TWI294465B - - Google Patents

Download PDF

Info

Publication number
TWI294465B
TWI294465B TW094115481A TW94115481A TWI294465B TW I294465 B TWI294465 B TW I294465B TW 094115481 A TW094115481 A TW 094115481A TW 94115481 A TW94115481 A TW 94115481A TW I294465 B TWI294465 B TW I294465B
Authority
TW
Taiwan
Prior art keywords
copper
treatment
intermetallic compound
compound phase
titanium
Prior art date
Application number
TW094115481A
Other languages
Chinese (zh)
Other versions
TW200602501A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of TW200602501A publication Critical patent/TW200602501A/en
Application granted granted Critical
Publication of TWI294465B publication Critical patent/TWI294465B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Description

1294465 九、發明說明: 【發明所屬之技術領域】 本發明係關於強度、導電性及彎曲加工性優異之鈦銅及其製 造方法。 【先前技術】 隨著電子機器之小型化、輕量化,連接器等的電氣、 電子零件也不斷地小型化、輕量化(薄型化、窄間距化)。 當連接器薄型化、窄間距化後,由於接點之截面積減少’ 故必須彌補因截面積減少所造成之接觸壓與導電性的降 低,因此,對接點用的金屬材料,則要求更高的強度盥導 電性。又,隨著零件之小型化,其採用的金屬材料可能會 被施加嚴苛的彎曲加工,因此該金屬材料必須具有良好的 彎曲加工性。 關於高強度的銅合金,近年來時效硬化型之銅合金的 使用量不斷增加。時效硬化型之銅合金將固溶化處理後的1294465 IX. Description of the Invention: The present invention relates to titanium copper excellent in strength, electrical conductivity, and bending workability, and a method for producing the same. [Prior Art] With the miniaturization and weight reduction of electronic equipment, electrical and electronic components such as connectors have been continuously reduced in size and weight (thinner and narrower). When the connector is thinned and narrowly pitched, the contact area and the conductivity are reduced due to the reduction of the cross-sectional area due to the reduced cross-sectional area of the contact. Therefore, the metal material for the joint is required to be higher. The strength of the 盥 conductivity. Further, as the parts are miniaturized, the metal material used may be subjected to severe bending work, and therefore the metal material must have good bending workability. Regarding high-strength copper alloys, the use amount of the age-hardening type copper alloy has been increasing in recent years. Age hardening type copper alloy will be solution treated

過飽和固溶體實施時效處理,以使微細的析出物分散於合 金中’錯此提而合金的強度。 夕效硬化型之鋼合金中,特別是含有Π的銅合金(以 下知I太銅」),由於具有高機械強度及優異的彎曲加工 性,故廣泛使用於電子機器之各種端子、連接S。The supersaturated solid solution is subjected to aging treatment so that fine precipitates are dispersed in the alloy. Among the steel alloys of the day-effect hardening type, in particular, a copper alloy containing ruthenium (hereinafter referred to as "Iron copper") has high mechanical strength and excellent bending workability, and is widely used for various terminals and connections S of electronic equipment.

工業上已實用化之鈦銅為JIS 、级剎為Jib Cl 990,該合金含有 2. 9〜3. 5mass%之丁i 〇 七口 R 士宙 J士 βΒ τ 如日本專利特開平7- 258803號公報 (專利文獻1)、特開2002 - 356726號公報(專利文獻㈧等 的實施例所記載,若Tl含量過低則無法獲得充分的強度。 5 1294465 像鈦銅這樣的時效硬化型高強度銅合金,可列舉高鈹 銅(JIS C1 720)。相較於高鈹銅,鈦銅在強度及彎曲加工 性的表現相同,但耐應力緩和特性較優異,例如像耐候試 驗用治具(burn - in socket)等要求耐熱性的用途,鈦銅就 比高鈹銅更為適用。另一方面,在導電率方面,鈦銅為 10〜16%IACS,其導電率比高鈹銅之2〇%IACS為差。因此, 在要求導電性的用途上係採用高鈹銅。然而,纟高皱銅方 面,由於鈹化合物有毒性,且其製造過程複雜須較高的成 本’因此對鈦銅的需要不斷昇高。 若在銅中固溶有鈦則導電率會降低’藉由使Ti以cu_ Τι金屬間化合物相的形式析出,可減少固溶鈦量而提高導 電率。在特願2003-78751號說明書(專利文獻3),對=含 有2_ 5〜4. 5mass%鈦之鈦銅,係藉由調整Cu_n金屬間化合 物相的析出量來改善導電率,但分析該說明書所揭 銅之彎曲加工性的結果得知,其彎曲加工性顯著地變差。 關於f曲加工性惡化的原因,多量析出之粗大Cu_Tf金屬 =化合物相會構成裂痕起點,這點已被確認出。特別是, 當存在有直徑超過2#m之Cu-Ti金屬間化合物相時,f 曲力:工性會㈣的變差’藉由將結晶粒#及最終壓延加工 度最佳化,可兼顧鈦銅的強度及彎曲加工性(例如參照專 利文獻2)。然而,目前的技術,尚無法達成鈦銅強度、彎 曲加工性、導電率之全面性改善。 " 〔專利文獻1〕特開平7-258803號公報 〔專利文獻2〕特開2002-356726號公報 6 、1294465 ' 〔專利文獻3〕特願20Ο3-78751號說明書 【發明内容】 本發明之目白勺,係提供一種強度、導電性及彎曲加工性 優異之鈦銅。 本發明人等,為了提供出高強度、彎曲加工性優異、且 士有不遜於高鈹銅的導電率之鈦銅,經深入研究的結果發現到, 藉由將Ti》辰度、Cu-Ti金屬間化合物相之大小及面積率、平均結 晶粒徑調整至最佳_,即可獲得具有所要的強度、導電率及彎 曲加工性之鈦銅。 别述專利文獻3所示之銅鈦其彎曲加工性惡化的原 因,就是多量析出的粗大Cu-Ti金屬間化合物相。本發明 、將Ti濃度減低,可減少粗大的Cu-Ti金屬間化合物相, - 進一步將其組織及製造條件最佳化,以在低Ti濃度下獲 得所要的強度、彎曲加工性。 (1) 本發明之強度、導電性及彎曲加工性優異之鈦銅,係 含有1 · 5〜2· 3mass%之Ti、殘部為Cu及不可避免的雜質所構成之 銅合金,其0.2%安全限應力為750MPa以上,導電率為17%iacs 以上,在與壓延方向垂直的方向進行jIS H3130所記載之W彎曲 試驗時’不產生裂痕之最小彎曲半徑(MBR,mm)與板厚(t,mm)的 比值(MBR/t)和0· 2%安全限應力(YS,MPa)間具有MBR/tSO. 〇4xYS _ 30的關係。 (2) 上述鈦銅,係含有1· 5〜2· 3mass%之Ti、殘部為Cu及 . 不可避免的雜質所構成之銅合金,在與壓延方向垂直的截面觀察 之Cu-Ti金屬間化合物相直徑為2. 0 // m以下,且在與壓延方向 7 1294465 接觸包阻。因此,0· 2%安全限應力必須達750MPa以上。 更佳之0.2%安全限應力為8〇〇MPa以上。 (3 )彎曲加工性 方心當材料應用於各種端子、連接器時,〇·2%安全限應力 ”弓曲加工性之均衡相當重要。本發明人,針對Τ丨濃度 1·5+〜2.3maSS%且導電率為17%ucs以上之鈦銅,對最近電 令件所要求之〇· 2%安全限應力與彎曲加工性的關係予以 =置解析的結果發現到,為滿足連接器用材料所要求之一 疋尺度亦即,為取得強度與彎曲加工性之均衡而因應最 近的要求,鈦銅必須滿足:在與壓延方向垂直的方向進行US H3130所記載之界彎曲試驗時,不產生裂痕之最小彎曲半徑(臓, ^ mm)0nbm(MBR/t)^ 〇.2%^^P^^(YS , MPa)fa1 具有 MBR/tS〇.〇4xYS~ 30 的關係。 (4)鈦含量 若對鈦鋼實施時效處理,將發生旋節線分解(spin〇dai decompositiGn)而在母材中產生鈦濃度之調節構造,藉此可獲得 非常高。的鈦含量未達U嶋科,難以獲得謂pa以上 之0.2%安全限應力。另—方面,敛含量超過辦,以後 述之可獲得導電率m聰以上的條件進行製造時,將析出直徑 超過2//m之粗大Cu_Tl金屬間化合物相,如此會使材料的彎曲 加工性變差。因此,本發明之鈦銅之Ti含衫為h 5〜2· 3啊%, 較=為1.6~2.Qmass%。關於此Ti濃度範圍之鈦銅,迄今為止尚 用化’雖在專利文獻巾曾提及,但尚無法將強度 '彎曲性、 ‘毛率予以均衡良好地改善。例如’特開— 356726之第! 9 1294465 實施例揭示Ti含量1. 7mass%之合金,該合金導電率為2〇· 3%ucs 而與本發明合金相當,但其〇·2%安全限應力僅有71〇MPa。特開 2002 - 356726之第2實施例,係揭示Ti含量1· 5mass%及2· 3mass% 之合金,但其等的0.2%安全限應力分別為72〇MPa與U8〇Mpa, 導電率分別為26.4%IACS與10.2%IACS,並無法同時滿足強度與 導電率的要求。 (5)Cu-Ti金屬間化合物相之直徑Titanium copper which has been put into practical use in the industry is JIS, and the grade brake is Jib Cl 990, and the alloy contains 2. 9~3. 5mass% of the ii 〇7 mouth R Shi Shizhou J Shi βΒ τ as Japanese Patent Special Open 7-258803 As described in the examples of the patent publications (Patent Document 1) and JP-A-2002-356726 (Patent Document 8), sufficient strength cannot be obtained when the T1 content is too low. 5 1294465 Age-hardening type high strength like titanium copper The copper alloy may be high bismuth copper (JIS C1 720). Compared with high bismuth copper, titanium copper has the same performance in strength and bending workability, but is excellent in stress relaxation resistance, such as a weathering test fixture (burn). - in socket) and other applications requiring heat resistance, titanium copper is more suitable than bismuth copper. On the other hand, in terms of electrical conductivity, titanium copper is 10~16% IACS, and its conductivity is higher than that of high bismuth copper. %IACS is poor. Therefore, bismuth copper is used for applications requiring electrical conductivity. However, in the case of yttrium high copper, the bismuth compound is toxic and its manufacturing process is complicated by the high cost 'so the titanium copper Need to keep rising. If there is solid solution of titanium in copper, the conductivity By reducing the amount of Ti in the form of a cu_ Τι intermetallic compound phase, the amount of solid solution titanium can be reduced to increase the conductivity. In the specification of Japanese Patent Application No. 2003-78751 (Patent Document 3), the pair contains 2_5 to 4. The titanium oxide of 5 mass% titanium is used to adjust the amount of precipitation of the Cu_n intermetallic compound phase to improve the electrical conductivity. However, as a result of analyzing the bending workability of the copper disclosed in the specification, the bending workability is remarkably deteriorated. It is confirmed that a large amount of Cu_Tf metal = compound phase precipitates as a crack origin, which is confirmed by a large amount of precipitated Cu-Tf metal. In particular, when there is a Cu-Ti intermetallic compound phase having a diameter exceeding 2 #m, f. The curvature of the workability (4) is optimized by the crystal grain # and the final calendering degree, and the strength and bending workability of the titanium copper can be considered (for example, see Patent Document 2). However, the current technology In addition, it is not possible to achieve the improvement of the overall strength of the titanium-copper strength, the bending workability, and the electrical conductivity. [Patent Document 1] JP-A-H07-258803 (Patent Document 2) JP-A-2002-356726, No. 1,294,465 Patent Document 3] The present invention provides a titanium copper which is excellent in strength, electrical conductivity, and bending workability. The inventors of the present invention have excellent strength and excellent bending workability. Titanium copper, which is not inferior to the conductivity of sorghum copper, has been intensively studied and found to be optimal by adjusting the size and area ratio of Ti and Cu-Ti intermetallic compound phases and the average crystal grain size. Titanium copper having desired strength, electrical conductivity and bending workability can be obtained. The reason why the copper and titanium shown in Patent Document 3 is deteriorated in bending workability is a large amount of precipitated coarse Cu-Ti intermetallic compound phase. According to the present invention, the Ti concentration can be reduced, the coarse Cu-Ti intermetallic compound phase can be reduced, and the structure and production conditions can be further optimized to obtain desired strength and bending workability at a low Ti concentration. (1) The titanium copper excellent in strength, electrical conductivity, and bending workability of the present invention is a copper alloy composed of 1·5 to 2·3 mass% of Ti, a residual part of Cu, and unavoidable impurities, and is 0.2% safe. The stress limit is 750 MPa or more, the conductivity is 17% iacs or more, and the minimum bending radius (MBR, mm) and plate thickness (t, where no crack occurs) when the W bending test described in JIS H3130 is performed in the direction perpendicular to the rolling direction. The relationship between mm ratio (MBR/t) and 0.2% safety limit stress (YS, MPa) has a relationship of MBR/tSO. 〇4xYS _ 30. (2) The above-mentioned titanium copper is a Cu-Ti intermetallic compound having a thickness of 1.5 to 2·3 mass% of Ti, a residual part of Cu, and a copper alloy composed of unavoidable impurities, which is observed in a cross section perpendicular to the rolling direction. The phase diameter is 2. 0 // m or less, and the blocking resistance is in contact with the rolling direction 7 1294465. Therefore, the 0.2% safety limit stress must be 750MPa or more. A better 0.2% safety limit stress is 8 〇〇 MPa or more. (3) Bending processability center When the material is applied to various terminals and connectors, the balance of the 〇·2% safety limit stress “bow bending processability is very important. The inventors have focused on the Τ丨 concentration of 1·5+~2.3. Titanium copper with a maSS% and a conductivity of 17% ucs or more, and the relationship between the 安全·2% safety limit stress and the bending workability required for the recent electric actuator is determined by the analysis of the material for the connector. One of the requirements is that, in order to achieve the balance between strength and bending workability, in accordance with recent requirements, titanium copper must satisfy the minimum crack occurrence when the boundary bending test described in US H3130 is performed in the direction perpendicular to the rolling direction. Bending radius (臓, ^ mm) 0nbm(MBR/t)^ 〇.2%^^P^^(YS, MPa)fa1 has the relationship of MBR/tS〇.〇4xYS~ 30. (4) If the titanium content is correct Titanium steel is subjected to aging treatment, and spinodine decomposition (spin〇dai decompositiGn) is generated to produce a titanium concentration adjustment structure in the base material, whereby a very high titanium content can be obtained, and it is difficult to obtain a pa. The above 0.2% safety limit stress. On the other hand, the content is more than the amount, When it is produced under the conditions that the conductivity m is equal to or higher than that, the coarse Cu_Tl intermetallic compound phase having a diameter exceeding 2/m is precipitated, which deteriorates the bending workability of the material. Therefore, the titanium copper of the present invention is deteriorated. The Ti-containing shirt is h 5~2·3 %%, and the ratio = 1.6~2.Qmass%. Titanium copper in this Ti concentration range has been used up to date. Although it has been mentioned in the patent literature towel, it is still not possible. The strength 'bending property, 'the gross rate is improved in a well-balanced manner. For example, 'Special opening--356726'! 9 1294465 The embodiment discloses an alloy having a Ti content of 1. 7 mass%, and the conductivity of the alloy is 2 〇·3% ucs. It is equivalent to the alloy of the present invention, but its 2% safety limit stress is only 71 MPa. The second embodiment of JP-A-2002-356726 discloses an alloy having a Ti content of 1·5 mass% and 2.3 mass%, but The 0.2% safety limit stresses are 72〇MPa and U8〇Mpa, respectively, and the electrical conductivity is 26.4% IACS and 10.2% IACS, respectively, and cannot meet the requirements of strength and conductivity at the same time. (5) Cu-Ti intermetallic phase Diameter

藉由使Ti以Cu-Ti金屬間化合物相的形式析出,能減少固 溶Ti相而提高導電率。然而,當在與壓延方向垂直的截面觀察 包s 1個Cu-Ti金屬間化合物相之最小圓的直經(cu—Ti金屬間化 合物相之最大徑)超過2.0/zm時,將成為材料彎曲加工時的加工 裂痕起點,而使彎曲加工性變差。因此,Cu—Ti金屬間化合物相 之直徑定為2/zm以下。 (6)Cu-Ti金屬間化合物相之面積率 為了提昇鈦銅之導電率,如何讓Ti充分析出以儘量減 少固〉谷Ti ϊ:乃相當重要。亦即,只要增多cu-Ti金屬間 化合物相的量即可增高導電率。又,藉由析出微細的Cu_Ti 金屬間化合物相,可謀求材料的高強度化。本發明人發現 出’關於含有1. 5〜2. 3mass%之Ti的鈦銅,在與壓延方向垂直的 截面觀察之直徑0· 02〜2. 0/zni之Cu-Ti金屬間化合物相之面積率 (S%)與 Ti 含量(〔Ti〕mass%)只要滿足 &8·1χ〔Ti〕—ιι·5 的關 係,即可獲得17%IACS以上的導電率。另一方面,就算析出的Cu_Ti 孟屬間化合物相直從為2· 0 // m以下,若s超過7. 5%則材料的彎 曲加工性變差,如此要保有本發明所規定之〇 2%安全限應力與彎 1294465 曲加工性的均衡會有困難。於是將Cu-Ti金屬間化合物相之面積 率S疋為8· 1χ〔 Τι〕一11· 5$Ss7· 5。且進一步發現到,只要Ti 含里為1·5〜2.0mass%,並滿足81χ〔Ti〕一9·5<%7·5的關係, 即可滿足本發明規定之〇·2%安全限應力與彎曲加工性的關係,並 獲得20%IACS以上的導電率。 (7)平均結晶粒徑By depositing Ti in the form of a Cu-Ti intermetallic phase, the Ti phase can be reduced and the conductivity can be improved. However, when the straight line of the smallest circle of the Cu-Ti intermetallic compound phase (the maximum diameter of the cu-Ti intermetallic compound phase) exceeds 2.0/zm in the cross section perpendicular to the rolling direction, the material will be bent. The starting point of the crack during processing is deteriorated, and the bending workability is deteriorated. Therefore, the diameter of the Cu-Ti intermetallic compound phase is set to be 2/zm or less. (6) Area ratio of Cu-Ti intermetallic phase In order to increase the conductivity of titanium and copper, it is quite important to analyze Ti to minimize the reduction of Ti ϊ: That is, the conductivity can be increased by increasing the amount of the cu-Ti intermetallic compound phase. Further, by depositing a fine Cu_Ti intermetallic compound phase, it is possible to increase the strength of the material. The inventors have found that the titanium-copper having a Ti content of 1. 5~2. 3mass% is observed in a cross section perpendicular to the rolling direction. The diameter of the Cu-Ti intermetallic compound phase is 0. 02~2. The area ratio (S%) and the Ti content ([Ti]mass%) can obtain a conductivity of 17% IACS or more as long as the relationship of &8·1χ[Ti]-ιι·5 is satisfied. On the other hand, even if the Cu_Ti intermetallic compound precipitated is in the range of 2·0 // m or less, if s exceeds 7.5%, the bending workability of the material is deteriorated, so that the 〇2 prescribed by the present invention is retained. It is difficult to balance the % safety limit stress with the curvature of 1294465. Then, the area ratio S of the Cu-Ti intermetallic compound phase is 8.1 χ [ Τι] - 11 · 5 $ Ss7 · 5. Further, it has been found that as long as the Ti contains 1·5 to 2.0 mass% and satisfies the relationship of 81χ[Ti]-9.5<%7·5, the safety limit stress of the present invention can be satisfied. The relationship with the bending workability and the conductivity of 20% IACS or more is obtained. (7) Average crystal grain size

备人壓延方向垂直的截面之平均結晶粒徑(依η Η050 1之切斷法所測定)超過1〇从爪時,結晶粒微細化所^ 成之材料间強度化的效果不佳,故難以獲得以上 、2/0安王限應力。又,若將平均結晶粒徑調整成未達2 " m ’未再結晶部可能會殘留,若有未再結晶部的殘留則f :加工性會變差。於是,本發明之鈦銅係將與錢方向達 的截面之平均結晶粒徑定為2〜10# m。 (8)製造方法 之熱2 化ΐ依序進行原料之溶解鑄造、鑄均 處ί=ΓΓ處理前之冷乾、固溶化處理、固心 釋得4;時效處理分別以適當的條件來進行,即可 件。 發明特性之鈦銅。以下說明各步驟的製造條 材料進行再結晶時,因壓延 ▲ 晶粒的访 m 之應變,將成為 的核。固溶化處理前之冷軋加工 越多,蔣古e 度越咼所導入的 將有明顯再結晶粒的產生,而 阳抑制結晶粒的成When the average crystal grain size of the cross section perpendicular to the rolling direction (measured by the cutting method of η Η 050 1) exceeds 1 〇, the effect of the strength between the materials obtained by refining the crystal grains is not good, so it is difficult Obtain the above, 2/0 Anwang limit stress. Further, if the average crystal grain size is adjusted to less than 2 " m ', the non-recrystallized portion may remain, and if there is no recrystallized portion remaining, f: workability may be deteriorated. Thus, the titanium-copper system of the present invention has an average crystal grain size of a cross section of the direction of the money of 2 to 10 m. (8) The heat of the manufacturing method 2 The hydrazine is sequentially subjected to the dissolution casting and casting of the raw materials, and the lyophilization, solution treatment, and solid-state release before treatment are performed; the aging treatment is carried out under appropriate conditions, It can be a piece. Titanium copper of the invention characteristics. The following describes the manufacturing of each step. When the material is recrystallized, the strain will become the core due to the strain of the grain ▲. The more cold-rolling processing before solution treatment, the more the re-crystallized grains are introduced by Jiang Gue, and the inhibition of crystal grains is inhibited by Yang.

1294465 如此可獲得微細的結晶粒徑。若將固溶化處理前之冷軋加 工度定在89%以上,可獲得10/zm以下的平均結晶粒徑。 固溶化虛王g 鈦銅之固溶化處理,一般是在能使Cu中Ti溶解度與 所a T1 /辰度相等的溫度以上進行。然而,若在此溫度範 圍進行固溶化處理,結晶粒徑將超過1〇//m。本發明人, 係根據實驗來求取可安定地獲得2〜1〇//m的結晶粒徑之固 溶化處理溫度範圍。亦即,當固溶化處理溫度τ(。^在丁〉 〔6580/Π· 35 —ln〔Ti〕}〕-273(χ 代表 Ti 含量)的條件不,結 晶粒徑會超過l〇//ra,而難以獲得75〇MPa以上的〇找安全限應 力。又,當固溶化處理溫度τ在T<〔 658〇/{7· 35 — ln〔Ti〕 -333的條件下,結晶粒徑將低於2//m,而使材料的彎曲加工性 义差依此,將固洛化處理溫度T定在〔658〇/{7·35 - ln〔Ti〕}〕 333一丁一〔 6580/{7.35 — 111〔1^〕}〕一273 的範圍,即可獲得2〜1〇 ,的結晶粒徑。又,當從固溶化處理之加熱溫度起至肌間材 料的平均冷卻速度低於3G(rc/秒,於材料冷卻中,直徑超過2 〇 _之m金屬間化合物相將析出於結晶粒界,因此,當彎曲 應力施加於材料時,將容易在粒界產生裂痕。基於此,將固溶化 處理之平均冷卻速度定為謙c/秒以上。又,這時的冷卻方法並 沒有特別的限定,一般大多採用水冷。 里_>容化處理後之冷乾加工; 固〉谷化處理後之冷軋加工度未達 硬化來達成高強度化,不僅難以獲得 全限應力,且壓延所導入之應變少, 1 0 %時,無法藉加工 750MPa以上之〇· 2%安 次一步驟之時效處理 12 1294465 金屬間化合物相之析出速度緩慢,難以獲得 久。以上的導電率。又當加工度超過70%時,延性會 ’而產生明顯的-曲加工性變差,難以獲得本發明所 、:之0.2%女全限應力與彎曲加工性的關係。基於此,將 理後之冷乾加工度定為10〜7G%。為獲得更良好的 文王限忽力與’弓曲加工性的關係,較佳為將固溶化處理 後之冷軋加工度定為40〜65%。 _時效虛1294465 A fine crystal grain size can thus be obtained. When the cold rolling degree before the solution treatment is set to 89% or more, an average crystal grain size of 10/zm or less can be obtained. The solid solution treatment of the solid solution of the titanium and copper is generally carried out at a temperature equal to or higher than the temperature at which a Ti is equal to a T1 / □. However, if the solution treatment is carried out in this temperature range, the crystal grain size will exceed 1 〇//m. The inventors of the present invention obtained a solution treatment temperature range in which a crystal grain size of 2 to 1 Å/m was stably obtained by an experiment. That is, when the solution treatment temperature τ (. ^ in D. > [6580 / Π · 35 - ln [Ti]}] - 273 (χ represents Ti content), the crystal grain size will exceed l 〇 / / ra It is difficult to obtain a safety limit stress of 75 〇 MPa or more. Also, when the solution treatment temperature τ is at T < 658 〇 / {7 · 35 - ln [Ti] - 333, the crystal grain size will be low. At 2//m, the bending processability difference of the material is determined accordingly, and the temperature T of the fixation treatment is set at [658〇/{7·35 - ln[Ti]}] 333 一丁一[ 6580/{ 7.35 - 111 [1^]}] A range of 273, the crystal grain size of 2 to 1 〇 can be obtained. Also, when the heating temperature from the solution treatment to the average cooling rate of the intermuscular material is lower than 3G ( Rc / sec, in the material cooling, the intermetallic phase with a diameter of more than 2 〇 _ will precipitate out of the grain boundary, so when bending stress is applied to the material, it will easily crack at the grain boundary. Based on this, it will be solid. The average cooling rate of the melting treatment is set to be less than c/sec. Further, the cooling method at this time is not particularly limited, and water cooling is generally used in most cases. _> Cold-drying processing after the treatment; the cold-rolling degree after the solidification and glutenization treatment is not hardened to achieve high strength, and it is difficult to obtain the full-limit stress, and the strain introduced by the rolling is small, and it is impossible to process by 10%. 750 750 MPa or more 〇 2% aging treatment step 12 1294465 The intermetallic compound phase precipitation rate is slow, difficult to obtain long. The above conductivity. When the degree of processing exceeds 70%, the ductility will be obvious - The warpage property is deteriorated, and it is difficult to obtain the relationship between the 0.2% female full stress and the bending workability of the present invention. Based on this, the cold-drying degree after the treatment is set to 10 to 7 G%. The relationship between Wenwang's limit of force and 'bow processability' is preferably 40 to 65% of the cold rolling degree after solution treatment.

丁放處理%,為析出本發明所規定之Cu一丁i金屬間化 合物相,例如將時效條件調整如下。 (1)加熱溫度 加熱溫度未達35(TC時,Cu — Ti金屬間化合物相之析出 不足,無法獲得750MPa以上的〇 2%安全限應力、 以上的導電率。又,當加熱溫度超過450°C時,由於Cu_Ti 金屬間化合物相會粗大化,㈣度及彎曲加工性會變差。 基於此’將加熱溫度定纟35〇〜45(rc。在此的加熱溫度是 指用來加熱材料的爐溫。 (2)加熱溫度下的保持時間 當加熱溫度下的保持時間未達5小時,Cu—Ti金屬間 化合物相之析出不足,難以獲得17%IACS以上的導電率。 當加熱溫度下的保持時間超過2〇小時,由於Cu—Ti金屬 間化合物相會粗大化,故強度及彎曲加工性會變差。基於 此’將加熱溫度下的保持時間定為5〜2〇小時。在此的保 持日守間,是指從材料溫度到達爐溫後至開始冷卻為止的時 13 1294465 (3 )平均冷卻速度In order to precipitate the Cu-buti intermetallic compound phase defined by the present invention, for example, the aging conditions are adjusted as follows. (1) Heating temperature The heating temperature is less than 35 (TC), the Cu-Ti intermetallic compound phase is insufficiently precipitated, and the 〇2% safety limit stress of 750 MPa or more cannot be obtained, and the above conductivity is obtained. Further, when the heating temperature exceeds 450° In the case of C, since the Cu_Ti intermetallic compound phase will be coarsened, the (four) degree and the bending workability will be deteriorated. Based on this, the heating temperature is set to 35 〇 to 45 (rc. The heating temperature here refers to the material used to heat the material. (2) Holding time at heating temperature When the holding time at the heating temperature is less than 5 hours, the precipitation of the Cu-Ti intermetallic compound phase is insufficient, and it is difficult to obtain a conductivity of 17% IACS or more. When the holding time exceeds 2 hrs, the Cu-Ti intermetallic compound phase will be coarsened, so the strength and bending workability will be deteriorated. Based on this, the holding time at the heating temperature is set to 5 to 2 hrs. Keeping the day-to-day guard refers to the time from the temperature of the material to the temperature of the furnace until the start of cooling. 13 1294465 (3) Average cooling rate

在時效處理時,若從加熱溫度至2〇(rc為止的平均冷 部速度比5(TC/小時快,Cu-Ti金屬間化合物相之析出不 足,難以獲得17%IACS以上的導電率。又,當平均冷卻速 度未達HTC/小時,由於Cu_Ti金屬間化合物相之析出明 顯’直徑0.02〜2.0㈣之Cu-Ti金屬間化合物相的面積率 會超17· 故彎曲加卫性變差。基於此,將時效處理時 從加熱溫度至20ITC為止的平均冷卻速度定為1〇 5(rc/ 時。 〔實施例〕 _以電解銅為原料’用高頻真空熔煉爐熔融鑄造出表i 所不各種組成的鑄錠(寬6Gmmx厚Hi 熱乾 成8_厚。之後’以表!所示的條件進行固溶化處理前之 冷軋、固溶化處理、固溶化處理後之冷軋及時效處理,夢 此改變平均結晶粒徑、Cu_Ti金屬間化合物相之大小及面 積率。固溶化處理時,係於供試材溫度到達表丨溫度後保 持1分鐘,再將其冷卻。冷卻時,為了改變冷卻速度,係 採用空氣冷卻、嗔附顧翕夕、入 ^ 、 飞孔之~ °卩、賀附水之冷卻、及浸潰 於水槽等冷卻方法,並進一舟 ^严 、 退步改k虱氣及水的噴附量。在 供試材上炼接熱電偶,測定供試材溫度到達阶(室溫)為 ,之平均冷卻速度。時效處理時,藉由控制爐溫來改變冷 ^速度’測定出供試材溫度從加熱溫度至綱。c為止之平 均冷卻速度。 14 1294465 , 針對如此所得的各合金,評價〇· 2%安全限應力、導電率、 彎曲加工性(MBR/t)、與壓延方向垂直的截面之平均結晶粒徑、 Cu-Ti金屬間化合物相之大小、面積率。 關於0.2%安全限應力,係使用拉伸試驗機依JIS Z2241進 行測定。關於導電率,係依JIS H0505以4端子法進行測定。關 方、%曲加工性的评 >(貝,係採取寬1 〇mm、長5〇_之長方形試料(試 料的長方向為壓延方向之垂直方向),以各種彎曲半徑進行w彎 曲试驗(JIS H3130),與日本伸銅協會技術標準JBMA T3〇7 : •之評價基準作比較來評價彎曲部凸部外觀,求取不產生裂痕之最 小彎曲半徑(mm)與板厚(mm)的比值(MBR/t)。 平均結晶粒徑(// m)之測定,係對與壓延方向垂直的截 ' 面進行蝕刻(水(100ml) — FeC13(5g) - HCl(lOml)),以掃描 ^型電子影微鏡觀察蝕刻面的結晶粒,用切斷法(JIS H0501 ) 來算出結晶粒徑。 關於合金中析出之Cu — Ti金屬間化合物相,係用fe — SEM(日本FEI公司製XL30SFEG)進行觀察。將材料之與壓 延方向垂直的截面用#150的耐水研磨紙研磨後,用混有粒 徑4〇nm的矽膠之精加工用研磨劑實施鏡面研磨,對所得 ”式料進行奴瘵鍍,對各合金於丨萬倍的倍率下視野1 〇 〇 # 一 的反射電子像,改變視野而觀察5個部位。然後,使用影 像解析裝置,求取觀察視野中含Cu-Ti金屬間化合物相= 取小圓的直徑及面積率。關於Cu-Ti金屬間化合物相之大 小的評價,係將存在有直徑超過2·〇 μιη者之合金評價為又, •將不存在直徑超過2.0//m者之合金評價為◦。關於面積 15 1294465 率之評價,以直徑〇· 02〜2.0//m之Cu-Ti金屬間化合物相 為測疋對象’將Cu-Ti金屬間化合物相之合計面積除以觀 察視野的總面積,所得數值為Cu-T i金屬間化合物相之面 積率。 表2顯示各合金的評價結果。發明例1〜丨〇,由於滿足 本發明所規定之Ti含量、結晶粒徑、Cu—Ti金屬間化合物 相之大小及面積率’故顯現1 7% I ACS以上的導電率、75OMPa 以上的0.2%安全限應力,且〇·2%安全限應力(YS)與MBR/t的 關係也滿足本發明的範圍。特別是,Ti含量在丨.5〜2. 〇mass% 的範圍、Cu-Ti金屬間化合物相的面積率s滿足& ιχ〔 Ti〕 -11· 5SSS7. 5之發明例2、4、7、10,其導電率均超過2〇%IACS。 又,Ti含量L6〜2.0mass%的範圍,且固溶化處理後之壓延加工 度在4G 65%範®之發明例2及5 ’相較於其他實施例,當〇· 2%安 全限應力相當時係顯示更好的彎曲加工性(MBR/t),當彎曲加工 性相當時係顯示更高的〇· 2%安全限應力。In the aging treatment, if the average cold portion speed from the heating temperature to 2 〇 (rc is 5 (TC/hour is fast, the precipitation of the Cu-Ti intermetallic compound phase is insufficient, it is difficult to obtain a conductivity of 17% IACS or more. When the average cooling rate is less than HTC/hour, the Cu-Ti intermetallic compound phase precipitates significantly. The area ratio of the Cu-Ti intermetallic compound phase with a diameter of 0.02 to 2.0 (4) will exceed 17. The bending and curing properties are deteriorated. Therefore, the average cooling rate from the heating temperature to 20 ITC at the time of the aging treatment is set to 1 〇 5 (rc / hr. [Example] _ using electrolytic copper as a raw material" is melt-cast by a high-frequency vacuum melting furnace. Ingots of various compositions (width 6Gmmx thick Hi heat-dried into 8_thick. After that, the cold rolling, solution treatment after solution treatment, cold rolling and aging treatment after solution treatment are carried out under the conditions shown in Table! It is necessary to change the average crystal grain size, the size and area ratio of the Cu_Ti intermetallic compound phase, and the solution treatment is maintained for 1 minute after the temperature of the test material reaches the surface temperature, and then cooled. Speed Cooling, 嗔 翕 翕 、, into ^, 飞 卩 卩 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺 贺The thermocouple is smelted on the test material, and the temperature of the test material reaches the step (room temperature) as the average cooling rate. During the aging treatment, the temperature of the test material is determined by controlling the furnace temperature to change the cold speed. The average cooling rate from the heating temperature to the range of c. 14 1294465 , for each of the alloys thus obtained, the 〇· 2% safety limit stress, electrical conductivity, bending workability (MBR/t), and cross section perpendicular to the rolling direction were evaluated. The average crystal grain size, the size of the Cu-Ti intermetallic compound phase, and the area ratio. The 0.2% safety limit stress is measured by a tensile tester in accordance with JIS Z2241. The conductivity is based on the JIS H0505 4-terminal method. The measurement was carried out. The evaluation of the mold and the % curvature was carried out. (Bei, a rectangular sample having a width of 1 mm and a length of 5 〇 was used (the longitudinal direction of the sample was the vertical direction of the rolling direction), and the bending was performed at various bending radii. Bending test (JIS H3130), and This extension copper association technical standard JBMA T3〇7: • The evaluation criteria are compared to evaluate the appearance of the convex portion of the curved portion, and the ratio of the minimum bending radius (mm) to the thickness (mm) without cracking is obtained (MBR/t) The average crystal grain size (//m) is measured by etching the cross section perpendicular to the rolling direction (water (100 ml) - FeC13 (5 g) - HCl (10 ml)) to scan the electron microscope The crystal grain of the etched surface was observed, and the crystal grain size was calculated by the cutting method (JIS H0501). The Cu-Ti intermetallic compound phase precipitated in the alloy was observed by fe-SEM (XL30SFEG, manufactured by FEI Corporation, Japan). The section perpendicular to the rolling direction of the material was ground with a water-resistant abrasive paper of #150, and then mirror-polished with a polishing agent mixed with a silicone resin having a particle diameter of 4 〇 nm, and the obtained "material was subjected to slave plating. Each of the alloys has a reflection electron image of the field of view 1 〇〇# at a magnification of 10,000 times, and changes the field of view to observe five parts. Then, using an image analysis device, the phase of the Cu-Ti containing intermetallic compound in the observation field is obtained. The diameter and area ratio of the small circle. Regarding the evaluation of the size of the Cu-Ti intermetallic compound phase, the alloy having a diameter exceeding 2·〇μιη is evaluated as another, • there will be no diameter exceeding 2.0//m. The alloy was evaluated as ◦. Regarding the evaluation of the area of 15 1294465, the Cu-Ti intermetallic compound phase with a diameter of 〇·02~2.0//m was used as the object of measurement. The total area of the Cu-Ti intermetallic compound phase was divided by observation. The total area of the field of view, the obtained value is the area ratio of the Cu-T i intermetallic compound phase. Table 2 shows the evaluation results of the respective alloys. Inventive Example 1 to 丨〇, which satisfies the Ti content and crystal grain size specified in the present invention, Cu-Ti intermetallicization The size and area ratio of the phase show a conductivity of 1 7% I ACS or more, a 0.2% safety limit stress of 75 OMPa or more, and the relationship between 〇·2% safety limit stress (YS) and MBR/t also satisfies the present invention. In particular, the Ti content is in the range of 丨.5 to 2. 〇mass%, and the area ratio s of the Cu-Ti intermetallic compound phase satisfies the invention example 2 of & ιχ[Ti] -11·5SSS7.5. 4, 7, and 10, the electrical conductivity is more than 2% IACS. Further, the Ti content is in the range of L6 to 2.0 mass%, and the calendering degree after the solution treatment is 4G 65% Fan® inventive examples 2 and 5' Compared to the other examples, when the 〇·2% safety limit stress is equivalent, it shows better bending workability (MBR/t), and when the bending workability is equivalent, it shows a higher 〇·2% safety limit stress.

另一方面,比較例11由於丁 i鳶声说〆 、 、11 /辰度過低,並無法獲得750MPa 以上的0.2%安全限應力。 比較例12,由於Ti濃度過高,會析出2 〇_以上之粗大On the other hand, in Comparative Example 11, since 丁, 、, and 11 / Chen are too low, a 0.2% safety limit stress of 750 MPa or more cannot be obtained. In Comparative Example 12, since the Ti concentration is too high, a coarseness of 2 〇 or more is precipitated.

Cu-h金屬間化合物相,且Cu_Ti金屬間化合物相之面積率超出 本發明範圍,並無法獲得本發明的彎曲加工性。 、,比較例13,由於固溶化處理前之加工度低,固溶化處理後 之+均結晶粒徑超過1 2%安全限應力未達Η贈&。 比較例U,由於固溶化處理溫度低於本發明範圍,會 再Q部的殘留,且Cu-Tl金屬間化合物相之大小、面積率均超 16 1294465 出本發明範圍,並無法獲得本發明規定的彎曲加工性。 比較例15,由於固溶化處理溫度高於本發明範圍,平均結 晶粒徑超出10//m,以能獲得17%IACS以上導電率的條件進行時 效處理時,無法獲得750MPa以上的0. 2%安全限應力。 比較例16,由於固溶化處理後之平均冷卻速度慢,會析出2.0 /zm以上的粗大Cu-Ti金屬間化合物相,並無法獲得本發明規定 的彎曲加工性。The Cu-h intermetallic compound phase and the area ratio of the Cu_Ti intermetallic compound phase are outside the scope of the present invention, and the bending workability of the present invention cannot be obtained. Further, in Comparative Example 13, since the degree of processing before the solution treatment was low, the +-average crystal grain size after the solution treatment was more than 12%, and the safety limit stress was not reached. In Comparative Example U, since the solution treatment temperature is lower than the range of the present invention, the Q portion remains, and the size and area ratio of the Cu-Tl intermetallic compound phase exceed 16 1294465, which is within the scope of the present invention, and the present invention cannot be obtained. Bending workability. 2%。 。 5% MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa Safety limit stress. In Comparative Example 16, since the average cooling rate after the solution treatment was slow, a coarse Cu-Ti intermetallic compound phase of 2.0 / zm or more was precipitated, and the bending workability prescribed by the present invention could not be obtained.

比較例17,由於固溶化處理後之壓延加工度過低,無法獲 得750MPa以上的0.2%安全限應力,又因時效處理的Ti析出速度 慢,Cu-Ti金屬間化合物相的面積率會低於本發明.範圍,並無法 獲得17%IACS以上的導電率。 比較例18,由於固溶化處理後之壓延加工度過高,並無法 獲得本發明規定的彎曲加工性。 比較例19,由於時效處理時的加熱溫度過低,因時效處理 不足而無法獲得750MPa以上的0.2%安全限應力,又因Cu-Ti金 屬間化合物相之面積率低於本發明範圍,並無法獲得17%IACS以 上的導電率。 比較例20,由於時效處理的加熱溫度過高,因過時效造成 Cu-Ti金屬間化合物相之粗大化,並無法滿足本發明所規定之0. 2% 安全限應力與彎曲加工性的關係。 比較例21,由於時效處理之加熱保持時間短,Cu-Ti金屬間 化合物相之面積率低於本發明範圍,並無法獲得17%IACS以上的 導電率。 比較例22,由於時效處理之加熱保持時間過長,因過時效 17 1294465 造成Cu_Ti金屬間化合物相之粗大化,並無#法滿足本發明所規定 之0.2%安全限應力與彎曲加工性的關係。 比較例23,由於時效處理之平均冷卻速度快,Cu-Ti金屬間 化合物相之面積率低於本發明範圍,並無法獲得17%IACS以上的 導電率。 比較例24,由於時效處理之平均冷卻速度慢,Cu-Ti金屬間 化合物相之面積率超過本發明範圍,並無法獲得本發明規定的彎 曲加工性。In Comparative Example 17, since the calendering degree after the solution treatment was too low, a 0.2% safety limit stress of 750 MPa or more could not be obtained, and the precipitation rate of the Ti treated by the aging treatment was slow, and the area ratio of the Cu-Ti intermetallic compound phase was lower. The range of the present invention does not provide conductivity of 17% IACS or more. In Comparative Example 18, since the degree of calendering after the solution treatment was too high, the bending workability prescribed by the present invention could not be obtained. In Comparative Example 19, since the heating temperature at the time of the aging treatment was too low, the 0.2% safety limit stress of 750 MPa or more could not be obtained due to insufficient aging treatment, and the area ratio of the Cu-Ti intermetallic compound phase was lower than the range of the present invention, and Conductivity of 17% IACS or more was obtained. In Comparative Example 20, the heating temperature of the aging treatment was too high, and the Cu-Ti intermetallic compound phase was coarsened due to overaging, and the relationship between the 0.2% safety limit stress and the bending workability was not satisfied. In Comparative Example 21, since the heat retention time of the aging treatment was short, the area ratio of the Cu-Ti intermetallic compound phase was lower than the range of the present invention, and the conductivity of 17% IACS or more was not obtained. In Comparative Example 22, since the heating retention time of the aging treatment was too long, the Cu_Ti intermetallic compound phase was coarsened due to the overaging effect 17 1294465, and the # method satisfies the relationship between the 0.2% safety limit stress and the bending workability specified in the present invention. . In Comparative Example 23, since the average cooling rate of the aging treatment was fast, the area ratio of the Cu-Ti intermetallic compound phase was lower than the range of the present invention, and the conductivity of 17% IACS or more was not obtained. In Comparative Example 24, since the average cooling rate of the aging treatment was slow, the area ratio of the Cu-Ti intermetallic compound phase exceeded the range of the present invention, and the bending workability prescribed by the present invention could not be obtained.

18 129446518 1294465

f# 銻^^苳驭Φ4 · 1^ 時效處理 食o。 JS Js 漩s CO 〇〇 s ο LO CO CO oo OO m CNI r—H o CO CO LO oo 卜 CD LO t—< 呀 CNI ϊ—H CO ΙΛ 卜 Ο CO CNI s CO CO CNI CNJ CNI r-H CO oo o S OO 呀 LO o CO L〇 CO g t—H o LO oo P 〇 CO 寸 cz> 05 CO O LO CO s 寸 CD § CD OO CO 2 寸 CO O o 05 CO 寸 ο o CO o 寸 C3> OO CO 寸 d> CO LO CO CO <3> C£5 寸 CD ◦ 寸 〇> LTD 呀 o oo CO 固溶化處理後1 Η W LO CO oo CO CO CO 寸 οα CO LO CD CNI 00 呀 CNI CO LO § LO οα CO CO CO 另 rrttl Sv .ο i 回 平均冷卻速度· (°C/s) S CO CO 呀 o LO CO 寸 LO oa cn> CO CO CD 卜 s oo ① LO OO 05 呀 CD 03 CD CO CO oo § CD LO eg LO S3 寸 05 CO oo C£D oo in LO LO frill W 碱P 阿 LO ο σϊ oo CO oo LTD CD LO OO CO CD CD OO £ ◦ 卜 s CO CD CNI CD oo CO oo ao 〇 LTD CO CD LO cn» LO CD CNI CO CD I>* CD 卜 ◦ CO co CO CD CNI 05 CD LO I>- 5 4 hH 671〜731 646〜706 615〜675 L 658〜718 638〜698 661〜721 616〜676 629〜689丨 677-737 622〜682 590〜650 697〜757 658〜718 671-731 634〜694 618〜678 631〜691 654〜714 668〜728 642〜702 615〜675 652〜712 675-735 649〜709 固溶化處理前 之壓延加工度 (%) LO CD CJD CO 呀· 05 05 96.5 1 89.2 ! 94.2 97.3 oo LO C3^ CD s CD CO· ΟΪ r—H LO CT5 c CO oo 卜 CO CD CD OO CD C£3 CO* 05 oo 寸· 05 92.2 ① LO CT5 92.7 i—l CO s CD 一 CT> 96.5 Φ1 $ <r0 co cd 1—H οα CNI 1—H s r-H g (NI r-H g CNI οα LO r-H CO C£5 r-H CM oo LO r-H LO CNI r-H οα CO CM s (NI CM LO r-H CD CO i>—H oo CD r-H 卜 <NJ CO oo r-H t—4 CO CD OO OO CM S i-H τ—Η (NI CO LO CO 卜 oo CD CD r-H r-H (Νϊ OO LO CO 卜 oo C^> CNI CNI CO CO <NJ ICO卜7〔 {〔 U〕UI-glcoll>:}/Q8g9〕^!^000000丨〔{〔 U〕ullgco.u/oss〕: U 61 1294465f# 锑^^苳驭Φ4 · 1^ Aging treatment Food o. JS Js 旋s CO 〇〇s ο LO CO CO oo OO m CNI r—H o CO CO LO oo CD CD LO t—< 呀 CNI ϊ—H CO ΙΛ Ο Ο CO CNI s CO CO CNI CNJ CNI rH CO Oo o S OO 呀LO o CO L〇CO gt-H o LO oo P 〇CO inch cz> 05 CO O LO CO s inch CD § CD OO CO 2 inch CO O o 05 CO inch ο o CO o inch C3> OO CO inch d> CO LO CO CO <3> C£5 inch CD ◦ inch 〇> LTD 呀o oo CO After solution treatment 1 Η W LO CO oo CO CO CO inch οα CO LO CD CNI 00 呀 CNI CO LO § LO οα CO CO CO Another rrttl Sv .ο i Average cooling rate · (°C/s) S CO CO 呀 o LO CO inch LO oa cn> CO CO CD 卜 oo 1 LO OO 05 呀 CD 03 CD CO CO oo § CD LO eg LO S3 inch 05 CO oo C£D oo in LO LO frill W Alkali P A LO ο σϊ oo CO oo LTD CD LO OO CO CD CD OO £ ◦ 卜 s CO CD CNI CD oo CO Oo ao 〇LTD CO CD LO cn» LO CD CNI CO CD I>* CD ◦ CO CO CO CD CNI 05 CD LO I>- 5 4 hH 671~731 646~706 615~675 L 658~718 638~698 661~721 616~676 629~689丨677-737 622~682 590~650 697~ 757 658~718 671-731 634~694 618~678 631~691 654~714 668~728 642~702 615~675 652~712 675-735 649~709 Calendering degree before solution treatment (%) LO CD CJD CO 呀· 05 05 96.5 1 89.2 ! 94.2 97.3 oo LO C3^ CD s CD CO· ΟΪ r—H LO CT5 c CO oo 卜 CO CD CD OO CD C£3 CO* 05 oo inch · 05 92.2 1 LO CT5 92.7 i-l CO s CD-CT> 96.5 Φ1 $ <r0 co cd 1—H οα CNI 1—H s rH g (NI rH g CNI οα LO rH CO C£5 rH CM oo LO rH LO CNI rH οα CO CM s (NI CM LO rH CD CO i> -H oo CD rH 卜<NJ CO oo rH t-4 CO CD OO OO CM S iH τ-Η (NI CO LO CO oo CD CD rH rH (Νϊ OO LO CO oo C^> CNI CNI CO CO <NJ ICO Bu 7[ {[ U]UI-glcoll>:}/Q8g9]^!^000000丨[{[ U]ullgco.u/oss]: U 61 1294465

s$ ^荽Φ^ΪΕ^^u-no 要袭命JOHS®蟬呦 u—3wlu4 0(NitFi¥礫杷 9Ty) (SOVI%) ^^χ^«»s$ ^荽Φ^ΪΕ^^u-no To be instructed JOHS®蝉呦 u—3wlu4 0(NitFi¥砾杷9Ty) (SOVI%) ^^χ^«»

SPQWSPQW

OCO—SAXSO •01OCO-SAXSO •01

rco TT 6 ooRco TT 6 oo

6.Z ι>- oo 9·£ T2 9·卜〜0TTT 9 ·£6.Z ι>- oo 9·£ T2 9·卜~0TTT 9 ·£

I 1I 1

LOLO

LO 'rz CN1 ·寸TT^T ^.sTFTTTTT Lol.s 4 〇 Ο 〇 〇 〇 〇 〇 d— ~U~ d, H d, H H d. di d. d, ϋ·LO 'rz CN1 · inch TT^T ^.sTFTTTTT Lol.s 4 〇 Ο 〇 〇 〇 〇 〇 d — ~U~ d, H d, H H d. di d. d, ϋ·

CO Η r"*1 Η 〇〇 05 oocvi Id Id~ ~n~ ~^— ~~^~ ¥ww A .SI ~~~^~ ~~^~ —^~ ^~~ ~~^~~CO Η r"*1 Η 〇〇 05 oocvi Id Id~ ~n~ ~^- ~~^~ ¥ww A .SI ~~~^~ ~~^~ —^~ ^~~ ~~^~~

OZOZ

CDCD

CD ooCD oo

CD Γ oo ΟΟCD Γ oo ΟΟ

9ΊΖ 『91 rlcvllITT T^T· mrΤΊΓ T^rT^T TW "WT Tw TW T^T dH9ΊΖ 『91 rlcvllITT T^T· mrΤΊΓ T^rT^T TW "WT Tw TW T^T dH

ri W WRi W W

6LO6LO

YZ TT W L06YZ TT W L06

TT TT TT TT CN1TT TT TT TT CN1

CNICO J— TT r寸 °°0 6·9 0·ΙCNICO J— TT r inch °° 0 6·9 0·Ι

tco W (mdaR ir υ<Μ^%2·0 LO ooTco W (mdaR ir υ<Μ^%2·0 LO oo

LO OO C£ ssLO OO C£ ss

LOLO

05 OO05 OO

CO 0 ss 0 dH— dM! β 卜§| S9 u卜 β "W 19ε卜 oeool 9U ~W Lol卜 8 dM, 3 叫 叫 dl d— ΤΓ IT dl dl ΤΓ dl d, ΤΓ dl s ·卜νι3νιιπ·ττ—〔 TH〕XH.OO:Γ ΟΓΟI sxx 寸o· 0VI4J/-SPQS :(N* 1294465CO 0 ss 0 dH— dM! β § §| S9 u 卜 β "W 19ε卜 oeool 9U ~W Lol 卜 8 dM, 3 is called dl d — ΤΓ IT dl dl ΤΓ dl d, ΤΓ dl s · bu νι3νιιπ ·ττ—[ TH]XH.OO:Γ ΟΓΟI sxx inch o· 0VI4J/-SPQS :(N* 1294465

【圖式簡單說明】 無 【主要元件符號說明】 無 21[Simple description of the diagram] None [Key component symbol description] None 21

Claims (1)

1294465 十、申請專利範圍·· 1· 一種強度、導電性及彎曲加工性優異之鈦鋼,係含有 〜2.3mass%之Ti、殘部為Cu及不可避免的雜質所構成之銅合 金,其0.2%安全限應力(YS)為750MPa以上,導電率(^^為17%IACS 以上’在與壓延方向垂直的方向進行jIS H3130所記載之w彎曲 試驗時,不產生裂痕之最小彎曲半徑(MBR,則〇與板厚(t, 比值(MBR/t)和0· 2%安全限應力(YS,MPa)間具有MBR/t別.〇4xYS -3 0的關係。1294465 X. Patent application scope · 1· A titanium steel excellent in strength, electrical conductivity, and bending workability is a copper alloy containing ~2.3 mass% Ti, a residual portion of Cu, and unavoidable impurities, 0.2% The safety limit stress (YS) is 750 MPa or more, and the electrical conductivity (^^ is 17% IACS or more 'when the w bending test described in JIS H3130 is performed in the direction perpendicular to the rolling direction, the minimum bending radius (MBR) is not generated. The relationship between 〇 and plate thickness (t, ratio (MBR/t) and 0.2% safety limit stress (YS, MPa) has MBR/t. 〇4xYS -3 0. 2 ·如申清專利範圍弟1項之強度、導電性及彎曲加工性 優異之鈦銅,其係含有1.5〜2.3mass%之Ti、殘部為Cu及不可 避免,的雜質所構成之銅合金,在與壓延方向垂直的截面觀察之 Cu-Τι金屬間化合物相直徑為2 〇//m以下,且在與壓延方向垂直 的截面觀察之直徑G.G2〜2.G/zm之cu-Ti金屬間化合物相之面積 率(S%)與 Ti 含量(〔Ti〕,mass%),係滿足 8· 1χ〔 Ti〕—丨丨· μ%?· 5 的關係’且與延方向垂直的截面之平均結晶粒徑(依川腿〇1 法測定)為2〜10 // m。 d•一種鈦銅之製造方法,係依序進行鑄塊之熱軋、冷 乾固/合化處理、冷軋、時效處理來製造欽銅,其特徵在 於’固溶化處理前之冷軋加工度# 89%以上,固溶化處理 ΤΓΟ^ [ 6580/( 7. 35^ΐη[ τη }] ^333,1, 〔6580/丨7· 35-In〔 Τι〕丨〕—273 ’固溶化處理之平均冷卻速度 為30〇c/t以上,日守效處理前之冷乾加工度為〜·,時效處 之力…/皿度為350〜450 C,加熱保持時間為5〜2〇小時,時效處 理之由加熱溫㈣始之平均冷卻速度為〗㈠代/小時。 22 1294465 十一、圖式: 無2 · Titanium copper, which is excellent in strength, conductivity, and bending workability, is a copper alloy composed of 1.5 to 2.3 mass% of Ti, a residual part of Cu, and an unavoidable impurity. The diameter of the Cu-Τι intermetallic compound phase observed in the cross section perpendicular to the rolling direction is 2 〇//m or less, and the diameter of the Cu-Ti metal of the G.G2~2.G/zm is observed in the cross section perpendicular to the rolling direction. The area ratio (S%) of the inter-compound phase and the Ti content ([Ti], mass%) are the cross-sections that satisfy the relationship of 8·1χ[Ti]-丨丨·μ%·· 5 and perpendicular to the direction of the extension. The average crystal grain size (measured by the Yichuan leg 〇 1 method) is 2 to 10 // m. d• A method for manufacturing titanium and copper, which is to carry out hot rolling, cold-drying/solidification treatment, cold rolling and aging treatment of ingots to produce copper, which is characterized by 'the cold rolling degree before solution treatment” # 89%以上,Solution treatment ΤΓΟ^ [ 6580/( 7. 35^ΐη[ τη }] ^333,1, [6580/丨7· 35-In[ Τι]丨]—273 'The average of solution treatment The cooling rate is 30〇c/t or more, and the cold-drying degree before the defensive treatment is ~·, the force at the aging is.../the degree of the dish is 350~450 C, and the heating retention time is 5~2〇, aging treatment The average cooling rate from the heating temperature (four) is 〖(一)代/小时. 22 1294465 十一,图: no 23twenty three
TW094115481A 2004-06-01 2005-05-13 Titanium copper having excellent strength, conductivity, and bending workability, and its production method TW200602501A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004162934A JP4210239B2 (en) 2004-06-01 2004-06-01 Titanium copper excellent in strength, conductivity and bending workability, and its manufacturing method

Publications (2)

Publication Number Publication Date
TW200602501A TW200602501A (en) 2006-01-16
TWI294465B true TWI294465B (en) 2008-03-11

Family

ID=35496792

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094115481A TW200602501A (en) 2004-06-01 2005-05-13 Titanium copper having excellent strength, conductivity, and bending workability, and its production method

Country Status (5)

Country Link
US (1) US20060011275A1 (en)
JP (1) JP4210239B2 (en)
KR (1) KR20060046273A (en)
CN (1) CN100467637C (en)
TW (1) TW200602501A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101301495B (en) * 2008-06-03 2012-07-25 陕西科技大学 Method for preparing bone screw biological compound material
JP5426936B2 (en) * 2009-06-18 2014-02-26 株式会社Shカッパープロダクツ Copper alloy manufacturing method and copper alloy
WO2011065152A1 (en) * 2009-11-25 2011-06-03 Jx日鉱日石金属株式会社 Titanium-copper for electronic component
JP4683669B1 (en) * 2010-03-19 2011-05-18 Jx日鉱日石金属株式会社 Titanium copper excellent in strength, electrical conductivity and bending workability and its manufacturing method
JP5214701B2 (en) * 2010-10-18 2013-06-19 Jx日鉱日石金属株式会社 Titanium copper excellent in strength, electrical conductivity and bending workability and its manufacturing method
DE102011002953A1 (en) * 2011-01-21 2012-07-26 Carl Zeiss Smt Gmbh Substrate for mirror for extreme ultraviolet lithography, comprises base body which is alloy system that is made of intermetallic phase having crystalline component, where intermetallic phase has bravais lattice
JP5461467B2 (en) * 2011-03-29 2014-04-02 Jx日鉱日石金属株式会社 Titanium copper excellent in strength, electrical conductivity and bending workability and its manufacturing method
JP6263333B2 (en) * 2013-03-25 2018-01-17 Dowaメタルテック株式会社 Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
CN105039775B (en) * 2015-06-02 2017-04-05 苏州晓锋知识产权运营管理有限公司 The manufacture method of electric conductivity latch plate
JP6629400B1 (en) * 2018-08-30 2020-01-15 Jx金属株式会社 Titanium copper plate before aging treatment, pressed product and method for producing pressed product
JP6629401B1 (en) * 2018-08-30 2020-01-15 Jx金属株式会社 Titanium copper plate before aging treatment, pressed product and method for producing pressed product
CN113088754A (en) * 2021-04-01 2021-07-09 江西中晟金属有限公司 High-flexibility copper rod and preparation method thereof
CN115927985A (en) * 2022-12-24 2023-04-07 安徽鑫科铜业有限公司 Titanium copper with excellent bending workability and manufacturing method thereof
CN116121584A (en) * 2023-03-16 2023-05-16 云南红塔特铜新材料股份有限公司 High-strength high-conductivity titanium bronze ultrathin belt and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3740474B2 (en) * 2003-03-20 2006-02-01 日鉱金属加工株式会社 Titanium copper excellent in conductivity and method for producing the same

Also Published As

Publication number Publication date
CN1704492A (en) 2005-12-07
US20060011275A1 (en) 2006-01-19
JP2005344143A (en) 2005-12-15
TW200602501A (en) 2006-01-16
JP4210239B2 (en) 2009-01-14
KR20060046273A (en) 2006-05-17
CN100467637C (en) 2009-03-11

Similar Documents

Publication Publication Date Title
TWI294465B (en)
KR101249107B1 (en) Cu-ni-si alloy to be used in electrically conductive spring material
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
TWI475119B (en) Cu-Zn-Sn-Ni-P alloy
JP5214701B2 (en) Titanium copper excellent in strength, electrical conductivity and bending workability and its manufacturing method
JP5611773B2 (en) Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
JP2008075172A (en) Cu-Ni-Si-BASED ALLOY
JP2001207229A (en) Copper alloy for electronic material
WO2013161351A1 (en) Cu-Ni-Si TYPE COPPER ALLOY
EP2554692B1 (en) Cu-co-si alloy material
KR20120137507A (en) Cu-si-co alloy for electronic materials, and method for producing same
CN111020280B (en) Cu-Al-Hf-Ti-Zr copper alloy material and preparation method thereof
KR20130059412A (en) Copper-cobalt-silicon alloy for electrode material
KR100525024B1 (en) Copper alloy having excellent bendability and manufacturing method therefor
JP2001181759A (en) Copper alloy for electronic material excellent in surface characteristic and producing method therefor
JP2004131829A (en) Cu-Ni-Si ALLOY, AND PRODUCTION METHOD THEREFOR
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
TW201348469A (en) Cu-Zn-Sn-Ni-P-based alloy
JP4166197B2 (en) Cu-Ni-Si-based copper alloy strips with excellent BadWay bending workability
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP2007169764A (en) Copper alloy
JP3740474B2 (en) Titanium copper excellent in conductivity and method for producing the same
JP6629400B1 (en) Titanium copper plate before aging treatment, pressed product and method for producing pressed product
JP2010236029A (en) Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME
JP2006336068A (en) Copper alloy for electrical and electronic devices

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees