TWI291252B - Making method for vertical light emitting diode - Google Patents

Making method for vertical light emitting diode Download PDF

Info

Publication number
TWI291252B
TWI291252B TW95103113A TW95103113A TWI291252B TW I291252 B TWI291252 B TW I291252B TW 95103113 A TW95103113 A TW 95103113A TW 95103113 A TW95103113 A TW 95103113A TW I291252 B TWI291252 B TW I291252B
Authority
TW
Taiwan
Prior art keywords
emitting diode
substrate
vertical light
gold
layer
Prior art date
Application number
TW95103113A
Other languages
Chinese (zh)
Other versions
TW200729537A (en
Inventor
Kuan-Ren Jung
Hai-Wen Shiu
Jr-Kuei Shiu
Jia-Hau Yang
Liang-Ru Lin
Original Assignee
Genesis Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Photonics Inc filed Critical Genesis Photonics Inc
Priority to TW95103113A priority Critical patent/TWI291252B/en
Publication of TW200729537A publication Critical patent/TW200729537A/en
Application granted granted Critical
Publication of TWI291252B publication Critical patent/TWI291252B/en

Links

Abstract

The invention provides a making method for vertical light emitting diode. It includes the followings: forming epitaxy layer unit capable of generating luminescence by photo-electric effect on the substrate that is easier to produce epitaxy; forming transparent electric conduction layer for light penetration and making the electric current diffusing uniformly; forming plural metal/alloy layers used for electric conduction, heat conduction and bonding; forming plural metal/alloy layers in order for electric conduction and heat conduction on the upper and lower surfaces of another substrate at the same time so as to prepare the heat sink substrate; connecting both substrates by low-temperature press bonding manner; removing the first substrate; and making electrode to finish the making process of vertical light emitting diode. The vertical light emitting diode manufactured by this invention has high heat dissipation efficiency and high combination efficiency of electron and electric hole. It also has the advantage of high light emitting area and low driving voltage at the same time.

Description

Ι29Ί252 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光二極體的製造方法,特別是 指一種垂直發光二極體的製造方法。 【先前技術】 由於發光二極體具有壽命長、省電、體積小、驅動電 壓低、反應速率快、辨識率高等優點,是新一代的光源種 類之一。 依施加電能後’電流擴散注入發光二極體中之一可以 光電效應產生光之磊晶層單元的方式做區分,發光二極體 可分成電流視為「水平擴散」的「水平發光二極體」,以及 電流視為「垂直注入」的「垂直發光二極體」二種。 參閱圖1,目前的垂直發光二極體丨都包含一基板 與5亥基板11連接的透明導電層12、一與該透明導電層I〕 連接並可以光電效應產生光的磊晶層單元13,及一與該蠢 晶層單元13形成歐姆接觸的電極14。 該基板11是以可導電的金屬或是合金為材料構成,並 與該磊晶層單元13形成歐姆接觸以同時作為另一電極之用 ,該透明導電層12以可透光且可使電流擴散均勻的材料構 成’例如銦錫氧化物(業界習稱ITO ),而使得施加電能時 電流更均勻地注入該磊晶層單元13中,以提昇量子效應而 增加發光效率;該磊晶層單元13具有一與該透明導電層12 連接的η型批覆層131 (n-type cladding layer)、一與該電 極14連接的p型批覆層132 ( p-type cladding layer),及炎 1291252 δ又在該n、p型批覆層131、132之間的活性層133 (active hyer)·’當自該電極14以及作為另一電極使用之基板u施 加也此日寸,電流經過該透明導電層12垂直擴散注入磊晶層 單元13而可以光電效應產生光子,使該垂直發光二極體1 向外發光。 此外’為了提昇垂直發光二極體的整體發光亮度,會 例如在邱晶層單元中更磊晶形成可增加光取出率(Hgh extraction efficiency)的視窗層(wind〇w iayer),或是設計 增加使蟲晶層單元發出的光朝向同一方向行進射出的反射 鏡面等結構,由於此等結構多半已為業界所周知,故在此 不再多加詳細贅述。 而,在製造過程上,垂直發光二極體丨受限於必須同 時作為電極用的永久基板n通常與蠢晶層單元13的晶格常 數不相匹配的限制,⑽須先在—晶格常數錢晶層單元 13相匹配且易於蟲晶的基板上蟲晶成長出該蟲晶層單元13 後,再將該蟲晶層單元13接合(b〇nding)至同時作為電極 用的永久基板11上,再移除原先之蟲晶用的基板、設置電 極14後,完成整體的製備。 在此等製程中的技術瓶頸主要是如何有效地使蟲晶層 單元12轉移至永久基板上,也就是如何使蟲晶層單元η 穩固地與永久基板U相連接,㈣在連接的過程中不會損 傷到磊晶層單元i2的微細結構;並冋時藉由永久基板的結 構設計,解決垂直發光二極體i在作動時必須要克服的散 熱以及電流擴散問題’進而有效提昇垂直發光二極體工的 1291252 、 、 私子電洞結合效率、發光效率。 雖然,例如第 088111262 號、第 093140883 號、第 092116908 ^ ·····等專利申請案都已分別提出不同的技術 手&解決此等技術瓶頸,但如何設計垂直發光二極體1的 整體製程’以更加有效提昇垂直發光二極體1的成品品質 與發光亮度’仍是學界、業界努力的方向之一。 【發明内容】 ^ 口此本發明之目的,即在提供一種垂直發光二極體 j製k方法,以製備具有高散熱效率與高電子電洞結合效 率且同時具有高發光面積與低驅動電壓的垂直發光二 體。 於是,本發明一種垂直發光二極體的製造方法,包含 以下步驟。 曰思ί _弟—基材上依序形成一可以光電效應產生光的磊 曰曰曰單7C ’及可供光穿透且可使電流擴散均勾的透明導電 接者選自由下列所構成之群組為材料在該透明導電声 上依序形成複數可導電且可傳熱的薄層:m二 、鎳、銅、鋅、鎂、銘、銀、金,及此等之組合。 =在前述步驟所製得之半成品上形成—覆蓋該遙晶 層早7L之一漏光面以限制光射出的遮覆膜。 並可在進行上述過程 材料在一可導電且導熱之 形成複數可導電且可傳熱 的同時,由下列所構成之群組為 第二基材的上、下表面分別依序 的薄層而製得-散熱基板:路、 1291252 在巴、鉑、鈦、鎳、銅 合0 鋅、鎂、鋁、銀、金,及此等之組 然後將該散熱基板疊放在先前所製得之半成品中形成 在該透明導電層上之多數薄層的最上層上,並加:接‘使 一者相連接成一體。 接著移除該第一基材而使該磊晶層單元原先與該第一 基材連接的-底面裸露後,在該蠢晶層單元之底面形成_ 歐姆電極,即製得該垂直發光二極體。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 在本發明被詳細描述之前,要注意的是,在以下的說 明内谷中,類似的元件是以相同的編號來表示。 』生參閱圖2-1、2_2與圖3,本發明一種垂直發光二極體的 製ie方法的較佳實施例,是可製備如圖3所示的垂直發 光二極體3。 先明參閱圖3,該垂直發光二極體3包含一歐姆電極 31、一連接在該歐姆電極31上的磊晶層單元32、一連接在 該磊晶層單元32上的透明導電層33、一連接在該透明導電 層上33的複合金屬層單元34、一連接在該複合金屬層單元 34上幻政熱基板35,及一與該磊晶層單元連接的遮覆膜% 該歐姆電極31 與該磊晶層單元32相歐姆接觸,是由 1291252 、丨Ό 銘、鈇、鎳等金屬元素所成的金屬及/或合金 4層構成,且厚度在1〇A至3〇〇〇〇人之間;在此,是以鉻、 m金二種金屬材料,由下至上依序以400人、400A、 000A的厚度形成的三金屬薄層堆疊構成為例說明。 /、白知的垂直發光二極體丨相似,該磊晶層單元具 有。與4區人姆電極31連接的n型批覆層321、一與該透明 ^電層33連接的Ρ型批覆層322,及一夾設在該η、ρ型批 復層321、322之間的活性層323,而當施加電能、電流擴 放通過日守可以光電效應產生光子、向外發光。 "亥透明導電層33是以透明且可導電的材料,例如銦錫 氧化物構成’在施加電能時電流可更均勻地擴散通過該磊 晶層單元32。 忒複a金屬層單元34是由鉻、把、鉑、鈦、鎳、銅、 辞、鎂、鋁、銀、金等金屬元素所形成的多數金屬或合金 薄層堆®構成’藉由此等不同厚度、元素種類所形成的多 數金屬或合金薄層堆叠結構而可導電、導熱、反射該蟲晶 g單元32奄出的光,增加該垂直發光二極體3的整體發光 效率,以及與該散熱基板35穩固地相接合;在此,依序以 氦銀/鈀、鉑、鈦、金/錫、金為材料,在該透明導電層上 形成厚度分別是 10〇A、2000A、2000A、600A、20000A、 100A的六薄層為例說明。 該散熱基板35具有一可導電且導熱之第二基材351, 及刀別形成在該第二基材相反之上、下表面352、353的多 數可導電且可傳熱的薄層,第二基材351主要是選自例如 1291252 石夕銅、1呂、碳、鑽石、氮化銘、氮化鎂等構成,形成在 表面352 353的多數薄層則是由鉻、le、#、鈦、 鎳*銅:、鎂、鋁、銀、金等元素所構成的金屬及/或合 至薄層+藉由此等不同厚度、元素種類所形成的多數金屬 或:金薄層堆疊結構而可導電、導熱,以及與該複合金屬 層早70 34相接合’並同時作為另—電極之用;在此,則是 以銅為第二基# 351,依序以鉻、翻、金為材料在上表面 352上形成厚度分別是4〇〇A、4〇〇A、2〇_人的三薄層,以 及依序以鉻、鎳、金為材料在下表面353形成厚度分別是 300A、10000A、50A的三薄層為例說明。 該遮覆膜 晶層單元32 36是以氧化石夕(Si〇2) _料,形成在該蟲 之非預定的漏光面324上,厚度在1〇〇A〜 10000A,而可限制光的漏射,進而增加整體的發光效率。 散熱基板35作為二電極施加電能 當以該歐姆電極3 1、 時,電流經該複合金屬層單元34而藉由該透明導電層Μ 均句擴散流進入該蠢晶層單元32,進而以光電效應產0生光 ,產生的光,在垂直發光二極體3中朝向該歐姆電極Μ方 向行進的直接向外射出,朝向該散熱基板35方向行進的則 由複合金屬層單元35中由銀/鈀合金構成且厚度為ι〇〇〇Α 的合金薄層反射,而同樣地再次朝向該歐姆電極3ι方向行 進,同時,向該磊晶層單元32的漏光面324向外洩漏的光 ,則由遮覆膜36限制而不向外洩 退而可提升整體的向 外發光亮度;同時作動時產生的熱經由複合金屬層翠元34 直接傳導致該散熱基板35、再散逸至外界,而以高散熱效Ι29Ί252 IX. Description of the Invention: [Technical Field] The present invention relates to a method of manufacturing a light-emitting diode, and more particularly to a method of manufacturing a vertical light-emitting diode. [Prior Art] Since the light-emitting diode has the advantages of long life, power saving, small volume, low driving voltage, fast reaction rate, and high recognition rate, it is one of a new generation of light source types. According to the way that the current diffusion is injected into the light-emitting diode, one of the light-emitting diodes can be photoelectrically generated to form an optical epitaxial layer unit, and the light-emitting diode can be divided into a horizontal light-emitting diode whose current is regarded as "horizontal diffusion". And "vertical light-emitting diodes" whose current is regarded as "vertical injection". Referring to FIG. 1, the current vertical LEDs include a transparent conductive layer 12 connected to the substrate 11 and a transparent layer 12 connected to the transparent conductive layer I and capable of generating light by photoelectric effect. And an electrode 14 that forms an ohmic contact with the stray layer unit 13. The substrate 11 is made of a conductive metal or an alloy and is in ohmic contact with the epitaxial layer unit 13 for simultaneously serving as another electrode. The transparent conductive layer 12 is transparent and can diffuse current. A uniform material constitutes, for example, indium tin oxide (known in the industry as ITO), so that a current is more uniformly injected into the epitaxial layer unit 13 when electric energy is applied to enhance the quantum effect and increase luminous efficiency; the epitaxial layer unit 13 An n-type cladding layer (131) connected to the transparent conductive layer 12, a p-type cladding layer 132 connected to the electrode 14, and a 1291292 δ n, active layer 133 (active hyer) between the p-type cladding layers 131, 132 is applied from the electrode 14 and the substrate u used as the other electrode, and the current is vertically diffused through the transparent conductive layer 12 The epitaxial layer unit 13 is injected to generate a photon by a photoelectric effect, and the vertical light emitting diode 1 emits light outward. In addition, in order to increase the overall light-emitting luminance of the vertical light-emitting diode, for example, a window layer (winder w iayer) which can increase the Hgh extraction efficiency is formed in the crystal layer unit, or the design is increased. A structure such as a mirror surface that emits light emitted by the crystal layer unit in the same direction. Since most of these structures are well known in the art, detailed descriptions thereof will not be repeated here. However, in the manufacturing process, the vertical light-emitting diode is limited by the limitation that the permanent substrate n which must be used as an electrode at the same time does not normally match the lattice constant of the stray layer unit 13, and (10) must first be in the lattice constant. After the crystal layer unit 13 is matched and the insect crystal on the substrate which is easy to crystallize grows out of the crystal layer unit 13, the crystal layer unit 13 is bonded to the permanent substrate 11 for the electrode at the same time. After removing the substrate for the original insect crystal and setting the electrode 14, the overall preparation is completed. The technical bottleneck in these processes is mainly how to effectively transfer the worm layer unit 12 to the permanent substrate, that is, how to make the worm layer unit η firmly connected to the permanent substrate U, and (4) not in the process of connection. It will damage the fine structure of the epitaxial layer unit i2; and solve the heat dissipation and current diffusion problems that the vertical light-emitting diode i must overcome when operating, by the structural design of the permanent substrate, thereby effectively improving the vertical light-emitting diode The physical work of the 1291252, the private sub-hole combination efficiency, luminous efficiency. Although, for example, patent applications such as No. 088111262, No. 093140883, and No. 092116908 ^····· have separately proposed different technical hands & solutions to solve such technical bottlenecks, how to design the entire vertical light-emitting diode 1 The process of 'improving the finished product quality and brightness of the vertical light-emitting diode 1 more effectively' is still one of the directions of the academic and industry efforts. SUMMARY OF THE INVENTION The purpose of the present invention is to provide a vertical light-emitting diode j method to prepare a high heat dissipation efficiency and high electron hole bonding efficiency while having a high light-emitting area and a low driving voltage. Vertically illuminating the two bodies. Thus, a method of manufacturing a vertical light-emitting diode of the present invention comprises the following steps.曰思 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The group is a material that sequentially forms a plurality of electrically conductive and heat transferable thin layers on the transparent conductive sound: m2, nickel, copper, zinc, magnesium, Ming, silver, gold, and combinations thereof. = Formed on the semi-finished product obtained in the previous step - a masking film covering one of the 7L early leaking surfaces of the crystal layer to limit light emission. In the above process, the material can be electrically conductive and thermally conductive to form a plurality of conductive and heat transferable materials, and the group consisting of the following is a thin layer of the upper and lower surfaces of the second substrate. - heat sink substrate: road, 1291252 in bar, platinum, titanium, nickel, copper 0 zinc, magnesium, aluminum, silver, gold, and the like, then stack the heat sink substrate in the previously prepared semi-finished product Formed on the uppermost layer of most of the thin layers on the transparent conductive layer, and added: "connect one of them into one. After the first substrate is removed and the bottom surface of the epitaxial layer unit that is originally connected to the first substrate is exposed, an ohmic electrode is formed on the bottom surface of the stray layer unit, thereby preparing the vertical light emitting diode. body. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. Before the present invention is described in detail, it is noted that in the following description, similar elements are denoted by the same reference numerals. Referring to Figures 2-1, 2-2 and Figure 3, a preferred embodiment of the method for fabricating a vertical light-emitting diode of the present invention is such that a vertical light-emitting diode 3 as shown in Figure 3 can be prepared. Referring to FIG. 3, the vertical LED 3 includes an ohmic electrode 31, an epitaxial layer unit 32 connected to the ohmic electrode 31, and a transparent conductive layer 33 connected to the epitaxial layer unit 32. a composite metal layer unit 34 connected to the transparent conductive layer 33, a illusion thermal substrate 35 connected to the composite metal layer unit 34, and a masking film % connected to the epitaxial layer unit. The ohmic electrode 31 The ohmic contact with the epitaxial layer unit 32 is composed of four layers of metal and/or alloy formed by metal elements such as 1,291,252, 丨Ό, 鈇, and nickel, and has a thickness of 1 〇A to 3 〇〇〇〇 Here, a three-metal thin layer stack structure formed by a thickness of 400 persons, 400 A, and 000 A in order from bottom to top is exemplified as a metal material of chromium or m gold. /, Baizhi's vertical light-emitting diode is similar, and the epitaxial layer unit has. An n-type cladding layer 321 connected to the 4-zone mon electrode 31, a 批-type cladding layer 322 connected to the transparent electro-electrode layer 33, and an activity interposed between the η, p-type batch layers 321 and 322 Layer 323, when the application of electrical energy, current expansion through the day to the photoelectric effect can produce photons, outward illumination. "Heil transparent conductive layer 33 is composed of a transparent and electrically conductive material such as indium tin oxide. The current can diffuse more uniformly through the epitaxial layer unit 32 when electrical energy is applied. The complex a metal layer unit 34 is composed of a plurality of metal or alloy thin layer stacks of metal elements such as chromium, platinum, titanium, nickel, copper, rhodium, magnesium, aluminum, silver, gold, etc. A plurality of metal or alloy thin layer stack structures formed by different thicknesses and element types can conduct, thermally conduct, reflect light emitted by the crystal unit g, increase the overall luminous efficiency of the vertical light emitting diode 3, and The heat dissipating substrate 35 is firmly joined; here, the thickness of the transparent conductive layer is 10〇A, 2000A, 2000A, 600A by using silver/palladium, platinum, titanium, gold/tin, and gold as materials. The six thin layers of 20000A and 100A are taken as an example. The heat dissipation substrate 35 has a second substrate 351 which is electrically and thermally conductive, and a plurality of electrically conductive and heat transferable thin layers formed on the opposite sides of the second substrate and the lower surfaces 352 and 353. The substrate 351 is mainly selected from, for example, 1291252, such as Shixi copper, 1 Lu, carbon, diamond, nitride, magnesium nitride, etc., and most of the thin layers formed on the surface 352 353 are made of chromium, le, #, titanium, Nickel*copper: a metal composed of elements such as magnesium, aluminum, silver, gold, and/or a thin layer + a plurality of metals formed by different thicknesses and element types, or a thin layer stack structure of gold , heat conduction, and bonding with the composite metal layer 70 34 ' at the same time as the other electrode; here, copper is the second base # 351, in order to use chromium, turn, gold as the material Three thin layers each having a thickness of 4〇〇A, 4〇〇A, 2〇_human are formed on the surface 352, and the thickness is 300A, 10000A, 50A on the lower surface 353 by using chromium, nickel and gold as materials, respectively. Three thin layers are taken as an example. The masking film layer unit 32 36 is formed on the undesired light leakage surface 324 of the insect by a oxidized stone (Si〇2) material, and has a thickness of 1〇〇A to 10000A, and can limit light leakage. Shooting, which in turn increases the overall luminous efficiency. The heat dissipating substrate 35 applies electric energy as the two electrodes. When the ohmic electrode 31 is used, current flows through the composite metal layer unit 34 through the transparent conductive layer to diffuse into the stray layer unit 32, thereby effecting a photoelectric effect. The generated light is generated, and the generated light is directly emitted outward in the direction of the ohmic electrode 垂直 in the vertical light-emitting diode 3, and the silver/palladium is formed in the composite metal layer unit 35 in the direction toward the heat-dissipating substrate 35. A thin layer of alloy composed of an alloy and having a thickness of ι 反射 is reflected, and similarly travels toward the ohmic electrode 3 ι again, while light leaking outward toward the light leakage surface 324 of the epitaxial layer unit 32 is covered by The film 36 is restricted and does not vent outward to enhance the overall outward illuminating brightness; at the same time, the heat generated during the operation is directly transmitted through the composite metal layer Cui 34, causing the heat dissipating substrate 35 to be dissipated to the outside, and the heat is dissipated to the outside. effect

10 1291252 率進而提高電子電洞的結合效率,提昇整體的發光效率。 上述垂直發光二極體3的結構再配合以下的製造方法 的詳細說明,當可更加清楚的明白。 參閱圖2-1、2-2,本發明垂直發光二極體的製造方法的 一較佳實施例,是先進行步驟21,選用一晶格常數與該磊 晶層單元32匹配易於磊晶的第一基材4 (在此是藍寶石基 板),在其上依序磊晶形成該p型批覆層322、作動層323 與該η型批覆層323而成該磊晶層單元;接著在不大於8χ 10 T0rr的真空環境壓力下,且在預定含氧比例的氣氛中, 利用例如蒸鑛或濺鍍或是準分子雷射鍍膜等方式形成該透 明導電層33,且在形成該透明導電層33之後,隨即在真空 裱境壓力下,且在選自由惰性氣體之組合的氣氛中,以高 溫進行該透明導電層33表面晶粒的改質,以利進行下一步 然後進行步驟22 ’利用例如蒸鍍或錢鑛的方式,先以 與5亥透明導電層33相互附著較佳的鉻金屬,在該透明導電 層33上形成厚度2〇A的鉻層作為後續其他各金屬/合金薄 層與δ玄透明導電層3 3強固地連接之用;接著再依序以銀/|巴 與麵形成厚度都是1〇〇〇人的銀/鈀薄層與鉑薄層,藉由銀/鈀 合金的高反射率作為反射鏡,以提高垂直發光二極體3的 發光亮度,並以厚度為1〇〇〇 Α鉑薄層阻絕在後續製程中, 各不冋金屬薄層/合金薄層之間的金屬元素相互擴散、污染 ’然後將此半成品置於選自純性氣體之組合的氣氛中,以 100°c〜800°c的溫度作用0.5〜80分鐘,先使此三薄層進行金 11 1291252 屬融^ ;之後,再依序形成厚度是300A、20000A、1〇〇A 為後、,連接散熱基板35時的主要連接作用層,並同時先以 極薄的金薄層作為保護此半成品之用,而完成複合金屬層 單元34的製備。 曰 此日守,可同步進行步驟23,在上述步驟22所製得之半 成品上,同樣地以例如蒸鍍或濺鍍方式形成該遮覆膜36, 以阻絕垂直發光二極體3的漏光。 另外,在進行上述步驟的同時,可以另一生產線同步 進打步驟24,同樣地以例如蒸鍍或濺鍍方式,自第二基材 351 (即銅基板)的上表面352依序形成厚度分別是4〇〇人、 4〇〇A、20000A的鉻薄層、鉑薄層與金薄層,作為後續連接 附著之用,以及自第二基材351的下表面353依序形成厚 度分別是300A、10000A、200A的鉻薄層、鎳薄層與金薄 層,作為導熱、散熱之用,完成該散熱基板35的製備。 然後進行步驟25,將該散熱基板35以形成在上表面 352的鉻薄層、鉑薄層與金薄層疊放在該步驟所製得之 半成品的該複合金屬層單元34上,並以32(rc的進行低溫 加壓接合,使二者相連接成一體。 接著進行步驟26 ’以例如濕蝕刻、乾蝕刻、機械研磨 等方式移除該第一基材4。 最後以步驟27在該蠢晶層單元32原先與該第一基材4 連接的底面’依序形成20000A的金層、2〇〇A的翻滑與 200A的鉻層而堆疊構成該歐姆電極3 1,即製得如圖3所示 的該垂直發光二極體3。 12 1291252 由上述說明可知,本發明主要是選用易於磊晶的第一 基材4 ’先屋晶出可以光電效應發光的蟲晶層單元32以及 形成可供光牙透且可使電流擴散均勻的透明導電層33後, 再於透明導電層33上以多數金屬/合金薄層構成用導電、傳 熱並可與散熱基板35接合之用的複合金屬層單it 34,而可 以低溫加壓接合的方式,有效地將磊晶層單元%轉移至同 樣地鍍覆有多數金屬/合金薄層的散熱基板Μ上,避免轉移 過程中蠢晶層單元32的結構破壞,降低電子電洞的結合效 率,亚藉由複合金屬層單元34與散熱基板35的高導電與 高傳熱特性,而使得製得的垂直發光二極體3具有高散熱 效率與低驅動電壓的優點,而可解決垂直發光二極體在作 動%必須要克服的散熱以及電流擴散問題,進而有效提昇 垂直I光一極體的發光效率,確實達到本發明的創作目的 〇 惟以上所述者,僅為本發明之較佳實施例而已,當不 ^以此限定本發明實施之範圍,即大凡依本發明申請專利 靶圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一示意圖,說明一習知的垂直發光二極體; 圖2-1是一流程圖,說明本發明一種垂直發光二極體的 製造方法的一較隹實施例的前半段流程; 圖2-2是一流程圖,說明本發明一種垂直發光二極體的 製造方法的一較佳實施例的後段流程,及 13 1291252 圖3是一示意圖,說明以圖2-1、2-2之流程製得之垂 直發光二極體。10 1291252 rate further improves the efficiency of the combination of electronic holes and improves the overall luminous efficiency. The structure of the above-described vertical light-emitting diode 3 can be more clearly understood by the detailed description of the following manufacturing method. Referring to FIGS. 2-1 and 2-2, in a preferred embodiment of the method for fabricating the vertical light emitting diode of the present invention, step 21 is performed first, and a lattice constant is selected to match the epitaxial layer unit 32 to facilitate epitaxial. a first substrate 4 (here, a sapphire substrate) on which the p-type cladding layer 322, the actuation layer 323 and the n-type cladding layer 323 are sequentially epitaxially formed to form the epitaxial layer unit; The transparent conductive layer 33 is formed by a vacuum atmosphere pressure of 8 χ 10 T0rr and in an atmosphere of a predetermined oxygen content, for example, by means of steaming or sputtering or excimer laser plating, and the transparent conductive layer 33 is formed. Thereafter, the surface of the transparent conductive layer 33 is reformed at a high temperature under vacuum pressure and in an atmosphere selected from a combination of inert gases to facilitate the next step and then proceed to step 22 'Using, for example, steaming In the method of plating or money mining, a preferred chromium metal is adhered to the transparent conductive layer 33, and a chromium layer having a thickness of 2 〇A is formed on the transparent conductive layer 33 as a subsequent thin layer of each metal/alloy and δ. The transparent conductive layer 3 3 is firmly connected And then use a silver/palladium thin layer and a thin layer of platinum with a thickness of 1 〇〇〇, and a high reflectivity of the silver/palladium alloy as a mirror to increase the vertical direction. The luminance of the light-emitting diode 3 is reduced by a thin layer of platinum having a thickness of 1 在 in the subsequent process, and the metal elements between the thin metal layers/alloy layers are mutually diffused and contaminated. The semi-finished product is placed in an atmosphere selected from the group consisting of pure gases, and is applied at a temperature of 100 ° C to 800 ° C for 0.5 to 80 minutes, and then the three thin layers are first subjected to gold 11 1291252 genus; then, sequentially formed The thickness is 300A, 20000A, 1〇〇A, and the main connection layer when the heat dissipation substrate 35 is connected, and at the same time, the thin metal thin layer is used as the protection for the semi-finished product, and the composite metal layer unit 34 is completed. preparation.曰 In this case, step 23 can be simultaneously performed. In the semi-finished product obtained in the above step 22, the mask film 36 is formed by vapor deposition or sputtering, for example, to block light leakage of the vertical light-emitting diode 3. In addition, while performing the above steps, the step 24 can be simultaneously performed in another production line, and the thickness is sequentially formed from the upper surface 352 of the second substrate 351 (ie, the copper substrate) by, for example, vapor deposition or sputtering. It is a thin layer of chrome of 4〇〇, 4〇〇A, 20000A, a thin layer of platinum and a thin layer of gold, which is used for subsequent attachment, and the thickness of the lower surface 353 of the second substrate 351 is 300A. The 10000A, 200A chromium thin layer, the nickel thin layer and the gold thin layer are used for heat conduction and heat dissipation to complete the preparation of the heat dissipation substrate 35. Then, in step 25, the heat dissipation substrate 35 is laminated on the composite metal layer unit 34 of the semi-finished product obtained in the step by forming a thin layer of chromium formed on the upper surface 352, a thin layer of platinum and a thin layer of gold, and is 32 ( The rc is subjected to low temperature pressure bonding to join the two into one. Next, step 26' is performed to remove the first substrate 4 by, for example, wet etching, dry etching, mechanical polishing, etc. Finally, in step 27, the amorphous crystal is removed. The bottom layer of the layer unit 32 originally connected to the first substrate 4 is sequentially formed with a gold layer of 20000 A, a roll of 2 A, and a chromium layer of 200 A to form the ohmic electrode 3 1, which is prepared as shown in FIG. The vertical light-emitting diode 3 is shown. 12 1291252 It can be seen from the above description that the present invention mainly selects the first substrate 4 which is easy to be epitaxial, and the crystal layer unit 32 which can emit light by photoelectric effect is formed and formed. After the transparent conductive layer 33 is provided to provide light-transparent and uniform current diffusion, a composite metal layer for conducting, heat-transducing and bonding with the heat-dissipating substrate 35 is formed on the transparent conductive layer 33 by a plurality of metal/alloy thin layers. Single it 34, but can be pressed under low temperature To effectively transfer the epitaxial layer unit % to the heat-dissipating substrate on the same metal/alloy thin layer, to avoid structural damage of the stray layer unit 32 during transfer, and to reduce the bonding efficiency of the electron hole. By virtue of the high conductivity and high heat transfer characteristics of the composite metal layer unit 34 and the heat dissipation substrate 35, the vertical light-emitting diode 3 has the advantages of high heat dissipation efficiency and low driving voltage, and can solve the vertical light-emitting diode. The heat dissipation and current diffusion problems that must be overcome in the operation of the body, thereby effectively improving the luminous efficiency of the vertical I light body, and indeed achieve the creative object of the present invention, which is only the preferred embodiment of the present invention. The scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application target and the description of the invention are still within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a conventional vertical light emitting diode; FIG. 2-1 is a flow chart illustrating the system of a vertical light emitting diode of the present invention. FIG. 2-2 is a flow chart illustrating a subsequent flow of a preferred embodiment of a method for fabricating a vertical light emitting diode according to the present invention, and 13 1291252 FIG. 3 is a Schematic diagram showing a vertical light emitting diode fabricated by the processes of Figs. 2-1 and 2-2.

14 1291252 【主要元件符號說明】 1 垂直發光二極體 31 歐姆電極 11 基板 32 蠢晶層早元 12 透明導電層 321 η型批覆層 13 蠢晶層早元 322 Ρ型批覆層 131 η型批覆層 323 活性層 132 Ρ型批覆層 324 漏光面 133 活性層 33 透明導電層 14 電極 34 複合金屬層單元 21 步驟 35 散熱基板 22 步驟 351 第二基材 23 步驟 352 上表面 24 步驟 353 下表面 25 步驟 36 遮覆膜 26 步驟 4 第一基材 27 步驟 3 垂直發光二極體 1514 1291252 [Explanation of main component symbols] 1 Vertical light-emitting diode 31 ohmic electrode 11 Substrate 32 Stupid layer early 12 Transparent conductive layer 321 η-type cladding layer 13 Stupid layer Early 322 Ρ type cladding layer 131 η-type batch coating 323 active layer 132 批 type cladding layer 324 light leakage surface 133 active layer 33 transparent conductive layer 14 electrode 34 composite metal layer unit 21 step 35 heat dissipation substrate 22 step 351 second substrate 23 step 352 upper surface 24 step 353 lower surface 25 step 36 Covering film 26 Step 4 First substrate 27 Step 3 Vertical light emitting diode 15

Claims (1)

1291252 十、申請專利範圍: 1. 種垂直發光二極體的製造方法,包八· a)在一弟一基材上依序形 认名 〇 成一可以光電效應產生光 的猫晶層單元,及可供 尤牙透且可使電流擴散均 勻的透明導電層; 一 (b)選自由下列所構成之 r、、且馮材枓在該透明導電声 上依序形成複數可導雷 曰 J等玉且可傳熱的薄層··鉻、鈀 、鉑、鈦、鎳、銅、铉、# ^ 辞、鎂、鋁、銀、金,及此 等之組合; (c) 在該步驟(b)所製得之束士、 〇 衣仵之丰成品上形成一覆蓋該磊 晶層單元之一漏光面以限制光射出的遮覆膜; (d) 選自由下列所構成之群組為材料在一可導電且導 熱之第二基材的上、下表面分別依序形成複數可 導電且可傳熱的薄層而製得_散熱基板:絡、把 、鉑、鈦、鎳、銅、鋅、鎂、鋁、銀、金,及此 等之組合; (e )將該散熱基板疊放在該步驟(b )所製得之半成品 中形成在該透明導電層上之多數薄層的最上層, 並加壓接合使二者相連接; (f) 移除該第一基材,使該磊晶層單元原先與該第一 基材連接的一底面裸露;及 (g) 在该惡晶滑單元之底面形成一歐姆電極,製得該 垂直發光二極體。 2·依據申請專利範圍第1項所述之垂直發光二極體的製造 16 1291252 方法’其中’該步驟(b )是依序以鉻、銀/1巴、鉑、鈦 、金/錫、金為材料,依序在該透明導電層上形成厚度分 別是 100人、2000人、2〇〇〇A、6〇〇人、2〇〇〇〇A、1〇〇人的 六薄層。 3·依據申請專利範圍第2項所述之垂直發光二極體的製造 方法,其中,該步驟(c )是依序以鉻、鉑、金為材料 在該第二基材的上表面形成厚度分別是4〇〇人、4〇〇a、 20000A的三薄層,且依序以鉻、鎳、金為材料在該第 二基材的下表面形成厚度分別是300A、10000人、50A 的三薄層;且該步驟(e)是在32CTC的溫度下加壓接合 使二者彼此相連接。 4.依據申請專利範圍第3項所述之垂直發光二極體的製造 方法,其中,該步驟(a)是在不大於8xl0-3T〇rr的真空 裱境壓力下,且在預定含氧比例的氣氛中形成該透明導 電層。 5·依據申請專利範圍第4項所述之垂直發光二極體的製造 方法’其中’在進行步驟(b )之前,先將該步驟(a) 所製彳于之半成品置於真空環境壓力下,且在選自由惰性 氣體之組合的氣氛中,以高溫進行該透明導電層表面晶 粒的改質。 6.依據申請專利範圍第5項所述之垂直發光二極體的製造 方法’其中’在進行步驟(c )之前,先將該步驟(b ) 所製得之半成品置於選自鈍性氣體之組合的氣氛中,以 100C〜800°C的溫度作用〇·5〜8〇分鐘,使該複數薄層進1291252 X. Patent application scope: 1. A method for manufacturing a vertical light-emitting diode, comprising: a) forming a cat crystal layer unit capable of generating light by photoelectric effect, on a substrate of a younger brother, and a transparent conductive layer which is permeable to the current and which can diffuse the current uniformly; one (b) is selected from the group consisting of r, and the material of the material is sequentially formed on the transparent conductive sound to form a plurality of jade such as Thunder J And a thin layer capable of transferring heat · chromium, palladium, platinum, titanium, nickel, copper, ruthenium, # ^, magnesium, aluminum, silver, gold, and combinations thereof; (c) in step (b) Forming a masking film covering one of the light-emitting surfaces of the epitaxial layer unit to limit light emission; (d) selecting a group formed by the following as a material The upper and lower surfaces of the electrically conductive and thermally conductive second substrate are sequentially formed into a plurality of electrically conductive and heat transferable thin layers to form a heat dissipation substrate: a solution, a platinum, a titanium, a nickel, a copper, a zinc, a magnesium , aluminum, silver, gold, and combinations thereof; (e) stacking the heat dissipation substrate in the step (b) Forming an uppermost layer of a plurality of thin layers on the transparent conductive layer in a semi-finished product, and press-bonding to join the two; (f) removing the first substrate, causing the epitaxial layer unit to be originally associated with the first a bottom surface of the substrate connection is exposed; and (g) forming an ohmic electrode on the bottom surface of the dummy crystal sliding unit to obtain the vertical light emitting diode. 2. The manufacture of a vertical light-emitting diode according to claim 1 of the patent application. 1 1291252 Method 'where' the step (b) is sequentially followed by chromium, silver/1 bar, platinum, titanium, gold/tin, gold As the material, six thin layers each having a thickness of 100, 2000, 2, A, 6 、, 2 〇〇〇〇 A, 1 〇〇 are formed on the transparent conductive layer. 3. The method for manufacturing a vertical light-emitting diode according to claim 2, wherein the step (c) is sequentially forming a thickness on the upper surface of the second substrate by using chromium, platinum or gold as a material. They are three thin layers of 4〇〇, 4〇〇a, and 20000A, respectively, and three thicknesses of 300A, 10000, and 50A are formed on the lower surface of the second substrate by using chromium, nickel, and gold as materials. a thin layer; and this step (e) is a pressure bonding at a temperature of 32 CTC to connect the two to each other. 4. The method of manufacturing a vertical light-emitting diode according to claim 3, wherein the step (a) is at a vacuum atmosphere pressure of not more than 8 x 10 -3 T rr and at a predetermined oxygen content ratio. The transparent conductive layer is formed in an atmosphere. 5. The method for manufacturing a vertical light-emitting diode according to item 4 of the patent application scope, wherein the step (b) is performed under the vacuum environment pressure before the step (b) is performed. And modifying the crystal grains on the surface of the transparent conductive layer at a high temperature in an atmosphere selected from a combination of inert gases. 6. The method for manufacturing a vertical light-emitting diode according to claim 5, wherein the semi-finished product obtained in the step (b) is placed in a passive gas selected before the step (c) is performed. In the combined atmosphere, the temperature is applied at a temperature of 100 ° C to 800 ° C for 5 to 8 minutes, so that the plurality of thin layers are 17 1291252 9 〜 行金屬融合。 7·依據申晴專利範圍第6項所述之垂直發光二極體的製造 方法’其中,該步驟(c )是以氧化矽為材料形成該 覆膜。 … 據申明專利範圍第7項所述之垂直發光二極體的製造 八中’ 5亥第二基材是選自由下列所構成之群組: 石夕、銅、無、碳、鑽石、氮化銘、氮化鎮,及此等之組 合。 9·依據申請專利範圍第8項所述之垂直發光二極體的製造 方法,其中,該步驟(g)是選自由下列所構成之群組 為材料形成該歐姆電極:銘/金、鉻/!呂/鉻/金、鉻/铭/鈦/ 金、絡/銘/鎳/金、鉻/銘/銘/金,及此等之組合。 18 1291252 七、指定代表圖: (一) 本案指定代表圖為:第(2-1、2-2 )圖。 (二) 本代表圖之元件符號簡單說明: 21 步驟 25 步驟 22 步驟 26 步驟 23 步驟 27 步驟 24 步驟 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:17 1291252 9 ~ Line metal fusion. 7. The method of manufacturing a vertical light-emitting diode according to claim 6, wherein the step (c) is performed by using ruthenium oxide as a material. ... The manufacturing of the vertical light-emitting diode according to claim 7 of the patent scope is the second base of the '5-Hai second substrate selected from the group consisting of: Shi Xi, copper, none, carbon, diamond, nitride Ming, nitriding town, and a combination of these. 9. The method of manufacturing a vertical light-emitting diode according to claim 8, wherein the step (g) is a material selected from the group consisting of: forming an ohmic electrode: Ming/Gold, Chromium/ Lu/Chromium/Gold, Chrome/Ming/Titanium/Gold, Thread/Ming/Nickel/Gold, Chrome/Ming/Ming/Gold, and combinations of these. 18 1291252 VII. Designated representative map: (1) The representative representative of the case is: (2-1, 2-2). (2) A brief description of the symbol of the representative figure: 21 Step 25 Step 22 Step 26 Step 23 Step 27 Step 24 Step 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW95103113A 2006-01-26 2006-01-26 Making method for vertical light emitting diode TWI291252B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95103113A TWI291252B (en) 2006-01-26 2006-01-26 Making method for vertical light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95103113A TWI291252B (en) 2006-01-26 2006-01-26 Making method for vertical light emitting diode

Publications (2)

Publication Number Publication Date
TW200729537A TW200729537A (en) 2007-08-01
TWI291252B true TWI291252B (en) 2007-12-11

Family

ID=39460474

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95103113A TWI291252B (en) 2006-01-26 2006-01-26 Making method for vertical light emitting diode

Country Status (1)

Country Link
TW (1) TWI291252B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423470B (en) * 2008-08-13 2014-01-11 Epistar Corp A method of manufacturing a high thermal-dissipation light-emitting element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939847B2 (en) * 2009-03-31 2011-05-10 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Quasi-vertical light emitting diode
CN113345990B (en) * 2021-04-16 2022-05-20 华灿光电(苏州)有限公司 Light emitting diode chip with vertical structure and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423470B (en) * 2008-08-13 2014-01-11 Epistar Corp A method of manufacturing a high thermal-dissipation light-emitting element

Also Published As

Publication number Publication date
TW200729537A (en) 2007-08-01

Similar Documents

Publication Publication Date Title
TWI324401B (en) Fabrication method of high-brightness light emitting diode having reflective layer
TWI324400B (en) High-brightness light emitting diode having reflective layer
TWI226138B (en) GaN-based LED vertical device structure and the manufacturing method thereof
TW578318B (en) Light emitting diode and method of making the same
TW200915603A (en) Light-emitting chip device with high thermal conductivity
TW200529462A (en) Organic binding light-emitting device with a vertical structure
CN1731592A (en) Flip-chip bonded structure light-emitting diode and its manufacture method
JP2008091862A (en) Nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor light emitting device
TW201039463A (en) Double-face coarsened vertical conducted light emitting diode and manufacturing method thereof
TW200828611A (en) Electroluminescent device, and fabrication method thereof
TW201104913A (en) Vertical light-emitting diode and manufacture method thereof
TW201415657A (en) Led element, and production method therefor
WO2014026528A1 (en) Light-emitting diode with ultra-high brightness and manufacturing method therefor
TWI375338B (en) Opto-electronic device
TW201126693A (en) Top view type of light emitting diode package structure and fabrication thereof
TWI291252B (en) Making method for vertical light emitting diode
TWI281758B (en) Transparent positive electrode
TWI322518B (en)
US20050093011A1 (en) Light emitting diode and method for manufacturing the same
JP7092496B2 (en) Structure of vertical light emitting diode die and its manufacturing method
KR100849737B1 (en) Light emitting diode device and manufacturing method thereof
KR20090106294A (en) vertical structured group 3 nitride-based light emitting diode and its fabrication methods
TWI240437B (en) Fabrication method of transparent electrode on visible light-emitting diode
KR101059563B1 (en) Method for manufacturing an electrode layer of a II-VIII compound compound semiconductor
TWI379450B (en)