer of the stacked structure, but is emitted in the direction in which the body of the sheet is attached. Therefore, the P-type ohmic electrode disposed on the p-type contact layer on the opposite side in the light transmission direction does not need to have a translucent or transparent function, and a so-called pad type electric power can be disposed on the entire contact layer surface using a thick metal film. 5 - 1302755' « , < On the other hand, the n-type of the p-type contact layer region of the p-type contact layer or the light-emitting layer removal portion and the second conductivity type (because the first conductivity type is temporarily P-type and the second conductivity type is n-type) After the m-group nitride semiconductor layer is exposed, an n-type ohmic electrode is formed. The n-type ohmic electrode may be made of a transition metal such as aluminum, titanium, or chromium or an alloy thereof. If the uppermost surface layer of the light-emitting layer (that is, the pad electrode disposed on the contact layer opposite to the light-transmitting direction) is made of metal® that can reflect light and form an ohmic electrode, the electrode can smoothly flow current to The luminescent layer is configured to reflect light to the body of the luminescent material. Therefore, it is helpful to excite the fluorescent material and obtain strong fluorescence. The metal reflective film suitable for reflecting short-wave light from the group-m nitride semiconductor light-emitting layer is preferably a two-layer structure including a thin metal layer capable of forming a semiconductor layer and ohmic contact and penetrating light, and a light-reflecting light. Metal layer. An example of an ohmic junction metal is six elements in the platinum group such as rhodium (Rh), palladium (Pd), (platinum) Pt ("Duffy Mukikagaku", published by Hirokawa Shoten, Inc., April 15, 1971, 5th Edition, page 249), and metals such as Ni, ^ Au, Co, Ti5 Cr, W, Ta and alloys thereof. Examples of the reflective film are six elements in the platinum group such as rhodium (Rh), palladium (Pd), and platinum (Pt) (previously "Duffy Mukikagaku", p. 249), and metals such as Ag, Au and alloy. The light-emitting device of the present invention can simultaneously emit light from a light-emitting layer containing a group m nitride semiconductor and a plate body containing a fluorescent material. Therefore, a lamp capable of emitting multi-wavelength light (although only a single device) can be formed by the quaternary nitride semiconductor light-emitting device of the present invention. In particular, a white light-emitting lamp can be formed from the m-group-16-1302755»* nitride semiconductor light-emitting device of the present invention having a sheet body, wherein the sheet body emits light emitted from the luminescent layer of the lanthanide nitride semiconductor Complementary fluorescence. If a cassium nitride semiconductor light-emitting device comprising a group III nitride semiconductor light-emitting layer and a plate body and emitting three primary colors of light is used, a light-emitting lamp can be provided. If the amount of fluorescent material in the body of the fluorescing plate is changed, a lamp that emits white light of different hues can be provided. If the NMOS-type nitride semiconductor light-emitting device (wafer) of the present invention is provided on the surface of the stacked structure using the n-type and p-type ohmic electrodes, a lamp in which the wafer is mounted in a flip-chip manner can be formed. If the fluorescent material is mounted on the m-group nitride semiconductor light-emitting device of the present invention and the plate-attached system attached to the back surface of the crystal substrate is flip-chip mounted on the upper surface, the light is emitted from the light-emitting layer at the same time. A lamp that emits fluorescent light and emits fluorescent light from the installed fluorescent material. Even if the fluorescent material is not attached to the main body of the sheet, if it is sealed with a resin containing a fluorescent material that emits fluorescence, it is formed while emitting fluorescence by the main body of the sheet attached to the light-emitting layer and is fired by the sealing resin. The light material emits a fluorescent light. ® A white light source can be formed if a light from a light-emitting layer is combined with a light that is mixed with the fluorescent light from the body of the attached plate to emit white light. According to the invention, it is possible to form a white-emitting lamp using a single luminescent layer. That is, unlike conventional techniques, it is not necessary to combine three light-emitting devices that emit three primary colors of light or to prepare a large wafer of three primary colors from one wafer. Therefore, since a plurality of lamps can be mounted on a limited plane, a light source that emits strong white light can be formed. If the lamp emitting white light is not used, but the multi-color light-emitting device of the cuban nitride semiconductor of the present invention is used, a plurality of lamps can be mounted on a limited plane to obtain 1302755 4 1 · color for larger pixels light source. The trigger system attached to the back surface of the thinned crystal substrate by anodic bonding is used as an illuminator that receives light from the group m nitride semiconductor light-emitting layer and emits light. EXAMPLES The present invention will be described based on a lamp which emits light from a led formed on a sapphire substrate and emits light from a plate body (attached to a sapphire substrate) containing a fluorescent material. • Fig. 1 is a schematic plan view of the LED 10 of the present embodiment. Fig. 1 is a plan view showing the surface of the stacked structure 1 1 shown in Fig. 2 for forming the LED 10. Fig. 3 is a schematic cross-sectional view taken along the dotted line m - m of the led 1 所示 shown in Fig. 1. Fig. 4 is a schematic cross-sectional view of a lamp using the semiconductor light-emitting device of the present invention. The stacked structure 1 1 for forming the LED 10 is formed in such a manner that a thin layer 10 i i 〇 is continuously deposited on the (000 1 ) sapphire substrate 100. The thin layers of the following paragraphs (1) to (7) are formed by metal organic chemical vapor deposition (MOCVD). In particular, the GaN buffer layer 101 has been grown by the seeding process (SP) (JP-A 2003 -243 3 02). (1) Undoped GaN buffer layer 101 (thickness = 5 nm) (2) Undoped A1N buffer layer 102 (thickness = 15 nm) (3) Doped 矽 type GaxlIn !·Χ1Ν ( 0$ Χι $ 1 ) contact layer l〇3 (thickness = 2.5/m, n = 8 < 1018/cm3) (4) ytterbium-doped GaX2In bX2N (Χ1$Χ2$1) cladding layer 1〇4 (thickness 0.5//) m,n = 4xl018/cm3) -18- 1302755 f is replacing β

私今:1 (5 )摻砂δ - 阻I障層與G a ο . 81 η。. 2 Ν之多量子井結構 的發光層105 (堆疊頻率=5 ) (6 )摻鎂 ρ型 AlGaN覆層 106 (厚度=2.5 nm p = 8xl017/cm3 ) (7)摻鎂 p型 GaN接觸層107(厚度=0.2//m, p = 2 X 1 0 18 / c m3 ) 〇 在形成LED 1 0的堆疊結構1 1後,硏磨拋光藍寶石基板 1 00背表面(與形成堆疊結構1 1對面的表面)。其次,使用 • 較小粒徑的鑽石微粒拋光所形成的表面,並細磨成鏡面光滑 狀態。藉此將藍寶石基板100厚度由3 5 0 //m降低至90 //m。 約3 5 0 //m厚之含添鈽(Ce) YAG螢光材料的碳酸鈉石 灰玻璃板108係裝附於藍寶石基板100鏡面拋光表面的背表 面。藉由熔解碳酸鈉石灰玻璃並添加與分散Ce-YAG微粒於 其中,而製備含螢光材料的透明玻璃板。添加Ce-YAG微粒, 以使玻璃板108中的Ce-YAG微粒含量變爲10重量%。藉 由陽極接合法將藍寶石基板1 00裝附於非晶質玻璃基板 ® 1 08。裝附作業在室溫下進行,且施加於藍寶石基板1 00與 非晶質玻璃基板108間的電壓爲22 0V。 其次,使用熟知的光學微影與選擇性蝕刻加工堆疊結構 1 1表面,以暴露出η型接觸層1 03表面。所暴露的η型接觸 層103表面上形成有鉻(Cr)-鈦(Ti) ·金(Au)之三層結 構的η型歐姆電極1 0 9。形成型歐姆電極1 0 9的金屬層係使 用一般的真空沈積法或電子束沈積法而形成。電極109最外 層爲金(Au )膜,以助於線路接合作業。 -19- 1302755 ρΓ7^Γ-;τ! -厂'一.、,…..---,· ·. i% , 4 Ρ型GaN接觸層1&7的整個表面上形成有Pt,Au堆疊結 構的P型歐姆電極1 1 0。在沈積這些金屬膜後,將這些金屬 膜加熱至低於玻璃板1 08軟化溫度的軟化溫度,以提高對p •型GaN接觸層1 07的黏著性。在加熱作業後的冷卻作業中, • 長時間緩慢冷卻,以使含螢光材料的玻璃板1 〇 8不剝離,且 無裂痕形成於堆疊結構1 1中。 其次,藉由雷射切割法形成分割裝置的分割溝槽於堆疊 結構1 1表面的邊緣。其次,使用一般的撞擊器施加機械壓 # 力於分割溝槽,以將裝置分割成個別裝置(晶片),而形成 m族氮化物半導體發光裝置(晶片)1 〇。 前揭步驟所獲得的m族氮化物半導體發光裝置晶片1 〇 安裝於導電性低電阻率矽單晶板1 π。在金凸塊形成於安裝 位置後,使用一般的覆晶(fc )接合器安裝晶片1 〇。鋁反 射膜1 1 2形成於矽單晶板1 1 1的整個表面上,以便輕易反射 來自發光層105之波長約460nm的藍光。LED 10的一表面 設有矽單晶板1 1 1且另一表面設有含螢光材料(爲普通環氧 # 樹脂所密封)的玻璃板1 〇 8,以完成具第4圖所示剖面結構 的發光二極體燈1 2。 2 0mA的正向電流得在LED 10的η型與p型歐姆電極 1 09和1 1 〇間流動,以使燈1 2發光。當電流流通時,可同時 發出來自發光層105的藍光與來自含Ce_YAG螢光材料之玻 璃板108的黃色螢光,而可提供藉混色而發可見白光的LED 燈1 2。可提供發白光並具局売度的L E D燈。根據該燈,使 用一般積分球所量測的白光亮度爲20 lm/W。 -20 - 1302755 V l| 工業應用性 本發明的ΠΙ族氮化物半導體發光裝置可作爲多波長發 光裝置。例如,可同時發出紅、綠、藍光’而獲白光。 式簡單說明】 第1圖爲具體例中之led的示意平面圖。 第2圖爲第1圖所示LED使用之堆疊結構的示意剖面 _ 第3圖爲穿經第1圖之虛線瓜-瓜的剖面圖 第4圖爲燈的示意剖面圖。 $件符號說明】 1〇 m族氮化物半導 11 堆疊結構 12 燈 1 0〇 藍寶石基板 1〇1 GaN緩衝層 1 〇2 A 1N緩衝層 1〇3 η型接觸層 1 〇4 η型覆層 1〇5 發光層 1 〇6 ρ型AlGaN覆層 1〇7 p型GaN接觸層 1 〇S 非晶質玻璃基板 1 09 η型歐姆電極 1 1〇 ρ型歐姆電極 111 矽單晶板 112 鋁反射膜 ❿ -21 -Private today: 1 (5) sand-doped δ-impedance barrier and G a ο. 81 η. 2 发光 Ν 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子 量子107 (thickness = 0.2 / / m, p = 2 X 1 0 18 / c m3 ) 〇 After forming the stacked structure 1 1 of the LED 10, honing and polishing the back surface of the sapphire substrate 100 (opposite the formation of the stacked structure 1 1 s surface). Second, use a smaller particle size diamond to polish the resulting surface and finely grind it into a mirrored finish. Thereby, the thickness of the sapphire substrate 100 is reduced from 305 //m to 90 //m. A soda carbonate gray glass plate 108 containing about 550 m thick of Ce (Ye) fluorescent material is attached to the back surface of the mirror polished surface of the sapphire substrate 100. A transparent glass plate containing a fluorescent material was prepared by melting sodium carbonate lime glass and adding and dispersing Ce-YAG microparticles therein. The Ce-YAG fine particles were added so that the content of Ce-YAG fine particles in the glass plate 108 became 10% by weight. The sapphire substrate 100 is attached to an amorphous glass substrate ® 1 08 by an anodic bonding method. The mounting operation was performed at room temperature, and the voltage applied between the sapphire substrate 100 and the amorphous glass substrate 108 was 22 V. Next, the surface of the stacked structure 1 1 is processed using well-known optical lithography and selective etching to expose the surface of the n-type contact layer 103. On the surface of the exposed n-type contact layer 103, an n-type ohmic electrode 1 0 9 having a three-layer structure of chromium (Cr)-titanium (Ti) gold (Au) is formed. The metal layer of the formation type ohmic electrode 1 0 9 is formed by a general vacuum deposition method or electron beam deposition method. The outermost layer of the electrode 109 is a gold (Au) film to facilitate the wire bonding operation. -19- 1302755 ρΓ7^Γ-;τ! -Factory '一.,,.....---,···. i% , 4 Ρ-type GaN contact layer 1 & 7 formed on the entire surface of Pt, Au stack Structure of the P-type ohmic electrode 1 10 . After depositing these metal films, these metal films were heated to a softening temperature lower than the softening temperature of the glass plate 108 to improve the adhesion to the p-type GaN contact layer 107. In the cooling operation after the heating operation, • the cooling is slowly performed for a long time so that the glass plate 1 〇 8 containing the fluorescent material is not peeled off, and no cracks are formed in the stacked structure 1 1 . Next, the dividing grooves of the dividing means are formed on the edge of the surface of the stacked structure 1 1 by laser cutting. Next, a mechanical impact force is applied to the division trench by a general impactor to divide the device into individual devices (wafers) to form a group m nitride semiconductor light-emitting device (wafer). The m-type nitride semiconductor light-emitting device wafer 1 obtained in the preceding step is mounted on a conductive low-resistivity germanium single crystal plate 1 π. After the gold bumps are formed at the mounting position, the wafer 1 is mounted using a conventional flip chip (fc) bonder. An aluminum reflective film 112 is formed on the entire surface of the germanium single crystal plate 11 1 so as to easily reflect blue light having a wavelength of about 460 nm from the light emitting layer 105. One surface of the LED 10 is provided with a single crystal plate 11 1 and the other surface is provided with a glass plate 1 〇 8 containing a fluorescent material (sealed by a common epoxy # resin) to complete the profile shown in FIG. Structure of the light-emitting diode lamp 1 2. A forward current of 20 mA is flowed between the n-type and the p-type ohmic electrodes 1 09 and 1 1 of the LED 10 to cause the lamp 12 to emit light. When the current circulates, the blue light from the light-emitting layer 105 and the yellow light from the glass plate 108 containing the Ce_YAG fluorescent material can be simultaneously emitted, and the LED lamp 12 which emits white light by the mixed color can be provided. It can provide white light and has a good L E D lamp. According to the lamp, the brightness of white light measured using a general integrating sphere is 20 lm/W. -20 - 1302755 V l| Industrial Applicability The bismuth nitride semiconductor light-emitting device of the present invention can be used as a multi-wavelength light-emitting device. For example, red, green, and blue light can be emitted simultaneously to obtain white light. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic plan view of a led in a specific example. Fig. 2 is a schematic cross-sectional view of the stacked structure used for the LED shown in Fig. 1. Fig. 3 is a cross-sectional view of the dotted melon-melon through Fig. 1. Fig. 4 is a schematic cross-sectional view of the lamp. Explanation of the symbol of the piece] 1〇m nitride semiconductor semi-conductor 11 stacked structure 12 lamp 1 0〇 sapphire substrate 1〇1 GaN buffer layer 1 〇2 A 1N buffer layer 1〇3 n-type contact layer 1 〇4 η-type cladding 1〇5 luminescent layer 1 〇6 ρ-type AlGaN cladding layer 1〇7 p-type GaN contact layer 1 〇S amorphous glass substrate 1 09 η-type ohmic electrode 1 1 〇ρ-type ohmic electrode 111 矽 single crystal plate 112 aluminum reflection Membrane ❿ -21 -

Claims (1)

1302755 第94107410號「瓜族氮化物半導體發光裝置、其形成方法、 使用它之燈」專利案 (2007年5月2曰修正) 十、申請專利範圍: 1 · 一種具堆疊結構之m族氮化物半導體發光裝置,該堆疊結 構包含: 具正表面、背表面,以及具有40//m至200//m之厚度 的透明結晶基板; # 形成於透明結晶基板正表面之第一導電型的第一 m族 氮化物半導體層; 第二導電型(與第一導電型對面)的第二m族氮化物半 導體層; 位於第一與第二m族氮化物半導體層間之由m族氮化 物半導體組成的發光層;以及 裝附於透明結晶基板背表面之含螢光材料的板材本 體;以及其中該板材本體由熱膨脹係數實質等於透明結晶 φ 基板的熱膨脹係數,以及具有等於或大於1 · 5及等於或小 於1 · 8範圍之折射係數的材料所形成。 2. 如申請專利範圍第1項之m族氮化物半導體發光裝置,其 中該板材本體由來自發光層的光可穿透的透明材料所形 成。 3. 如申請專利範圍第1項之m族氮化物半導體發光裝置,其 中該板材本體由非晶質材料形成。 4·如申請專利範圍第1項之m族氮化物半導體發光裝置,其 中該板材本體由玻璃材料形成。 Ι3Ό2755 5 · —種形成m族氮化物半導體發光裝置的方法,包含步驟: 使用氣相磊晶法連續沈積第一導電型的第一 m族氮化 物半導體層、由第一導電型或第二導電型(與第一導電型 對面)之m族氮化物半導體所形成的發光層及第二導電型 的m族氮化物半導體層於透明結晶基板表面上,以形成堆 疊結構; 將與堆疊結構表面對面的結晶基板的背表面拋光,以薄 化結晶基板至40 # m至200 // m之厚度;以及 • 藉陽極氧化法將含螢光材料的板材本體裝附於前記薄 化後的基板的經拋光後的背表面;以及其中該板材本體由 熱膨脹係數實質等於透明結晶基板的熱膨脹係數,以及具 有等於或大於1 · 5及等於或小於1 · 8範圍之折射係數的材 料所形成。 6·如申請專利範圍第5項之形成ΠΙ族氮化物半導體發光裝置 的方法,其中該板材本體由來自發光層的光可穿透的透明 材料所形成。 # 7·如申請專利範圍第5項之形成瓜族氮化物半導體發光裝置 的方法,其中該板材本體由非晶質材料形成。 8·如申請專利範圍第5項之形成m族氮化物半導體發光裝置 的方法,其中該板材本體由玻璃材料形成。 9·如申請專利範圍第5項之形成π族氮化物半導體發光裝置 白勺方法,其中該拋光結晶基板背表面的步驟包含有使用硬 f立硏磨以薄化結晶基板的粗拋光及拋光成鏡面。 1 〇_如申請專利範圍第5項之形成m族氮化物半導體發光裝置 %方法,其中該拋光結晶基板背表面的步驟包含蝕刻至鏡 1302755 Ί 面。 11 · 一種燈,其使用具堆疊結構之m族氮化物半導體發光裝 置,該堆疊結構包含: 具正表面、背表面,以及具有40//m至2 00//m之厚度 的透明結晶基板; 形成於透明結晶基板正表面之第一導電型的第一 1Π族 氮化物半導體層; 第二導電型(與第一導電型對面)的第二m族氮化物半 • 導體層; 位於第一與第二]π族氮化物半導體層間之由瓜族氮化 物半導體組成的發光層;以及 裝附於透明結晶基板背表面之含螢光材料的板材本體; 其中來自發光層的光與由該光進行光泵激(optically pumped )而由板材本體發出的光係同時發出。 12·如申請專利範圍第11項之燈,其中來自板材本體的光對來 自由ΠΙ族氮化物半導體組成的發光層的光具有互補色。 馨13·如申請專利範圍第1 1項之燈,其係由瓜族氮化物半導體發 光裝置所構成,其中該燈射出由來自發光層的光與來自板 材本體的光之色彩混合成的白光。1302755 No. 94,074,410 "Guadium nitride semiconductor light-emitting device, method of forming the same, lamp using the same" Patent (as amended on May 2, 2007) X. Patent application scope: 1 · A group of nitrides with stacked structures a semiconductor light emitting device comprising: a front surface, a back surface, and a transparent crystal substrate having a thickness of 40//m to 200//m; #1 of a first conductivity type formed on a front surface of the transparent crystal substrate a m-type nitride semiconductor layer; a second m-type nitride semiconductor layer of a second conductivity type (opposite the first conductivity type); and an m-type nitride semiconductor between the first and second m-type nitride semiconductor layers a light-emitting layer; and a plate material comprising a fluorescent material attached to a back surface of the transparent crystal substrate; and wherein the plate body has a coefficient of thermal expansion substantially equal to a coefficient of thermal expansion of the transparent crystal φ substrate, and has a ratio equal to or greater than 1.5 and equal to or A material having a refractive index of less than 1 · 8 is formed. 2. The group m nitride semiconductor light-emitting device of claim 1, wherein the plate body is formed of a light transmissive transparent material from the light-emitting layer. 3. The group m nitride semiconductor light-emitting device according to claim 1, wherein the plate body is formed of an amorphous material. 4. The group m nitride semiconductor light-emitting device of claim 1, wherein the plate body is formed of a glass material. Ι3Ό2755 5 - A method of forming an m-type nitride semiconductor light-emitting device, comprising the steps of: continuously depositing a first group-m-type nitride semiconductor layer of a first conductivity type by a vapor phase epitaxy method, by a first conductivity type or a second conductivity a light-emitting layer formed of a group m nitride semiconductor of a type (opposite the first conductivity type) and a m-type nitride semiconductor layer of a second conductivity type on the surface of the transparent crystal substrate to form a stacked structure; opposite to the surface of the stacked structure Polishing the back surface of the crystal substrate to thin the crystal substrate to a thickness of 40 #m to 200 // m; and • attaching the plate material containing the phosphor material to the substrate of the pre-thinned substrate by anodization a polished back surface; and wherein the sheet body is formed of a material having a coefficient of thermal expansion substantially equal to a coefficient of thermal expansion of the transparent crystalline substrate, and a refractive index equal to or greater than 1.5 and a refractive index equal to or less than 1.8. 6. The method of forming a bismuth nitride semiconductor light-emitting device according to claim 5, wherein the plate body is formed of a light transmissive transparent material from the light-emitting layer. #7. The method of forming a cuban nitride semiconductor light-emitting device according to claim 5, wherein the plate body is formed of an amorphous material. 8. The method of forming an m-group nitride semiconductor light-emitting device according to claim 5, wherein the plate body is formed of a glass material. 9. The method of forming a π-nitride semiconductor light-emitting device according to claim 5, wherein the step of polishing the back surface of the crystal substrate comprises rough polishing and polishing using a hard f-grinding to thin the crystal substrate. Mirror surface. 1 〇 A method of forming a group m nitride semiconductor light-emitting device according to claim 5, wherein the step of polishing the back surface of the crystal substrate comprises etching to the mirror 1302755. 11 a lamp using a group m nitride semiconductor light-emitting device having a stacked structure, the stack structure comprising: a front surface, a back surface, and a transparent crystal substrate having a thickness of 40//m to 200/m; a first 1-type nitride semiconductor layer of a first conductivity type formed on a front surface of the transparent crystal substrate; a second m-type nitride half conductor layer of a second conductivity type (opposite the first conductivity type); a second light-emitting layer composed of a cerium nitride semiconductor between the π-nitride semiconductor layers; and a plate material containing a fluorescent material attached to the back surface of the transparent crystal substrate; wherein light from the light-emitting layer is performed by the light The light emitted by the sheet body is simultaneously emitted by optically pumped. 12. The lamp of claim 11, wherein the light from the body of the sheet has a complementary color to the light of the luminescent layer of the free lanthanide nitride semiconductor. A lamp according to claim 1, wherein the lamp is composed of a citrine nitride semiconductor light-emitting device, wherein the lamp emits white light mixed with light from the light-emitting layer and light from the body of the sheet.
TW94107410A 2004-03-12 2005-03-11 Group iii nitride semiconductor light-emitting device, forming method thereof,and lamp using same TWI302755B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070182 2004-03-12

Publications (2)

Publication Number Publication Date
TW200539481A TW200539481A (en) 2005-12-01
TWI302755B true TWI302755B (en) 2008-11-01

Family

ID=45070554

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94107410A TWI302755B (en) 2004-03-12 2005-03-11 Group iii nitride semiconductor light-emitting device, forming method thereof,and lamp using same

Country Status (1)

Country Link
TW (1) TWI302755B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8362458B2 (en) 2010-12-27 2013-01-29 Industrial Technology Research Institute Nitirde semiconductor light emitting diode

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400787B (en) 2007-11-13 2013-07-01 Epistar Corp Light-emitting device package
US20120037886A1 (en) 2007-11-13 2012-02-16 Epistar Corporation Light-emitting diode device
CN101499504B (en) * 2008-01-28 2012-10-10 晶元光电股份有限公司 Luminous element packaging structure
CN102820410B (en) * 2008-01-28 2015-06-03 晶元光电股份有限公司 Light-emitting component packaging structure
US20130200414A1 (en) 2011-10-26 2013-08-08 Epistar Corporation Light-emitting diode device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8362458B2 (en) 2010-12-27 2013-01-29 Industrial Technology Research Institute Nitirde semiconductor light emitting diode

Also Published As

Publication number Publication date
TW200539481A (en) 2005-12-01

Similar Documents

Publication Publication Date Title
US11522104B2 (en) Light emitting device, and method for manufacturing thereof
US10290775B2 (en) Luminescent ceramic for a light emitting device
CN1269229C (en) Semiconductor luminescent device and mfg method thereof
TWI278995B (en) Nitride semiconductor element with a supporting substrate and a method for producing a nitride semiconductor element
US7576365B2 (en) Group III nitride semiconductor light-emitting device, forming method thereof, lamp and light source using same
US7453098B2 (en) Vertical electrode structure of gallium nitride based light emitting diode
RU2550753C2 (en) Semiconductor led with wavelength conversion
TWI287880B (en) Group III nitride semiconductor light-emitting device and method of producing the same
JP2005294820A (en) Group iii nitride semiconductor light-emitting element, method of forming the element, and lamp and light source using the same
TWI302755B (en) Group iii nitride semiconductor light-emitting device, forming method thereof,and lamp using same
JP4586802B2 (en) Light emitting diode element, light emitting diode substrate, and method for manufacturing light emitting diode element
US20080042150A1 (en) White Light Emitting Device and Method for Manufacturing the Same
JP4843235B2 (en) Group III nitride semiconductor light emitting device manufacturing method
JP6499381B2 (en) Phosphor element and lighting device
JPH08102549A (en) Semiconductor light emitting element
TW201125158A (en) Light emitting device
US20210184425A1 (en) Phosphor element and illumination device
JP3476611B2 (en) Multicolor light emitting device and display device using the same
TW200901521A (en) Transparent ohmic contacts on light emitting diodes with growth substrates
TW200418211A (en) Light-emitting diode and its manufacturing method
TWI281757B (en) Group III nitride semiconductor light-emitting device and producing method thereof
JP2018163816A (en) Phosphor element and illumination device
JP4918245B2 (en) Light emitting diode and manufacturing method thereof
JP2023172001A (en) Wavelength conversion member and light-emitting device, and method for manufacturing wavelength conversion member
CN1624941A (en) Method of forming LED