TWI292928B - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
TWI292928B
TWI292928B TW92100754A TW92100754A TWI292928B TW I292928 B TWI292928 B TW I292928B TW 92100754 A TW92100754 A TW 92100754A TW 92100754 A TW92100754 A TW 92100754A TW I292928 B TWI292928 B TW I292928B
Authority
TW
Taiwan
Prior art keywords
layer
metal
source
substrate
drain region
Prior art date
Application number
TW92100754A
Other languages
Chinese (zh)
Other versions
TW200412625A (en
Inventor
Shih-Fang Chen
Ting Chang Chang
Original Assignee
Promos Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promos Technologies Inc filed Critical Promos Technologies Inc
Priority to TW92100754A priority Critical patent/TWI292928B/en
Publication of TW200412625A publication Critical patent/TW200412625A/en
Application granted granted Critical
Publication of TWI292928B publication Critical patent/TWI292928B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

1292928 五、發明說明(1) 曼明所屬之技術領連 本發明是有關於一種半導體元件的製造方法,特別是 有關於一種自行對準金屬矽化物的製造方法。 先前技術 隨著半導體元件積集度(Inte g r a t i ο η )增加’相對的 元件中之圖案與線寬亦逐漸縮小,導致元件中之閘極與導、 線的接觸電阻增高,產生較慢的電阻-電容延遲(R C De 1 ay ),進而影響該元件的操作速度。由於金屬矽化物之 電阻較多晶石夕(Ρ ο 1 y s i 1 i c ο η )低,且其熱穩定性也比一般 内連線材料(例如鋁)高,因此為了降低源極(Source)/汲 極(Drain)區的片電阻(Sheet Resistance),並確保金屬 與半導體元件之間淺接面(Shallow Junction)的完整,可 以在閘極與源極/汲極和金屬連線的連接介面形成金屬砂 化物,以降低閘極與源極/沒'極區和金屬連線之間的電 阻。 、 而目前在半導體元件之製 行對準金屬矽化物製程。自行 式’乃是先於半導體晶片上形 送進高溫環境中,使覆蓋於閘 屬層,因為與矽接觸而在高溫 且在高溫環境下使其結構產生 的金屬石夕化物。由於晶片其他 觸,因此雖然經過高溫處理, 為在形成金屬石夕化物時,不必 程中,廣泛被採用的則是自 對準金屬石夕化物的形成方 成一層金屬層。然後將晶片 極和源極/汲極區上方之金 下反應產生金屬矽化物。並 =轉變,以形成電阻值較低 邠分上之金屬層並未與矽接 也不會產生金屬矽化物。因 經過微影1292928 V. INSTRUCTION DESCRIPTION OF THE INVENTION (1) Technical connection to which Manning belongs The present invention relates to a method of fabricating a semiconductor device, and more particularly to a method of fabricating a self-aligned metal halide. In the prior art, as the semiconductor element accumulating degree (Inte grati ο η ) increases, the pattern and line width in the opposite element are gradually reduced, resulting in an increase in the contact resistance between the gate and the conductor and the line in the element, resulting in a slower resistance. - Capacitance delay (RC De 1 ay ), which in turn affects the operating speed of the component. Since the resistance of the metal telluride is higher than that of the crystal 夕 Ρ Ρ 1 ysi 1 ic ο η , and its thermal stability is higher than that of the general interconnect material (for example, aluminum), in order to reduce the source (Source) / The Sheet Resistance of the Drain region ensures the integrity of the Shallow Junction between the metal and the semiconductor component, and can form a connection interface between the gate and the source/drain and metal wires. Metal sanding to reduce the electrical resistance between the gate and source/no 'pole regions and metal wires. At present, the fabrication of semiconductor components is aligned with the metal germanide process. The self-formation is a metallization that is applied to a high temperature environment on a semiconductor wafer to cover the gate layer, and which is formed in contact with the crucible at a high temperature and in a high temperature environment. Since the wafer is otherwise touched, it is a high-temperature treatment, and it is not necessary to form a metal layer in the formation of the metal lithium compound. The metal is then reacted under the gold and the source/drain regions to produce a metal halide. And = transformation to form a lower resistance value. The metal layer on the bismuth is not connected to the bismuth and does not produce metal bismuth. Due to lithography

1292928 五、發明說明(2) ' -------- 製程的步驟即可以形成於特定的位 2以這種金屬矽化物稱為自行對準金屬矽化物。 4兵的自行對準金屬石夕化物製程係使金屬與石夕及多晶 矽f,而形成金屬矽化物,因此在金屬矽化物形成時會= 义刀勺石夕,如1999年12月在半導體元件研究國際研討會 r务表的石夕化鍺通道超薄絕緣層上有石夕之奈米級p型金 氧電晶體」及2〇〇1年在接面技術國際研討會中發表 的I j尚源極/汲極之新的7〇〇它選擇性磊晶生長技術」。 但是隨著元件積集度逐漸提高趨勢下,源極/汲極區的接 面越來越淺,因此金屬矽化物可能會更往下延伸至源極/ 汲極區之接面(Juncti〇n)甚至可能穿過源極/汲極區之接 因此容易導致半導體元件的源極/汲極區產生接面漏 電(Junction Leakage)之問題,進而影響元件效能。 發明内客 因此,本發明之一目的在提供一種半導體元件的製造 方法’在進行自行對準金屬矽化物製程之前,基底上形成 碎化鍺層,使得在進行自行對準金屬矽化物製程時並不會 消耗源極/汲極區表面的矽,可以避免超淺接合時發生接 合漏電流。 本發明之另一目的在提供一種自行對準金屬石夕化物的 製造方法,於進行自行對準金屬矽化物製程之前使用矽化 鍺層’可以降低金屬矽化物層的相轉移溫度。 根據本發明之目的而提供一種半導體元件的製造方 法,此方法包括:於基底上形成閘極結構與源極/汲極1292928 V. INSTRUCTIONS (2) ' -------- The process steps can be formed in a specific bit 2. This metal telluride is called self-aligned metal telluride. The 4 soldiers' self-aligned metallization process makes the metal and the stone and polycrystalline germanium f, and forms a metal telluride, so when the metal telluride is formed, it will be a knife, as in December 1999 in the semiconductor component. In the study of the International Symposium, the ultra-thin insulation layer of the Shixi Huayu channel has the Shi Xizhi nano-p-type gold-oxygen crystal crystal" and the I j published in the International Symposium on Joint Technology. The new 7〇〇, its selective epitaxial growth technology. However, as the component accumulating degree gradually increases, the junction of the source/drain regions becomes shallower, so the metal telluride may extend further down to the junction of the source/drain regions (Juncti〇n It is even possible to pass through the source/drain regions, which may easily cause problems in the source/drain regions of the semiconductor device, thereby affecting the device performance. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method of fabricating a semiconductor device in which a ruthenium layer is formed on a substrate prior to performing a self-aligned metal telluride process, thereby performing a self-aligned metal germanide process. The enthalpy of the surface of the source/drain region is not consumed, and the junction leakage current during the ultra-shallow bonding can be avoided. Another object of the present invention is to provide a method of fabricating a self-aligned metalloid compound which can reduce the phase transition temperature of the metal telluride layer by using a germanium germanium layer prior to performing the self-aligned metal germanide process. According to an object of the present invention, a method of fabricating a semiconductor device is provided, the method comprising: forming a gate structure and a source/drain on a substrate

1292928 五、發明說明(3) ! : J!閘;結構是由閘極介電層、導體層與頂蓋層所構 裎,ί ΐ於 上形成一非晶砂化錯層’之後再進行熱製 鍺屛吏源極/汲極區表面之非晶矽化鍺層轉變成結晶矽化 ^。接者移除源極/汲極區以外的非晶矽化鍺層後,再 移除頂蓋層。然後,進行自行對準金屬石夕化合物 屬nugned suicide)製程,於基底上形成-層金 屬3 ,接著進行熱製程,使金屬層與閘極結構表面與源極 極=區表面之矽產生矽化反應’以於閘極結構表面和源 鶼/=及極區表面形成金屬矽化物層,接著以濕蝕刻的方式 屬:ΐίϊ反應之金屬[最後進行快速熱回火製程使金 屬矽化物層之電阻值降低。 本發明於進行自行對準金屬石夕化物製程之前,於源極 制 形成石夕化緒層,所以在進行自行對準金屬碎化 物衣私時並不會消耗源極/汲極區表面的矽,可以 淺接合時發生接合漏電流。 避免超 本發明另外提供-種自行對準金屬矽化物的製造方 巴’ Π包括:於基底上形成閘極結構 介電層、導體層所構成。接著 體層、源極/…表面之非晶石夕:錯再/韓=製程,使導 奴旺 认从九 ^ 曰曰/ 1匕錯層轉變成結晶矽化 鍺層。接者移除導體層與源極/汲極區以外的非Β曰 層。然後,進行自行對準金屬矽化合物(se i f 7 = l1Cide )製程,於基底上形成一層金屬層,接J = l献 4程,使金屬層與閘極結構表面與源極/汲極區表面之灯石夕、、、1292928 V. INSTRUCTIONS (3) ! : J! Gate; the structure is constructed by the gate dielectric layer, the conductor layer and the cap layer, and the heat is formed on the upper surface to form an amorphous sand staggered layer. The amorphous germanium layer on the surface of the source/drain region is transformed into a crystalline germanium. After removing the amorphous germanium layer outside the source/drain regions, the cap layer is removed. Then, a self-aligned process of nugned suicide is performed to form a layer of metal 3 on the substrate, followed by a thermal process to cause a deuteration reaction between the metal layer and the surface of the gate structure and the surface of the source electrode. Forming a metal telluride layer on the surface of the gate structure and the source 鹣/= and the surface of the polar region, and then in the form of wet etching: ΐίϊ reaction metal [final rapid thermal tempering process reduces the resistance value of the metal halide layer . The present invention forms a stone-like layer at the source before the self-alignment metal lithium process, so that the surface of the source/drain region is not consumed when self-aligning the metal granules. The junction leakage current can occur when the junction is shallow. OVERVIEW OF THE INVENTION The present invention additionally provides a self-aligned metal germanide fabrication method comprising: forming a gate structure dielectric layer and a conductor layer on a substrate. Then the amorphous layer of the body layer, the source/... surface: the wrong re-/Han=process, so that the guiding slaves recognize the nine ^ 曰曰 / 1 匕 staggered layer into a crystalline bismuth layer. The contact removes the conductor layer from the non-tantal layer outside the source/drain regions. Then, a self-aligned metal germanium compound (se if 7 = l1Cide) process is performed to form a metal layer on the substrate, and J = l is provided for 4 steps to make the metal layer and the gate structure surface and the source/drain region surface. The light of the stone, Xi,,

1292928 五、發明說明 ,士矽化反應,以於閘極結構表面和源極 全屬:η 者以濕蝕刻的方式移除未盘矽反庫之 至屬層,最後進行快速埶 f 使 ,、7反二之 值降低。 …口火衣柱便最屬矽化物層之電阻 本發明於進行自行對準金屬矽化物製裎 /汲極區F郴七石々务你昆 衣杠之刖’於源極 物製程Λ Λ Λ 以在進行自行對準金屬石夕化 淺接合時發生接合漏電流。 了以避免超 鍺層而i t: ΐ ϊ: ΐ結構與源極/没極區表面覆蓋有矽化 回火步:中對準金屬石夕化合物製程中的快速熱 轉移^ 口 較低的溫度下,使金屬矽化物產生相 轉移,而降低金屬矽化物之電阻。 下玄ί ΐ本發明之上述目的、特徵、優點能更明顯易懂, :㊁特舉一些較佳實施例,並配合所附圖<,作詳細說明 : 請參照第1A圖,提供基底1〇〇,此基底1〇〇之材質例如 是半導體矽基底。於基底1〇〇中形成元件隔離結構1〇2此元 件隔離結構102例如是利用區域氧化法(1〇cal oxidation,LOCOS)而形成的場氧化層(field 〇xide)或淺 溝渠隔離(shallow trench is〇iati〇I1 ,STI)結構。接著 在基底10 0之表面依序形成閘極介電層1〇4、導體層1〇6與 頂蓋層108,閘極介電層104之材質例如是氧化矽,其形成1292928 V. Inventive description, the gentry reaction, in order to gate the surface of the structure and the source of the genus: η to remove the unreported stagnation of the genus layer by wet etching, and finally perform a fast 埶f,, 7 The value of the inverse two is lowered. The mouth of the fire coat column is the most resistant layer of the bismuth layer. The invention is for self-alignment of the metal bismuth compound 裎 汲 汲 汲 汲 汲 郴 昆 昆 昆 昆 昆 昆 昆 昆 昆 昆 昆 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于The junction leakage current occurs when the self-aligned metal slab is joined. To avoid the super-layer and it: ΐ ϊ: The surface structure of the ΐ structure and the source/no-polar region is covered with a tempering tempering step: in the process of aligning the metal lithium compound, the rapid thermal transfer is performed at a lower temperature. The metal halide is phase-transferred to reduce the electrical resistance of the metal halide. The above objects, features and advantages of the present invention can be more clearly understood. Two preferred embodiments are described in detail with reference to the accompanying drawings. Referring to Figure 1A, a substrate 1 is provided. The material of the substrate is, for example, a semiconductor germanium substrate. Forming the element isolation structure 1〇2 in the substrate 1〇〇, the element isolation structure 102 is, for example, a field oxide layer formed by a region oxidation method (LOCOS) or a shallow trench isolation (shallow trench) Is〇iati〇I1, STI) structure. Then, a gate dielectric layer 1〇4, a conductor layer 1〇6, and a cap layer 108 are sequentially formed on the surface of the substrate 100. The material of the gate dielectric layer 104 is, for example, hafnium oxide.

10293twf.ptd 第8頁 1292928 五、發明說明 (5) " 石夕’其形成的方法例如是以臨場摻雜離子之方式利用化學 氣相沉積法以形成之;而頂蓋層之材質例如是磷矽玻璃、 石朋填石夕玻璃或是與後續預定形成的間隙壁具不同触刻選擇 性者’其中頂蓋層之形成方法例如是化學氣相沉積法 (chemical vapor deposition, CVD)。 圖案化頂蓋層1 0 8、導體層1 0 6與閘極介電層1 〇 4,以 形成閘極結構1 1 〇。 接著,請參照第1 B圖,進行摻質植入製程,於閘極結 構1 1 0兩側之基底1 〇〇中形成一淡摻雜區丨丨2,此步驟是以 閘極結構110為罩幕,對基底1〇〇進行p型或N型淡摻雜,主 要疋形成用來作為防止熱載子效應(hot carrier effect) 發生的淡摻雜;;:及極(lightly doped drain)。 接著請參照第1 C圖,於閘極結構1 1 〇之側壁形成間隙 壁(spacer)114,間隙壁114之材質與頂蓋層1〇8之材質具 有不同#刻選擇性者,間隙壁Π 4之材質包括氧化矽或是 亂化石夕’其形成的方法是以化學氣相沉積法在基底沉積氧 化矽或是氮化矽,接下來以非等向性的蝕刻方式,進行間 隙壁1 1 4钱刻’以便在閘極結構丨丨〇之側壁形成間隙壁 114。 接著以整個含有間隙壁丨丨4的閘極結構1 1 〇為罩幕,對 基底1 0 0進行摻質植入製程,於具有間隙壁丨丨4之閘極結構 11 0兩側之基底1 0 0中形成濃摻雜區1 1 6,此濃摻雜區1 1 6與 淡摻雜區11 2構成源極/沒極區11 8。 接著請參照第1 D圖,於基底丨〇 〇上形成非晶矽化鍺層10293twf.ptd Page 8 1292928 V. Description of the invention (5) " Shi Xi's method of forming it, for example, by chemical vapor deposition in the form of on-site doping ions; and the material of the cap layer is, for example, Phosphorus glass, stone-filled glass or a gap formed by a subsequent predetermined gap is a method of forming a top layer, for example, chemical vapor deposition (CVD). A patterned cap layer 108, a conductor layer 106 and a gate dielectric layer 1 〇 4 are formed to form a gate structure 1 1 〇. Next, referring to FIG. 1B, a dopant implantation process is performed to form a lightly doped region 丨丨2 in the substrate 1 两侧 on both sides of the gate structure 110, in this step, the gate structure 110 is The mask has a p-type or N-type light doping on the substrate, and the main germanium is formed to be used as a light doping to prevent the occurrence of a hot carrier effect;;: a lightly doped drain. Next, referring to FIG. 1C, a spacer 114 is formed on the sidewall of the gate structure 1 1 ,. The material of the spacer 114 is different from the material of the cap layer 1 〇 8 , and the spacer Π The material of 4 includes yttrium oxide or chaotic lithium. The method of forming is to deposit yttrium oxide or tantalum nitride on the substrate by chemical vapor deposition, and then perform the spacer 1 1 by anisotropic etching. 4 money engraved 'to form a spacer 114 on the sidewall of the gate structure. Then, the entire gate structure 1 1 含有 containing the spacers 4 is used as a mask to perform a dopant implantation process on the substrate 100, and the substrate 1 on both sides of the gate structure 110 having the spacers 4 A heavily doped region 1 1 6 is formed in 0 0 , and the heavily doped region 1 16 and the lightly doped region 11 2 constitute a source/narrow region 11 8 . Next, please refer to Figure 1D to form an amorphous germanium layer on the substrate.

10293twf.ptd 第9頁 129292810293twf.ptd Page 9 1292928

Ο,於基底1 〇 〇上形成非晶矽化鍺層丨2 〇之方法例如是化 學氣相沈積法,此方法係以矽烷/鍺烷/氫氣為反應氣體 源,操作壓力為3mtorr且沉積溫度在4〇() ^至5〇Q之間。 接著進行熱‘程’使源極/汲極區1 1 8表面之非晶石夕化 鍺層1 20轉變成結晶矽化鍺層i 22。此熱製程操作溫度例如 疋5 0 0 C至6 0 0 C之間’因源極/汲極區1 1 8表面的材質為 矽’在進行熱製程時’會與其上的非晶矽化鍺層丨2 〇作用 而轉變成結晶矽化鍺層1 2 2,而源極/汲極區丨丨8以外的非 晶矽化鍺層1 2 0則不會轉變成結晶矽化鍺層丨2 2。 然後請參照第1 E圖,移除源極/汲極區丨丨8以外的非晶 矽化鍺層1 2 0,移除的方法例如是以氣化氫/氫氣為蝕刻氣 體源,钱刻溫度例如是7 0 0 °C至7 5 0 °C之間。 接著請參照第1 F圖,移除頂蓋層丨〇8,移除的方法例 如疋以含鼠氟酸成份的姓刻液(HF based etchant)。 接著請參照第1 G圖,進行自行對準金屬矽化合物 (self-aligned si licide )製程,例如先使用物理氣相 沉積法於基底100上形成一層厚度約在1〇〇至5〇〇埃的金屬 層1 2 4,此金屬層1 2 4之材質例如是鈦。 接著請參照1 Η圖,進行熱製程,此熱製程例如是快速 加熱製程(rapid thermal pr〇cess),此熱製程之操作溫 度例如是600至700 °C,使金屬層124 (鈦)與閘極結構表面 與源極/汲極區表面之矽產生矽化反應,以於閘極結構表 面和源極/汲極區表面形成第一金屬矽化物層丨2 6 (石夕化 鈦,TiSi2 C49)。Ο, a method for forming an amorphous germanium layer on the substrate 1 is, for example, a chemical vapor deposition method using decane/decane/hydrogen as a reaction gas source, an operating pressure of 3 mtorr and a deposition temperature of 4〇() ^ to 5〇Q. Next, a thermal "process" is performed to convert the amorphous 夕 layer 11 20 on the surface of the source/drain region 1 18 into a crystalline bismuth layer i 22 . The thermal process operating temperature is, for example, between 疋5 0 0 C and 600 ° C. 'Because the material of the source/drain region 1 1 8 is 矽' during the thermal process, the amorphous germanium layer on the surface The 丨2 〇 effect is converted into a crystalline bismuth telluride layer 1 2 2, and the amorphous germanium telluride layer other than the source/drain region 丨丨8 is not converted into a crystalline bismuth telluride layer 丨2 2 . Then, referring to FIG. 1E, the amorphous germanium germanium layer 1 2 0 other than the source/drain region 丨丨8 is removed, and the removal method is, for example, a gasification hydrogen/hydrogen gas as an etching gas source. For example, between 70 ° C and 75 ° C. Next, please refer to Figure 1F to remove the top cover layer 8 by removing the method of HF based etchant. Next, referring to FIG. 1G, a self-aligned si licide process is performed, for example, a physical vapor deposition method is used to form a thickness of about 1 〇〇 to 5 〇〇 on the substrate 100. The metal layer is 1 2 4, and the material of the metal layer 1 24 is, for example, titanium. Then, refer to the 1 , diagram for the thermal process. For example, the thermal process is rapid thermal pr〇cess. The operating temperature of this thermal process is, for example, 600 to 700 °C, so that the metal layer 124 (titanium) and the gate A bismuth reaction occurs between the surface of the polar structure and the surface of the source/drain region to form a first metal telluride layer 丨26 on the surface of the gate structure and the surface of the source/drain region (TiSi2 C49) .

10293twf.ptd 第10頁 1292928 五、發明說明(7) 如是 鈦,TiSi2 C49)轉綠# + R ^金屬矽化物層126(矽化 128(矽化鈦,TiSi? 、 低的弟一至屬矽化物層 7 0 0 °C至9 0 0 °C之間。 此决速熱回火製程的溫度約在 依照上述實施例,本 製程之前,於源極"及朽本上:於進仃自行對準金屬矽化物 行自行對準金屬=物製^= 表面的矽,可以避免超、.咬人二不會,肖耗源極/汲極區118 發明可以應用於製作二::::生接合漏電☆。因此本 (MOSFET) 〇衣作起-接面之金氧半場效電晶體 在上述實施例中,得以你 ^ # 1 0 8 Λ ^ ^1 ^ ; 3 極、,、。構11 0 上形成一層頂 1層1 08為只例作說明,當然於閘極蛀Μη η μ t π ,、,τ & 成頂蓋層106,於是在進杆轨制^彳、,、。構110上也可以不形 . ,k a _ ^ a 仃…、衣耘,使源極/汲極區1 1 8表 石夕化錯層。因&,移除非二層也會轉變成結晶 扛/ m 、彳。土 A 鍺層後,導體層1 〇6與源 極/及極區118都會留下結晶石夕化鍺層。由於石夕化鍺層會降 氏進屬石夕化物相轉移的溫度,因此在後續自行對準金屬石夕 化合物製程中的快速熱回火步驟中’可以在較低的溫度 下,使金屬石夕化物產生相轉移,而降低金屬 阻。 在本發明之實施例中係以敛金屬為例子做說明,當然10293twf.ptd Page 10 1292928 V. INSTRUCTIONS (7) In the case of titanium, TiSi2 C49) turns green # + R ^ metal telluride layer 126 (矽化128 (titanium telluride, TiSi?, low brother one to the telluride layer 7 Between 0 0 °C and 900 ° C. The temperature of this thermal tempering process is about the same as in the above embodiment, before the process, on the source " and the aging: self-aligning metal矽 行 自行 自行 = = = = = = = = = = = = = = Therefore, the (MOSFET) 作 之 之 之 之 之 金 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在The top layer 1 08 of the first layer is described as an example only. Of course, the gate electrode 蛀Μη η μ t π , , τ & is formed into the cap layer 106, so that the gate layer is also formed on the pole rail system. It can be invisible. , ka _ ^ a 仃..., 耘, so that the source/drain region 1 1 8 表 夕 化 。 。 。 。 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因 因彳. After the 锗 layer, the conductor layer 1 〇6 and the source/polar region 118 will leave a crystalline 夕 锗 锗 layer. Since the 夕 锗 锗 layer will lower the temperature of the phase transfer, it will follow In the rapid thermal tempering step in the process of self-alignment of the metal compound, the metal phase can be phase-transferred at a lower temperature to reduce the metal resistance. In the embodiment of the invention, the metal is condensed. Explain for the example, of course

l〇293twf.ptd 第11頁 1292928 五、發明說明(8) 本發明也可以適用於其他财熱金屬(Refractory Metal)離 子,例如是鐫、始、鈦、鎳、麵、纪或是钥。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作些許之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。L〇293twf.ptd Page 11 1292928 V. INSTRUCTIONS (8) The present invention is also applicable to other Refractory Metal ions, such as 镌, 始, Titanium, Nickel, Face, 纪 or Key. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is obvious to those skilled in the art that the present invention may be modified and retouched without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10293twf.ptd 第12頁 1292928 圖式簡單說明 第1 A圖〜第1 I圖為本發明實施例之一種自行對準金屬 石夕化物製程的剖面圖。 圖式標示說明· 100 基 底 102 元 件 隔 離 結 構 104 閘 極 介 電 層 106 導 體 層 108 頂 蓋 層 110 閘 極 結 構 112 淡 摻 雜 114 間 隙 壁 116 濃換 雜 區 118 源 極/ >及極區 120 非 晶 矽 化 鍺 層 122 結 晶 矽 化 錯 層 124 金 屬 層 126 第 一 金 屬 矽 化 物 層 128 第 二 金 屬 矽 化 物 層10293twf.ptd Page 12 1292928 Schematic Description of the Drawings FIG. 1A to FIG. 1I are cross-sectional views showing a process of self-aligning metal cerium compound according to an embodiment of the present invention. Schematic description · 100 substrate 102 element isolation structure 104 gate dielectric layer 106 conductor layer 108 cap layer 110 gate structure 112 light doping 114 spacer 116 thick swap region 118 source / > and polar region 120 Amorphous germanium germanium layer 122 crystalline germanium stagger layer 124 metal layer 126 first metal telluride layer 128 second metal telluride layer

10293twf.ptd 第13頁10293twf.ptd第13页

Claims (1)

1292928 六、申請專利範圍 1. 一種半導體元件的製造方法 驟: < 万去,邊方法包括下列步 提供-基底,在該基底已形成—_ 兔 没極區,該閘極結構包括一間極介電層、一體原 蓋層與一間隙壁; θ 頂 於该基底上形成^一非晶石夕化錯展· 進仃一第一熱製程,使該源極/汲極區 矽化鍺層轉變成一結晶矽化鍺層; < 為非曰曰 移除該源極/汲極區以外之該非晶矽化鍺声· 移除該頂蓋層; θ ’ 於該基底上形成一金屬層·, 進行一第二熱製程,使該金屬層與該閘極結構表面盘 該源極/汲極區表面之矽產生矽化反應以於該閘極結構表、 面和該源極/汲極區表面形成—金屬矽化物層;以及 移除未與矽反應之該金屬層。 法 2. 如申請專利範圍第丨項所3述之半導體元件的製造方 其中4金屬層之材質包括耐火金屬。 法 3. 如申請專利範圍第丨項所述之半導體元件的製造方 其中S亥金屬層之材質係選自鎢、鈷、鈦、鎳、鉑、 鈀、鉬之其中之一。 ” 法 4·如申請專利範圍第丨項所述之半導體元件的製造方 其中該第一熱製程之溫度範圍在500 t至6〇〇 〇c之間。 5 ·如申請專利範圍第丨項所述之半導體元件的 法,其中於該基底上形成該非晶矽化鍺層之 乃法包括化學1292928 VI. Patent Application Range 1. A method for fabricating a semiconductor device: < 10,000, the method includes the following steps: providing a substrate on which the substrate has been formed - a rabbit non-polar region, the gate structure including a pole a dielectric layer, an integral original cap layer and a spacer; θ is formed on the substrate to form a first thermal process, and the source/drain region is transformed into a first thermal process Forming a crystalline germanium layer; < removing the amorphous germanium sound outside the source/drain region for non-tanning; removing the cap layer; θ ' forming a metal layer on the substrate, performing one a second thermal process for causing a bismuth reaction between the metal layer and the surface of the source/drain region of the gate structure surface disk to form a metal on the surface of the gate structure, the surface and the surface of the source/drain region a telluride layer; and removing the metal layer that has not reacted with ruthenium. Method 2. The manufacturer of the semiconductor device as described in the third paragraph of the application of the patent application, wherein the material of the four metal layers includes a refractory metal. Method 3. The method for manufacturing a semiconductor device according to the above-mentioned patent application, wherein the material of the S-metal layer is one selected from the group consisting of tungsten, cobalt, titanium, nickel, platinum, palladium, and molybdenum. The method of manufacturing a semiconductor device according to the above-mentioned patent application, wherein the temperature range of the first thermal process is between 500 t and 6 〇〇〇 c. 5 · as claimed in the third paragraph of the patent application A method of forming a semiconductor device, wherein the method of forming the amorphous germanium layer on the substrate comprises chemistry 10293twf.ptd 第14頁 1292928 六、申請專利範圍 氣相沈積法 6甘=申請專利S圍第5項所述之半導體元件的黎 法,其中於戎基底上形成該非晶矽化鍺層二义方 烷/鍺烷/氫氣為反應氣體源。 ㈢ 乃次包括以矽 7·如申請專利範圍第丨項所述之 — 法,其中移除該源極/汲極區以外歹 兀 6、叔造方 以氯化氫/氫氣為蝕刻氣體源。 ^日日矽化鍺層包括 8·如申請專利範圍第丨項所述 法,豆中嗜頂苔爲夕从傲—』^心千導體凡件的製造方 蝕刻選擇性者。 < 材貝具有不同 法 法 法 行 9·如申請專利範圍第丨項所述之半 其中該頂蓋層之材質係選自磷n的‘造方 專利範圍第1項所述之半導體元件的it 二Λ Λ頂蓋層包括以含氮氣酸成份的飯刻; i由ΐΛτ專利範圍第1項所述之半導體元件的製造方 其中移除未與石夕反應之該金屬I之步驟之後更t 快速熱回火製程使該金屬石夕化物層之電阻值降低。 1 2· —種自行對準金屬矽化物的製造方法該 括下列步驟: i 提供一基底,該基底上已形成一閘極介電層、一閘極 導體層、一間隙壁以及一源極/汲極區; 於该基底上形成一非晶石夕化鍺層; 進行一第一熱製程,使該閘極導體層、該源極/汲極 區表面之該非晶矽化鍺層轉變成一結晶矽化鍺層;10293twf.ptd Page 14 1292928 VI. Patent application scope Vapor deposition method 6 Gan = application of the semiconductor element described in Item 5 of the S, wherein the amorphous germanium layer is formed on the germanium substrate. / decane / hydrogen is the source of the reaction gas. (iii) This includes the method described in § 7 of the scope of the patent application, in which the source/drain region is removed. 叔 6. The unprepared formula uses hydrogen chloride/hydrogen as the source of etching gas. ^Daily 矽 锗 包括 包括 包括 包括 包括 包括 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如< 材贝 has a different method of law. 9. As described in the scope of the patent application, the material of the cap layer is selected from the semiconductor element described in the first paragraph of the invention of the phosphorus n. The second dome layer includes a rice cooker containing a nitrogen acid component; i is manufactured by the manufacturer of the semiconductor component described in the first aspect of the patent application, wherein the step of removing the metal I that has not reacted with Shi Xi is further The rapid thermal tempering process reduces the resistance of the metallurgical layer. 1 2 - A method for fabricating self-aligned metal telluride. The method comprises the steps of: i providing a substrate on which a gate dielectric layer, a gate conductor layer, a spacer, and a source are formed. a drain region is formed on the substrate; and a first thermal process is performed to convert the gate layer and the amorphous germanium layer on the surface of the source/drain region into a crystallized layer Layer l〇293twf.ptd 第15頁 1292928 六、申請專利範圍 移除該閘極導體層、該源極/汲極區以外之該非晶矽 化鍺層; 於該基底上形成一金屬層; 進行一第二熱製程,使該金屬層與該閘極結構表面與 該源極/汲極區表面之矽產生矽化反應以於該閘極結構表 面和該源極/汲極區表面形成一第一金屬矽化物層;以及 移除未與石夕反應之該金屬層。 1 3.如申請專利範圍第1 2項所述之自行對準金屬矽化 物的製造方法,其中該金屬層之材質包括耐火金屬。 1 4.如申請專利範圍第1 2項所述之自行對準金屬矽化 物的製造方法,其中該金屬層之材質係選自鎢、鈷、鈦、 鎳、鉑、鈀、鉬之其中之一。 1 5.如申請專利範圍第1 2項所述之自行對準金屬矽化 物的製造方法,其中該第一熱製程之溫度範圍在5 0 0 °C至 6 Ο (ΓC之間。 1 6.如申請專利範圍第1 2項所述之自行對準金屬矽化 物的製造方法,其中於該基底上形成該非晶矽化鍺層之方 法包括化學氣相沈積法。 1 7.如申請專利範圍第1 6項所述之自行對準金屬矽化 物的製造方法,其中於該基底上形成該非晶矽化鍺層之方 法包括以矽烷/鍺烷/氫氣為反應氣體源。 1 8.如申請專利範圍第1 2項所述之自行對準金屬矽化 物的製造方法,其中移除該閘極導體層、該源極/汲極區 以外之該非晶矽化鍺層包括以氣化氫/氫氣為蝕刻氣體L〇293twf.ptd Page 15 1292928 6. The patent application scope removes the gate conductor layer, the amorphous germanium layer outside the source/drain region; forms a metal layer on the substrate; performs a second a thermal process to cause a bismuth reaction between the metal layer and the surface of the gate structure and the surface of the source/drain region to form a first metal telluride on the surface of the gate structure and the surface of the source/drain region a layer; and removing the metal layer that has not reacted with Shi Xi. A method of producing a self-aligned metal telluride according to claim 12, wherein the material of the metal layer comprises a refractory metal. 1 . The method for manufacturing a self-aligned metal halide according to claim 12, wherein the material of the metal layer is one selected from the group consisting of tungsten, cobalt, titanium, nickel, platinum, palladium, and molybdenum. . 1 5. The method of manufacturing a self-aligned metal telluride according to claim 12, wherein the temperature of the first thermal process ranges from 500 ° C to 6 Ο (ΓC. 1 6. The method for producing a self-aligned metal halide according to claim 12, wherein the method for forming the amorphous germanium layer on the substrate comprises a chemical vapor deposition method. The method for producing a self-aligned metal halide according to any of the preceding claims, wherein the method for forming the amorphous germanium germanium layer on the substrate comprises using decane/decane/hydrogen as a reaction gas source. The method for manufacturing self-aligned metal telluride according to item 2, wherein removing the gate conductor layer and the amorphous germanium layer other than the source/drain region comprises using hydrogenated hydrogen gas as an etching gas 10293twf.ptd 第16頁 1292928 六、申請專利範圍 源。 1 9.如申請專利範圍第1 2項所述之自行對準金屬矽化 物的製造方法,其中其中移除未與矽反應之該金屬層之步 驟之後更包括進行一第三熱製程,使該第一金屬矽化物層 轉變成一第二金屬石夕化物層,且該第二金屬石夕化物層之電 阻值低於該第一金屬矽化物層之電阻值。10293twf.ptd Page 16 1292928 VI. Application for patent scope Source. 1 . The method of manufacturing a self-aligned metal halide according to claim 12, wherein the step of removing the metal layer not reacted with ruthenium further comprises performing a third thermal process to The first metal telluride layer is transformed into a second metallization layer, and the second metallization layer has a lower resistance than the first metal halide layer. 10293twf.ptd 第17頁10293twf.ptd Page 17
TW92100754A 2003-01-15 2003-01-15 Manufacturing method of semiconductor device TWI292928B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92100754A TWI292928B (en) 2003-01-15 2003-01-15 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92100754A TWI292928B (en) 2003-01-15 2003-01-15 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
TW200412625A TW200412625A (en) 2004-07-16
TWI292928B true TWI292928B (en) 2008-01-21

Family

ID=45067671

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92100754A TWI292928B (en) 2003-01-15 2003-01-15 Manufacturing method of semiconductor device

Country Status (1)

Country Link
TW (1) TWI292928B (en)

Also Published As

Publication number Publication date
TW200412625A (en) 2004-07-16

Similar Documents

Publication Publication Date Title
US6777275B1 (en) Single anneal for dopant activation and silicide formation
KR100966384B1 (en) Nickel silicide method and structure
CN1989598A (en) Uni-directional diffusion of metal silicide in semiconductor devices
JPH10223889A (en) Mis transistor and its manufacture
US7109116B1 (en) Method for reducing dendrite formation in nickel silicon salicide processes
US6765269B2 (en) Conformal surface silicide strap on spacer and method of making same
JPH08111527A (en) Preparation of semiconductor device with self-conformity silicide region
US20100151639A1 (en) Method for making a thermally-stable silicide
JP2004128314A (en) Method for manufacturing semiconductor device
TWI292928B (en) Manufacturing method of semiconductor device
JP2636786B2 (en) Method for manufacturing semiconductor device
JP2006352127A (en) Method of forming self-aligned silicide film by using multiple heat treatment processes
JP2001102590A (en) Method for fabrication of semiconductor device
KR100630769B1 (en) Semiconductor device and method of fabricating the same device
TW558759B (en) Method of forming and etching resistor protection oxide layer
TWI222113B (en) Silicide layer and fabrication method thereof and method for fabricating metal-oxide semiconductor transistor
JPH02288341A (en) Mis-type semiconductor device
US20060240666A1 (en) Method of forming silicide
JPH09148568A (en) Manufacture of semiconductor device
JPH10116797A (en) Manufacture of semiconductor device
KR100431294B1 (en) method for fabricating semiconductor device
JPH10233371A (en) Manufacturing method of semiconductor device
TW466767B (en) Method for manufacturing ultra-shallow junction metal oxide semiconductor transistor
TWI284941B (en) Fabricating process to improve resistance and current leakage phenomenon of deep-micron transistor for semiconductor device
KR100265560B1 (en) Gate electrode of semiconductor device and method for forming the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees