TWI292928B - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor device Download PDFInfo
- Publication number
- TWI292928B TWI292928B TW92100754A TW92100754A TWI292928B TW I292928 B TWI292928 B TW I292928B TW 92100754 A TW92100754 A TW 92100754A TW 92100754 A TW92100754 A TW 92100754A TW I292928 B TWI292928 B TW I292928B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- metal
- source
- substrate
- drain region
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Description
1292928 五、發明說明(1) 曼明所屬之技術領連 本發明是有關於一種半導體元件的製造方法,特別是 有關於一種自行對準金屬矽化物的製造方法。 先前技術 隨著半導體元件積集度(Inte g r a t i ο η )增加’相對的 元件中之圖案與線寬亦逐漸縮小,導致元件中之閘極與導、 線的接觸電阻增高,產生較慢的電阻-電容延遲(R C De 1 ay ),進而影響該元件的操作速度。由於金屬矽化物之 電阻較多晶石夕(Ρ ο 1 y s i 1 i c ο η )低,且其熱穩定性也比一般 内連線材料(例如鋁)高,因此為了降低源極(Source)/汲 極(Drain)區的片電阻(Sheet Resistance),並確保金屬 與半導體元件之間淺接面(Shallow Junction)的完整,可 以在閘極與源極/汲極和金屬連線的連接介面形成金屬砂 化物,以降低閘極與源極/沒'極區和金屬連線之間的電 阻。 、 而目前在半導體元件之製 行對準金屬矽化物製程。自行 式’乃是先於半導體晶片上形 送進高溫環境中,使覆蓋於閘 屬層,因為與矽接觸而在高溫 且在高溫環境下使其結構產生 的金屬石夕化物。由於晶片其他 觸,因此雖然經過高溫處理, 為在形成金屬石夕化物時,不必 程中,廣泛被採用的則是自 對準金屬石夕化物的形成方 成一層金屬層。然後將晶片 極和源極/汲極區上方之金 下反應產生金屬矽化物。並 =轉變,以形成電阻值較低 邠分上之金屬層並未與矽接 也不會產生金屬矽化物。因 經過微影1292928 V. INSTRUCTION DESCRIPTION OF THE INVENTION (1) Technical connection to which Manning belongs The present invention relates to a method of fabricating a semiconductor device, and more particularly to a method of fabricating a self-aligned metal halide. In the prior art, as the semiconductor element accumulating degree (Inte grati ο η ) increases, the pattern and line width in the opposite element are gradually reduced, resulting in an increase in the contact resistance between the gate and the conductor and the line in the element, resulting in a slower resistance. - Capacitance delay (RC De 1 ay ), which in turn affects the operating speed of the component. Since the resistance of the metal telluride is higher than that of the crystal 夕 Ρ Ρ 1 ysi 1 ic ο η , and its thermal stability is higher than that of the general interconnect material (for example, aluminum), in order to reduce the source (Source) / The Sheet Resistance of the Drain region ensures the integrity of the Shallow Junction between the metal and the semiconductor component, and can form a connection interface between the gate and the source/drain and metal wires. Metal sanding to reduce the electrical resistance between the gate and source/no 'pole regions and metal wires. At present, the fabrication of semiconductor components is aligned with the metal germanide process. The self-formation is a metallization that is applied to a high temperature environment on a semiconductor wafer to cover the gate layer, and which is formed in contact with the crucible at a high temperature and in a high temperature environment. Since the wafer is otherwise touched, it is a high-temperature treatment, and it is not necessary to form a metal layer in the formation of the metal lithium compound. The metal is then reacted under the gold and the source/drain regions to produce a metal halide. And = transformation to form a lower resistance value. The metal layer on the bismuth is not connected to the bismuth and does not produce metal bismuth. Due to lithography
1292928 五、發明說明(2) ' -------- 製程的步驟即可以形成於特定的位 2以這種金屬矽化物稱為自行對準金屬矽化物。 4兵的自行對準金屬石夕化物製程係使金屬與石夕及多晶 矽f,而形成金屬矽化物,因此在金屬矽化物形成時會= 义刀勺石夕,如1999年12月在半導體元件研究國際研討會 r务表的石夕化鍺通道超薄絕緣層上有石夕之奈米級p型金 氧電晶體」及2〇〇1年在接面技術國際研討會中發表 的I j尚源極/汲極之新的7〇〇它選擇性磊晶生長技術」。 但是隨著元件積集度逐漸提高趨勢下,源極/汲極區的接 面越來越淺,因此金屬矽化物可能會更往下延伸至源極/ 汲極區之接面(Juncti〇n)甚至可能穿過源極/汲極區之接 因此容易導致半導體元件的源極/汲極區產生接面漏 電(Junction Leakage)之問題,進而影響元件效能。 發明内客 因此,本發明之一目的在提供一種半導體元件的製造 方法’在進行自行對準金屬矽化物製程之前,基底上形成 碎化鍺層,使得在進行自行對準金屬矽化物製程時並不會 消耗源極/汲極區表面的矽,可以避免超淺接合時發生接 合漏電流。 本發明之另一目的在提供一種自行對準金屬石夕化物的 製造方法,於進行自行對準金屬矽化物製程之前使用矽化 鍺層’可以降低金屬矽化物層的相轉移溫度。 根據本發明之目的而提供一種半導體元件的製造方 法,此方法包括:於基底上形成閘極結構與源極/汲極1292928 V. INSTRUCTIONS (2) ' -------- The process steps can be formed in a specific bit 2. This metal telluride is called self-aligned metal telluride. The 4 soldiers' self-aligned metallization process makes the metal and the stone and polycrystalline germanium f, and forms a metal telluride, so when the metal telluride is formed, it will be a knife, as in December 1999 in the semiconductor component. In the study of the International Symposium, the ultra-thin insulation layer of the Shixi Huayu channel has the Shi Xizhi nano-p-type gold-oxygen crystal crystal" and the I j published in the International Symposium on Joint Technology. The new 7〇〇, its selective epitaxial growth technology. However, as the component accumulating degree gradually increases, the junction of the source/drain regions becomes shallower, so the metal telluride may extend further down to the junction of the source/drain regions (Juncti〇n It is even possible to pass through the source/drain regions, which may easily cause problems in the source/drain regions of the semiconductor device, thereby affecting the device performance. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method of fabricating a semiconductor device in which a ruthenium layer is formed on a substrate prior to performing a self-aligned metal telluride process, thereby performing a self-aligned metal germanide process. The enthalpy of the surface of the source/drain region is not consumed, and the junction leakage current during the ultra-shallow bonding can be avoided. Another object of the present invention is to provide a method of fabricating a self-aligned metalloid compound which can reduce the phase transition temperature of the metal telluride layer by using a germanium germanium layer prior to performing the self-aligned metal germanide process. According to an object of the present invention, a method of fabricating a semiconductor device is provided, the method comprising: forming a gate structure and a source/drain on a substrate
1292928 五、發明說明(3) ! : J!閘;結構是由閘極介電層、導體層與頂蓋層所構 裎,ί ΐ於 上形成一非晶砂化錯層’之後再進行熱製 鍺屛吏源極/汲極區表面之非晶矽化鍺層轉變成結晶矽化 ^。接者移除源極/汲極區以外的非晶矽化鍺層後,再 移除頂蓋層。然後,進行自行對準金屬石夕化合物 屬nugned suicide)製程,於基底上形成-層金 屬3 ,接著進行熱製程,使金屬層與閘極結構表面與源極 極=區表面之矽產生矽化反應’以於閘極結構表面和源 鶼/=及極區表面形成金屬矽化物層,接著以濕蝕刻的方式 屬:ΐίϊ反應之金屬[最後進行快速熱回火製程使金 屬矽化物層之電阻值降低。 本發明於進行自行對準金屬石夕化物製程之前,於源極 制 形成石夕化緒層,所以在進行自行對準金屬碎化 物衣私時並不會消耗源極/汲極區表面的矽,可以 淺接合時發生接合漏電流。 避免超 本發明另外提供-種自行對準金屬矽化物的製造方 巴’ Π包括:於基底上形成閘極結構 介電層、導體層所構成。接著 體層、源極/…表面之非晶石夕:錯再/韓=製程,使導 奴旺 认从九 ^ 曰曰/ 1匕錯層轉變成結晶矽化 鍺層。接者移除導體層與源極/汲極區以外的非Β曰 層。然後,進行自行對準金屬矽化合物(se i f 7 = l1Cide )製程,於基底上形成一層金屬層,接J = l献 4程,使金屬層與閘極結構表面與源極/汲極區表面之灯石夕、、、1292928 V. INSTRUCTIONS (3) ! : J! Gate; the structure is constructed by the gate dielectric layer, the conductor layer and the cap layer, and the heat is formed on the upper surface to form an amorphous sand staggered layer. The amorphous germanium layer on the surface of the source/drain region is transformed into a crystalline germanium. After removing the amorphous germanium layer outside the source/drain regions, the cap layer is removed. Then, a self-aligned process of nugned suicide is performed to form a layer of metal 3 on the substrate, followed by a thermal process to cause a deuteration reaction between the metal layer and the surface of the gate structure and the surface of the source electrode. Forming a metal telluride layer on the surface of the gate structure and the source 鹣/= and the surface of the polar region, and then in the form of wet etching: ΐίϊ reaction metal [final rapid thermal tempering process reduces the resistance value of the metal halide layer . The present invention forms a stone-like layer at the source before the self-alignment metal lithium process, so that the surface of the source/drain region is not consumed when self-aligning the metal granules. The junction leakage current can occur when the junction is shallow. OVERVIEW OF THE INVENTION The present invention additionally provides a self-aligned metal germanide fabrication method comprising: forming a gate structure dielectric layer and a conductor layer on a substrate. Then the amorphous layer of the body layer, the source/... surface: the wrong re-/Han=process, so that the guiding slaves recognize the nine ^ 曰曰 / 1 匕 staggered layer into a crystalline bismuth layer. The contact removes the conductor layer from the non-tantal layer outside the source/drain regions. Then, a self-aligned metal germanium compound (se if 7 = l1Cide) process is performed to form a metal layer on the substrate, and J = l is provided for 4 steps to make the metal layer and the gate structure surface and the source/drain region surface. The light of the stone, Xi,,
1292928 五、發明說明 ,士矽化反應,以於閘極結構表面和源極 全屬:η 者以濕蝕刻的方式移除未盘矽反庫之 至屬層,最後進行快速埶 f 使 ,、7反二之 值降低。 …口火衣柱便最屬矽化物層之電阻 本發明於進行自行對準金屬矽化物製裎 /汲極區F郴七石々务你昆 衣杠之刖’於源極 物製程Λ Λ Λ 以在進行自行對準金屬石夕化 淺接合時發生接合漏電流。 了以避免超 鍺層而i t: ΐ ϊ: ΐ結構與源極/没極區表面覆蓋有矽化 回火步:中對準金屬石夕化合物製程中的快速熱 轉移^ 口 較低的溫度下,使金屬矽化物產生相 轉移,而降低金屬矽化物之電阻。 下玄ί ΐ本發明之上述目的、特徵、優點能更明顯易懂, :㊁特舉一些較佳實施例,並配合所附圖<,作詳細說明 : 請參照第1A圖,提供基底1〇〇,此基底1〇〇之材質例如 是半導體矽基底。於基底1〇〇中形成元件隔離結構1〇2此元 件隔離結構102例如是利用區域氧化法(1〇cal oxidation,LOCOS)而形成的場氧化層(field 〇xide)或淺 溝渠隔離(shallow trench is〇iati〇I1 ,STI)結構。接著 在基底10 0之表面依序形成閘極介電層1〇4、導體層1〇6與 頂蓋層108,閘極介電層104之材質例如是氧化矽,其形成1292928 V. Inventive description, the gentry reaction, in order to gate the surface of the structure and the source of the genus: η to remove the unreported stagnation of the genus layer by wet etching, and finally perform a fast 埶f,, 7 The value of the inverse two is lowered. The mouth of the fire coat column is the most resistant layer of the bismuth layer. The invention is for self-alignment of the metal bismuth compound 裎 汲 汲 汲 汲 汲 郴 昆 昆 昆 昆 昆 昆 昆 昆 昆 昆 昆 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于The junction leakage current occurs when the self-aligned metal slab is joined. To avoid the super-layer and it: ΐ ϊ: The surface structure of the ΐ structure and the source/no-polar region is covered with a tempering tempering step: in the process of aligning the metal lithium compound, the rapid thermal transfer is performed at a lower temperature. The metal halide is phase-transferred to reduce the electrical resistance of the metal halide. The above objects, features and advantages of the present invention can be more clearly understood. Two preferred embodiments are described in detail with reference to the accompanying drawings. Referring to Figure 1A, a substrate 1 is provided. The material of the substrate is, for example, a semiconductor germanium substrate. Forming the element isolation structure 1〇2 in the substrate 1〇〇, the element isolation structure 102 is, for example, a field oxide layer formed by a region oxidation method (LOCOS) or a shallow trench isolation (shallow trench) Is〇iati〇I1, STI) structure. Then, a gate dielectric layer 1〇4, a conductor layer 1〇6, and a cap layer 108 are sequentially formed on the surface of the substrate 100. The material of the gate dielectric layer 104 is, for example, hafnium oxide.
10293twf.ptd 第8頁 1292928 五、發明說明 (5) " 石夕’其形成的方法例如是以臨場摻雜離子之方式利用化學 氣相沉積法以形成之;而頂蓋層之材質例如是磷矽玻璃、 石朋填石夕玻璃或是與後續預定形成的間隙壁具不同触刻選擇 性者’其中頂蓋層之形成方法例如是化學氣相沉積法 (chemical vapor deposition, CVD)。 圖案化頂蓋層1 0 8、導體層1 0 6與閘極介電層1 〇 4,以 形成閘極結構1 1 〇。 接著,請參照第1 B圖,進行摻質植入製程,於閘極結 構1 1 0兩側之基底1 〇〇中形成一淡摻雜區丨丨2,此步驟是以 閘極結構110為罩幕,對基底1〇〇進行p型或N型淡摻雜,主 要疋形成用來作為防止熱載子效應(hot carrier effect) 發生的淡摻雜;;:及極(lightly doped drain)。 接著請參照第1 C圖,於閘極結構1 1 〇之側壁形成間隙 壁(spacer)114,間隙壁114之材質與頂蓋層1〇8之材質具 有不同#刻選擇性者,間隙壁Π 4之材質包括氧化矽或是 亂化石夕’其形成的方法是以化學氣相沉積法在基底沉積氧 化矽或是氮化矽,接下來以非等向性的蝕刻方式,進行間 隙壁1 1 4钱刻’以便在閘極結構丨丨〇之側壁形成間隙壁 114。 接著以整個含有間隙壁丨丨4的閘極結構1 1 〇為罩幕,對 基底1 0 0進行摻質植入製程,於具有間隙壁丨丨4之閘極結構 11 0兩側之基底1 0 0中形成濃摻雜區1 1 6,此濃摻雜區1 1 6與 淡摻雜區11 2構成源極/沒極區11 8。 接著請參照第1 D圖,於基底丨〇 〇上形成非晶矽化鍺層10293twf.ptd Page 8 1292928 V. Description of the invention (5) " Shi Xi's method of forming it, for example, by chemical vapor deposition in the form of on-site doping ions; and the material of the cap layer is, for example, Phosphorus glass, stone-filled glass or a gap formed by a subsequent predetermined gap is a method of forming a top layer, for example, chemical vapor deposition (CVD). A patterned cap layer 108, a conductor layer 106 and a gate dielectric layer 1 〇 4 are formed to form a gate structure 1 1 〇. Next, referring to FIG. 1B, a dopant implantation process is performed to form a lightly doped region 丨丨2 in the substrate 1 两侧 on both sides of the gate structure 110, in this step, the gate structure 110 is The mask has a p-type or N-type light doping on the substrate, and the main germanium is formed to be used as a light doping to prevent the occurrence of a hot carrier effect;;: a lightly doped drain. Next, referring to FIG. 1C, a spacer 114 is formed on the sidewall of the gate structure 1 1 ,. The material of the spacer 114 is different from the material of the cap layer 1 〇 8 , and the spacer Π The material of 4 includes yttrium oxide or chaotic lithium. The method of forming is to deposit yttrium oxide or tantalum nitride on the substrate by chemical vapor deposition, and then perform the spacer 1 1 by anisotropic etching. 4 money engraved 'to form a spacer 114 on the sidewall of the gate structure. Then, the entire gate structure 1 1 含有 containing the spacers 4 is used as a mask to perform a dopant implantation process on the substrate 100, and the substrate 1 on both sides of the gate structure 110 having the spacers 4 A heavily doped region 1 1 6 is formed in 0 0 , and the heavily doped region 1 16 and the lightly doped region 11 2 constitute a source/narrow region 11 8 . Next, please refer to Figure 1D to form an amorphous germanium layer on the substrate.
10293twf.ptd 第9頁 129292810293twf.ptd Page 9 1292928
Ο,於基底1 〇 〇上形成非晶矽化鍺層丨2 〇之方法例如是化 學氣相沈積法,此方法係以矽烷/鍺烷/氫氣為反應氣體 源,操作壓力為3mtorr且沉積溫度在4〇() ^至5〇Q之間。 接著進行熱‘程’使源極/汲極區1 1 8表面之非晶石夕化 鍺層1 20轉變成結晶矽化鍺層i 22。此熱製程操作溫度例如 疋5 0 0 C至6 0 0 C之間’因源極/汲極區1 1 8表面的材質為 矽’在進行熱製程時’會與其上的非晶矽化鍺層丨2 〇作用 而轉變成結晶矽化鍺層1 2 2,而源極/汲極區丨丨8以外的非 晶矽化鍺層1 2 0則不會轉變成結晶矽化鍺層丨2 2。 然後請參照第1 E圖,移除源極/汲極區丨丨8以外的非晶 矽化鍺層1 2 0,移除的方法例如是以氣化氫/氫氣為蝕刻氣 體源,钱刻溫度例如是7 0 0 °C至7 5 0 °C之間。 接著請參照第1 F圖,移除頂蓋層丨〇8,移除的方法例 如疋以含鼠氟酸成份的姓刻液(HF based etchant)。 接著請參照第1 G圖,進行自行對準金屬矽化合物 (self-aligned si licide )製程,例如先使用物理氣相 沉積法於基底100上形成一層厚度約在1〇〇至5〇〇埃的金屬 層1 2 4,此金屬層1 2 4之材質例如是鈦。 接著請參照1 Η圖,進行熱製程,此熱製程例如是快速 加熱製程(rapid thermal pr〇cess),此熱製程之操作溫 度例如是600至700 °C,使金屬層124 (鈦)與閘極結構表面 與源極/汲極區表面之矽產生矽化反應,以於閘極結構表 面和源極/汲極區表面形成第一金屬矽化物層丨2 6 (石夕化 鈦,TiSi2 C49)。Ο, a method for forming an amorphous germanium layer on the substrate 1 is, for example, a chemical vapor deposition method using decane/decane/hydrogen as a reaction gas source, an operating pressure of 3 mtorr and a deposition temperature of 4〇() ^ to 5〇Q. Next, a thermal "process" is performed to convert the amorphous 夕 layer 11 20 on the surface of the source/drain region 1 18 into a crystalline bismuth layer i 22 . The thermal process operating temperature is, for example, between 疋5 0 0 C and 600 ° C. 'Because the material of the source/drain region 1 1 8 is 矽' during the thermal process, the amorphous germanium layer on the surface The 丨2 〇 effect is converted into a crystalline bismuth telluride layer 1 2 2, and the amorphous germanium telluride layer other than the source/drain region 丨丨8 is not converted into a crystalline bismuth telluride layer 丨2 2 . Then, referring to FIG. 1E, the amorphous germanium germanium layer 1 2 0 other than the source/drain region 丨丨8 is removed, and the removal method is, for example, a gasification hydrogen/hydrogen gas as an etching gas source. For example, between 70 ° C and 75 ° C. Next, please refer to Figure 1F to remove the top cover layer 8 by removing the method of HF based etchant. Next, referring to FIG. 1G, a self-aligned si licide process is performed, for example, a physical vapor deposition method is used to form a thickness of about 1 〇〇 to 5 〇〇 on the substrate 100. The metal layer is 1 2 4, and the material of the metal layer 1 24 is, for example, titanium. Then, refer to the 1 , diagram for the thermal process. For example, the thermal process is rapid thermal pr〇cess. The operating temperature of this thermal process is, for example, 600 to 700 °C, so that the metal layer 124 (titanium) and the gate A bismuth reaction occurs between the surface of the polar structure and the surface of the source/drain region to form a first metal telluride layer 丨26 on the surface of the gate structure and the surface of the source/drain region (TiSi2 C49) .
10293twf.ptd 第10頁 1292928 五、發明說明(7) 如是 鈦,TiSi2 C49)轉綠# + R ^金屬矽化物層126(矽化 128(矽化鈦,TiSi? 、 低的弟一至屬矽化物層 7 0 0 °C至9 0 0 °C之間。 此决速熱回火製程的溫度約在 依照上述實施例,本 製程之前,於源極"及朽本上:於進仃自行對準金屬矽化物 行自行對準金屬=物製^= 表面的矽,可以避免超、.咬人二不會,肖耗源極/汲極區118 發明可以應用於製作二::::生接合漏電☆。因此本 (MOSFET) 〇衣作起-接面之金氧半場效電晶體 在上述實施例中,得以你 ^ # 1 0 8 Λ ^ ^1 ^ ; 3 極、,、。構11 0 上形成一層頂 1層1 08為只例作說明,當然於閘極蛀Μη η μ t π ,、,τ & 成頂蓋層106,於是在進杆轨制^彳、,、。構110上也可以不形 . ,k a _ ^ a 仃…、衣耘,使源極/汲極區1 1 8表 石夕化錯層。因&,移除非二層也會轉變成結晶 扛/ m 、彳。土 A 鍺層後,導體層1 〇6與源 極/及極區118都會留下結晶石夕化鍺層。由於石夕化鍺層會降 氏進屬石夕化物相轉移的溫度,因此在後續自行對準金屬石夕 化合物製程中的快速熱回火步驟中’可以在較低的溫度 下,使金屬石夕化物產生相轉移,而降低金屬 阻。 在本發明之實施例中係以敛金屬為例子做說明,當然10293twf.ptd Page 10 1292928 V. INSTRUCTIONS (7) In the case of titanium, TiSi2 C49) turns green # + R ^ metal telluride layer 126 (矽化128 (titanium telluride, TiSi?, low brother one to the telluride layer 7 Between 0 0 °C and 900 ° C. The temperature of this thermal tempering process is about the same as in the above embodiment, before the process, on the source " and the aging: self-aligning metal矽 行 自行 自行 = = = = = = = = = = = = = = Therefore, the (MOSFET) 作 之 之 之 之 之 金 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在The top layer 1 08 of the first layer is described as an example only. Of course, the gate electrode 蛀Μη η μ t π , , τ & is formed into the cap layer 106, so that the gate layer is also formed on the pole rail system. It can be invisible. , ka _ ^ a 仃..., 耘, so that the source/drain region 1 1 8 表 夕 化 。 。 。 。 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因彳. After the 锗 layer, the conductor layer 1 〇6 and the source/polar region 118 will leave a crystalline 夕 锗 锗 layer. Since the 夕 锗 锗 layer will lower the temperature of the phase transfer, it will follow In the rapid thermal tempering step in the process of self-alignment of the metal compound, the metal phase can be phase-transferred at a lower temperature to reduce the metal resistance. In the embodiment of the invention, the metal is condensed. Explain for the example, of course
l〇293twf.ptd 第11頁 1292928 五、發明說明(8) 本發明也可以適用於其他财熱金屬(Refractory Metal)離 子,例如是鐫、始、鈦、鎳、麵、纪或是钥。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作些許之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。L〇293twf.ptd Page 11 1292928 V. INSTRUCTIONS (8) The present invention is also applicable to other Refractory Metal ions, such as 镌, 始, Titanium, Nickel, Face, 纪 or Key. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is obvious to those skilled in the art that the present invention may be modified and retouched without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
10293twf.ptd 第12頁 1292928 圖式簡單說明 第1 A圖〜第1 I圖為本發明實施例之一種自行對準金屬 石夕化物製程的剖面圖。 圖式標示說明· 100 基 底 102 元 件 隔 離 結 構 104 閘 極 介 電 層 106 導 體 層 108 頂 蓋 層 110 閘 極 結 構 112 淡 摻 雜 114 間 隙 壁 116 濃換 雜 區 118 源 極/ >及極區 120 非 晶 矽 化 鍺 層 122 結 晶 矽 化 錯 層 124 金 屬 層 126 第 一 金 屬 矽 化 物 層 128 第 二 金 屬 矽 化 物 層10293twf.ptd Page 12 1292928 Schematic Description of the Drawings FIG. 1A to FIG. 1I are cross-sectional views showing a process of self-aligning metal cerium compound according to an embodiment of the present invention. Schematic description · 100 substrate 102 element isolation structure 104 gate dielectric layer 106 conductor layer 108 cap layer 110 gate structure 112 light doping 114 spacer 116 thick swap region 118 source / > and polar region 120 Amorphous germanium germanium layer 122 crystalline germanium stagger layer 124 metal layer 126 first metal telluride layer 128 second metal telluride layer
10293twf.ptd 第13頁10293twf.ptd第13页
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92100754A TWI292928B (en) | 2003-01-15 | 2003-01-15 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92100754A TWI292928B (en) | 2003-01-15 | 2003-01-15 | Manufacturing method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200412625A TW200412625A (en) | 2004-07-16 |
TWI292928B true TWI292928B (en) | 2008-01-21 |
Family
ID=45067671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92100754A TWI292928B (en) | 2003-01-15 | 2003-01-15 | Manufacturing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI292928B (en) |
-
2003
- 2003-01-15 TW TW92100754A patent/TWI292928B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200412625A (en) | 2004-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6777275B1 (en) | Single anneal for dopant activation and silicide formation | |
KR100966384B1 (en) | Nickel silicide method and structure | |
CN1989598A (en) | Uni-directional diffusion of metal silicide in semiconductor devices | |
JPH10223889A (en) | Mis transistor and its manufacture | |
US7109116B1 (en) | Method for reducing dendrite formation in nickel silicon salicide processes | |
US6765269B2 (en) | Conformal surface silicide strap on spacer and method of making same | |
JPH08111527A (en) | Preparation of semiconductor device with self-conformity silicide region | |
US20100151639A1 (en) | Method for making a thermally-stable silicide | |
JP2004128314A (en) | Method for manufacturing semiconductor device | |
TWI292928B (en) | Manufacturing method of semiconductor device | |
JP2636786B2 (en) | Method for manufacturing semiconductor device | |
JP2006352127A (en) | Method of forming self-aligned silicide film by using multiple heat treatment processes | |
JP2001102590A (en) | Method for fabrication of semiconductor device | |
KR100630769B1 (en) | Semiconductor device and method of fabricating the same device | |
TW558759B (en) | Method of forming and etching resistor protection oxide layer | |
TWI222113B (en) | Silicide layer and fabrication method thereof and method for fabricating metal-oxide semiconductor transistor | |
JPH02288341A (en) | Mis-type semiconductor device | |
US20060240666A1 (en) | Method of forming silicide | |
JPH09148568A (en) | Manufacture of semiconductor device | |
JPH10116797A (en) | Manufacture of semiconductor device | |
KR100431294B1 (en) | method for fabricating semiconductor device | |
JPH10233371A (en) | Manufacturing method of semiconductor device | |
TW466767B (en) | Method for manufacturing ultra-shallow junction metal oxide semiconductor transistor | |
TWI284941B (en) | Fabricating process to improve resistance and current leakage phenomenon of deep-micron transistor for semiconductor device | |
KR100265560B1 (en) | Gate electrode of semiconductor device and method for forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |