TWI296858B - Back-contact solar cells and methods for fabrication - Google Patents

Back-contact solar cells and methods for fabrication Download PDF

Info

Publication number
TWI296858B
TWI296858B TW94103580A TW94103580A TWI296858B TW I296858 B TWI296858 B TW I296858B TW 94103580 A TW94103580 A TW 94103580A TW 94103580 A TW94103580 A TW 94103580A TW I296858 B TWI296858 B TW I296858B
Authority
TW
Taiwan
Prior art keywords
dopant
pattern
wafer
diffusion
back surface
Prior art date
Application number
TW94103580A
Other languages
Chinese (zh)
Other versions
TW200531298A (en
Inventor
M Gee James
Hacke Peter
Original Assignee
Advent Solar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advent Solar Inc filed Critical Advent Solar Inc
Publication of TW200531298A publication Critical patent/TW200531298A/en
Application granted granted Critical
Publication of TWI296858B publication Critical patent/TWI296858B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

1296858 • 五、中文發明摘要: 製造射體全裹覆(EWT)背面接點式太陽能電池的方法和以這樣方 法製成的電池。有-些方法在傳導通道處提供了和前表面或後表 面上摻雜物平均濃度相比為較高濃度的摻雜物,而使提供的效率 增加。有一些方法對於孔洞提供選擇性摻配為利用轉印^摻 $料形成料通道。其他方法職供使用包含摻雜物質的旋塗玻 璃基板。 • 六、英文發明摘要: 七、指定代表圖: (一) 本案指定代表圖為:第(3Α )圖。 (二) 本代表圖之元件符號簡單說明: 12· · · ·平面矽晶圓 32----糊料 34· ···硼-擴散源糊料 _ 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式·· 九、發明說明: 【發明所屬之技術領域】 相關申請案以”射體全裹覆背面接點式矽太陽能電池之接點 ‘造法(Contact Fabrication of Emitter Wrap-Through Back1296858 • V. Abstract of Chinese Invention: A method of manufacturing a full-coverage (EWT) back contact type solar cell and a battery fabricated in such a manner. Some methods provide a higher concentration of dopant at the conduction path compared to the average concentration of dopants on the front or back surface, which increases the efficiency provided. There are a number of ways to provide selective doping of the pores to form a feed channel using the transfer. Other methods are used to spin-coated glass substrates containing dopants. • VI. Abstracts of English Inventions: VII. Designation of Representative Representatives: (1) The representative representative of the case is: (3Α). (2) A brief description of the symbol of the representative figure: 12· · · · Plane wafer 34 - paste 34 · · · · Boron - diffusion source paste _ VIII, if there is a chemical formula in this case, please reveal The chemical formula that best shows the characteristics of the invention. IX. Description of the invention: [Technical field to which the invention pertains] The related application is a "contact fabrication of Emitter Wrap" -Through Back

Contact Silicon Solar Cells) ”為名,彼得哈克與詹姆斯 吉(Peter Hacke and James Μ· Gee)所作,見於美國公用專 3 1296858 -利申請法定代理人事項表編號(U.S· Utility PatentContact Silicon Solar Cells"", by Peter Hacke and James Μ Gee, in the United States Public Service 3 1296858 - Application for Legal Agent Matter Number (U.S. Utility Patent

Application Attorney Docket No·) 31474-1005-UT者,和 以’’具有自行-摻配的接點之埋入接點式太陽能電池 (Buried-Contact Solar Cells With Self-Doping Contacts) n為名,詹姆斯吉與彼得哈克(james M. Gee and Peter Hacke) 所作,見於美國公用專利申請法定代理人事項表編號(u s· Utility Patent Application Attorney Docket No.) # 者,係同時與本發明申請建檔於此,而其詳述 項目包含於此提供參考。 本申請案聲請美國專利臨時申請序號60/542,390以”背面接 點式石夕太陽能電池之製造(Fabrication of Back-Contact • Silicon s〇iar Cells) f’為名,建檔於2004年2月5日者,以 、 及美國專利臨時申請序號60/542, 454以’,利用自行-摻配的 接點製造埋入接點式太陽能電池之程序(pr〇cess f〇r φ Fabrication of Buried-Contact Cells Using Self-DopingApplication Attorney Docket No.) 31474-1005-UT, and the name "Buried-Contact Solar Cells With Self-Doping Contacts" n, James J. M. Gee and Peter Hacke, found in the U.S. Patent Application Attorney Docket No. (#), which is filed with the application of the present invention. This, and its detailed project is included here for reference. This application is filed in the US Patent Provisional Application No. 60/542,390 under the name "Fabrication of Back-Contact • Silicon s〇iar Cells f", filed on February 5, 2004. Japanese, Japanese, and U.S. Patent Provisional Application Serial No. 60/542, 454, the use of self-mixed contacts to manufacture a buried contact solar cell (pr〇cess f〇r φ Fabrication of Buried-Contact) Cells Using Self-Doping

Contacts) ’’為名,建檔於2004年2月5日者,之優先權利,而 其詳述項目包含於此提供參考。 本發明涉及製作背面接點式太陽能電池的方法,而特別是具 有傳導通道的射體全裹覆(EWT)太陽能電池,以及由此等方法 製成的太陽能電池。 【先前技術】 4 1296858 請注意以下之討論提到-些闕作者和年份的歧刊物。在 此對該等出版刊物的討論係為提供更完整背景資料,而非為 了專利核准目的而解釋為將該等歧物發表事項視為過往的 技術。 現今廣泛使财社雜電池其設⑽具有—種p/n接面成 形於前表©(触絲之表面)_,胁電池魏光能時產 生電子流。普通常見的電池設計在其前侧具有一組電氣接 點’而第二組電氣接關位在該太陽能電池後側面。在一種 典型的光電模組裡,這些_的太陽能電池以㈣方式互相 作電氣連接以增加電壓。此—連接通f係藉錫辉法將一條傳 導帶由某-太陽能電池前側焊至相鄰太陽能電池的後側而 ^傳統教陽能電池相比較,f面接點切太陽能電池具有 產些優點。帛—€晴_输嫌高的轉換效 屮的t係秘~低七肖除了接點賴的損失(由接點格柵反射 ==物峨力)。第:__面接點式電池 極性接^路味容# ’也因此比較便宜,這是因為二個 池電二於二光電模組和太陽能電 背面接點她=完成,㈣靖咖節省效果。 ^喊—優點是能提供較均勻的外表而有較佳 1296858 ,的美學效果。美學考慮對某些應用例而言很重要,例如建築 物-整體光電系統和汽車用光電活動車頂蓋等。 圖1提供一般的背面接點式太陽能電池1〇之概示圖。圖中的矽 質基板12可能是η-導電型式或p-導電型式。在某些設計裡, 受濃密摻配的射體之一,例如pH摻配之射體18或n++摻配之 射體16,可能會被省略。或者在其他設計裡,受濃密摻配的 射體16、18可能在後表面上直接互相接觸。後-表面鈍化層14 φ 則有助於減少後表面上光產載體的損失,並且幫助減少金屬 接點20之間未受摻配的表面上之分電流造成的電氣損失。 衣作月面接點式砍太陽能電池有一些方法。這些方法包括金 屬繞覆(MWA)、金屬全裹覆(MWT)、射體全裹覆(EWT),以及背 侧-接面結構等。MWA和MWT在其前表面具有電流收集金屬格 w 柵。這些格栅,各別地,被以纏繞於側邊或將孔洞全裹覆方 式覆盍至背側表面而製作成背面接點式電池。與及刚^電 # 池相比,EWT電池的獨特部分係其於前側並無金屬物質覆蓋, 其意謂著沒有任何照射至電池的光線被阻擋,因而導致較高 的效率。EWT電池將電流收集接面(”射體”)由前表面裹覆至後 表面,其間則通過石夕晶圓内已受摻配的傳導通道。,,射體,,和 一種半導體裝置内受濃密摻配的區域有關連。產生這樣的傳 導通道可以藉由,譬如說,利用雷射方式在石夕質基板上鑽孔 緊接著在孔洞内側形成射體並同時在前與後表面形成射體。 6 1296858 • 侧—接赋電酬在該太陽能電蘭後表社$時擁有負 極性與正極性的電流收集接面。因為大部份光線都被吸收—也 口此大夕數載體疋光引起的—於前表面附近,背側—接面式電 池要求的材料品質非常高以便使載體有足夠_從前表面擴 散到後表面和後表面上的電流收集接面在一起。相較之下, EWT電池將電流收集接面保留於前表面上,正是高電流收集效 率的優點所在。EWT電池公佈揭示於美國專利號碼 參 5, 468, 652,製作一種背面接點式太陽能電池的方法(Method of Making A Back Contacted Solar Cell),專利權歸屬於 詹姆斯吉(James Μ· Gee)者,其完整内容包含於此。各種不 同背面接點式電池之設計也已在許多技術刊物上討論到。 • 除了美國專利5,備,652之外,另有兩個以詹姆斯吉先生(Gee) 、 為共同發明人的美國專利,其公佈揭示了利用背面接點式太 陽能電池的模組組合與疊層方法;其為美國專利號碼 • 5,951,786,使用背面接點式太陽能電池之疊層光電模組 (Laminated Photovoltaic Modules Using Back-ContactContacts) ’’, the priority rights filed on February 5, 2004, and the detailed items are included here for reference. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method of fabricating a back contact type solar cell, and more particularly to an emitter full envelope (EWT) solar cell having a conductive via, and a solar cell fabricated therefrom. [Prior Art] 4 1296858 Please note that the following discussion refers to some of the authors and the year's publications. The discussion of these publications here is intended to provide a more complete background and not to be interpreted as a prior art for the purposes of patent approval. Nowadays, it is widely used to make a miscellaneous battery (10) with a p/n junction formed in the front table © (surface of the contact wire) _, which generates electron flow when the battery is light. A common battery design has a set of electrical contacts on its front side and a second set of electrical contacts on the back side of the solar cell. In a typical photovoltaic module, these solar cells are electrically connected to each other in a (four) manner to increase the voltage. This-connected f-based method uses a tin-light method to weld a conduction belt from the front side of a solar cell to the rear side of an adjacent solar cell. Compared with a conventional solar cell, the f-side contact solar cell has advantages.帛 € € _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The first: __ face contact type battery polarity connection ^ taste taste # ‘ is also relatively cheap, this is because two pool electricity two to two photovoltaic modules and solar power back contact her = completed, (four) Jing coffee saves the effect. ^ Shouting - the advantage is that it can provide a more uniform appearance with a better aesthetic effect of 1296858. Aesthetic considerations are important for certain applications, such as building-total photovoltaic systems and automotive roof covers for automobiles. Figure 1 provides an overview of a typical back contact solar cell. The enamel substrate 12 in the figure may be of an η-conductive type or a p-conductive type. In some designs, one of the densely blended shots, such as pH blended shot 18 or n++ blended shot 16, may be omitted. Or in other designs, the densely blended shots 16, 18 may be in direct contact with one another on the back surface. The back-surface passivation layer 14 φ helps to reduce the loss of the photo-generated carrier on the back surface and helps reduce the electrical losses caused by the current splitting on the undoped surface between the metal contacts 20. There are some ways to cut solar cells for moon-to-surface contact. These methods include metal wrap (MWA), full metal cladding (MWT), full body cladding (EWT), and backside-junction structures. MWA and MWT have current collecting metal grids on their front surfaces. These grids are individually formed as a back contact type battery by being wound around the side or by completely covering the holes to the back side surface. The unique part of the EWT battery is that it has no metal covering on the front side compared to the just-powered #cell, which means that no light that is incident on the battery is blocked, resulting in higher efficiency. The EWT battery wraps the current collecting junction ("projector") from the front surface to the back surface, passing through the conductive channels that have been blended in the Shihua wafer. , the emitter, and the semiconductor device are associated with a densely blended region. Such a guiding passage can be produced by, for example, drilling a hole on a stone substrate by means of a laser, and then forming an emitter inside the hole while forming an emitter on the front and rear surfaces. 6 1296858 • The side-connected remuneration has a negative polarity and positive polarity current collecting junction at the time of the solar power. Because most of the light is absorbed - also caused by the dawn of the carrier - near the front surface, the back side - junction battery requires a very high material quality so that the carrier has enough _ diffused from the front surface to the back The current collecting junctions on the surface and the back surface are together. In contrast, EWT batteries retain the current collecting junction on the front surface, which is the advantage of high current collection efficiency. The EWT battery publication is disclosed in US Patent No. 5, 468, 652, Method of Making A Back Contacted Solar Cell, and the patent belongs to James Μ Gee. Its full content is included here. The design of various backside contact cells has also been discussed in many technical publications. • In addition to US Patent 5, Preparation, 652, and two other US patents by Gee, the co-inventor, the publication reveals module combinations and stacks using back-contact solar cells. Method; it is US Patent No. 5,951,786, Laminated Photovoltaic Modules Using Back-Contact

Solar Cells),以及美國專利號碼5, 972,732,單塊整體模組 組合之方法(Method of Monolithic Module Assembly)。該 二專利所公佈揭示的方法與相關事項可能和本發明於此所公 佈揭示者一起被用上,因而包含於此猶如全部提到以供參 考。美國專利號碼6, 384, 316,太陽能電池及其製作程序 7 乂 ar Cell and Process of Manufacturing the Same), a佈揭不另-種★面接點式電池設計,但是侧用脈,其中 的孔洞或通這之間_對比較遠,而且於其前表面具有金屬 接點以幫助傳導電流到達後表面,還有其中的孔洞係與金屬 對背成一直線。 在某些情況下,具有以氣體摻雜物擴散之通道的EWT電池會顯 現出與通這傳_相關聯的高串聯電阻。見於[j.M•吉、Μ·Ε· 巴克、W· Κ·舒伯特,和ρ· Α·巴索等人,射體全裹覆發太陽能 電池之進展,發表於第12屆歐洲光電太陽能研討會,阿姆斯 特丹,荷蘭,1994年4月(J· Μ· Gee, Μ· Ε· Buck, W· L Schubert, and P.A.Basore, Process on the Emitter Wrap-Through Silicon solar Cell, 12th European Photovoltaic Solar Energy Conference, Amsterdam, The Netherlands, April 1994)],J· M·吉、D· D.史密斯、S· E·賈瑞特、M. D.波第,和 J.C·吉米諾等人:背面接點式結晶-矽太陽能電池與模組(Gee JM, Smith DD, Garret SE, BodeMD, Jimeno JC: Back-ContactSolar Cells), and US Patent No. 5, 972, 732, Method of Monolithic Module Assembly. The methods and related matters disclosed in the two patents may be used with the present disclosure as disclosed herein, and are hereby incorporated by reference in its entirety. US Patent No. 6, 384, 316, solar cell and its manufacturing process 7 乂ar Cell and Process of Manufacturing the Same), a cloth is not another kind of ★ face contact battery design, but the side veins, the holes or The distance between the two is relatively long, and there are metal contacts on the front surface to help conduct current to reach the back surface, and the holes therein are in line with the metal back. In some cases, an EWT cell with a channel that diffuses with a gas dopant will exhibit a high series resistance associated with this pass. Seen in [jM·Ji, Μ·Ε·Buck, W. 舒·Schubert, and ρ·Α·Basso, the progress of the whole body of the solar cell, published in the 12th European Photovoltaic Solar Energy Research Conference, Amsterdam, The Netherlands, April 1994 (J·Jie Gee, Μ·Ε· Buck, W·L Schubert, and PABasore, Process on the Emitter Wrap-Through Silicon Solar Cell, 12th European Photovoltaic Solar Energy Conference, Amsterdam, The Netherlands, April 1994)], J. M., D. D. Smith, S. E. Jarrett, MD Boddi, and JC Gimino, etc.: Back Contact Crystallization - Solar Energy Battery and Module (Gee JM, Smith DD, Garret SE, BodeMD, Jimeno JC: Back-Contact

Crystalline-Silicon Solar Cells and Modules)。NCPV計 畫審查會議,1998年9月8-11日,丹佛市,科羅拉多州(NCPV Program Review Meeting, 8-11 September 1998, Denver, CO),會中所提出:對付此問題的一種方法是以金屬物質,例 如鍍金屬的材料,將通道填滿。然而,此方法為製造程序加 1296858 入明顯的複雜,也因此味昂貴。另_方法是增加通道的 密度以便獲得可以接受㈣聯電阻。_,這樣也增加複雜 Μ成本種更好的方法疋對孔洞部份摻配得比表面部份 濃密些,只要製程可保持簡單和低價。至少有—些資料暗示 著··-般常見的氣體擴散法,例如使用液態氯化石細⑽13) 的氣相擴散作用,導致在孔洞之内的擴散作用比較水平或平 面表面上者為少,有可能係因為摻雜物氣體渗透穿過孔洞内 • 部未如穿過暴露的表辦—樣地有效率。_,其他資料則 發現孔洞導電性南而且前後一致,其内部摻雜並和暴露的 表面者類似。[D· D·史密斯、j· Μ.吉、Μ· D·波第,和J· c·吉米 諾等人發表,射體全裹覆太陽能電池之電路模擬模型,於電 , 恭電子工程師協會會刊電子裝置類,第46冊,1993(1999)年 、 (D.D. Smith, J. M. Gee, M. D. Bode, J. C. Jimeno, Circuit modeling of the emitter-wrap-through solar cell, IEEE • Trans· on Electron Devices, Vol· 46, 1993(1999))]。 任何月面接點式太1%能電池的關鍵問題為發展一種低成本的 製作程序而又能將負極性和正極性格柵與接面隔絕者。該等 技術問題包括摻配層(如果有的話)的圖案製樣、負極與正極 接點區域之間表面的鈍化作用,以及負極與正極導電接點的 施用等等。 【發明内容】 9 本發明係製作—種㈣全裹覆⑽T)太陽能電池之方法,該方 法包括以下步驟:提供—種半導體晶圓其具有前表面和後表 面以及_多由前表面延伸至後表面的孔洞 ;於後表面上施加 第一種播雜物擴散源到一包含該等後表面孔洞的圖案式樣 裡,於後表面上施加第二種摻雜物擴散源到不包含該等後表 面孔洞的圖案式樣裡m烘财式將摻雜物從第一種摻 錶物擴散源與第二種摻雜物擴散源擴散至半導體晶圓内。半 導體晶圓最好是包含⑪,第—種摻雜物源最好是包含構,第 -種格雜物源最好是包含。該方法最好是另外包括將包含 鱗的第-種摻雜物擴散源施加至前表面包含前表面孔洞的圖 案式樣裡。在施加第一種摻雜物擴散源的步驟中至少有一部 份孔洞最好是被第一種摻雜物源所填滿。 邊方法最好是另外包括以下步驟:於擴散步驟之後以酸性溶 液對4半$體_15作飿刻,施力σ—種為鈍化作用的電介質層 至>^到已I蝴的半導體晶圓之前表面;還有將第―導電型式 的金屬格柵施加朗妹面包含第—瓣雜擴散賴案式樣 的至少一部份之圖f式樣裡,並且將第二$電型式的金屬格 柵施加到後表面包含第二種摻雜物擴散源圖案式樣的至少一 部份之圖案式樣裡。 本發明也是另-種製作爾太陽能電池的方法,該方法由以下 步驟所組成:提供-種半導體晶·具树表面和後表面以 1296858Crystalline-Silicon Solar Cells and Modules). The NCPV Project Review Conference, September 8-11, 1998, in the NCPV Program Review Meeting (8-11 September 1998, Denver, CO), proposed in the meeting: One way to deal with this problem is Metallic materials, such as metallized materials, fill the channels. However, this method adds 1296858 to the manufacturing process, which is obviously complicated and therefore expensive. Another method is to increase the density of the channel in order to obtain an acceptable (four) junction resistance. _, this also adds to the complexity of the cost of a better way, the hole part of the blending is thicker than the surface part, as long as the process can be kept simple and low. At least some of the data suggest that the common gas diffusion method, such as the use of liquid phase diffusion of liquid chlorinite fine (10) 13), results in less diffusion within the pores than on horizontal or planar surfaces. It may be because the dopant gas permeates through the hole and is not as efficient as passing through the exposed surface. _, other information found that the hole is conductive and consistent, and its interior is doped and similar to the exposed surface. [D·D·Smith, J. Μ.Ji, Μ·D·Body, and J.C. Gimino, et al., Circuit Simulation Model for Full Body Wrapped Solar Cells, Yuji, Christine Electronic Engineers Association Journal of Electronic Devices, Vol. 46, 1993 (1999), (DD Smith, JM Gee, MD Bode, JC Jimeno, Circuit modeling of the emitter-wrap-through solar cell, IEEE • Trans· on Electron Devices, Vol · 46, 1993 (1999))]. The key issue with any lunar contact type 1% battery is the development of a low cost manufacturing process that isolates the negative and positive grid from the junction. Such technical problems include patterning of the doped layer (if any), passivation of the surface between the negative and positive contact regions, and application of the negative and positive conductive contacts, and the like. SUMMARY OF THE INVENTION The present invention is a method for fabricating a (four) fully-coated (10) T) solar cell, the method comprising the steps of: providing a semiconductor wafer having a front surface and a back surface and _ extending from the front surface to the back a hole in the surface; applying a first dopant diffusion source to the back surface to a pattern pattern containing the back surface holes, applying a second dopant diffusion source on the back surface to the back surface The pattern of the holes is diffused from the first dopant diffusion source and the second dopant diffusion source into the semiconductor wafer. The semiconductor wafer preferably comprises 11, the first dopant source preferably comprises a structure, and the first species source preferably comprises. Preferably, the method further comprises applying a first dopant diffusion source comprising scales to the pattern of the front surface comprising the front surface apertures. At least a portion of the holes in the step of applying the first dopant diffusion source are preferably filled by the first dopant source. Preferably, the edge method further comprises the steps of: engraving the four half-body _15 with an acidic solution after the diffusion step, applying a force σ-type to the passivated dielectric layer to > a front surface of the circle; and a metal grille of the first conductive type is applied to the pattern of at least a portion of the pattern of the first-valve diffusion method, and the metal grid of the second type is applied Applied to the back surface comprising at least a portion of the pattern pattern of the second dopant diffusion source pattern pattern. The invention is also another method for fabricating a solar cell, the method consisting of: providing a semiconductor crystal with a tree surface and a back surface to 1296858

及許多由前表面延伸至後表面的孔洞;施加—種擴散障蔽屠 至後表面不包含該等後表面孔__式#裡;將晶圓弄乾 淨;將第-種摻雜物擴散進人晶圓;對晶_刻成為至少部 份地去除表面氧化物;並且將第—導_式的金屬格拇施加 到後表面包含後表面孔__式樣裡,還有將第二導電型 式的金屬格栅施加顺表面被擴散賴層_和第一導電型 式的金屬格栅分__案錢裡。半導體晶圓最好是=含 P-型石夕,第-種摻雜物最好是包含磷,第—物式的金屬 格栅最好是包含銀,料二_型式齡屬_最好是包含 此方法最好是包含糾-項麵,__㈣之後施加一 種為鈍化_的電介質層_p—型料圓表面的至少一部份 上;其中施加第-種摻雜_源造成的電阻 姆/平方⑴/⑻之間;而其中施加第、/ 〇狐And a plurality of holes extending from the front surface to the rear surface; applying a diffusion barrier to the rear surface does not include the back surface pores __式#; cleaning the wafer; diffusing the first dopant into the human Wafer; the crystal is engraved to at least partially remove the surface oxide; and the first-shaped metal thumb is applied to the rear surface including the back surface hole __ pattern, and the second conductivity type metal The grid is applied with a smooth surface by the diffusion layer and the first conductivity type of the metal grid. Preferably, the semiconductor wafer is = P-type, and the first dopant is preferably phosphorus. The metal grid of the first type preferably contains silver, and the second type is preferably _ Preferably, the method comprises the inclusion of a correction-term surface, and __(4) is followed by applying a passivation layer to at least a portion of the surface of the dielectric layer _p-type material; wherein the resistance caused by applying the first dopant source is Between squares (1) / (8); and where the first, / 〇 fox

格拇的步驟包括轉印格栅圖案式樣和洪培 含與第-種摻雜物的導電型式相反疋: 雜物最好是跡第-種摻:^層種=的第二種推 時被擴舰人關内。 弟―娜雜物最好是同 本發明也是製作EWT太陽能電池一 下步驟所組成:提供一種半導 j296858 以及井多由前表面延伸至後表面的孔洞;制第-種旋塗玻 每(s〇G)擴散障蔽層至後表面;施用一種抗蝕劑至不包含後表 面孔/同的圖案式樣裡;對晶圓作姓刻以去除第一種旋塗玻璃 (S〇G)未被有圖案的抗蝕劑覆蓋的部份;將抗蝕劑從晶圓脫 除,將第一種摻雜物擴散進入晶圓;將晶圓蝕刻成為至少去 除剩餘的第一種旋塗玻璃(SOG);並且將第一導電型式的金 屬私柵轭加至後表面包含後表面孔洞的圖案式樣裡,還有將 第二導電型式的金屬格柵施加到後表面包含抗蝕劑圖案式樣 勺Θ案式樣裡。半導體晶圓最好是包含石夕,第一種摻雜物最 好是包含磷,而施用第一種旋塗玻璃(s〇G)最好是藉由旋塗法 或喷塗法和咼溫爐緻密化等方法。第一種旋塗玻璃(s〇G)最好 疋包含與第一種摻雜物的導電型式相反的第二種摻雜物。 本發明也是另一種製作EWT太陽能電池的方法,該方法由以下 步驟所組成:提供一種半導體晶圓其具有前表面和後表面以 及卉多由箣表面延伸至後表面的孔洞;施用包含了第一種摻 雜物的第一種旋塗玻璃(S0G)至後表面;施用一種抗蝕劑至不 包含後表面孔洞的圖案式樣裡;對晶圓作蝕刻以去除第一種 方疋塗玻璃(SOG)未被有圖案的抗餘劑覆蓋的部份;將抗姓劑從 晶圓脫除;施用包含了導電型式和第一種摻雜物相反之第二 種摻雜物的第二種旋塗玻璃(S〇g)至後表面;對晶圓加以烘 焙以便將第一種摻雜物和第二種摻雜物擴散進入晶圓内;將 12 1296858The steps of the thumb include the pattern of the transfer grid pattern and the contrast of the Hongpee and the conductivity type of the first dopant: the impurity is preferably the second type of the trace type: Expand the ship inside the customs. It is best to combine the present invention with the present invention and to make an EWT solar cell: a semi-conductor j296858 and a hole extending from the front surface to the rear surface; the first spin-coating glass (s〇 G) diffusing the barrier layer to the back surface; applying a resist to the pattern without the back surface hole/same pattern; surname the wafer to remove the first spin-on glass (S〇G) without pattern a resist-covered portion; removing the resist from the wafer, diffusing the first dopant into the wafer; etching the wafer to at least remove the remaining first spin-on glass (SOG); And adding a metal conductive yoke of the first conductivity type to the pattern of the back surface including the hole of the back surface, and applying the metal grid of the second conductivity type to the pattern of the back surface containing the pattern of the resist pattern . Preferably, the semiconductor wafer comprises Shi Xi, the first dopant preferably contains phosphorus, and the first spin-on glass (s〇G) is preferably applied by spin coating or spraying. Furnace densification and other methods. The first spin-on glass (s〇G) preferably contains a second dopant that is opposite to the conductivity pattern of the first dopant. The present invention is also another method of fabricating an EWT solar cell, the method consisting of providing a semiconductor wafer having a front surface and a back surface and a plurality of holes extending from the surface of the crucible to the back surface; The first spin-on glass (S0G) of the dopant to the back surface; applying a resist to the pattern pattern that does not include the back surface holes; etching the wafer to remove the first square-coated glass (SOG) a portion that is not covered by the patterned anti-surplus; removes the anti-surname agent from the wafer; applies a second spin coating comprising a second type of dopant having a conductivity pattern opposite the first dopant Glass (S〇g) to the back surface; baking the wafer to diffuse the first dopant and the second dopant into the wafer; 12 1296858

晶圓餘刻成為至少去除剩餘的第一種和第二淨重旋塗玻璃 (SOG);並且將第-導電型式的金屬格柵施加到縣面包含後 表面孔洞關案式樣裡,還有將第二導賴式的金屬格桃施 加到後表面包含抗蝕劑圖案式樣的圖案式樣裡。此方法另外 最好是包括_第三種旋塗玻璃⑼〇到晶難表面之步 驟,該第三種旋塗玻璃⑼G)最好是包含比在帛二種旋塗玻璃 (SOG)内較低濃度之第二種摻雜物。在此方法巾,實施供培最 好是包括崎多晶圓排列成大略平行而由前表面進行至後表 面,藉以讓來自第-晶圓後表面上第二種旋塗玻璃(⑽的第 二種摻雜物被擴散至緊鄰的第二晶圓之鄰接前表面。 本發明更是赠述任何—種方法製作的腿太陽能電池。 本發明的首要目標是提供簡科具成本效麵製程所 製作之較高效率騎體全顧⑽τ)太陽能電池。The wafer is left to remove at least the remaining first and second net weight-spinning glass (SOG); and the first-conducting type of metal grid is applied to the county surface including the back surface hole pattern, and The two-lead metal peach is applied to the pattern of the back surface containing the pattern of the resist pattern. Preferably, the method further comprises the step of: displacing the third spin-on glass (9) onto the hard-surfaced surface, the third spin-on glass (9) G) preferably comprising a lower than the spin-on glass (SOG) in the crucible. The second dopant of concentration. In this method, it is preferable to carry out the cultivating, which comprises arranging the plurality of wafers to be substantially parallel and proceeding from the front surface to the rear surface, so that the second spin-on glass (the (10) second from the rear surface of the first wafer is obtained. The dopant is diffused to the adjacent front surface of the immediately adjacent second wafer. The present invention further provides a leg solar cell fabricated by any of the methods. The primary object of the present invention is to provide a cost-effective process for the manufacture of a simple cost-effective process. The higher efficiency of the rider (10) τ) solar cells.

本發明另-目狀提供-種方法其在傳導通道内的接雜物增 加’由此讓串聯電阻較低而提供給膽太陽能電池。曰 本电明另-目標是提供—種_到擴散障蔽層的製造程序, 而最好是鋪散障蔽層也當作—種摻雜__,以提 進過的背側-接觸接面之性質。 、 雜 本發明又另—目標是為兩種不同摻雜物,η—摻雜物和_ 物,提供分散但是同時進行的擴散作用。 夕 本發明的主要優點是它提供了 以較低成本生產EWT太陽能電 13 1296858 池之改進過的並且更簡單的方法。 本發明的又另-優點是在它提供的方法#巾,後表面上傳導 通道和相線以及絲社任意可_轉義線條,係 用到n+-摻雜物,最好是_,以比其他剩餘表面部份較為濃密 地摻配之。 本發明的其他目標、優點以及新穎的事項,還有其他適用性The present invention further provides a method of increasing the number of dopants in the conduction path, thereby providing a lower series resistance to the bile solar cell.曰本电明 another - the goal is to provide a kind of _ to the diffusion barrier manufacturing process, and it is best to spread the barrier layer as a kind of doping __, to mention the back side - contact junction nature. The hybrid invention, in turn, aims to provide dispersed but simultaneous diffusion for two different dopants, η-dopant and _. The main advantage of the present invention is that it provides an improved and simpler method of producing EWT solar power 13 1296858 cells at a lower cost. Yet another advantage of the present invention is that in the method provided by the method, the conductive channel and the phase line on the back surface and the wire can be arbitrarily escapable, using n+-dopant, preferably _, to The remaining remaining surface portions are more densely blended. Other objects, advantages, and novelty of the present invention, as well as other applicability

的範圍等,部分地將被提出於接下來的詳細說明上而與相關 伴隨之圖說結合;而有部分地將對於那些對接下來的檢查技 術熟悉者變得顯而易見,或者可能藉由實施本發明而學習 到。本發_目標錢點可能娜轉利申請顧所特別指 出的手段工具及其組合而被實現與達到。 【實施方式】The scope and the like, in part, will be presented in the following detailed description in conjunction with the accompanying drawings, and in part will become apparent to those skilled in the learned. The _ target money point may be realized and achieved by applying the means and combinations thereof. [Embodiment]

U么開揭示於此者提供製造背面接點式太陽能電池的方 ,與製程’特別是提供比較簡單、更加可靠而且更為經濟的 仏方法與製程。即將被瞭解的是儘管有-些砰的個別方 摘不出來,相關領域的技巧之—可能結合或變更成二或更 多方法’因而提供另—種額外的製造方法。時卩將被瞭解 =是儘管附圖和製程順序範例描述了背面接點式爾太陽能 2的製造’其帽些製簡序可觀來製造其他背面接點 ^的結構例如露、職、或是背側-接面太陽能電池。特 在標題為”轉印的擴散障蔽層與摻雜物擴散障蔽層之使 和旋塗玻璃擴散障蔽層之使用"以及”使用旋塗玻璃作 14 1296858 為擴散障蔽層與摻雜物源’’之下的方法可以被直接應用於任 何背面接點式太陽能電池,包含但不限kMWT、MWA和背侧—接 面太陽能電池。由相關領域的技巧之一將很容易確認將根據 電池結構的差異而作某些修改,但是該等方法通常仍然適用 於背面接點式太陽能電池。 在某些實施例裡,本發明所述方法以在通道本體之内摻雜得 較為濃密(可能是P++或n++)的方式提供給爾電池,也就是在 • 通道的大約是圓柱侧壁和相關聯的格線或前表面摻雜物線條 内;若和剩下的水平電池表面比較,更特別是剩下的前表面 或頂部表面,其亦被摻配雜質,但是較為少量者。例如在一 種P-型矽晶圓裡,傳導通道將比大部份的前表面受比較濃密 的n++-摻配。最好是,在某些實施例中n++—摻配的格線包括 通道開口在前表面上形成,其對應於後表面格線者,並且可 隨意選擇地另外提供包括n++-摻配的格線以直角相交於通道 φ 處,而前表面剩餘的區域則以n+-摻配得比較輕淡。這樣傳送 至通道與經過通道的電流阻力比較小,而不是雙表面和通道 都使用單一η+射體。這就造成效率的增加並且允許讓孔洞密 度減少而不需要通道的金屬化。 在此後所描述的各方法裡,晶圓可以是一般的厚度,典型者 通常大於280至300微米,例如常用的330微米晶圓。或者,在 本發明的製程順序中,晶圓可以大大地變薄,例如小於大約 15 1296858 • 280微米,最好小於大約20〇微米,再好的小於大約100微米〇 薄的石夕晶圓可以祕上翻為製程順序中未包含以金屬,例 如铭合金’龍整個晶圓後表面崎有或大部份區域,其通 常是用來提供-種背面場域⑽)崎低在後表面處的再結 合損失(”鈍化作用”)者。因為晶圓和背面場域卿之間熱膨 脹係數的不一致(鋁的熱膨脹係數比矽的要大1〇倍以上)會造 成應變,使用到的晶圓厚度其典型者通常都大於28〇微米。在 • 本文裡,一般擁有的美國專利申請編號10/880,190,名為,,薄 矽晶圓上的射體全裹覆背接式太陽能電池”,授與吉先生和施 密特先生,建檔於2004年6月29日者(entitled "EmitterU.S. discloses that the method of manufacturing a back contact type solar cell and the process of providing a relatively simple, more reliable and more economical process and process. It will be understood that although there are some individual parties that cannot be extracted, the skill in the related art may be combined or changed into two or more methods, thus providing another additional manufacturing method. Time 卩 will be understood = although the drawings and process sequence examples describe the manufacture of the back contact type solar energy 2 'there are some examples of the caps that make the other back contacts ^ such as dew, job, or back Side-junction solar cells. Specifically, the use of "transfer diffusion barrier layer and dopant diffusion barrier layer and spin-on glass diffusion barrier layer" and "using spin-on glass as 14 1296858 as diffusion barrier layer and dopant source" The method below can be applied directly to any back contact solar cell, including but not limited to kMWT, MWA and backside-junction solar cells. It will be readily confirmed by one of the techniques in the related art that certain modifications will be made depending on the difference in battery structure, but such methods are generally still applicable to back contact type solar cells. In some embodiments, the method of the present invention provides a cell in a densely packed (possibly P++ or n++) manner within the channel body, that is, in the channel, approximately the cylindrical sidewall and associated The inner grid or front surface dopant lines are included; if compared to the remaining horizontal battery surface, more particularly the remaining front or top surface, it is also blended with impurities, but in smaller amounts. For example, in a P-type germanium wafer, the conductive vias will be more densely n++-blended than most of the front surface. Preferably, in some embodiments the n++-doped grid line includes a channel opening formed on the front surface that corresponds to the back surface ruler, and optionally optionally provides an n++-blended grid line It intersects at channel φ at right angles, while the remaining area of the front surface is blended with n+-. This means that the current resistance to the channel and through the channel is relatively small, rather than using a single η+ emitter for both surfaces and channels. This results in an increase in efficiency and allows the hole density to be reduced without the need for metallization of the channel. In each of the methods described hereinafter, the wafer can be of a typical thickness, typically greater than 280 to 300 microns, such as the commonly used 330 micron wafer. Alternatively, in the process sequence of the present invention, the wafer can be greatly thinned, for example, less than about 15 1296858 • 280 microns, preferably less than about 20 microns, and even less than about 100 microns. The secret is turned into a process sequence that does not contain metal, such as the alloy "long", the entire surface of the wafer is saturated or mostly, which is usually used to provide - back field (10)) at the back surface Recombination loss ("passivation"). Because of the inconsistency in the coefficient of thermal expansion between the wafer and the back field (the thermal expansion coefficient of aluminum is more than 1〇 greater than that of 矽), the strain is typically used, typically using wafer thicknesses greater than 28 μm. In this article, the commonly owned U.S. Patent Application Serial No. 10/880,190, entitled, The Fully Wrapped Back-Connected Solar Cell on a Thin Wafer Wafer, was presented to Mr. Ji and Mr. Schmidt. On June 29, 2004 (entitled "Emitter

Wrap-Through Back Contact Solar Cells On Thin Silicon Wafers" to Gee and Schmit, and filed on June 29, 2004) ^ 其所授知者包含於此而視同提出全文。晶圓可以是任何面 積,例如25平方公分或1〇〇平方公分(1〇公分χ 1〇公分),或者 # 可能大一點,例如現在正使用的156平方公分或225平方公分。 在以下所描述各實施例的第一步驟裡,孔洞係用來形成傳 導通道而被引入具有前表面和後表面的平面矽晶圓12,如圖 2Α和2Β所示。該等孔洞將晶圓的前表面連接至後表面,而其 最好是以雷射鑽孔方式成形,但也可以其他製程來成形,例 如乾式餘刻、濕式餘刻、機械鑽孔,或者水刀加工(water jet machining)。若是採用雷射鑽孔,用到的雷射最好是在操作 16 1296858 波長有足夠辨或強度,以致能航驗最短時助引入, 例如從大約每〇·5毫秒至5毫秒一個孔洞。有一種可能用上的 是Q-開關的鈦··镱鋁石榴石雷射(Nd:YAGLaser)。用到的晶圓 幸乂/專母俯L洞引入的時間也成比例地縮短。通道孔洞的直徑 可能從大約25至125微米,最好是從大約30至6〇微米。在一使 用到薄晶_實施财,例如晶圓厚度咖微米或更小者,通 迢孔洞的直徑大約是大於或等於晶圓的厚度。每單位表面積 _ 的通道孔洞禮、度係依,部份地,由射翻傳送電流經過孔洞 到達後表Φ其可接受的料聯電阻損失而定。這可以經驗或 理論計算決定;以本發明所述方法該通道孔洞密度可能由降 低電阻而減少,例如由歐姆/平方(Q/sq)決定。通常典型的 通道孔洞密度為每1平方毫米至2平方毫米1個孔,但也可能是 密度較低者,例如每2至大約4平方毫米1個孔。 在孔洞的引入之後,例如以雷射鑽孔法,接著是通常所用到 • 典型的鹼性蝕刻步驟,其部份係為了讓由引入孔洞造成的不 規則性最小化。任何一般常用的方法都可以用上,例如在大 約80°C至大_。⑽溫度顧«_%的氫氧化納或氣氧 化鉀,其可去除大約10微米的表面。 瘦-擴散源糊料的傕用 在本發明某一實施例中,轉印的擴散物源被用上,以網印擴 散物源為優先,而為孔洞内部提供摻雜物。儘管轉 ' V 口贺月又 17 1296858 物源已為人所知,如美國專利編號4,478, 879中所授知者,之 樣的材料從未被麟EWT電池結構裡,或是用來在孔洞内其緊 鄰之處產生較高濃度的η-摻雜物,從而提供降低的串聯電 阻。申請者無意中發現將一種轉印的擴散物源,例如磷〜擴散 物源,選擇性地施用到孔洞區域,以及包括該等孔洞部份的 格線,而造成濃度大幅提高的摻雜物和降低的電阻。將轉印 的擴散物源使用於製造背面接點式EWT電池的代表製程順序 如以下所示。 1.雷射鑽孔 2·鹼性蝕刻 3·將磷-擴散物源轉印於前表面上並使其乾燥 4·將磷-擴散物源轉印於後表面上並使其乾燥 5·將硼-擴散物源轉印於後表面上並使其乾燥 6·在高溫爐内將摻雜物擴散進入矽内 7·氟化氫蝕刻(二表面皆予恐水化) 8. 前表面實施電漿輔助化學氣相沉積(PECVD) 9. 後表面實施電漿輔助化學氣相沉積(PECVD) 10. 為負極性格柵轉印銀金屬糊料並使其乾燥 11. 為正極性格柵轉印銀:鋁金屬糊料並使其乾燥 12·烘焙接點 引面的衣㈣序通常描述於襲至3D,其說明了此方法的製 18 1296858 造順序也同時顯露了其他優點。圖2A的剖面圖顯示晶圓12已 經過鑽孔和蝕刻而產生了孔洞3〇,就是上述的步驟丨和2。圖 2B是晶圓12之一部份的上視圖,顯示出許多孔洞3〇間隔排成 序列。圖3A是晶圓12在磷-擴散糊料已經轉印於前表面和後表 面後之剖面視圖,其係以設計的圖案式樣以致使每列孔洞3〇 各為一行糊料32所覆蓋。硼-擴散源糊料34則被轉印於後表面 上,隶好是使得糊料32和34之間形成互相叉合的格柵區域。 這樣圖3A顯示經過上述步驟3至5所形成的晶圓。這些糊料經 過咼溫乾燥與烘焙之後轉化成為擴散源氧化物。圖顯示出 經過摻雜物南溫擴散後的晶圓。獨被擴散進入擴散氧化物 下方的矽之内,而產生硼—擴散層40。磷被擴散進入磷_擴散 氧化物下方的矽之内,而產生磷-擴散層祁。擴散層祁被濃密 地摻配,係因為磷容易擴散而且比硼有較高的表面濃度。孔 洞30内側整個區域係被濃密地摻配,即使摻雜的糊料犯並未 元王填滿孔舶G,係g為孔的内側表面被來自孔洞前側 和後側摻雜糊料32裏的摻雜物所充滿而達飽和。受濃密摻配 的表面36是有利的,係因為它降低了和接下來施加於後表面 的格栅之接觸電阻,降低了通過孔洞3〇傳導時的電阻損失, 並且降低了在前表面傳導至孔洞30時的電阻損失。如另顯示 於圖3B者,輕淡摻配之_散層38係產生在前表面和後表面 上暴露出的矽表面上。輕淡摻配之磷擴散層38的磷來自於在 19 高_散期間從礙-擴散氧化物蒸發出來摻雜糊料32裏的摻 T物,也會從聲擴散氧化物蒸發出來,但是其蒸氣壓低很 也口此主要疋石4被擴散進入暴露的表面。輕淡摻配之構 擴散層38位在前表面上是有利的,係_輕淡捧配的構擴散 物同時提供最好的電流收集以及最低的表面再結合作用。輕 淡摻配之磷擴散層38位在後表面上也是有利的,係因為鱗對 後表面產生鈍化作用,而更使得鱗擴散層邪和蝴_擴散層4〇接 觸的地方比較不可能造成電氣的分流。因此’此製程順序產 生一種具有高效率潛力的電池結構。 在高溫的摻雜物擴散之後,接著通常是用到一種使用氫氟酸 (HF acid)水溶液的侧步驟(氟化氫钱刻)。任何合適的酸姓 刻都可以使用’例如10%氫氟酸。應祕咖的任何常用方 法皆可能用上,包括將晶圓浸泡於含氫氟酸的溶液。以足夠 的氫氟酸段_以便使得面和後表域為恐水性 的,其可以由當將晶圓取離溶液時氫氟酸水溶液產生的,,覆蓋 (sheeting)”效應確定之。 由氟化氫姓刻產生的裸原石夕表面可能需要由一電介質層的沉 積予以純化。以電漿辅助化學氣相沉積法(PECVD)沉積的氮化 石夕(SiN)為太陽能電池製造作絲面鈍化,是—種為人熟知 的技術。或者是’以二氧化石夕(Si〇2)層的熱力成長,或以其 他電介質材料’例如二氧化糾施)、二氧化欽(Ti〇2)、五 1296858 氧化KTa2G5)等使用不财缸具沉積之,例如轉印法、 噴覆法、献魏她毅,以軸表面純化。 -般而言,如以下所討論者,擴散—障蔽氧化物並無需完全除 去假如它具有町性質:树質層有良好介面與低的再結合 性,還有銀··紹或其他P-型接點可以整個材料被烘培並和p—型 矽基板作低電阻接觸,於某一實施例裡在網版轉印的接點材 料中用上一種玻璃熔塊。將擴散—障蔽氧化物留置原處可允許 省去至少一處理步驟,後表面上的PEcvj)沉積步驟。 在表面鈍化之後,接著施用負—極性格柵接點和正—極性格栅 接點。任何普通常見的格柵金屬施用方法都可能用上,例如 將銀糊料以網版轉印作為負—極性格柵接點,而銀:鋁糊料則 轉印作為正-極性格栅接點。糊料可以由一種顆粒型式的銀或 銀:鋁經再組合作用而製成,如適當者,一種液態配方可能另 外包含黏結劑、溶劑,以及在本技術領域為人所知而常用的 物質,以致作成可以作網版轉印的糊料。也有可能並值得利 用一種糊料配方其包含的成分可以分解氮化物(參見M·希拉 利等人發表,”自行-摻配的銀糊料烘焙之最佳化以便在具有 100歐姆/平方的射體之網印的矽太陽能電池上達成高填充 係數”’第29屆國際電子電機工程師協會光電專家研討會,紐 奥良,路易斯安那州,2〇〇2年5月,合併於此以供參考(seeM. Hilali, et al., ffOptimization of self-doping Ag paste 21 1296858 firing to achieve high fill factors on screen-printed silicon solar cells with a 100 ohm/sq. emitter% 29th IEEE Photovoltaic Specialists Conf·, New Orleans, LA, May 2002,incorporated here by reference)),例如玻璃 熔塊。晶圓接下來被烘焙以便將格柵接點金屬化。 圖3C顯示完成的太陽能電池,在施用銀糊料作為負一極性格柵 而銀:鋁糊料作為正-極性格柵之後,並在烘焙後產生銀的負一 φ 極性格柵接點42以及銀:鋁的正-極性格柵接點44。以PECVD沉 積的矽氮化物層,其可隨意選擇地施用者,並未清楚顯示出 來。请注意到所有圖說,包括此處和此應用方式的其他地方, 孔洞和矽質基板的大小尺寸、不同成分結構的間隔與相對尺 寸大小、各不同層的厚度,以及其他尺寸大小並未照比例尺, 而是為圖示說明和容易辨識而作綱要方式的顯示。 如圖3D所示,在某一貫施例為擴散物源網印所得的產品,特 • ⑼是填—紐物源’乃是一種想要得到的圖案式樣36再加上通 道孔洞30 ’㈣外提供了摻雜物濃度的增加以及相對應伴隨 著包阻的減),譬如說’負_極性的格栅。圖案式樣%可隨音 選擇地也是縣_聲___料卿細前表面 後表面上。在後表面上,圖案式樣36接著被金屬化的格 點44作部份輸⑽,在編繼枝樣的覆蓋動 作。也有可能,例如在前表面上,在χ_轴和广轴提供換雜物 22 1296858 濃度增加的格栅,其由網印璘_擴散物源的圖案式樣所得者, 致使通道顯現在每-x—軸格線和7_轴格線的相交處,因而提 供了更好的集電能力。 也有可n湘氣體物源提供—種少量畴雜物的擴散作 用,譬如說氯化_(_3),以及後續的氧化侧將其壓 入’而在前表面和後表面提供表面鈍化作用。最好是此一製 程步驟在氫__步驟之前關,以便除姆印的擴散源 氧化物。在又另-相_實施射,—魏體擴散氯化_ (P0C13)的步驟如所述者用上,而將磷—擴散物源轉印於前表 面上的步_予省略。在各個這樣的實施财,於孔洞結構 之内造成的雜雜量彳錢日聰高於在前錢表面上的平均鱗 摻雜量。 類似的製程順序可以用於其他背面接點式電池結構的製造 上。在此-實施例中,特別在後表面上’卿⑴冗積並不需要, 假如該擴散-源氧化物和絲板财低—再結合性的介面,而 且假如銀和銀:雜點驗過#低接__氧錄烘培,例 如用到成馳的軸料和成職的銀··銘糊料。 姻7的擴散障蔽物擴散障蔽層的伸用 在本毛明另A例中,用到了—種轉印的擴散障蔽層,以 防止或限fjn+摻揭之擴散,例如—種棚氯化《細⑽⑶ 所知加的氣ϋ摻雜物者。最好是轉印的擴散障蔽層也能 23 1296858 提,娘,。直娜印—種概障蔽層可 允斗簡單而直接地應用加圖案步驟。適合用為擴散障蔽層的 材料可以買剌,4如*,費洛飼(克 夫蘭俄亥俄川)供應二氧化鈦抗反射層的轉印用糊、作為 仏蹲蔽層的魄錄材料、以及作為—翻概源的石夕酸 朋玻肖所有這些材料在磷的擴散侧中提供良好的障蔽功 %雖然某些㈣的制,例如轉印神咖賴,先前尚 未經說明為能提供擴散_層。概爾璃的成分提 供了障蔽材料之下的爾散作用之額外利益,而有助於將表 面鈍化亚且為正極性接點降低了細電阻。擴散障蔽材料被 施加於想要的_式翻,例如藉_版轉印法,雖然也有 曰代方村㈣上’例如油墨噴印、遮罩法賴板印刷法, 假設這樣的方法能產生帶_的擴散障蔽材料。 在本貝知例和接下來的實施例中,糾摻雜物擴散最好是利用 氣態物源,例如氯化_(p〇cl3),來執行鱗擴散作用。其他 擴散作用物源,例如_源或喷覆擴散物源,或者也可用上。 ^自彻散侧的氧化物通常和氫_-起被除去,係因為 它可能對封裝_馳造成可靠性關題。因此,其優先的 ^序係以氫氟魏刻將來自鱗擴散層的鱗氧化物和擴散—障 ^氧化物-起脫除。裸原石夕表面可能需要由一電介質層的沉 知予以鈍化。在太陽能電池製造⑽表面鈍化製程裡,以電 24 1296858 漿輔助化學氣相沉積法(PECVD)沉積的氮化石夕⑽)是—種為 人熟知的技術。或者是,以二氧化發⑽2)層的熱力成長, 或以其他電介質材料,例如二氧化石夕(Si〇2)、二氧化鈦 (Τι〇2)、五氧化二纽⑽⑹等翻不同方式沉積之,例如轉 印法、噴覆法、或化學氣相沉積法,輯成表面鈍化。 一般而言’如以下所討論者,擴散_障蔽氧化物並無需完全除 去假㈣具有以下性質:和外層有良好介面與低的再結合 性,還有銀··!呂或其他p-型的接點可以整個材料被供培並和卜 型石夕基板作低電阻摘’於某—實關裡以植轉印的接點 材料中用上-種玻雜塊。將擴散_障蔽氧化物留置原處可允 許省去至少—處理步驟,後表面上的PEOT)沉積步驟。 利用轉印的擴散賴層於製造細接點式騰電池的代表製 程順序如以下所示。該·提供擴散__氧錄的去除步驟 (如以上討論之”雙表面氫氟酸餘刻、恐水化”步驟),並且將 擴散-P章蔽氧化物以-種制表面鈍化層的步驟取代,例如用 於表面鈍嫌獅氮切層。細,域—樣,假如該擴散 ,蔽氧化鮮^㈣妓好介面,職散—雜氧化物就不 必完全去除而以PECVD氮化石夕取代,因而可以省略一項處裡步 驟。 1·雷射鑽孔 2·驗性|虫刻 25 1296858 ‘ 3.轉印擴散障蔽層 4.乾燥並烘焙 5·姓刻並將晶圓弄乾淨 6.使用氯化磷醯(P0C13) (30至60歐姆/平方) 7·氟化氫蝕刻(二表面皆予恐水化) 8·前表面施用電漿辅助化學氣相沉積(PECVD)之氮化矽 9·後表面施用電漿輔助化學氣相沉積⑽CVD)之氮化矽 φ 1〇·為負極性格栅轉印銀金屬糊料 11·為正極性格柵轉印銀··鋁金屬糊料 12.烘焙接點 本方法之替代實施例是可能而仔細考量的。在一優先的替代 貫施例中,圖从描繪晶圓12帶有擴散障蔽層9〇,例如二氧化 鈦糊料,經施用而使得一對彼此緊鄰的擴散障蔽層90間的空 間將在下-步射用作為正極性格柵。這樣接著是以上的處 • 裡步驟1到4而產生圖4A的裝置。然而,之後用上的碟擴散步 驟’例如使用POC13 (30至60歐姆/平方)者,產生_帶有奸 擴散層92的裝置。或者,其他的於摻雜物亦可能用上。接著 用上-種餘刻步驟,將P〇C13擴散期間形成的鱗玻璃侵轉, 崎擴散障蔽觸保冑於原處。氮化雜是照慣例以電聚輔 助化學氣概積系統(PECVD)沉積,或者以其他供純化作用的 方法和材料。钱化魏積於_(未顯之後,負極性接 26 1296858 點銀格栅被以網版轉印,正極性接點銀··鋁格柵被以網版轉 印,而晶圓則被烘焙《其結果,如圖4c所示,就是一電池帶 有擴散障蔽層90、正極性網版轉印的銀··鋁或鋁格栅基板96、 和負極性網版轉印的銀格栅基板98。如圖4C所示,網版轉印 的正極格栅基板96可能和擴散障蔽層9〇的一部份作部份重 疊’或者是可能被整個放置於擴散障蔽層9〇的侧面邊緣之 間。網版轉印的銘(其可能是一種I呂合金,例如銀··銘,或可 瞻能實質大體上都是鋁),係被施用於現存的n—型擴散層上,如 圖4C所示。然而,正當烘焙之時,鋁—底的金屬化作用形成一 種P+層取代現存的n+擴散層。可能有一種熔塊包含於正極的 網版轉印的銀··鋁或鋁格栅基板96之中。這樣在p-型接點下方 的n+區域便被成功地過度-摻配;也就是,一種通過n+區域的 牙刺接點係以p-型基板所作。在另一衍生變化例中,銘-摻雜 物金屬係於超過鋁-矽共熔溫度時加以烘焙,導致接點區域也 Φ 加入石夕成為合金。這樣如圖4D所示,正當烘培之時,n+擴散 層92中緊鄰正極的網版轉印銀··鋁或鋁格柵基板恥的部份被 格柵基板内的I呂過度—摻配,而產生了接點96。 在又另一特別優先的實施例中,擴散障蔽層包含一種时摻雜 物的物源,以為優先者。這樣如圖犯中所示提供了網版轉 印之擴散卩早蔽層94,例如一種含有獨化合物的二氧化鈦糊 料,例如在某一實施例裡的硼氧化物種類。作為硼擴散障蔽 27 1296858 層94的糊料之配謂—種含少量_擴散層㈣產生,如後 斤返者其他的P型文體可此或者被用為形成一種擴散障蔽 «包含受摻配之電介質糊料者,包括但不限聽、鎵或鋼 最為優先的是-或更多前面的氧化化合物。在—實施例中, 该擴散層_提供超過-翻p+摻雜,以氧化物為優先。 或者是硼或其他P-摻雜物障蔽層可以喷塗、油墨喷印,或網 版轉印以外的方式施狀。當鱗被擴散進人石夕之中產生㈣ 摻配區域時’電介質中的P—型受體最好是同時擴散進入基 板,產生一種P-型區域而同時省下一項處裡步驟。這樣在網 版轉印和硼擴散障蔽層⑽的烘烤之後,即用上一種磷的擴散 ,例如使用P0C13 (30至60歐姆/平方),而造成和碟的 共-擴散。如圖4F中所示,其產生的結構包括n+擴散層犯,最 好是擴散至大約30-50歐姆/平方如在某一範例中者,和奸擴 散層100,最好是擴散至大約100-500歐姆/平方如在同一範例 中者。接著用上一種蝕刻步驟,將P0C13擴散期間形成的磷玻 璃侵蝕掉,而讓硼擴散障蔽層94保留於原處。氮化矽於是照 慣例以電漿辅助化學氣相沉積系統(PECVD)沉積,或者以其他 供鈍化作用的方法和材料。在氮化矽沉積於兩侧(未顯示)之 後’負極性接點銀格拇被以網版轉印,而且正極性接點銀·銘 格栅’或者更優先者是鋁格柵,被以網版轉印,而晶圓則被 烘培。其結果,如圖4G所示,就是一電池帶有硼擴散障蔽層 28 1296858 94、正極性網版轉印的銀:铭或鋁格柵基板%、和負極性網版 轉印的銀格柵基板98。如圖4G所示,網版轉印的正極格栅基 板96可能和刪廣散障蔽層94的一部份作部份重疊,或者是(未 頒示)可能被整個放置於硼擴散障蔽層94的侧面邊緣之間。網 版轉印的鋁(其可能是一種鋁合金,例如銀:鋁,或可能實質 大體上都是鋁)’係被施用於現存的n-型擴散層上,如圖犯所 示。然而,正當烘焙之時,鋁—底的金屬化作用形成一種口+層 • 取代現存的rvf擴散層。可能有一種熔塊包含於正極性網版轉 印的銀:銘或銘格柵基板96之中。這樣在p~型接點下方的#區 域便被成功地過度-摻配;也就是,一種通過n+區域的穿刺接 點係以p-型基板所作。在另一衍生變化例中,銘—摻雜物金屬 係於超過鋁—矽共溶溫度時加以烘焙,導致接點區域也加入矽 成為合金。這樣如圖4G所示,正當烘培之時,n+擴散層92中 緊鄰正極性網版轉印的銀:鋁或鋁格栅基板96知部份被格柵 • 基板内的鋁過度-摻配,而產生了接點96,鄰接著p+擴散層1〇〇 並與其接觸。 在又另一優先實施例中,如圖41所示一種擴散障蔽層9〇被施 用,接著是n+擴散步驟,例如使用POC13 (30至60歐姆/平方) 的磷擴散步驟,而產生n+擴散層92。在氮化矽沉積於兩側(未 顯示)之後,負極性接點銀格栅被以網版轉印,而且正極性接 點銀:鋁格栅,或者更優先者是鋁格柵,被以網版轉印。其結 29 1296858 - S ’如圖4J所不’就是一電池帶有擴散障蔽層9G、正極性網 版轉印的銀:紹或祕栅基板96,其包含一種炼塊或其他材料 以驅使基板96通過障蔽層90者,以及負極性網版轉印的銀格 拇基板98。網版轉印的銘(其可能是一種铭合金,例如銀:紹, 或可能實質大體上都是!g) ’被直接施用於擴散障蔽層9〇,如 圖4J所示。然而,正當烘梧之時,銘—底的金屬化作用驅使通 過障蔽細,如類所示’和!起形成―種奸層在其下方 φ (未顯示)。 在一相關的優先實施例中,如圖4L所示,一種擴散障蔽層9〇 被施用,接著是n+擴散步驟,例如使用POC13 (30至60歐姆/ 平方)的磷擴散步驟,而產生#擴散層92,接著是一種帶圖案 抗_56的施用。在抗_56的施用和氮化石夕沉積於兩側(未 11示)之後,钕刻步驟即被用上以將擴散障蔽層90的暴露部份 侵韻並去轉,如關所示。在擴鮮蔽層⑽的的侧去除 • 讀,抗钱劑56部份被除去而晶圓也被弄乾淨。一種負極性 接點銀格栅98被賴版轉印,而且正極性接點銀··雜拇96, 或者更優先者是I呂格柵96,被以網版轉印。其結果,如圖碰 所示,就疋-電池帶有擴散障蔽層9〇、正極性網版轉印的銀: 鋁或铭格柵基板96,和負極性網版轉印的銀格栅基板98。網 版轉印_(其可能是-_合金,例如銀··紹,或可能實質 大體上都是銘),被施用於以抗融劑與韻刻步驟去除之擴散障 30 1296858 蔽層90的有圖案部份,如圖4M所示。這樣正當烘培之時,銘_ 底的金屬化作用造成和則2的直接接觸,如酬所示,和銘 一起形成一種p+層在其下方(未顯示)。 在又另-侧和替代的實_巾,其製程順序可以使用不同 的轉印擴散物源當作擴散障蔽層而用來產生帶圖案的擴散 層。如此處所討論者,不同的糊材料可以買得到,譬如由費 洛公司(Ferro Corporati〇n),用來執_或_擴散製程, 並可以經配方輸散_層之用。·扣上所述之實施例 用到帶有摻_的擴散賴層之p__晶圓時,其他實施例 就成為可能而可以仔細考慮的。 也有可此疋包括-種’譬如,n+擴散糊料,其最好是未包含 擴散障蔽層之成份者,用於形成—種較高n++的區域,最好是 包含了孔洞30的格柵。施用這些糊料可以用網版轉印法。在 施用之後,該等糊料經過乾燥而除核機物f和揮發性材 =,並且在高溫下烘培而將摻雜物擴散進人狀内。糊料通 “有摻雜物素的氧化物;這些氧化物可以在摻雜物擴散 後以氫氟酸钱刻去除之。 此-製程可能被隨意選擇地修改以產生太陽能電池裡一種選 擇性的射體輯。就此實施例而言,孔洞和後表面最好是被 濃密地換配以得到低電阻,然而前表面被更輕淡地摻配,提 i、了車又冋的^與輯。在以上製針,步驟6將會被較少量 31 1296858 的P0C13擴散層(最好是80至loo歐姆/平方)所取代。在步驟9 之後,第二次,濃密的POC13擴散(最好是小於大約2〇歐姆/ 平方),將會被執行,最好是接著進行氳氟酸姓刻去除磷擴散 玻璃和某些氮化物,以形成一種抗反射塗層於前表面上。當 氮化物最多只有少許沉積於孔洞之内,而且最好是根本不存 在於該處時,此-改型變體運作得最好;這樣個一種非等 方性的PECVD製程會是優先的考慮。Wrap-Through Back Contact Solar Cells On Thin Silicon Wafers" to Gee and Schmit, and filed on June 29, 2004) ^ The applicants are hereby incorporated by reference. The wafer can be any area, such as 25 square centimeters or 1 square centimeter (1 centimeter χ 1 centimeter), or # may be a little larger, such as 156 square centimeters or 225 square centimeters currently in use. In a first step of the various embodiments described below, the holes are used to form the conductive channels and are introduced into the planar germanium wafer 12 having the front and back surfaces, as shown in Figures 2A and 2B. The holes connect the front surface of the wafer to the back surface, which is preferably formed by laser drilling, but may be formed by other processes, such as dry engraving, wet engraving, mechanical drilling, or Water jet machining. In the case of laser drilling, the laser used is preferably at a wavelength of 16 1296858 with sufficient discrimination or intensity to facilitate the introduction of the shortest time, for example from about 5 milliseconds to 5 milliseconds per hole. One possibility is to use a Q-switched titanium yttrium aluminum garnet laser (Nd: YAGLaser). The time used for the introduction of wafers for the lucky/mother-to-L-hole is also proportionally shortened. The diameter of the passage holes may be from about 25 to 125 microns, preferably from about 30 to 6 microns. In the case where a thin crystal is used, for example, a wafer thickness of a micron or less, the diameter of the via hole is approximately greater than or equal to the thickness of the wafer. The channel hole per unit surface area _ is based on the degree of resistance of the material. In some cases, the current is transmitted through the hole through the hole to reach the acceptable resistance loss of the material Φ. This can be determined empirically or theoretically; the hole density of the channel in the method of the present invention may be reduced by reducing the resistance, e.g., by ohms/square (Q/sq). Typically, the channel hole density is 1 hole per square millimeter to 2 square millimeters, but it may also be the lower density, for example, 1 hole per 2 to about 4 square millimeters. After the introduction of the holes, for example by laser drilling, followed by the usual alkaline etching steps, the part is designed to minimize the irregularities caused by the introduction of holes. Any commonly used method can be used, for example, at about 80 ° C to a large _. (10) A temperature of «% by weight of sodium hydroxide or potassium hydroxide which removes a surface of about 10 microns. Use of a thin-diffusion source paste In an embodiment of the invention, a diffused diffused material source is used, with a screened diffuser source as a priority, and a dopant is provided inside the void. Although the source of the 'V mouth and the moon is 17 1296858 is known, as taught in US Patent No. 4,478,879, the material is never in the Lin EWT battery structure, or used in the hole. A higher concentration of η-dopant is produced in the immediate vicinity thereof, thereby providing a reduced series resistance. Applicants have inadvertently discovered that a source of diffused diffusion, such as a phosphorus-diffusion source, is selectively applied to the pore region, and the grid lines including the pore portions, resulting in a greatly increased concentration of dopants and Reduced resistance. The representative process sequence for the transfer of the diffused material source for the manufacture of the back contact type EWT battery is as follows. 1. Laser drilling 2. Alkaline etching 3. Transfer the phosphorus-diffusion source onto the front surface and dry it. 4. Transfer the phosphorus-diffusion source onto the back surface and dry it. The boron-diffusion source is transferred onto the back surface and dried. 6. The dopant is diffused into the crucible in a high temperature furnace. 7. Hydrogen fluoride etching (both surfaces are phosgenated) 8. Plasma treatment is applied to the front surface. Chemical vapor deposition (PECVD) 9. Plasma-assisted chemical vapor deposition (PECVD) on the back surface 10. Transfer and dry the silver metal paste for the negative polarity grid. 11. Transfer the silver to the positive polarity grid: aluminum metal Paste and dry it 12. The clothing (four) sequence of the baking contact surface is generally described in 3D, which illustrates that the manufacturing process of this method also reveals other advantages. The cross-sectional view of Fig. 2A shows that the wafer 12 has been drilled and etched to create a hole 3, which is the above steps 丨 and 2. Figure 2B is a top plan view of a portion of wafer 12 showing a plurality of holes spaced apart in a sequence. Figure 3A is a cross-sectional view of wafer 12 after the phosphor-diffusion paste has been transferred to the front and back surfaces in a patterned pattern such that each row of holes 3 is covered by a row of pastes 32. The boron-diffusion source paste 34 is transferred onto the rear surface so as to form a grid region where the pastes 32 and 34 form a mutual cross. Thus, FIG. 3A shows the wafer formed through the above steps 3 to 5. These pastes are converted to diffusion source oxides after drying and baking. The figure shows the wafer after the dopant has diffused southward. The boron diffusion layer 40 is generated by being diffused into the crucible below the diffusion oxide. Phosphorus is diffused into the crucible below the phosphorus-diffusion oxide to produce a phosphorus-diffusion layer. The diffusion layer is densely doped because phosphorus is easily diffused and has a higher surface concentration than boron. The entire area inside the hole 30 is densely blended, even if the doped paste does not fill the hole G, the g is the inner surface of the hole is from the front side and the back side of the hole doping paste 32 The dopant is full and saturated. The densely blended surface 36 is advantageous because it reduces the contact resistance with the subsequent grid applied to the back surface, reduces the resistance loss when conducting through the holes 3, and reduces conduction to the front surface. Loss of resistance at the time of the hole 30. As shown further in Figure 3B, the lightly blended layer 38 is produced on the surface of the crucible exposed on the front and back surfaces. The phosphorus of the lightly blended phosphorus diffusion layer 38 is derived from the T-doped material in the doped paste 32 which is evaporated from the barrier-diffusion oxide during the 19-high dispersion, and also evaporates from the sound-diffusing oxide, but The vapor pressure is low and the main vermiculite 4 is diffused into the exposed surface. It is advantageous to have a lightly diffused layer 38 on the front surface, which provides a combination of the best current collection and the lowest surface recombination. It is also advantageous to lightly mix the blended phosphorus diffusion layer 38 on the back surface because the scales have a passivation effect on the back surface, and the place where the scale diffusion layer is in contact with the butterfly diffusion layer is less likely to cause electrical Diversion. Therefore, this process sequence produces a battery structure with high efficiency potential. After the diffusion of the high temperature dopant, a side step (hydrogen fluoride enrichment) using an aqueous solution of hydrofluoric acid (HF acid) is usually used. Any suitable acid name can be used, for example, 10% hydrofluoric acid. Any common method of applying the secret coffee may be used, including immersing the wafer in a solution containing hydrofluoric acid. With sufficient hydrofluoric acid segment _ so that the surface and the back surface are water-staining, which can be determined by the sheeting effect of the hydrofluoric acid aqueous solution when the wafer is removed from the solution. The surface of the bare original stone that may be produced by the surname may need to be purified by deposition of a dielectric layer. The nitrided silicon (SiN) deposited by plasma-assisted chemical vapor deposition (PECVD) is used for solar cell fabrication as a surface passivation. a well-known technique, either 'thermal growth with a layer of SiO2 (Si2), or with other dielectric materials such as oxidizing), bismuth (Ti〇2), five 1296858 KTa2G5) and the like are deposited using a non-finished cylinder, such as a transfer method, a spray method, and a Wei-Yi-Yi, to purify the shaft surface. - Generally, as discussed below, the diffusion-barrier oxide does not need to be completely removed. If it has the nature of the town: the tree layer has a good interface and low recombination, and silver·Sau or other P-type joints can be baked and the low-resistance contact with the p-type substrate. In a certain embodiment, in the screen printing The last material frit is used in the point material. Leaving the diffusion-barrier oxide in place allows for at least one processing step, PEcvj) deposition step on the back surface. After surface passivation, a negative-polar grid connection is then applied. Point and positive-polar grid joints. Any common common method of grid metal application may be used, for example, silver paste is screen-transferred as a negative-polar grid joint, while silver: aluminum paste is transferred. Printing as a positive-polar grid contact. The paste can be made by re-combining a particle type of silver or silver: aluminum, and as appropriate, a liquid formulation may additionally contain a binder, a solvent, and in the present technology. Substances that are known and commonly used in the field, so that they can be used as a paste for screen transfer. It is also possible and worthwhile to utilize a paste formulation that contains components that can decompose nitrides (see M. Hilary et al.) Self-blending silver paste baking optimization to achieve high fill factor on tantalum solar cells with 100 ohm/square emitters" 'The 29th International Electro-Mechanical Engineers Association Optoelectronics Expert Workshop, New Orleans, Louisiana, May 2, 2, incorporated herein by reference (seeM. Hilali, et al., ffOptimization of self-doping Ag paste 21 1296858 firing to achieve high fill factors On screen-printed silicon solar cells with a 100 ohm/sq. emitter% 29th IEEE Photovoltaic Specialists Conf·, New Orleans, LA, May 2002, incorporated here by reference)), such as glass frit. The wafer is then baked to metallize the grid contacts. 3C shows a completed solar cell with a silver-aluminum paste as a negative-polar grid and a silver paste as a positive-polar grid, and a silver-negative negative-φ polar grid junction 42 after baking and Silver: Aluminum positive-polar grid contact 44. The layer of tantalum nitride deposited by PECVD, which can be optionally applied, is not clearly shown. Please note that all figures, including here and elsewhere in this application, the size and size of the holes and enamel substrates, the spacing and relative size of the different component structures, the thickness of the different layers, and other dimensions are not scaled. , but a display of the outline mode for illustration and easy identification. As shown in Fig. 3D, in a consistent example of a product obtained by screen printing a diffused material source, special (9) is a fill-source source is a desired pattern pattern 36 plus a channel hole 30 '(4) An increase in dopant concentration and a corresponding decrease in the encapsulation resistance are provided, such as a 'negative-polarity grid. The pattern pattern can be used with the sound. It is also the county _ sound ___ material fine front surface on the back surface. On the back surface, the pattern pattern 36 is then partially replaced (10) by the metallized grid 44, in the overlaying action of the pattern. It is also possible, for example, on the front surface to provide a grid of increased density of the inclusions 22 1296858 on the χ-axis and the broad axis, which is derived from the pattern pattern of the screen 璘 diffusion source, causing the channel to appear on every -x - The intersection of the grid line and the 7_ grid line, thus providing better current collection capability. There is also a diffusion effect of a small amount of domain impurities, such as chlorinated _(_3), and the subsequent oxidized side presses it to provide surface passivation on the front and back surfaces. Preferably, the process step is turned off prior to the hydrogen __ step to remove the diffusion source oxide. In the case of another phase-implementation, the step of the WE-diffusion chlorination (P0C13) is as described above, and the step of transferring the phosphorus-diffusion source onto the front surface is omitted. In each such implementation, the amount of impurities caused in the pore structure is higher than the average scale doping amount on the surface of the former money. A similar process sequence can be used for the fabrication of other back contact cell structures. In this-embodiment, especially on the back surface, 'Q(1) redundancy is not required, if the diffusion-source oxide and silk plate are low-re-combination interface, and if silver and silver: noisy check# Low-connected __ oxygen recording baking, for example, using the shaft of Chengchi and the silver paste of the job. The extension of the diffusion barrier diffusion barrier of Marriage 7 is used in another example of Ben Maoming, which uses a diffusion barrier layer to prevent or limit the diffusion of fjn+, such as chlorination (10) (3) Those who are known to add gas enthalpy dopants. It is best to transfer the diffusion barrier layer to 23 1296858, Niang. The straight-on-printing layer can be applied simply and directly to the patterning step. Suitable materials for the diffusion barrier layer can be purchased, 4 such as *, Feiluo (Kefran Ohio) supply of titanium dioxide anti-reflective layer of transfer paste, as a layer of enamel material, and as a All of these materials provide a good barrier work in the diffusion side of phosphorus. Although some (four) systems, such as transfer gods, have not previously been described as providing a diffusion layer. The composition of the glass provides the added benefit of dispersing under the barrier material, helping to passivate the surface and reduce the fine resistance of the positive contact. The diffusion barrier material is applied to the desired yoke, for example, by the _ plate transfer method, although there are also 曰代方村(四)上', for example, ink jet printing, masking method, etc., assuming that such a method can produce a tape _ diffusion barrier material. In the present example and the following examples, the dopant diffusion is preferably carried out using a gaseous source such as chlorination (p?cl3) to perform scale diffusion. Other sources of diffusion sources, such as _ source or spray diffuser sources, may also be used. The oxide from the complete side is usually removed from the hydrogen as it may cause reliability problems in the package. Therefore, its preferred order is to remove the scale oxides and diffusion-block oxides from the scale diffusion layer by hydrofluorination. The surface of the bare rock may need to be passivated by the sinking of a dielectric layer. In the solar cell fabrication (10) surface passivation process, the nitride nitride (10) deposited by the plasma assisted chemical vapor deposition (PECVD) is a well-known technique. Alternatively, it may be grown by the thermal growth of the layer of the oxidized hair (10) 2) or by other dielectric materials such as cerium oxide (Si〇2), titanium dioxide (Τι〇2), and pentoxide (10) (6). For example, a transfer method, a spray coating method, or a chemical vapor deposition method is used to form surface passivation. In general, as discussed below, the diffusion-shielding oxide does not need to be completely removed. (IV) has the following properties: good interface with the outer layer and low recombination, as well as silver·· Lu or other p-type The contact material can be used for the whole material to be cultured and the low-resistance pick-up of the type-type Shixi substrate is used in the joint material of the plant-transfer. Leaving the diffusion-barrier oxide in place allows for at least a processing step, a PEOT) deposition step on the back surface. The representative process sequence for producing a fine contact cell using the transferred diffusion layer is as follows. The step of providing a diffusion __ oxygen recording removal step (as discussed above) "double surface hydrofluoric acid residue, hydration" step, and diffusing the -P capping oxide to form a surface passivation layer Replacement, for example, for surface blunt lion nitrogen cuts. Fine, domain-like, if the diffusion, the oxidized fresh ^ (four) 妓 good interface, the job - the hetero-oxides do not have to be completely removed and replaced by PECVD nitride, so you can omit a step. 1·Laser drilling 2·Intestinal|Insect engraving 25 1296858 ' 3. Transfer diffusion barrier layer 4. Dry and bake 5· Surname and clean the wafer 6. Use phosphine chloride (P0C13) (30 Up to 60 ohms/square) 7. Hydrogen fluoride etching (both surfaces are phosgenated) 8. Pre-surface application of plasma-assisted chemical vapor deposition (PECVD) of tantalum nitride 9. Post-surface application of plasma-assisted chemical vapor deposition (10) CVD) 矽 矽 1 〇 · Negative grid transfer silver metal paste 11 · Positive grid transfer silver · Aluminum metal paste 12. Baking joints Alternative embodiments of the method are possible Careful consideration. In a preferred alternative embodiment, the figure is depicted in the wafer 12 with a diffusion barrier layer 9, such as a titanium dioxide paste, applied such that a space between a pair of mutually adjacent diffusion barrier layers 90 will be in the next-step shot. Used as a positive polarity grid. This is followed by steps 1 through 4 of the above, resulting in the apparatus of Figure 4A. However, after the disc diffusion step is used, for example, using POC13 (30 to 60 ohms/square), a device with a diffusion layer 92 is produced. Alternatively, other dopants may also be used. Then, using the above-mentioned residual steps, the scale glass formed during the diffusion of P〇C13 is invaded, and the diffusion barrier is protected from the original place. Nitride is conventionally deposited by electropolymerization assisted chemical gas accumulation (PECVD) or other methods and materials for purification. Qianhua Weiji in _ (not shown, the negative polarity is connected to the 26 1296858 point silver grid is transferred by screen printing, the positive polarity contact silver · aluminum grille is transferred by screen printing, and the wafer is baked "The result, as shown in FIG. 4c, is a battery with a diffusion barrier layer 90, a positive polarity screen transfer silver aluminum or aluminum grid substrate 96, and a negative polarity screen transfer silver grid substrate. 98. As shown in FIG. 4C, the screen printed positive grid substrate 96 may partially overlap with a portion of the diffusion barrier layer 9' or may be entirely placed on the side edge of the diffusion barrier layer 9〇. The name of the screen printing (which may be an I-lu alloy, such as silver····································································· 4C. However, at the time of baking, the metallization of the aluminum-bottom forms a P+ layer to replace the existing n+ diffusion layer. There may be a silver-aluminum or aluminum lattice in which the frit is contained in the screen of the positive electrode. In the gate substrate 96. Thus, the n+ region under the p-type contact is successfully over-blended; that is, one pass The puncture joint of the n+ region is made of a p-type substrate. In another derivative variation, the in-dopant metal is baked at a temperature exceeding the aluminum-bismuth eutectic temperature, resulting in the contact region also being Φ added to the stone. In the evening, as shown in FIG. 4D, when baking, the screen of the n+ diffusion layer 92 in the vicinity of the positive electrode is transferred to the silver. The aluminum or aluminum grid substrate is shamefully covered by the grating substrate. Excessively-mixed, resulting in a junction 96. In yet another particularly preferred embodiment, the diffusion barrier layer comprises a source of time dopants, whichever is preferred. The diffusion layer of the plate is transferred, such as a titanium dioxide paste containing a single compound, such as a boron oxide species in a certain embodiment. As a paste of boron diffusion barrier 27 1296858 layer 94 Containing a small amount of _ diffusion layer (4), such as the latter P-type body can be used or formed to form a diffusion barrier «including the blended dielectric paste, including but not limited to, gallium or steel is the highest priority Is - or more of the former oxidized compound. In an example, the diffusion layer provides over-pf+ doping with oxide as a priority. Alternatively, boron or other P-dopant barrier layer can be sprayed, ink-jetted, or screen-transferred. When the scale is diffused into the human eve, (4) the blending region, the P-type receptor in the dielectric preferably diffuses into the substrate at the same time, producing a P-type region while saving a step at the same time. Thus, after the screen printing and the boron diffusion barrier layer (10) are baked, the diffusion of the above phosphorus is used, for example, using P0C13 (30 to 60 ohms/square), resulting in co-diffusion with the disk. As shown therein, the resulting structure includes an n+ diffusion layer, preferably diffused to about 30-50 ohms/square as in some examples, and the diffusion layer 100, preferably diffused to about 100-500 ohms. / square as in the same example. Next, the phosphor glass formed during the diffusion of P0C13 is etched away by the above etching step, and the boron diffusion barrier layer 94 is left in place. The tantalum nitride is conventionally deposited by plasma assisted chemical vapor deposition (PECVD) or other methods and materials for passivation. After the tantalum nitride is deposited on both sides (not shown), the 'negative contact silver lattice thumb is transferred by screen printing, and the positive polarity contact silver · Ming grille' or more preferred is aluminum grille, The screen is transferred and the wafer is baked. As a result, as shown in FIG. 4G, a battery with a boron diffusion barrier layer 28 1296858 94, a positive polarity screen transfer silver: a Ming or aluminum grid substrate %, and a negative polarity screen transfer silver grid Substrate 98. As shown in FIG. 4G, the screen printed positive grid substrate 96 may partially overlap with a portion of the barrier layer 94, or may be entirely placed on the boron diffusion barrier layer 94 (not shown). Between the side edges. The screen printed aluminum (which may be an aluminum alloy such as silver: aluminum, or may be substantially substantially aluminum) is applied to the existing n-type diffusion layer as shown. However, at the time of baking, the metallization of the aluminum-bottom forms a mouth + layer. • Replaces the existing rvf diffusion layer. There may be a frit included in the positive: screen or silver plate 96 printed on the positive screen. Thus, the # region below the p~-type contact is successfully over-blended; that is, a puncture contact through the n+ region is made with a p-type substrate. In another variant, the dopant metal is baked at a temperature above the aluminum-bismuth co-dissolution temperature, causing the contact region to also be added to the alloy. Thus, as shown in FIG. 4G, when the paste is being baked, the silver: aluminum or aluminum grid substrate 96 in the n+ diffusion layer 92 adjacent to the positive screen is partially over-matched by the aluminum in the grid. And a contact 96 is formed adjacent to and in contact with the p+ diffusion layer 1〇〇. In yet another preferred embodiment, a diffusion barrier layer 9 is applied as shown in Figure 41, followed by an n+ diffusion step, such as a phosphorus diffusion step using POC13 (30 to 60 ohms/square) to produce an n+ diffusion layer. 92. After the tantalum nitride is deposited on both sides (not shown), the negative contact silver grid is transferred in screen, and the positive contact silver: aluminum grid, or more preferably the aluminum grid, is Screen printing. The junction 29 1296858 - S ' is not shown in Figure 4J is a battery with a diffusion barrier layer 9G, a positive-working screen transfer silver: 绍 or a secret grid substrate 96, which contains a refining block or other material to drive the substrate 96 passes through the barrier layer 90, and the negative grid plate transfer of the silver grid substrate 98. The screen transfer imprint (which may be an alloy of inscription, such as silver: or may be substantially in general! g) is applied directly to the diffusion barrier layer 9', as shown in Figure 4J. However, at the time of the bake, the metallization of the bottom-bottom drives the thinning through the barrier, as shown in the class 'and!', the formation of the seed layer below it φ (not shown). In a related preferred embodiment, as shown in Figure 4L, a diffusion barrier layer 9 is applied followed by an n+ diffusion step, such as a phosphorus diffusion step using POC13 (30 to 60 ohms/square), resulting in #diffusion Layer 92 is followed by application of a patterned anti-56. After the application of anti-56 and the deposition of nitride on both sides (not shown), the engraving step is used to invade and de-expose the exposed portion of the diffusion barrier layer 90, as shown by the off. On the side of the encapsulation layer (10), the surface of the anti-money agent is removed and the wafer is cleaned. A negative polarity contact silver grid 98 is transferred by a stencil, and a positive polarity contact silver · · chirp 96, or more preferably an Ilu grid 96, is transferred by screen printing. As a result, as shown in the figure, the 疋-battery is provided with a diffusion barrier layer 9 〇, a positive polarity screen transfer silver: an aluminum or Ming grid substrate 96, and a negative polarity screen transfer silver grid substrate. 98. Screen transfer _ (which may be -_alloy, such as silver · · ·, or may be substantially intrinsic), applied to the diffusion barrier 30 1296858 mask 90 removed by the anti-melting agent and rhyme steps There is a pattern part, as shown in Figure 4M. When this is properly baked, the metallization of the bottom _ causes direct contact with the 2, as shown by the reward, and together with the inscription forms a p+ layer below it (not shown). In yet another side and alternative, the process sequence can be used to create a patterned diffusion layer using a different transfer diffuser source as a diffusion barrier. As discussed herein, different paste materials are commercially available, such as by Ferro Corporati, for use in the process of _ or _ diffusion, and can be used to transfer the _ layer. Embodiments Deducted The other embodiments are possible and can be carefully considered when using a p__ wafer with a diffusion-doped layer. It is also possible to include, for example, an n+ diffusion paste which is preferably a component which does not comprise a diffusion barrier layer for forming a region of higher n++, preferably a grid comprising holes 30. The screen transfer method can be applied by applying these pastes. After application, the pastes are dried to remove the core material f and the volatile material = and are baked at a high temperature to diffuse the dopant into the human form. The paste passes "oxides with dopants; these oxides can be removed by hydrofluoric acid after the dopants have diffused. This process may be arbitrarily modified to produce a selectivity in solar cells. In this embodiment, the holes and the back surface are preferably densely matched to obtain a low resistance, but the front surface is blended lightly, and the car and the car are smashed. In the above needle production, step 6 will be replaced by a smaller amount of P0C13 diffusion layer (preferably 80 to loo ohms/square) of 31 1296858. After step 9, the second time, dense POC13 diffusion (preferably Less than about 2 ohms/square) will be performed, preferably followed by fluoric acid removal of the phosphorus diffusion glass and certain nitrides to form an anti-reflective coating on the front surface. This modified variant works best when only a small amount is deposited in the hole, and preferably does not exist there at all; such an anisotropic PECVD process would be a priority.

旋塗玻璃擴散障 在另-實施财,背面接點式電池賴程順序關旋塗玻璃 (SOG)的沉積和網版轉印式抗㈣的加職過程。旋塗玻璃 (SOG)係在射體擴散步驟中作為障蔽層之用(”擴散障蔽層氧 化物)SOG係以普通常見方式沉積,例如由旋塗法或喷塗 法而取好疋在南溫爐中予以乾燥和緻密化。最好是該娜也 被用來_任何各種不同的電介質材料。這樣s〇g可能是石夕土Spin-on glass diffusion barrier In the other-implementation, the back-contact battery is in the process of spin-coating (SOG) deposition and screen transfer resistance (4). Spin-on-glass (SOG) is used as a barrier layer in the emitter diffusion step ("diffusion barrier oxide" SOG system is deposited in the usual way, such as by spin coating or spray coating. It is dried and densified in the furnace. It is best that the Na is also used for any of a variety of different dielectric materials. So s〇g may be Shi Xi Tu

(Sl〇2):酸爛玻璃⑽)、脱混合其他P-型摻雜物的氧化 物者(叙、紹、銦等)、魏魏璃⑽)、二氧化鈦⑽2), 以及其鱗等。此—赋的SQG在錢縣人所知曉,而 ⑽她1祕司(_,賓州)供應各觀樣的材料。二氧 表疋有利的因為二氧化物夕晶圓之間形成的介面 祕點IΓ再結合性。御____另具有額外 —自作用為爛或磷的摻雜物源。位在已緻密化的 32 1296858 BSG或PSG層之下又輕淡摻配的接面有助於改善電池性能並使 表面鈍化。SGG㈣具有額外的優點是無毒性並且容易製作處 理。先刚過⑽技財法,如揭露域國專利編號5,咖,哪 者以用到例如磷化氫與魏或者二观與魏的化合物,其 化合物有毒並且轉專業化賴作管理域理設備。 SOG以第-次轉印與飿刻抗侧而加上圖案式樣,紐執行一 種化學侧。轉印過如使關版轉顿紐先,但是其他 轉印方法’例如油墨噴印、模版印刷、平版印刷之類等等, 也可以被用上。任何各種不同材料可以用作為侧抗钱劑。 作為抗侧的要求只是可轉印以及能對化學侵健液有抗姓 作用。氫氟酸的水溶液是廣為人知作氧化物材料蝕刻者。 種代表性的製程順序描述於下者,為利用s〇G作為擴散障蔽 層以製造背面接點式EWT太陽能電池。類似的製程順序可以用 於其他背面接點式電池結構例如MWA、MWT、或背側—接面式太 陽能電池。負極性和正極性接點之網版轉印的銀格栅最好是 通過氮化矽烘烤以便能接觸矽,這是在相關技術領域中為人 所知者。 在使用以網版轉印的抗蝕劑作成圖案式樣之s〇G形成背面接 點式EWT太陽能電池的製程順序中,有提供一種p—型矽半導體 基板。通常該矽質基板典型者為多結晶質的或聚結晶質的, 但是其他型式的石夕質基板也可能用上,包括但不限於單結晶 33 I296858 ο 第一和第二步驟,雷射鑽孔與蝕刻,係如上所述。在第三步 驟裡,則是SOG被施用。如上所討論者,SOG在射體擴散步驟 期間係當作一種障蔽層,而且可隨意選擇但也優先作為沉積 電介質材料。SOG係以普通常見方法沉積,例如旋塗法或噴塗 法,或是由其他方式如浸泡於包含S0G材料的溶液中,然後放 入高溫爐中予以乾燥和緻密化。優先作為s〇G的是矽土 (Si02)、矽酸硼玻璃(BSG)、BSG混合額外p-型摻雜物的氧化 物者、矽酸填玻璃(PSG)、或是二氧化鈦(Ti〇2)。通常,典型 做法是SOG施用於後表面,而在高溫爐緻密化後產生厚度大約 〇· 1至1微米者。 在SOG的贿狀後,#有-層抗_轉印,修簡版轉印 方式’但疋則丨人帶圖案的抗爾彳之替代方法也可用上。抗 鋪圖案錄提供至少有―組細格_随,其典型者為 圖案内互相又合的接觸格栅在此領域巾為人職知,例如此 處提供的正雜_。任㈣合眺_漏可能被用到; 然而’报重要應雜意岐不會朗光_材料,而是用一 種抗化學性的抗韻劑材料,而具體明確者是一種抗酸的物 質,以至於當晶圓接受酸餘刻處理時s〇G沒有從帶圖案區域被 移除掉。 在錢劑的轉补麵步驟讀,晶圓再祕_移除紐 34 1296858 劑覆盍區域以外的SOG。任何適合的酸餘刻法可能用上,只要 該抗蝕劑能不被化學蝕刻劑溶液除去。在某一優先實施例 中,一種氫氟酸的水溶液,例如1〇%氫氟酸,被用上。施用蝕 刻劑的任何普通方法都可能被用上,包括將晶圓浸泡於含有 氳氟酸的錄巾。SGG在此步職間被從孔_馨除,以及 從平的前表面與後表面未被抗蝕劑覆蓋的部份。 在蝕刻步驟之後,抗蝕劑被脫除而晶圓則被清潔乾淨。以化 # 學浴液或是其他用以除去抗蝕劑的方法係依所用的抗蝕劑而 定。晶圓也可以再進一步清潔,使用合適的化學清洗溶液, 譬如說包含過氧化氫和硫酸成分者。所作成的產品是一種有 圖案的晶圓其中S0G僅在抗蝕劑被施用上的區域出現。 _ 一種相對濃密的磷擴散層係以普通常見的方法施用之,包括 叙先利用到液悲P0C13的氣相擴散,以產生4〇至歐姆/平方 的表面電阻。然而,其他的擴散物源或方法也可能被用到, # 包括液體物源晋通方法之應用,例如塗層、浸泡或旋塗法之 加用,或者是固體物源者,例如固體物源材料,例如五氧化 一石4,之加熱到咼溫。一般而言,以普通氣體狀態的p〇Q3為 優先。 在磷擴散步驟之後,晶圓再度被施以化學蝕刻,例如使用氫 氟酸。以足夠的氫氟酸施用一段時間以便使得前表面和後表 面成為恐水性,其可以由當將晶圓取離溶液時氫氟酸水溶液 35 1296858 產生的’’覆蓋π效應確定之。 在第二次蝕刻步驟之後,前側與後側的裸原矽表面最好是, 但也是隨意地,以一種電介質層的沉積予以鈍化之。氮化石夕 可能按照慣例地以PECVD法沉積,或者是鈍化作用的其他方法 和材料可能被用上。如此處討論者假如後表面擴散—障蔽層氧 化物沒有以例如化學蝕刻法去除之,這在某些條件下是可行 的正如以上討論者,那麼後表面的鈍化步驟即可省去。(Sl〇2): acid-destroyed glass (10)), deoxidized oxides of other P-type dopants (Sui, Shao, indium, etc.), Weiweili (10), titanium dioxide (10) 2), and scales thereof. This - the SQG is known to the people in Qianxian, and (10) her 1 secret secretary (_, Pennsylvania) supplies all kinds of observation materials. The dioxometer is advantageous because of the interface re-combination formed between the dioxide wafers. Royal ____ has an additional source of dopants that act as decay or phosphorus. A lightly blended junction below the densified 32 1296858 BSG or PSG layer helps improve battery performance and passivate the surface. SGG (4) has the additional advantage of being non-toxic and easy to manufacture. Just after (10) technology, such as the disclosure of the country's patent number 5, coffee, which uses, for example, phosphine and Wei or diguan and Wei compounds, the compounds are toxic and specialization depends on management domain equipment . The SOG adds a pattern to the first transfer and the engraved side, and a chemical side is performed. The transfer can be turned over, but other transfer methods such as ink jet printing, stencil printing, lithography, etc. can also be used. Any of a variety of different materials can be used as a side anti-money agent. As an anti-side requirement, it is only transferable and has an anti-surname effect on chemical invasive liquids. Aqueous solutions of hydrofluoric acid are widely known as oxide material etchers. A representative process sequence is described below to make a back contact type EWT solar cell using s〇G as a diffusion barrier. A similar process sequence can be used for other back contact cell structures such as MWA, MWT, or backside-junction solar cells. The screen-transferred silver grid of the negative polarity and the positive polarity contacts is preferably baked by tantalum nitride so as to be in contact with the crucible, which is well known in the related art. A p-type germanium semiconductor substrate is provided in a process sequence for forming a back contact type EWT solar cell using a pattern transferred by a screen transfer resist. Usually, the enamel substrate is typically polycrystalline or polycrystalline, but other types of slab substrates may also be used, including but not limited to single crystal 33 I296858 ο first and second steps, laser drill Holes and etching are as described above. In the third step, SOG is applied. As discussed above, the SOG acts as a barrier during the emitter diffusion step and is optional but also preferred as a deposition dielectric material. The SOG is deposited by conventional common methods, such as spin coating or spray coating, or by other means such as immersion in a solution containing SOG material, and then placed in a high temperature furnace for drying and densification. Preferred as s〇G is alumina (Si02), borosilicate glass (BSG), BSG mixed with additional p-type dopants, phthalic acid filled glass (PSG), or titanium dioxide (Ti〇2) ). Typically, SOG is typically applied to the back surface and is produced to a thickness of about 〇 1 to 1 μm after densification in a high temperature furnace. After the bribe of SOG, #有-层抗-transfer, the simplified transfer method is used, but the alternative method of 丨人带 pattern is also available. The anti-paving pattern provides at least a group of fine grids, which are typically in the pattern of mutually matching contact grids in this area of the towel, such as the one provided here. Any (4) merger _ leak may be used; however, 'reporting important should not be ambiguous _ material, but using a chemical resistance rhythmic material, and specifically clear is an acid-resistant substance, So that s〇G is not removed from the patterned area when the wafer is subjected to acid residue processing. Read the replenishment step of the money agent, and re-send the wafer to remove the SOG outside the coverage area of the 34 1296858 agent. Any suitable acid residueing process may be used as long as the resist is not removed by the chemical etchant solution. In a preferred embodiment, an aqueous solution of hydrofluoric acid, such as 1% hydrofluoric acid, is used. Any conventional method of applying an etchant may be used, including immersing the wafer in a tissue containing fluorofluoric acid. SGG is removed from the hole during this step, and from the flat front and back surfaces that are not covered by the resist. After the etching step, the resist is removed and the wafer is cleaned. The method of using the bath or other means for removing the resist depends on the resist used. The wafer can also be further cleaned using a suitable chemical cleaning solution, such as those containing hydrogen peroxide and sulfuric acid. The resulting product is a patterned wafer in which S0G appears only in the area where the resist is applied. _ A relatively dense phosphorus diffusion layer is applied in a common and common manner, including the use of gas phase diffusion of liquid sad P0C13 to produce a surface resistance of 4 〇 to ohms/square. However, other sources or methods of diffusion may also be used, including the application of liquid source methods such as coating, soaking or spin coating, or solid sources such as solid sources. A material, such as a pentoxide stone 4, is heated to a temperature of enthalpy. In general, p〇Q3 in the normal gas state is preferred. After the phosphorus diffusion step, the wafer is again subjected to chemical etching, for example using hydrofluoric acid. Sufficient hydrofluoric acid is applied for a period of time to render the front and back surfaces water-labile, which can be determined by the ''covering π effect produced by the hydrofluoric acid aqueous solution 35 1296858 when the wafer is removed from the solution. After the second etching step, the bare front surface of the front side and the back side is preferably, but is also optionally, passivated by deposition of a dielectric layer. Nitride may be conventionally deposited by PECVD, or other methods and materials for passivation may be used. As discussed herein, if the back surface diffusion-barrier oxide is not removed by, for example, chemical etching, this is feasible under certain conditions. As discussed above, the passivation step of the back surface can be omitted.

在鈍化作用之後,負-極性格柵接點和正—極性格栅接點接著 被施用上。任何普通常見的格栅金屬_方法都可能用上, 例如為負-極性格栅接點以網版轉印一種銀糊料,而為正—極 性格栅接轉印-觀··軸料。㈣可以由—翻粒型式的 銀或銀再組合作用而作成,如適當者,-餘態配方其 I能另外包含黏結劑、溶劑,以及在本技術領域為人所知而 系用之物s以作成可以作網版轉印的糊料。也有可能並值 得利用—種糊料配方其包含的成分可时解氮化物者(參見Μ. ’ s_) ’例如—種玻雜塊。接下來晶圓被供 焙以便將格栅接點金屬化。 =就可看出此—方法可能綜整如下,也被了糊—些步驟 "、3所π者*相同的次縣執行,而減產出想要 的產品: 1·雷射鑽孔 36 1296858 2·鹼性I虫刻晶圓 3·施用旋塗玻璃(s〇G) 4·旋塗玻璃(S0G)緻密化 5·轉印抗|虫劑 6·蝕刻旋塗玻璃(S0G) 7·脫除抗蝕劑並將晶圓弄乾淨 8·氣化礙醯(P0C13)擴散(40至6〇歐姆/平方) φ 9·氟化氫|虫刻,二表面皆予以恐水化 ιο·前表面上施用電漿辅助化學氣相沉積(PECVD)之氮化物 11·後表面上施用電漿輔助化學氣相沉積QDECVD)之氮化物 12·為負極性格柵轉印銀金屬糊料 13·為正極性格柵轉印銀··鋁金屬糊料 14.烘焙接點 如圖5A所示,孔洞52以雷射鑽成孔而鹼性蝕刻則完成於矽質 # 基板,最好是?—型矽晶圓50。一種P-型旋塗玻璃54接著被施 用於後表面如圖5B中所示者,例如砍酸石朋玻璃(Β%),或是bsg 或其他S0G混合其他p-型摻雜物的氧化物者,例如鎵、銦或 鋁。一種轉印的蝕刻抗蝕劑56接著被施用於與想要的格柵相 對應之圖案中。在蝕刻步驟之後,例如氳氟酸蝕刻,一種p— 型帶圖案的旋塗玻璃54形成了,如圖5C中所示。孔洞52内的 P-型帶圖案的旋塗玻璃在蝕刻步驟期間也被移除掉,以致剩 37 1296858 下的結構只是由被抗蝕劑56覆蓋而帶圖案的p—型s〇G所組 成。如圖5D中所示,抗蝕劑接著被除去,以至於只剩帶圖案 的P-型S0G 54留在晶圓50上。接著執行的是濃密大量的氯化 磷醯擴散作用〇4〇至60歐姆/平方),產生了n—型擴散層的和化 型擴散層64如圖5E所示。圖5F顯示氫氟酸餘刻步驟並且除去 摻雜物S0G玻璃54之後的晶圓。圖5(;顯示完成後的太陽能電 池,係為負極性格栅施用銀糊料和為正極性格柵施用銀:鋁糊 I 料之後,而在烘焙後生成銀的負—極性格柵接點72和銀:鋁的 正-極性格柵接點70的結果。以pecvd沉積的矽氮化物層,其 可隨意選擇地施用者,並未顯示於此。 在一替代的貫施例中,S0G材料係施用於想要得到的圖案上, . 渐时墨神、平版轉印、或以合適的鮮法賴版法, ❿產生帶®案的娜材料。藉由此方法的使用,就可能消除抗 蝕讎印以及相關的餘刻與脫除步驟,而造成在製程步驟的 • 複雜性上有可觀的減低。 旋塗玻璃作為擴敢度藍屋金换雜物來源 在又另-實施例中,本發明提供一種替代方法其使用到一種 轉印的S0G材料或者由旋塗或喷塗技術法施用的s〇G,來製造 背面接點式EWT電池。該製程同樣是以一種s〇G的施用及加圖 案開始,歧義P-型接點區域的範圍。或者,此—製程可以 石夕酸砸璃糊料的轉印和烘培開始。一種含有n_推雜物(通常 38 1296858 是矽酸麟玻璃)的SOG被施用於後表面並且覆蓋在先前的圖案 上。單獨的高溫爐處理步驟同時將磷和硼擴散進入後表面上 想要的圖案内。 如圖6A中所示,孔洞52以雷射鑽出並且於矽質基板作鹼性蝕 刻’最好是P-型矽晶圓50。一種p-型旋塗玻璃(S0G) 54接著 被施用於背側面如圖6B所示,例如石夕酸删玻璃(bsg)或BSG與 其他P-型摻雜物的氧化物,例如鎵、銦或鋁。接著是一種轉 印的I虫刻抗蝕劑56施用於想要的格栅之圖案中。在蝕刻步 驟’例如氫氟酸姓刻,之後結果有一種p—型帶圖案的s〇G 54 形成,如圖6C所示。孔洞52内的p-型S0G也在該蝕刻步驟期間 除去,導致剩下來的結構僅僅由帶圖案的p—型54被抗餘 劑56覆蓋的部份所組成。如圖6D所示,抗蝕劑接著被除去, 以至於僅有帶圖案的P—型3〇〇 保留於晶圓5〇上。接著是一 種η-型SOG 6G被施加至背側面覆蓋砍晶酬填滿孔洞52並且 覆蓋了S0G 54。任何η-型S0G可能被用上而最好是矽酸鱗玻璃 (PSG)。 在η-型S0G 60的施用之後,晶圓在高溫下被烘培,例如在氧 化環境下大_(TC騎60分鐘謂摻_壓人。如圖_ 示這就產生/辰飨的η-型擴散層62和濃密的p-型擴散層64。 輕淡的η-型擴散層66,通f有大觸至丨_姆/平方的電阻 值的典型者,也在祕__被引人頂部表面。輕淡的n— 39 型擴散層66可能是以自動摻配法引入,如圖7裡所示,其藉由 將晶圓80、82的前表面暴露於塗有n-型s〇G 60的晶圓82、84 之後表面,以至於輕淡的!;!—型擴散層66藉由來自上型8(冗6〇 的磷或其他η-型摻雜物之擴散而產生。在圖7之中,箭頭代表 擴散的方向,而產生擴散層66。這樣在此實施例中,輕淡的 擴散層66包含的磷或其他!!—型摻雜物的濃度比孔洞52内壁的 低些。或者,可以一種磷含量比較低的s〇G施用於前表面(未 顯示)並且同時擴散進入前表面。這些製程的差異將在以下描 述。在任一實施例中這些差異產生更加優化的擴散外形而有 更高的轉換效率。 圖6G顯示晶圓於氳氟酸|虫刻步驟之後和摻雜物玻璃去除之後 的情況。圖6H顯示完成後的太陽能電池,係為負極性格柵施 用銀糊料和為正極性格柵施用銀:鋁糊料之後,而在烘焙後生 成銀的負-極性格栅接點72和銀:銘的正—極性格栅接點7〇的 結果。以PECVD沉積的矽氮化物層,其可隨意選擇地施用者, 並未顯示於此。 以下的順序列表闡明了利用η-型和p—型s〇G以及自動摻配等 方法為月面接點式EWT太陽能電池製造順序的一種實施例,也 正了解到-些步驟可能以賴者不_的次序執行,而仍然 產出想要得到的產品。 1·在矽晶圓作雷射鑽孔 1296858 2.鹼性蝕刻 3·施用帶有p-型掺雜物的旋塗玻璃(s〇G)至後表面上 4·將旋塗玻璃(SOG)緻密化 5. 轉印抗蝕劑 6. 氫氟酸餘刻 7·脫除抗蝕劑並將晶圓弄乾淨 8·施用帶有η-型摻雜物的旋塗玻璃⑼G)至後表面上 9·官型南溫爐摻雜物之壓入(可隨意選擇地將晶圓排列成讓 前表面的自動摻配得以進行) 10.氟化氫姓刻 11·施用電漿輔助化學氣相沉積(PECVD)之氮化物於前表面上 12·施用電漿輔助化學氣相沉積(pECVD)之氮化物於後表面上 13.為負極性格拇轉印銀糊料 14·為正極性格柵轉印銀··鋁糊料 15.烘焙接點 以下的順序列表闡明了觀Π-型和P-型SOG以及另外-種S0G 作絲面摻配而為背面接點式EfT太陽能電池製造順序的一 種替代實施例’也正了解到—些步驟可能以所列者不相同的 次序執行,而仍_出想要得到的產品。 1·在石夕晶圓作雷射鑽孔 2.驗性|虫刻 1296858 3. 將帶有p-型摻雜物的旋塗玻璃(SOG)施用於後表面上 4. 將旋塗玻璃(S0G)緻密化 5. 轉印抗蝕劑 6. 氫氟酸餘刻 7·脫除抗蝕劑並將晶圓弄乾淨 8·將帶有η-型摻雜物的旋塗玻璃(s〇G)施用於後表面上 9.緻密化After the passivation, the negative-polar grid contacts and the positive-polar grid contacts are then applied. Any common common grid metal method may be used, for example, a negative-polar grid contact to transfer a silver paste to a screen, and a positive-polar grid to a transfer-view. (d) may be made by a combination of silver or silver in a retreaded form, as appropriate, a formula of a residual state, which I may additionally comprise a binder, a solvent, and a substance known in the art. In order to make a paste which can be used for screen printing. It is also possible to use it in a paste formulation which contains components which can be nitrided (see Μ. 's_) ', for example, a glass block. The wafer is then baked to metallize the grid contacts. = It can be seen that the method may be as follows: it is also implemented by the sub-counties of the same steps ", 3 π 者*, and the output of the desired product: 1·Laser drilling 36 1296858 2. Alkaline I insect engraved wafer 3. Application of spin-on glass (s〇G) 4. Spin-coated glass (S0G) densification 5. Transfer resistance | insecticide 6 · etching spin-on glass (S0G) 7 · off In addition to the resist and clean the wafer 8 · Gasification barrier (P0C13) diffusion (40 to 6 〇 ohm / square) φ 9 · Hydrogen fluoride | insect engraving, both surfaces are threatened with water ιο · front surface application Plasma-assisted chemical vapor deposition (PECVD) nitride 11·post surface application of plasma-assisted chemical vapor deposition (QDECVD) nitride 12·negative negative grid transfer silver metal paste 13·for positive polarity grid transfer Ink silver aluminum paste 14. Baking joints As shown in Fig. 5A, the holes 52 are drilled into holes by a laser and the alkaline etching is completed on the substrate #, preferably the ?-type wafer 50. A P-type spin-on glass 54 is then applied to the back surface as shown in Figure 5B, such as chopped limestone glass (Β%), or an oxide of bsg or other SOG mixed with other p-type dopants. For example, gallium, indium or aluminum. A transferred etch resist 56 is then applied to the pattern corresponding to the desired grid. After the etching step, such as hydrofluoric acid etching, a p-type patterned spin-on glass 54 is formed as shown in FIG. 5C. The P-type patterned spin-on glass in the hole 52 is also removed during the etching step, so that the structure under the remaining 37 1296858 is composed only of the patterned p-type s〇G covered by the resist 56. . As shown in Fig. 5D, the resist is then removed, so that only the patterned P-type SOG 54 remains on the wafer 50. Next, a dense amount of phosphine chloride diffusion 〇4 〇 to 60 ohms/square is performed, and a crystallization diffusion layer 64 which produces an n-type diffusion layer is shown in Fig. 5E. Figure 5F shows the wafer after the hydrofluoric acid residue step and removal of the dopant SOG glass 54. Figure 5 (showing the completed solar cell, the negative-polar grid contact 72 after the silver paste is applied to the negative polarity grid and the silver: aluminum paste I material is applied to the positive polarity grid. And silver: the result of a positive-polar grid junction 70 of aluminum. A layer of tantalum nitride deposited as pecvd, which can be optionally applied, is not shown here. In an alternative embodiment, the SOG material Apply to the desired pattern, . Gradually ink, lithographic transfer, or use the appropriate fresh method to produce the Na material of the belt. By using this method, it is possible to eliminate the resistance. Corrosion printing and related remnants and removal steps result in considerable reduction in the complexity of the process steps. Spin-coated glass as a source of expansion of the blue house gold replacement in another embodiment, this The invention provides an alternative method for producing a back contact type EWT battery using a transferred SOG material or s〇G applied by spin coating or spray coating techniques. The process is also applied with a s〇G and Add a pattern to start, ambiguously the range of P-type contact areas. Or This process can start with the transfer and baking of the glaze paste. A SOG containing n_ tamper (usually 38 1296858 is tantalum silicate glass) is applied to the back surface and overlaid on the previous pattern. The separate high temperature furnace processing step simultaneously diffuses phosphorus and boron into the desired pattern on the back surface. As shown in Figure 6A, the holes 52 are drilled with a laser and are alkaline etched on the enamel substrate. Is a P-type germanium wafer 50. A p-type spin-on glass (S0G) 54 is then applied to the back side as shown in Figure 6B, such as a sulphuric acid glass (bsg) or BSG and other P-type doping An oxide of the substance, such as gallium, indium or aluminum, followed by a transfer of the I-etch resist 56 applied to the pattern of the desired grid. In the etching step, for example, hydrofluoric acid, the result is A p-type patterned s〇G 54 is formed as shown in Figure 6C. The p-type SOG in the hole 52 is also removed during the etching step, resulting in the remaining structure being only patterned by the p-type 54 The portion covered by the anti-surplus agent 56 is composed. As shown in Fig. 6D, the resist is then removed, so that only The patterned P-type 3〇〇 remains on the wafer 5〇. Next, an η-type SOG 6G is applied to the back side to cover the chopped fill hole 52 and covers the SOG 54. Any n-type SOG may be It is preferably sulphuric acid scale glass (PSG). After the application of η-type S0G 60, the wafer is baked at a high temperature, for example, in an oxidizing environment, _(TC rides for 60 minutes. As shown in the figure _, the η-type diffusion layer 62 and the dense p-type diffusion layer 64 are generated. The light η-type diffusion layer 66 has a large touch to 丨_m/square. The typical value of the resistance value is also introduced to the top surface. The light n-39 type diffusion layer 66 may be introduced by automatic doping, as shown in FIG. The front surface of the 82 is exposed to the rear surface of the wafers 82, 84 coated with the n-type s 〇 G 60, so that the light diffusion layer 66 is formed by the upper type 8 (6 冗 6 〇 Or the diffusion of other η-type dopants. In Fig. 7, the arrow represents the direction of diffusion, and a diffusion layer 66 is produced. Thus, in this embodiment, the light diffusion layer 66 contains phosphorus or other dopants having a lower concentration than the inner walls of the holes 52. Alternatively, a s?G having a relatively low phosphorus content may be applied to the front surface (not shown) and simultaneously diffused into the front surface. The differences in these processes are described below. These differences in any embodiment result in a more optimized diffusion profile with higher conversion efficiency. Figure 6G shows the wafer after the fluorinated acid|insect step and after the dopant glass is removed. Figure 6H shows the finished solar cell, which is a silver paste applied to the negative polarity grid and a negative-polar grid junction 72 and silver after the silver: aluminum paste is applied to the positive polarity grid. The result of the positive-polar grid contact 7〇. The tantalum nitride layer deposited by PECVD, which can be optionally applied, is not shown here. The following sequence list illustrates an embodiment of the manufacturing sequence of lunar contact EWT solar cells using η-type and p-type s〇G and automatic blending methods. It is also understood that some of these steps may not be The order of _ is executed, and still produces the product that you want. 1. Laser drilling on 矽 wafer 1296858 2. Alkaline etching 3. Apply spin-on glass (s〇G) with p-type dopant to the back surface 4. Place spin-on glass (SOG) Densification 5. Transfer resist 6. Hydrofluoric acid residue 7. Remove the resist and clean the wafer. 8. Apply spin-on glass (9) G) with η-type dopant to the back surface. 9. Indentation of the official south temperature furnace dopant (the wafer can be randomly arranged to allow the automatic blending of the front surface to be carried out). 10. Hydrogen fluoride surname 11. Application of plasma assisted chemical vapor deposition (PECVD) Nitride on the front surface 12. Application of plasma assisted chemical vapor deposition (pECVD) nitride on the back surface 13. Negative polarity thumb transfer silver paste 14 · Positive polarity grid transfer silver · Aluminium Paste 15. Baking Joints The following sequential list illustrates an alternative embodiment of the tantalum-type and P-type SOG and additional S0G silk-face blending as a back-contact EfT solar cell fabrication sequence. It is also being understood that some of the steps may be performed in a different order than listed, and that the desired product is still available. 1. Laser drilling in Shixi wafer 2. Quantitative | Insect 1296858 3. Apply spin-on glass (SOG) with p-type dopant to the back surface 4. Place the spin-on glass ( S0G) Densification 5. Transfer resist 6. Hydrofluoric acid residue 7. Remove the resist and clean the wafer 8. Place the spin-on glass with η-type dopant (s〇G Applying to the back surface 9. Densification

10·將帶有低濃度η-型摻雜物的旋塗玻璃(S0G)施用於前表面 上 11·管型兩溫爐摻雜物之壓入 12·氟化氫|虫刻 13·施用電漿輔助化學氣相沉積(PECVD)之氮化物於前表面上 14·施用電聚辅助化學氣相沉積(PECVD)之氮化物於後表面上 15·為負極性袼栅轉印銀糊料10. Apply spin-on glass (S0G) with low concentration η-type dopant to the front surface. 11·Injection of dopants in tubular two-temperature furnace. 12. Hydrogen fluoride|Insect 13. Application of plasma assist Chemical vapor deposition (PECVD) nitride on the front surface 14 · Application of electropolymerization assisted chemical vapor deposition (PECVD) nitride on the back surface 15 · Negative polarity grid transfer silver paste

16·為正極性格柵轉印銀:紹糊料 17.烘焙接點 另可廷擇者,前表面擴散可以在另外的步驟内執行,其可允 午使用τ型高溫爐而不用管型高溫爐。 前面的方法可重 或特別述及的反 用者。 複施行得出類似成就,其係將本發明中一般 應物及/或操作條件替代前面的方法中所使 42 1296858 雖然本發明已經制就關於這些優先實施例作了詳細描述, 其他貝加例可能可以達成相同結果。本發明之變動及修改對 於熟悉該技藝者顯得平淡無奇,而打算將所有這些修改及其 相等。卩刀包含在附加的申請專利範圍内。以上所提及所有參 考文獻、申請案例、專利及發行.等,在此被納入當作參 考資料。 ^ 【圖式簡單說明】16·Transfer silver for positive polarity grid: Shao paste 17. Baking joints can be chosen, the front surface diffusion can be carried out in another step, which can use the τ type high temperature furnace instead of the tube type high temperature furnace . The previous method can be re-used or specifically addressed by the counter. A similar achievement is achieved by substituting the general requirements and/or operating conditions of the present invention in place of the previous method. 42 1296858 Although the present invention has been described in detail with respect to these preferred embodiments, other Bega examples It is possible to achieve the same result. Variations and modifications of the present invention appear to be unremarkable to those skilled in the art, and all such modifications are intended to be equal. The file is included in the scope of the additional patent application. All reference documents, application cases, patents and distributions mentioned above are included here as reference materials. ^ [Simple diagram description]

該等伴隨之圖說,係包含於規格說咖而成為其巾一部分; -乂圖“述本♦明之—或更多實施例,並連同其文字說明而 供作解釋本發明之輕賴。該_賴傭述本發明一或 更多個優先實施㈣目的,並非轉為關本發明。於該 說裡: w 圖The accompanying drawings are included in the specification as a part of the towel; - the drawings "detailed" or more embodiments, together with their written description, are used to explain the invention. The purpose of one or more prioritized implementations (IV) of the present invention is not to turn to the invention. In this statement: w

1係-般的背面接點式太陽能電賴之示意圖。 _係-_晶_ ’其經由本發明之背面接點式電池 製程順序中已經被鑽孔和侧,而圖2B為圖2A的晶圓之一部 份的上視圖。 圖3A係圖2的晶圓於本發明的背面接點式電池製程順序中磷_ 和則廣散物源糊料被轉印後之剖面圖;__的 本發明的麵接點錢池製程·中摻雜物在高溫擴散後之 ^面圖;·細觸嶋物_接點式電池 衣知順序中卿轉印成的擴散物源所製作完成者之剖面圖; 而圖3D係顯稍,餘柵職歧之上視圖。 43 圖4A至4N係顯示本發明利用轉印成的擴散障蔽層製作背面接 點式EWT電池製造順序步驟之剖面圖。 圖5A至5G係顯示本發明利用旋塗玻璃⑼〇)的施用製作背面 接點式EWT電池製造順序步驟之剖面圖。 圖6A至6H係顯示本發明利用多重旋塗玻璃(s〇g)的施用製作 背面接點式EWT電池製造順序步驟之剖面圖。 圖7係以剖面圖說明在晶圓保持垂直狀態進行管型擴散期間 Φ 本發明的一項自動摻配程序。 【主要元件符號說明】 12····平面矽晶圓 32··· .糊料 34··· •硼-擴散源糊料 30··· .孔洞 36··· •磷-擴散層 38··· •麟-擴散層 40··· •硼-擴散層 42··· •負-極性格栅接點 44··· •正-極性格栅接點 50··· • Ρ-型矽晶圓 52··· .孔洞 54··· • Ρ-型旋塗玻璃 56··· •抗蝕劑 60··· .η型 SOG 62··· .η-型擴散層 64··· • Ρ-型擴散層 66··· .η-型擴散層 70··· •正極性格柵接點 72··· .負極性格柵接點 80, 82, 84· · · ·晶圓 90··· .擴散障蔽層 92··· .η+擴散層 94··· •硼擴散障蔽層 96··· .格桃基板 98··· •銀格栅基板 100·· .· Ρ+擴散層 441 series-like schematic diagram of the back contact type solar power. The _--crystal_' has been drilled and sided through the back contact cell process sequence of the present invention, and Figure 2B is a top view of a portion of the wafer of Figure 2A. 3A is a cross-sectional view of the wafer of FIG. 2 in the process of the back contact cell process of the present invention, wherein the phosphor _ and the scatter source paste are transferred; __ the surface contact cell process of the present invention. The cross-section of the dopant in the high-temperature diffusion; the fine-touch _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A view of the top of the job. 43A to 4N are cross-sectional views showing the steps of manufacturing a back contact type EWT battery using the transferred diffusion barrier layer of the present invention. 5A to 5G are cross-sectional views showing the steps of manufacturing the back contact type EWT battery by the application of the spin-on glass (9) 本) of the present invention. Figures 6A through 6H are cross-sectional views showing the steps of fabricating a back contact type EWT cell using the application of multiple spin-on glass (s〇g) of the present invention. Figure 7 is a cross-sectional view showing the automatic blending procedure of the present invention during the tube-type diffusion during the wafer-holding vertical state. [Description of main component symbols] 12····Flat wafer 34··· .Material 34···•Bon-diffusion source paste 30···. Hole 36··· • Phosphorus-diffusion layer 38· ·· • Lin-diffusion layer 40··· • Boron-diffusion layer 42··· • Negative-polar grid contact 44··· • Positive-polar grid contact 50··· • Ρ-type twin Circle 52··· . Hole 54··· • Ρ-type spin-on glass 56··· • Resist 60··· .n-type SOG 62··· .η-type diffusion layer 64··· • Ρ - Type diffusion layer 66 · · · η - type diffusion layer 70 · · · Positive grid contact 72 · · · Negative grid contact 80, 82, 84 · · · · Wafer 90··· . Diffusion barrier layer 92··· .n+ diffusion layer 94··· • boron diffusion barrier layer 96··· . Peach substrate 98··· • Silver grid substrate 100····Ρ+ diffusion layer 44

Claims (1)

1296858 十、申請專利範圍: 1· 一種製作射體全裹覆(EWT)太陽能電池之方法,該方法包 括以下步驟:提供一種半導體晶圓其具有前表面和後表面以及許 夕由岫表面延伸至後表面的孔洞;於後表面上施加第一種摻雜物 擴散源到一包含該等後表面孔洞的圖案式樣裡;於後表面上施加 第二種摻雜物擴散源到不包含該等後表面孔洞的圖案式樣裡;並 _且峨財切雜物從第—種摻雜擴散_第二種推雜物擴 散源擴散至半導體晶圓内。 2·如申請專利範圍第1項所述之方法,其中該半導體晶圓包 3矽,第一種摻雜物源包含磷而第二種摻雜物源包含硼。 、/·如申請專利範圍第2項所述之方法,其另外包括將包含磷 的第—種摻雜物擴散源施加至前表面包含前表面孔洞的圖案式樣 裡。 、水 _ , 4.如申請專利範圍第1項所述之方法,其中在施加第—種接 雜物擴散源的步驟中至少一部份的孔洞被第一種換雜物源所填 滿0 〆、 5.如申請專利範圍第1項所述之方法,其另外包括了以下步 驟:於擴散步驟之後以酸性溶液對該铸體晶圓作侧;施加二 種為鈍化作用的電介f層至少到已钱刻的半導體晶圓之前表面, 退有將第-導式的金屬格栅施加到後表面包含第—種接雜物 擴散源圖案式樣的至少—部份之圖料馳,並且將第二導電型 45 l296858 、一 Li^ 式的金屬格栅施加顺表面包含第二種雜物擴散闕案式樣的 至少—部份之圖案式樣裡。、 6· -種EWT太陽能電池,其特徵在於該册太陽能電池係以 申請專利範15第1項所述方法所製作而者。 / 7· -種製作射體全裹覆⑽τ)太陽能電池之方法,該方法包 ,以下步驟··提供-種半導體晶圓其具有前表面和後表面以及許 Ί表面L伸至後表面的孔洞,施力σ—種擴散障蔽層至後表面 不包含轉後表面孔洞的職式樣裡;將晶圓弄乾淨;將第一種 摻雜物擴散進人晶圓;對晶圓作侧,·並且將第—導電型式的金 蜀才。柵知力17到後表面包含後表面孔洞的圖案式樣裡,還有將第二 ‘私型式的金屬格柵施加到後表面被擴散障蔽層圖案和第一導電 型式的金屬格柵分隔開的圖案式樣裡。 8·如申請專利範圍第7項所述之方法,其中該半導體晶圓包 含Ρ-導電型式的矽,第一種摻雜物包含磷,第一導電型式的金屬 格栅包含銀,而第二導電型式的金屬格栅包含鋁。 9·如申請專利範圍第8項所述之方法,其另外包括了以下步 驟:於蝕刻步驟之後施加一種為鈍化作用的電介質層到該口—導電 型式矽晶圓表面的至少一部份上;其中施加第一種摻雜物磷源造 成的電阻在大約30到60歐姆/平方(Ω/sq)之間;而且其中施加第 一和第二導電型式金屬格柵的步驟包括轉印格柵圖案式樣和供 、j:咅0 46 1296858 /’.ΙΊΣΤΤ.·…. j年月日修 10·如申請專利範圍第7項所述之方法,其中的擴散源包 與第-種摻雜物的導電型式相反的第二種摻雜物。 11·如申請專利範Sj_項所述之方法,其中的第一種換雜 物匕含4 Ail構成擴政蔽層一部份的第二種摻雜物則包含石朋。 12·如申明專利範圍第u項所述之方法,其中的第一種摻雜 物和第二種摻雜物係同時擴散進入晶圓内。 13· -棚ΓΓ太陽能電池,其特徵在於該太陽能電池係以 _ f請專機圍第7項所述方法所製作而者。 14β種製作射體全裹覆(EWT)太陽能電池之方法,該方法 包括以下步驟·提供一種半導體晶圓其具有前表面和後表面以及 許夕由Α表面延伸至後表面的孔洞;施用第一種旋塗玻璃(娜)擴 -散障蔽層至後表面;施用一種抗_至不包含後表面孔洞的圖案 式樣裡’對曰曰圓作I虫刻以去除第一種旋塗玻璃⑼G)未被有圖案的 鲁抗_覆蓋的部份;將抗姓劑從晶圓脫除;將第-種掺雜物擴散 進入曰曰圓’將晶圓!_成為至少去除剩餘的第—種旋塗玻璃 (S〇G);並且將第1電型式的金屬格栅施加至後表面包含後表面 孔洞的圖案式樣裡,還有將第二導電型式的金屬格柵施加到後表 面包含抗蝕劑圖案式樣的圖案式樣裡。 —15·如申請專利範圍第14項所述之方法,其中該半導體晶圓 匕3石夕帛種摻雜物包含填,而施用第一種旋塗玻璃⑽〕係藉 由旋塗法或倾法和高溫爐難化等方法。 47 Ί296858 1¾. 13 1 Γ» …,.. 6·如申請專利範圍第14項所述之方法,其中第一種旋塗玻 ^包訂和第—讎雜物的導電型式相反的第二種摻雜物。 觀Τ太陽錢池’其舰在於麵仪陽能電池係以 申印專利範圍第U項所述方法所製作而者。 队—種製作射體全裹覆⑽)太陽能電池之方法,該方法 —夕、^驟·提供—種半導體晶圓其具有前表面和後表面以及 表机伸至後表面的孔洞;制包含了第-種摻雜物的 第1旋塗玻璃⑼G)至後表面;施用一種抗钱劑至不包含後表面 孔洞的圖案式樣裡;對晶圓作⑽以去除第一種旋塗玻璃(⑽未 被有圖案的抗侧覆蓋的部份;將抗_從晶圓脫除;施用包含 I導電型式和第-種摻雜物相反之第二種摻雜物的第二種旋塗玻 璃(SOG)至後表面;對晶圓加以烘培以便將第一種推雜物和第二種 摻雜物擴散進入晶圓内’·將晶_刻成為至少去除剩餘的第一種 和第-種旋塗玻璃(SOG);並且將第一導電型式的金屬格柵施加到 後表面包含齡面孔__錄裡,财將第二導電型式的金 屬格栅施加到後表面包含抗蝕劑圖案式樣的圖案式樣裡。 19.如申請專利範圍第18項所述之方法,其另外包括了施用 第三種旋塗玻璃(SGG)到晶圓前表面之步驟,該第三種旋塗玻璃 (SOG)包含了比在第二種旋塗玻璃(S0G)内較低濃度之第二種摻雜 物0 20.如申請專利範圍第18項所述之方法,其中的烘焙包括以 48 • 1296858 96Πζ i"""" 年月曰修(定)正替換頁 許多晶圓制成大略平行而由前麵進行至後表面,藉以讓來自 第一晶圓後表面上第二種旋塗玻璃(S0G)的第二種摻雜物被擴散 至緊鄰的第二晶圓之鄰接前表面。 21· —種EWT太陽能電池,其特徵在於該Ε^τ太陽能電池係以 申請專利範圍第18項所述方法所製作而者。1296858 X. Patent Application Range: 1. A method of fabricating an EWT solar cell, the method comprising the steps of: providing a semiconductor wafer having a front surface and a back surface and extending from the surface to a hole in the back surface; applying a first dopant diffusion source to the pattern pattern containing the back surface holes on the back surface; applying a second dopant diffusion source on the back surface to not including the The pattern pattern of the surface holes is merged into the semiconductor wafer from the first doping diffusion_the second dopant diffusion source. 2. The method of claim 1, wherein the semiconductor wafer package comprises a first dopant source comprising phosphorus and a second dopant source comprising boron. The method of claim 2, further comprising applying a first dopant diffusion source comprising phosphorus to the pattern of the front surface comprising the front surface aperture. The method of claim 1, wherein at least a portion of the hole in the step of applying the first dopant diffusion source is filled with the first type of dopant source. 5. The method of claim 1, further comprising the steps of: affixing the cast wafer with an acidic solution after the diffusion step; applying two dielectric f layers that are passivating At least to the surface of the surface of the semiconductor wafer that has been engraved, the at least part of the pattern of applying the first-conducting metal grid to the rear surface including the pattern of the first dopant diffusion source pattern is removed, and The second conductivity type 45 l296858, a Li^ type metal grid is applied in at least a part of the pattern pattern of the second surface of the second impurity diffusion pattern. An EWT solar cell characterized in that the solar cell of the book is produced by the method described in claim 1 of the patent application. / 7 - A method for producing a full-wrap (10) τ) solar cell, the method package, the following steps provide a semiconductor wafer having a front surface and a rear surface and a hole extending from the surface L to the rear surface , force σ—the diffusion barrier layer to the back surface does not contain the post-turn surface hole in the job pattern; clean the wafer; diffuse the first dopant into the human wafer; The first-conducting type of gold is only available. Grid 17 to the back surface containing the pattern of the back surface holes, and a pattern of applying a second 'private type metal grid to the back surface separated by the diffusion barrier pattern and the first conductivity type metal grid In the style. 8. The method of claim 7, wherein the semiconductor wafer comprises a germanium-conducting type germanium, the first dopant comprises phosphorus, the first conductivity type metal grid comprises silver, and the second The electrically conductive metal grid comprises aluminum. 9. The method of claim 8, further comprising the step of applying a passivating dielectric layer to at least a portion of the surface of the port-conducting pattern after the etching step; Wherein the resistance caused by applying the first dopant phosphorus source is between about 30 and 60 ohms/square (Ω/sq); and wherein the step of applying the first and second conductivity type metal grids comprises transferring the grating pattern Style and supply, j: 咅 0 46 1296858 / '. ΙΊΣΤΤ................................................................................................................................................................................................................................................................................ A second dopant of opposite conductivity type. 11. A method as claimed in the patent application Sj_, wherein the first dopant comprising 4 Ail forming part of the expansion mask comprises a Si Peng. 12. The method of claim 5, wherein the first dopant and the second dopant are simultaneously diffused into the wafer. 13· - Shed solar cell, characterized in that the solar cell is produced by the method described in item 7 of the special machine. A method of fabricating a full body encapsulation (EWT) solar cell of 14β, the method comprising the steps of: providing a semiconductor wafer having a front surface and a rear surface and a hole extending from the surface to the rear surface; Spin-coated glass (Na) expanded-diffused to the back surface; applied a pattern of resistance to the hole that does not include the back surface hole, 'I am inscribed on the circle to remove the first spin-on glass (9)G) The part covered by the patterned Luk _; removes the anti-surname agent from the wafer; diffuses the first dopant into the ' round' wafer! _ becoming at least the remaining first spin-on glass (S〇G); and applying the first electrical metal grid to the pattern of the back surface containing the back surface holes, and the second conductive type of metal The grid is applied to the pattern of the back surface containing the pattern of the resist pattern. The method of claim 14, wherein the semiconductor wafer 匕3 石石帛 dopant comprises filling, and applying the first spin-on glass (10) is by spin coating or tilting Methods such as the method and the high temperature furnace are difficult to process. 47 Ί 858 858 Ί Ί Ί Ί Ί Ί Ί Ί Ί ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... Dopant. Guanlan Sun Qianchi's ship is based on the method described in item U of the patent application scope. a method for producing a full-wrap (10) solar cell of a projectile, the method of providing a semiconductor wafer having a front surface and a rear surface and a hole extending into the rear surface of the surface; The first spin-on glass (9) G) of the first dopant is applied to the back surface; an anti-money agent is applied to the pattern pattern not including the back surface hole; (10) is applied to the wafer to remove the first spin-on glass ((10) is not a portion of the patterned anti-side cover; removing the anti-_ from the wafer; applying a second spin-on glass (SOG) comprising a second dopant of the I-conducting type opposite the first dopant To the rear surface; the wafer is baked to diffuse the first dopant and the second dopant into the wafer'. The crystal is engraved to at least remove the remaining first and first spin coatings Glass (SOG); and applying a metal grid of the first conductivity type to the rear surface including the age face, the metal grid of the second conductivity type is applied to the pattern of the back surface containing the pattern of the resist pattern 19. The method of claim 18, which additionally includes the application of a step of three spin-on glass (SGG) to the front surface of the wafer, the third spin-on glass (SOG) comprising a second dopant at a lower concentration than in the second spin-on glass (S0G) 20. The method of claim 18, wherein the baking comprises: 48 • 1296858 96Πζ i""""""" The front surface is advanced to the rear surface so that the second dopant from the second spin-on glass (S0G) on the back surface of the first wafer is diffused to the adjacent front surface of the immediately adjacent second wafer. An EWT solar cell characterized in that the 太阳能^τ solar cell is produced by the method described in claim 18 of the patent application. 49 1296858 • 五、中文發明摘要: 製造射體全裹覆(EWT)背面接點式太陽能電池的方法和以這樣方 法製成的電池。有-些方法在傳導通道處提供了和前表面或後表 面上摻雜物平均濃度相比為較高濃度的摻雜物,而使提供的效率 增加。有一些方法對於孔洞提供選擇性摻配為利用轉印^摻 $料形成料通道。其他方法職供使用包含摻雜物質的旋塗玻 璃基板。 • 六、英文發明摘要: 七、指定代表圖: (一) 本案指定代表圖為:第(3Α )圖。 (二) 本代表圖之元件符號簡單說明: 12· · · ·平面矽晶圓 32----糊料 34· ···硼-擴散源糊料 _ 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式·· 九、發明說明: 【發明所屬之技術領域】 相關申請案以”射體全裹覆背面接點式矽太陽能電池之接點 ‘造法(Contact Fabrication of Emitter Wrap-Through Back Contact Silicon Solar Cells) ”為名,彼得哈克與詹姆斯 吉(Peter Hacke and James Μ· Gee)所作,見於美國公用專 349 1296858 • V. Summary of Chinese Invention: A method of manufacturing a full-emulsion (EWT) back contact solar cell and a battery fabricated in this manner. Some methods provide a higher concentration of dopant at the conduction path compared to the average concentration of dopants on the front or back surface, which increases the efficiency provided. There are a number of ways to provide selective doping of the pores to form a feed channel using the transfer. Other methods are used to spin-coated glass substrates containing dopants. • VI. Abstracts of English Inventions: VII. Designation of Representative Representatives: (1) The representative representative of the case is: (3Α). (2) A brief description of the symbol of the representative figure: 12· · · · Plane wafer 34 - paste 34 · · · · Boron - diffusion source paste _ VIII, if there is a chemical formula in this case, please reveal The chemical formula that best shows the characteristics of the invention. IX. Description of the invention: [Technical field to which the invention pertains] The related application is a "contact fabrication of Emitter Wrap" -Through Back Contact Silicon Solar Cells)" by name, Peter Hacke and James Μ Gee, seen in the US Public Service 3
TW94103580A 2004-02-05 2005-02-04 Back-contact solar cells and methods for fabrication TWI296858B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54245404P 2004-02-05 2004-02-05
US54239004P 2004-02-05 2004-02-05

Publications (2)

Publication Number Publication Date
TW200531298A TW200531298A (en) 2005-09-16
TWI296858B true TWI296858B (en) 2008-05-11

Family

ID=37987782

Family Applications (3)

Application Number Title Priority Date Filing Date
TW94103577A TWI262603B (en) 2004-02-05 2005-02-04 Contact fabrication of emitter wrap-through back contact silicon solar cells
TW94103578A TW200531297A (en) 2004-02-05 2005-02-04 Buried-contact solar cells with self-doping contacts
TW94103580A TWI296858B (en) 2004-02-05 2005-02-04 Back-contact solar cells and methods for fabrication

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW94103577A TWI262603B (en) 2004-02-05 2005-02-04 Contact fabrication of emitter wrap-through back contact silicon solar cells
TW94103578A TW200531297A (en) 2004-02-05 2005-02-04 Buried-contact solar cells with self-doping contacts

Country Status (1)

Country Link
TW (3) TWI262603B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338217B2 (en) 2010-12-29 2012-12-25 Au Optronics Corporation Method of fabricating a solar cell
TWI415280B (en) * 2010-10-05 2013-11-11 Mitsubishi Electric Corp Light power device and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI500169B (en) * 2013-02-22 2015-09-11 A solar type solar cell with a high efficiency current collecting structure and a converging type solar cell module
TWI660376B (en) * 2017-08-09 2019-05-21 日商創想意沃股份有限公司 Manufacturing method and device of electronic component and electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415280B (en) * 2010-10-05 2013-11-11 Mitsubishi Electric Corp Light power device and manufacturing method thereof
US8338217B2 (en) 2010-12-29 2012-12-25 Au Optronics Corporation Method of fabricating a solar cell

Also Published As

Publication number Publication date
TW200531297A (en) 2005-09-16
TWI262603B (en) 2006-09-21
TW200531296A (en) 2005-09-16
TW200531298A (en) 2005-09-16

Similar Documents

Publication Publication Date Title
AU2005213444C1 (en) Back-contact solar cells and methods for fabrication
TW201143124A (en) Method of fabrication of a back-contacted photovoltaic cell, and back-contacted photovoltaic cell made by such a method
TWI285962B (en) Back-contacted solar cells with integral conductive vias and method of making
TW201007968A (en) Hybrid heterojunction solar cell fabrication using a doping layer mask
CN107195699A (en) One kind passivation contact solar cell and preparation method
CN115312633B (en) Mask-layer-free combined passivation back contact battery and preparation method thereof
JP2009533864A (en) Solar cell and method for manufacturing the same
JP2004006565A (en) Solar cell and its manufacturing method
TW201027778A (en) A solar cell and production method for a solar cell with a two step doping process
JP2009147070A (en) Method for manufacturing solar cell
JP2011512661A (en) Method for producing single-crystal n-type silicon solar cell and solar cell produced according to the method
CN205881928U (en) Solar cell
TWI641154B (en) Solar cell and solar cell manufacturing method
CN106062975A (en) Method for manufacturing solar cell and solar cell
TW201003961A (en) Solar cell spin-on based process for simultaneous diffusion and passivation
TW201003939A (en) Method and apparatus for manufacturing solar battery, and solar battery
CN108666377A (en) A kind of p-type back contacts solar cell and preparation method thereof
CN106229352A (en) A kind of IBC structure solaode and preparation method thereof
CN110289333A (en) A kind of solar cell, production method and photovoltaic module
CN108922936A (en) A kind of MWT solar battery and preparation method thereof
CN108666386A (en) A kind of p-type back contacts solar cell and preparation method thereof
TWI296858B (en) Back-contact solar cells and methods for fabrication
TW201251067A (en) Method for manufacturing a solar cell
CN106024983A (en) Solar cell and manufacture method thereof
CN105826409B (en) A kind of preparation method of local back field N-type solar cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees