TWI293346B - Method for forming spread nonwoven webs - Google Patents

Method for forming spread nonwoven webs Download PDF

Info

Publication number
TWI293346B
TWI293346B TW92113474A TW92113474A TWI293346B TW I293346 B TWI293346 B TW I293346B TW 92113474 A TW92113474 A TW 92113474A TW 92113474 A TW92113474 A TW 92113474A TW I293346 B TWI293346 B TW I293346B
Authority
TW
Taiwan
Prior art keywords
width
processing chamber
reducer
fiber
processing
Prior art date
Application number
TW92113474A
Other languages
Chinese (zh)
Other versions
TW200400296A (en
Inventor
Richard Berrigan Michael
Thomas Fay William
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of TW200400296A publication Critical patent/TW200400296A/en
Application granted granted Critical
Publication of TWI293346B publication Critical patent/TWI293346B/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/681Spun-bonded nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/69Autogenously bonded nonwoven fabric

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A new fiber-forming method, and related apparatus, and webs prepared by the new method and apparatus are taught. In the new method a) a stream of filaments is extruded from a die of known width and thickness; b) the stream of extruded filaments is directed through a processing chamber that is defined by two narrowly separated walls that are parallel to one another, parallel to said width of the die, and parallel to the longitudinal axis of the stream of extruded filaments; c) the stream of filaments passed through the processing chamber is intercepted on a collector where the filaments are collected as a nonwoven fibrous web; and d) a spacing between the walls of the processing chamber is selected that causes the stream of extruded filaments to spread before it reaches the collector and be collected as a web significantly wider in width than the die. Generally the increase in width is sufficient to be economically significant, e.g., to reduce costs of web manufacture. Such economic benefit can occur in widths that are 50, 100 or 200 or more millimeters greater in width than the width of the die. Preferably, the collected web has a width at least 50 percent greater than said width of the die. The processing chamber is preferably open to the ambient environment at its longitudinal sides to allow pressure within the processing chamber to push the stream of filaments outwardly toward the longitudinal sides of the chamber.

Description

1293346 玖、發明說明: 技術領域 纖維性不織布網傳統製法是由模具擠出原為液體的絲成 型材料’形成絲流,在該絲離開模具後加工(如冷卻及抽 拉),再於多孔收集器收集絲流。集於收集器的絲型式為可 處理網片或可加工成該種網片之纖維材料。 一通常所收集材料或網片寬度約與擠出絲模具寬度相同; 右要作-半見網片’模具也必須在一半範圍。由於寬網片 車父具經濟效盈,一般多使用寬模具。 寬模具有右干缺點。舉例而言,模具要加熱協助形成纖 料料通過模具;模具愈寬,需熱愈多。同時,寬模具較 小挺具製造成本高,更不易保養。另夕卜所收集網片寬度 曰視網片用途改變,但為配合此種改變而調整模具尺寸或 模具比例甚為不方便。 先前技術 本發明提供一種製造纖維不織布網之方法,其可針對網 片欲用目的加以控制或選擇網片1度,且其完纟不等於挤 出網片模具寬度。重點言之,本發明方法包含a)自已知寬 度及厚度模具擦出絲流;b)導引擠出絲流通過由兩片相互 平行,平行模具寬度,及平行擠出絲流縱軸壁界定之加工 室;C)收集加工為不織布纖維網片之絲;及#藉調整壁間空 間達到產出所挑選寬度,而將絲流寬度調為與模具不同之 寬度。較佳者,該所欲調整出絲流寬度實質大於模具寬度, 且絲流在由模具行進到收集器中擴張,#以功能網片收 集。一般而T,收集時網寬度至少超過模具寬度5〇或1〇〇亳 1293346 米;較佳網寬度至少超過模具寬度200毫米或更多。較窄亦 可,故彈性更大。 較佳者,加工室至少在沿其部份侧壁縱軸向對環境開 放。此外,壁較佳相互沿絲行進方向覆蓋,以有利擠出絲 流的擴展。 附圖中: 圖1為本發明方法用以形成不織布纖維網裝置的示意圖。 圖2為沿圖對圖1裝置剖面視圖。 圖3為本發明加工室放大側視圖,並未顯示該室之安裝方 式0 圖4為圖3加工及安裝件及配件部份上視圖。 圖5為操作本發明另一種可行裝置上視圖。 圖6為沿圖5線6-6所取剖面圖。 圖7為本發明另外一種可用裝置部份的側視圖。 發明内容 士圖1所示為操作本發明之示範裝置。纖維原料經導引到該 裝置擠出頭或模具10,其先通過進料斗丨丨,於擠出機12熔 融’該泵13泵送溶融原料到擠出頭1〇。最常使用為片狀或 粒狀固體聚合原料,苒忮力 丹‘成履脸,可泵运狀態,其他製纖 液體亦可使用,如聚合物溶液。 夕私出4 10可為傳統多孔板或旋轉組,_般包含規律排列 >1孔如以直列排列者。製纖原料的絲b由擠出頭擠 二:到一加工室或調減器16。_出絲15行進到調減器16 離可以不同’其外部條件亦可不同。-般而言,會 1293346 以傳統方法及裝置對擠出絲15提供空氣或他種氣體μ之冷 卻流。此外,可加熱該空氣或他種氣體流以協助抽拉纖唯二 氣流(或其他流體)可有一或多道’例如第一空氣流i8a由橫 向吹向絲流,其可是移除擠出時所生不良之氣體物質或 煙;而第二道冷卻空氣流18b完成主要的降溫。依所用加工 條件或依所要產物不同,該冷卻空氣可以在擠出絲15到達 調減器16前充分固化。其他亦可維持擠出絲進入調減器前 在軟質或熔融態。或是不使用冷卻流時,擠出頭1〇與調減 器16間環境空氣或他種流體可作改變擠出絲進入調減器之 媒體。 … 絲流15通過調減器16後離開,詳細說明如下。如圖丨與2 所說明者,絲流離後進入收集器19,此處該絲,或完成纖 維,以同質或非同質之可加工網片型式之纖維質2〇被收 集。如圖2所示及詳述者,該纖維或絲流15較佳在離開調減 器到收集器19間距離21已擴展。收集器19一般多孔且在收集 抑下方有氣體抽拉裝置14,以助於將纖維累積在收集器 上。所收集料20可再送到其他裝置如壓光機,浮印站,貼 合機’裁切機等等;或可通過驅動輪22(圖丨)並繞捲於一儲 輪^3。拇出絲或纖維通過加工室進入收集器前,該擠出絲 或減、隹可把還有許多圖1未示之加工步驟,例如再次抽拉, 喷佈等等。 固為本發明代表性較佳加工裝置或調減器16放大側視 圖此代表性及較佳裝置,包含兩可動半組或侧16a及16b, 其間^界定出加工室24 ; 16a及16b相對面60及61形成室的 1293346 壁。此示範裝置16可調整加工室平行壁間間距,達到依本 發明對擠出絲流寬度的控制。擠出絲流或纖維擴展程度, 可藉調整調減器或加工裝置16壁60及61間間距而控制。此裝 置另一優點,在於其可於高速窄加工間隙及纖維原料仍為 軟質狀況進入加工室情況下連續操作。這些情況在以往技 藝加工裝置往往會造成阻塞或中斷。本發明對絲流擴展可 得助於降低加工室壁間距之能力,至少某些情況下更窄於 傳統直接網片成型加工之加工室所用者。壁間空間能產生 壓力,使氣流擴展到加工室容許寬度,並將擠出絲帶出該 寬度。 圖4為一種調整較佳調減器16壁60及61間距方式,其為不 同比例上示意圖,顯示該調減器及其安裝及支撐結構。如 由圖4上方所示,調減器16加工或調減室24—般為長型或四 邊長孔,橫邊長度25 (橫向於絲行進調減器途徑或縱軸,且 平行於擠出頭或模具10寬度)。 調減器16雖以兩半套存在,功能卻是單一裝置,以下先 討論其一體型式(圖3與4所示結構為代表性,可用結構可以 是不同種類)。壁62及63界定進入調減室24之入口處或喉部 24a。入口壁段62及63較佳在進入端或表面62a及63a為彎曲狐 度,以緩和攜入擠出絲15之空氣流。壁段62及63接在一主體 部份28,可具有下凹區29,以在主體區28及壁段62及63間產 生間隙30。空氣或其他氣體透過管31導入間隙30,產生可對 絲行進方向拉力的氣刀(即,經由箭頭32所表之加壓氣流), 增加絲速度,且對絲有進一步冷卻效果。調減器主體28較 !293346 佳在28a處有弧度,以緩和由氣刀32進入通道以空氣之通 過。凋減器主體表面28b之角度(α)可經選擇以決定氣刀對行 經通過調減器絲流的作用角度。氣刀不需位於近室入口, 反之可更深入室中。 、調減器室24沿#體調減器縱長(沿_減室縱向袖%尺寸稱 為軸向長)可具有均勻間隙寬度如圖2兩調減器侧或壁6〇及 ,水平距離33。另外’如圖3所示,間隙厚度可沿調減 立長度向改笑。較佳者,調減室沿朝向出口 %長度向漸窄, 例如以角度β。此種漸窄’或是壁6〇及61在氣刀下游一點的 漸會合’在至少本發明有些具體實例中提供擠出絲流沿通 過及離開調減器出口並到達 , 4沒狀杲為19移動中擴張。本發明 4伤具體貫例中,壁可以為,_ 」乂在凋減崙軸向長的氣刀下游一點 處分出(此時累積在收隹哭άΑ 、 八 本w的擠出絲流可以較擠出頭或模 具10寬度為窄,配合本發明其 "杲些產品需要)。同時在某些具 月豆實例中,調減室由平亩辟 + ..^ 十直土界疋,故壁間隙寬度在壁全部 或;份為固定不變。所有例中 ^ 、 巧1 j T,界疋調減或加工室的壁60 及61均视為相互平行,因 眛、、 、、在土 ^、邵份長度,脫離全平行 同況甚小’而在橫向於室 舍所 長万向(研即垂直圖3頁面)較佳 貝貝為全平行。如圖3所示, « , * π 界疋通通24主要段的壁段64及 65(各屬於壁60及61),可為附六、 ,„ 、、 」為附在王體區28分離之板36。 P使界定壁包含部份加工 & m、 至長度’仍可在長度後造成擴 展,例如產生抽力或凡氏管 ^ ' S政显。調減室24長度可調整以 達到不同效果;尤並是詗敕尸 匕^、疋凋整乳刀32及出口 34間段,有時稱 為斗長35。採用齡士< 長’配合選擇壁間隙,及對壁面的 -10- 1293346 覆盍,可對絲流擴展提升。出口可使用波折面,c〇anda曲 面,及不平衡壁長等結構,以達到所需擴展,或是其他纖 維的分佈。通常,間隙寬度,斗長,調減室形狀,等等, 係配合加工原料及達到所需效果處理模式而定。例如較長 斗長可用來加強製成絲的晶性。製程條件均需調整以加工 擠出絲為所需纖維型式。 如圖4所示,代表性調減器16兩壁16a及16b,是由附在桿 39線性軸承38上的安裝塊37支撐。軸承%在桿上為低磨擦行 進透過在軸向桿周圍滾珠軸承延伸列方式,使側面丨6a及 16b易於對相互靠近或分離。支撐塊37附在調減器主體”,1293346 玖, invention description: The technical field of fibrous non-woven fabrics is the traditional method of extruding a silk-forming material that is originally liquid into a filament flow. After the filament leaves the mold, it is processed (such as cooling and drawing) and then collected. Collect the filaments. The wire pattern collected in the collector is a fiber material that can be processed into a mesh or can be processed into such a mesh. A generally collected material or web width is about the same as the width of the extruded wire mold; the right to be - half mesh. The mold must also be in the half range. Because of the economic efficiency of the wide mesh car, the wide mold is generally used. Wide molds have the right to dry defects. For example, the mold is heated to assist in forming the fiber material through the mold; the wider the mold, the more heat is required. At the same time, the wide mold has a higher manufacturing cost and is less maintenance. In addition, the width of the collected web is despised, and the use of the mesh is changed, but it is inconvenient to adjust the size of the mold or the proportion of the mold in order to cope with such a change. Prior Art The present invention provides a method of making a fibrous nonwoven web that can be controlled or selected for a mesh for a purpose of 1 degree, and which is not equal to the width of the extruded web mold. In summary, the method of the present invention comprises a) wiping the filament flow from a known width and thickness of the mold; b) guiding the extruded filament flow through two longitudinal parallel, parallel mold widths, and parallel extruded filament flow longitudinal axis walls The processing chamber; C) collecting and processing the filaments of the non-woven fiber web; and # adjusting the width of the wall to the width selected by the output, and adjusting the width of the filament to a width different from the mold. Preferably, the desired width of the filament flow is substantially greater than the width of the mold, and the filament flow is expanded as it travels from the mold to the collector, #collected by the functional web. Generally, when T is collected, the width of the web is at least 5 〇 or 1 346 1293346 m above the width of the mold; and the width of the preferred web is at least 200 mm or more above the width of the mold. It is narrower, so it is more flexible. Preferably, the processing chamber is open to the environment at least along the longitudinal axis of a portion of its side walls. Moreover, the walls are preferably covered with each other in the direction of travel of the filaments to facilitate expansion of the extruded filament stream. In the drawings: Figure 1 is a schematic illustration of the method of the present invention for forming a nonwoven web. Figure 2 is a cross-sectional view of the apparatus of Figure 1 taken along the line. Figure 3 is an enlarged side elevational view of the processing chamber of the present invention, showing no installation of the chamber. Figure 4 is a top plan view of the processing and mounting member and assembly of Figure 3. Figure 5 is a top plan view of another possible apparatus for operating the present invention. Figure 6 is a cross-sectional view taken along line 6-6 of Figure 5. Figure 7 is a side elevational view of another portion of the apparatus available for use in the present invention. SUMMARY OF THE INVENTION Figure 1 shows an exemplary apparatus for operating the present invention. The fiber material is directed to the apparatus extrusion head or die 10, which is first passed through a feed hopper and melted at extruder 12. The pump 13 pumps the molten material to the extrusion head 1 〇. It is most commonly used as a flake or granular solid polymeric material. 苒忮力丹's face can be pumped, and other fiber-making liquids can also be used, such as polymer solutions. In the evening, 4 10 can be a traditional multi-well plate or a rotating group, _ generally contains regular arrangement > 1 hole as arranged in an in-line arrangement. The filaments b of the fiber-making raw material are extruded by the extrusion head: to a processing chamber or reducer 16. _The wire 15 travels to the reducer 16 and can be different. The external conditions can also be different. In general, 1293346 provides a cooling flow of air or other gas to the extruded wire 15 in a conventional manner and apparatus. In addition, the air or other gas stream may be heated to assist in drawing the filament stream (or other fluid) in one or more lanes 'eg, the first air stream i8a is blown laterally to the filament stream, which may be removed during extrusion. The bad gaseous substance or smoke is produced; and the second cooling air flow 18b completes the main cooling. Depending on the processing conditions used or depending on the desired product, the cooling air can be fully cured before the extruded filament 15 reaches the reducer 16. Others can also maintain the extruded wire before entering the regulator in a soft or molten state. Or when no cooling flow is used, the ambient air or other fluid between the extrusion head 1 and the regulator 16 can be used to change the medium in which the extruded wire enters the reducer. ... The filament 15 exits through the reducer 16 and is described in detail below. As illustrated in Figures 2 and 2, the filaments flow away and enter the collector 19 where the filaments, or finished fibers, are collected in a homogenous or non-homogenous, manageable mesh type of fibrous web. As shown and described in detail in Figure 2, the fiber or filament stream 15 is preferably expanded at a distance 21 from the reducer to the collector 19. The collector 19 is generally porous and has a gas draw 14 below the collection to assist in accumulating the fibers on the collector. The collected material 20 can be sent to other devices such as calenders, embossing stations, laminating machines, cutting machines, etc.; or can be wound around a storage wheel ^3 by driving wheels 22 (Fig. Before the thumb filaments or fibers pass through the processing chamber into the collector, the extruded filaments or rakes can have a number of processing steps not shown in Figure 1, such as re-drawing, spraying, and the like. The representative and preferred device of the representative preferred processing device or reducer 16 of the present invention comprises two movable half groups or sides 16a and 16b, between which the processing chamber 24 is defined; 16a and 16b are opposite sides. 60 and 61 form the wall of 1293346 of the chamber. The exemplary apparatus 16 adjusts the spacing between the parallel walls of the process chamber to achieve control of the width of the extruded filaments in accordance with the present invention. The degree of extrusion filament flow or fiber expansion can be controlled by adjusting the spacing between the walls 60 and 61 of the reducer or processing unit 16. Another advantage of this device is that it can be operated continuously in the case of high speed narrow machining gaps and where the fiber material still enters the processing chamber in a soft condition. These conditions often cause blockages or interruptions in prior art processing equipment. The expansion of the filament flow of the present invention can contribute to the ability to reduce the spacing of the walls of the processing chamber, at least in some cases narrower than those used in conventional direct web forming processing chambers. The inter-wall space creates pressure that extends the airflow to the allowable width of the processing chamber and pushes the ribbon out of the width. Fig. 4 is a schematic view showing the manner of adjusting the spacing of the walls 60 and 61 of the preferred reducer 16 in a different scale, showing the reducer and its mounting and supporting structure. As shown at the top of Figure 4, the reducer 16 processes or reduces the chamber 24 to a generally long or four-sided long hole with a lateral length of 25 (transverse to the wire traveler path or longitudinal axis and parallel to the extrusion). Head or mold 10 width). Although the reducer 16 is present in two sets, the function is a single device. The integrated type will be discussed below (the structures shown in Figs. 3 and 4 are representative, and the available structures may be different types). The walls 62 and 63 define the entrance to the reduction chamber 24 or the throat 24a. The inlet wall sections 62 and 63 are preferably curved at the entry end or surfaces 62a and 63a to mitigate the flow of air carried into the extruded filament 15. Wall segments 62 and 63 are joined to a body portion 28 and may have recessed regions 29 for creating a gap 30 between body portion 28 and wall segments 62 and 63. Air or other gas is introduced into the gap 30 through the tube 31, creating an air knife (i.e., a pressurized air flow indicated by arrow 32) that can pull in the direction of travel of the wire, increasing the speed of the wire, and further cooling the wire. The reducer body 28 has a curvature at 28a better than !293346 to alleviate the passage of air by the air knife 32 into the passage. The angle (α) of the reducer body surface 28b can be selected to determine the angle of action of the air knife through the flow through the regulator. The air knife does not need to be located in the near chamber entrance, and vice versa. , the reducer chamber 24 along the length of the # body reducer (longitudinal length of the longitudinal sleeve along the _ reduction chamber is called the axial length) may have a uniform gap width as shown in Figure 2, two reducer side or wall 6 〇, horizontal distance 33. In addition, as shown in Fig. 3, the gap thickness can be changed to the vertical length. Preferably, the reduction chamber is tapered toward the length of the outlet %, for example at an angle β. Such a narrowing 'or the gradual convergence of the walls 6〇 and 61 at a point downstream of the air knife' provides, in at least some embodiments of the invention, an extruded filament flow along and exiting the outlet of the regulator, and 4 19 mobile expansion. In the specific example of the 4 wounds of the present invention, the wall may be _ 乂 分 乂 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游 下游The extrusion head or mold 10 has a narrow width to meet the requirements of the present invention. At the same time, in some cases with moon peas, the reduction chamber is made up of flat acres. The width of the wall gap is all in the wall or the part is fixed. In all cases ^, 巧1 j T, the boundary 疋 reduction or the walls 60 and 61 of the processing chamber are considered to be parallel to each other, because 眛, , ,, in the soil ^, the length of the Shao, the full parallel is very small. In the transverse direction of the room, the preferred Beibei is fully parallel. As shown in Fig. 3, the wall segments 64 and 65 (each belonging to the walls 60 and 61) of the main segment of the « , * π boundary 疋 24 pass may be attached to the body region 28, and may be attached to the body region 28 Board 36. P causes the defined wall to contain a portion of the processing & m, to length 'can still be extended after length, such as generating a pumping force or a van der Waals. The length of the reduction chamber 24 can be adjusted to achieve different effects; in particular, it is a zombie 匕^, a smashing knives 32 and an outlet 34, sometimes referred to as a bucket length 35. The use of the age <length' to select the wall gap and the -10- 1293346 coverage of the wall can expand the filament flow. The exit can use a wave-folding surface, a c〇anda curved surface, and an unbalanced wall length to achieve the desired expansion, or the distribution of other fibers. Generally, the gap width, the length of the bucket, the shape of the chamber, and the like are matched with the processing materials and the desired effect processing mode. For example, a longer bucket length can be used to enhance the crystallinity of the finished filament. Process conditions need to be adjusted to process the extruded filaments into the desired fiber form. As shown in Fig. 4, the two walls 16a and 16b of the representative reducer 16 are supported by mounting blocks 37 attached to the linear bearings 38 of the rod 39. The bearing % is low-friction on the rod. The ball bearing is extended through the axial rod so that the side turns 6a and 16b are easy to approach or separate from each other. The support block 37 is attached to the reducer body",

空氣由供應管41透過蓋40流到管31及氣刀32。 此具體實例中,氣缸43&及431)透過速桿44各別接到調減器 例16a及16b,提供夾力使兩側16a及16b推向對方。夾力配合 其他操作料,以平衡調減室24内壓力,同時,如下所述, 設定加工室所欲之壁間隙。換言之,夾力與調減器内部壓Air flows from the supply pipe 41 through the cover 40 to the pipe 31 and the air knife 32. In this specific example, the cylinders 43& and 431) are respectively connected to the reducer cases 16a and 16b through the speed lever 44, and the clamping force is provided to push the both sides 16a and 16b toward each other. The clamping force is matched with other operating materials to balance the pressure in the chamber 24, and at the same time, the desired wall gap of the processing chamber is set as described below. In other words, the clamping force and the internal pressure of the regulator

力推開侧面之力為平衡於較佳操作條件。絲料可以擠出, 通過調減器’以完成絲收集,而調減器零件維持在已建立 平衡或穩定狀態,而調減室或通道24維持在平衡或 隙。 圖μ代表性裝置起動並建立操作(亦即建立絲流宽 後’調減器側或室壁僅會在系統打斷時移動(有時壁會有 的移動以得到不同流寬度)。此可能因為絲斷裂或=的 繞在-起’通常這會造成調減室24壓力升高,因為來自 出頭絲的送出端或繞捲放大,對室24產生局部阻塞。所 -11 - 1293346 壓力足使室壁16a及16b相互移開。在此動 絲端可通過調減器,此時壓力回復到被打斷前,::堯 作用的夾力壓力令調減器側回歸到原始位置。其他^择4告3 成碉減1:升壓者為“滴粒' 亦即粒珠狀 :: :出絲干擾而落下,或是擠出絲沉積在調減室 積,或是之前沉積之絲料。 、+累 貫務上,示範調減器16側面16a及16b之一 、 4阿贫,並非面The force pushing the side is balanced to better operating conditions. The filaments can be extruded through the regulator ' to complete the filament collection while the regulator parts are maintained in an established equilibrium or steady state while the reduction chamber or passage 24 is maintained in equilibrium or gap. Figure μ representative device starts and establishes the operation (that is, after the filament is established) the side of the regulator or the chamber wall will only move when the system is broken (sometimes the wall will move to get different flow widths). Because the wire breaks or the winding of the = 'this usually causes the pressure of the reduction chamber 24 to rise, because the delivery end or winding from the head wire is enlarged, causing partial blockage to the chamber 24. -11 - 1293346 The walls 16a and 16b are moved away from each other. At this end, the moving wire end can pass through the reducer, and the pressure is restored until it is interrupted. The force of the clamping force of the 尧 action causes the reducer side to return to the original position. 4 告3成碉减1: The booster is “droplet”, that is, granules::: the wire is disturbed and falls, or the extruded wire is deposited in the reduction chamber, or the previously deposited wire. + Tired, the demonstration reducer 16 one side of 16a and 16b, 4 a poor, not a face

=是“浮動”,亦即係可在^箭頭方向偏向移動。較佳〜 :中,除了磨擦力及重力外’唯一作用在調減器側的力: 自軋缸與調減室24内產生之壓力。氣缸以外夾力方式亦。 使用,如彈簧’彈性材料變形作用,或凸桿,然以::了 可提供控制及變化。 取= is "floating", that is, it can be moved in the direction of the ^ arrow. Preferably, the force that acts only on the side of the reducer in addition to the frictional force and the gravity: the pressure generated in the self-rolling cylinder and the reduction chamber 24. The clamping force outside the cylinder is also the same. Use, such as spring 'elastic material deformation, or bumps, to: :: provide control and change. take

多種方式均可使加工室壁移動。例如,除了以流力作用 在加工室壁分開外,室内可用感知器(例如以雷射或熱感哭 偵測壁上積物或室的阻塞)作成伺服機構,在必要時分開^ 回復壁位置。本發明另項有用裝置中,調減器側或室壁: 一或兩者可採往覆方式驅動,例如以伺服機構,振盪器, 或超首波驅動裝置。往覆次數可在一定範圍内調整,例如 由至少每分鐘5,000次到每秒60,000次。 另外有一種方式,是利用加工室内流體壓力與外界作用 j加工壁外側壓力之差,驅使壁分開或恢復穩定位置。具 體而言,在穩定操作下,加工室内壓力(其為在加工室内作 用勺數種力總合’例如加工室内型,氣刀位置與設計,進 皇液隨流速度)與作用在加工壁外側壓力平衡。若室壓因 -12- 1293346 纖維加工過程中斷而升高,室壁之一或兩者相互遠離直到 中斷中止,此時加工室壓力小於穩定狀態時(因壁間隙大於 穩定狀態時)。因此,作用在室壁的環境壓力推動室壁直到 1壓再與外界壓平衡,產生平衡狀態。但在沒有對裝置與 加工參數控制下,較不易僅靠壓差動作。 總 <,除了能及時移動及有時為浮動外,範例加工室壁 一般有裝置可以使它們移動。此例室壁可視為連接到一組 可隨時調整到所需位置的裝置。此移動裝置可為任何加工 室特點或相關設置,或只是操作條件之一,或是各種可造 成孩可移動室壁移動之組合,例如考慮加工時纖維中斷的 避免方式,結合建立或恢復室穩定狀態動作。 圖1-3具體實例中,調減室24間隙33係與室壓互動,或是 ^過直的液體流率及液體溫度。配合室壓及隨碉減室間隙 變化的夾力,在一定液體流率下,間隙愈窄,室壓愈高, 爽力也愈高。夾力小使間隙寬。在結構上應包括機械停止 片位在調減器例16a及16b,以維持最小及最大間隙。 一項貫例中,氣缸43a較氣缸43b供應較大夾力,例如令43a 使用活塞直徑大於43b所用者。此項力差使調減器側i6b成為 *操作中斷時易於移動的側壁。此力差約等於並可補償限 制轴承38在桿39上移動的磨擦力。停止方式可位在較大氣 紅43&以限制調減器側16a向調減器侧16b的移動。圖4為一種 不範性停止方式,作為氣缸43a之雙桿氣缸,其中第二桿46 有螺牙’延伸出安裝板47,帶有一只可調整氣缸位置之螺 帽48 °調整停止方式,例如旋轉螺帽方式,可使調減室24 -13- 1293346 對正擠出頭1 〇。 由於具有上述迅速調整調減室侧1以及l6b方式,故絲成型 加工操作參數可以增大。以往會停止加工的狀況,例如會 造成要再接線的中斷,因為在此具體實例方法與裝置為可 接受,當絲斷時,再拉絲端的動作一般可自動進行。因此 可利用易迻成絲斷的高速操作。同樣的,窄間隙,產生氣 刀集中並加諸較強力道與速度於通過調減器絲的情況亦可 =用。或者,絲可在較熔融狀況引入調減室,可對纖維性 周車又佳n因為阻塞調減室機會大減。調減器可以更靠 ,或更遠離擦出頭,以控制其他條件,如進人調減室絲溫 J示調減器16室壁為單體結構’但亦可各個組件形成之 接^進料述迅速或浮動動作。各㈣包含以連接方式 橡二===持加工室24内壓力。另項安排中,以 |材科Μ之彈性片形成加工室24壁,室 時局部變形(在單絲或絲束斷裂造 : 或偏差方式可用於分段或彈性壁; )The chamber wall can be moved in a variety of ways. For example, in addition to the separation of the walls of the processing chamber by the flow force, the chamber can be used as a servo mechanism by using a sensor (for example, by laser or thermal sensation to detect the blockage of the wall or the chamber), and if necessary, separate the wall position. . In another useful apparatus of the present invention, the side of the reducer or the chamber wall: one or both can be driven in a superimposed manner, such as a servo, an oscillator, or a super first wave drive. The number of repetitions can be adjusted within a certain range, for example, from at least 5,000 times per minute to 60,000 times per second. In addition, there is a way to use the difference between the pressure of the fluid in the processing chamber and the external force to drive the wall apart or to restore the stable position. Specifically, under stable operation, the pressure in the processing chamber (which is the sum of the number of forces acting on the spoon in the processing chamber), such as the processing chamber type, the position and design of the air knife, and the velocity of the liquid flowing into the reservoir, acts on the outside of the processing wall. Pressure balance. If the chamber pressure rises due to the interruption of the -12- 1293346 fiber processing process, one or both of the chamber walls are separated from each other until the interruption is aborted, when the process chamber pressure is less than the steady state (because the wall gap is greater than the steady state). Therefore, the environmental pressure acting on the chamber wall pushes the chamber wall until the pressure is balanced with the external pressure, resulting in an equilibrium state. However, under the control of the device and processing parameters, it is not easy to rely solely on the differential pressure action. In general, in addition to being able to move in time and sometimes float, the walls of the sample processing chamber generally have means to move them. The wall of this example can be viewed as being connected to a set of devices that can be adjusted to the desired position at any time. The mobile device can be any processing room feature or related setting, or just one of the operating conditions, or a combination of various movements that can cause the child to move the wall, such as avoiding fiber breaks during processing, and establishing or restoring the chamber stability. State action. In the embodiment of Figures 1-3, the gap 33 of the reduction chamber 24 interacts with the chamber pressure, or the straight liquid flow rate and liquid temperature. With the chamber pressure and the clamping force changing with the gap of the chamber, at a certain liquid flow rate, the narrower the gap, the higher the chamber pressure and the higher the cooling force. The clamping force is small to make the gap wide. Structurally, mechanical stops should be included in the reducer examples 16a and 16b to maintain minimum and maximum clearance. In one example, the cylinder 43a supplies a greater clamping force than the cylinder 43b, such as 43a using a piston having a diameter greater than 43b. This force difference causes the reducer side i6b to be a side wall that is easy to move when the operation is interrupted. This force difference is approximately equal and can compensate for the frictional forces that limit the movement of the bearing 38 on the rod 39. The stop mode can be located at a larger gas red 43& to limit the movement of the reducer side 16a to the reducer side 16b. Figure 4 is a non-standard stop mode, as a double rod cylinder of the cylinder 43a, wherein the second rod 46 has a screw 'extending out of the mounting plate 47, with a 48 ° adjustable stop mode of the adjustable cylinder position, for example By rotating the nut, the reduction chamber 24 - 13 - 1293346 can be aligned with the extrusion head 1 〇. Since the above-described rapid adjustment and reduction chamber side 1 and l6b modes are provided, the wire forming processing operation parameters can be increased. Conditions that have been discontinued in the past, for example, may cause interruptions in rewiring, as the specific example methods and devices are acceptable, and when the wire is broken, the action of the wire drawing end is generally automated. Therefore, high-speed operation that is easy to move into a wire break can be utilized. Similarly, narrow gaps can result in a concentration of air knives and a stronger force and speed through the reducer. Alternatively, the wire can be introduced into the reduction chamber in a more molten state, which is better for the fiber-powered cycle car because the chance of blocking the reduction chamber is greatly reduced. The reducer can be more or less away from the wiping head to control other conditions, such as entering the person to reduce the room temperature, the chamber wall of the reducer 16 is a single structure 'but can also be formed by each component Said rapid or floating action. Each (4) contains the connection method. The rubber 2 === holds the pressure in the processing chamber 24. In another arrangement, the wall of the processing chamber 24 is formed by the elastic sheet of the material, and the chamber is locally deformed (in the case of monofilament or tow breakage: or the deviation mode can be used for segmentation or elastic wall;)

♦4對局邵變形,令壁 衣且你斤J 以多個往覆林切二 到原始位置。另外可 上所述,Πϊ於彈_’使壁局部往覆。或是如 愿力之差里體壓力與作用在壁面或局部區域上外 止時,令辟二去㈣’例如’在產生中斷,而中斷停 7壁回到未變型戎藉令 T mr ητ 造成彈性或分段壁的連續;覆::。亦可控制流體壓力, 上迷代表調減器16例說明壁6G及61為可移動以調整或選 •14- 1293346 擇其間間隔。同樣的,壁亦可在上例裝置操作中移動,以 在未停止操作狀況下改變收集片寬度。例如,增加氣缸 及/或43b對調減器各半部壓力,可使壁6〇至61相間更小。同 時可用機械式檔式,避免壁60及61在絲行近加工室出口 % 時交叉或分叉。另項較簡單本發明具體實例中,室壁不可 移動,固定在可達到一定絲流寬度位置(例如壁是以選定間 隔裝置固定,使間隔在操作中不可手動或自動改變)。 圖5及6為一種有助界定加工室之壁移動示範裝置,特別 以樞軸壁方式調整壁靠近室出口之偏角β。圖5及6所示裝置 70包括安裝架71a及71b,其各樞軸式支撐調減器半部72a及 72b於針73上。針73旋轉式延伸到支撐架7如及74b,其各附 到半部72a及72b之主體部75a及75b。安裝架71a及7比各透過 在支撐架86上滑動之桿85聯接到氣缸76a及76b。氣缸透過安 裝架71a及71b對半邵72a及72b施加夾力,加諸到界定於調減 器兩半部間的加工室77。支撐架71a及71b附在在桿79上低磨 擦滑動之安裝架78。 樞軸化裝置或調減器半部之調整係如圖6所示,沿圖5之 6-6線所取剖面(加上壁段62’及63,)。所示裝置各調整機轉包 括制動器80a或80b,各相聯到架71a或71b及板81a或8比之 間,對應到圖2的板36。可用制動器包括制動器内改牙驅動 軸82a或82b,由電動機推動使軸前進或後退。軸動作透過板 81a及81b使裝置半部沿針73樞轉。 如圖3-6所tf,加工室24及77較佳具體實例中,室橫長端 並無側壁。此代表該加工室對裝置外環境為開放。因此絲 -15- 1293346 流帶入$氣或氣體流可在室内壓力下展開加工室侧。同 樣,空氣或其他氣體亦可被吸入室。同樣的,通過室纖維 在接近室出口時,亦可散向外。此種展開—如上述,有利 於使收集器收集纖維材料較寬。 較佳例+,全體絲流行經加玉室的全長(如圖2線15_ 示因此可使收集網片纖維間有較均句性質。例如纖維可 具相似調減程度與相似纖維尺寸,加工裝置或調減哭宽产 (圖2實線16所指)可較擦出頭或模具1Q為寬,以配合纖^ 加工室内行進。其他例巾’纖維流可在較不寬加工室外展 開(如圖2通過加工裝置16’虛線所示流15,)。若是展開足以 造成纖維性質不好變化,可修剪收集纖維材料,使行進過 加工室到收集器留存者’會在完成之纖維性不織布網片。 然而由於擠出頭擠出纖維到收集器中,僅小部份通過加工 室(主要絲抽拉及絲直徑減低是在絲進入加工室前及離開 加工罜後),行經加工室外者不致嚴重影響纖維性度。 收集之網片寬度可由纖維加工中控制參數而得,包括加 工室壁間距。成品網為-種功能性網(雖然可能尚需其他加 工,如黏合,延展等),亦即所收集纖維性質可大致在寬度 為均勻,足夠符合功能目的。通常成品網在寬度上基重^ 不超過30%,較佳不超過1〇%。然該網片亦可製出特殊性 質,包括較多性質差異,及包括可由收集網片切割出具有 不同性質之段落。 就經濟性而言,較佳是製作寬度大於絲擠出模具寬度之 成品網。增加寬度可由上述參數影響,如加工室壁間^, -16 - 1293346 及其他如收集網寬度,調減器長度,及調減器出口到收集 器距離。某些網寬增加50 mm已很充份,更多為增加至少1 〇〇 mm,較佳為增加200 mm或更高。後者增加量在增寬加工有 相當之商業效益。 展開網15佔有之包括角(圖2角γ),視收集網目標寬度及其 他如調減器到收集器距離之參數而定。以一般距離而言, 流15之γ角係至少10。,更多為至少15。或20。。本發明多項實 例中,成品個(亦即該收集網或收集網修剪部份)至少較擠 出頭或模具寬度多出50% (指模具有效寬度,即擠出纖維液 體部份)。 圖7所示為相較圖2同一視點之本發明另一種裝置的,其 具扇形調減裔90 ’利於加工絲流展開。加工室及定義加工 炙壁,沿加工1:長度向展開或變寬。加工室内作用於絲的 力量在整個流寬度均一致。壁間隙選擇可使絲流依所需程 度展開。♦ 4 pairs of Shao deformation, so that the wall and you Jin J cut into two to the original position. In addition, as described above, the wall is partially overlaid. Or if the pressure and the effect of the body force on the wall or the local area are stopped, the second (4) 'for example' is interrupted, and the interruption is stopped, and the wall is returned to the unmodified shape, and the T mr ητ is elastic. Or the continuity of the segmented wall; It is also possible to control the fluid pressure. The above shows that the reducer 16 shows that the walls 6G and 61 are movable to adjust or select the distance between 14 and 1293346. Similarly, the wall can also be moved during the above-described device operation to change the width of the collecting sheet without stopping the operation. For example, increasing the pressure on each of the cylinders and/or 43b of the regulator reduces the wall 6〇 to 61 to a smaller phase. At the same time, a mechanical gear can be used to prevent the walls 60 and 61 from crossing or bifurcing when the wire is near the exit of the processing chamber. Another simpler embodiment of the invention wherein the chamber wall is immovable and fixed at a position that achieves a certain width of the filament flow (e.g., the wall is secured by a selected spacer such that the spacing cannot be manually or automatically changed during operation). Figures 5 and 6 are exemplary demonstrations of wall movements that aid in the definition of a process chamber, particularly in the form of a pivot wall that adjusts the deflection angle of the wall adjacent the chamber outlet. The apparatus 70 shown in Figures 5 and 6 includes mounting brackets 71a and 71b that each pivotally support the reducer halves 72a and 72b on the needle 73. The needle 73 is rotatably extended to the support frames 7 and 74b, each of which is attached to the body portions 75a and 75b of the half portions 72a and 72b. Mounting brackets 71a and 7 are coupled to cylinders 76a and 76b than rods 85 that are slidable through support frame 86. The cylinder applies a clamping force to the semi-shorings 72a and 72b through the mounting brackets 71a and 71b, and is applied to the processing chamber 77 defined between the two halves of the reducer. The support frames 71a and 71b are attached to a mounting bracket 78 that is low-friction sliding on the rod 79. The adjustment of the pivoting device or the reducer half is shown in Figure 6, taken along line 6-6 of Figure 5 (plus wall segments 62' and 63,). Each of the adjustments of the apparatus shown includes a brake 80a or 80b, each associated to the frame 71a or 71b and the plate 81a or 8, corresponding to the plate 36 of FIG. The available brakes include a brake internal drive shaft 82a or 82b that is urged by the motor to advance or retract the shaft. The shaft moves through the plates 81a and 81b to pivot the device half along the needle 73. In the preferred embodiment of process chambers 24 and 77, as shown in Figures 3-6, the lateral ends of the chamber have no sidewalls. This means that the processing chamber is open to the outside environment of the device. Therefore, the flow of the gas -15- 1293346 into the gas or gas stream can expand the processing chamber side under room pressure. Similarly, air or other gases can be drawn into the chamber. Similarly, the chamber fibers can also scatter outward as they approach the chamber exit. Such deployment - as described above, facilitates the collection of fibrous material for the collector. Preferably, the total length of the whole silk is increased by the length of the jade chamber (as shown in Fig. 2, line 15_, so that the collected mesh fibers have a more uniform sentence property. For example, the fiber can have a similar degree of reduction and similar fiber size, and the processing device Or reduce the crying wide yield (refer to the solid line 16 in Figure 2) can be wider than the wiper head or mold 1Q, in order to match the fiber processing room travel. Other examples of 'fiber flow can be expanded outside the wider processing room (Figure 2 Flow 15, shown by the dashed line of the processing device 16'. If the expansion is sufficient to cause a poor change in fiber properties, the fibrous material may be trimmed so that the fiber-woven nonwoven web that is passed through the processing chamber to the collector retainer will be completed. However, because the extrusion head extrudes the fiber into the collector, only a small part passes through the processing chamber (the main wire is drawn and the wire diameter is reduced before the wire enters the processing chamber and leaves the processing chamber), and the person who goes through the processing room is not serious. Affects the degree of fiber. The width of the collected mesh can be obtained from the control parameters in the fiber processing, including the wall spacing of the processing chamber. The finished mesh is a functional network (although other processing such as bonding, stretching, etc. may be required), That is, the properties of the collected fibers can be substantially uniform in width, which is sufficient for functional purposes. Generally, the basis weight of the finished web is not more than 30%, preferably not more than 1% by weight. However, the mesh can also produce special properties. Including more qualitative differences, and including paragraphs that can be cut from the collecting mesh to have different properties. In terms of economy, it is preferred to make a finished mesh having a width larger than the width of the wire extrusion die. The increased width can be affected by the above parameters, such as processing. Between the chamber walls ^, -16 - 1293346 and other such as the width of the collection net, the length of the reducer, and the distance from the outlet of the reducer to the collector. Some net widths increased by 50 mm, which is more than 1 增加. 〇mm, preferably increased by 200 mm or more. The latter increase has considerable commercial benefits in widening the processing. The mesh 15 is occupied by the included angle (Fig. 2 angle γ), depending on the target width of the collection net and others such as reduction Depending on the parameters of the collector distance, the gamma angle of the stream 15 is at least 10 in terms of a general distance, and more is at least 15 or 20. In many instances of the invention, the finished product (ie, the collection network) Or collecting net trimming department At least 50% more than the width of the extrusion head or mold (refers to the effective width of the mold, ie the liquid portion of the extruded fiber). Figure 7 shows another device of the invention at the same point of view as Figure 2, with a sector The reduction of the 90' is advantageous for the processing of the silk flow. The processing chamber and the defined processing wall are expanded or widened along the length of the processing 1: the force acting on the wire in the processing chamber is uniform throughout the flow width. The flow expands as needed.

伍置的調整,對應即時移動。 維影響,包括了如上所述之即 k側移動,受調整機轉一同作 。其他例中,側壁係分離式, 1293346 一部份附在室侧,另一部份附在另一室側,兩側壁較佳有 重複以限制加工纖維於加工室内。 一般都是偏向以展開收集絲流為主,亦有形成窄於模具 之網(如為模具寬度75%或50%或更小)。窄化的作法是控制 加工室壁間距,並收小絲行進方向壁有助此種窄化。 本發明方法與裝置可用來形成纖維之纖維原料很多。無 論有機聚合物,或無機材料如玻璃或陶瓷材料。本發明最The adjustment of the set, corresponding to instant movement. The dimension effect, including the k-side movement as described above, is rotated by the adjustment machine. In other examples, the side walls are separated, 1293346 is attached to the chamber side, and the other portion is attached to the other chamber side. The two side walls are preferably repeated to limit the processing of the fibers into the processing chamber. Generally, the deflection is mainly for unfolding the collected filament flow, and also for forming a mesh narrower than the mold (for example, the mold width is 75% or 50% or less). The narrowing is done by controlling the wall spacing of the processing chamber and by accepting the narrowing direction of the wall of the filament. The process and apparatus of the present invention can be used to form a plurality of fibrous materials for the fibers. Regardless of organic polymers, or inorganic materials such as glass or ceramic materials. The most

適用熔態纖維原料,其他狀態如溶液或懸浮液亦可使用。 任何生成纖維有機混合物原料均可使用,包含製作纖維常 用聚合物,如聚乙晞,聚丙晞,聚乙烯對酞酸,尼龍,及 尿胺。部份以紡接或熔喷難製成纖維的聚合物原料可用於 此處,包含非晶性聚合物如環烯烴(其高熔黏度限制用在傳 統直接擠出技藝),塊體共聚物,苯乙稀聚合物及黏劑(包 含壓感類及熱熔類)。本次所列特定聚合物僅有例子,其他 尚有4夕t合物或生成纖維原料均可使用。特別一點,本Suitable for molten fiber raw materials, other conditions such as solution or suspension can also be used. Any fiber-forming organic blendstock can be used, including conventional polymers for making fibers such as polyacetam, polypropylene, polyethylene terephthalate, nylon, and uramine. Part of the polymer raw material which is difficult to be fiber-spun or melt-blown can be used here, including amorphous polymers such as cycloolefins (the high melt viscosity limit is used in traditional direct extrusion techniques), bulk copolymers, Phenylethylene polymers and adhesives (including pressure sensitive and hot melt). The specific polymers listed here are only examples, and other materials may be used. In particular, this

發明生成纖維製程可在較傳統直接擠出技藝溫度為低下進 行,優點更多。 纖維亦可以摻配原料形成,包含多種可加入添加物如 料或色料之原料。雙成份纖維,如蕊—皮,或併列雙成」 纖維’均可製備(“雙成份”在此包含兩種或兩種以上成份) 此外’可同時以不同原料由擠出頭的不同孔擠出 混合纖維之網片。本發明其他具體實财,可在依本發e 製備纖維前,或收集纖維時,加入其他原 片。舉例而言,可依美时财號第训綱方式接 -18- 1293346 纖維,但其他剖面者亦可。视所選擇操 :纖如進入調減器前由熔態到固態的程度,所收 二:為相當連續或實質為不連續。纖維聚合物鏈方位 作參數影響,如固化程度,空氣刀中空氣流進 氏二及溫度,轴向長’間隙寬及形狀(因如外形可影響凡 以圖_示加工裝置可得特殊纖維The inventive fiber-forming process can be carried out at a lower temperature than conventional direct extrusion techniques, with more advantages. The fibers may also be formed by blending the raw materials, and include a plurality of materials which may be added to the additives such as materials or colorants. Bicomponent fibers, such as core-skin, or side-by-side, "fibers" can be prepared ("two-component" here contains two or more components). In addition, 'different raw materials can be squeezed from different pores of the extrusion head at the same time. A mesh of mixed fibers. In other specific embodiments of the present invention, other original sheets may be added before the fibers are prepared according to the present invention or when the fibers are collected. For example, -18- 1293346 fiber can be used in accordance with the US Department of Science and Technology, but other profiles are also available. Depending on the selected operation: the degree of melting from the molten state to the solid state before entering the regulator, the second is: it is quite continuous or substantially discontinuous. The orientation of the fiber polymer chain is influenced by parameters such as the degree of solidification, the airflow of the air knife into the second and the temperature, the axial length, the gap width and the shape (since the shape can affect the special fiber obtained by the processing device)

Cl:網片。如某些收集…,纖維為斷裂,= 連、,’或相互或與其他纖維纏結,或因撞擊加工室壁而變 :段Si纖維段一亦即斷點纖維段’以及纏結或變形纖 中:纖维2為中斷纖維段,較常簡稱'纖維尾端”;這些 來並1 ^成未受影響纖維長度的端部’即使纏結或變 :既,切生之球形狀),但通常在纖維中== 叙為小於300微米直通常纖維尾端,尤其斷 捲曲或輻射型,使尾端纏到本身或其他纖維。此纖 ^了與其他纖維相鄰結合,如由纖維尾端與相鄰 原枓自王同質性結合。 斷製作纖維加工產生獨特性質,其可在 本發明戶tr別纖維連續性。此種纖維尾端不會在 工A于有收集網片出現(例如當製作纖維原料在進入加 抽固化則不會發生)。個別纖維在加工室 室内榉、、以取或中斷’或可能因受加工室壁偏移或加工 久机導致與其他纖維纏結,甚或仍在熔態·,但即使是 -21- 1293346 有此種中if ’製絲加工不會中斷。結果是收集網片中測得 相當量纖維尾端,或是纖維不連續中的中斷纖維段。中斷 一般在加工室内或後發生,纖維一般受到抽拉力作用,故 纖維在斷裂’纏接,或變形時有張力存在。斷裂或纏結使 張力中止,纖維尾端收縮,增大直徑。同時,斷裂尾端自 由隨流體流在加工内移動,其至少在部份例中使尾端形成 輻射狀與其他纖維纏結。 對纖維尾端及中段分析比較,得到兩者不同之晶質性。 纖維尾端聚合物鏈一般具方位性,但不同中段之程度。方 位性不同得到不同晶性比例,及晶性種類,或其他晶質結 構。此差異會造成不同性質。 一般而&,當以適當校正之差分掃描熱量計(DSC)評估本 發明製作之纖維尾端與中段時,纖維尾端與中段相互會有 差異,一般熱轉換會在測試儀器顯現(0·Γ(:),因為纖維中 段及纖維尾端内部作用的機轉不同。例如,當實驗可觀察 得到’熱轉換可能有以下差異··丨)玻璃轉化溫度,中段丁 可略為高過尾端溫度,且此特色會隨纖維中段晶性高而明 顯;2)觀察時,冷晶化溫度丁。,及冷晶化時峯面積測量值在 段會較尾端為低,及3)纖維中段熔峯溫度Tm會高過尾端 Tm ’或性質综合各種多重吸熱最小值(亦即多熔条代表不同 分子區的不同熔點,其如晶性結構程度不同),纖維中段一 刀子S在較誠維尾知為南溫度溶化。多半纖維尾端與纖維 中段在一或多個玻璃轉化溫度,冷晶化溫度,及至少〇.5咬工 °c熔點差等參數有不同。 -22· 1293346 具有較大纖維尾端網片優點,在於可包含一種更易軟化 物質以增加網片結合;且輻射型可增加網片同質性。 實施方式 實例 以圖1所示裝置,將表1摘列之不同聚合物製成纖維性 網。裝置特定組件及操作條件均不同,亦摘列於表1。各例 所用擠出模具開度寬度為4英吋(約10公分)。表1亦列出製成 纖維特性,包含收集到不織布網寬度。 實例1-22及4L43係以聚丙晞製成;實例1-13係以熔流係數 (ΜΠ) 400聚丙締(Exxon 35〇5G)製備,實例I4以MFI為30聚丙 烯(Fina 3868)製備,實例15_22以ΜΠ為70聚丙烯製備(Fina 3860),實例42-43以MFI為400聚丙烯製備(Fina 3960)。聚丙晞 密度為0.91 g/cc。 實例23-32及44-46係以聚乙烯對酞酸製備;實例23_26, 29_32,及44係以黏度(IV)為0.61之PET製備(3M 651000),實例 27以IV為0.36之PET製備,實例28以IV為0.9之PET製備(一種 可作高軔旋纖維之高分子量PET,如Dupont Polymer之Crystar 0400),實例 45及 46以 PETG製備(Paxon Polymer Company,Baton Rouge,LA產生之AA45-004)。PET密度為1.35,而PETG密度約 1.30。 實例33及41以MFI為130,密度為1.15之尼龍6聚合物製備 (Ultramid PA6 B_3, BASF)。實例 34以 ΜΠ為 15.5,密度為 1.04 之聚苯乙晞製備(Nova Chemicals的 Crystal PS 3510)。實例 35 以ΜΠ為37,密度為1.2之聚尿胺製備(Morton PS_440-200)。實 -23- 1293346 例36以MFI為30,密度為0·95之聚乙烯製備(Dow 6806)。實例 37以含13%苯乙晞及87%乙烯丁烯共聚物之塊嵌共聚物, ΜΠ為 8,密度為 0.9者製備(Shell Kraton G1657)。 實例38為一種二成份核一皮纖維,核(89%)為實例34所用 苯乙晞,而皮(11%)為實例37所用共聚物。實例39為由聚乙 晞(Exxon Chemicals的 Exxact 4023,ΜΠ為 30)佔(36%)及一種感 壓黏劑(64%)之二成份相鄰纖維製備。該黏劑含92%異辛基 丙晞酸,4%苯乙晞,及4%丙晞酸,黏度0.63,由Bonnot黏劑 擠出器供應,所有°/〇均為重量百分比。 實例40各纖維為單成份,但使用不同聚合物組成物纖 維,例36之聚乙烯及例1-13所用之聚丙烯。擠出頭具4排孔, 各排42孔,對擠出頭供應為採用相鄰同排孔為兩種聚合物 中不同者,以達到A-B-A··.排列式。 實例47之纖維網僅由感壓黏劑製備,其係用於例39二成 份纖維之一成份;使用Bonnot黏劑擠出器。 例42及43中,以捲彈簧取代推動調減器活動側或壁之氣 缸。例42之彈簧在操作中在各側偏離9.4毫米。彈簧之彈性 常數為4.38牛頓/愛米’故各彈簧所拖之夾力為41.1牛頓。例 43之彈簧在操作中在各側偏離2.95毫米,彈性常數為4.9牛頓 /毫米,夾力為14.4牛頓。 例44之擠出頭為一種熔噴模具,孔徑為〇·38毫米,孔中心 距為1.02毫米。孔列為101.6毫米長。初級熔喷空氣溫度為370 °C,透過孔行各側之203毫米寬空氣刀,以每分鐘〇 45立方 米流率(CMM)導入結合之兩空氣刀。 1293346 、例47氣動滚動珠振盪器為每秒約2〇〇次,接到各個活動側 或壁,氣缸保持不動,對正調減室於擠出頭下方,且當有 壓力堆積強制側分開時,能夠令調減側恢復到初始位I。 貫例操作,以振盪器操作狀況,會較無振盪器操作狀況下, 產生較少量感壓黏劑附在調減器壁。例7及37之夾加為〇, 但在加工室及環境空氣壓力的平衡可建立室壁間間隙並 在有任何中斷發生後,可令活動側回復初始位置。 各例形成纖維之聚合物均加溫如表丨所列(溫度取自擠出 器12近泵13出口),聚合物均成m態聚合物依表i所示 流率供應到擠出器小孔。擠出器頭一般有四排孔,然而每 仃孔數,孔徑,及孔之長對直徑比率亦有不同,如表所列。 例 1 2 5-7 ’ 14-24 ’ 27,29-32,34及 36-40 中每行有 42孔,總 共有168孔。例44以外的其他例中,每行為21孔,總共討孔。 調減器參數亦如表列有所變化,包含空氣刀隙(圖3之尺 寸30),凋減器王體角度(圖32α);通過調減器空氣溫度; 冷卻空氣流率;氣缸加諸調減器夾力壓力;通過調減器空 氣總量(以每分鐘之實際立方米計,或ACMM;约一半之所 列值通過各氣刀32),·調減器上下間隙(圖3所示尺寸”及 34);調減器斗長度(圖3尺寸35);模具出口緣到調減器距離 (圖1尺寸17);及調減器出口列收集器距離(圖i尺寸21)。空 氣刀模長(圖4槽長25之方向)约120毫米;調減器主體28放氣 刀凹4模長約152*米。附於調減器主體壁允模長不同·,例 1-5,8_25,27_28,33_35及 37-47中,壁模長為 254毫米;例 6, 26,29_32及36中,為406毫米;例7為約127毫米。 -25- 1293346 收集之纖維性質均經記錄,包括平均纖維直徑,利用掃 描電子顯微鏡取得影像,並以在San Antonio的University of Texas Health Science Center之 Windows 1.28版 UTHSCSA IMAGE Tool顯像分析程式分析(1995-97專利)。影像放大500至1000 倍,視纖維尺寸而定。 收集纖維外觀絲速度以下式計算,V外* =4Μ/ρπφ2,其中 Μ為每孔聚合物流率,公克/立方米, p為聚合物密度,及 df以米表示之測得平均纖維直徑。 纖維之固性與延伸斷裂是取放大之單一纖維,並置於一 紙架上。以ASTM D3822_90方法測纖維斷裂強度。取8條纖 維得平均斷裂強度及延伸斷裂。黏固性以平均斷裂強度及 由纖維直徑與聚合物密度所得平均纖維丹尼值計算。 自備好網片裁切樣品,包含了纖維尾端部份,亦即由產 生斷裂或延伸之間斷所取纖維段,亦包含纖維中段,亦即 纖維主要未受影響部份。樣品經不同掃描熱量計分析,由 位在 New Castle,DE之 TA Instruments公司 Model 2920之模組 DSC™分析,熱率為每分鐘4°C,容許誤差在〇.636°C,維持 60秒。得出纖維尾端與中段熔點;表1列出纖維中段及尾端 在DSC圖上之最大熔點峰值。 雖然部份例中察覺不到中段與尾端有熔點差異,然例中 仍有其他不同處,如玻璃轉換溫度的差異。 纖維中段與尾端樣品亦以X-線繞射分析。利用Bruker之微 繞射儀(Madison,WI之Bmker AXS公司),銅Κα輻射,及 -26- 1293346 HI-STAR 2D散射位置感知儀收集數據。繞射儀具有300微米 對準儀及石墨投射束單色儀。X-線產生器包括旋轉陽極表 面,設立在50 kV及100 mA操作,以銅為乾。以發射光譜60 分鐘,偵測器中央為0° (2Θ)收集數據。以Brukei* GADDS數據 分析軟體修正偵測器敏感度及空間不規則性。修正後數據 以方位角平均,減少成散射角(2Θ)組x-y及密度值,再以 ORIGIN™數數分析軟體作分佈分析(Northhampton,MA之 Microcal Software公司提供),以評估其晶性。 採用高斯波峯模式分析各別晶性餐及非晶性餐分佈。某 些數據組中,單一非晶性条並不能代表完全非晶性掃描密 度。這些狀況下,利用額外寬最大值以完全代表所測得非 晶性掃描密度。晶性係數係以晶性餐面積對總掃描出蓁面 積在6°到36° (2Θ)掃描角範圍比例計算而得。單一值代表 100%晶性,而零代表完全非晶性材料。所得值列於表1。 例1,3,13,20及22等以聚丙晞所製網片例中,X-線分析 出中段與尾端差異,尾端包括β晶性型式,以5.5埃測得。 抽拉面積比率是以全部纖維剖面積除以模具孔剖面積測 定,取平均纖維直徑。生產指數亦計算出。 表1 實例編號 1 2 3 4 5 6 7 8 9 l〇 聚合物 PP PP PP PP PP PP PP PP PP PP MFI/IV 400 400 400 400 400 400 400 400 400 400 熔融溫度 (C) 187 188 187 183 188 188 188 188 180 188 小孔數 168 168 84 84 168 168 168 84 84 84 聚合物流率 (g/孔/分) 1.00 1.00 1.00 1.04 1.00 1.00 1.00 0.49 4.03 1.00 孔徑 (mm) 0.343 0.508 0.889 1.588 0.508 0.508 0.508 0.889 0.889 0.889 小孔L/D 9.26 6.25 3.57 1.5 6.25 6.25 6.25 3.57 3.57 3.57 -27- 1293346 空氣刀隙 (mm) 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.381 1.778 0.381 調減器主體角 度 (度) 30 30 30 30 30 30 30 20 40 20 調減器空氣溫 度 (C) 25 25 25 25 25 25 25 25 25 25 冷卻空氣量 (ACMM) 0.44 0.35 0.38 0.38 0.38 0.37 0 0.09 0.59 0.26 夾力 (牛頓) 221 221 59.2 63.1 148 237 0 23.7 63.1 43.4 調減器空氣量 (ACMM) 2.94 2.07 1.78 1.21 2.59 2.15 2.57 1.06 >3 1.59 調減器間隙 (上) (mm) 4.19 3.28 3.81 4.24 3.61 2.03 3.51 2.03 5.33 1.98 調減器間隙 (下) (mm) 2.79 1.78 2.90 3.07 3.18 1.35 3.51 2.03 4.60 1.88 斗長 (mm) 152.4 152.4 152.4 152.4 76.2 228.6 25.4 152.4 152.4 152.4 模具至調減器 距 (mm) 317.5 317.5 317.5 317.5 317.5 304.8 304.8 304.8 304.8 914.4 調減器至收集 器距 (mm) 609.6 609.6 609.6 609.6 609.6 609.6 609.6 609.6 609.6 304.8 平均纖維直根 (μ) 10.56 9.54 15.57 14.9 13.09 10.19 11.19 9.9 22.26 14.31 --Γ* ------ 外觀絲速度 (m/min) 12600 15400 5770 6530 8200 13500 11200 6940 11400 6830 黏性 一 (g/丹尼) 2.48 4.8 1.41 1.92 2.25 2.58 2.43 2.31 0.967 1.83 斷前延伸 (%) 180 180 310 230 220 200 140 330 230 220 抽拉面積比例 1050 2800 3260 11400 1510 2490 2060 8060 1600 3860 熔點·中 (°C) 165.4 165.0 164.1 164.1 165.2 164.0 164.3 165.2 164.3 165.4 第二波峯 (°C) 熔點-尾 (°C) 163.9 164.0 163.4 163.4 163.2 162.5 164.0 163.3 164.3 163.2 第二波峯 (°C) 晶性指數-中 0.44 0.46 0.42 0.48 0.48 0.52 0.39 0.39 0.50 0.40 產率指數 g.m/hole.min2 12700 15500 5770 6760 8240 13600 11300 3380 45800 6^30 網寬 (mm) N/M 508 584 292 330 533 102 267 203 241 纖維流包含角 (γ) (度) N/M 37 43 18 21 39 一 15 10 26 表1績 實例編號 ϋ 12 13 14 15 16 17 18 J9 聚合物 ΡΡ ΡΡ ΡΡ ΡΡ ΡΡ ΡΡ ΡΡ ΡΡ ΡΡ MFI/IV 400 400 400 30 70 70 70 70 70 熔融溫詹 (C) 190 196 183 216 201 201 208 207 206 小孔數 84 84 84 168 168 168 168 168 168 -28- 1293346 聚合物流率 (g/孔/分) 1.00 1.00 1.00 0.50 1.00 0.50 0.50 0.50 0.50 孔徑 (mm) 0.889 0.889 1.588 0.508 0.343 0.343 0.343 0.343 0.343 小孔L/D 3.57 3.57 1.5 3.5 9.26 3.5 3.5 3.5 3.5 空氣刀隙 (mm) 0.381 1.778 0.762 1.270 0.762 0.762 0.762 0.762 0.762 調減器主體角度 (度) 20 40 30 30 30 30 30 30 30 調減器空氣溫度 (c) 25 25 121 25 25 25 25 25 25 冷卻空氣量 (ACMM) 0 0.59 0.34 0.19 0.17 0 0.35 0.26 0.09 夾力 (牛頓) 27.6 15.8 55.2 25.6 221 27.6 27.6 27.6 27.6 調減器空氣量 (ACMM) 0.86 1.19 1.25 1.24 2.84 0.95 0.95 1.19 1.54 調減器間隙(上) (mm) 2.67 6.30 3.99 5.26 4.06 7.67 5.23 3.78 3.78 調減器間隙(下) (mm) 2.67 6.30 2.84 4.27 2.67 7.67 5.23 3.33 3.33 斗長 (mm) 152.4 76.2 152.4 152.4 152.4 152.4 152.4 152.4 152.4 模具至調減器距 (mm) 101.6 127 317.5 1181.1 317.5 108 304.8 292.1 292.1 調減器至收集器距 (mm) 914.4 304.8 609.6 330.2 609.6 990.6 787.4 800.1 800.1 平均纖維直徑 (μ) 18.7 21.98 14.66 16.50 16.18 19.20 17.97 14.95 20.04 外觀絲速度 (m/min) 4000 2900 6510 2570 5370 1900 2170 3350 1740 黏性 (g/丹尼) 0.52 0.54 1.68 2.99 2.12 2.13 2.08 2.56 0.87 斷前延伸 (%) 150 100 110 240 200 500 450 500 370 抽拉面積比例 2300 1600 12000 950 450 320 360 560 290 熔點-中 (°C) 162.3 163.9 164.5 162.7 164.8 164.4 166.2 163.9 164.1 第二波峯 (°C) 167.3 164.4 熔點-尾 (°C) 163.1 163.4 164.3 163.5 163.8 163.7 164.0 163.9 163.9 第二波峯 (°C) 166.2 晶性指數-中 0.12 0.13 0.46 0.53 0.44 0.33 0.43 0.37 0.49 產率指數 g.m/hole.min2 4000 2900 6500 1280 5390 950 1080 1680 870 網寬 (mm) 292 114 381 254 432 127 165 279 406 纖維流包含角(γ) (度) 12 2.4 26 26 30 1.4 4.6 13 22 表1績 實例編號 20 21 22 23 24 25 26 27 聚合物 PP PP PP PET PET PET PET PET MFI/IV 70 70 70 0.61 0.61 0.61 0.61 0.36 熔融溫度 (C) 221 221 221 278 290 281 290 290 小孔數 168 168 168 168 168 84 84 168 聚合物流率 (g/孔/分) 0.50 0.50 0.50 1.01 1.00 0.99 0.99 1.01 孔徑 (mm) 0.343 0.343 0.343 0.343 0.508 0.889 1.588 0.508 小孔L/D 3.5 3.5 3.5 3.5 3.5 3.57 3.5 3.5 -29- 1293346 空氣刀隙 (mm) 0.762 0.762 0.762 1.778 1.270 0.762 0.381 1.270 調減器主體角度 (度) 30 30 30 20 30 30 40 30 調減器空氣溫度 (C) 25 25 25 25 25 25 25 25 冷卻空氣量 (ACMM) 0.09 0.30 0.42 0.48 0.35 0.35 0.17 0.22 夾力 (牛頓) 27.6 150 17.0 3.9 82.8 63.1 3.9 86.8 調減器空氣量 (ACMM) 1.61 >3 1.61 2.11 2.02 2.59 0.64 2.40 調減器間隙(上) (mm) 3.78 3.78 3.78 4.83 5.08 5.16 2.21 5.03 調減器間隙(下) (mm) 3.33 3.35 3.35 4.83 3.66 4.01 3.00 3.86 斗長 (mm) 152.4 152.4 152.4 76.2 152.4 152.4 228.6 152.4 模具至調減器距 (mm) 508 508 685.8 317.5 533.4 317.5 317.5 127 調減器至收集器距 (mm) 584.2 584.2 431.8 609.6 762 609.6 609.6 742.95 平均纖維直徑 (μ) 16.58 15.73 21.77 11.86 10.59 11.92 13.26 10.05 外觀絲速度 (m/min) 2550 2830 1490 6770 8410 6580 5320 9420 黏性 (g/丹尼) 1.9 1.4 1.2 3.5 5.9 3.6 3.0 3.5 斷前延伸 (%) 210 220 250 40 30 40 50 20 抽拉面積比例 430 480 250 840 2300 5600 1400 2600 熔點-中 (°C) 165.9 163.9 165.7 260.9 259.9 265.1 261.0 256.5 第二波峯 (°C) 167.2 258.5 267.2 — 258.1 268.3 熔點-尾 (°C) 164.1 164.0 163.7 257.1 257.2 255.7 257.4 257.5 第二波峯 (°C) 253.9 254.3 268.7 253.9 · 晶性指數-中 0.5 0.39 0.40 0.10 0.20 0.27 0.25 0.12 產率指數 g.m/hole.min2 1270 1410 738 6820 8400 6520 5270 9500 網寬 (mm) 203 406 279 N/M 254 N/M 216 457 纖維流包含角(γ) (度) 10 29 23 N/M 11 N/M 11 27 表1續 實例編號 28 29 30 31 32 33 34 35 聚合物 PET PET PET PET PET Nylon PS Urethane MFI/IV 0.85 0.61 0.61 0.61 0.61 130 15.5 37 熔融溫度 (C) 290 282 281 281 281 272 268 217 小孔數 84 168 168 168 168 84 168 84 聚合物流率 (g/孔/分) 0.98 1.01 1.01 1.01 1.01 1.00 1.00 1.98 孔徑 (mm) 1.588 0.508 0.508 0.508 0.508 0.889 0.343 0.889 小孔L/D 3.57 6.25 6.25 6.25 6.25 6.25 9.26 6.25 空氣刀隙 (mm) 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 調減器主體角度 (度) 30 30 30 30 30 30 30 30 調減器空氣溫度 (C) 25 25 25 25 25 25 25 25 -30- 1293346Cl: mesh. As with some collections..., the fibers are broken, = connected, 'either entangled with each other or with other fibers, or by impacting the walls of the processing chamber: a segment of the Si fiber segment, ie a broken fiber segment' and entanglement or deformation In the fiber: fiber 2 is the interrupted fiber segment, more often referred to as the 'fiber end"; these are the ends of the unaffected fiber length 'even if entangled or changed: both, the shape of the cut ball,) But usually in the fiber == is less than 300 microns straight to the end of the fiber usually, especially broken or radiant, so that the tail end is wrapped around itself or other fibers. This fiber is adjacent to other fibers, such as by the fiber tail The end is combined with the adjacent protons from the homogeneity of the king. The processing of the broken fibers produces a unique property that can be used in the present invention to achieve fiber continuity. Such fiber ends do not appear in the collection mesh of the worker A (for example When the fiber material is made into the curing process, it will not occur. Individual fibers are entangled in the processing chamber, taken or interrupted' or may be entangled with other fibers due to the deviation of the processing chamber wall or processing, or even Still in the molten state, but even 21- 1293346 has this In the case of if 'wire processing will not be interrupted. The result is a considerable amount of fiber ends measured in the collection mesh, or interrupted fiber segments in the discontinuity of the fiber. Interrupts generally occur in or after the processing chamber, and the fibers are generally subjected to pulling force. Function, so the fiber has tension when it is spliced or deformed. The fracture or entanglement causes the tension to stop, the fiber end shrinks and increases the diameter. At the same time, the fracture end freely moves with the fluid flow in the process, at least In some cases, the tail end is formed into a radial shape and entangled with other fibers. The analysis of the fiber tail end and the middle section gives the crystallinity of the two. The polymer chain at the end of the fiber is generally oriented, but different middle segments. Degree. Different orientations give different crystal ratios, and crystal types, or other crystal structures. This difference can cause different properties. Generally, &, when properly calibrated by differential scanning calorimetry (DSC) evaluation of the present invention When the fiber ends and the middle section, the fiber tail and the middle section will be different from each other. Generally, the heat conversion will appear in the test instrument (0·Γ(:), because the fiber middle section and the fiber tail end The mechanism of the action is different. For example, when the experiment can observe that the 'thermal conversion may have the following difference ··丨) glass transition temperature, the middle section can be slightly higher than the tail end temperature, and this feature will be high with the middle part of the fiber. Obviously; 2) When observed, the cold crystallization temperature and the peak area measurement value in the cold crystallization will be lower in the segment than in the tail end, and 3) the middle melting point temperature Tm of the fiber will be higher than the Tm ' or the nature of the tail end. Synthesize various multiple endothermic minimums (that is, the multi-melt strips represent different melting points of different molecular regions, and the degree of crystal structure is different), and the middle section of the fiber is melted in the middle of the fiber. There are different parameters such as one or more glass transition temperatures, cold crystallization temperatures, and at least 〇.5 bite °c melting point difference in the middle section of the fiber. -22· 1293346 has the advantage of a larger fiber end mesh, which may include a It is easier to soften the substance to increase the mesh bonding; and the radiation type can increase the homogeneity of the mesh. EXAMPLES Examples In the apparatus shown in Figure 1, the different polymers listed in Table 1 were made into a fibrous web. The specific components and operating conditions of the device are different and are also listed in Table 1. The extrusion die used in each case had a width of 4 inches (about 10 cm). Table 1 also lists the properties of the finished fibers, including the width of the nonwoven web collected. Examples 1-22 and 4L43 were made of polypropylene; Examples 1-13 were prepared with a melt flow coefficient (ΜΠ) 400 polypropylene (Exxon 35〇5G), and Example I4 was prepared with an MFI of 30 polypropylene (Fina 3868). Example 15_22 was prepared with ΜΠ 70 70 polypropylene (Fina 3860) and Examples 42-43 were prepared with MFI 400 polypropylene (Fina 3960). The polypropylene density was 0.91 g/cc. Examples 23-32 and 44-46 were prepared from polyethylene terephthalic acid; Examples 23-26, 29-32, and 44 were prepared from PET having a viscosity (IV) of 0.61 (3M 651000), and Example 27 was prepared from PET having an IV of 0.36. Example 28 was prepared from PET having an IV of 0.9 (a high molecular weight PET that can be used as a high-coiled fiber, such as Crystar 0400 from Dupont Polymer), and Examples 45 and 46 were prepared as PETG (Ax45-produced by Paxon Polymer Company, Baton Rouge, LA). 004). The PET density is 1.35 and the PETG density is about 1.30. Examples 33 and 41 were prepared as nylon 6 polymers having an MFI of 130 and a density of 1.15 (Ultramid PA6 B_3, BASF). Example 34 was prepared as a polystyrene having a density of 15.5 and a density of 1.04 (Nova Chemicals Crystal PS 3510). Example 35 Preparation of a polyurea having a enthalpy of 37 and a density of 1.2 (Morton PS_440-200). -23- 1293346 Example 36 was prepared with polyethylene having an MFI of 30 and a density of 0.95 (Dow 6806). Example 37 was prepared as a block copolymer containing 13% phenethyl hydrazide and 87% ethylene butene copolymer, having a enthalpy of 8, and a density of 0.9 (Shell Kraton G1657). Example 38 is a two-component core-sheath fiber, the core (89%) being the phenethyl hydrazine used in Example 34, and the sheath (11%) being the copolymer used in Example 37. Example 39 was prepared from two fibers of adjacent fibers of polyethylene (Exxact 40, Exxon Chemicals, 30), (36%) and a pressure sensitive adhesive (64%). The adhesive contained 92% isooctylpropionic acid, 4% phenelzine, and 4% propionic acid, viscosity 0.63, supplied by a Bonnot adhesive extruder, all °/〇 are percentage by weight. Each of the fibers of Example 40 was a single component, but fibers of different polymer compositions, polyethylene of Example 36, and polypropylene used in Examples 1-13 were used. The extrusion head has 4 rows of holes, 42 rows of each row, and the extrusion head is supplied with the same row of holes as the difference between the two polymers to achieve the A-B-A··. arrangement. The web of Example 47 was prepared solely from a pressure sensitive adhesive which was used in one of the components of Example 39, and a Bonnot adhesive extruder. In Examples 42 and 43, the coil spring was used to replace the cylinder that pushes the movable side or wall of the reducer. The spring of Example 42 deviated 9.4 mm on each side during operation. The spring constant of the spring is 4.38 Newtons/Amm. The clamping force of each spring is 41.1 Newtons. The spring of Example 43 was offset by 2.95 mm on each side during operation, with a spring constant of 4.9 N/mm and a clamping force of 14.4 Newtons. The extrusion head of Example 44 was a meltblown mold having a hole diameter of 38 mm and a hole center distance of 1.02 mm. The holes are 101.6 mm long. The primary meltblown air temperature was 370 °C, and the combined air knife was introduced at a flow rate of 〇45 cubic meters per minute (CMM) through a 203 mm wide air knife on each side of the hole. 1293346, Example 47 pneumatic rolling bead oscillator is about 2 times per second, connected to each movable side or wall, the cylinder remains stationary, the positive adjustment chamber is below the extrusion head, and when there is pressure accumulation forced side separation , can restore the reduction side to the initial position I. The operation of the oscillator, in the state of the oscillator operation, produces a smaller amount of viscous adhesive attached to the regulator wall than in the absence of oscillator operation. The clamps of Examples 7 and 37 are added as 〇, but the balance between the chamber and ambient air pressure creates a gap between the chamber walls and returns the active position to the initial position after any interruption. The polymer forming the fibers of each case is heated as listed in Table ( (temperature is taken from the outlet of the extruder 12 near the pump 13), and the polymer is converted into the m-state polymer to the extruder according to the flow rate shown in Table i. hole. The extruder head typically has four rows of holes, however the number of perforations, the aperture, and the length to diameter ratio of the holes are also different, as listed in the table. Example 1 2 5-7 ′ 14-24 ′ 27, 29-32, 34 and 36-40 each has 42 holes, for a total of 168 holes. In the other examples other than Example 44, for every 21 holes, a total of holes were discussed. The parameters of the reducer also vary as shown in the table, including the air knife gap (size 30 in Figure 3), the angle of the decelerator king (Fig. 32α), the air temperature through the regulator, the cooling air flow rate, and the cylinder Reducer clamping force; the total amount of air through the regulator (in actual cubic meters per minute, or ACMM; about half of the listed values through each air knife 32), · reducer upper and lower clearance (Figure 3 Dimensions" and 34); reducer bucket length (Figure 3 size 35); mold exit edge to reducer distance (Figure 17 size 17); and reducer exit column collector distance (Figure i size 21). The length of the air knife is about 120 mm (the direction of the groove length of Figure 4) is about 120 mm; the main body of the reducer 28 is vented by a concave die of about 152 mm. The wall of the main body of the reducer is different in length. Example 1- In 5,8_25,27_28,33_35 and 37-47, the wall mold length is 254 mm; in Examples 6, 26, 29_32 and 36, it is 406 mm; and in Example 7, it is about 127 mm. -25- 1293346 Recorded, including average fiber diameter, imaged using a scanning electron microscope, and used in Windows 1 of the University of Texas Health Science Center in San Antonio .28 version of UTHSCSA IMAGE Tool imaging analysis program (1995-97 patent). Image magnification 500 to 1000 times, depending on fiber size. Collecting fiber appearance silk speed is calculated by the following formula, V outside * = 4 Μ / ρ π φ 2, where Μ For each pore polymer flow rate, gram per cubic meter, p is the polymer density, and df is measured in meters to determine the average fiber diameter. The fiber's solidity and elongation fracture are taken from a single fiber that is enlarged and placed on a paper holder. The fiber breaking strength was measured by ASTM D3822_90 method. The average breaking strength and elongation fracture were obtained from 8 fibers. The viscosity was calculated by the average breaking strength and the average fiber Dani value obtained from the fiber diameter and the polymer density. The cut sample contains the fiber end portion, that is, the fiber segment obtained by breaking or extending the discontinuity, and also includes the middle fiber segment, that is, the main unaffected portion of the fiber. The sample is analyzed by different scanning calorimeters, The DSCTM analysis of the Model 2920 from TA Instruments in New Castle, DE, has a heat rate of 4 ° C per minute and a tolerance of 636.636 ° C for 60 seconds. The melting point of the middle section; Table 1 shows the maximum melting point peak of the middle and the end of the fiber on the DSC chart. Although some of the examples do not detect the melting point difference between the middle and the tail, there are still other differences, such as the glass transition temperature. The fiber mid- and tail-end samples were also analyzed by X-ray diffraction. Using Bruker's micro-diffuser (Madison, WI's Bmker AXS), copper Κ alpha radiation, and -26- 1293346 HI-STAR 2D scattering position The sensor collects data. The diffractometer has a 300 micron aligner and a graphite projection beam monochromator. The X-ray generator consists of a rotating anode surface set at 50 kV and 100 mA operation with copper as the stem. The data was collected with an emission spectrum of 60 minutes and a center of the detector at 0° (2Θ). The Brukei* GADDS data is used to analyze the software correction detector sensitivity and spatial irregularity. The corrected data was averaged in azimuth, reduced to x-y and density values in the scattering angle (2Θ) group, and analyzed by ORIGINTM number analysis software distribution (provided by Microcal Software, Inc., Northhampton, MA) to evaluate its crystallinity. Gaussian peak mode was used to analyze the distribution of each crystalline meal and amorphous meal. In some data sets, a single amorphous strip does not represent a completely amorphous scan density. In these cases, an extra wide maximum is utilized to fully represent the measured non-crystalline scan density. The crystallinity coefficient is calculated from the ratio of the crystalline meal area to the total scan pupil area in the range of 6° to 36° (2Θ) scanning angle. A single value represents 100% crystallinity and zero represents a completely amorphous material. The values obtained are listed in Table 1. In Examples 1, 3, 13, 20, and 22, which are made of polypropylene, the X-ray analysis shows the difference between the middle and the tail, and the tail includes the β crystal form, measured at 5.5 angstroms. The draw area ratio is determined by dividing the total fiber cross-sectional area by the cross-sectional area of the die hole, and taking the average fiber diameter. The production index is also calculated. Table 1 Example No. 1 2 3 4 5 6 7 8 9 l Polymer PP PP PP PP PP PP PP PP PP MFI/IV 400 400 400 400 400 400 400 400 400 400 Melting temperature (C) 187 188 187 183 188 188 188 188 180 188 Number of holes 168 168 84 84 168 168 168 84 84 84 Polymer flow rate (g/hole/min) 1.00 1.00 1.00 1.04 1.00 1.00 1.00 0.49 4.03 1.00 Aperture (mm) 0.343 0.508 0.889 1.588 0.508 0.508 0.508 0.889 0.889 0.889 Small hole L/D 9.26 6.25 3.57 1.5 6.25 6.25 6.25 3.57 3.57 3.57 -27- 1293346 Air gap (mm) 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.381 1.778 0.381 Reducer body angle (degrees) 30 30 30 30 30 30 30 20 40 20 Reducer air temperature (C) 25 25 25 25 25 25 25 25 25 25 Cooling air volume (ACMM) 0.44 0.35 0.38 0.38 0.38 0.37 0 0.09 0.59 0.26 Clamping force (Newton) 221 221 59.2 63.1 148 237 0 23.7 63.1 43.4 Reducer air volume (ACMM) 2.94 2.07 1.78 1.21 2.59 2.15 2.57 1.06 >3 1.59 Reducer clearance (top) (mm) 4.19 3.28 3.81 4.24 3.61 2.03 3.51 2.03 5.33 1.98 Reducer clearance (lower ) (mm) 2.79 1.78 2.90 3 .07 3.18 1.35 3.51 2.03 4.60 1.88 bucket length (mm) 152.4 152.4 152.4 152.4 76.2 228.6 25.4 152.4 152.4 152.4 Die to reducer distance (mm) 317.5 317.5 317.5 317.5 317.5 304.8 304.8 304.8 304.8 914.4 Reducer to collector distance ( Mm) 609.6 609.6 609.6 609.6 609.6 609.6 609.6 609.6 609.6 304.8 Average fiber straight root (μ) 10.56 9.54 15.57 14.9 13.09 10.19 11.19 9.9 22.26 14.31 --Γ* ------ Appearance wire speed (m/min) 12600 15400 5770 6530 8200 13500 11200 6940 11400 6830 Viscosity one (g/Dani) 2.48 4.8 1.41 1.92 2.25 2.58 2.43 2.31 0.967 1.83 Extension before break (%) 180 180 310 230 220 200 140 330 230 220 Pulling area ratio 1050 2800 3260 11400 1510 2490 2060 8060 1600 3860 Melting point · Medium (°C) 165.4 165.0 164.1 164.1 165.2 164.0 164.3 165.2 164.3 165.4 Second peak (°C) Melting point - tail (°C) 163.9 164.0 163.4 163.4 163.2 162.5 164.0 163.3 164.3 163.2 Second peak (°C) Crystallinity Index - Medium 0.44 0.46 0.42 0.48 0.48 0.52 0.39 0.39 0.50 0.40 Yield Index gm/hole.min2 12700 15500 5770 6760 8240 13600 11300 3380 45800 6^30 Net width (mm) N/M 508 584 292 330 533 102 267 203 241 Fiber flow containing angle (γ) (degrees) N/M 37 43 18 21 39 a 15 10 26 Table 1 Example No. ϋ 12 13 14 15 16 17 18 J9 Polymer ΡΡ FI ΡΡ ΡΡ ΡΡ ΡΡ ΡΡ ΡΡ ΡΡ MFI/IV 400 400 400 30 70 70 70 70 70 Melting temperature Zhan (C) 190 196 183 216 201 201 208 207 206 Small Number of holes 84 84 84 168 168 168 168 168 168 -28- 1293346 Polymer flow rate (g/hole/min) 1.00 1.00 1.00 0.50 1.00 0.50 0.50 0.50 0.50 Aperture (mm) 0.889 0.889 1.588 0.508 0.343 0.343 0.343 0.343 0.343 Small hole L /D 3.57 3.57 1.5 3.5 9.26 3.5 3.5 3.5 3.5 Air knife gap (mm) 0.381 1.778 0.762 1.270 0.762 0.762 0.762 0.762 0.762 Reducer body angle (degrees) 20 40 30 30 30 30 30 30 30 Reducer air temperature (c 25 25 121 25 25 25 25 25 25 Cooling Air Volume (ACMM) 0 0.59 0.34 0.19 0.17 0 0.35 0.26 0.09 Clamping force (Newton) 27.6 15.8 55.2 25.6 221 27.6 27.6 27.6 27.6 Reducer air volume (ACMM) 0.86 1.19 1.25 1.24 2.84 0.95 0.95 1.19 1.54 Reducer Room (上) (mm) 2.67 6.30 3.99 5.26 4.06 7.67 5.23 3.78 3.78 Reducer clearance (bottom) (mm) 2.67 6.30 2.84 4.27 2.67 7.67 5.23 3.33 3.33 bucket length (mm) 152.4 76.2 152.4 152.4 152.4 152.4 152.4 152.4 152.4 Reducer distance (mm) 101.6 127 317.5 1181.1 317.5 108 304.8 292.1 292.1 Reducer to collector distance (mm) 914.4 304.8 609.6 330.2 609.6 990.6 787.4 800.1 800.1 Average fiber diameter (μ) 18.7 21.98 14.66 16.50 16.18 19.20 17.97 14.95 20.04 Appearance wire speed (m/min) 4000 2900 6510 2570 5370 1900 2170 3350 1740 Viscosity (g/Danny) 0.52 0.54 1.68 2.99 2.12 2.13 2.08 2.56 0.87 Extension before break (%) 150 100 110 240 200 500 450 500 370 Pull area ratio 2300 1600 12000 950 450 320 360 560 290 Melting point - medium (°C) 162.3 163.9 164.5 162.7 164.8 164.4 166.2 163.9 164.1 Second peak (°C) 167.3 164.4 Melting point-tail (°C) 163.1 163.4 164.3 163.5 163.8 163.7 164.0 163.9 163.9 Second peak (°C) 166.2 Crystallinity index - medium 0.12 0.13 0.46 0.53 0.44 0.33 0.43 0.37 0.49 Yield index gm/hole.min2 4000 2900 6500 1280 5390 950 1080 1680 870 Mesh width (mm) 292 114 381 254 432 127 165 279 406 Fiber flow containing angle (γ) (degrees) 12 2.4 26 26 30 1.4 4.6 13 22 Table 1 performance example number 20 21 22 23 24 25 26 27 Polymer PP PP PP PET PET PET PET PET MFI/IV 70 70 70 0.61 0.61 0.61 0.61 0.36 Melting temperature (C) 221 221 221 278 290 281 290 290 Small hole number 168 168 168 168 168 84 84 168 Polymer flow rate (g/hole/min) 0.50 0.50 0.50 1.01 1.00 0.99 0.99 1.01 Aperture (mm) 0.343 0.343 0.343 0.343 0.508 0.889 1.588 0.508 Small hole L/D 3.5 3.5 3.5 3.5 3.5 3.57 3.5 3.5 -29- 1293346 Air knife gap (mm) 0.762 0.762 0.762 1.778 1.270 0.762 0.381 1.270 Reducer body angle (degrees) 30 30 30 20 30 30 40 30 Reducer air temperature (C) 25 25 25 25 25 25 25 25 Cooling air volume (ACMM) 0.09 0.30 0.42 0.48 0.35 0.35 0.17 0.22 Clamping force (Newton) 27.6 150 17.0 3.9 82.8 63.1 3.9 86.8 Reducer air volume (ACMM) 1.61 >3 1.61 2.11 2.02 2.59 0.64 2.40 Reducer clearance (top) (mm) 3.78 3.78 3.78 4.83 5.08 5.16 2.21 5.03 Clearance (bottom) (mm) 3.33 3.35 3.35 4.83 3.66 4.01 3.00 3.86 bucket length (mm) 152.4 152.4 152.4 76.2 152.4 152.4 228.6 152.4 Die to reducer distance (mm) 508 508 685.8 317.5 533.4 317.5 317.5 127 Reducer to Collector distance (mm) 584.2 584.2 431.8 609.6 762 609.6 609.6 742.95 Average fiber diameter (μ) 16.58 15.73 21.77 11.86 10.59 11.92 13.26 10.05 Appearance wire speed (m/min) 2550 2830 1490 6770 8410 6580 5320 9420 Viscosity (g/丹尼 1.4 1.9 1.4 1.2 5.9 3.6 3.0 3.5 Extension before break (%) 210 220 250 40 30 40 50 20 Ratio of draw area 430 480 250 840 2300 5600 1400 2600 Melting point - medium (°C) 165.9 163.9 165.7 260.9 259.9 265.1 261.0 256.5 Second peak (°C) 167.2 258.5 267.2 — 258.1 268.3 Melting point-tail (°C) 164.1 164.0 163.7 257.1 257.2 255.7 257.4 257.5 Second peak (°C) 253.9 254.3 268.7 253.9 · Crystallinity index - medium 0.5 0.39 0.40 0.10 0.20 0.27 0.25 0.12 Yield index gm/hole.min2 1270 1410 738 6820 8400 6520 5270 9500 Net width (mm) 203 406 279 N/M 254 N/M 216 457 The fiber flow contains angles (γ) ( 10 29 23 N/M 11 N/M 11 27 Table 1 continued example number 28 29 30 31 32 33 34 35 Polymer PET PET PET PET PET Nylon PS Urethane MFI/IV 0.85 0.61 0.61 0.61 0.61 130 15.5 37 Melting temperature ( C) 290 282 281 281 281 272 268 217 Number of holes 84 168 168 168 168 84 168 84 Polymer flow rate (g/hole/min) 0.98 1.01 1.01 1.01 1.01 1.00 1.00 1.98 Aperture (mm) 1.588 0.508 0.508 0.508 0.508 0.889 0.343 0.889 Small hole L/D 3.57 6.25 6.25 6.25 6.25 6.25 9.26 6.25 Air gap (mm) 0.762 0.762 0.762 0.762 0.762 0.762 0.762 0.762 Reducer body angle (degrees) 30 30 30 30 30 30 30 30 Reducer air temperature ( C) 25 25 25 25 25 25 25 25 -30- 1293346

冷卻空氣量 (ACMM) 0.19 0 0.48 0.48 0.35 0.08 0.21 0 夾力 (牛頓) 39.4 82.8 86.8 82.8 82.8 39.4 71.0 86.8 調減器空氣量 (ACMM) 1.16 2.16 2.16 2.15 2.15 2.12 2.19 >3 調減器間隙(上) (mm) 3.86 3.68 3.67 3.58 3.25 4.29 4.39 4.98 調減器間隙(下) (mm) 3.10 3.10 3.10 3.10 2.64 3.84 3.10 4.55 斗長 (mm) 76.2 228.6 228.6 228.6 228.6 76.2 152.4 76.2 模具至調減器距 (mm) 317.5 88.9 317.5 457.2 685.8 317.5 317.5 317.5 調減器至收集器距 (mm) 609.6 609.6 609.6 482.6 279.4 831.85 609.6 609.6 平均纖維直徑 ⑻ 12.64 10.15 10.59 11.93 10.7 12.94 14.35 14.77 外觀絲速度 (m/min) 5800 9230 8480 6690 8310 6610 5940 9640 黏性 (g/丹尼) 3.6 3.1 4.7 4.1 5.6 3.8 1.4 3.3 斷前延伸 (%) 30 20 30 40 40 140 40 140 抽拉面積比例 16000 2500 2300 1800 2300 4700 570 3600 熔點-中 (°C) 268.3 265.6 265.3 262.4 261.4 221.2 23.7? 第二波峯 (°C) 257.3 257.9 269.5 218.2 9 熔點-尾 (°C) 254.1 257.2 257.2 257.4 257.4 219.8 ? 第二波峯 (°C) 268.9 268.4 * * 氺 一 __ __ 晶性指數-中 0.22 0.09 0.32 0.35 0.35 0.07 0 0 產率指數 g.m/hole.min2 5690 9320 8560 6740 8380 6610 5940 19100 網寬 (mm) 305 559 559 711 457 279 318 279 纖維流包含角(γ) (度) 19 41 41 65 65 12 20 17 表1續 實例編號 36 37 38 39 40 41 42 聚合物 PE Bl.CopoL PS/copol. PE/PSA PE/PP Nylon PP MFI/IV 30 8 15.5/8 30/.63 30/400 130 400 熔融溫度 (C) 200 275 269 205 205 271 206 小孔數 168 168 168 168 168 84 84 聚合物流率 (g/孔/分) 0.99 0.64 1.14 0.83 0.64 0.99 2.00 孔徑 (mm) 0.508 0.508 0.508 0.508 0.508 0.889 0.889_ 小孔L/D 6.25 6.25 6.25 6.25 6.25 6.25 6.25 空氣刀隙 (mm) 0.762 0.762 0.762 0.762 0.762 0.762 0.762 H逢器主體角度 (度) 30 30 30 30 30 30 30 翌座器空氣溫度 (C) 25 25 25 25 25 25 25 冷卻空氣量 (ACMM) 0.16 0.34 0.25 0.34 0.34 0.08 0.33 夾力 (牛頓) 205 0.0 27.6 23.7 213 150 41.1 ,減器空氣量 (ACMM) 2.62 0.41 0.92 0.54 2.39 >3 >3Cooling air volume (ACMM) 0.19 0 0.48 0.48 0.35 0.08 0.21 0 Clamping force (Newton) 39.4 82.8 86.8 82.8 82.8 39.4 71.0 86.8 Reducer air volume (ACMM) 1.16 2.16 2.16 2.15 2.15 2.12 2.19 >3 Reducer clearance ( () 3) 3.86 3.68 3.67 3.58 3.25 4.29 4.39 4.98 Reducer clearance (bottom) (mm) 3.10 3.10 3.10 3.10 2.64 3.84 3.10 4.55 bucket length (mm) 76.2 228.6 228.6 228.6 228.6 76.2 152.4 76.2 Die to reducer distance (mm) 317.5 88.9 317.5 457.2 685.8 317.5 317.5 317.5 Reducer to collector distance (mm) 609.6 609.6 609.6 482.6 279.4 831.85 609.6 609.6 Average fiber diameter (8) 12.64 10.15 10.59 11.93 10.7 12.94 14.35 14.77 Appearance wire speed (m/min) 5800 9230 8480 6690 8310 6610 5940 9640 Viscosity (g/Danny) 3.6 3.1 4.7 4.1 5.6 3.8 1.4 3.3 Extension before breakage (%) 30 20 30 40 40 140 40 140 Ratio of draw area 16000 2500 2300 1800 2300 4700 570 3600 Melting point -Medium (°C) 268.3 265.6 265.3 262.4 261.4 221.2 23.7? Second peak (°C) 257.3 257.9 269.5 218.2 9 Melting point-tail (°C) 254.1 257.2 257.2 257.4 257.4 219.8 ? Two peaks (°C) 268.9 268.4 * * 氺一__ __ Crystallinity index - medium 0.22 0.09 0.32 0.35 0.35 0.07 0 0 Yield index gm/hole.min2 5690 9320 8560 6740 8380 6610 5940 19100 Net width (mm) 305 559 559 711 457 279 318 279 Fiber flow containing angle (γ) (degrees) 19 41 41 65 65 12 20 17 Table 1 continued example number 36 37 38 39 40 41 42 Polymer PE Bl. CopoL PS/copol. PE/PSA PE/PP Nylon PP MFI/IV 30 8 15.5/8 30/.63 30/400 130 400 Melting temperature (C) 200 275 269 205 205 271 206 Number of holes 168 168 168 168 168 84 84 Polymer flow rate (g/ Hole/min) 0.99 0.64 1.14 0.83 0.64 0.99 2.00 Aperture (mm) 0.508 0.508 0.508 0.508 0.508 0.889 0.889_ Small hole L/D 6.25 6.25 6.25 6.25 6.25 6.25 6.25 Air gap (mm) 0.762 0.762 0.762 0.762 0.762 0.762 0.762 H Body angle (degrees) 30 30 30 30 30 30 30 Seat air temperature (C) 25 25 25 25 25 25 25 Cooling air volume (ACMM) 0.16 0.34 0.25 0.34 0.34 0.08 0.33 Clamping force (Newton) 205 0.0 27.6 23.7 213 150 41.1, reducer air volume (ACMM) 2.62 0.41 0.92 0.54 2.39 >3 >3

-31- 1293346 調減器間隙(上) (mm) 3.20 7.62 3.94 4.78 3.58 4.19 3.25 調減器間隙(下) (mm) 2.49 7.19 3.56 4.78 3.05 3.76 2.95 斗長 (mm) 228.6 76.2 76.2 76.2 76.2 76.2 76.2 模具至調減器距 (mm) 317.5 666.75 317.5 330.2 292.1 539.75 317.5 調減器至收集器距 (mm) 609.6 330.2 800.1 533.4 546.1 590.55 609.6 平均纖維直徑 ⑻ 8.17 34.37 19.35 32.34 8.97 12.8 16.57 外觀絲速度 (m/min) 19800 771 4700 1170 11000 6700 10200 黏性 (g/丹尼) 1.2 1.2 1.1 3.5 0.8 斷前延伸 (%) 60 30 100 50 170 抽拉面積比例 3900 220 690 250 3200 4800 2900 熔點-中 (°C) 118.7 165.1 第二波拳 (°C) 123.6 熔點-尾 (°C) 122.1 164.5 第二波峯 (°C) 晶性指數-中 0.72 0 0 0.36 0.08 0.43 產率指數 g.m/hole.min2 19535 497 5340 972 7040 6640 20400 網寬 (mm) N/M 89 406 N/M N/M 279 305 纖維流包含角(γ) (度) N/M 22 11 11 17 19 表1續 實例編號 43 44 45 46 47 聚合物 PP PET PETG PETG PSA MFI/IV 400 0.61 >70 >70 0.63 熔融溫度 (C) 205 290 262 265 200 小孔數 84 氺氺 84 84 84 聚合物流率 (g/孔/分) 2.00 0.82 1.48 1.48 0.60 孔徑 (mm) 0.889 0.38 1.588 1.588 0.508 小孔L/D 6.25 6.8 3.5 3.5 3.5 空氣刀隙 (mm) 0.762 0.762 0.762 0.762 0.762 調減器主體角度 (度) 30 30 30 30 30 調減器空氣溫度 (C) 25 25 25 25 25 冷卻空氣量 (ACMM) 0.33 0 0.21 0.21 0 夾力 (牛頓) 14.4 98.6 39.4 27.6 氺氺氺 調減器空氣量 (ACMM) 2.20 1.5 0.84 0.99 0.56 調減器間隙(上) (mm) 4.14 4.75 3.66 3.56 6.30 調減器間隙(下) (mm) 3.61 4.45 3.38 3.40 5.31 斗長 (mm) 76.2 76.2 76.2 76.2 76.2 -32- 1293346-31- 1293346 Reducer clearance (top) (mm) 3.20 7.62 3.94 4.78 3.58 4.19 3.25 reducer clearance (bottom) (mm) 2.49 7.19 3.56 4.78 3.05 3.76 2.95 bucket length (mm) 228.6 76.2 76.2 76.2 76.2 76.2 76.2 Mold to reducer distance (mm) 317.5 666.75 317.5 330.2 292.1 539.75 317.5 Reducer to collector distance (mm) 609.6 330.2 800.1 533.4 546.1 590.55 609.6 Average fiber diameter (8) 8.17 34.37 19.35 32.34 8.97 12.8 16.57 Appearance wire speed (m/ Min) 19800 771 4700 1170 11000 6700 10200 Viscosity (g/Danny) 1.2 1.2 1.1 3.5 0.8 Extension before breakage (%) 60 30 100 50 170 Ratio of draw area 3900 220 690 250 3200 4800 2900 Melting point - medium (°C 118.7 165.1 Second wave punch (°C) 123.6 Melting point-tail (°C) 122.1 164.5 Second peak (°C) Crystallinity index - medium 0.72 0 0 0.36 0.08 0.43 Yield index gm/hole.min2 19535 497 5340 972 7040 6640 20400 Mesh width (mm) N/M 89 406 N/MN/M 279 305 Fiber flow containing angle (γ) (degrees) N/M 22 11 11 17 19 Table 1 continued example number 43 44 45 46 47 Polymerization PP PET PETG PETG PSA MFI/IV 4 00 0.61 >70 >70 0.63 Melting temperature (C) 205 290 262 265 200 Small hole number 84 氺氺84 84 84 Polymer flow rate (g/hole/min) 2.00 0.82 1.48 1.48 0.60 Aperture (mm) 0.889 0.38 1.588 1.588 0.508 Small hole L/D 6.25 6.8 3.5 3.5 3.5 Air gap (mm) 0.762 0.762 0.762 0.762 0.762 Reducer body angle (degrees) 30 30 30 30 30 Reducer air temperature (C) 25 25 25 25 25 Cooling Air volume (ACMM) 0.33 0 0.21 0.21 0 Clamping force (Newton) 14.4 98.6 39.4 27.6 氺氺氺 Reducer air volume (ACMM) 2.20 1.5 0.84 0.99 0.56 Reducer clearance (top) (mm) 4.14 4.75 3.66 3.56 6.30 Reducer clearance (bottom) (mm) 3.61 4.45 3.38 3.40 5.31 bucket length (mm) 76.2 76.2 76.2 76.2 76.2 -32- 1293346

模具至調減器距 (mm) 317.5 102 317 635 330 調減器至收集器距 (mm) 609.6 838 610 495 572 平均纖維直徑 ⑻ 13.42 8.72 19.37 21.98 38.51 外觀絲速度 (m/min) 15500 10200 3860 3000 545 黏性 (g/丹尼) 3.6 2.1 1.64 3.19 一 斷前延仲 (%) 130 40 60 80 一 抽拉面積比例 4388 1909 6716 5216 1699 熔點-中 (°C) 164.8 257.4 第二波峯 (°C) 254.4 熔點-尾 (°C) 164.0 257.4 第二波拳 (°C) 254.3 晶性指數-中 0.46 <0.05 0 0 產率指數 g.m/hole.min2 31100 8440 5700 4420 330 網寬 (mm) 191 381 203 254 N/M 纖維流包含角(γ) (度) 8 19 10 17 N/M *複數值 **熔融吹製閥 ***於200循環/秒下之管壁振動 圖式代表符號說明 10 擠出頭或模具 11 進料斗 12 擠出機 13 泵 14 氣體抽拉裝置 15 絲流 16 調減器 16a,16b 調減器側a, b 17 軸向長 18a 第一氣體流 1293346 18b 第二氣體流 19 收集器 20 纖維物質 21 距離 22 驅動滾輪 23 儲存液輪 24, 77 加工室 25 橫向長 26 縱向軸 27, 90 斗 28 主體部份 29 凹部區 30 間隙 31 管線 32 空氣刀 33 間距厚度 34 出口開口 35 斗長 37, 78 安裝塊 38 軸承 39, 79, 85 桿 40, 72 半部 41 供應管 43, 76 氣缸 1293346 44, 80 連桿 46 螺栓桿 47 安裝板 48 螺帽 50 壁間距 60, 61 側壁 62 〜65 壁段 70 裝置 71 架 73 針 74 支持塊 75 主體部份 81 板 82 驅動軸 86 支撐架 89 展開斗Mold to reducer distance (mm) 317.5 102 317 635 330 Reducer to collector distance (mm) 609.6 838 610 495 572 Average fiber diameter (8) 13.42 8.72 19.37 21.98 38.51 Appearance wire speed (m/min) 15500 10200 3860 3000 545 Viscosity (g/Dani) 3.6 2.1 1.64 3.19 Pre-extension (%) 130 40 60 80 A draw area ratio 4388 1909 6716 5216 1699 Melting point-medium (°C) 164.8 257.4 Second peak (°C 254.4 Melting point-tail (°C) 164.0 257.4 Second wave punching (°C) 254.3 Crystallinity index - Medium 0.46 <0.05 0 0 Yield index gm/hole.min2 31100 8440 5700 4420 330 Net width (mm) 191 381 203 254 N/M fiber flow containing angle (γ) (degrees) 8 19 10 17 N/M * complex value ** melt blown valve *** tube wall vibration diagram at 200 cycles / sec 10 Extrusion head or die 11 Feed hopper 12 Extruder 13 Pump 14 Gas extraction device 15 Wire flow 16 Reducer 16a, 16b Reducer side a, b 17 Axial length 18a First gas flow 1293346 18b Second Gas stream 19 collector 20 fibrous material 21 distance 22 drive roller 23 storage fluid wheel 24, 77 Processing chamber 25 Transverse length 26 Longitudinal shaft 27, 90 Bucket 28 Body portion 29 Recessed area 30 Clearance 31 Pipeline 32 Air knife 33 Pitch thickness 34 Outlet opening 35 Bucket length 37, 78 Mounting block 38 Bearing 39, 79, 85 Rod 40, 72 Half 41 Supply pipe 43, 76 Cylinder 1293346 44, 80 Connecting rod 46 Bolt rod 47 Mounting plate 48 Nut 50 Wall spacing 60, 61 Side wall 62 to 65 Wall section 70 Unit 71 Frame 73 Needle 74 Support block 75 Main part 81 plate 82 drive shaft 86 support frame 89 expansion bucket

Claims (1)

4月) 3474號專利申請案 年普專·科範赞擎換本(96年 年月日修(氧)正本 I、申請專利範圍: 1. -種製備不織布纖維網的方法,其包含&)自—已知寬产 及:度模具擠出絲流;b)導引擠出絲流通過由兩近距: 門隔且相互平仃’同時平行該模具寬度及平行於攝出絲 —所界疋加工室;幻於一收集器接受通過該 加工至(絲泥’絲於該處係以不織布纖維網收集;及 k擇加工至壁間間距,使擠出絲流延展並收集 網,其寬度至少大於模具寬度5〇毫米。 I如申請專利^圍第1項之方法,其中由兩壁所界定加工室 縱向側係對附近環境開放。 I如=請專利範圍第1項之方法,其中㈣在與絲行進方向 為検向的寬度,在絲行進下游點大於上游點。 I如申請專利範圍第3項之方法,其㈣加工MM㈣ 長的至少邵份係對周圍環境為封閉狀態。 々申巧專利範圍第1項之方法,其中該平行壁在絲行進方 向上呈相互漸收攏。 6·如申請專利範園第⑴項中任一項之方法,其中該收集 I功能網至少大於模具寬度100毫米。 7. 如申請專利範圍第丨至5項中任—項之方法,其中該收集 之功能網至少大於模具寬度200毫米。 8. 如申請專利範圍第}至5項中任一項之方法,其中該絲延 展寬度在進入收集器前’至少大於模具寬度勝 9. 如申請專利範園第⑴項中任一項之方法,其中該絲延 展寬度在進入收集器前,至少為模具寬度二倍。 1〇·如申請專利範圍第⑴項中任一項之方法,纟中該絲流 85451-960413.doc 1293346 所形成鬆體不織布網厚度至少5毫米,硬 /克。 私反為至少10毫升 U.如申請專利範圍第1至5項中任一項之方法,其 工室擠出絲固性受到控制,使該絲收集器收集時=力: 結合。 K果時可自動 I2·如申請專利範圍第1至5項中 界定加工室壁之一,可自動1/:万法,其中至少該 土 了自動向另一壁移動靠近或遠離, 並由在絲通過時提供即時動作之移動裝置控制。 13.如申請專利範圍第!至5項中任一項之方法,其中該加工 罜包含可對絲在行經加工室方向施加拉力之空氣刀。 M.如申請專利範圍第⑴項中任一項之方法,纟中該擠出 絲流係以每分鐘至少8〇〇〇米之外觀絲速度通過該加工 室。 15.如申請專利範圍第⑴項中任一項之方法,其中該擠出 絲流係以每分鐘i少i 〇〇〇〇米之外觀絲速度通過該加工 室。 •如申請專利範圍第⑴項中任一項之方法,其中該擠出 絲流以足以提供至少9 〇 〇 〇之生產指數之外觀絲速度通過 該加工室。 85451-960413.docApril) Patent Application No. 3474: General Appropriation, Science and Technology, and the original version of the patent (1). The method of preparing a non-woven fabric, which includes & ) from - known wide production and: degree mold extrusion of the filament flow; b) guiding the extrusion filament flow through two close distances: the door is separated and mutually flat 'at the same time parallel to the width of the mold and parallel to the take-up wire - The processing chamber of the boundary; the illusion of a collector is accepted by the processing until the (silk mud) wire is collected by the non-woven fabric; and The width is at least 5 mm larger than the width of the mold. I. The method of claim 1, wherein the longitudinal side of the processing chamber defined by the two walls is open to the surrounding environment. I, as in the method of claim 1, wherein (4) The width in the direction of travel with the wire is greater than the upstream point at the downstream point of the wire travel. I. As in the method of claim 3, (4) processing at least the MM (four) long at least the Shao system is closed to the surrounding environment. The method of claim 1 of the patent scope, wherein the parallel The method of any one of the inventions, wherein the collecting I functional net is at least 100 mm larger than the width of the mold. The method of any of the items, wherein the collected functional network is at least 200 mm wider than the width of the mold. 8. The method of any one of clauses 5 to 5, wherein the width of the filament extends before entering the collector. The method according to any one of the preceding claims, wherein the width of the wire is at least twice the width of the mold before entering the collector. 1〇·If the patent application scope (1) In any one of the methods, the silky non-woven fabric formed by the silk flow 85451-960413.doc 1293346 has a thickness of at least 5 mm, hard/gram. The private reaction is at least 10 ml U. As claimed in the first to fifth patents In any of the methods, the extrusion silkiness of the laboratory is controlled so that the wire collector collects when the force is combined: the K fruit can be automatically I2. The processing room is defined in the first to fifth patent applications. One of the walls, automatic 1/: a method in which at least the soil is automatically moved closer to or away from the other wall and is controlled by a mobile device that provides an immediate action when the filament passes. 13. The method of any one of claims 5 to 5, The processing crucible includes an air knife that can apply a pulling force to the processing direction of the processing chamber. The method of any one of the preceding claims, wherein the extruded filament flow system is at least 8 inches per minute. The method of the present invention, wherein the filament flow rate is passed through the processing chamber, wherein the extruded filament flow passes through the filament speed of i 〇〇〇〇m per minute. The process of any one of the preceding claims, wherein the extruded filament stream passes through the processing chamber at an apparent filament speed sufficient to provide a production index of at least 9 Torr. 85451-960413.doc
TW92113474A 2002-05-20 2003-05-19 Method for forming spread nonwoven webs TWI293346B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/151,781 US20030003834A1 (en) 2000-11-20 2002-05-20 Method for forming spread nonwoven webs

Publications (2)

Publication Number Publication Date
TW200400296A TW200400296A (en) 2004-01-01
TWI293346B true TWI293346B (en) 2008-02-11

Family

ID=29582059

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92113474A TWI293346B (en) 2002-05-20 2003-05-19 Method for forming spread nonwoven webs

Country Status (15)

Country Link
US (2) US20030003834A1 (en)
EP (1) EP1507908B1 (en)
JP (1) JP4520296B2 (en)
KR (1) KR101010413B1 (en)
CN (1) CN100359072C (en)
AT (1) ATE419417T1 (en)
AU (1) AU2003229022A1 (en)
BR (1) BR0311133A (en)
CA (1) CA2486416A1 (en)
DE (1) DE60325584D1 (en)
IL (1) IL164916A (en)
MX (1) MXPA04011368A (en)
TW (1) TWI293346B (en)
WO (1) WO2003100149A1 (en)
ZA (1) ZA200410159B (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050241745A1 (en) * 2004-05-03 2005-11-03 Vishal Bansal Process for making fine spunbond filaments
US7687012B2 (en) * 2005-08-30 2010-03-30 Kimberly-Clark Worldwide, Inc. Method and apparatus to shape a composite structure without contact
US7682554B2 (en) * 2005-08-30 2010-03-23 Kimberly-Clark Worldwide, Inc. Method and apparatus to mechanically shape a composite structure
US8017066B2 (en) * 2005-09-14 2011-09-13 Perry Hartge Method and apparatus for forming melt spun nonwoven webs
US8325097B2 (en) * 2006-01-14 2012-12-04 Research In Motion Rf, Inc. Adaptively tunable antennas and method of operation therefore
EP2061919B1 (en) * 2006-11-10 2013-04-24 Oerlikon Textile GmbH & Co. KG Process and device for melt-spinning and cooling synthetic filaments
US8246898B2 (en) * 2007-03-19 2012-08-21 Conrad John H Method and apparatus for enhanced fiber bundle dispersion with a divergent fiber draw unit
JP5455902B2 (en) * 2007-07-21 2014-03-26 ディオレン インドゥストリアル ファイバース ベスローテン フェノートシャップ Spinning method
WO2009062009A2 (en) * 2007-11-09 2009-05-14 Hollingsworth & Vose Company Meltblown filter medium
US8986432B2 (en) * 2007-11-09 2015-03-24 Hollingsworth & Vose Company Meltblown filter medium, related applications and uses
US8950587B2 (en) * 2009-04-03 2015-02-10 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US8679218B2 (en) 2010-04-27 2014-03-25 Hollingsworth & Vose Company Filter media with a multi-layer structure
US10155186B2 (en) 2010-12-17 2018-12-18 Hollingsworth & Vose Company Fine fiber filter media and processes
US20120152821A1 (en) 2010-12-17 2012-06-21 Hollingsworth & Vose Company Fine fiber filter media and processes
WO2012150964A1 (en) * 2010-12-17 2012-11-08 Hollingsworth & Vose Company Fine fiber filter media and processes
ES2566105T3 (en) * 2011-04-04 2016-04-11 Allium Medical Solutions Ltd. System and method of manufacturing a stent
CN102505355B (en) * 2011-11-15 2014-09-17 中国航空工业集团公司北京航空材料研究院 Toughening material of composite material and preparation method toughening material
US9694306B2 (en) 2013-05-24 2017-07-04 Hollingsworth & Vose Company Filter media including polymer compositions and blends
US9963825B2 (en) 2013-08-23 2018-05-08 Jack Fabbricante Apparatus and method for forming a continuous web of fibers
EP3041981A4 (en) * 2013-09-03 2017-05-03 3M Innovative Properties Company Melt-spinning process, melt-spun nonwoven fibrous webs and related filtration media
WO2015047890A1 (en) 2013-09-30 2015-04-02 3M Innovative Properties Company Fibers and wipes with epoxidized fatty ester disposed thereon, and methods
CN105579630B (en) 2013-09-30 2018-03-23 3M创新有限公司 Fiber, cleaning piece and method
US20160235057A1 (en) 2013-09-30 2016-08-18 3M Innovative Properties Company Compositions, Wipes, and Methods
CN106661788B (en) 2014-08-26 2020-06-23 3M创新有限公司 Spunbond web comprising polylactic acid fibers
US10343095B2 (en) 2014-12-19 2019-07-09 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
EP3199671B1 (en) * 2016-01-27 2020-03-04 Reifenhäuser GmbH & Co. KG Maschinenfabrik Device for manufacturing non-woven material
GB201616932D0 (en) * 2016-10-05 2016-11-16 British American Tobacco (Investments) Limited And Tobacco Research And Development Institute (Propr Mathod and equipment for gathering fibres
CN106723333B (en) * 2016-12-02 2020-01-21 武汉纺织大学 Electret superfine fiber cigarette filter tip material and preparation method thereof
CN106555277B (en) * 2016-12-02 2019-05-10 武汉纺织大学 The device and method of composite ultrafine fiber beam is prepared using melt-blown and electrostatic spinning
CN106637542B (en) * 2016-12-02 2019-06-25 武汉纺织大学 A kind of device and method carrying out ring spinning using melt-blown micro fibre
CN106551423B (en) * 2016-12-02 2020-01-17 武汉纺织大学 Negative ion melt-blown superfine fiber cigarette filter tip material and preparation method thereof
CN106555236B (en) * 2016-12-02 2019-08-30 武汉纺织大学 A kind of device and method preparing superfine fibre beam using meltblown
CN106637677A (en) * 2017-02-08 2017-05-10 佛山市南海必得福无纺布有限公司 Dual-channel spun-laying system
CN111094641B (en) * 2017-09-08 2023-04-07 株式会社可乐丽 Melt-blown nonwoven fabric and method for producing same
GB2589497B (en) * 2018-07-24 2021-11-17 Mg Ip Ltd Porous plastic profiles
US12031237B2 (en) * 2018-11-06 2024-07-09 Kimberly-Clark Worldwide, Inc. Method of making fine spunbond fiber nonwoven fabrics at high through-puts
CN111235716A (en) * 2020-01-09 2020-06-05 晏庆光 Fibril heating machine of polyester fiber spinning process

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502763A (en) * 1962-02-03 1970-03-24 Freudenberg Carl Kg Process of producing non-woven fabric fleece
DE1435466A1 (en) * 1964-10-24 1969-03-20 Freudenberg Carl Fa Process for the production of textile fiber products
DE1950669C3 (en) * 1969-10-08 1982-05-13 Metallgesellschaft Ag, 6000 Frankfurt Process for the manufacture of nonwovens
US3945815A (en) * 1970-05-06 1976-03-23 Fiberglas Canada Limited Apparatus for drawing fibers by fluid means
US3734803A (en) * 1971-09-28 1973-05-22 Allied Chem Apparatus for splaying and depositing nonwoven filamentary structures
JPS503831B2 (en) * 1971-10-07 1975-02-10
BE794339A (en) * 1972-01-21 1973-07-19 Kimberly Clark Co NON-WOVEN MATERIALS
US3766606A (en) * 1972-04-19 1973-10-23 Du Pont Apparatus for forwarding tow
SU487968A1 (en) 1972-06-12 1975-10-15 Предприятие П/Я А-3324 Ejector to a device for producing nonwoven materials from polymer melts
US4189338A (en) * 1972-11-25 1980-02-19 Chisso Corporation Method of forming autogenously bonded non-woven fabric comprising bi-component fibers
JPS5847508B2 (en) * 1975-07-25 1983-10-22 東洋紡績株式会社 Filament Gunkaku Sansouchi
US4147749A (en) * 1975-08-14 1979-04-03 Allied Chemical Corporation Varied orientation of fibers
JPS5857374B2 (en) * 1975-08-20 1983-12-20 日本板硝子株式会社 Fiber manufacturing method
US4064605A (en) * 1975-08-28 1977-12-27 Toyobo Co., Ltd. Method for producing non-woven webs
JPS5240673A (en) * 1975-09-23 1977-03-29 Toyo Boseki Manufacture of web
DE2618406B2 (en) * 1976-04-23 1979-07-26 Karl Fischer Apparate- & Rohrleitungsbau, 1000 Berlin Process for producing pre-oriented filament yarns from thermoplastic polymers
US4086381A (en) * 1977-03-30 1978-04-25 E. I. Du Pont De Nemours And Company Nonwoven polypropylene fabric and process
US4173443A (en) * 1977-06-01 1979-11-06 Celanese Corporation Spray spinning nozzle having convergent gaseous jets
NL7710470A (en) * 1977-09-26 1979-03-28 Akzo Nv METHOD AND EQUIPMENT FOR THE MANUFACTURE OF A NON-WOVEN FABRIC FROM SYNTHETIC FILAMENTS.
US4163819A (en) * 1977-12-27 1979-08-07 Monsanto Company Drapeable nonwoven fabrics
JPS599982B2 (en) * 1978-07-20 1984-03-06 松下電器産業株式会社 Reel stand rotation drive device
US4300876A (en) * 1979-12-12 1981-11-17 Owens-Corning Fiberglas Corporation Apparatus for fluidically attenuating filaments
US4405297A (en) * 1980-05-05 1983-09-20 Kimberly-Clark Corporation Apparatus for forming nonwoven webs
US4340563A (en) * 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
DE3401639A1 (en) * 1984-01-19 1985-07-25 Hoechst Ag, 6230 Frankfurt DEVICE FOR PRODUCING A SPINNING FLEECE
DE3503818C1 (en) * 1985-02-05 1986-04-30 Reifenhäuser GmbH & Co Maschinenfabrik, 5210 Troisdorf Device for stretching monofilament bundles
US4692371A (en) * 1985-07-30 1987-09-08 Kimberly-Clark Corporation High temperature method of making elastomeric materials and materials obtained thereby
US4622259A (en) * 1985-08-08 1986-11-11 Surgikos, Inc. Nonwoven medical fabric
DE3541127A1 (en) * 1985-11-21 1987-05-27 Benecke Gmbh J METHOD FOR PRODUCING A FLEECE FROM CONTINUOUS FEEDS AND DEVICE FOR IMPLEMENTING THE METHOD
DE3601201C1 (en) * 1986-01-17 1987-07-09 Benecke Gmbh J Process for producing random nonwoven webs and device for carrying out the process
DE3701531A1 (en) * 1987-01-21 1988-08-04 Reifenhaeuser Masch METHOD AND SYSTEM FOR PRODUCING A SPINNED FLEECE
DE3713861A1 (en) * 1987-04-25 1988-11-10 Reifenhaeuser Masch METHOD AND SPINNED FLEECE SYSTEM FOR PRODUCING A SPINNED FLEECE FROM SYNTHETIC CONTINUOUS FILAMENT
DE3713862A1 (en) * 1987-04-25 1988-11-10 Reifenhaeuser Masch METHOD AND SPINNED FLEECE SYSTEM FOR PRODUCING A SPINNED FLEECE FROM SYNTHETIC CONTINUOUS FILAMENT
US4988560A (en) * 1987-12-21 1991-01-29 Minnesota Mining And Manufacturing Company Oriented melt-blown fibers, processes for making such fibers, and webs made from such fibers
DE3807420A1 (en) * 1988-03-07 1989-09-21 Gruenzweig & Hartmann DEVICE FOR PRODUCING FIBERS, IN PARTICULAR MINERAL FIBERS, FROM A MELT
US5296286A (en) * 1989-02-01 1994-03-22 E. I. Du Pont De Nemours And Company Process for preparing subdenier fibers, pulp-like short fibers, fibrids, rovings and mats from isotropic polymer solutions
DE4014414C2 (en) * 1990-05-04 1996-08-08 Reifenhaeuser Masch Plant for the production of a spunbonded nonwoven web from stretched plastic filaments
JP3117713B2 (en) * 1991-04-09 2000-12-18 三井化学株式会社 Filament dispersion device
US5244723A (en) * 1992-01-03 1993-09-14 Kimberly-Clark Corporation Filaments, tow, and webs formed by hydraulic spinning
DE4210464A1 (en) 1992-03-31 1993-10-07 Dresden Tech Textilien Inst Multifilament synthetic yarn extrusion - has controlled airflow to suction reducing inequalities in filament
US5270107A (en) * 1992-04-16 1993-12-14 Fiberweb North America High loft nonwoven fabrics and method for producing same
US5292239A (en) * 1992-06-01 1994-03-08 Fiberweb North America, Inc. Apparatus for producing nonwoven fabric
DE4220915A1 (en) * 1992-06-25 1994-01-05 Zimmer Ag Cooling filaments in high speed melt spinning - with cooling air supplied by entrainment in perforated first section of cooling chimney
DE4312419C2 (en) * 1993-04-16 1996-02-22 Reifenhaeuser Masch Plant for the production of a spunbonded nonwoven web from aerodynamically stretched plastic filaments
CN1069707C (en) * 1993-05-25 2001-08-15 埃克森化学专利公司 Novel polyolefin fibers and their fabrics
AT399169B (en) * 1993-08-19 1995-03-27 Polyfelt Gmbh METHOD FOR CONTROLLING THE ANISOTROPY OF SPINNING FLEECE
US5547746A (en) * 1993-11-22 1996-08-20 Kimberly-Clark Corporation High strength fine spunbound fiber and fabric
US5405559A (en) * 1993-12-08 1995-04-11 The Board Of Regents Of The University Of Oklahoma Polymer processing using pulsating fluidic flow
DE4409940A1 (en) * 1994-03-23 1995-10-12 Hoechst Ag Process for stretching filament bundles in the form of a thread curtain, device suitable therefor and its use for producing spunbonded nonwovens
CA2129496A1 (en) * 1994-04-12 1995-10-13 Mary Lou Delucia Strength improved single polymer conjugate fiber webs
DE4414277C1 (en) * 1994-04-23 1995-08-31 Reifenhaeuser Masch Spun-bonded fabric plant of higher process yield and transfer coefft.
CA2148289C (en) * 1994-05-20 2006-01-10 Ruth Lisa Levy Perforated nonwoven fabrics
US5635290A (en) * 1994-07-18 1997-06-03 Kimberly-Clark Corporation Knit like nonwoven fabric composite
US5476616A (en) * 1994-12-12 1995-12-19 Schwarz; Eckhard C. A. Apparatus and process for uniformly melt-blowing a fiberforming thermoplastic polymer in a spinnerette assembly of multiple rows of spinning orifices
US6183684B1 (en) * 1994-12-15 2001-02-06 Ason Engineering, Ltd. Apparatus and method for producing non-woven webs with high filament velocity
US5545371A (en) * 1994-12-15 1996-08-13 Ason Engineering, Inc. Process for producing non-woven webs
US5688468A (en) * 1994-12-15 1997-11-18 Ason Engineering, Inc. Process for producing non-woven webs
US5652051A (en) * 1995-02-27 1997-07-29 Kimberly-Clark Worldwide, Inc. Nonwoven fabric from polymers containing particular types of copolymers and having an aesthetically pleasing hand
US5648041A (en) * 1995-05-05 1997-07-15 Conoco Inc. Process and apparatus for collecting fibers blow spun from solvated mesophase pitch
US5652048A (en) * 1995-08-02 1997-07-29 Kimberly-Clark Worldwide, Inc. High bulk nonwoven sorbent
US5711970A (en) * 1995-08-02 1998-01-27 Kimberly-Clark Worldwide, Inc. Apparatus for the production of fibers and materials having enhanced characteristics
US5667749A (en) * 1995-08-02 1997-09-16 Kimberly-Clark Worldwide, Inc. Method for the production of fibers and materials having enhanced characteristics
US5863639A (en) * 1995-09-13 1999-01-26 E. I. Du Pont De Nemours And Company Nonwoven sheet products made from plexifilamentary film fibril webs
US5645790A (en) * 1996-02-20 1997-07-08 Biax-Fiberfilm Corporation Apparatus and process for polygonal melt-blowing die assemblies for making high-loft, low-density webs
DE19620379C2 (en) * 1996-05-21 1998-08-13 Reifenhaeuser Masch Plant for the continuous production of a spunbonded nonwoven web
US5885909A (en) * 1996-06-07 1999-03-23 E. I. Du Pont De Nemours And Company Low or sub-denier nonwoven fibrous structures
US5762857A (en) * 1997-01-31 1998-06-09 Weng; Jian Method for producing nonwoven web using pulsed electrostatic charge
US6117801A (en) * 1997-03-27 2000-09-12 E. I. Du Pont De Nemours And Company Properties for flash-spun products
US6165217A (en) * 1997-10-02 2000-12-26 Gore Enterprise Holdings, Inc. Self-cohering, continuous filament non-woven webs
TW375664B (en) 1998-04-09 1999-12-01 Kang Na Hsiung Enterprise Co Ltd Process for spunbonded and meltblown non-woven fabric and the product therefrom possess the characteristics of good air permeability, high water pressure resistance and low pressure difference
US6013223A (en) * 1998-05-28 2000-01-11 Biax-Fiberfilm Corporation Process and apparatus for producing non-woven webs of strong filaments
US6454989B1 (en) 1998-11-12 2002-09-24 Kimberly-Clark Worldwide, Inc. Process of making a crimped multicomponent fiber web
US6379136B1 (en) * 1999-06-09 2002-04-30 Gerald C. Najour Apparatus for production of sub-denier spunbond nonwovens
US6607624B2 (en) * 2000-11-20 2003-08-19 3M Innovative Properties Company Fiber-forming process
IL155787A0 (en) 2000-11-20 2003-12-23 3M Innovative Properties Co Fiber-forming process
US20030118816A1 (en) * 2001-12-21 2003-06-26 Polanco Braulio A. High loft low density nonwoven webs of crimped filaments and methods of making same

Also Published As

Publication number Publication date
BR0311133A (en) 2005-05-10
WO2003100149A1 (en) 2003-12-04
CN1656271A (en) 2005-08-17
EP1507908A1 (en) 2005-02-23
US20030003834A1 (en) 2003-01-02
KR101010413B1 (en) 2011-01-21
JP2005526922A (en) 2005-09-08
IL164916A0 (en) 2005-12-18
CA2486416A1 (en) 2003-12-04
IL164916A (en) 2009-07-20
US20050140067A1 (en) 2005-06-30
US7470389B2 (en) 2008-12-30
AU2003229022A1 (en) 2003-12-12
JP4520296B2 (en) 2010-08-04
TW200400296A (en) 2004-01-01
MXPA04011368A (en) 2005-02-17
CN100359072C (en) 2008-01-02
KR20050007411A (en) 2005-01-17
EP1507908B1 (en) 2008-12-31
DE60325584D1 (en) 2009-02-12
ZA200410159B (en) 2006-02-22
ATE419417T1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
TWI293346B (en) Method for forming spread nonwoven webs
JP4851336B2 (en) Nonwoven elastic fiber web and method for producing the same
KR100980535B1 (en) Bondable, Oriented, Nonwoven Fibrous Webs and Methods for Making Them
JP3964788B2 (en) Fiber forming process
KR100826547B1 (en) Fiber-forming process
JP4520297B2 (en) Nonwoven amorphous fiber web and method for producing the same
EP2047021B1 (en) Bonded nonwoven fibrous webs comprising softenable oriented semicrystalline polymeric fibers and apparatus and methods for preparing such webs
KR20060136383A (en) Nonwoven elastic fibrous webs and methods for making them
JP2005530058A (en) Thinned fluid manifold for meltblowing dies
JP5000840B2 (en) Composite yarn manufacturing method and apparatus
JP2012510383A (en) UHMWPE tape manufacturing method, wide slit extrusion die, and UHMWPE tape manufactured therefrom
US20060066000A1 (en) Tow-based wipes