TWI283805B - Switching control circuit for discontinuous mode PFC converters - Google Patents
Switching control circuit for discontinuous mode PFC converters Download PDFInfo
- Publication number
- TWI283805B TWI283805B TW95102145A TW95102145A TWI283805B TW I283805 B TWI283805 B TW I283805B TW 95102145 A TW95102145 A TW 95102145A TW 95102145 A TW95102145 A TW 95102145A TW I283805 B TWI283805 B TW I283805B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- switching
- power factor
- inductor
- current
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
- Rectifiers (AREA)
Abstract
Description
1283805 九、發明說明: 【發明名稱】:用於非連續模式功率因數控制轉換器的切換控制電路 【發明所屬之技術領域】 本發明關於功率因數控制,尤其關於一種以非連續模式進行功率因數控制的 控制電路。1283805 IX. Description of Invention: [Invention Name]: Switching Control Circuit for Discontinuous Mode Power Factor Control Converter [Technical Field] The present invention relates to power factor control, and more particularly to a power factor control in a discontinuous mode Control circuit.
【先前技術】 大多功率因數校正技術都是使用一升壓拓撲(B〇〇st T〇p〇1〇gy),其以連續或 非連續的電感電流模式運作,並且以固定或可變的切換頻率運作。由於以固定的 切換頻率運作的連續Μ電流赋的峰值糕祕,所⑽其麟裤較高的應 用。對於功報低的細,義常使料變切換頻率運作的非連續電感電流模 式,其具有若干優點包括:較小㈣❹尺寸、成本較低、電料、紐簡單,同 時具有零電流切換(ZCS)。 第1圖說明了-習知的功率因數控制轉換器,其中_切換信evg耗接到一電 晶體κ),以切換-電感器職控制—輸人電流Iin。該功率因數控制轉換器的一 輸入電流IAe0ffij受到鋪,以實現較低的電_波失真。 第2A圖和第_說明了依據輸人電壓〜和ViN的輸人L和^之波 形。功率因數㈣器的脈衝寬度受電a誤差放A|§的控制,其細比較一控制電 =所產生的織狀波形而產生。該脈衝寬度隨著電源和負載情況而變化,但其應 =電:週期中保持在一恒量。因此,電壓誤差放大器必須具有較低的頻 下二^ 源頻率。零電流切換應祕有若干優點。例如,電感電流在 量等:峰值釋放為零,從而產生較高的切換效率。因為電感電流的變化 2 : 且電感電流在每一切換週期開始於零並返回到零,所以電 r·流波形的形狀為三角形,其平均值等於峰值電 電流切換恰好是在連續㈣連續電流模式之_邊緣上進 5[Prior Art] Most power factor correction techniques use a boost topology (B〇〇st T〇p〇1〇gy) that operates in continuous or non-continuous inductor current mode with fixed or variable switching. Frequency operation. Due to the peak value of the continuous Μ current given at a fixed switching frequency, (10) its higher application. For the low-powered, non-continuous inductor current mode, which often changes the switching frequency, it has several advantages, including: smaller (four) ❹ size, lower cost, simple material, simple, and zero current switching (ZCS) ). Figure 1 illustrates a conventional power factor control converter in which the _switching signal evg is consuming a transistor κ) to switch - the inductor control - the input current Iin. An input current IAe0ffij of the power factor control converter is spread to achieve lower electrical_wave distortion. Fig. 2A and Fig. _ illustrate the waveforms of the input L and ^ according to the input voltage ~ and ViN. The pulse width of the power factor (four) is controlled by the power a error A|§, which is generated by comparing the control waveform with the generated texture waveform. The pulse width varies with power and load conditions, but it should be = electrical: a constant in the cycle. Therefore, the voltage error amplifier must have a lower frequency and lower frequency. There are several advantages to zero current switching. For example, the inductor current is equal in magnitude: the peak release is zero, resulting in higher switching efficiency. Because the inductor current changes 2: and the inductor current starts at zero and returns to zero at each switching cycle, the shape of the electrical r·flow waveform is a triangle whose average value is equal to the peak current current switching just in the continuous (four) continuous current mode. _ edge up 5
1283805 » I 切換頻率可變。低頻帶寬度脈寬調變(PWM)結合零電流切換係為輸入電流提 供了自然的功率因數校正。 第3圖說明了習知功率因數控制轉換器的輸入電流Iin波形,其係隨著切換信 號VG的啟用而增加。導通時間τΟΝ和戴止時間T0FF分別代表電感器2〇的充電和放 電週期。 第4A圖、第4B圖和第4C圖分別說明了習知功率因數控制轉換器的三個控制 P白ί又Τι一T3。當電晶體10導通時,電感器2〇被充電。一旦電晶體1❶截止,電感 器20的能量便透過整流器30釋放給電容器50。功率因數控制轉換器的輸出電壓 V〇通常設計為較高的電壓,例如4〇〇V,以便獲得較佳的功率因數控制效果。因 此,電感器20放電期間,電晶體10的寄生電容器15將被充電至較高的輸出電壓 V〇。如圖4C所示,電感器20完全放電後和電晶體10導通前,寄生電容器15中儲 存的能量會釋放給電容器16 (或一寄生電容器)。因此在電容器16上產生電壓1283805 » I Switching frequency is variable. Low Band Width Pulse Width Modulation (PWM) combined with zero current switching provides natural power factor correction for the input current. Figure 3 illustrates the input current Iin waveform of a conventional power factor control converter which is increased as the switching signal VG is enabled. The on-time τ ΟΝ and the wear-on time T0FF represent the charging and discharging periods of the inductor 2 分别, respectively. 4A, 4B, and 4C illustrate three controls P ί and Τ ι - T3, respectively, of a conventional power factor control converter. When the transistor 10 is turned on, the inductor 2 is charged. Once the transistor 1 is turned off, the energy of the inductor 20 is released to the capacitor 50 through the rectifier 30. The output voltage V〇 of the power factor control converter is typically designed to be a higher voltage, such as 4 〇〇V, for better power factor control. Therefore, during discharge of the inductor 20, the parasitic capacitor 15 of the transistor 10 will be charged to a higher output voltage V?. As shown in Fig. 4C, the energy stored in the parasitic capacitor 15 is released to the capacitor 16 (or a parasitic capacitor) after the inductor 20 is completely discharged and before the transistor 10 is turned on. Therefore, a voltage is generated across the capacitor 16.
Vos。因此’在較低的輸人電壓vAC期間,電壓vos禁止了流經橋式整流器4〇的輸 入電流Iac。 第5A圖和第5B圖說明了電壓Vos導致的輸入電流失真。近來多種功率因數 控制的非連續電流功率因數控制控制器相繼研發出來,例如法國ST微電子 (ST-Microelectrcmics)的ST6561 和德國西門子(siemens)的TDA4862。 第6A圖說明了上文提到的習知功率因數控制器6〇的應用電路示意圖。一乘 法器端透過電阻器21和22來感測輸入波形VlN。如第6β圖所示,乘法器端上感應 到的電壓vM用來調變導通時間TGN。經調變的導通時間Tgn將降低電壓v〇s並改 善輸入電流的波形。然ffii,上述方法的缺點是電阻器21的功率損耗較高,且控制 電路系統複雜。此外’上述控繼的另—缺點是缺乏過低電壓保護,這會導致功 率因數控制轉換器在過低電壓狀況下發生過載。 6 1283805 【發明内容】 w本發明的目的是提供—種切換控制電路,用神連賴式的功率因數控制轉 =,其毋需輸人電壓檢測和乘法H即可減少電流微失真。本發_另一目的 是提供-種方法,來限制功率因數控制轉換器的最大輸出功率以進行過低電壓保 濩此外’還提供-種限制切換信號的最高切換鮮的延遲電路,其降低功 數控制轉換器在輕载下的功率損耗。 翻換控制電路包括—檢測端,其输到電感器,依據電感器的放電而產生 檢狀號輸入,依據電感器的切換電流,用來檢測一切換電流信號。一 斜坡產生器’依據切換信號的啟用動作而產生-斜坡信號。-調節端,搞接到該 斜坡產生器,來決定斜坡信號的轉換率,並決定切換信號的最大導通時間。一誤 差放大器,輕接到功率因數控制轉換器的一輸出端,以產生一誤差信號以穩定調 節功率因數控㈣換器的-輸出。—混合電路,產生與斜坡信號和切換電流信號 成比例的-混合信號。因此,切換信號依據檢測信號而啟用,且當混合信號高於 誤差信號,該切換信號即停用。混合信號的轉換率隨著輸入電屋的增加而提高。 因此,切換信號的啟用時間隨著輸人電壓的降低而比例地提高。輸入電流譜波因 而得以減少。 此外,該切換控制電路包括-延遲電路,—禁制信號依據切換信號的停用動 作而產生。該禁制信號包括-延遲時間,用來延緩切換信號的啟用動作,並限制 _信最高切換鮮。該延遲時間隨著誤差信號的減少而增長。誤差信號隨 負載的降低而比例地減少。因此,功率因數控制轉換器在輕載下的功率損耗得以 降低。 上述說明僅是本發賴軸容的概述,為了 _更清楚了解本發明的技術 手段,並依照說明的内容予以實施,以下以本發明的較佳實施例配合附圖說明如 後0 7 1283805 【實施方式】 第7圖是根據本發明一實施例以非連續模式運作的功率因數控制轉換器的示 意圖。一交流電源輸入係經由功率因數控制轉換器轉換成一直流輸出電壓v〇, 其係由電晶體10透過電感器25、整流器30和電容器50,切換控制輸入電壓VlN之 能量而達成。功率因數控制的目的是將交流電源輸入的電流波形控制為正弦波 形,並維持其相位與電源輸入電壓Vac的相位相同。通過橋式整流器的整流作 用,輸入電壓VIN相對於功率因數控制轉換器的接地始終為正電壓準位。Vos. Therefore, during the lower input voltage vAC, the voltage vos inhibits the input current Iac flowing through the bridge rectifier 4〇. Figures 5A and 5B illustrate the input current distortion caused by the voltage Vos. Recently, a variety of power factor controlled non-continuous current power factor control controllers have been developed, such as the ST6561 of ST-Microelectrcmics in France and the TDA4862 of Siemens in Germany. Figure 6A illustrates a schematic diagram of an application circuit of the conventional power factor controller 6〇 mentioned above. A multiplier terminal senses the input waveform V1N through the resistors 21 and 22. As shown in the 6th figure, the voltage vM induced at the multiplier end is used to modulate the on-time TGN. The modulated on-time Tgn will lower the voltage v〇s and improve the waveform of the input current. However, the disadvantage of the above method is that the power loss of the resistor 21 is high and the control circuit system is complicated. In addition, the other drawback of the above-mentioned control is the lack of excessive voltage protection, which causes the power factor control converter to be overloaded under excessive voltage conditions. 6 1283805 SUMMARY OF THE INVENTION The purpose of the present invention is to provide a switching control circuit that uses the power factor control of the gods to turn =, which requires the input voltage detection and multiplication H to reduce current micro-distortion. Another object is to provide a method for limiting the maximum output power of the power factor control converter to perform excessive voltage protection. In addition, a maximum switching delay circuit for limiting the switching signal is provided, which reduces the power. The number controls the power loss of the converter at light loads. The switching control circuit includes a detecting end, which is input to the inductor, and generates a shape number input according to the discharge of the inductor, and is used for detecting a switching current signal according to the switching current of the inductor. A ramp generator ' generates a ramp signal depending on the enabling action of the switching signal. - The regulation terminal is connected to the ramp generator to determine the slew rate of the ramp signal and to determine the maximum on-time of the switching signal. A erroneous amplifier is lightly coupled to an output of the power factor control converter to generate an error signal to stabilize the regulation power due to the output of the digital (four) converter. - A hybrid circuit that produces a mixed signal proportional to the ramp signal and the switching current signal. Therefore, the switching signal is enabled in accordance with the detection signal, and when the mixed signal is higher than the error signal, the switching signal is deactivated. The conversion rate of the mixed signal increases as the input power house increases. Therefore, the activation time of the switching signal is proportionally increased as the input voltage is lowered. The input current spectrum is thus reduced. Further, the switching control circuit includes a delay circuit, and the forbidden signal is generated in accordance with the deactivation of the switching signal. The forbidden signal includes a delay time for delaying the activation of the switching signal and limiting the maximum switching of the signal. This delay time increases as the error signal decreases. The error signal is proportionally reduced as the load decreases. Therefore, the power loss of the power factor control converter at light loads is reduced. The above description is only an overview of the present invention. For a better understanding of the technical means of the present invention, and in accordance with the description, the following description of the preferred embodiment of the present invention with reference to the accompanying drawings is as follows: 0 7 1283805 [ Embodiment FIG. 7 is a schematic diagram of a power factor control converter operating in a discontinuous mode in accordance with an embodiment of the present invention. An AC power input is converted to a DC output voltage v〇 via a power factor control converter, which is achieved by the transistor 10 transmitting the energy of the input voltage V1N through the inductor 25, the rectifier 30 and the capacitor 50. The purpose of power factor control is to control the current waveform of the AC power input to a sinusoidal waveform and maintain its phase at the same phase as the power supply input voltage Vac. Through the rectification of the bridge rectifier, the input voltage VIN is always at a positive voltage level relative to the ground of the power factor control converter.
Vin (0 = Vpsin(iyt)Vin (0 = Vpsin(iyt)
其中 Vp=a/JxVin(_ ; 輸入電流IIN也同樣地表示如下: 其中 Ip =71x1—; 功率因數控娜換H的輸人辨PiN則表示如下: Pin = VP XIP/2 〇 如果將效抱納人料巾考慮時,貞咖神Pg表示如下: P〇 - X Ip X T|/2 - 轉麵觸麵嫌函_ (丁 ) 專式(1)中的電流ip可表示如下:Where Vp=a/JxVin(_ ; input current IIN is also expressed as follows: where Ip =71x1—; The power is determined by the input of the CNC, and the input is the following: Pin = VP XIP/2 〇 If the effect is When considering the towel, the P 神 P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P
!p =(2xP0)/(Vp χη)-由於零電流切換的緣故 的兩倍,如下式表示·· ..........................(2) 、感器25的峰值電感電流(lLp)是平均電感電流!p =(2xP0)/(Vp χη) - twice as large as the zero current switching, as shown in the following equation............................. ...(2) The peak inductor current (lLp) of sensor 25 is the average inductor current
Il'p =(4xP〇)/(Vp .................. 下式以時《數形式來表巧感電流^ lL (0 = (4 X P〇 ) sin(0Jt) / (VP χ ^_____ (3) 對電感電流進行求解, 的導通時間。 lit{將電感器充 ......................(4) 電到例如I=L(di/dt)的峰值 電流所需 lon =1Il'p = (4xP〇) / (Vp .................. The following formula is used to describe the current sense ^ lL (0 = (4 XP〇) ) sin(0Jt) / (VP χ ^_____ (3) The on-time of solving the inductor current. lit{charge the inductor.................... ..(4) lon =1 required to reach the peak current of, for example, I=L(di/dt)
L-P :L/VP. (5) 8 1283805 I « T〇n = (4 x P〇 χ L) / (Vp x η)--------------------------------------- T〇FF = (Il-P X L) / (V〇 - Vp) T〇ff = (4 x P〇 x L) / [(η x Vp) x (V〇 〜Vp)].....................⑺ T=TON ........................................................... 輸出功率P〇可由等式(6)表示如下: P〇 = [Vp2 Xη/(4x L)]............................................LP :L/VP. (5) 8 1283805 I « T〇n = (4 x P〇χ L) / (Vp x η)------------------- -------------------- T〇FF = (Il-P XL) / (V〇- Vp) T〇ff = (4 x P〇x L) / [(η x Vp) x (V〇~Vp)].....................(7) T=TON ........... ................................................ Output Power P〇 can be expressed by the following equation (6): P〇 = [Vp2 Xη/(4x L)]........................... .................
根據等式(9),輸出功率p〇受導通時間t〇n控制。尤其對於過低電壓保護, 限制最大導通時間便限制了最大輸出功率Q 當交流電源施加於功率因數控制轉換器後,將透過電感器25與整流器30, 於電容器50上產生一直流輸出電壓v〇。一切換控制電路1〇〇透過電阻器51和52 耦接到功率因數控制轉換器的輸出端以接收一回授信號Vfb。電容器96連接到切 換控制電路100的COM端,以便為低於電源頻率的較低頻帶寬度提供頻率補償。 切換控制電路100輸出切換信號VG來驅動電晶體10。當切換信號Vg啟用,電晶 體10因而被驅動導通,電感器25於是因電晶體1〇的導通而充電。電感電流係於 電阻器90上產生一切換電流信號Vs。接著,切換電流信號Vs耦接到切換控制電 路100的VS端。一旦切換電流信號vs高於一臨界電壓丫扣,切換信號¥(;就會被停 用,以對切換動作作週期性的電流限制。當切換信號VG停用令電晶體1〇截止, 電感器25中儲存的能量便透過整流器30釋放成為直流輸出電壓乂〇。一旦電感器 25的放電電流降到零,電感器25的辅助線圈就會檢測到零值電壓。切換控制電路 100的檢測端VD透過電阻器23連接到該輔助線圈,用來檢測零電流狀態。檢測到 零電流狀態後便產生一檢測信號,於是切換控制電路100便能夠開始下一切換週 期。 第8圖說明根據本發明一實施例的切換控制電路1〇〇的示意圖。一斜坡產生器 300依據切換信號VG而產生一斜坡信號RMP和一最大工作週期信號MD。一 MOT端耦接到斜坡產生器300,以決定斜坡信號RMP的斜率和切換信號Vg的最 大導通時間。第7圖說明從切換控制電路100的MOT端連接到接地的電阻器95決 定切換信號VG的最大導通時間。切換信號VG的最大導通時間進而限制了切換信 號Vg的最低切換頻率,以避免切換頻率落入音頻帶内。一誤差放大器120之負端 9According to equation (9), the output power p〇 is controlled by the on-time t〇n. Especially for over-voltage protection, limiting the maximum on-time limits the maximum output power. Q. When the AC power is applied to the power factor control converter, it will pass through the inductor 25 and the rectifier 30 to generate a DC output voltage on the capacitor 50. . A switching control circuit 1 is coupled to the output of the power factor control converter through resistors 51 and 52 to receive a feedback signal Vfb. Capacitor 96 is coupled to the COM terminal of switching control circuit 100 to provide frequency compensation for lower bandwidths below the power supply frequency. The switching control circuit 100 outputs a switching signal VG to drive the transistor 10. When the switching signal Vg is enabled, the electromorph 10 is thus driven to conduct, and the inductor 25 is then charged by the conduction of the transistor 1〇. The inductor current is coupled to resistor 90 to produce a switching current signal Vs. Next, the switching current signal Vs is coupled to the VS terminal of the switching control circuit 100. Once the switching current signal vs is higher than a threshold voltage trip, the switching signal ¥(; will be deactivated to make a periodic current limit on the switching action. When the switching signal VG is deactivated, the transistor 1〇 is turned off, the inductor The energy stored in 25 is discharged as a DC output voltage 透过 through the rectifier 30. Once the discharge current of the inductor 25 drops to zero, the auxiliary coil of the inductor 25 detects a zero voltage. The detection terminal VD of the switching control circuit 100 The auxiliary coil is connected to the auxiliary coil through the resistor 23 for detecting a zero current state. A detection signal is generated after detecting the zero current state, so that the switching control circuit 100 can start the next switching cycle. FIG. 8 illustrates a first switching cycle according to the present invention. A schematic diagram of the switching control circuit 1A of the embodiment. A ramp generator 300 generates a ramp signal RMP and a maximum duty cycle signal MD according to the switching signal VG. A MOT terminal is coupled to the ramp generator 300 to determine the ramp signal. The slope of the RMP and the maximum on-time of the switching signal Vg. Figure 7 illustrates the switching from the MOT terminal connected to the ground of the switching control circuit 100 to determine the switching. The maximum on-time number of the VG. Maximum on-time of the switching signal VG in turn limits the minimum switching frequency of the switching signal Vg, so as to avoid the switching frequency falls within the audio band. Negative terminal of an error amplifier 120 9
1283805 1 · 耦接到功率因數控制轉換器的輸出端接收回授信號VFB,誤差放大器120之正端 耦接至一參考電壓VR,以便在誤差放大器120的輸出端產生一誤差信號,用以穩 定調節功率因數控制轉換器的輸出。誤差放大器120係為轉導誤差放大器 (trans-conductance error amplifier)。誤差放大器120的輸出端進而連接到切換控 制電路100的COM端和一延遲電路200的一輸入端。混合電路350產生一等比例於 斜坡信號RMP和切換電流信號Vs的混合信號Vw。比較器115具有一負輸入端和 一正輸入端,其分別連接到誤差放大器120的輸出端和混合信號Vw。比較器115 的輸出端產生一第一重置信號並連接到一或閘135的一第一輸入端。比較器116 產生一第二重置信號並連接到或閘135—第二輸入端。或閘135的一第三輸入係 耦接到最大工作週期信號MD。臨界電壓VR2和切換電流信號Vs分別耦接到比較 器116的兩輸入端,用以達成週期性的電流限制。或閘135的一輸出端係用以重 置正反器140。正反器140用來產生切換信號VG。檢測端VD和臨界電壓VR1分別 耦接到比較器110的兩輸入端。因此,一旦檢測端VD的電壓VD低於臨界電壓 VR1,便會產生檢測信號。該檢測信號透過及閘130的一輸入端來啟用正反器 140。因此,切換信號VG依據檢測信號而導通,而一旦混合信號Vw高於誤差信 號,切換信號VG便被截止。此外,延遲電路200依據切換信號VG的停用而產生一 禁制信號INH。禁制信號INH透過反相器131連接到及閘130的另一輸入端。禁制 信號INH包括一延遲時間,用來延缓切換信號VG的導通,並限制了切換信號VG 的最高切換頻率。 第9圖說明了根據本發明一實施例的延遲電路2〇〇的電路示意圖,其中一充電 電流Ic和一電容器260決定了延遲電路200的延遲時間。一運算放大器210連接到 COM端以接收誤差信號。另一運算放大器215由臨界電壓VR3所供應。運算放大 器210、215、電阻器205和電晶體220、230、231產生電流1231。電流1231和電流 源250決定充電電流Ic。電流源250提供一最低充電電流。電流1231隨誤差信號成 比例地產生,且因此延遲時間隨著誤差信號的減少而增長。誤差信號隨著負載的 減少而成比例地減少。臨界電壓VR3決定輕載狀況下誤差信號的範圍。當切換信 號VG導通時,電晶體270將電容器260放電。電容器260依據切換信號VG的停用 而被充電。一反相器280連接到電容器260,以產生禁制信號INH。 10 (10) -(11)1283805 1 · The output coupled to the power factor control converter receives the feedback signal VFB, and the positive terminal of the error amplifier 120 is coupled to a reference voltage VR to generate an error signal at the output of the error amplifier 120 for stabilization. Adjust the output of the power factor control converter. The error amplifier 120 is a trans-conductance error amplifier. The output of error amplifier 120 is in turn coupled to the COM terminal of switching control circuit 100 and an input of a delay circuit 200. The mixing circuit 350 produces a mixed signal Vw that is proportional to the ramp signal RMP and the switching current signal Vs. Comparator 115 has a negative input and a positive input coupled to the output of error amplifier 120 and mixed signal Vw, respectively. The output of comparator 115 produces a first reset signal and is coupled to a first input of an OR gate 135. Comparator 116 generates a second reset signal and is coupled to OR gate 135 - the second input. A third input of the OR gate 135 is coupled to the maximum duty cycle signal MD. The threshold voltage VR2 and the switching current signal Vs are coupled to the two inputs of the comparator 116, respectively, for achieving periodic current limiting. An output of the OR gate 135 is used to reset the flip-flop 140. The flip-flop 140 is used to generate the switching signal VG. The sense terminal VD and the threshold voltage VR1 are coupled to the two inputs of the comparator 110, respectively. Therefore, once the voltage VD of the detecting terminal VD is lower than the threshold voltage VR1, a detection signal is generated. The detection signal is passed through an input of the AND gate 130 to enable the flip-flop 140. Therefore, the switching signal VG is turned on in accordance with the detection signal, and once the mixed signal Vw is higher than the error signal, the switching signal VG is turned off. Further, the delay circuit 200 generates a disable signal INH in accordance with the deactivation of the switching signal VG. The disable signal INH is coupled through an inverter 131 to the other input of the AND gate 130. The inhibit signal INH includes a delay time for delaying the turn-on of the switching signal VG and limiting the highest switching frequency of the switching signal VG. Fig. 9 is a circuit diagram showing a delay circuit 2A according to an embodiment of the present invention, in which a charging current Ic and a capacitor 260 determine the delay time of the delay circuit 200. An operational amplifier 210 is coupled to the COM terminal to receive the error signal. Another operational amplifier 215 is supplied by the threshold voltage VR3. The operational amplifiers 210, 215, the resistors 205, and the transistors 220, 230, 231 generate a current 1231. Current 1231 and current source 250 determine the charging current Ic. Current source 250 provides a minimum charging current. The current 1231 is generated proportionally with the error signal, and thus the delay time increases as the error signal decreases. The error signal decreases proportionally as the load decreases. The threshold voltage VR3 determines the range of the error signal under light load conditions. When the switching signal VG is turned on, the transistor 270 discharges the capacitor 260. The capacitor 260 is charged in accordance with the deactivation of the switching signal VG. An inverter 280 is coupled to capacitor 260 to generate a disable signal INH. 10 (10) - (11)
12838051283805
I I 根據本發明的零電流切換與非連續模式之功率因數控制轉換,下一切換週期 在零電感電流狀態的邊界處開始。能量£可表示為: 6* = Lx I2 /2................................. 功率因數控制轉換器所供應的輸出功率p〇表示為: ρο =[νρ2χηχΤΟΝ2 /(4xLxT)]........................ 其中 T = T〇n + T〇ff 0 當功率因數控制轉換器的負载在輕載狀況下減少時,延遲時間Td會相對地增 加並被插入在下一切換週期開始之前。因此,切換信號的切換週期丁延長為: T - 丁on + T0FF + Td------------------------------------------------------(12) 於是,在輕載和無載狀況下,切換信號的切換頻率得以降低。功率因數控制 轉換器的功率損耗因此得以減少。 第10圖繪示了斜坡產生器300,其中一運算放大器310包括一參考電壓Vr4。 運算放大器310、電晶體315、316、317結合第7圖中的電阻器95,以產生一電流 Ian。電流Ian用來為一電容器319充電。在電容器319上產生斜坡信號RMP。電 流Isn決定斜坡信號RMP的斜率。一反及閘320連接到電晶體318,其一第一輸入 端接收切換信號VG並於切換信號VG停用時為電容器319放電。此外,一旦電容器 319的電壓高於臨界電壓vRS,電容器319就會被放電,以限制了切換信號vG的最 大導通時間。比較器325的輸出端用來重置正反器330。反相器331連接到比較器 325的輸出端,以產生最大工作週期信號MD。正反器330由切換信號VG來設置。 正反器330的輸出端連接到反及閘32〇的一第二輸入端。因此,電流Im7、電容器 319和臨界電壓VRS決定斜坡信號RMP的最大寬度,並進而決定切換信號\^的最 大導通時間。 第11圖是根據本發明一實施例的混合電路350的電路示意圖。運算放大器 361、電阻器391和電晶體373、374、375形成一電壓轉電流轉換器。斜坡信號RMP 耦接到該電壓轉電流轉換器,以便將斜坡信號RMP轉換成電流1375。切換電流信 號Vs耦接到緩衝放大器362。電流1375透過電阻器392連接到一緩衝放大器362。 因此,在電阻器392上產生混合信號Vw,該混合信號Vw與斜坡信號RMP和切換 電流信號Vs成比例。切換電流信號vs的轉換率隨著功率因數控制轉換器的輸入 11 1283805 電壓VIN的增加而提高。相對地,混合信號的斜率隨著輸人電壓Vw的增加而提 冋。因此,切換fg號VG的導通時間增長,並與輸人電壓ViN成反比例。藉由調變 切換信號VG的導通時間,輸入電流諧波因而減少。 以上所述,僅是本發明的較佳實施例,然並非用以對本發明作任何形式上之 限制,雖穌發明已以較佳實施例揭露如i,然而並非用嫌定本發明,任何熟 悉本技術的人貞,在不麟本發明的技術範圍内,當可糊上述揭露的結構及技 術内容作出些許更域修飾成鱗同變化的等效實施例,凡是未脫離本發明技術 内容,依據本發明技術實質所作的任何簡單修改、制變化與修#,均應屬於本 發明技術範圍内。 【圓式簡單說明】 附圖是用來進-步理解本發明,與說明書不可分割,是說明書組成的一部分。 附圖表示了本發明的實施例,與說明書—起用來解釋本發明的原理。 第1圖是一習知功率因數控制轉換器的示意圖。 第2A圖和第2B1I說明習知功率因數控制轉換驗據輸人電壓產生的輸入電 流波形。 第3圖說明依據切換信號產生的輸入電流波形。 第4A圖、第4B圖和第4C圖說明習知功率因數控制轉換器的三個控制階段。 第5A圖和第5B圖說明習知功率因數控制轉換器輸入電流的波形失真。 第6A圖是-習知功率因數控制轉換器的電路示意圖,其中功率因數控制轉 換器的控制H包括-用來改善輸人電流的魏失真的乘法器。 第6B圖說明受控於乘法器的調變導通時間。 第7圖是根據本發明的一實施例的一功率因數控制轉換器的示意圖。 第8圖是根據本發明的一實施例的一切換控制電路的示意圖。 第9圖是根據本發明的一實施例的一延遲電路的電路示意圖。 第1〇圖是根據本發明的-實施例的一斜坡產生器的電路示意圖。 12I I In accordance with the zero current switching and discontinuous mode power factor control conversion of the present invention, the next switching cycle begins at the boundary of the zero inductor current state. The energy £ can be expressed as: 6* = Lx I2 /2........................... Power factor control conversion The output power p〇 supplied by the device is expressed as: ρο =[νρ2χηχΤΟΝ2 /(4xLxT)]........................ where T = T〇n + T〇ff 0 When the load of the power factor control converter is reduced under light load conditions, the delay time Td is relatively increased and inserted before the start of the next switching cycle. Therefore, the switching period of the switching signal is extended to: T - Ding on + T0FF + Td------------------------------- ----------------------- (12) Thus, under light load and no load conditions, the switching frequency of the switching signal is reduced. The power loss of the power factor control converter is thus reduced. FIG. 10 illustrates a ramp generator 300 in which an operational amplifier 310 includes a reference voltage Vr4. The operational amplifier 310, the transistors 315, 316, 317 are combined with the resistor 95 of Fig. 7 to generate a current Ian. Current Ian is used to charge a capacitor 319. A ramp signal RMP is generated on capacitor 319. The current Isn determines the slope of the ramp signal RMP. A reverse gate 320 is coupled to transistor 318, a first input receiving a switching signal VG and discharging capacitor 319 when switching signal VG is deactivated. Further, once the voltage of the capacitor 319 is higher than the threshold voltage vRS, the capacitor 319 is discharged to limit the maximum on-time of the switching signal vG. The output of comparator 325 is used to reset flip flop 330. Inverter 331 is coupled to the output of comparator 325 to produce a maximum duty cycle signal MD. The flip-flop 330 is set by the switching signal VG. The output of the flip-flop 330 is coupled to a second input of the AND gate 32A. Therefore, the current Im7, the capacitor 319, and the threshold voltage VRS determine the maximum width of the ramp signal RMP, and in turn determine the maximum on-time of the switching signal \^. Figure 11 is a circuit diagram of a hybrid circuit 350 in accordance with an embodiment of the present invention. The operational amplifier 361, the resistor 391 and the transistors 373, 374, 375 form a voltage to current converter. A ramp signal RMP is coupled to the voltage to current converter to convert the ramp signal RMP to a current 1375. The switching current signal Vs is coupled to the buffer amplifier 362. Current 1375 is coupled through resistor 392 to a buffer amplifier 362. Therefore, a mixed signal Vw is generated on the resistor 392, which is proportional to the ramp signal RMP and the switching current signal Vs. The slew rate of the switching current signal vs increases as the input voltage of the power factor control converter 11 1283805 increases. In contrast, the slope of the mixed signal is increased as the input voltage Vw increases. Therefore, the on-time of switching the fg number VG increases and is inversely proportional to the input voltage ViN. By modulating the on-time of the switching signal VG, the input current harmonics are thus reduced. The above is only a preferred embodiment of the present invention, and is not intended to limit the present invention in any way. Although the invention has been disclosed as a preferred embodiment, it is not intended to be a A person skilled in the art, in the technical scope of the present invention, may smatter the equivalent structure of the structure and technical content disclosed above to be modified into a scale change, without departing from the technical content of the present invention. Any simple modification, manufacturing change, and repair made by the essence of the invention should be within the technical scope of the present invention. [Circular Brief Description] The drawings are intended to further understand the present invention and are inseparable from the description and are part of the specification. The drawings illustrate the embodiments of the invention, and are intended to illustrate the principles of the invention. Figure 1 is a schematic diagram of a conventional power factor control converter. 2A and 2B1I illustrate the input current waveforms generated by the conventional power factor control conversion test input voltage. Figure 3 illustrates the input current waveform generated from the switching signal. Figures 4A, 4B and 4C illustrate three control stages of a conventional power factor control converter. 5A and 5B illustrate waveform distortion of a conventional power factor control converter input current. Figure 6A is a circuit diagram of a conventional power factor control converter in which the control H of the power factor control converter includes a multiplier for improving the Wei distortion of the input current. Figure 6B illustrates the modulated on-time controlled by the multiplier. Figure 7 is a schematic illustration of a power factor control converter in accordance with an embodiment of the present invention. Figure 8 is a schematic diagram of a switching control circuit in accordance with an embodiment of the present invention. Figure 9 is a circuit diagram of a delay circuit in accordance with an embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a circuit diagram of a ramp generator in accordance with an embodiment of the present invention. 12
1283805 第11圖是根據本發明的一實施例的一混合電路的電路示意圖。 【主要元件符號說明】 10、230、231、270、315、316、317、318、373、374、375:電晶體 20、 25:電感器 21、 22、23、51、52、90、95、205、391、392:電阻器 30·.整流器 40:橋式整流器 50、96、260、319:電容器 60:習知功率因數控制器 100:切換控制電路 110、115、116、325:比較器 120:誤差放大器 130:及閘 131、280、331:反相器 135:或閘 140、330:正反器 200:延遲電路 210、215、310、361:運算放大器 250:電流源 300:斜坡產生器 320:反及閘 350:混合電路 362:缓衝放大器 13 12838051283805 Figure 11 is a circuit diagram of a hybrid circuit in accordance with an embodiment of the present invention. [Description of main component symbols] 10, 230, 231, 270, 315, 316, 317, 318, 373, 374, 375: transistors 20, 25: inductors 21, 22, 23, 51, 52, 90, 95, 205, 391, 392: Resistor 30. Rectifier 40: Bridge Rectifier 50, 96, 260, 319: Capacitor 60: Conventional Power Factor Controller 100: Switching Control Circuits 110, 115, 116, 325: Comparator 120 : Error amplifier 130: AND gates 131, 280, 331: inverter 135: or gates 140, 330: flip-flops 200: delay circuits 210, 215, 310, 361: operational amplifier 250: current source 300: ramp generator 320: NAND gate 350: hybrid circuit 362: buffer amplifier 13 1283805
Iac、IlN :輸入電流 INH:禁制信號 MD:最大工作週期信號 RMP:斜坡信號 TON:導通時間 T〇ff:截止時間 VAC、VIN:輸入電壓 VD:電壓Iac, IlN: Input current INH: Forbidden signal MD: Maximum duty cycle signal RMP: Ramp signal TON: On time T〇ff: Off time VAC, VIN: Input voltage VD: Voltage
VFB:回授信號 VG:切換信號 V〇s:電壓 VR:參考電壓 VR1:臨界電壓 VR2:臨界電壓VFB: feedback signal VG: switching signal V〇s: voltage VR: reference voltage VR1: threshold voltage VR2: threshold voltage
Vs:切換電流信號Vs: switching current signal
Vw:混合信號Vw: mixed signal
1414
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95102145A TWI283805B (en) | 2006-01-20 | 2006-01-20 | Switching control circuit for discontinuous mode PFC converters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95102145A TWI283805B (en) | 2006-01-20 | 2006-01-20 | Switching control circuit for discontinuous mode PFC converters |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI283805B true TWI283805B (en) | 2007-07-11 |
TW200728953A TW200728953A (en) | 2007-08-01 |
Family
ID=39430884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95102145A TWI283805B (en) | 2006-01-20 | 2006-01-20 | Switching control circuit for discontinuous mode PFC converters |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI283805B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI470915B (en) * | 2008-03-21 | 2015-01-21 | Marvell World Trade Ltd | Boost converter and power factor controller |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201125271A (en) | 2010-01-14 | 2011-07-16 | Novatek Microelectronics Corp | Power factor correction device |
-
2006
- 2006-01-20 TW TW95102145A patent/TWI283805B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI470915B (en) * | 2008-03-21 | 2015-01-21 | Marvell World Trade Ltd | Boost converter and power factor controller |
Also Published As
Publication number | Publication date |
---|---|
TW200728953A (en) | 2007-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7116090B1 (en) | Switching control circuit for discontinuous mode PFC converters | |
US8085021B2 (en) | PFC converter having two-level output voltage without voltage undershooting | |
US8749212B2 (en) | Method and apparatus to control a power factor correction circuit | |
KR100796890B1 (en) | Switching power source device | |
US6259614B1 (en) | Power factor correction control circuit | |
JP5104947B2 (en) | Switching power supply | |
JP3969390B2 (en) | Switching power supply | |
US8493757B2 (en) | AC/DC converter with a PFC and a DC/DC converter | |
JP4774987B2 (en) | Switching power supply | |
US7295452B1 (en) | Active power factor correction circuit and control method thereof | |
US6967851B2 (en) | Apparatus for reducing the power consumption of a PFC-PWM power converter | |
US8787039B2 (en) | Hybrid adaptive power factor correction schemes for switching power converters | |
US9491819B2 (en) | Hysteretic power factor control method for single stage power converters | |
JP2006067730A (en) | Power factor improving circuit | |
KR100806774B1 (en) | Ac-to-dc converter and method for converting ac to dc using the same | |
US20110037443A1 (en) | Parallel connected pfc converter | |
JP2011223819A (en) | Power factor improving circuit | |
JP4207824B2 (en) | Switching power supply | |
JP2007037297A (en) | Power factor improvement circuit | |
CN100421336C (en) | A switch-over control circuit for non-continuous mode PF control transducer | |
TWI283805B (en) | Switching control circuit for discontinuous mode PFC converters | |
CN2907072Y (en) | Switching control circuit for power factor control converter working in non-continuous mode | |
US11095206B2 (en) | AC-DC converter with boost front end having flat current and active blanking control | |
Jiang et al. | A novel single stage single switch PFC converter with constant power control for ballast for medium HID lamps | |
WO2004107553A1 (en) | Inverter power source control circuit for high-frequency heater |