TWI470915B - Boost converter and power factor controller - Google Patents
Boost converter and power factor controller Download PDFInfo
- Publication number
- TWI470915B TWI470915B TW98109005A TW98109005A TWI470915B TW I470915 B TWI470915 B TW I470915B TW 98109005 A TW98109005 A TW 98109005A TW 98109005 A TW98109005 A TW 98109005A TW I470915 B TWI470915 B TW I470915B
- Authority
- TW
- Taiwan
- Prior art keywords
- frequency
- mode
- switch
- power
- control module
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Dc-Dc Converters (AREA)
- Rectifiers (AREA)
Description
本發明係與功率因數校正控制領域有關,特別是關於一種升壓轉換器與功率因數控制器。 The present invention is related to the field of power factor correction control, and more particularly to a boost converter and a power factor controller.
該部分中的陳述僅僅提供與本發明有關的背景資訊,並且可能不構成現有技術。 The statements in this section merely provide background information related to the present invention and may not constitute prior art.
負載對於電源來說可能表現為電阻性阻抗、電感性阻抗、電容性阻抗或者其組合。當流到負載的電流與加到負載的電壓同相時,功率因數接近1。 The load may appear to the power supply as resistive impedance, inductive impedance, capacitive impedance, or a combination thereof. When the current flowing to the load is in phase with the voltage applied to the load, the power factor is close to one.
當功率因數小於1時,所傳輸的功率可能被浪費(由於電流和電壓之間的相位失配)和/或雜訊可能被引入電力線。為了降低雜訊並提高效率,電源通常使用功率因數校正(PFC)電路來相對於電壓波形的相位控制電流波形的相位。 When the power factor is less than 1, the transmitted power may be wasted (due to phase mismatch between current and voltage) and/or noise may be introduced into the power line. To reduce noise and increase efficiency, power supplies typically use a power factor correction (PFC) circuit to control the phase of the current waveform relative to the phase of the voltage waveform.
現在參考圖1,傳統的升壓轉換器(boost converter)10包括整流器15,整流器15接收交流(AC)功率。輸入電流Iin在被加到負載70之前流經電感20並且部分輸入電流Iin流經二極體50(在其輸出端具有電容器/濾波器60)。 Referring now to Figure 1, a conventional boost converter 10 includes a rectifier 15 that receives alternating current (AC) power. Before the input current I in is supplied to the load 70 through the inductor 20 and input current I in flowing through the portion of diode 50 (having a capacitor / filter 60 at its output).
功率因數控制器30回應於AC電壓感測輸入12、DC輸出電壓72、第二電感線圈25感測的功率轉換電流以及經由節點34的回饋電流,通過導通和關斷開關40來控制流經電感20的電流。當開關40導通時,電流22通常流經電感20(由此在電感20中存儲一些能量) 並隨後流經開關40到達地。當開關40關斷時,電流52可以流經二極體50並且一些電荷可以聚集在電容器/濾波器60上。通常,當開關40關斷時,流經電感20的電流22被顯著減小或者甚至被阻斷。 The power factor controller 30 is responsive to the AC voltage sense input 12, the DC output voltage 72, the power conversion current sensed by the second inductor coil 25, and the feedback current via the node 34, and controls the flow through the inductor by turning the switch 40 on and off. 20 currents. When switch 40 is turned on, current 22 typically flows through inductor 20 (thereby storing some energy in inductor 20) It then flows through switch 40 to the ground. When switch 40 is turned off, current 52 can flow through diode 50 and some charge can collect on capacitor/filter 60. Typically, when switch 40 is turned off, current 22 flowing through inductor 20 is significantly reduced or even blocked.
現在參考圖2,示出了由升壓轉換器10接收的AC電壓V。輸入電壓V是AC波形輸入的經整流的半正弦波。然而,由於開關40的導通/關斷週期(由圖1中的功率因數控制器30控制),圖2中的電流波形I具有鋸齒圖案。在鋸齒波形I經過低通濾波器(例如,圖1中的高頻旁路電容器/濾波器60)之後,輸入電流波形類似於整流器15的輸入端處的輸入AC電壓。 Referring now to Figure 2, the AC voltage V received by boost converter 10 is shown. The input voltage V is a rectified half sine wave of the AC waveform input. However, due to the on/off period of the switch 40 (controlled by the power factor controller 30 in FIG. 1), the current waveform I in FIG. 2 has a sawtooth pattern. After the sawtooth waveform I passes through a low pass filter (eg, high frequency bypass capacitor/filter 60 in FIG. 1), the input current waveform is similar to the input AC voltage at the input of rectifier 15.
在多數情況下,尤其是在負載功率足夠高以允許可察覺的平均輸入電流連續流經電感20的那些情況下,用於轉換的PF(功率因數)接近1。這種模式被稱為升壓轉換器10的操作的“平均電流模式”或“連續模式”。 In most cases, especially where those load powers are high enough to allow a perceptible average input current to flow continuously through the inductor 20, the PF (power factor) used for the conversion is close to one. This mode is referred to as the "average current mode" or "continuous mode" of operation of boost converter 10.
升壓轉換器的PFC一般具有兩個由規範定義的參數:(1)PF,以及(2)總諧波失真(即THD)。THD指的是通常由更高階諧波引起的失真。對於60赫茲(Hz)的AC信號,更高階諧波位於120Hz、180Hz或者其它n×60Hz的值處,其中,n是大於或等於2的整數。通常,THD越高,效率越低。諧波失真可以使升壓轉換器10中的電感20飽和。並且,如果THD足夠高,則雜訊可能被回饋到AC電力線12-14上,這是不希望的。 The PFC of a boost converter typically has two parameters defined by the specification: (1) PF, and (2) total harmonic distortion (ie, THD). THD refers to distortion that is usually caused by higher order harmonics. For an AC signal of 60 Hertz (Hz), the higher order harmonics are at 120 Hz, 180 Hz, or other values of n x 60 Hz, where n is an integer greater than or equal to two. Generally, the higher the THD, the lower the efficiency. Harmonic distortion can saturate the inductance 20 in the boost converter 10. Also, if the THD is high enough, the noise may be fed back to the AC power lines 12-14, which is undesirable.
現在參考圖3A,示出了圖2的電壓和電流波形的低功率和/或低電壓部分120。電壓波形V是整流器15(見圖1)的輸出端的電壓。 電流波形I是流經電感20的輸入電流Iin。當圖1中的開關40在時間t 0處被導通時,電流I以基本上為線性的方式增大,如斜坡122所示。開關40在由功率因數控制器30所確定的一段時間內導通。在這段時間的結束處(圖3A中的電流波形I的點124),開關40關斷並且電流I以基本上為線性的方式減小。然後在也是由功率因數控制器30確定的一段時間t s -t 0之後,開關40再次被功率因數控制器30導通(見圖1)。 Referring now to Figure 3A, a low power and/or low voltage portion 120 of the voltage and current waveforms of Figure 2 is illustrated. The voltage waveform V is the voltage at the output of the rectifier 15 (see Figure 1). The current waveform I is the input current I in flowing through the inductor 20. When the switch 40 in FIG. 1 at time t 0 is turned on, a current I is a substantially linear manner is increased, the ramp 122 as shown. Switch 40 is turned on for a period of time determined by power factor controller 30. At the end of this time (point 124 of current waveform I in Figure 3A), switch 40 is turned off and current I is reduced in a substantially linear manner. The switch 40 is then turned on again by the power factor controller 30 after a period of time t s - t 0 that is also determined by the power factor controller 30 (see Figure 1).
當電流I=0(即,圖3A中的“零電流時段”126期間的電流值I0),操作的平均電流模式或連續模式具有潛在的失真問題。由於沒有電流流經圖1的電感20,因此THD在波形部分120的零電流時段126期間不能被控制。 When the current I = 0 (i.e., the current value I 0 during the "zero current period" 126 in Figure 3A), the average current mode or continuous mode of operation has potential distortion problems. Since no current flows through the inductor 20 of FIG. 1, the THD cannot be controlled during the zero current period 126 of the waveform portion 120.
在開關40被導通和關斷達足以使零電流時段出現的時間長度的時間段期間,出現升壓轉換器10的操作的不連續模式。當電流波形I(見圖3A)為零或接近零(I0)時,出現操作的臨界模式(critical mode)。希望將電感電流Iin高於零的時間量最大化(見圖1),並將零電流時段最小化(例如,圖3A的零電流時段126)。 A discontinuous mode of operation of boost converter 10 occurs during a period of time during which switch 40 is turned "on" and "off" for a length of time sufficient for the zero current period to occur. When the current waveform I (see Fig. 3A) is zero or close to zero (I 0 ), a critical mode of operation occurs. The desired inductor current I in an amount greater than zero to maximize the time (see FIG. 1), and the zero current period is minimized (e.g., zero-current period in FIG. 3A 126).
現在參考圖3B,理想情況下,t s 會出現在電流I與I0(“I=0”軸)交叉的時間點處,零電流時段126會具有盡可能接近於0個時間單位的持續時間,並且開關40(見圖1)在電流波形部分134與I0交叉(見圖3B)之後基本上會立即被功率因數控制器30(見圖1)導通。當這種情況發生時,電流波形部分136在電流波形部分134與I0交叉之後立即上升,並且電流基本上連續地流經電感20(見圖1)。開關40 不應被太早地(即,在圖3B中的電流波形部分134與I0交叉之前)導通。當這種情況發生時,平均輸入電流可能以太高的速率增大,這可能導致輸入電流波形相位偏離輸入電壓波形相位。 Referring now to Figure 3B, ideally, t s will occur at a point in time at which current I intersects I 0 ("I = 0" axis), and zero current period 126 will have a duration as close as possible to 0 time units. , and the switch 40 (see FIG. 1) is turned in the current waveform portion 134 is substantially a power factor controller 30 (see FIG. 1) and I 0 immediately after the crossing (see FIG. 3B). When this happens, the current waveform of a current waveform portion 136 and portion 134 rises immediately after crossing I 0, and the current flows through the inductor 20 is substantially continuous (see FIG. 1). Switch 40 should not be too early (i.e., the current waveform portion 134 of FIG. 3B before I 0 Cross) is turned on. When this occurs, the average input current may increase at a too high rate, which may cause the input current waveform phase to deviate from the phase of the input voltage waveform.
一種傳統方法檢測流經圖1的電感20的輸入電流Iin。磁耦合到電感20的第二電感線圈25感測流經電感20的電流Iin。然而,這種方法在感測另一線圈中的電流時具有等待時間。這種等待時間在零電流時段126(見圖3A)中引入了某個正的時間長度,並且將雜訊引入回AC電力線12-14中。而且,第二電感線圈25增加了製造功率因數控制器30的一些花費,並且在功率因數控制器30上需要至少一個專用差分管腳來接收來自第二電感線圈25的資訊。 One conventional method of detecting an input current flowing through the inductor 1 of FIG. 20 is I in. A second inductor magnetically coupled to the inductive coil 20 through the inductor 25 to sense the current I in 20. However, this method has a waiting time when sensing the current in the other coil. This wait time introduces some positive time length in the zero current period 126 (see Figure 3A) and introduces noise back into the AC power line 12-14. Moreover, the second inductive coil 25 adds some expense in manufacturing the power factor controller 30, and at least one dedicated differential pin is required on the power factor controller 30 to receive information from the second inductive coil 25.
另一種方法試圖感測圖1中的節點34處的電流。然而,節點34處的電流和電壓值在操作的臨界模式中相對較低。結果,基於測量的誤差信號相對不夠精確。而且,確定節點34處的電流將要求功率因數控制器30在臨界模式中具有相對較高的取樣速率(即,每1/[t s -t 0]秒取遠大於1的採樣),並且採樣解析度應當相對較高以避免太快或太慢地導通開關40。 Another approach attempts to sense the current at node 34 in FIG. However, the current and voltage values at node 34 are relatively low in the critical mode of operation. As a result, the error signal based on the measurement is relatively inaccurate. Moreover, determining the current at node 34 would require power factor controller 30 to have a relatively high sampling rate in the critical mode (ie, take samples that are much greater than 1 per 1/[ t s - t 0 ] seconds), and sample The resolution should be relatively high to avoid turning on the switch 40 too quickly or too slowly.
一種升壓轉換器包括接收輸入信號的電感。開關控制由該電感提供給負載的電流。功率因數控制模組包括選擇升壓轉換器的操作模式的模式控制模組;以及以一切換頻率來切換開關的開關控制模組。該切換頻率在模式控制模組選擇連續模式時等於第一頻率,並且在模式控制模組選擇不連續模式時等於第二頻率。第一頻率大於第二頻率。 A boost converter includes an inductor that receives an input signal. The switch controls the current supplied to the load by the inductor. The power factor control module includes a mode control module that selects an operation mode of the boost converter; and a switch control module that switches the switch at a switching frequency. The switching frequency is equal to the first frequency when the mode control module selects the continuous mode, and is equal to the second frequency when the mode control module selects the discontinuous mode. The first frequency is greater than the second frequency.
在其它特徵中,開關控制模組獨立於對通過電感的電流的測量來確定切換頻率。功率因數控制模組還包括:確定輸入信號的週期的相位檢測模組;感測輸入信號的峰值電壓的峰值電壓確定模組;以及提供開關的導通時間(on-time)的導通時間模組。功率因數控制模組還包括關斷時間(off-time)模組,該關斷時間模組基於週期、導通時間和峰值電壓來計算開關的關斷時間。關斷時間模組獨立於對流經電感的電流的測量來計算關斷時間。相位檢測模組包括零交叉(zero crossing)模組,該零交叉模組檢測輸入信號的電壓的零交叉。 In other features, the switch control module determines the switching frequency independently of the measurement of the current through the inductor. The power factor control module further includes: a phase detection module that determines a period of the input signal; a peak voltage determination module that senses a peak voltage of the input signal; and an on-time module that provides an on-time of the switch. The power factor control module also includes an off-time module that calculates the off time of the switch based on the period, the on time, and the peak voltage. The turn-off time module calculates the turn-off time independently of the measurement of the current flowing through the inductor. The phase detection module includes a zero crossing module that detects a zero crossing of the voltage of the input signal.
在其它特徵中,當模式控制模組選擇連續模式時,升壓轉換器基於所述零交叉從不連續模式轉變到連續模式。當模式控制模組選擇不連續模式時,升壓轉換器基於所述零交叉從連續模式轉變到不連續模式。相位檢測模組還確定輸入信號的相位。第一頻率大於閥值頻率且第二頻率小於該閥值頻率。該閥值頻率是基於輸入信號的相位的。 In other features, when the mode control module selects the continuous mode, the boost converter transitions from the discontinuous mode to the continuous mode based on the zero crossing. When the mode control module selects the discontinuous mode, the boost converter transitions from the continuous mode to the discontinuous mode based on the zero crossing. The phase detection module also determines the phase of the input signal. The first frequency is greater than the threshold frequency and the second frequency is less than the threshold frequency. The threshold frequency is based on the phase of the input signal.
在其它特徵中,閥值頻率是基於:fc=0.25×(Vp 2)×(1-Vp×sin(θ)/Vo)/(Po×L)其中,fc是所述閥值頻率,θ是所述相位,Vp是所述輸入信號的峰值電壓,Vo是所述功率轉換器的輸出電壓,Po是所述功率轉換器的輸出功率,並且L是所述電感的值。 In other features, the threshold frequency is based on: f c = 0.25 × (V p 2 ) × (1 - V p × sin(θ) / V o ) / (P o × L), where f c is a threshold frequency, θ is the phase, Vp is the peak voltage of the input signal, V o is the output voltage of the power converter, P o is the output power of the power converter, and L is the inductance Value.
在其它特徵中,閥值頻率是基於輸入信號的峰值、升壓轉換器的輸出功率和電感的值的。閥值頻率是最大閥值頻率和第一值的積。最大閥值頻率是基於輸入信號的峰值電壓、升壓轉換器的輸出功率和電感的第一電感值的。該第一值是基於輸入信號的峰值電壓和升壓轉換 器的輸出功率的。 In other features, the threshold frequency is based on the peak value of the input signal, the output power of the boost converter, and the value of the inductance. The threshold frequency is the product of the maximum threshold frequency and the first value. The maximum threshold frequency is based on the peak voltage of the input signal, the output power of the boost converter, and the first inductance value of the inductor. The first value is based on the peak voltage and boost conversion of the input signal The output power of the device.
一種功率因數控制器包括選擇功率轉換器的操作模式的模式控制模組以及開關控制模組,該開關控制模組以一切換頻率來切換開關以控制由電感提供給負載的電流。當模式控制模組選擇連續模式時切換頻率等於第一頻率。當模式控制模組選擇不連續模式時切換頻率等於第二頻率。第一頻率大於第二頻率。開關控制模組獨立於對通過電感的電流的測量來確定切換頻率。 A power factor controller includes a mode control module that selects an operating mode of the power converter and a switch control module that switches the switch at a switching frequency to control the current supplied to the load by the inductor. The switching frequency is equal to the first frequency when the mode control module selects the continuous mode. The switching frequency is equal to the second frequency when the mode control module selects the discontinuous mode. The first frequency is greater than the second frequency. The switch control module determines the switching frequency independently of the measurement of the current through the inductor.
在其它特徵中,相位檢測模組確定輸入信號的週期。峰值電壓確定模組感測輸入信號的峰值電壓。導通時間模組提供開關的導通時間。關斷時間模組基於週期、導通時間和峰值電壓來計算開關的關斷時間。相位檢測模組包括零交叉模組,該零交叉模組檢測輸入信號電壓的零交叉。 In other features, the phase detection module determines the period of the input signal. The peak voltage determination module senses the peak voltage of the input signal. The on-time module provides the on-time of the switch. The turn-off time module calculates the turn-off time of the switch based on the period, on-time, and peak voltage. The phase detection module includes a zero-crossing module that detects a zero crossing of the input signal voltage.
在其它特徵中,當模式控制模組選擇連續模式時,功率轉換器基於所述零交叉從不連續模式轉變到連續模式。當模式控制模組選擇不連續模式時,功率轉換器基於所述零交叉從連續模式轉變到不連續模式。 In other features, when the mode control module selects the continuous mode, the power converter transitions from the discontinuous mode to the continuous mode based on the zero crossing. When the mode control module selects the discontinuous mode, the power converter transitions from the continuous mode to the discontinuous mode based on the zero crossing.
在其它特徵中,相位檢測模組確定輸入信號的相位。第一頻率大於閥值頻率且第二頻率小於該閥值頻率。該閥值頻率是基於輸入信號的相位的。 In other features, the phase detection module determines the phase of the input signal. The first frequency is greater than the threshold frequency and the second frequency is less than the threshold frequency. The threshold frequency is based on the phase of the input signal.
在其它特徵中,閥值頻率fc是基於:fc=0.25×(Vp 2)×(1-Vp×sin(θ)/Vo)/(Po×L) 其中,fc是所述閥值頻率,θ是所述相位,Vp是所述輸入信號的峰值電壓,Vo是所述功率轉換器的輸出電壓,Po是所述功率轉換器的輸出功率,並且L是所述電感的值。 In other features, the threshold frequency f c is based on: f c = 0.25 × (V p 2 ) × (1 - V p × sin(θ) / V o ) / (P o × L) where f c is The threshold frequency, θ is the phase, Vp is the peak voltage of the input signal, V o is the output voltage of the power converter, P o is the output power of the power converter, and L is The value of the inductance.
在其它特徵中,閥值頻率是基於輸入信號的峰值、功率轉換器的輸出功率和電感的值的。閥值頻率是基於最大閥值頻率和第一值的。該最大閥值頻率基於輸入信號的峰值電壓、功率轉換器的輸出功率和電感的第一電感值的。該第一值基於輸入信號的峰值電壓和功率轉換器的輸出功率。 In other features, the threshold frequency is based on the peak value of the input signal, the output power of the power converter, and the value of the inductance. The threshold frequency is based on the maximum threshold frequency and the first value. The maximum threshold frequency is based on the peak voltage of the input signal, the output power of the power converter, and the first inductance of the inductor. The first value is based on the peak voltage of the input signal and the output power of the power converter.
一種用於操作升壓轉換器的方法包括:提供開關,該開關控制由電感提供給負載的電流;選擇升壓轉換器的操作模式;以一切換頻率來切換開關;以及當在連續模式中操作時將切換頻率設置為等於第一頻率,並且當在不連續模式中操作時將切換頻率設置為等於第二頻率。第一頻率大於第二頻率。 A method for operating a boost converter includes: providing a switch that controls a current supplied to a load by an inductor; selecting an operating mode of the boost converter; switching the switch at a switching frequency; and operating in a continuous mode The switching frequency is set equal to the first frequency, and the switching frequency is set equal to the second frequency when operating in the discontinuous mode. The first frequency is greater than the second frequency.
在其它特徵中,該方法還包括獨立於對通過電感的電流的測量來確定切換頻率。該方法還包括:確定輸入信號的週期;感測輸入信號的峰值電壓;以及提供開關的導通時間。 In other features, the method further comprises determining the switching frequency independently of the measurement of the current through the inductor. The method also includes determining a period of the input signal, sensing a peak voltage of the input signal, and providing an on-time of the switch.
在其它特徵中,該方法包括基於週期、導通時間和峰值電壓來計算開關的關斷時間。關斷時間是獨立於對流經電感的電流的測量來計算的。該方法包括檢測輸入信號的電壓的零交叉。當選擇連續模式時,升壓轉換器基於該零交叉從不連續模式轉變到連續模式。當選擇不連續模式時,升壓轉換器基於該零交叉從連續模式轉變到不連續模式。 In other features, the method includes calculating a turn-off time of the switch based on a period, an on time, and a peak voltage. The turn-off time is calculated independently of the measurement of the current flowing through the inductor. The method includes detecting a zero crossing of a voltage of an input signal. When the continuous mode is selected, the boost converter transitions from the discontinuous mode to the continuous mode based on the zero crossing. When the discontinuous mode is selected, the boost converter transitions from the continuous mode to the discontinuous mode based on the zero crossing.
在其它特徵中,該方法包括檢測輸入信號的相位。第一頻率大於閥值頻率且第二頻率小於該閥值頻率。閥值頻率是基於輸入信號的相位的。該閥值頻率是基於:fc=0.25×(Vp 2)×(1-Vp×sin(θ)/Vo)/(Po×L)其中,fc是所述閥值頻率,θ是所述相位,Vp是所述輸入信號的峰值電壓,Vo是所述功率轉換器的輸出電壓,Po是所述功率轉換器的輸出功率,並且L是所述電感的值。 In other features, the method includes detecting a phase of the input signal. The first frequency is greater than the threshold frequency and the second frequency is less than the threshold frequency. The threshold frequency is based on the phase of the input signal. The threshold frequency is based on: f c = 0.25 × (V p 2 ) × (1 - V p × sin(θ) / V o ) / (P o × L) where f c is the threshold frequency, θ is the phase, Vp is the peak voltage of the input signal, V o is the output voltage of the power converter, P o is the output power of the power converter, and L is the value of the inductance.
在其它特徵中,閥值頻率是基於輸入信號的峰值、升壓轉換器的輸出功率和電感的值的。閥值頻率是最大閥值頻率和第一值的積,其中,該最大閥值頻率是基於輸入信號的峰值電壓、升壓轉換器的輸出功率和電感的第一電感值的。該第一值是基於輸入信號的峰值電壓和升壓轉換器的輸出功率的。 In other features, the threshold frequency is based on the peak value of the input signal, the output power of the boost converter, and the value of the inductance. The threshold frequency is the product of the maximum threshold frequency and the first value, wherein the maximum threshold frequency is based on the peak voltage of the input signal, the output power of the boost converter, and the first inductance value of the inductor. The first value is based on the peak voltage of the input signal and the output power of the boost converter.
一種用於操作功率因數控制器的方法包括:選擇功率轉換器的操作模式;以一切換頻率來切換開關以控制由電感提供給負載的電流;當模式控制模組選擇連續模式時將切換頻率設置為等於第一頻率;以及當模式控制模組選擇不連續模式時將切換頻率設置為等於第二頻率。第一頻率大於第二頻率。開關控制模組獨立於對通過電感的電流的測量來確定切換頻率。 A method for operating a power factor controller includes: selecting an operating mode of a power converter; switching a switch at a switching frequency to control a current supplied to the load by the inductor; and switching the frequency setting when the mode control module selects the continuous mode Is equal to the first frequency; and the switching frequency is set equal to the second frequency when the mode control module selects the discontinuous mode. The first frequency is greater than the second frequency. The switch control module determines the switching frequency independently of the measurement of the current through the inductor.
在其它特徵中,該方法包括確定輸入信號的週期;感測輸入信號的峰值電壓;以及提供開關的導通時間。該方法還包括基於週期、導通時間和峰值電壓來計算開關的關斷時間。該方法包括檢測輸入信號 的電壓的零交叉。 In other features, the method includes determining a period of the input signal; sensing a peak voltage of the input signal; and providing an on-time of the switch. The method also includes calculating a turn-off time of the switch based on the period, the on-time, and the peak voltage. The method includes detecting an input signal The zero crossing of the voltage.
在其它特徵中,當選擇連續模式時,功率轉換器基於該零交叉從不連續模式轉變到連續模式。當選擇不連續模式時,功率轉換器基於所述零交叉從連續模式轉變到不連續模式。在其它特徵中,該方法包括檢測輸入信號的相位。第一頻率大於閥值頻率且第二頻率小於該閥值頻率。該閥值頻率是基於輸入信號的相位的。該閥值頻率fc是基於:fc=0.25×(Vp 2)×(1-Vp×sin(θ)/Vo)/(Po×L)其中,fc是所述閥值頻率,θ是所述相位,Vp是所述輸入信號的峰值電壓,Vo是所述功率轉換器的輸出電壓,Po是所述功率轉換器的輸出功率,並且L是所述電感的值。 In other features, when the continuous mode is selected, the power converter transitions from the discontinuous mode to the continuous mode based on the zero crossing. When the discontinuous mode is selected, the power converter transitions from the continuous mode to the discontinuous mode based on the zero crossing. In other features, the method includes detecting a phase of the input signal. The first frequency is greater than the threshold frequency and the second frequency is less than the threshold frequency. The threshold frequency is based on the phase of the input signal. The threshold frequency f c is based on: f c = 0.25 × (V p 2 ) × (1 - V p × sin(θ) / V o ) / (P o × L), where f c is the threshold Frequency, θ is the phase, Vp is the peak voltage of the input signal, Vo is the output voltage of the power converter, P o is the output power of the power converter, and L is the value of the inductor .
在其它特徵中,閥值頻率是基於輸入信號的峰值、功率轉換器的輸出功率和電感的值的。閥值頻率是基於最大閥值頻率和第一值的。該最大閥值頻率是基於輸入信號的峰值電壓、功率轉換器的輸出功率和電感的第一電感值的。該第一值基於輸入信號的峰值電壓和功率轉換器的輸出功率。 In other features, the threshold frequency is based on the peak value of the input signal, the output power of the power converter, and the value of the inductance. The threshold frequency is based on the maximum threshold frequency and the first value. The maximum threshold frequency is based on the peak voltage of the input signal, the output power of the power converter, and the first inductance value of the inductor. The first value is based on the peak voltage of the input signal and the output power of the power converter.
一種升壓轉換器包括:電感裝置,用於提供電感並用於接收輸入信號;開關裝置,用於控制由電感提供給負載的電流;以及功率因數控制裝置,用於控制升壓轉換器的功率因數,該升壓轉換器包括模式控制裝置和開關控制裝置,其中模式控制裝置用於選擇升壓轉換器的操作模式,開關控制裝置用於在模式控制裝置選擇連續模式時將開關裝置的切換頻率設置為等於第一頻率,並在模式控制裝置選擇不連續 模式時將開關裝置的切換頻率設置為等於第二頻率。第一頻率大於第二頻率。 A boost converter includes: an inductive device for providing an inductor and for receiving an input signal; a switching device for controlling a current supplied to the load by the inductor; and a power factor control device for controlling a power factor of the boost converter The boost converter includes a mode control device for selecting an operation mode of the boost converter, and a switch control device for setting a switching frequency of the switching device when the mode control device selects the continuous mode Is equal to the first frequency and the discontinuity in the mode control device selection In the mode, the switching frequency of the switching device is set equal to the second frequency. The first frequency is greater than the second frequency.
在其它特徵中,開關控制裝置獨立於對通過電感裝置的電流的測量來確定切換頻率。功率因數控制裝置還包括:用於確定輸入信號的週期的相位檢測裝置,用於感測輸入信號的峰值電壓的峰值電壓確定裝置,以及用於提供開關裝置的導通時間的導通時間裝置。 In other features, the switch control device determines the switching frequency independently of the measurement of the current through the inductive device. The power factor control apparatus further includes: phase detecting means for determining a period of the input signal, peak voltage determining means for sensing a peak voltage of the input signal, and on-time means for providing an on-time of the switching means.
在其它特徵中,功率因數控制裝置還包括關斷時間裝置,該關斷時間裝置用於基於週期、導通時間和峰值電壓來計算開關裝置的關斷時間。關斷時間裝置獨立於對流經電感裝置的電流的測量來計算關斷時間。相位檢測裝置包括零交叉裝置,該零交叉裝置檢測輸入信號的電壓的零交叉。 In other features, the power factor control device further includes an off time device for calculating an off time of the switching device based on the period, the on time, and the peak voltage. The turn-off time device calculates the turn-off time independently of the measurement of the current flowing through the inductive device. The phase detecting device includes a zero crossing device that detects a zero crossing of the voltage of the input signal.
在其它特徵中,當模式控制裝置選擇連續模式時,升壓轉換器基於所述零交叉從不連續模式轉變到連續模式。當模式控制裝置選擇不連續模式時,升壓轉換器基於所述零交叉從連續模式轉變到不連續模式。 In other features, when the mode control device selects the continuous mode, the boost converter transitions from the discontinuous mode to the continuous mode based on the zero crossing. When the mode control device selects the discontinuous mode, the boost converter transitions from the continuous mode to the discontinuous mode based on the zero crossing.
在其它特徵中,相位檢測裝置還確定輸入信號的相位。第一頻率大於閥值頻率且第二頻率小於該閥值頻率。該閥值頻率是基於輸入信號的相位的。 In other features, the phase detecting device also determines the phase of the input signal. The first frequency is greater than the threshold frequency and the second frequency is less than the threshold frequency. The threshold frequency is based on the phase of the input signal.
在其它特徵中,閥值頻率是基於:fc=0.25×(Vp 2)×(1-Vp×sin(θ)/Vo)/(Po×L)其中,fc是所述閥值頻率,θ是所述相位,Vp是所述輸入信號的峰值 電壓,Vo是所述功率轉換器的輸出電壓,Po是所述功率轉換器的輸出功率,並且L是所述電感裝置的值。 In other features, the threshold frequency is based on: f c = 0.25 × (V p 2 ) × (1 - V p × sin(θ) / V o ) / (P o × L), where f c is a threshold frequency, θ is the phase, Vp is the peak voltage of the input signal, V o is the output voltage of the power converter, P o is the output power of the power converter, and L is the inductance The value of the device.
在其它特徵中,閥值頻率是基於輸入信號的峰值、升壓轉換器的輸出功率和電感裝置的值的。閥值頻率是最大閥值頻率和第一值的積。最大閥值頻率是基於輸入信號的峰值電壓、升壓轉換器的輸出功率和電感裝置的第一電感值的。該第一值是基於輸入信號的峰值電壓和升壓轉換器的輸出功率的。 In other features, the threshold frequency is based on the peak value of the input signal, the output power of the boost converter, and the value of the inductive device. The threshold frequency is the product of the maximum threshold frequency and the first value. The maximum threshold frequency is based on the peak voltage of the input signal, the output power of the boost converter, and the first inductance of the inductive device. The first value is based on the peak voltage of the input signal and the output power of the boost converter.
一種功率因數控制器包括:用於選擇功率轉換器的操作模式的模式控制裝置;以及開關控制裝置,該開關控制裝置以一切換頻率來切換開關以控制由電感提供給負載的電流。當模式控制裝置選擇連續模式時開關控制裝置將切換頻率設置為等於第一頻率,並且當模式控制裝置選擇不連續模式時開關控制裝置將切換頻率設置為等於第二頻率。第一頻率大於第二頻率。開關控制裝置獨立於對通過電感的電流的測量來確定切換頻率。 A power factor controller includes: a mode control device for selecting an operation mode of the power converter; and a switch control device that switches the switch at a switching frequency to control a current supplied to the load by the inductor. The switch control device sets the switching frequency to be equal to the first frequency when the mode control device selects the continuous mode, and sets the switching frequency to be equal to the second frequency when the mode control device selects the discontinuous mode. The first frequency is greater than the second frequency. The switching control device determines the switching frequency independently of the measurement of the current through the inductor.
在其它特徵中,相位檢測裝置確定輸入信號的週期。峰值電壓確定裝置感測輸入信號的峰值電壓。導通時間裝置提供開關裝置的導通時間。關斷時間計算裝置基於週期、導通時間和峰值電壓來計算開關裝置的關斷時間。 In other features, the phase detecting means determines the period of the input signal. The peak voltage determining means senses the peak voltage of the input signal. The on-time device provides the on-time of the switching device. The off time calculation means calculates the off time of the switching device based on the period, the on time, and the peak voltage.
在其它特徵中,相位檢測裝置包括零交叉裝置,該零交叉裝置用於檢測輸入信號的電壓的零交叉。當模式控制裝置選擇連續模式時,升壓轉換器基於所述零交叉從不連續模式轉變到連續模式。當模式控制裝置選擇不連續模式時,升壓轉換器基於所述零交叉從連續模式轉 變到不連續模式。相位檢測裝置確定輸入信號的相位。第一頻率大於閥值頻率且第二頻率小於該閥值頻率。該閥值頻率是基於輸入信號的相位的。 In other features, the phase detecting device includes a zero crossing device for detecting a zero crossing of the voltage of the input signal. When the mode control device selects the continuous mode, the boost converter transitions from the discontinuous mode to the continuous mode based on the zero crossing. When the mode control device selects the discontinuous mode, the boost converter switches from the continuous mode based on the zero crossing Change to discontinuous mode. The phase detecting means determines the phase of the input signal. The first frequency is greater than the threshold frequency and the second frequency is less than the threshold frequency. The threshold frequency is based on the phase of the input signal.
在其它特徵中,閥值頻率fc是基於:fc=0.25×(Vp 2)×(1-Vp×sin(θ)/Vo)/(Po×L)其中,fc是所述閥值頻率,θ是所述相位,Vp是所述輸入信號的峰值電壓,Vo是所述功率轉換器的輸出電壓,Po是所述功率轉換器的輸出功率,並且L是所述電感的值。 In other features, the threshold frequency f c is based on: f c = 0.25 × (V p 2 ) × (1 - V p × sin(θ) / V o ) / (P o × L) where f c is The threshold frequency, θ is the phase, Vp is the peak voltage of the input signal, V o is the output voltage of the power converter, P o is the output power of the power converter, and L is The value of the inductance.
在其它特徵中,閥值頻率是基於輸入信號的峰值、功率轉換器的輸出功率和電感的值的。閥值頻率是基於最大閥值頻率和第一值的。該最大閥值頻率基於輸入信號的峰值電壓、功率轉換器的輸出功率和電感的第一電感值的。該第一值是基於輸入信號的峰值電壓和功率轉換器的輸出功率的。 In other features, the threshold frequency is based on the peak value of the input signal, the output power of the power converter, and the value of the inductance. The threshold frequency is based on the maximum threshold frequency and the first value. The maximum threshold frequency is based on the peak voltage of the input signal, the output power of the power converter, and the first inductance of the inductor. The first value is based on the peak voltage of the input signal and the output power of the power converter.
從這裡提供的描述可以清楚其它適用領域。應當瞭解,描述和具體示例僅僅是為了說明的目的而不意圖限定本發明的範圍。 The description provided here can be seen in other areas of application. It should be understood that the description and specific examples are not intended to
現在將詳細參考本發明的優選實施例,其示例將在附圖中示出。雖然將結合優選實施例來描述本發明,但是將會瞭解,不意圖將本發明限制為這些實施例。相反,本發明意圖涵蓋可包含在如所附權利要求書限定的本發明的精神和範圍內的替換、修改和等同物。此外,在本發明的以下詳細描述中,給出了許多具體細節以提供對本發明的全面理解。然而,本領域技術人員將容易清楚,可以在沒有這些具體細 節的情況下實施本發明。在其他示例中,沒有詳細描述已知的方法、過程、部件和電路,以避免不必要地模糊本發明的各個方面。 Reference will now be made in detail to the preferred embodiments of the invention While the invention will be described in conjunction with the preferred embodiments, it is understood that the invention Rather, the invention is intended to cover alternatives, modifications, and equivalents of the embodiments of the invention. In addition, in the following detailed description of the invention, numerous specific details However, those skilled in the art will readily appreciate that these specific details can be The present invention is implemented in the context of the section. In other instances, well-known methods, procedures, components, and circuits are not described in detail to avoid unnecessarily obscuring aspects of the present invention.
下面的詳細描述的一些部分根據處理、過程、邏輯塊、功能塊、對電腦、處理器、控制器和/或記憶體中的資料位元、資料流程或波形進行操作的其它符號表示來呈現。這些描述和表示通常被資料處理領域的技術人員用來向本領域其他技術人員傳達他們工作的實質。處理、過程、邏輯塊、功能、操作等在此一般被認為是導向所希望和/或所預期的結果的步驟或指令的自洽序列。這些步驟通常包括對物理量的物理操縱。通常,雖然不是必要的,但是這些量採取能夠在電腦、資料處理系統或邏輯電路中被存儲、傳輸、組合、比較以及以其它方式操縱的電信號、磁信號、光信號或量子信號的形式。主要為了公用的目的,已經證明將這些信號指定為位元、波、波形、流、值、元、符號、字元、項、數等等有時是方便的。 Portions of the detailed description that follows are presented in terms of processes, processes, logic blocks, functional blocks, and other symbol representations that operate on data bits, data flows, or waveforms in a computer, processor, controller, and/or memory. These descriptions and representations are generally used by those skilled in the data processing arts to convey the substance of their work to those skilled in the art. Processing, processes, logic blocks, functions, operations, etc. are generally considered to be a self-consistent sequence of steps or instructions leading to the desired and/or expected results. These steps typically involve physical manipulation of physical quantities. Usually, though not necessarily, these quantities take the form of an electrical, magnetic, optical or quantum signal capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer, data processing system or logic. It has proven convenient at times, principally for public purposes, to designate these signals as bits, waves, waveforms, streams, values, elements, symbols, characters, terms, numbers, and the like.
然而,應當記住,所有這些以及類似術語是與適當的物理量相關聯的,並且僅僅是應用到這些量的方便標記。除非以別的方式特別說明和/或從下面的論述可以清楚,否則應當認識到在整個本申請中,利用諸如“處理”、“操作”、“計算”、“確定”、“操縱”、“變換”、“顯示”等術語進行的論述是指電腦、資料處理系統、邏輯電路或類似處理設備(例如,電、光或量子計算或處理設備)的動作和處理,這些設備對表示為物理(例如電子)量的資料進行操縱和變換。這些術語指處理設備的動作、操作和/或處理,這些處理設備對系統或體系結構的(一個或多個)部件(例如,寄存器、記憶體、其它這樣的資訊存儲、傳 輸或顯示裝置等)中的物理量進行操縱,或者將這些物理量變換為被類似地表示為相同或不同系統或體系結構的其它部件中的物理量的其它資料。 However, it should be borne in mind that all of these and similar terms are associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless otherwise stated and/or apparent from the following discussion, it will be appreciated that throughout the application, such as "processing," "operation," "calculation," "determining," "manipulating," The terms "transformation", "display", and the like refer to the actions and processing of computers, data processing systems, logic circuits, or similar processing devices (eg, electrical, optical, or quantum computing or processing devices) that are represented as physical ( For example, electronic data is manipulated and transformed. These terms refer to the actions, operations, and/or processing of processing devices that are stored in the system or architecture(s) (eg, registers, memory, other such information storage, transmission The physical quantities in the input or display device, etc., are manipulated or otherwise transformed into other materials that are similarly represented as physical quantities in other components of the same or different systems or architectures.
另外,為了方便和簡化,術語“資料”、“資料流程”、“波形”和“資訊”在這裡一般可被互換地使用,但是通常賦予他們識別出領域涵意。而且,為了方便和簡化,術語“連接到”、“與......耦合”、“耦合到”以及“與......通信”可以可互換地使用(這些術語還可以指被連接、被耦合和/或通信元件之間的直接和/或間接關係,除非術語的使用上下文明確指示了其它意思),但這些術語通常也被賦予他們識別出領域的涵意。在此使用的術語“模組”、“電路”和/或“設備”指專用積體電路(ASIC)、電子電路、執行一個或多個軟體或固件程式的處理器(共用處理器、專用處理器或處理器組)和記憶體、組合邏輯電路和/或提供所述功能的其它適當的部件。在此使用的短語“A、B和C中的至少一個”應當被解釋為表示使用非排他邏輯“或”的邏輯(A或B或C)。 In addition, for convenience and simplicity, the terms "data", "data flow", "waveform" and "information" are generally used interchangeably herein, but generally they are assigned to identify domain meanings. Moreover, for convenience and simplicity, the terms "connected to", "coupled to", "coupled to", and "communicated with" may be used interchangeably (these terms may also refer to The direct and/or indirect relationship between the connected, coupled, and/or communication elements, unless the context of use of the term clearly indicates otherwise, is also generally given to the context in which they are identified. The term "module," "circuit," and/or "device" as used herein, refers to a dedicated integrated circuit (ASIC), an electronic circuit, a processor that executes one or more software or firmware programs (shared processor, dedicated processing). And a processor group) and memory, combinational logic, and/or other suitable components that provide the described functionality. The phrase "at least one of A, B, and C" as used herein should be interpreted to mean a logic (A or B or C) that uses a non-exclusive logical "or".
本發明涉及用於功率因數校正和/或控制的電路、系統、方法和軟體。本發明通常採取計算方法來使升壓轉換器操作的臨界模式中的零電流時段減小和/或最小化。一種發明的電路是功率因數控制器,包括(a)被配置來確定和/或識別(i)週期性功率信號的週期以及(ii)從電位被施加到功率轉換開關的週期的開始起的時間長度的電路;(b)被配置來至少確定週期性功率信號的峰值電壓的電壓計算器;以及(c)被配置來回應於(i)時間長度、(ii)功率信號週期和(iii)峰值電壓來計算打開開關的時間段的邏輯。該系統一般包括本發明的 功率因數控制器和其控制的開關,但是該系統的另一方面涉及包括這樣的系統和電感或其它裝置的功率轉換器,該電感或其它裝置用於存儲來自諸如AC功率信號之類的週期性功率信號的能量。 The present invention relates to circuits, systems, methods and software for power factor correction and/or control. The present invention typically takes a computational approach to reduce and/or minimize the zero current period in the critical mode of boost converter operation. An inventive circuit is a power factor controller comprising (a) a period configured to determine and/or identify (i) a periodic power signal and (ii) a time from the beginning of a period at which the potential is applied to the power transfer switch a length of circuit; (b) a voltage calculator configured to determine at least a peak voltage of the periodic power signal; and (c) configured to respond to (i) length of time, (ii) power signal period, and (iii) peak value The voltage is used to calculate the logic of the time period during which the switch is turned on. The system generally includes the invention A power factor controller and a switch it controls, but another aspect of the system relates to a power converter including such a system and an inductor or other device for storing periodicity from, for example, an AC power signal The energy of the power signal.
本發明的另一方面涉及一種校正和/或控制功率因數和/或控制功率轉換的方法。該方法一般包括(1)回應於向與功率轉換器電通信的開關施加電位,將來自週期性功率信號的能量存儲在功率轉換器中;(2)根據以下參數來計算打開開關的時間段:(i)初始時間長度,在此期間電位被施加到開關、(ii)週期性功率信號的週期以及(iii)週期性功率信號的峰值電壓;以及(3)在該時間段期間打開開關。軟體包括處理器可讀或可執行的一組指令,這組指令被配置來實現本發明的方法和/或體現在此所述的發明概念的任何處理或步驟序列。 Another aspect of the invention relates to a method of correcting and/or controlling power factor and/or controlling power conversion. The method generally includes (1) responsive to applying a potential to a switch in electrical communication with the power converter to store energy from the periodic power signal in the power converter; (2) calculating a time period for opening the switch based on the following parameters: (i) an initial length of time during which a potential is applied to the switch, (ii) a period of the periodic power signal, and (iii) a peak voltage of the periodic power signal; and (3) the switch is turned on during the time period. The software includes a set of instructions that are readable or executable by a processor that is configured to implement the methods of the present invention and/or any process or sequence of steps embodied in the inventive concepts described herein.
下面將針對示例性實施例來更加詳細地描述本發明的各個方面。 Various aspects of the invention are described in more detail below with respect to exemplary embodiments.
在一個方面中,本發明涉及功率轉換器,其包括本發明的功率因數控制器(下面將更加詳細地描述)、被配置來存儲來自週期性功率信號的能量的電感以及功率轉換開關,該功率轉換開關被配置來在電位被施加到該開關時對電感充電。通常,開關由本發明的功率因數控制器控制,並且週期性功率信號是交流(AC)功率信號或整流後的AC功率信號。在一種實現方式中,功率轉換器是一個AC-DC升壓轉換器。 In one aspect, the present invention is directed to a power converter including a power factor controller of the present invention (described in more detail below), an inductor configured to store energy from a periodic power signal, and a power transfer switch, the power The transfer switch is configured to charge the inductance when a potential is applied to the switch. Typically, the switch is controlled by the power factor controller of the present invention and the periodic power signal is an alternating current (AC) power signal or a rectified AC power signal. In one implementation, the power converter is an AC-DC boost converter.
在各個實施例中,功率轉換器還可以包括二極體、漣波濾波器(ripple filter)和/或整流器,其中二極體被配置來接收來自電感的輸 出並向負載提供輸出電壓,漣波濾波器耦合到二極體的輸出端,整流器被配置來對交流功率信號進行整流。在一個實施例中,週期性功率信號包括整流器的輸出(例如,其是整流後的AC功率信號)。 In various embodiments, the power converter may further include a diode, a ripple filter, and/or a rectifier, wherein the diode is configured to receive the input from the inductor The output voltage is supplied to the load, the chopper filter is coupled to the output of the diode, and the rectifier is configured to rectify the AC power signal. In one embodiment, the periodic power signal includes the output of the rectifier (eg, it is a rectified AC power signal).
在其它實施例中,電感將週期性功率信號(例如AC信號)轉換為基本上恆定的功率信號(例如,DC信號);並且/或者開關可以被配置來(i)當電壓施加到開關上時(例如當開關閉合時)向電感提供功率轉換電流,以及/或者(ii)當開關打開時減小、消除或阻斷流經電感的功率轉換電流。 In other embodiments, the inductance converts a periodic power signal (eg, an AC signal) into a substantially constant power signal (eg, a DC signal); and/or the switch can be configured to (i) when a voltage is applied to the switch The power conversion current is supplied to the inductor (eg, when the switch is closed) and/or (ii) the power conversion current flowing through the inductor is reduced, eliminated, or blocked when the switch is turned on.
參考示例性實施例可以最好地說明本發明的功率因數控制器和功率轉換器的操作。圖4示出了升壓轉換器200的第一示例性實施例,升壓轉換器200包括四路整流器(four-way rectifier)210、電感220、示例性功率因數控制器230以及開關240,四路整流器210從電力線212和214接收交流電源AC。升壓轉換器200還可以包括電流回饋電阻器235、二極體250以及電容器/濾波器260,連接到電容器/濾波器260的節點272還可以和負載270通信。類似於圖1的傳統功率因數控制器30,圖4的功率因數控制器230通過回應於AC電力線212、DC輸出電壓272以及回饋電流節點234來導通和關斷開關240,從而有效地控制流經電感220的電流。然而,本發明的功率因數控制器230計算開關240保持關斷的時間長度以使零電流時段減小或最小化,並且不需要第二電感來感測通過電感220的輸入電流何時為零。 The operation of the power factor controller and power converter of the present invention will best be described with reference to the exemplary embodiments. 4 shows a first exemplary embodiment of a boost converter 200 that includes a four-way rectifier 210, an inductor 220, an exemplary power factor controller 230, and a switch 240, four The circuit rectifier 210 receives the AC power source AC from the power lines 212 and 214. Boost converter 200 may also include current feedback resistor 235, diode 250, and capacitor/filter 260, and node 272 coupled to capacitor/filter 260 may also be in communication with load 270. Similar to the conventional power factor controller 30 of FIG. 1, the power factor controller 230 of FIG. 4 effectively turns on and off the switch 240 by responding to the AC power line 212, the DC output voltage 272, and the feedback current node 234 to turn the switch 240 on and off. The current of the inductor 220. However, the power factor controller 230 of the present invention calculates the length of time that the switch 240 remains off to reduce or minimize the zero current period, and does not require a second inductance to sense when the input current through the inductor 220 is zero.
例如,在圖4中,當開關240導通時,電流通常流經電感220,由此存儲一些能量在電感220中。當開關240關斷時,電流可以流經 二極體250並且一些電荷可以在電容器/濾波器260中聚集,但是通常,流經電感220的電流被嚴重減小或阻斷。二極體250因此被配置來(i)接收來自電感220的輸出以及(ii)讓來自電感的輸出的電流單向地通過,成為基本上恒定的輸出電壓(通常被施加到負載270)。 For example, in FIG. 4, when switch 240 is turned on, current typically flows through inductor 220, thereby storing some energy in inductor 220. When switch 240 is turned off, current can flow through The diode 250 and some of the charge can collect in the capacitor/filter 260, but typically, the current flowing through the inductor 220 is severely reduced or blocked. The diode 250 is thus configured to (i) receive the output from the inductor 220 and (ii) pass the current from the output of the inductor unidirectionally to become a substantially constant output voltage (typically applied to the load 270).
本發明的一個目的是運算或計算使得零電流通過電感220的、開關240關斷的時間長度(“t off”)。如果可以運算或計算(“t off”),則可以以使零電流時段最小化的方式來確定何時將開關240轉換回導通狀態。本發明主要集中於被配置來進行這種計算的功率因數控制器。 An object of the present invention is calculated so that the operation or zero current through the switch length ( "t off") 240 of the inductor 220 off time. If it is possible to calculate or calculate (" t off "), it can be determined when the switch 240 is switched back to the conducting state in a manner that minimizes the zero current period. The present invention focuses primarily on power factor controllers that are configured to perform such calculations.
圖5示出了圖4的升壓轉換器200在操作的臨界電流模式中的電流和電壓波形。開關240在時刻t 0被導通,使得流經電感220的電流I以基本上線性的速率增大(例如,見圖5中的電流波形部分310)。開關240保持導通達預定時間長度t on,其中預定時間長度可以被程式設計到功率因數控制器230(見圖4)的記憶體單元中,或者傳統地由功率因數控制器230響應於一個或多個傳統輸入(例如,來自AC電力線212的電流或電壓輸入、來自輸出電壓Vout節點272和/或回饋電流節點234的功率轉換回饋等等)進行計算、運算或確定。在t on時間之後,功率因數控制器230關斷開關240,並且電流波形I以基本上線性的速率下降直到電流I=0為止(例如,見圖5中的電流波形部分320)。可以根據多個已知參數、使用相對簡單的三角測量技術來運算或計算開關240關斷以便電流I達到0的時間長度t off,這多個已知參數包括t on、AC電力線212上的AC輸入電壓和峰值AC輸入電壓Vp以及節點272處的輸出電壓Vout。設計和使用被配置來根據這些已 知參數運算或計算t off的邏輯明顯在本領域技術人員的能力範圍內,本領域技術人員可以從以下論述清楚這點。 FIG. 5 shows current and voltage waveforms of the boost converter 200 of FIG. 4 in a critical current mode of operation. At time t 0 the switch 240 is turned on, so the current I 220 flowing through the inductor in a substantially linear rate increases (e.g., see Figure 5 in the current waveform portion 310). The switch 240 remains conductive for a predetermined length of time t on , wherein the predetermined length of time can be programmed into the memory unit of the power factor controller 230 (see FIG. 4), or conventionally responded to by the power factor controller 230 by one or more a conventional input (e.g., current or voltage input from the AC power line 212, the output voltage V out from the node 272 and / or feedback current feedback node of the power converter 234, etc.) are calculated, calculation or determination. After the time t on, the power factor controller 230 turns off the switch 240, and current waveform I is a substantially linear rate until the drop until the current I = 0 (e.g., see Figure 5 in the current waveform portion 320). The length of time t off at which switch 240 is turned off so that current I reaches zero can be calculated or calculated according to a plurality of known parameters using a relatively simple triangulation technique, including t on , AC on AC power line 212 peak AC input voltage and the output voltage V out input voltage V p and the node 272. The design and use are configured to clearly within the purview of one skilled in the art, one skilled in the art may be apparent from the following discussion that point t off according to the logic of the operations or calculations of these parameters are known.
確定t off的三角測量方法是相對直接的。參考圖5,上升電流波形部分310的斜率簡單地是節點216的電壓Vin除以電感220的電感L。類似地,下降電流波形部分320的斜率簡單地是輸出電壓Vout(節點272處)減去Vin(節點216)得到差值除以L。電流波形部分310和320各自形成了兩個直角三角形的斜邊,其橫坐標是在時間t on通過電感220的電流Iin,並且其縱坐標分別是t on和t off。根據這些關係,可以計算t off。數學上,斜率(310)=Vin/L [1] The triangulation method of determining t off is relatively straightforward. Referring to FIG. 5, the slope of the rising current waveform portion 310 is simply the voltage V in of the node 216 divided by the inductance L of the inductor 220. Similarly, the slope of the decline in current waveform portion 320 is simply the output voltage V out (at node 272) minus V in (node 216) obtained by dividing the difference value L. Current waveform portions 310 and 320 are each formed of two right-angled triangle the hypotenuse of which is at time t on the abscissa by the inductor 220 current I in, and the ordinate, respectively t on and t off. Based on these relationships, t off can be calculated. Mathematically, the slope (310) = V in / L [1]
斜率(320)=(Vout-Vin)/L [2] Slope (320) = (V out - V in ) / L [2]
t off=t on×Vin/(Vout-Vin) [3]輸出電壓Vout一般通過設計而預定和/或知道;例如,Vout具有指定的、基本上恒定的值(例如450V),儘管由於小漣波而在實際值中存在一些微小的波動,小漣波的(一個或多個)源是本領域技術人員已知的,但是其作為Vout的百分比是微小的和/或可忽略的。因此,為了計算t off,一般認為Vout是恒定值。不過,在一個實施例中,在開關240的每n個導通/關斷週期處確定Vout(例如,被測量或採樣),其中n是整數,並且Vout值可以按計算t off的需要或要求而在功率因數控制器230中被存儲和/或更新。在本發明的某些應用希望觀察Vout的值的情況中,可以利用相對低的解析度來相對精確地測量Vout(至少能與在臨界模式中在電感220處或回饋電流節點234處檢測的Iin和/或 Vin的典型值相比)。 t off = t on ×V in /(V out -V in ) [3] The output voltage V out is generally predetermined and/or known by design; for example, V out has a specified, substantially constant value (eg 450V) , although due to the small ripple and some minor fluctuations in the actual value, (s) a small ripple sources are known to the skilled person, but as a percentage of V out is small and / or ignorable. Therefore, in order to calculate t off , V out is generally considered to be a constant value. However, in one embodiment, to determine V out (e.g., measured or samples) every n turns on the switch 240 on / off cycle at where n is an integer, and V out the value by the calculated t need off or It is stored and/or updated in power factor controller 230 as required. In the case of certain applications of the present invention desired values V out is observed, the relatively low resolution can be used to relatively accurately measure V out (at least in the critical mode is detected at 220 or the inductor current feedback at node 234 Compared to the typical values of I in and / or V in ).
而且,如上所述,t on是用於計算t off的已知和/或預定的值。然而,節點216處的電壓Vin在轉換器操作的臨界模式期間不必是在給定時間點處的已知、預定或固定值。而是可以使用已知的、(預先)確定的、固定的或可靠地可測量的和/或可檢測的參數值來計算Vin。節點216處的整流後的電壓仍然是半正弦波,與其它參數具有標準三角關係。因此,如果已知節點216處的峰值電壓Vp和半正弦波的週期,就可以計算Vin的值。數學上,Vin=Vp×sin(π t/T) [4]其中t=ton加上從t0到ton的時間330,並且T是整流後的電壓半正弦波的週期(例如,對於60Hz AC功率信號,週期T是1/(2×60Hz)=8.3ms)。在一個實施例中,功率因數控制器230包括一個或多個計數器,這些計數器被配置來(i)對週期T的長度進行計數和/或指示週期T的結束,和/或(ii)確定時間t的長度(例如,回應於“週期T的結束”指示來初始化對已知時間增量的計數,並且當開關240被關斷時,在ton的結束處終止計數)。 Further, as described above, t on is known calculation and / or a predetermined value for t off. However, node 216 need not be at the voltage V in at a given time to a known point, or a predetermined fixed value during the critical operation mode converter. Instead, V in can be calculated using known, (predetermined), fixed or reliably measurable and/or detectable parameter values. The rectified voltage at node 216 is still a half sine wave with a standard triangular relationship with other parameters. Thus, if the peak voltage V p are known at the node 216 and the half cycle of the sine wave, it can calculate the value of V in. Mathematically, V in = V p × sin(π t/T) [4] where t = t on plus time 330 from t 0 to t on , and T is the period of the rectified voltage half sine wave (eg For a 60 Hz AC power signal, the period T is 1/(2 x 60 Hz) = 8.3 ms). In one embodiment, power factor controller 230 includes one or more counters that are configured to (i) count the length of period T and/or indicate the end of period T, and/or (ii) determine the time length t (e.g., in response to "the end of a period T" indicates to initialize a count of the known time increment, and when the switch 240 is turned off, the terminal count at the end of t on).
如上所述,一般不希望在臨界模式中過早地導通開關240。然而,當Vout波動(例如,由於小的漣波)時和/或當未確定t的值時,可以早點導通開關240。結果,現在參考圖6,可以將小的時間量△t加到toff以提供一種緩衝,以防過早地導通開關240。因此,開關240在臨界模式中第二次導通的時間ts可以等於ton+toff+△t。或者,從功率因數控制器230的角度(見圖4),其中toff是開關240在給定導通/ 關斷週期中處於關斷狀態的實際時間長度,toff=[ton×Vin/(Vout-Vin)]+△t [5] As noted above, it is generally undesirable to turn on the switch 240 prematurely in the critical mode. However, when V out fluctuations (e.g., due to the small ripple) and / or when the value of t is not determined, the switch 240 may be turned on earlier. As a result, referring now to FIG. 6, a small amount of time Δt can be added to toff to provide a buffer to prevent the switch 240 from being turned on prematurely. Therefore, the time t s at which the switch 240 is turned on for the second time in the critical mode may be equal to t on +t off +Δt. Alternatively, the angle (see FIG. 4), wherein t off is the power factor controller 230 of switch 240 at a given on / off cycle the actual length in the OFF state, t off = [t on × V in / (V out -V in )]+△t [5]
在一個實施例中,操作的平均電流模式和臨界模式之間的轉變可以在數學上進行確定。現在參考圖7中的曲線圖,示出了兩個轉換時段,每個轉換時段在電壓半正弦波週期T的結束處的一側。圖7中示出的時間段τ有效地是升壓轉換器200處於臨界模式的半個週期時間。由於電壓半正弦波和電流波形I是關於時間=T軸對稱的,因此臨界模式時間有效地是2×τ。在從(T-τ)到(T+τ)的時間之外,升壓轉換器200處於平均電流模式。 In one embodiment, the transition between the average current mode of operation and the critical mode can be determined mathematically. Referring now to the graph in Fig. 7, two transition periods are shown, each of which is on one side of the end of the voltage half sine wave period T. The time period τ shown in Figure 7 is effectively half the cycle time of the boost converter 200 in the critical mode. Since the voltage half sine wave and the current waveform I are symmetrical about time = T axis, the critical mode time is effectively 2 × τ. The boost converter 200 is in an average current mode outside of the time from (T-τ) to (T+τ).
當升壓轉換器200處於臨界模式時,電流波形I與I0軸交叉。結果,ts(其在這個實施例中是開關240的導通/關斷週期的時間;請見圖4)需要長於ton+toff(其中,toff是當開關240關斷時,電流波形I達到I0所花的時間)。數學上,再次參考圖6,當(ton+toff)<ts時,則升壓轉換器200處於臨界模式中。相反,當(ton+toff)>ts時,則升壓轉換器200處於平均電流模式中。 When the boost converter 200 is in the critical mode, the current waveform I crosses the I 0 axis. As a result, t s (which in this embodiment is the on/off period of switch 240; see Figure 4) needs to be longer than t on +t off (where t off is the current waveform when switch 240 is turned off) The time it takes for I to reach I 0 ). Mathematically, referring again to Figure 6, when (t on + t off ) < t s , the boost converter 200 is in the critical mode. Conversely, when (t on + t off ) > t s , the boost converter 200 is in the average current mode.
本發明的主要方面涉及功率因數控制器,該功率因數控制器包括(a)一電路,該電路被配置來識別(i)週期性功率信號的週期,以及(ii)從電位被施加到功率轉換開關的週期的開始起的時間長度(例如,ton);(b)電壓計算器,該電壓計算器被配置來至少確定週期性功率信號的峰值電壓;以及(c)邏輯,該邏輯被配置來響應於(i)時間長度、(ii)功率信號週期以及(iii)峰值電壓而計算打開開關的 時間段。因此,本發明的功率因數控制器識別(i)功率信號週期以及(ii)功率轉換開關對功率轉換器充電的時間長度,確定週期性功率信號的峰值電壓,並且回應於(1)開關的“導通”時間、(2)功率信號週期以及(3)峰值電壓來計算功率轉換開關被關斷的時間段。在本發明的功率因數控制器的上下文中,術語“識別”可以指:為功率信號週期和/或時間長度ton接收和/或提供預定值,根據一個或多個其它參數值計算或運算這些值,或者使用傳統的用於實現這樣的目的的技術(例如,從已知的初始點或開始點到已知的結束點或終止點,對預定或已知長度的時間增量進行計數)來確定這些值。通常,週期性功率信號包括交流功率信號或整流後的AC功率信號。 A primary aspect of the invention relates to a power factor controller comprising (a) a circuit configured to identify (i) a period of a periodic power signal, and (ii) from a potential applied to a power conversion a length of time from the beginning of the cycle of the switch (eg, t on ); (b) a voltage calculator configured to determine at least a peak voltage of the periodic power signal; and (c) logic configured to be configured The time period during which the switch is turned on is calculated in response to (i) length of time, (ii) power signal period, and (iii) peak voltage. Thus, the power factor controller of the present invention identifies (i) the power signal period and (ii) the length of time that the power transfer switch charges the power converter, determines the peak voltage of the periodic power signal, and responds to (1) the switch " The "time", (2) power signal period, and (3) peak voltage are used to calculate the time period during which the power transfer switch is turned off. In the context of the power factor controller of the present invention, the term "identifying" may mean receiving and/or providing a predetermined value for a power signal period and/or a length of time t on , calculating or computing these based on one or more other parameter values. Value, or using traditional techniques for accomplishing such purposes (eg, counting from a known initial point or starting point to a known end or termination point, counting time increments of a predetermined or known length) Determine these values. Typically, the periodic power signal includes an AC power signal or a rectified AC power signal.
在各個實施例中,本發明的功率因素控制器還可以包括(a)電壓檢測器,被配置來確定功率轉換器的輸入處的零電壓;(b)一個或多個計數器,被配置來響應於來自電壓檢測器的指示零電壓的信號而發起對(i)功率信號週期和/或(ii)時間長度的計數;(c)比較器,被配置來比較功率信號電壓和第一參考電壓並向電壓計算器提供第一相對電壓值;(d)被配置來從功率轉換器的輸出(例如,從輸出電壓回饋信號)中減少或移除諧波雜訊的濾波器;以及/或者(e)被配置來從電流回饋信號中減少或移除雜訊的濾波器。 In various embodiments, the power factor controller of the present invention may further comprise (a) a voltage detector configured to determine a zero voltage at an input of the power converter; (b) one or more counters configured to respond Initiating a count of (i) a power signal period and/or (ii) a length of time from a signal indicative of zero voltage from a voltage detector; (c) a comparator configured to compare the power signal voltage to the first reference voltage and Providing a voltage calculator with a first relative voltage value; (d) a filter configured to reduce or remove harmonic noise from an output of the power converter (eg, from an output voltage feedback signal); and/or (e A filter configured to reduce or remove noise from the current feedback signal.
在其他實施例中,邏輯包括數位訊號處理器,並且/或者邏輯還被配置來計算包括開關的功率轉換器處於臨界模式時的(一個或多個)時間段,或者當包括開關的功率轉換器處於臨界模式時向開關施加電壓達預定時間段。因此,本發明的功率因數控制器可以處理一個或多 個數位信號(通常是多個這樣的信號,將參考圖8而更加詳細地說明)。結果,本發明的功率因數控制器還可以包括一個或多個(通常是多個)模數(A/D)轉換器,這些模數轉換器被配置來將輸入到功率因數控制器的類比信號轉換為要被功率因數控制器邏輯/數位訊號處理器處理的多位元數位信號。如在本領域中已知的,A/D轉換器中的位元數對應於其解析度;位元數越大,則解析度越高(並且晶片面積、所需的處理功率以及功率因數控制器的成本越大)。 In other embodiments, the logic includes a digital signal processor, and/or the logic is further configured to calculate a time period(s) when the power converter including the switch is in a critical mode, or when the power converter includes the switch Applying a voltage to the switch for a predetermined period of time while in the critical mode. Therefore, the power factor controller of the present invention can process one or more A digital signal (usually a plurality of such signals, which will be described in more detail with reference to Figure 8). As a result, the power factor controller of the present invention may also include one or more (typically a plurality of) analog-to-digital (A/D) converters configured to convert analog signals input to the power factor controller Converted to a multi-bit digital signal to be processed by the power factor controller logic/digital signal processor. As is known in the art, the number of bits in an A/D converter corresponds to its resolution; the larger the number of bits, the higher the resolution (and wafer area, required processing power, and power factor control). The cost of the device is larger).
圖8示出了根據本發明的示例性功率因數控制器400。功率因數控制器400一般包括比較器塊410、零電壓交叉定位器412、電壓計算器414、輸入A/D轉換器420和430、濾波器425和435、包括臨界模式控制器416的數位訊號處理器440、輸出數位類比(D/A)轉換器445以及輸出驅動器450,輸出驅動器450發送控制信號以打開或閉合功率轉換開關240(並且,如果要閉合開關240,則施加某個電位到開關240)。本發明主要集中於臨界模式控制器416及其輸入。 FIG. 8 shows an exemplary power factor controller 400 in accordance with the present invention. The power factor controller 400 generally includes a comparator block 410, a zero voltage cross locator 412, a voltage calculator 414, input A/D converters 420 and 430, filters 425 and 435, and digital signal processing including a critical mode controller 416. 440, an output digital analog (D/A) converter 445, and an output driver 450, the output driver 450 sends a control signal to turn the power transfer switch 240 on or off (and, if the switch 240 is to be closed, apply a certain potential to the switch 240) ). The present invention focuses primarily on critical mode controller 416 and its inputs.
比較器塊410從AC電力線212接收週期性(AC)功率信號。在給出來自AC電力線212的信號和其經整流後的信號(例如,圖4中的整流後的AC功率信號216)之間的已知關係的情況下,本領域技術人員可以容易地根據AC電力線212執行上述計算,同時避免整流器210可能向功率轉換處理引入的任何等待時間。比較器塊410可以包括具有兩個或更多個比較器的比較器塊,其中,第一和第二個體比較器將AC電力線212上的電壓分別與第一和第二參考電壓進行比較,第一和第二參考電壓彼此不同。 Comparator block 410 receives a periodic (AC) power signal from AC power line 212. Given the known relationship between the signal from the AC power line 212 and its rectified signal (eg, the rectified AC power signal 216 in FIG. 4), those skilled in the art can readily follow the AC. Power line 212 performs the above calculations while avoiding any latency that rectifier 210 may introduce to the power conversion process. The comparator block 410 can include a comparator block having two or more comparators, wherein the first and second individual comparators compare the voltage on the AC power line 212 with the first and second reference voltages, respectively The one and second reference voltages are different from each other.
在一種實現方式中,比較器塊410中的第一比較器將AC電力線212上的電壓與值為零伏(0V)的參考電壓相比較,隨後將比較輸出411提供給零電壓交叉定位器412,零電壓交叉定位器412回應於比較結果而向臨界模式控制器416發送適當的資訊和/或控制信號。第一比較器的輸出411可以是類比的或數位的,但是零電壓交叉定位器412的輸出413通常是數位的。設計和實現具有這些功能的邏輯明顯在本領域技術人員的能力範圍之內。例如,當輸出411是類比的時,零電壓交叉定位器412通常包括A/D轉換器並且輸出413是載有與AC電力線412上的電壓相對於0V的值有關的資訊的多位元數位信號。然而,當輸出411是數字的(即第一比較器識別了AC電壓212何時是0V或不是0V)時,零電壓交叉定位器412通常包括控制邏輯並且輸出413是單一或多位元數位信號,該數位信號被配置來指示臨界模式控制器416中的各個電路和/或邏輯響應於AC電壓212處於0V而執行(或停止執行)一個或多個功能。 In one implementation, the first comparator in comparator block 410 compares the voltage on AC power line 212 to a reference voltage of zero volt (0V) and then provides comparison output 411 to zero voltage cross locator 412. The zero voltage cross locator 412 sends appropriate information and/or control signals to the critical mode controller 416 in response to the comparison. The output 411 of the first comparator can be analog or digital, but the output 413 of the zero voltage cross locator 412 is typically digital. It is apparent that the logic for designing and implementing these functions is within the abilities of those skilled in the art. For example, when output 411 is analogous, zero voltage cross locator 412 typically includes an A/D converter and output 413 is a multi-bit digital signal carrying information relating to the value of the voltage on AC power line 412 with respect to 0V. . However, when the output 411 is digital (ie, the first comparator identifies when the AC voltage 212 is 0V or not 0V), the zero voltage cross locator 412 typically includes control logic and the output 413 is a single or multi-bit digital signal, The digital signal is configured to instruct various circuits and/or logic in critical mode controller 416 to perform (or stop executing) one or more functions in response to AC voltage 212 being at 0V.
在另一實現方式中,比較器塊410中的第二比較器是傳統的峰值檢測器,其被配置來逐週期地(例如AC功率信號週期或整流後的AC信號半週期)確定AC電力線212上的最大電壓,隨後向電壓計算器414提供輸出415,電壓計算器414回應於峰值檢測器輸出415而向臨界模式控制器416發送適當的資訊和/或控制信號。第二比較器的輸出415可以是類比的或數位的,但是電壓計算器414的輸出417通常是數位的。設計和實現具有這些功能的邏輯明顯在本領域技術人員的能力範圍之內。例如,當輸出415是類比的時,電壓計算器414通常 包括A/D轉換器並且輸出417是載有與AC電力線212上的峰值電壓的值有關的資訊的多位元數位信號。然而,當輸出415是數字的(即,第二比較器將AC電力線212的電壓和多個參考電壓進行比較,並提供識別峰值電壓所在的電壓範圍的多位元數位輸出)時,電壓計算器414通常包括控制邏輯並且輸出417是單一或多位元數位信號,該數位信號被配置來指示臨界模式控制器416中的各個電路和/或邏輯響應於AC電力線212上的峰值AC電壓的變化而調整、執行或停止執行一個或多個功能。 In another implementation, the second comparator in comparator block 410 is a conventional peak detector configured to determine AC power line 212 on a cycle-by-cycle basis (eg, an AC power signal period or a rectified AC signal half-cycle). The upper maximum voltage is then provided to the voltage calculator 414 for output 415, which in response to the peak detector output 415 sends the appropriate information and/or control signals to the critical mode controller 416. The output 415 of the second comparator can be analog or digital, but the output 417 of the voltage calculator 414 is typically digital. It is apparent that the logic for designing and implementing these functions is within the abilities of those skilled in the art. For example, when output 415 is analogous, voltage calculator 414 is typically An A/D converter is included and output 417 is a multi-bit digital signal carrying information related to the value of the peak voltage on AC power line 212. However, when the output 415 is digital (ie, the second comparator compares the voltage of the AC power line 212 with a plurality of reference voltages and provides a multi-bit digital output that identifies the voltage range over which the peak voltage is located), the voltage calculator 414 typically includes control logic and output 417 is a single or multi-bit digital signal that is configured to indicate that various circuits and/or logic in critical mode controller 416 are responsive to changes in peak AC voltage on AC power line 212. Adjust, execute, or stop performing one or more functions.
臨界模式控制器416被配置來運算或計算至少以下兩項:根據峰值電壓(Vp)以及開關240在臨界模式中導通的時間長度(ton)來計算功率信號輸入電壓(例如Vin);以及當包括電感220的功率轉換器(和/或以其他方式與開關240電通信)處於臨界模式時,根據Vin、Vout和ton來計算開關240在其期間關斷的時間段(例如上述的toff)。 The critical mode controller 416 is configured to calculate or calculate at least two of: calculating a power signal input voltage (eg, V in ) based on a peak voltage (V p ) and a length of time (t on ) at which the switch 240 is turned on in the critical mode; and 240 during which the turn-off time period when (and / or 240 in electrical communication otherwise the switch) when includes an inductor 220 of the power converter is in a critical mode, according to V in, V out, and t on is calculated switch (e.g. The above t off ).
因此,臨界模式控制器416一般被配置來根據以下各項來計算Vin:AC電力線212上的峰值AC電壓(由電壓計算器414的輸出417提供)、AC功率信號的半週期(等同於整流後的AC功率信號的週期並且等於當AC電力線212上的電壓=0V的點之間的時間差,並且是由零電壓交叉定位器412的輸出413所提供的資訊)、以及從AC電力線212上的AC電壓=0V時到ton結束時的時間段。如上所述,ton是預定的時間長度,其可以被程式設計到數位訊號處理器440(或者控制器440中的別處)中的記憶體單元中,或者傳統地可以由數位訊號處理器440響應於一個或多個適當的輸入(例如,來自AC電力線 212的電流或電壓輸入、來自節點272的輸出電壓Vout和/或回饋電流節點234處的功率轉換回饋,等等)來進行計算、運算或確定。 Thus, critical mode controller 416 is generally configured to calculate V in according to the following: peak AC voltage on AC power line 212 (provided by output 417 of voltage calculator 414), half cycle of AC power signal (equivalent to rectification) The period of the subsequent AC power signal is equal to the time difference between the points when the voltage on the AC power line 212 is at voltage = 0V, and is the information provided by the output 413 of the zero voltage cross locator 412), and from the AC power line 212. The time period from the AC voltage = 0V to the end of t on . As noted above, t on is a predetermined length of time that can be programmed into a memory unit in digital signal processor 440 (or elsewhere in controller 440) or traditionally can be responded to by digital signal processor 440. to one or more suitable input (e.g., current or voltage input from the AC power line 212, the output voltage V out from the node 272 and / or a current feedback node of the power converter 234 feedback, etc.) to be calculated, the arithmetic Or OK.
數位訊號處理器440還接收(1)對應於節點272處的功率轉換器輸出電壓回饋信號的、來自濾波器425的經濾波的多位元數位信號,以及(2)對應於回饋電流節點234的、來自濾波器435的經濾波的多位元數位信號。濾波器425可以是陷波濾波器。這些電路塊和信號是傳統的,並且通常執行其(一個或多個)傳統功能。然而,本發明的一個意料之外的優點在於A/D轉換器420和430(尤其是430)可以具有比傳統升壓轉換器中的相應A/D轉換器更低的解析度。這一般是因為本發明的使toff最小化的計算方法不取決於來自直流輸出Vout或回饋電流節點234的、用於試圖精確測量零電流流經電感220的那些週期的高解析度資訊。同樣如上所述,可以將緩衝時段△t加到toff,以部分地容納或允許測量某些參數時的小的潛在精度誤差,這些參數例如是Vp、Vout、t、T和/或(當需要或希望時)ton。 Digital signal processor 440 also receives (1) a filtered multi-bit digital signal from filter 425 corresponding to the power converter output voltage feedback signal at node 272, and (2) corresponding to feedback current node 234. Filtered multi-bit digital signal from filter 435. Filter 425 can be a notch filter. These circuit blocks and signals are conventional and typically perform their traditional function(s). However, an unexpected advantage of the present invention is that A/D converters 420 and 430 (especially 430) can have lower resolution than corresponding A/D converters in conventional boost converters. This is generally because the method of calculation for t off is minimized invention does not depend on V out output from the DC current node 234 or reserved for those attempting to accurately measure the periodic zero current flowing through the inductor 220 of the high resolution information. As also described above, the buffering period Δt can be added to t off to partially accommodate or allow small potential precision errors in measuring certain parameters, such as V p , V out , t, T, and/or (when needed or desired) t on .
數位訊號處理器440向D/A轉換器445輸出多位元數位信號,D/A轉換器445將該多位元數位信號轉換為指示輸出驅動器450打開或閉合開關240的類比信號。如果開關240要被閉合,則由驅動器450接收的類比信號通知驅動器450向開關240的柵極施加什麼電位。或者,輸出驅動器450可以包括多個並行的驅動器電路,每個驅動器電路接收數位訊號處理器440輸出的多位元數位信號的一位元,由此避免對D/A轉換器445的需求。 The digital signal processor 440 outputs a multi-bit digital signal to the D/A converter 445, which converts the multi-bit digital signal into an analog signal that instructs the output driver 450 to open or close the switch 240. If switch 240 is to be closed, the analog signal received by driver 450 informs driver 450 what potential to apply to the gate of switch 240. Alternatively, the output driver 450 can include a plurality of parallel driver circuits, each of which receives a bit of a multi-bit digital signal output by the digital signal processor 440, thereby avoiding the need for the D/A converter 445.
本發明還涉及控制功率轉換器的方法,該方法包括以下步驟:(a)響應于向與功率轉換器電通信的開關施加電位,將來自週期性功率信號的能量存儲在功率轉換器中;(b)根據以下參數計算打開開關的時間段(例如toff):(i)電位被施加到開關上的初始時間長度(例如ton)、(ii)週期性功率信號的週期(例如T)以及(iii)週期性功率信號的峰值電壓(例如Vp);以及(c)在該時間段期間打開開關。關於以上對硬體的描述,取決於設計選擇和/或考慮,週期性功率信號可以包括交流功率信號或整流後的AC功率信號。能量通常在來自整流後AC功率信號的電流流經電感時被存儲在電感中,並且電流一般在開關被閉合時流經電感。當開關打開時,能量通常不存儲在升壓轉換器(電感)中。 The invention further relates to a method of controlling a power converter, the method comprising the steps of: (a) storing energy from a periodic power signal in a power converter in response to applying a potential to a switch in electrical communication with the power converter; b) calculating the time period (eg, t off ) at which the switch is turned on according to the following parameters: (i) the initial time length at which the potential is applied to the switch (eg, t on ), (ii) the period of the periodic power signal (eg, T), and (iii) the peak voltage (e.g., V p) a periodic power signal; and (c) opening the switch during the time period. With regard to the above description of the hardware, the periodic power signal may include an AC power signal or a rectified AC power signal, depending on design choices and/or considerations. The energy is typically stored in the inductor when current from the rectified AC power signal flows through the inductor, and the current typically flows through the inductor when the switch is closed. When the switch is turned on, energy is typically not stored in the boost converter (inductor).
在各個實施例中,該方法還可以包括以下(一個或多個)步驟:(1)確定在功率轉換器的輸入處的零電壓;(2)回應於零電壓指示來對(i)功率信號週期和/或(ii)時間長度進行計時、識別或確定;(3)確定週期性功率信號的峰值電壓;(4)計算功率轉換器處於臨界模式時的時間段或者以其他方式識別功率轉換器何時處於臨界模式;(5)從功率轉換器的輸出中濾掉諧波雜訊;以及/或者(6)從電流回饋信號濾掉雜訊。這些額外步驟中的每個步驟一般是利用被配置來執行、實施或實現該步驟的相應硬體來如上所述地執行的。 In various embodiments, the method may further comprise the steps of (1) determining a zero voltage at an input of the power converter; (2) responding to the zero voltage indication to (i) the power signal Cycle and/or (ii) length of time to time, identify or determine; (3) determine the peak voltage of the periodic power signal; (4) calculate the time period when the power converter is in critical mode or otherwise identify the power converter When in critical mode; (5) filtering out harmonic noise from the output of the power converter; and/or (6) filtering out noise from the current feedback signal. Each of these additional steps is typically performed as described above using a corresponding hardware configured to execute, implement or implement the steps.
在某些實施例中,確定峰值電壓的步驟可以包括:比較週期性功率信號的電壓與第一參考電壓,對比較步驟的輸出進行採樣以生成多個功率信號電壓採樣,以及確定最大功率信號電壓採樣值,其中峰值 電壓對應於該最大功率信號電壓採樣值。而且,本發明的方法一般還包括以下步驟:當功率轉換器處於臨界模式時,向開關施加電位達預定時間段。 In some embodiments, the step of determining a peak voltage can include comparing a voltage of the periodic power signal with a first reference voltage, sampling an output of the comparing step to generate a plurality of power signal voltage samples, and determining a maximum power signal voltage Sampled value, where the peak The voltage corresponds to the maximum power signal voltage sample value. Moreover, the method of the present invention generally further includes the step of applying a potential to the switch for a predetermined period of time when the power converter is in the critical mode.
本發明還包括在設置有傳統的數位訊號處理器的通用電腦或工作站中可實現和/或可執行的演算法、(一個或多個)電腦程式和/或軟體,它們被配置來執行方法的一個或多個步驟和/或硬體一個或多個操作。因此,本發明的另一個方面涉及實現上述(一個或多個)方法的演算法和/或軟體。例如,本發明還可以涉及包含一組指令的電腦程式、電腦可讀介質或波形,這組指令在被適當的處理設備(例如,諸如微控制器、微處理器或DSP設備之類的信號處理設備)執行時被配置來執行上述方法和/或演算法。 The present invention also includes an algorithm and/or computer program(s) and/or software executable and/or executable in a general purpose computer or workstation provided with a conventional digital signal processor, configured to perform the method. One or more steps and/or hardware one or more operations. Accordingly, another aspect of the invention relates to algorithms and/or software implementing the method(s) described above. For example, the invention may also relate to a computer program, computer readable medium or waveform comprising a set of instructions that are processed by a suitable processing device (eg, a signal such as a microcontroller, microprocessor or DSP device) The device) is configured to perform the above methods and/or algorithms when executed.
例如,電腦程式可以在任何種類的可讀介質上,並且電腦可讀介質可以包括可以被處理設備讀取的任何介質,該處理設備被配置來讀取介質並執行存儲在其上或其中的代碼,所述介質例如是軟碟、CD-ROM、磁帶或硬碟驅動器。這種代碼可以包括目標代碼、原始程式碼和/或二進位碼。 For example, the computer program can be on any kind of readable medium, and the computer readable medium can include any medium that can be read by the processing device, the processing device being configured to read the medium and execute code stored thereon or therein The medium is, for example, a floppy disk, a CD-ROM, a tape or a hard disk drive. Such code may include object code, source code, and/or binary code.
所述波形通常被配置用於通過適當的介質傳輸,適當的介質例如是銅線、傳統的雙絞線線路、傳統的網路電纜、傳統的光學資料傳輸電纜或者甚至用於無線信號傳輸的空氣或真空(例如,外太空)。用於實現本發明的(一個或多個)方法的波形和/或代碼通常是數位的,並且通常被配置用於由傳統數位資料處理器(例如,微處理器、微控制 器或邏輯電路,諸如可程式設計閘陣列、可程式設計邏輯電路/器件或專用[集成]電路)進行處理。 The waveform is typically configured for transmission over a suitable medium such as copper wire, conventional twisted pair wiring, conventional network cable, conventional optical data transmission cable, or even air for wireless signal transmission. Or vacuum (for example, outer space). The waveforms and/or codes used to implement the method(s) of the present invention are typically digital and are typically configured for use by conventional digital data processors (eg, microprocessors, micro-controls) Or logic circuits, such as programmable gate arrays, programmable logic circuits/devices, or dedicated [integrated] circuits.
在各個實施例中,電腦可讀介質或波形包括至少一條指令(或指令的子集)以便(a)回應於週期性功率信號上的零電壓的指示來對與(i)功率信號週期和/或(ii)時間長度相對應的預定時間單位元數目;(b)確定(例如,運算或計算)峰值電壓;和/或(c)確定和/或指示(例如,通過計算相應時間段)功率轉換器何時處於臨界模式。在一種實現方式中,確定峰值電壓的(一個或多個)指令包括用於進行以下操作的至少一個指令子集:(i)對週期性功率信號電壓和參考電壓的比較的輸出進行採樣,(ii)存儲多個功率信號電壓採樣,以及(iii)確定最大功率信號電壓採樣值,其中峰值電壓對應於該最大功率信號電壓採樣值。 In various embodiments, the computer readable medium or waveform includes at least one instruction (or a subset of instructions) to (a) respond to (i) the power signal period and/or in response to an indication of zero voltage on the periodic power signal. Or (ii) a predetermined number of time units corresponding to the length of time; (b) determining (eg, computing or calculating) a peak voltage; and/or (c) determining and/or indicating (eg, by calculating a corresponding time period) power When is the converter in critical mode? In one implementation, the instruction(s) determining the peak voltage includes at least one subset of instructions for: (i) sampling the output of the comparison of the periodic power signal voltage and the reference voltage, ( Ii) storing a plurality of power signal voltage samples, and (iii) determining a maximum power signal voltage sample value, wherein the peak voltage corresponds to the maximum power signal voltage sample value.
因此,本發明提供一種用於控制功率轉換和/或校正和/或控制這樣的(一個或多個)轉換中的功率因數的電路、系統、方法和軟體。電路通常包括功率因數控制器,該功率因數控制器包括(a)一電路,被配置來確定和/或識別(i)週期性功率信號的週期以及(ii)從電位被施加到功率轉換開關的週期的開始時起的時間長度;(b)電壓計算器,該電壓計算器被配置來至少確定週期性功率信號的峰值電壓;以及(c)被配置來回應於(i)時間長度、(ii)功率信號週期以及(iii)峰值電壓而計算打開開關的時間段。系統通常包括該功率因數控制器和其控制的開關,但是本發明的系統方面還涉及包括該功率因數控制器、開關和電感的功率轉換器,該電感被配置來存儲來自週期性功率 信號的能量。 Accordingly, the present invention provides a circuit, system, method and software for controlling power conversion and/or correcting and/or controlling power factor in such conversion(s). The circuit typically includes a power factor controller including (a) a circuit configured to determine and/or identify (i) a period of the periodic power signal and (ii) a potential applied to the power conversion switch The length of time from the start of the cycle; (b) a voltage calculator configured to determine at least a peak voltage of the periodic power signal; and (c) configured to respond to (i) the length of time, (ii) The power signal period and (iii) the peak voltage are used to calculate the time period during which the switch is turned on. The system typically includes the power factor controller and its controlled switches, but the system aspect of the invention also relates to a power converter including the power factor controller, switches and inductors configured to store from periodic power The energy of the signal.
方法通常包括以下步驟:(1)響應于向與功率轉換器電通信的開關施加電位,將來自週期性功率信號的能量存儲在功率轉換器中;(2)根據以下參數來計算打開開關的時間段:(i)電位被施加到開關上的初始時間長度,(ii)週期性功率信號的週期,以及(iii)週期性功率信號的峰值電壓;以及(3)在該時間段期間打開開關。軟體通常包括適於執行該方法的一組指令。 The method generally includes the steps of: (1) storing energy from a periodic power signal in a power converter in response to applying a potential to a switch in electrical communication with the power converter; (2) calculating a time to open the switch based on the following parameters Segment: (i) the initial length of time that the potential is applied to the switch, (ii) the period of the periodic power signal, and (iii) the peak voltage of the periodic power signal; and (3) the switch is turned on during the time period. The software typically includes a set of instructions suitable for performing the method.
本發明通常採用一種計算方法來使功率轉換操作的臨界模式中的零電流時段減小和/或最小化,並且有利地將臨界模式中的零電流時段減小到合理的和/或可容忍的最小值,由此使臨界模式中功率轉換器的功率因數最大化並且減小可能被注入回AC電力線的雜訊。本發明的功率因數控制器允許更大的設計靈活性、降低的設計複雜性,和/或降低的解析度和/或在某些參數測量或採樣中的更大的誤差容限。 The present invention generally employs a computational method to reduce and/or minimize zero current periods in a critical mode of power conversion operation, and advantageously reduce the zero current period in the critical mode to a reasonable and/or tolerable The minimum, thereby maximizing the power factor of the power converter in the critical mode and reducing the noise that may be injected back into the AC power line. The power factor controller of the present invention allows for greater design flexibility, reduced design complexity, and/or reduced resolution and/or greater margin of error in certain parameter measurements or samples.
現在參考圖9,一種替代的功率因數控制模組500切換升壓轉換器的模式。在一些實現方式中,功率因數控制模組500可以在電力線輸入信號的零交叉期間將模式從連續模式切換到不連續模式和/或從不連續模式切換到連續模式。 Referring now to Figure 9, an alternative power factor control module 500 switches the mode of the boost converter. In some implementations, the power factor control module 500 can switch modes from a continuous mode to a discontinuous mode and/or from a discontinuous mode to a continuous mode during a zero crossing of the power line input signal.
功率因數控制模組500包括相位檢測模組504,相位檢測模組504確定輸入信號的相位θ。相位檢測模組504可以包括檢測輸入信號電壓的零交叉的零交叉模組508。相位檢測模組504可以基於零交叉來確定輸入信號的相位θ。換言之,當發生零交叉時,輸入信號的相位θ可以是0°或180°。還可以基於輸入信號的峰值電壓來確定輸入信號的相位 θ,峰值電壓可以出現在90°和270°。 The power factor control module 500 includes a phase detection module 504 that determines the phase θ of the input signal. Phase detection module 504 can include a zero crossing module 508 that detects zero crossings of the input signal voltage. Phase detection module 504 can determine the phase θ of the input signal based on the zero crossing. In other words, when a zero crossing occurs, the phase θ of the input signal can be 0° or 180°. It is also possible to determine the phase of the input signal based on the peak voltage of the input signal. θ, the peak voltage can appear at 90° and 270°.
同樣地,輸入信號的週期T可以由相位檢測模組504來確定。換言之,輸入信號的週期T的一半可以等於兩個零交叉之間或兩個峰值電壓之間的時段。或者,如果週期T已知則可以將週期T設為恒定值。 Similarly, the period T of the input signal can be determined by the phase detection module 504. In other words, half of the period T of the input signal can be equal to the period between two zero crossings or between two peak voltages. Alternatively, the period T can be set to a constant value if the period T is known.
功率因數控制模組500還可以包括峰值電壓確定模組512,峰值電壓確定模組512確定輸入信號的峰值電壓。峰值電壓確定模組512可以對輸入電壓進行採樣和保持以識別峰值電壓。換言之,採樣保持持續到採樣值相對於在前值有所下降為止。可以使用其它技術來識別峰值電壓的定時和/或幅度。峰值電壓確定模組512可以將峰值電壓Vp輸出到相位檢測模組504以說明估計輸入信號的相位θ。 The power factor control module 500 can also include a peak voltage determination module 512 that determines the peak voltage of the input signal. Peak voltage determination module 512 can sample and maintain the input voltage to identify the peak voltage. In other words, the sample hold continues until the sample value has decreased relative to the previous value. Other techniques can be used to identify the timing and/or amplitude of the peak voltage. Peak voltage determining module 512 outputs a peak voltage V p to the phase detector module may be 504 to indicate the estimated phase θ of the input signal.
功率因數控制模組500還可以包括開關控制模組516,開關控制模組516控制開關的狀態以及開關的切換頻率。相位檢測模組504可以將電力線輸入信號的週期T、相位θ和/或零交叉信號輸出到開關控制模組516。峰值電壓確定模組512可以將電力線輸入信號的諸如幅度之類的峰值電壓信號Vp和/或定時輸出到開關控制模組516。 The power factor control module 500 can also include a switch control module 516 that controls the state of the switch and the switching frequency of the switch. The phase detection module 504 can output the period T, the phase θ, and/or the zero-crossing signal of the power line input signal to the switch control module 516. Peak voltage determination module 512 may be a signal such as a peak voltage amplitude of the power line input signal V p and / or timing to the switch control module 516.
開關控制模組516還可以包括模式控制模組520,模式控制模組520選擇升壓轉換器的模式。例如,模式可以被設置為連續模式、不連續模式或臨界模式。模式控制模組520還可以被佈置在開關控制模組516外部和/或與功率因數控制模組500的另一模組結合。 The switch control module 516 can also include a mode control module 520 that selects the mode of the boost converter. For example, the mode can be set to continuous mode, discontinuous mode, or critical mode. The mode control module 520 can also be disposed external to the switch control module 516 and/or coupled to another module of the power factor control module 500.
模式控制模組520可以基於所感測到的操作參數來選擇模式並確定是否切換模式。僅作為示例,模式控制模組520可以基於零交叉信號來確定何時將模式從連續模式切換到不連續模式或從不連續模式切 換到連續模式。僅作為示例,可以在電力線零交叉的預定時段內進行切換。然而,模式之間的切換也可以發生在電力線輸入信號的不同相位位置處(除了在電力線輸入信號電壓的零交叉處切換之外,或者代替在電力線輸入信號電壓的零交叉處切換)。在這些時間也可以進行從連續模式或不連續模式到臨界模式的切換。 The mode control module 520 can select a mode based on the sensed operational parameters and determine whether to switch modes. For example only, the mode control module 520 may determine when to switch the mode from the continuous mode to the discontinuous mode or from the discontinuous mode based on the zero crossing signal. Switch to continuous mode. For example only, switching may be performed within a predetermined time period of the power line zero crossing. However, switching between modes can also occur at different phase positions of the power line input signal (except for switching at the zero crossing of the power line input signal voltage, or instead of switching at the zero crossing of the power line input signal voltage). Switching from continuous mode or discontinuous mode to critical mode can also be performed at these times.
模式控制模組520可以基於零交叉信號、相位和/或其它所感測到的操作參數,來生成用於將模式從連續模式切換到不連續模式或從不連續模式切換到連續模式的控制信號。基於所選擇的模式,開關控制模組516還選擇開關的頻率。 The mode control module 520 can generate control signals for switching modes from continuous mode to discontinuous mode or from discontinuous mode to continuous mode based on zero crossing signals, phases, and/or other sensed operational parameters. Based on the selected mode, the switch control module 516 also selects the frequency of the switch.
開關控制模組516可以包括導通時間模組524,導通時間模組524如這裡所述地為開關240設置導通時段ton。導通時段ton可以是恒定值或可調節的。開關控制模組516可以包括關斷時間模組528,關斷時間模組528如這裡所述地為開關240設置關斷時段toff。 The switch control module 516 can include an on-time module 524 that sets the on-time t on for the switch 240 as described herein. The on period t on can be constant or adjustable. The switch control module 516 can include an off time module 528 that sets the switch 240 to an off period t off as described herein.
現在參考圖10A,一種用於調節升壓轉換器的切換頻率的方法550在步驟552開始。在步驟554中,控制判斷是否存在所請求的操作模式改變。如果步驟554的判斷結果為假,則控制返回步驟554。如果步驟554的判斷結果為真,則控制繼續步驟556並判斷是否已經選擇了連續模式。如果已經選擇了連續模式,則控制在步驟560中將切換頻率設置為大於臨界切換頻率fc。 Referring now to FIG. 10A, a method 550 for adjusting the switching frequency of a boost converter begins at step 552. In step 554, control determines if there is a requested mode of operation change. If the result of the determination in step 554 is false, then control returns to step 554. If the result of the determination in step 554 is true, then control continues with step 556 and determines if the continuous mode has been selected. If a continuous mode has been selected, the switching frequency control is provided in step 560 is greater than the critical switching frequency f c.
如果步驟556的判斷結果為假,則控制在步驟564中判斷不連續模式是否已經被選擇。如果步驟564的判斷結果為真,則控制在步驟568中將切換頻率設置為小於臨界切換頻率fc。如果步驟564的判斷結 果為假,則在步驟572中控制預設為臨界模式並且將切換頻率設置為等於臨界切換頻率fc。 If the result of the determination in step 556 is false, then control determines in step 564 whether the discontinuous mode has been selected. If the determination result of step 564 is true, then in step 568 controls the switching frequency of the switching frequency f c is set smaller than the critical. If the determination result of step 564 is false, control preset in the critical mode in step 572 and the switching frequency is set equal to the critical switching frequency f c.
可以理解,可以在任何時間執行模式之間的切換。在一些實現方式中,可以如圖10A所示的那樣設置切換頻率並且可以在功率輸入信號的週期期間的任何時間執行切換。在一些實現方式中,可以如圖10A所示的那樣設置切換頻率並且可以如圖10B所示地在電壓零交叉處執行切換。 It will be appreciated that switching between modes can be performed at any time. In some implementations, the switching frequency can be set as shown in FIG. 10A and the switching can be performed at any time during the period of the power input signal. In some implementations, the switching frequency can be set as shown in FIG. 10A and switching can be performed at the voltage zero crossing as shown in FIG. 10B.
現在參考圖10B,一種在電壓零交叉處切換升壓轉換器的模式的方法600在步驟602開始。在步驟606,模式控制模組可以基於諸如Vout、負載狀況和/或其它操作參數之類的操作條件來選擇模式(例如,連續模式、臨界模式或不連續模式)。在步驟608中,控制判斷模式控制模組520是否請求模式改變。例如,模式可以從連續模式、臨界模式或不連續模式中的一個改變為連續模式、臨界模式或不連續模式中的另一個。 Referring now to FIG. 10B, a method 600 of switching the mode of the boost converter at a voltage zero crossing begins at step 602. In step 606, the mode control module may be based on such V out, load condition and / or operating conditions of other operating parameters such mode is selected (e.g., continuous mode or discontinuous mode critical mode). In step 608, control determines whether the mode control module 520 requests a mode change. For example, the mode may be changed from one of the continuous mode, the critical mode, or the discontinuous mode to the other of the continuous mode, the critical mode, or the discontinuous mode.
在步驟610,模式控制模組520判斷零交叉模組508是否檢測到零交叉。如果步驟610的結果為假,則模式控制模組520等待,直到零交叉模組檢測到零交叉為止。如果步驟610的結果為真,則在步驟614中模式控制模組520將模式切換到所選擇的模式。 At step 610, mode control module 520 determines if zero crossing module 508 has detected a zero crossing. If the result of step 610 is false, mode control module 520 waits until the zero crossing module detects a zero crossing. If the result of step 610 is true, then in step 614 mode control module 520 switches the mode to the selected mode.
連續模式中的切換頻率可以大於不連續模式中的切換頻率。具體而言,連續模式中的切換頻率是基於包括以下各項的因素確定的:升壓轉換器的額定功率、所估計的負載以及部件(僅作為示例,電感220和電容器/濾波器260)的值。 The switching frequency in the continuous mode may be greater than the switching frequency in the discontinuous mode. In particular, the switching frequency in continuous mode is determined based on factors including: the rated power of the boost converter, the estimated load, and the components (by way of example only, inductor 220 and capacitor/filter 260) value.
僅作為示例,連續模式中的切換頻率可以在500KHz和2MHz之間。僅作為示例,連續模式中的切換頻率可以是1MHz。不連續模式中的切換頻率可以基於所估計的負載電流或者與所估計的負載電流成比例。 For example only, the switching frequency in continuous mode may be between 500 KHz and 2 MHz. For example only, the switching frequency in continuous mode may be 1 MHz. The switching frequency in the discontinuous mode may be based on the estimated load current or proportional to the estimated load current.
現在參考圖11,開關控制模組516可以基於電力線輸入信號的相位來設置切換頻率。具體而言,切換頻率在連續模式中可以大於臨界切換頻率(閥值頻率)fc,而在不連續模式中可以小於臨界切換頻率fc。臨界切換頻率fc可以由下式給出:fc=0.25×(Vp 2)×(1-Vp×sin(θ)/Vo)/(Po×L)其中,Vp=1.44×VRMS是電力線輸入信號的峰值電壓(例如,當VRMS=110伏時Vp=144伏),Vo是升壓轉換器的輸出電壓,Po是升壓轉換器的輸出功率,L是電感值,並且θ是電力線輸入信號的相位。 Referring now to Figure 11, the switch control module 516 can set the switching frequency based on the phase of the power line input signal. In particular, the switching frequency may be greater than the critical switching frequency (threshold frequency) f c in the continuous mode and may be less than the critical switching frequency f c in the discontinuous mode. The critical switching frequency f c can be given by: f c = 0.25 × (V p 2 ) × (1 - V p × sin(θ) / V o ) / (P o × L) where V p = 1.44 ×V RMS is the peak voltage of the power line input signal (for example, V p = 144 volts when V RMS = 110 volts), V o is the output voltage of the boost converter, and P o is the output power of the boost converter, L Is the inductance value, and θ is the phase of the power line input signal.
臨界切換頻率fc的最大值可以由下式給出:fmax=0.25×(Vp 2)/(Po×L)因此,臨界切換頻率fc可以表示為fmax和頻率比fratio的積,如下:fc=fmax×fratio其中,fratio是切換頻率與臨界切換頻率最大值的比,並由下式給出:fratio=(1-Vp×sin(θ)/Vo)。 The maximum value of the critical switching frequency f c can be given by: f max = 0.25 × (V p 2 ) / (P o × L) Therefore, the critical switching frequency f c can be expressed as f max and frequency ratio f ratio The product is as follows: f c =f max ×f ratio where f ratio is the ratio of the switching frequency to the maximum value of the critical switching frequency and is given by: f ratio = (1-V p × sin(θ)/V o ).
對本發明的具體實施例的上述描述是為了說明和描述的目的而給出的。這些描述不意圖是詳盡的或者將本發明限制為所公開的精確形式,而且顯然可以根據上述教導進行許多修改和變更。選擇和描述實施例是為了最好地說明本發明的原理及其實踐應用,由此使得本領域 的其他技術人員能夠最好地利用本發明以及各種實施例,這些實施例具有適合於所考慮的特定用途的各種修改。希望由在此所附的權利要求及其等同物來限定本發明的範圍。 The above description of specific embodiments of the invention has been presented for purposes of illustration and description. The descriptions are not intended to be exhaustive or to limit the invention to the precise form disclosed. The embodiments were chosen and described in order to best explain the principles of the invention Other skilled artisans are able to best utilize the invention, as well as various embodiments, which have various modifications that are suitable for the particular use contemplated. It is intended that the scope of the invention be defined by the claims
10‧‧‧升壓轉換器 10‧‧‧Boost Converter
12‧‧‧AC電壓感測輸入 12‧‧‧AC voltage sensing input
15‧‧‧整流器 15‧‧‧Rectifier
20‧‧‧電感 20‧‧‧Inductance
22‧‧‧電流 22‧‧‧ Current
25‧‧‧第二電感線圈 25‧‧‧second inductor coil
30‧‧‧功率因素控制器 30‧‧‧Power factor controller
34‧‧‧節點 34‧‧‧ nodes
40‧‧‧開關 40‧‧‧ switch
50‧‧‧二極體 50‧‧‧ diode
60‧‧‧電容器/濾波器 60‧‧‧ capacitors/filters
200‧‧‧升壓轉換器 200‧‧‧Boost Converter
210‧‧‧四路整流器 210‧‧‧ four-way rectifier
212‧‧‧電力線 212‧‧‧Power line
214‧‧‧電力線 214‧‧‧Power line
216‧‧‧節點 216‧‧‧ nodes
220‧‧‧電感 220‧‧‧Inductance
230‧‧‧功率因素控制器 230‧‧‧Power Factor Controller
234‧‧‧回饋電流節點 234‧‧‧Feed current node
235‧‧‧電流回饋電阻器 235‧‧‧current feedback resistor
240‧‧‧開關 240‧‧‧ switch
250‧‧‧二極體 250‧‧‧ diode
260‧‧‧電容器/濾波器 260‧‧‧ capacitors/filters
270‧‧‧負載 270‧‧‧load
272‧‧‧節點 272‧‧‧ nodes
400‧‧‧功率因素控制器 400‧‧‧Power Factor Controller
410‧‧‧比較器塊 410‧‧‧ Comparator block
411‧‧‧輸出 411‧‧‧ output
412‧‧‧零電壓交叉定位器 412‧‧‧Zero Voltage Cross Locator
413‧‧‧輸出 413‧‧‧ output
414‧‧‧電壓計算器 414‧‧‧Voltage Calculator
415‧‧‧輸出 415‧‧‧ output
416‧‧‧臨界模式控制器 416‧‧‧ Critical Mode Controller
417‧‧‧輸出 417‧‧‧ output
420‧‧‧A/D轉換器 420‧‧‧A/D converter
425‧‧‧濾波器 425‧‧‧ filter
430‧‧‧A/D轉換器 430‧‧‧A/D converter
435‧‧‧濾波器 435‧‧‧ filter
440‧‧‧數位訊號處理器 440‧‧‧Digital Signal Processor
445‧‧‧D/A轉換器 445‧‧‧D/A converter
450‧‧‧輸出驅動器 450‧‧‧output driver
500‧‧‧功率因數控制模組 500‧‧‧Power Factor Control Module
504‧‧‧相位檢測模組 504‧‧‧ phase detection module
508‧‧‧零交叉模組 508‧‧‧ Zero Cross Module
512‧‧‧峰值電壓確定模組 512‧‧‧ Peak Voltage Determination Module
516‧‧‧開關控制模組 516‧‧‧Switch Control Module
520‧‧‧模式控制模組 520‧‧‧Mode Control Module
524‧‧‧導通時間模組 524‧‧‧ On-time module
528‧‧‧關斷時間模組 528‧‧‧Shutdown time module
圖1為傳統升壓轉換器的示意圖。 Figure 1 is a schematic diagram of a conventional boost converter.
圖2為圖1之傳統升壓轉換器中的特定節點處的電壓和電流波形的曲線圖。 2 is a graph of voltage and current waveforms at particular nodes in the conventional boost converter of FIG.
圖3A-3B為圖2之波形的低電壓和低電流部分的曲線圖。 3A-3B are graphs of low voltage and low current portions of the waveform of Fig. 2.
圖4是根據本發明之示例性升壓轉換器的示意圖。 4 is a schematic diagram of an exemplary boost converter in accordance with the present invention.
圖5-6是用於說明圖4的示例性升壓轉換器的操作的低電壓和低電流波形的曲線圖。 5-6 are graphs of low voltage and low current waveforms for illustrating the operation of the exemplary boost converter of FIG.
圖7為對說明圖4的示例性升壓轉換器的操作有用的、針對電壓半正弦波的下降和上升值兩者的電壓和電流波形的曲線圖。 7 is a graph of voltage and current waveforms for both the falling and rising values of a voltage half sine wave useful for illustrating the operation of the exemplary boost converter of FIG.
圖8是根據本發明的另一示例性功率因數控制器的示意圖。 8 is a schematic diagram of another exemplary power factor controller in accordance with the present invention.
圖9是根據本發明的替代示例性功率因數控制器的功能方塊圖。 9 is a functional block diagram of an alternative exemplary power factor controller in accordance with the present invention.
圖10A為一種用於基於升壓轉換器的模式來控制切換頻率的方法流程圖。 10A is a flow chart of a method for controlling a switching frequency based on a mode of a boost converter.
圖10B為一種用於基於電壓零交叉來控制模式之間轉變的方法流程圖。 10B is a flow chart of a method for controlling transitions between modes based on voltage zero crossings.
圖11為針對連續和不連續模式的作為AC線相位的函數的切換頻率比。 Figure 11 is a switching frequency ratio as a function of AC line phase for continuous and discontinuous modes.
200‧‧‧升壓轉換器 200‧‧‧Boost Converter
210‧‧‧四路整流器 210‧‧‧ four-way rectifier
212‧‧‧電力線 212‧‧‧Power line
214‧‧‧電力線 214‧‧‧Power line
216‧‧‧節點 216‧‧‧ nodes
220‧‧‧電感 220‧‧‧Inductance
230‧‧‧功率因素控制器 230‧‧‧Power Factor Controller
234‧‧‧回饋電流節點 234‧‧‧Feed current node
235‧‧‧電流回饋電阻器 235‧‧‧current feedback resistor
240‧‧‧開關 240‧‧‧ switch
250‧‧‧二極體 250‧‧‧ diode
260‧‧‧電容器/濾波器 260‧‧‧ capacitors/filters
270‧‧‧負載 270‧‧‧load
272‧‧‧節點 272‧‧‧ nodes
Claims (24)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3863008P | 2008-03-21 | 2008-03-21 | |
US12/115,175 US7812576B2 (en) | 2004-09-24 | 2008-05-05 | Power factor control systems and methods |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200950290A TW200950290A (en) | 2009-12-01 |
TWI470915B true TWI470915B (en) | 2015-01-21 |
Family
ID=44871272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98109005A TWI470915B (en) | 2008-03-21 | 2009-03-20 | Boost converter and power factor controller |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI470915B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI408884B (en) * | 2010-07-08 | 2013-09-11 | Sitronix Technology Corp | Power factor correction device |
TWI428611B (en) | 2010-09-10 | 2014-03-01 | Ind Tech Res Inst | Zero bias power detector |
WO2013188119A1 (en) * | 2012-06-13 | 2013-12-19 | Efficient Power Conversion Corporation | Method for operating a non-isolated switching converter having synchronous rectification capability suitable for power factor correction applications |
TWI466409B (en) * | 2012-11-20 | 2014-12-21 | Yu Chun Kuo | Power recycle system |
CN111903031A (en) * | 2018-04-06 | 2020-11-06 | 昕诺飞控股有限公司 | System having battery and method of controlling the same |
TWI704755B (en) * | 2019-12-20 | 2020-09-11 | 群光電能科技股份有限公司 | Power supply apparatus and method of operating the same |
CN113726154B (en) * | 2021-09-01 | 2024-05-24 | 漳州科华电气技术有限公司 | Switch power supply control method and device and switch power supply |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5508602A (en) * | 1992-09-28 | 1996-04-16 | Sgs-Thomson Microelectronics, S.R.L. | Voltage boosting circuit with load current sensing |
US5614812A (en) * | 1995-03-16 | 1997-03-25 | Franklin Electric Co. Inc. | Power supply with power factor correction |
US6906503B2 (en) * | 2002-01-25 | 2005-06-14 | Precor Incorporated | Power supply controller for exercise equipment drive motor |
TWI283805B (en) * | 2006-01-20 | 2007-07-11 | System General Corp | Switching control circuit for discontinuous mode PFC converters |
US7292013B1 (en) * | 2004-09-24 | 2007-11-06 | Marvell International Ltd. | Circuits, systems, methods, and software for power factor correction and/or control |
-
2009
- 2009-03-20 TW TW98109005A patent/TWI470915B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5508602A (en) * | 1992-09-28 | 1996-04-16 | Sgs-Thomson Microelectronics, S.R.L. | Voltage boosting circuit with load current sensing |
US5614812A (en) * | 1995-03-16 | 1997-03-25 | Franklin Electric Co. Inc. | Power supply with power factor correction |
US6906503B2 (en) * | 2002-01-25 | 2005-06-14 | Precor Incorporated | Power supply controller for exercise equipment drive motor |
US7292013B1 (en) * | 2004-09-24 | 2007-11-06 | Marvell International Ltd. | Circuits, systems, methods, and software for power factor correction and/or control |
TWI283805B (en) * | 2006-01-20 | 2007-07-11 | System General Corp | Switching control circuit for discontinuous mode PFC converters |
Also Published As
Publication number | Publication date |
---|---|
TW200950290A (en) | 2009-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9455644B2 (en) | Method and apparatus for changing a frequency of a switch prior to a level of current received from an inductor decreasing to a predetermined level | |
US7292013B1 (en) | Circuits, systems, methods, and software for power factor correction and/or control | |
TWI470915B (en) | Boost converter and power factor controller | |
JP6051265B2 (en) | Controller and power supply | |
JP5141774B2 (en) | PFC converter | |
JP5182375B2 (en) | PFC converter | |
US7863828B2 (en) | Power supply DC voltage offset detector | |
US10917006B1 (en) | Active burst ZVS boost PFC converter | |
US10199938B2 (en) | Switching power source device, semiconductor device, and AC/DC converter including a switching control | |
WO2010082172A1 (en) | Pfc with high efficiency at low load | |
KR101866095B1 (en) | Apparatus and method for controlling pulse width modulation switching frequency | |
JP2011228305A (en) | Dimming control for switching power supply | |
KR20120020080A (en) | Method and apparatus for bridgeless power factor correction | |
US12113445B2 (en) | Method and apparatus for sensing the input voltage of a power converter | |
TW201721329A (en) | Limit-to-valley ratio circuitry in power converters | |
TW202007059A (en) | Hybrid-mode boost power factor corrector | |
US20090309573A1 (en) | Determining output voltage or current in an smps | |
CN102752901B (en) | A kind of two-wire dimmer and control method thereof | |
US9485825B2 (en) | Enable circuit for lighting drivers | |
CN102449895A (en) | Determining output voltage or current in an SMPS | |
CN209806133U (en) | High-efficiency linear LED driving circuit | |
KR20130016954A (en) | Resistor-free zero current detecting circuit for controlling pfc, pfc converter and resistor-free zero current detecting method for controlling pfc | |
CN113937992A (en) | Alternating current power supply sudden-load detection suppression system in double-input direct current converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |