TWI281757B - Group III nitride semiconductor light-emitting device and producing method thereof - Google Patents

Group III nitride semiconductor light-emitting device and producing method thereof Download PDF

Info

Publication number
TWI281757B
TWI281757B TW94108128A TW94108128A TWI281757B TW I281757 B TWI281757 B TW I281757B TW 94108128 A TW94108128 A TW 94108128A TW 94108128 A TW94108128 A TW 94108128A TW I281757 B TWI281757 B TW I281757B
Authority
TW
Taiwan
Prior art keywords
nitride semiconductor
light
stacked structure
layer
emitting device
Prior art date
Application number
TW94108128A
Other languages
Chinese (zh)
Other versions
TW200536159A (en
Inventor
Katsuki Kusunoki
Kazuhiro Mitani
Takashi Udagawa
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW200536159A publication Critical patent/TW200536159A/en
Application granted granted Critical
Publication of TWI281757B publication Critical patent/TWI281757B/en

Links

Abstract

A group III nitride semiconductor light-emitting device includes at least a stacked structure 11 including two group III nitride semiconductor layers 104 and 106 having different electric conductive types and a light-emitting layer 105 which is stacked between the two group III nitride semiconductor layers and which comprises a group III nitride semiconductor; a crystal substrate 100 used for providing the stacked structure thereon and removed from the stacked structure; and a plate body III made of material transparent with respect to light emitted from the light-emitting layer and formed on a surface of the stacked structure exposed after removal of the crystal substrate. With this structure, light emitted from the light-emitting layer can be taken out from the plate body.

Description

1281757 九、發明說明: 【發明所屬之技術領域】 本發明係有關具堆疊結構的m族氮化物半導體發光裝 置及其製法,其中該堆疊結構包含具不同導電類型的二個]E 族氮化物半導體層及堆疊於該二個m族氮化物半導體層間 並含有m族氮化物半導體的發光層。 【先前技術】 諸如發出短波藍或綠光之發光二極體(led )及雷射二 ® 極體(ld )的hi族氮化物半導體發光裝置係使用諸如氮化鎵 銦(GaYInzN: OSY,ZS 1,Υ+Ζ=1)作爲發光層(諸如 JP-B SHO 5 5 -3 83 4 )。發光部位包含發光層及二個覆層,該覆層 由具不同導電性並沈積於發光層二側的I[[族氮化物半導體 所形成。用於形成該雙異質(DH )結構之發光部位的覆層 係由諸如氮化鋁鎵(AixGaYN ‘· OS X,YS 1,X + Y=1 )製 成。 在用於形成pn接面型DH結構之瓜族氮化物半導體發 ® 光裝置的堆疊結構中(其具有發光層位於η型覆層與p型覆 層間之DH結構的發光部位),基板主要由藍寶石(α-Αΐ2〇3 單晶)或碳化矽(S i C )單晶所形成。此因該材料具有得使 來自透光層的光穿透的透光性,並具有可耐m族氮化物半導 體層高溫晶體成長的耐熱性。在習用m族氮化物半導體發光 裝置的狀況中,所形成之用於形成發光裝置堆疊結構的基板 係使得其縱使在裝置形成步驟後仍爲用於機械支撐堆疊結 構的板材本體。 1281757· 雖然得使藍寶石晶體或碳化政晶體基板保持原狀的El 族氮化物半導體發光裝置適用於維持堆疊結構的機械支撐 力,但是其具有短波長紫外射線之光吸收感應所造成之發光 效率降低的缺點。 本發明已鑑於前揭狀況而完成’且本發明的目的在於提 供一種m族氮化物半導體發光裝置’其具有機械支撐類似基 板之物件的功能、可降低短波長紫外光射線吸收並可提高發 光效率。本發明的目的亦爲提供in族氮化物半導體發光裝置 ®的製法並提供led燈。 【發明內容】 發明之揭示 爲達成前揭目的,本發明提供一種m族氮化物半導體發 光裝置,其包含有:至少一個堆疊結構,其具有不同導電型 的二個瓜族氮化物半導體層,與堆疊於二個m族氮化物半導 體層間並含有m族氮化物半導體的發光.層;結晶基板,用於 設置堆疊結構於其上,並由堆疊結構移除;以及板材本體, ® 其由來自發光層的光可穿透的透明材料所形成,並形成於結 晶基板移除後所暴露出的堆疊結構表面上,其中來自發光層 ' 的光係由板材本體透出。 在m族氮化物半導體發光裝置中,板材本體由玻璃形 成。 在第一或第二個前揭m族氮化物半導體發光裝置中,結 晶基板係藉由照射於堆疊結構與結晶基板間之接面的雷射 束而進行移除。 1281757 第一至第三個前揭Π[族氮化物半導體發光裝置中的任 一個更包含設於板材本體正對側之堆疊結構表面上的歐姆 電極。 在第四個前揭m族氮化物半導體發光裝置中,歐姆電極 的正面設有金屬反射膜。 在第五個前揭m族氮化物半導體發光裝置中,金屬反射 膜的正面設有金膜。 本發明亦提供一種m族氮化物半導體發光裝置的製 ® 法,包含的步驟有:提供堆疊結構於結晶基板上,該堆疊結 構具有不同導電型的二個瓜族氮化物半導體層,與堆疊於二 個m族氮化物半導體層間並含有m族氮化物半導體的發光 層;由堆疊結構移除結晶基板,以暴露出堆疊結構表面;形 成板材本體於堆疊結構的暴露表面上,該板材本體由來自發 光層的光可穿透的透明材料所形成;以及將來自發光層的光 由板材本體透出。 本發明亦提供設有第一至第六個前揭m族氮化物半導 _體發光裝置中之任一個的led燈。 該燈具有主要由矽形成的次載具,瓜族氮化物半導體發 光裝置係以覆晶方式安裝於其上。 根據本發明,在用於提供堆疊結構的結晶基板移除後, 於暴露的堆疊結構表面上形成由可爲射自發光層之光所穿 透的材料製成的板材本體。因此,板材本體可機械支撐堆疊 結構’降低短波長紫外射線的光吸收並提高發光效率。 因爲得以選擇膨脹係數同堆疊結構的材料作爲板材本 1281757 體’所以縱使長時間流通電流,堆疊結構中也不會有由熱應 力造成的裂痕,因而提高裝置可靠度。 僅藉由安裝發光裝置於次載具上便可獲得L E D燈,因 而可輕易製造LED燈。 【實施方式】 執行本發明的最佳模式 現將詳細說明本發明的實施例。 本發明的m族氮化物半導體發光裝置包含有用於發光 ® 裝置中之位於結晶基板上的堆疊結構,該堆疊結構具有:(a ) 第一導電型的第一瓜族氮化物半導體層,(b)第二導電型 的第二ΙΠ族氮化物半導體層,以及(c )由DI族氮化物半導 體形成並夾合於第一與第二m族氮化物半導體間的發光 層。第一與第二瓜族氮化物半導體層具有作爲覆層或接觸層 的功能。1281757 IX. Description of the Invention: [Technical Field] The present invention relates to a group m nitride semiconductor light-emitting device having a stacked structure and a method of fabricating the same, wherein the stacked structure comprises two Group-E nitride semiconductors having different conductivity types And a light-emitting layer stacked between the two m-type nitride semiconductor layers and containing an m-group nitride semiconductor. [Prior Art] A hi-nitride semiconductor light-emitting device such as a light-emitting diode (led) emitting a short-wave blue or green light and a laser diode (ld) is used such as indium gallium nitride (GaYInzN: OSY, ZS) 1, Υ + Ζ = 1) as a light-emitting layer (such as JP-B SHO 5 5 -3 83 4 ). The light-emitting portion comprises a light-emitting layer and two cladding layers formed of I[[nitride semiconductors] having different electrical conductivity and deposited on both sides of the light-emitting layer. The coating for forming the light-emitting portion of the double heterogeneous (DH) structure is made of, for example, aluminum gallium nitride (AixGaYN '· OS X, YS 1, X + Y = 1). In a stacked structure of a quaternary nitride semiconductor light-emitting device for forming a pn junction type DH structure (having a light-emitting layer having a light-emitting layer located at a light-emitting portion of a DH structure between the n-type cladding layer and the p-type cladding layer), the substrate is mainly composed of Sapphire (α-Αΐ2〇3 single crystal) or tantalum carbide (S i C ) single crystal. This material has a light transmissive property for penetrating light from the light transmissive layer and has heat resistance capable of withstanding high temperature crystal growth of the m-group nitride semiconductor layer. In the case of conventional m-type nitride semiconductor light-emitting devices, the substrate for forming the light-emitting device stack structure is such that it remains the sheet body for mechanically supporting the stacked structure even after the device forming step. 1281757· Although an El-type nitride semiconductor light-emitting device in which a sapphire crystal or a carbonized crystal substrate is left as it is is suitable for maintaining the mechanical supporting force of a stacked structure, its luminous efficiency due to light absorption induction of short-wavelength ultraviolet rays is lowered. Disadvantages. The present invention has been made in view of the foregoing circumstances, and an object of the present invention is to provide a group m nitride semiconductor light-emitting device which has a function of mechanically supporting an object similar to a substrate, can reduce short-wavelength ultraviolet ray absorption, and can improve luminous efficiency. . It is also an object of the present invention to provide a method for producing an in-nitride semiconductor light-emitting device ® and to provide a led lamp. SUMMARY OF THE INVENTION In order to achieve the foregoing, the present invention provides an m-type nitride semiconductor light-emitting device comprising: at least one stacked structure having two quaternary nitride semiconductor layers of different conductivity types, and a light-emitting layer stacked between two m-type nitride semiconductor layers and containing an m-type nitride semiconductor; a crystalline substrate on which the stacked structure is disposed and removed by the stacked structure; and a plate body, which is derived from the light A layer of light transmissive transparent material is formed and formed on the surface of the stacked structure exposed after the removal of the crystalline substrate, wherein the light from the luminescent layer 'is transmitted through the body of the sheet. In the group m nitride semiconductor light-emitting device, the plate body is formed of glass. In the first or second prior art m-nitride semiconductor light-emitting device, the crystal substrate is removed by irradiating a laser beam on the junction between the stacked structure and the crystal substrate. 1281757 First to third pre-examinations [any of the group nitride semiconductor light-emitting devices further includes an ohmic electrode provided on the surface of the stacked structure on the opposite side of the sheet body. In the fourth prior art m-nitride semiconductor light-emitting device, a metal reflective film is provided on the front surface of the ohmic electrode. In the fifth prior art m-nitride semiconductor light-emitting device, a gold film is provided on the front surface of the metal reflective film. The invention also provides a method for fabricating a group m nitride semiconductor light-emitting device, comprising the steps of: providing a stacked structure on a crystalline substrate, the stacked structure having two quaternary nitride semiconductor layers of different conductivity types, stacked on a light emitting layer between the two m-type nitride semiconductor layers and containing the m-type nitride semiconductor; removing the crystalline substrate from the stacked structure to expose the surface of the stacked structure; forming the plate body on the exposed surface of the stacked structure, the plate body is derived from a light transmissive transparent material of the luminescent layer is formed; and light from the luminescent layer is permeable from the slab body. The present invention also provides a led lamp provided with any one of the first to sixth preceding m-nitride semiconductor light-emitting devices. The lamp has a sub-carrier formed mainly of ruthenium, and the quaternary nitride semiconductor light-emitting device is mounted thereon in a flip chip manner. According to the present invention, after the removal of the crystalline substrate for providing the stacked structure, a plate body made of a material which can be penetrated by light emitted from the light-emitting layer is formed on the surface of the exposed stacked structure. Therefore, the sheet body can mechanically support the stacked structure to reduce the light absorption of short-wavelength ultraviolet rays and improve the luminous efficiency. Since the material with the expansion coefficient and the stacked structure can be selected as the plate body 1281757 body, even if the current is flowed for a long time, there is no crack caused by the thermal stress in the stacked structure, thereby improving the reliability of the device. The L E D lamp can be obtained only by mounting the illuminating device on the sub-carrier, so that the LED lamp can be easily manufactured. [Embodiment] BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will now be described in detail. The group-m nitride semiconductor light-emitting device of the present invention comprises a stacked structure on a crystalline substrate for use in a light-emitting device, the stacked structure having: (a) a first melon-based nitride semiconductor layer of a first conductivity type, (b) a second bismuth nitride semiconductor layer of a second conductivity type, and (c) a luminescent layer formed of a group III nitride semiconductor and sandwiched between the first and second group m nitride semiconductors. The first and second meridium nitride semiconductor layers have a function as a cladding or a contact layer.

用於形成堆疊結構於其上之結晶基板的材料實例爲諸 如藍寶石與氧化鋰鎵(LiGa02)之單晶氧化物,及諸如3C晶 ® 型立方單晶碳化矽(3C-SiC ) 、4H或6H晶型六方單晶SiC (4H-SiC, 6H-SiC )、矽單晶、磷化鎵(GaP)、砷化鎵(GaAs) ' 之II族氮化物半導體單晶。Examples of materials for forming a crystalline substrate on which a stacked structure is formed are single crystal oxides such as sapphire and lithium gallium oxide (LiGaO 2 ), and such as 3C crystal ® type cubic monocrystalline niobium carbide (3C-SiC), 4H or 6H. A group II nitride semiconductor single crystal of a hexagonal single crystal SiC (4H-SiC, 6H-SiC), a germanium single crystal, gallium phosphide (GaP), or gallium arsenide (GaAs).

當形成堆疊結構的第一 m族氮化物半導體層設於晶格 匹配不佳的結晶基板上時,可設置用於降低晶格失配的緩衝 層。當諸如GaN系第一 m族氮化物半導體層得以成長在藍寶 石基板上時,例如第一 m族氮化物半導體層係經由藉播種製 程(SP )技術所設的GaN緩衝層而堆疊於基板表面上(A 1281757· . 2003 -243 3 02 )。縱使低溫緩衝層由A1N而非GaN製成時, 對於降低與基板的晶格失配亦爲有效的。當緩衝層爲A1N 時,低溫緩衝層的厚度爲lnm或以上且l〇〇nm或以下,2nm 或以上且50nm或以下爲較佳,且2nm或以上且5nm或以下 爲更佳。 低溫緩衝層表面最好爲平坦而非不均勻。例如,以Ra 做評估,表面粗糙度在0.1微米或以下爲適當的,0.05微米 或以下爲較佳。藉由在諸如3 5 0 - 4 5 0 °C低溫成長時,於結晶 ® 基板界面提供單晶層,便可獲得具微小表面粗糙度的低溫緩 衝層。使用諸如原子力顯微鏡(AFM )之量測裝置便可獲得 表面粗糙度。具微小粗糙度平面的低溫緩衝層係有助於堆疊 具極佳表面平坦度的上層。例如,具光滑與平坦表面且無不 均部位的基層可成長於具微小粗糙度之GaN低溫緩衝層表 面上。 具平坦表面的基層(諸如設於緩衝層上的GaN層)有助 於提供具平坦表面之第一或第二種導電型的瓜族氮化物半 導體層。倘若第一 Π族氮化物半導體層爲η型層,則第二m 族氮化物半導體層爲相反導電型的p型層。在G aN層的狀況 中’有助於提供具平坦表面之第一或第二種導電型的EI族氮 化物半導體層之基層的厚度爲0.5微米或以上且5微米或以 下,最好爲1微米或以上且3微米或以下。具平坦表面之第 一或第二m族氮化物半導體層可作爲η型或p型覆層,並適 用於堆疊由極平且極薄井層所形成的量子井結構。此外,其 可爲適用於形成具極佳黏著性之輸入與輸出電極的η型或ρ 1281757* 型覆層。 未刻意添加雜質的未摻雜層可作爲第一或第二種瓜族 氮化物半導體層。亦可使用刻意添加雜質的η型或p型瓜族 氮化物半導體層,以控制導電度、載體濃度與電阻値。摻有 η型或Ρ型雜質而使薄層內原子濃度變爲ix1〇l8CTn·3或以上 且5X1 019cm_3或以下的第一與第二瓜族氮化物半導體層係 適於形成用於獲得具低正向電壓且高可靠度之發光裝置的 覆層。雖作爲覆層的第一與第二Π[族氮化物半導體層由能隙 ® 大於發光層材料的材料製成係必要的,惟Π族氮化物半導體 層由相同材料製成則爲非必要的。例如,η型覆層可由η型 GaYInzN(0‘Y,ZS1,Y+Z=l)形成,而 ρ 型覆層可由 ρ 型AlxGaYN (OSX,YS1,χ+γ = ι)形成。倘若使用由不 同ΙΠ族氮化物半導體層所形成的第一或第二導電型覆層,則 可形成對稱發光部位(根據能帶結構)。 具前揭原子濃度範圍之高濃度雜質並具低電阻率的第 一與第二ΠΙ族氮化物半導體層係有效作爲接觸層。載體濃度 ^ 1 xl〇18cn^3或以上的低電阻率瓜族氮化物半導體層特別有助 於形成低接觸電阻率歐姆電極。可用於獲得低電阻率n型皿 族氮化物半導體層之η型雜質的實例爲諸如Si,Ge的IV族元 素及諸如Se的VI族元素。ρ型雜質的實例爲諸如Mg,Be的 Π族元素。較佳方式爲接觸層厚度等於或大於允許組成歐姆 電極的材料散佈或進入其的該深度。當歐姆電極藉由合金化 熱處理形成時,該厚度等於或大於合金正面的深度。適當厚 度爲1〇n⑺或以上。 -10- 1281757 設於第一與第二!Π族氮化物半導體層間的發光層爲氮 化鎵銦(GaYInzN: OSY,ZS1,Y+Z=l)、磷化鎵氮 (GaUa: 0^a< 1)或 AlxGaYInzN卜aMa( O^X,Y,ZS1, X + Y + Z= 1,Μ代表除了氮以外的V族元素,0 S a < 1 )。 發光層可由單量子井層(SQW )或多量子井(MQW )結構所 形成。當量子井結構的井層爲GaYInzN時,銦組成物比例 (=Z )係根據希冀的發光波長做調整,並於光波長變大時設 定爲較大。具GaYInzN井層之多量子井結構的發光層厚度最 籲好爲lOOnm或以上且500nm或以下。 藉由形成裝附於第一或第二m族氮化物半導體層的薄 層作爲阻障層或井層,便可形成發光層的量子井結構。量子 井結構的初始端面層(最下層)可爲阻障層或井層。相似地, 量子井結構的終端層(最上層)可爲阻障層或井層。縱使初 始端面層與終端層的組成物不同,仍不會有問題。包含因未 摻雜而具極佳結晶度之井層及摻有雜質之阻障層的量子井 結構可避免壓電效果造成的負面影響,並可形成具極佳強度 ® 與穩定發光波長的m族氮化物半導體發光裝置。井層或阻障 層可爲諸如 GaNbaPj 0€a< 1)或 AlxGaYlnzNhMj 0SX, Y,ZS1,X+Y+Z = l,Μ代表除了氮以外的V族元素,〇$a < 1 )及 GaYInzN(0SY,ZS1,Y+Z=l)之薄膜。 組成堆疊結構的瓜族氮化物半導體層可藉由諸如金屬 有機化學氣相沈積(MOCVD )、氣相磊晶(VPE )及分子束 磊晶(ΜΒΕ )等氣相成長法進行成長。爲獲得大範圍膜厚的 薄層(由數nm之量子井結構發光層的井層厚至適用於第一 -1 1 - 1281757 丨. 或第二ΠΙ族氮化物半導體層的微米厚度),MOCVD或MBE 法爲適合的。其中,MOVPE法適用於含高揮發性As與P(氮 除外)之ΠΙ族氮化物半導體層的氣相沈積。可使用常壓(基 本上爲大氣壓)或減壓MOCVD法。 在本發明中,因爲用於形成發光裝置堆疊結構的結晶基 板被移除,所以無須使用透光晶體作爲基板。因爲必須移除 原有的基板(用於形成堆疊結構的結晶基板),所以基板最 好由可使用諸如濕式蝕刻或乾式蝕刻(含高頻電漿蝕刻或雷 ^ 射照射法)之鈾刻方法輕易移除的晶體製成。結晶基板的熱 膨脹係數明顯異於堆疊結構的結構層時,有助於使用雷射照 射法進行剝除。 在本發明中,在原有的結晶基板移除後,具機械強度的 板材本體係裝附於堆疊結構最上層,以強化堆疊結構的機械 支撐力。對射自發光層的光爲透明的玻璃板材本體可作爲所 裝附的板材本體。 堆疊層表面或裝附於堆疊層上之板材本體表面的預清 w洗係有助於其接面。例如,爲將板材本體緊密裝附於m族氮 化物半導體層(堆疊層),其係於1 kg/cm2至5 kg/cm2的 外壓下加壓,或加熱至500°C- 1 000 °C的高溫。或者,可採用 溫度、壓力、電壓的施加及陽極接合法。在本狀況中,藉由 在板材本體與發光層間形成可強化二者接面的GaN,A1N, GaAIN或類似物薄層,便得以在未負面影響其特性下裝附其 上。 亦得以在諸如矽樹脂之黏著層形成於堆疊結構表面上 1281757 之後,再裝附板材本體。 爲移除形成堆疊結構的基板,可使用拋光或剝除法。例 如,可使用主要由氧化矽、氧化鋁或鑽石粉組成的拋光粉拋 光藍寶石基板。 雷射照射法適用於剝除形成堆疊結構的結晶基板。脈衝 雷射束、二氧化碳氣體雷射束、準分子雷射束及類似物可作 爲適用於剝離照射的雷射束。其中,使用氟化氬(ArF),氟 化氪(KrF)或類似物作爲激發氣體的準分子雷射束爲較佳。 馨雷射束波長最好爲193nm或248nm。當使用雷射束剝除的結 晶基板很厚時,因爲雷射束容易被吸收,所以無法有效加熱 剝除區域。因此,爲藉由照射雷射束而由堆疊結構有效剝除 結晶基板,結晶基板厚度最好爲1 00-3 00微米。當結晶基板 表面不平整或有裂縫時,雷射束吸收會有變化,而不均勻地 彔[|除結晶基板。 如前所述,在本發明實施例中,將形成堆疊結構的結晶 基板移除以暴露出堆疊結構表面,再將由可穿透來自發光層 ® 之光的材料所製成的板材本體形成於暴露表面上。因此,板 材本體可機械支撐位於其上的堆疊結構,以減少對短波紫外 ' 光的光吸收,而提高發光效率。 得以選用熱膨脹係數同堆疊結構的材料作爲板材本 體。因此,縱使長時間流通電流,堆疊結構中也不會有由熱 應力造成的裂痕。因此,可提高可靠度。 雖然在前揭說明中係完全移除用於形成堆疊結構的結 晶基板並設直板材本體’惟完全移除結晶基板並非必要,且 1281757 可薄化而非移除堆疊結構。 倘若將用於形成堆疊結構的結晶基板進行薄化’則得以 獲得具下列性質的瓜族氮化物半導體發光裝置··可降低穿經 結晶基板之光的吸收,將來自發光層之光透至外部的效率極 佳,以及極佳的靜電阻隔電壓。因此,最好使用透光的11型 或P型導電單晶作爲基板。站立的結晶基板具有機械支撐堆 疊結構於其上及使來自發光層的光穿透其的功能。倘若將站 立的結晶基板薄化,則可增加透光率’而可獲得透光效率極 •佳的m族氮化物半導體發光裝置。然而,倘若將結晶基板薄 化,則結晶基板用於支撐堆疊結構於其上的功能會降低。因 此,站立結晶基板的厚度最好爲1 00-3 00微米’以保持二個 功能。 實例: 本發明將根據玻璃基板裝附於堆疊結構最上層以作爲 板材本體,而形成Π族氮化物半導體發光裝置的狀況作說 明。 Φ 第1圖爲形成於藍寶石基板上之堆疊結構的示意剖面 圖。第2圖爲安裝第1圖所示堆疊結構而獲得之根據本發明 • LED結構的示意剖面圖。第3圖爲LED的平面圖。第4圖 爲藉由安裝LED而形成之LED燈的剖面圖。 首先,如第1圖所示,在900°C藉由普通的減壓M0CVD 法而以種子製程(SP )方式形成約3 5 0微米厚的氮化銘(A1N ) 層101於電絕緣藍寶石基板1〇〇的(000 1 )晶面上。A1N層 101厚度爲5nm。在1 05 0 °C將厚度18nm的GaN緩衝層102 1281757 形成於A1N層101上。 具 〇. 〇 1鋁組成物比例之 η型氮化鋁鎵混合晶體 (AU.oiGao.wN )的η型接觸層103係形成於GaN緩衝層102 上,以使該層中的矽原子濃度變爲lxl018cnT3。接觸層103 得以藉由一般的減壓MOCVD法而在1 〇5〇 °C進行成長。η型 接觸層103的厚度設在約2.5微米。 η型 Alo.wGao.goN的 η型覆層 1〇4堆疊於 η型 Al〇.G1GaG.99N的η型接觸層103上。η型覆層1〇4藉由摻雜 # 而形成,以使該層中的矽原子濃度變爲lxl018cm_3。藉由一 般減壓MOCVD法所形成之η型覆層1〇4的厚度設在約0.5 微米。 含有η型AlxGaYN阻障層與η型GaYInzN井層的η型 發光層1 〇5堆豐於η型Al〇.i〇Ga().9()N的η型覆層1 04上。井 層中的銦組成物比例係經調整,以使波長3 6 0 - 3 7 0 nm的紫外 光可由量子井結構射出。所形成的量子井結構係將井層厚度 設爲約5 n m且阻_層厚度設爲約1 5 n m。When the first m-type nitride semiconductor layer forming the stacked structure is provided on a crystal lattice-matched crystal substrate, a buffer layer for reducing lattice mismatch may be provided. When a GaN-based first m-nitride semiconductor layer is grown on a sapphire substrate, for example, the first m-nitride semiconductor layer is stacked on the substrate surface via a GaN buffer layer provided by a seeding process (SP) technique. (A 1281757· . 2003 -243 3 02 ). Even when the low temperature buffer layer is made of A1N instead of GaN, it is also effective for reducing the lattice mismatch with the substrate. When the buffer layer is A1N, the thickness of the low temperature buffer layer is 1 nm or more and 10 nm or less, 2 nm or more and 50 nm or less is preferable, and 2 nm or more and 5 nm or less is more preferable. The surface of the low temperature buffer layer is preferably flat rather than uneven. For example, in terms of Ra, it is preferable that the surface roughness is 0.1 μm or less, and 0.05 μm or less is preferable. A low temperature buffer layer having a small surface roughness can be obtained by providing a single crystal layer at the interface of the crystallization ® substrate at a low temperature such as 3 5 0 - 45 ° C. Surface roughness can be obtained using a measuring device such as an atomic force microscope (AFM). A low temperature buffer layer with a small roughness plane helps to stack the upper layer with excellent surface flatness. For example, a base layer having a smooth and flat surface and having no uneven portion can be grown on the surface of a GaN low-temperature buffer layer having a minute roughness. A base layer having a flat surface, such as a GaN layer provided on the buffer layer, is provided to provide a first or second conductivity type melon nitride semiconductor layer having a flat surface. If the first lanthanum nitride semiconductor layer is an n-type layer, the second m-type nitride semiconductor layer is a p-type layer of an opposite conductivity type. The thickness of the base layer of the EI-group nitride semiconductor layer which contributes to providing the first or second conductivity type having a flat surface in the state of the GaN layer is 0.5 μm or more and 5 μm or less, preferably 1 Micron or above and 3 microns or less. The first or second group m nitride semiconductor layer having a flat surface can be used as an n-type or p-type cladding layer and is suitable for stacking quantum well structures formed of extremely flat and extremely thin well layers. In addition, it can be an n-type or ρ 1281757* type cladding suitable for forming input and output electrodes with excellent adhesion. An undoped layer in which impurities are not intentionally added may be used as the first or second type of quaternary nitride semiconductor layer. An n-type or p-type quaternary nitride semiconductor layer in which impurities are intentionally added may also be used to control conductivity, carrier concentration, and resistance 値. The first and second quaternary nitride semiconductor layers which are doped with n-type or ytterbium-type impurities such that the atomic concentration in the thin layer becomes ix1〇l8CTn·3 or more and 5×1 019 cm_3 or less is suitable for formation with low A coating of a light-emitting device with a forward voltage and high reliability. Although it is necessary that the first and second bismuth layers of the cladding layer are made of a material having an energy gap larger than that of the luminescent layer material, it is not necessary that the bismuth nitride semiconductor layer is made of the same material. . For example, the n-type cladding layer may be formed of n-type GaYInzN (0'Y, ZS1, Y+Z = 1), and the p-type cladding layer may be formed of p-type AlxGaYN (OSX, YS1, χ + γ = ι). If a first or second conductivity type cladding layer formed of a different lanthanum nitride semiconductor layer is used, a symmetrical light-emitting portion (according to the energy band structure) can be formed. The first and second bismuth nitride semiconductor layers having a high concentration of impurities having a range of atomic concentration and having a low resistivity are effective as a contact layer. A low-resistivity cuban nitride semiconductor layer having a carrier concentration of 1 x x 〇 18 cn 3 or more is particularly useful for forming a low contact resistivity ohmic electrode. Examples of the n-type impurity which can be used to obtain the low-resistivity n-type nitride semiconductor layer are a group IV element such as Si, Ge, and a group VI element such as Se. An example of a p-type impurity is a lanthanum element such as Mg, Be. Preferably, the thickness of the contact layer is equal to or greater than the depth at which the material constituting the ohmic electrode is dispersed or entered. When the ohmic electrode is formed by alloying heat treatment, the thickness is equal to or greater than the depth of the front surface of the alloy. A suitable thickness is 1 〇 n (7) or more. -10- 1281757 is set in the first and second! The light-emitting layer between the bismuth nitride semiconductor layers is gallium indium nitride (GaYInzN: OSY, ZS1, Y+Z=l), gallium phosphide nitride (GaUa: 0^a<1) or AlxGaYInzNbaMa(O^X, Y, ZS1, X + Y + Z = 1, Μ represents a group V element other than nitrogen, 0 S a < 1 ). The luminescent layer can be formed by a single quantum well layer (SQW) or multiple quantum well (MQW) structure. When the well layer of the quantum well structure is GaYInzN, the indium composition ratio (=Z) is adjusted according to the wavelength of the light emitted by the light, and is set to be large when the wavelength of the light becomes large. The thickness of the luminescent layer of the multi-quantum well structure having the GaYInzN well layer is preferably 100 nm or more and 500 nm or less. The quantum well structure of the light-emitting layer can be formed by forming a thin layer attached to the first or second m-type nitride semiconductor layer as a barrier layer or a well layer. The initial end face layer (lowest layer) of the quantum well structure can be a barrier layer or a well layer. Similarly, the termination layer (uppermost layer) of the quantum well structure can be a barrier layer or a well layer. Even if the composition of the initial end face layer and the end layer are different, there is still no problem. A quantum well structure containing well layers with excellent crystallinity due to undoping and a barrier layer with impurities can avoid the negative effects of piezoelectric effects and can form m with excellent intensity® and stable emission wavelength. Group nitride semiconductor light-emitting device. The well layer or barrier layer may be, for example, GaNbaPj 0€a<1) or AlxGaYlnzNhMj 0SX, Y, ZS1, X+Y+Z = l, Μ represents a group V element other than nitrogen, 〇$a < 1) and A film of GaYInzN (0SY, ZS1, Y+Z=l). The melon-based nitride semiconductor layer constituting the stacked structure can be grown by a vapor phase growth method such as metal organic chemical vapor deposition (MOCVD), vapor phase epitaxy (VPE), and molecular beam epitaxy (?). To obtain a thin film with a wide range of film thickness (the thickness of the well layer of the quantum well structure of several nm is thick enough to be applied to the first -1 1 - 1281757 丨. or the thickness of the second bismuth nitride semiconductor layer), MOCVD Or the MBE method is suitable. Among them, the MOVPE method is suitable for vapor deposition of a cerium nitride semiconductor layer containing highly volatile As and P (except nitrogen). Normal pressure (substantially atmospheric pressure) or reduced pressure MOCVD can be used. In the present invention, since the crystalline substrate for forming the light-emitting device stack structure is removed, it is not necessary to use a light-transmitting crystal as the substrate. Since the original substrate (the crystalline substrate used to form the stacked structure) must be removed, the substrate is preferably etched using uranium engraving such as wet etching or dry etching (including high frequency plasma etching or laser irradiation). The method is made of crystals that are easily removed. When the coefficient of thermal expansion of the crystal substrate is significantly different from that of the stacked structure, it facilitates the stripping using a laser irradiation method. In the present invention, after the original crystal substrate is removed, the mechanical strength of the sheet system is attached to the uppermost layer of the stack structure to strengthen the mechanical support force of the stack structure. The glass sheet body which is transparent to the light emitted from the light-emitting layer can be used as the attached sheet body. The pre-cleaning of the surface of the stacked layer or the surface of the body of the sheet attached to the stacked layer facilitates its joining. For example, in order to closely attach the sheet body to the group m nitride semiconductor layer (stack layer), it is pressurized at an external pressure of 1 kg/cm 2 to 5 kg/cm 2 or heated to 500 ° C - 1 000 ° The high temperature of C. Alternatively, temperature, pressure, voltage application and anodic bonding may be employed. In this case, by forming a thin layer of GaN, AlN, GaAIN or the like which can strengthen the junction between the plate body and the light-emitting layer, it can be attached without adversely affecting its characteristics. It is also possible to attach the sheet body after the adhesive layer such as the resin is formed on the surface of the stacked structure 1281757. To remove the substrate forming the stacked structure, polishing or stripping may be used. For example, a polishing powder polishing sapphire substrate mainly composed of cerium oxide, aluminum oxide or diamond powder can be used. The laser irradiation method is suitable for stripping a crystalline substrate forming a stacked structure. Pulsed laser beams, carbon dioxide gas laser beams, excimer laser beams, and the like can be used as laser beams suitable for stripping illumination. Among them, an excimer laser beam using argon fluoride (ArF), krypton fluoride (KrF) or the like as an excitation gas is preferred. The beam wavelength of the sensible laser beam is preferably 193 nm or 248 nm. When the crystal substrate stripped by the laser beam is thick, since the laser beam is easily absorbed, the stripping region cannot be efficiently heated. Therefore, in order to effectively strip the crystal substrate by the stacked structure by irradiating the laser beam, the thickness of the crystal substrate is preferably from 100 to 300 μm. When the surface of the crystal substrate is uneven or cracked, the absorption of the laser beam changes, and the substrate is not uniformly removed. As described above, in the embodiment of the present invention, the crystalline substrate forming the stacked structure is removed to expose the surface of the stacked structure, and the body of the sheet made of a material that can penetrate the light from the light-emitting layer is formed to be exposed. On the surface. Therefore, the sheet body can mechanically support the stacked structure thereon to reduce light absorption of short-wavelength ultraviolet light and improve luminous efficiency. It is possible to select a material having a thermal expansion coefficient and a stacked structure as the body of the sheet. Therefore, even if a current flows for a long time, there is no crack in the stacked structure due to thermal stress. Therefore, reliability can be improved. Although it is described in the foregoing that the crystal substrate for forming the stacked structure is completely removed and the straight plate body is provided, it is not necessary to completely remove the crystal substrate, and the 1281757 can be thinned rather than removed. If the crystal substrate for forming a stacked structure is thinned, a quaternary nitride semiconductor light-emitting device having the following properties can be obtained. · The absorption of light passing through the crystal substrate can be reduced, and the light from the light-emitting layer can be transmitted to the outside. Excellent efficiency and excellent static resistance. Therefore, it is preferable to use a light-transmitting type 11 or P-type conductive single crystal as a substrate. The standing crystalline substrate has a function of mechanically supporting the stacked structure thereon and allowing light from the luminescent layer to penetrate therethrough. When the standing crystal substrate is thinned, the light transmittance can be increased, and an m-group nitride semiconductor light-emitting device having excellent light transmission efficiency can be obtained. However, if the crystal substrate is thinned, the function of the crystal substrate for supporting the stacked structure thereon may be lowered. Therefore, the thickness of the standing crystal substrate is preferably from 100 to 300 μm to maintain two functions. EXAMPLES: The present invention will be described on the basis of the fact that a glass substrate is attached to the uppermost layer of the stacked structure as a sheet body to form a bismuth nitride semiconductor light-emitting device. Φ Fig. 1 is a schematic cross-sectional view showing a stacked structure formed on a sapphire substrate. Fig. 2 is a schematic cross-sectional view showing the structure of the LED according to the present invention obtained by mounting the stacked structure shown in Fig. 1. Figure 3 is a plan view of the LED. Figure 4 is a cross-sectional view of an LED lamp formed by mounting an LED. First, as shown in Fig. 1, a nitrided (A1N) layer 101 of about 350 μm thick is formed in an electrically insulating sapphire substrate by a conventional decompression M0CVD method at 900 ° C in a seed process (SP) manner. 1 〇〇 (000 1 ) crystal plane. The A1N layer 101 has a thickness of 5 nm. A GaN buffer layer 102 1281757 having a thickness of 18 nm was formed on the A1N layer 101 at 1,050 °C. An n-type contact layer 103 of an n-type aluminum gallium nitride mixed crystal (AU.oiGao.wN) having a ratio of 〇1 aluminum composition is formed on the GaN buffer layer 102 to change the concentration of germanium atoms in the layer. For lxl018cnT3. The contact layer 103 can be grown at 1 〇 5 ° ° C by a general decompression MOCVD method. The thickness of the n-type contact layer 103 is set at about 2.5 μm. The n-type cladding layer 〇4 of the n-type Alo.wGao.goN is stacked on the n-type contact layer 103 of the n-type Al〇.G1GaG.99N. The n-type cladding layer 1〇4 is formed by doping # so that the germanium atom concentration in the layer becomes lxl018cm_3. The thickness of the n-type cladding layer 1 4 formed by the general decompression MOCVD method is set at about 0.5 μm. The n-type light-emitting layer 1 〇5 containing the n-type AlxGaYN barrier layer and the n-type GaYInzN well layer is deposited on the n-type cladding layer 104 of the n-type Al〇.i〇Ga().9()N. The proportion of the indium composition in the well layer is adjusted so that ultraviolet light having a wavelength of 3 6 0 - 37 nm can be emitted from the quantum well structure. The resulting quantum well structure has a well layer thickness of about 5 n m and a resist layer thickness of about 15 n m.

鲁 刻意摻入P型鎂雜質並具2.5nm厚度的p型AlxlGaY1N 覆層106係形成於量子井結構發光層1〇5上。薄層1〇6中的 鋁組成物比例(=X1 )設爲約0·10 ( 10% )。摻入鎂,以使 薄層1 0 6中的原子濃度變爲5 X 1 0 18 C m -3。摻有鎂並具較小銘 組成物比例的P型A1 X 2 G a γ 2 N ( X 1 > X 2 - 〇 )接觸層1 〇 7係 形成於P型覆層1 0 6上。接觸層1 〇 7中的鎂原子濃度設爲約 2x 1019cm-3。 藉由一般高頻濺鑛法將鉑薄膜形成於p型接觸層1 〇 7表 1281757. 歐姆電極膜上設有 構發光層1 〇 5反射 Rh )塗佈膜形成。 刻進行蝕刻,且由 於薄層103的蝕刻 I外層爲金(Au )。 上,且由藍寶石基 係爲前置步驟所形 其上之藍寶石基板 徑〇 . 5微米的微細 1 3 0- 1 5 0微米。藉 :210士 10 微米。 水溶性黏膠將玻璃 诗強化堆疊結構1 1 薄化拋光之藍寶石 與GaN緩衝層102 I堆疊結構11間的 緩衝層102的部位 面上,以作爲p型歐姆電極膜1 〇 8。p型 金屬反射膜1 09,用於將光由多量子井結 至結晶基板1 0 0。金屬反射膜1 0 9由錢( η型接觸層1 03覆有遮罩並以乾式蝕 Cr-Ti-Au形成的η型歐姆電極1 13係形成 表面上(第3圖)型歐姆電極113的f 接面金膜1 10形成於金屬反射膜109 板1〇〇至金屬反射膜109的堆疊結構11 β成。 其次,硏磨機械支撐堆疊結構1 1於 1 00的背面。使用膠質氧化矽(含平均粒 氧化矽微粒)拋光藍寶石基板1 0 0的背面 由拋光可將藍寶石基板100的厚度薄化至 在硏磨藍寶石基板1 00背面後,使用 板裝附於正對的金屬反射膜1 09上,以暫丨 的機械支撐力。 ® 波長248nm的準分子雷射束係由經 基板100的表面而照射於藍寶石基板100 "間的接面。藉此得利用藍寶石基板1 00與 熱膨脹係數差,而由A1N層101與GaN 剝除經拋光與薄化的藍寶石基板1 00。 可利用約3 70nm紫外光發出RGB三色的螢光玻璃板係 使用陽極接合法接合於表面上,以作爲板材本體1 1 1。使用 3 40V電壓與約3 00 °C溫度(相當低溫)的陽極接合法得有效 1281757 接合二者。使用旋塗法作爲塗佈螢光材料的方法,以施加該 材料於玻璃板表面上。用於塗佈微粒(1 〇nm或更小的微粒) 於玻璃板上的另一個方法爲利用溶膠凝膠法。藉此得以避免 微粒凝結,而製造具極佳特性的表面。 其次,移除暫設於堆疊結構1 1之金屬反射膜1 0 9表面 上的玻璃板,並清洗電極表面,而完成LED晶圓。 其次,利用一般的雷射切割法在半導體周邊形成切割溝 槽或切割裝置。使用一般的擊壓機施加機械壓力於溝槽,以 ® 將裝置分割成平面圖爲正方形並具約3 5 0微米邊長的m族氮 化物半導體發光裝置(晶片)12 (以下稱爲“LED 12”)。藉 此完成pn接面型DH結構的II族氮化物半導體白光LED 1 2 (第2與3圖);其中該pn接面型DH結構已將藍寶石基 板1 00移除,並將堆疊結構1 1機械支撐於裝附在堆疊結構 1 1之板材本體U 1的螢光玻璃板上。 因爲LED 12的整個表面形成有使用所裝附板材本體 1 1 1的裝置,所以可形成具極佳色彩表現的高亮度白光LED _裝置。 其次,使用LED 12形成LED燈1〇。設於LED 12正面 的P型歐姆電極108(金屬反射膜109,金膜110)及η型歐 姆電極1 1 3 (堆疊結構1 1 )係安裝於形成在矽次載具23上 的金球凸塊2 1上方,如第4圖所示。形成可在ρ型歐姆電 極108 (金屬反射膜1〇9,金膜1 10 )及η型歐姆電極1 13 間流動裝置驅動電流的電路。 ρ型歐姆電極1〇8(金屬反射膜109,金膜110)及η型 -17- 1281757 歐姆電極1 1 3表面具有金膜。因此,其可輕易地接合。其次, 使用含抑制劑的環氧樹脂2 2密封裝置,以避免紫外光造成 劣化,而完成發光二極體(LED )燈1 〇。 當裝置驅動電流得在正向上於η型歐姆電極1 1 3及p型 歐姆電極1 0 8 (金屬反射膜1 0 9,金膜1 1 〇 )間流動時,其可 均勻散佈於發光層105的大範圍區域上。當流通20mA的裝 置驅動電流而由LED 12發出光時,具約370nm波長之紫光 外的發光輸出達約20流明/瓦特(lm/W)。當20mA的正向電 0 流流通時,正向電壓Vf低達約3.4 V。 移除用於提供堆疊結構11的藍寶石基板1 〇 〇,以暴露出 由可透出發光層1 05之光的材料製成之板材本體i i〗形成於 其上的堆疊結構表面。因此,得以降低短波長紫外光的光吸 收而提供發光效率,且堆疊結構機械支撐於板材本體1 1 1上。 驅動電流可均勻散饰於發光層1 0 5的大範圍區域上而加 寬發光區,以提供具強發光輸出的LED。 可選擇熱膨脹係數同堆疊結構1 1的材料作爲板材本體 馨 1 1 1。因此,縱使長時間流通電流,堆疊結構11中也不會有 由熱應力造成的裂痕’因而提筒裝置可靠度。 在LED 1 2中,因爲板材本體1 1 1由折射係數1 . 5的玻 璃形成,所以可提高透光效率。因此,可形成具極佳發光特 性的裝置。亦即,板材本體1 1 1的折射係數1 . 5位於GaN與 環氧樹脂(堆疊結構1 1主材料)的折射係數之間。因爲板 材本體1 1 1與GaN (堆疊結構1 1 )間之界面及板材本體1 1 1 與環氧樹脂22間之界面的反射減少,因而可提高透光效率。 -18- 1281757 倘若使用具本發明結構的LED 1 2,則得以根據諸如透 光效率、多色發光特性及靜電對策等不同特性選用適當材 料,以完成發光裝置。在LED燈10中,因爲其表面覆有極 耐紫外光的螢光玻璃,所以可獲得較少樹脂劣化的可靠燈 具。 【圖式簡單說明】 第1圖爲形成於藍寶石基板上之堆疊結構的示意剖面 圖。 # 第2圖爲安裝第1圖所示堆疊結構而獲得之根據本發明 LED結構的示意剖面圖。 第3圖爲LED的平面圖。 第4圖爲藉由安裝LED而形成之LED燈的剖面圖。 【元件符號說明】 10 LED燈 11 堆疊結構 12 LED 2 1 金球凸塊 22 環氧樹脂 23 矽次載具 100 基板 10 1 A1N層 102 GaN緩衝層 103 η型接觸層 104 η型覆層 1281757 1 05 106 1 07 108 109 110 111 113 量子井結構發光層 P 型 AlxiGaYiN 覆層 P型接觸層 P型歐姆電極膜 金屬反射膜 金膜 板材本體 η型歐姆電極膜A p-type AlxlGaY1N cladding layer 106 intentionally doped with P-type magnesium impurities and having a thickness of 2.5 nm is formed on the quantum well structure light-emitting layer 1〇5. The proportion of the aluminum composition (=X1) in the thin layer 1〇6 was set to be about 0·10 (10%). Magnesium is doped so that the atomic concentration in the thin layer 106 becomes 5 X 1 0 18 C m -3 . A P-type A1 X 2 G a γ 2 N (X 1 > X 2 - 〇 ) contact layer 1 〇 7 series doped with magnesium and having a smaller composition ratio is formed on the P-type cladding layer 106. The concentration of magnesium atoms in the contact layer 1 〇 7 was set to be about 2 x 1019 cm-3. A platinum film is formed on the p-type contact layer by a general high-frequency sputtering method. 表 7 Table 1281757. The ohmic electrode film is provided with a luminescent layer 1 〇 5 reflection Rh) a coating film is formed. Etching is performed, and due to the etching of the thin layer 103, the outer layer is gold (Au). The sapphire substrate is the sapphire substrate on which the sapphire substrate is formed by the pre-step. 5 micron fine 1 3 0-150 μm. Borrow: 210 ± 10 microns. The water-soluble adhesive layer is used as a p-type ohmic electrode film 1 〇 8 on the surface of the buffer layer 102 between the thinned polished sapphire and the GaN buffer layer 102 I stacked structure 11 . A p-type metal reflective film 109 is used to bond light from a multiple quantum well to a crystalline substrate 100. The metal reflective film 109 is formed of money (the n-type contact layer 101 is covered with a mask and the n-type ohmic electrode 1 13 formed by dry etching Cr-Ti-Au is formed on the surface (Fig. 3) type ohmic electrode 113). f The junction gold film 1 10 is formed in the stack structure 11 of the metal reflection film 109 from the plate 1 to the metal reflection film 109. Next, the honing mechanical support stack structure 1 1 is on the back side of 100. Using colloidal yttrium oxide ( The back surface of the polished sapphire substrate 100 containing the average granule cerium oxide microparticles is polished to thin the thickness of the sapphire substrate 100 to the back side of the sapphire substrate 100, and is attached to the opposite metal reflective film using a plate. Above, the mechanical support force is temporarily suspended. ® The excimer laser beam with a wavelength of 248 nm is irradiated on the interface between the sapphire substrate 100 " via the surface of the substrate 100. Thereby, the sapphire substrate 100 and the thermal expansion coefficient are utilized. Poor, and the polished and thinned sapphire substrate 100 is stripped from the A1N layer 101 and GaN. The RGB three-color fluorescent glass plate can be used to bond the surface to the surface by anodic bonding using about 3 70 nm ultraviolet light. Plate body 1 1 1. Use 3 40V voltage The anodic bonding method with a temperature of about 300 ° C (relatively low temperature) is effective to bond both 1281757. A spin coating method is used as a method of coating a fluorescent material to apply the material on the surface of the glass plate. Another method of (1 〇 nm or smaller particles) on a glass plate is to use a sol-gel method, thereby avoiding the coagulation of particles, and to produce a surface having excellent characteristics. Secondly, the removal is temporarily placed on the stacked structure. 1 1 metal reflective film 1 0 9 glass plate on the surface, and clean the electrode surface to complete the LED wafer. Secondly, use the general laser cutting method to form a cutting groove or cutting device around the semiconductor. Use the general blow The press applies mechanical pressure to the grooves to divide the device into a group m nitride semiconductor light-emitting device (wafer) 12 (hereinafter referred to as "LED 12") having a square plan view and having a side length of about 350 μm. This completes the pn junction type DH structure of the group II nitride semiconductor white LED 1 2 (Figs. 2 and 3); wherein the pn junction type DH structure has removed the sapphire substrate 100 and the stacked structure 1 1 mechanical Support attached to The fluorescent glass plate of the plate body U 1 of the stacked structure 1 1. Since the entire surface of the LED 12 is formed with a device using the attached plate body 1 1 1 , a high-brightness white LED with excellent color performance can be formed _ Next, an LED lamp 1 is formed using the LED 12. The P-type ohmic electrode 108 (metal reflective film 109, gold film 110) and the n-type ohmic electrode 1 1 3 (stacked structure 1 1 ) provided on the front surface of the LED 12 are mounted. Above the gold ball bump 2 1 formed on the defective carrier 23, as shown in FIG. A circuit is formed which can drive a current between the p-type ohmic electrode 108 (the metal reflective film 1〇9, the gold film 1 10 ) and the n-type ohmic electrode 1 13 . The p-type ohmic electrode 1〇8 (metal reflective film 109, gold film 110) and the n-type -17-1281757 ohmic electrode 1 1 3 have a gold film on the surface. Therefore, it can be easily joined. Next, the device was sealed with an epoxy resin containing an inhibitor to avoid deterioration of the ultraviolet light, and the light-emitting diode (LED) lamp was completed. When the device driving current flows between the n-type ohmic electrode 1 1 3 and the p-type ohmic electrode 1 0 8 (metal reflective film 1 0 9 , gold film 1 1 〇) in the forward direction, it can be uniformly dispersed in the light-emitting layer 105. On a large area. When a 20 mA device is driven to drive current and the LED 12 emits light, the illuminating output with a wavelength of about 370 nm is about 20 lumens per watt (lm/W). When the forward current of 20 mA flows, the forward voltage Vf is as low as about 3.4 V. The sapphire substrate 1 用于 用于 for providing the stacked structure 11 is removed to expose the surface of the stacked structure on which the sheet body i i made of the material permeable to the light of the luminescent layer 105 is formed. Therefore, the light absorption of the short-wavelength ultraviolet light can be reduced to provide the luminous efficiency, and the stacked structure is mechanically supported on the sheet body 11 1 . The driving current can be uniformly dispersed over a wide area of the light-emitting layer 105 to widen the light-emitting area to provide an LED with a strong light-emitting output. The material having the coefficient of thermal expansion and the structure of the stacked structure 1 1 can be selected as the body of the sheet. Therefore, even if a current flows for a long time, there is no crack in the stacked structure 11 due to thermal stress, and thus the reliability of the lifting device is improved. In the LED 12, since the sheet body 11 1 is formed of glass having a refractive index of 1.5, the light transmission efficiency can be improved. Therefore, a device having excellent light-emitting characteristics can be formed. That is, the refractive index of the sheet body 11 1 is 1.5 between the refractive index of GaN and the epoxy resin (the main material of the stacked structure 1 1). Since the interface between the sheet body 1 1 1 and GaN (stacked structure 1 1 ) and the reflection between the interface between the sheet body 1 1 1 and the epoxy resin 22 are reduced, the light transmission efficiency can be improved. -18- 1281757 If an LED 1 2 having the structure of the present invention is used, an appropriate material can be selected in accordance with various characteristics such as light transmission efficiency, multicolor light-emitting characteristics, and electrostatic countermeasures to complete the light-emitting device. In the LED lamp 10, since the surface thereof is covered with a fluorescent glass which is extremely resistant to ultraviolet light, a reliable lamp which is less deteriorated in resin can be obtained. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a stacked structure formed on a sapphire substrate. #图图图 2 is a schematic cross-sectional view of the LED structure according to the present invention obtained by mounting the stacked structure shown in Fig. 1. Figure 3 is a plan view of the LED. Figure 4 is a cross-sectional view of an LED lamp formed by mounting an LED. [Component Symbol Description] 10 LED Lamp 11 Stack Structure 12 LED 2 1 Gold Ball Bump 22 Epoxy Resin 23 载 Substrate 100 Substrate 10 1 A1N Layer 102 GaN Buffer Layer 103 n-type Contact Layer 104 n-type Coating 1281757 1 05 106 1 07 108 109 110 111 113 Quantum well structure light-emitting layer P-type AlxiGaYiN cladding P-type contact layer P-type ohmic electrode film metal reflective film gold film sheet body n-type ohmic electrode film

-20-20

Claims (1)

f 1281757 s 第941 08 1 28號「HI族氮化物半導體發光裝置及其製法」專利案 (2006年5月3日修正) 十、申請專利範圍: 1.一種ΠΙ族氮化物半導體發光裝置,其包含有: 至少一個堆疊結構,包括具有不同導電型的二個ΠΙ族 氮化物半導體層,與堆疊於二個ΙΠ族氮化物半導體層間並 含有m族氮化物半導體的發光層;f 1281757 s 941 08 1 28 "HI Group nitride semiconductor light-emitting device and its manufacturing method" patent case (amended on May 3, 2006) X. Patent application scope: 1. A bismuth nitride semiconductor light-emitting device, The method comprises: at least one stacked structure comprising two ΠΙ-type nitride semiconductor layers having different conductivity types, and a luminescent layer stacked between the two lanthanide nitride semiconductor layers and containing the m-type nitride semiconductor; 結晶基板,用於設置堆疊結構於其上,並由堆疊結構 移除;以及 板材本體,其由來自發光層的光可穿透的透明材料所 形成,並形成於結晶基板移除後所暴露出的堆疊結構表 面上; 其中來自發光層的光係由板材本體透出。 2·如申請專利範圍第1項的瓜族氮化物半導體發光裝置,其 中該板材本體由玻璃形成。 3 ·如申請專利範圍第1項的m族氮化物半導體發光裝置, 其中該結晶基板係藉由照射於堆疊結構與結晶基板間之 接面的雷射束而進行移除。 4 ·如申請專利範圍第1至3項中任一項的瓜族氮化物半導體 發光裝置,其另包含有設於板材本體正對側之堆疊結構 表面上的歐姆電極。 5 ·如申請專利範圍第4項的π[族氮化物半導體發光裝置,其 中該歐姆電極的正面設有金屬反射膜。 6 ·如申請專利範圍第5項的瓜族氮化物半導體發光裝置,其 「1281757‘ 中該金屬反射膜的正面設有金膜。 7. —種Π族氮化物半導體發光裝置的製法,包含的步驟有: 提供堆疊結構於結晶基板上,該堆疊結構具有不同導 電型的二個m族氮化物半導體層,與堆疊於二個瓜族氮化 物半導體層間並含有瓜族氮化物半導體的發光層;a crystalline substrate on which the stacked structure is disposed and removed by the stacked structure; and a plate body formed of a light transmissive transparent material from the light emitting layer and formed to be exposed after removal of the crystalline substrate On the surface of the stacked structure; wherein the light from the luminescent layer is permeable from the body of the sheet. 2. The cuban nitride semiconductor light-emitting device of claim 1, wherein the plate body is formed of glass. 3. The group m nitride semiconductor light-emitting device according to claim 1, wherein the crystal substrate is removed by irradiating a laser beam on a junction between the stacked structure and the crystal substrate. The cuban nitride semiconductor light-emitting device according to any one of claims 1 to 3, further comprising an ohmic electrode provided on a surface of the stacked structure on the opposite side of the sheet body. 5. The π [group nitride semiconductor light-emitting device of claim 4, wherein a metal reflective film is provided on a front surface of the ohmic electrode. 6. The cuban nitride semiconductor light-emitting device of claim 5, wherein a metal film is provided on the front surface of the metal reflective film in "1281757". 7. A method for producing a bismuth nitride semiconductor light-emitting device, comprising The steps include: providing a stacked structure on the crystalline substrate, the stacked structure having two m-type nitride semiconductor layers of different conductivity types, and a light-emitting layer stacked between the two quaternary nitride semiconductor layers and containing a quaternary nitride semiconductor; 由堆疊結構移除結晶基板,以暴露出堆疊結構表面; 形成板材本體於堆疊結構的暴露表面上,該板材本體 由來自發光層的光可穿透的透明材料所形成;以及 將來自發光層的光由板材本體透出。 8. —種LED燈,其設有如申請專利範圍第〗至6項中任一 項的ΠΙ族氮化物半導體發光裝置。 9. 如申請專利範圍第8項的LED燈,其更包含有主要由石夕 形成的次載具,ΠΙ族氮化物半導體發光裝置係以覆晶(flip) 方式安裝於其上。Removing the crystalline substrate from the stacked structure to expose the surface of the stacked structure; forming the plate body on the exposed surface of the stacked structure, the plate body being formed of a light transmissive transparent material from the light emitting layer; and from the light emitting layer Light is transmitted through the body of the sheet. 8. An LED lamp provided with a bismuth nitride semiconductor light-emitting device according to any one of claims 1-6 to 6. 9. The LED lamp of claim 8, further comprising a sub-carrier formed mainly by Shi Xi, the lanthanide nitride semiconductor light-emitting device being mounted thereon in a flip-chip manner. -2--2-
TW94108128A 2004-03-18 2005-03-17 Group III nitride semiconductor light-emitting device and producing method thereof TWI281757B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078153 2004-03-18

Publications (2)

Publication Number Publication Date
TW200536159A TW200536159A (en) 2005-11-01
TWI281757B true TWI281757B (en) 2007-05-21

Family

ID=38751645

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94108128A TWI281757B (en) 2004-03-18 2005-03-17 Group III nitride semiconductor light-emitting device and producing method thereof

Country Status (1)

Country Link
TW (1) TWI281757B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726807B1 (en) 2010-11-01 2017-04-14 삼성전자주식회사 Light Emitting Device
TWI483431B (en) * 2011-04-01 2015-05-01 Huga Optotech Inc Semiconductor light-emitting structure
JP6727186B2 (en) * 2017-12-28 2020-07-22 日機装株式会社 Nitride semiconductor device manufacturing method

Also Published As

Publication number Publication date
TW200536159A (en) 2005-11-01

Similar Documents

Publication Publication Date Title
US10553744B2 (en) Diode having high brightness and method thereof
TWI287880B (en) Group III nitride semiconductor light-emitting device and method of producing the same
US9406837B2 (en) Method of making diode having reflective layer
KR100909739B1 (en) Nitride semiconductor device having opposed terminal structure
TWI377697B (en) Method for growing a nitride-based iii-v group compound semiconductor
TWI284431B (en) Thin gallium nitride light emitting diode device
US20090140279A1 (en) Substrate-free light emitting diode chip
JP4843235B2 (en) Group III nitride semiconductor light emitting device manufacturing method
JP2006521984A (en) Method for fabricating a group III nitride device and the device so fabricated
WO2009099187A1 (en) Compound semiconductor light-emitting diode
JP2002158373A (en) Light emitting diode and method of manufacturing the same
TWI523258B (en) Iii-v light emitting device with thin n-type region
JP2014068042A (en) Semiconductor light-emitting element, semiconductor light-emitting device, method for manufacturing semiconductor light-emitting element, and method for manufacturing semiconductor light-emitting device
EP2346096A1 (en) Semiconductor light-emitting element, manufacturing method, and light-emitting device
TW201133938A (en) Semiconductor light emitting device with curvature control layer
KR100774198B1 (en) LED having vertical structure
WO2005088738A1 (en) Group iii nitride semiconductor light-emitting device, forming method thereof, lamp and light source using same
WO2021035676A1 (en) Ultra-thin structure deep ultraviolet led and manufacturing method therefor
JPH02290084A (en) Silicon carbide light emitting diode device and manufacture of silicon carbide single crystal
TWI281757B (en) Group III nitride semiconductor light-emitting device and producing method thereof
TW200539481A (en) Group Ⅲ nitride semiconductor light-emitting device, forming method thereof, lamp and light source using same
JP4543621B2 (en) Nitride semiconductor device and method for manufacturing nitride semiconductor device
JP4918245B2 (en) Light emitting diode and manufacturing method thereof
CN101604721B (en) High-efficiency (B,Al,Ga,In)N group light-emitting diode by surface roughness treatment
WO2005091390A1 (en) Group iii nitride semiconductor light-emitting device and producing method thereof