TWI282908B - Pattern forming method and material for forming underlayer film - Google Patents

Pattern forming method and material for forming underlayer film Download PDF

Info

Publication number
TWI282908B
TWI282908B TW93118153A TW93118153A TWI282908B TW I282908 B TWI282908 B TW I282908B TW 93118153 A TW93118153 A TW 93118153A TW 93118153 A TW93118153 A TW 93118153A TW I282908 B TWI282908 B TW I282908B
Authority
TW
Taiwan
Prior art keywords
group
photoresist
film
underlayer film
pattern
Prior art date
Application number
TW93118153A
Other languages
Chinese (zh)
Other versions
TW200600969A (en
Inventor
Jun Hatakeyama
Original Assignee
Shinetsu Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinetsu Chemical Co filed Critical Shinetsu Chemical Co
Publication of TW200600969A publication Critical patent/TW200600969A/en
Application granted granted Critical
Publication of TWI282908B publication Critical patent/TWI282908B/en

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

The solution of this invention is to provide a pattern forming method which is carried out by forming a photoresist underlayer film containing a co-condensed product of a naphthol derivative and dicyclopentadiene as an antireflection film on the substrate to be processed, applying a photoresist composition layer on the underlayer film, irradiating the resist in a pattern circuit region with radiation, developing with a developer solution to form a resist pattern, and processing the underlayer film and the substrate by a dry etching device using the photoresist layer as a mask. The material for forming the underlayer film has the n value of 1.5 to 1.9 and the k value of 0.15 to 0.3 in the refractive index and the absorbance to develop a sufficient antireflection effect in over 200 nm film thickness. The material has an almost equal etching rate for CF4/CHF3 gas and Cl2/BCl3 gas used for processing the substrate to that of a novolac resin and has high etching durability. The resist profile after patterning is also preferable.

Description

1282908 Λι ⑴ . 玖、發明說明 : 【發明所屬技術領域】 本發明係關於,半導體元件等製造步驟中微細加工所 用之防反射膜材料爲有效之下層膜形成材料及使用此材料 \ 之遠紫外線、ArF激發(excimer )雷射光(193nm ) 、F2 一 雷射光(157nm) 、Kr2雷射光(146nm) 、Ar2雷射光( 1 2 6nm)等之曝光爲恰當的,光阻圖型形成方法。 【習知技術】 近年,隨著LSI之高積體化與高速碳化,圖型規則之 微細化爲所企求,其中,目前被廣泛使用技術之使用光曝 光之微影術中,正趨於接近來自光源波長本質上解像度之 界線。 在光阻圖型形成之際所使用之微影術用之光源方面, 以水銀燈之g線( 43 6nm)或者i線( 3 65nm)爲光源之 光曝光被廣泛使用,在進一步之微細化用之手段方面, _ 使曝光光短波長化之方法被認爲有效。因此,例如在 6 4Mb DRAM加工方法之量産過程,作爲曝光光源替代以 i線(3 65nm )之短波長之KrF激發雷射(248nm )則被利 用。但是,在進而微細加工技術(例如,加工尺寸0.1 3 以下)爲必要之集積度1G以上之DRAM之製造上, 更短波長之光源爲必要,尤其是使用 ArF激發雷射( 193nm)之微影術正被檢討中。 一方面,習知在高低差基板上形成高縱橫比之圖型, -4- 1282908 (2) 2層光阻法爲優異係自明,尤其是,爲使2層光阻膜以一 般的鹼顯像液予以顯像,則具有羥基或羧基等之親水基之 高分子聚矽氧化合物爲恰當。 在聚矽氧系化學增強正型光阻材料方面,將爲穩定之 鹼可溶性聚矽氧聚合物之聚羥基苄基矽倍半噁烷之苯酚性 羥基之一部份以t-Boc基保護者爲基底樹脂使用,將此與 酸產生劑組合之KrF激發雷射用聚矽氧系化學增強正型光 阻材料被提案(日本特開平 7-118651號公報,SPIE vol.1 925 ( 1 993 ) P 3 7 7等)。又,在Ar F激發雷射用方 面,將環己基羧酸以酸不安定基取代形式之矽倍半噁烷爲 底層之正型光阻被提案(日本特開平10-324748號,同 11-302382 號公報,SPIE vol.3333-07 1998) P62)。再者 ,F 2雷射用方面,使六氟異丙醇以溶解性基方式存在之矽 倍半噁烷爲底層之正型光阻被提案(特開2002-55456號 公報)。上述聚合物,係含有因三烷氧基矽烷,或三鹵化 矽烷之縮聚所致梯形骨架之聚矽倍半噁烷爲主鏈者。 矽在側鏈被側基化之光阻用底層聚合物方面,則有含 砂(甲基)丙烯酸酯系聚合物被提案(特開平9- 1 1 093 8 號公半艮光聚合物科學及技術月刊j.PhotopolymerSci.and, Technol. Vol .9 No.3 ( 1 996 ) P43 5 -446 )。 在2層光阻法之下層膜方面,爲氧氣氣體所致鈾刻爲 可行之烴化合物,再者爲使其下之基板成爲蝕刻場合中之 光罩’則具有高蝕刻耐性爲必要。在氧氣蝕刻時,有必要 只以不含矽原子之烴基構成。又,要提高上層之含矽原子 •5- 1282908 (3) 光阻之線寬控制性,並降低駐波所致圖型側壁之凹凸與圖 型之崩壊,則需具有作爲反射防止膜之機能,具體而言, 從該下層膜至光阻膜内之反射率有必要被抑制於1 %以下 〇 在此單層光阻過程用之底層(base )防反射膜,其下 即使在聚矽或鋁等高反射基板之場合,可藉由將最適的折 射率(η値),消光係數(k値)之材料設定成適切膜厚 ,使自基板之反射減低至1 %以下,而可發揮極大之效果 。例如,在波長193 nm中,使光阻膜之折射率爲1.7,其 下層防反射膜之折射率(折射率之實數部)η爲1 .5,消 光係數(折射率之虛數部)k爲0.5,膜厚爲42nm時,反 射率則爲0.5 %以下,(請參照第1圖)。但是在底層有 高低差之場合,在高低差上防反射膜之膜厚會大幅變動。 底層之防反射效果,不僅爲光之吸收,亦可利用因設定最 適膜厚所致之干渉效果,故干渉效果強之40〜45 nm之第 一底邊其防反射效果雖有那麼高,但會因膜厚之變動而使 反射率變動。將用於防反射膜材料基底樹脂之分子量予以 提高來抑制高低差上之膜厚變動以提高保形性( conformal)性之材料被提案(特開平1 0-69072號公報) ,基底樹脂之分子量若變高,會產生旋轉塗布後針孔易於 產生這樣的問題,或有無法過濾這樣的問題,進而產生經 時的粘度變動而使膜厚變化這樣的問題,或者在噴嘴前端 結晶物析出這樣的問題。而且,可發揮保形性者被限定於 比較高度之低高低差。 -6 - (4) 1282908 接著關於,採用膜厚變動所致反射率之變動爲比較小 的第3底邊以上之膜厚(i70nm以上)之方法,k値 0· 2〜0.3之間,膜厚若爲I70nm以上,則相對於膜厚變化 之反射率變動小,而且成爲可抑制反射率爲1 . 5 %以下之 數値。但是,在考慮上層光阻膜之蝕刻負荷時,防反射膜 之厚膜化有其界線,充其量100nm程度以下之第2底邊 程度之厚膜化也爲其界線。 又,防反射膜之底層爲氧化膜或氮化膜等之透明膜, 進而在該透明膜之下具有高低差之情形,透明膜之表面即 使被CMP等予以平坦化,亦會使透明膜之膜厚變動。在 此情況,其上之防反射膜之膜厚可成爲一定,防反射膜之 底層透明膜之膜厚變動時,最低反射率之膜厚只有透明膜 之膜厚部分移動。即使將防反射膜之膜厚,設定爲底層爲 反射膜時之最低反射膜厚,會有因透明膜之膜厚變動而使 反射率變高之情形。 防反射膜之材料,可大致分爲無機系與有機系。無機 系可舉出SiON膜。此係由,矽烷與氨之混合氣體氣體所 致CVD等所形成,相對於光阻膜之蝕刻選擇比大,故有 對光阻之蝕刻之負荷小之優點,但因剝離困難,故在可適 用之情況有限制。又,因爲含氮原子之鹸性基板,故在正 型光阻易於產生基腳(footing ),負型光阻亦有易於產生 凹溝輪廓(undercut profile )之缺點。 有機系係在可旋轉塗布之CVD或潑濺等之特別裝置 並非必要之點而言,就可與光阻膜同時剝離之點而言,因 1282908 (5) 不會產生摺邊貼邊(hemming bottom)等,形状平直,故 與光阻膜之黏接性良好之點爲其優點,而有將多數有機材 料作爲基底之防反射膜被提案。例如,特公平7-696 1 1號 公報記載之二苯基胺衍生物與甲醛改性三聚氰胺樹脂之縮 合物,鹼可溶性樹脂與吸光劑所成物,或美國專利第 529468 0號說明書記載之順丁烯二酸酐共聚物與二胺型吸 光劑之反應物,特開平6- 1 1 8 63 1號公報記載之含有樹脂 黏結劑與羥甲基三聚氰胺系熱交聯劑者。特開平 6-1 1 8 65 6號公報記載之同一分子内具有羧酸基與環氧基與 吸光基之丙烯樹脂基底型,特開平8 - 8 7 1 1 5號公報記載之 由羥甲基三聚氰胺與二苯基酮系吸光劑所成者,特開平 8 - 1 79 5 09號公報記載之在聚乙烯醇樹脂添加低分子吸光 劑等。該等均係採用,在黏合劑聚合物添加吸光劑,或者 在聚合物以取代基導入之方法。但是,多種吸光劑因具有 芳香族基,或雙鍵,故因吸光劑之添加使得乾蝕刻耐性變 高,與光阻之乾鈾刻選擇比有無法提高之缺點。在進行微 細化,光阻之薄膜化亦可被促進,再者在次世代之ArF曝 光中,在光阻材料因使用丙烯或脂環族之聚合物,故光阻 之鈾刻耐性會降低。再者,如前述,亦會有必須使防反射 膜之膜厚更厚之問題存在。因此,蝕刻爲極重大之問題, 相對於光阻蝕刻選擇比高,亦即,蝕刻速度快之防反射膜 爲所期望。 一方面,在2層光阻過程用之下層膜中,防反射膜所 要求之機能,與單層光阻者並不相同。2層光阻過程用之 -8- 1282908 (6) 下層膜,係使基板蝕刻時成爲光罩之故,在基板蝕刻之條 件下必須具有高度鈾刻耐性。在單層光阻過程中防反射膜 ,爲減輕單層光阻之負荷則被要求快速之蝕刻速度,相對 於此,相反之特性亦被要求。又,爲確保充分的基板蝕刻 耐性,下層膜之膜厚必須與單層光阻同等程度或厚至其以 上之3 00nm以上之厚度。在3 00nm以上之膜厚,因膜厚 之變化所致反射率之變動大致會聚,因相位差控制所致防 反射效果則無法期待。 在此,最大5 00nm之膜厚爲止之反射率計算結果如 第2,3圖所示。假設曝光波長爲193 nm,光阻上層膜之n 値爲1.74,k値爲0.02。在第2圖使下層膜之k値固定於 0.3,使縦軸爲η値,横軸爲膜厚,使η値在1.〇〜2.0之範 圍,膜厚在〇〜50Onm之範圍變動時之基板反射率來表示 。在假定膜厚30 Onm以上之2層光阻用下層膜之情形, 與上層光阻膜同程度或者比其稍高之折射率1.6〜1.9之範 圍,使反射率在1 %以下之最適値爲存在。 在第3圖,係表示將η値固定於1 · 5,k値在0.1〜 0.8之範圍變動時之反射率。k値在0.24〜0.15之範圍可使 反射率成爲1%以下。一方面,40nm程度之薄膜所用之單 層光阻用之防反射膜之最適k値爲0.4〜0.5,與3 00nm以 上之2層光阻用下層之最適k値不同。在2層光阻用下層 ,可表示更低之k値,亦即更高透明下層膜爲必要者。 在此,作爲193nm用之下層膜形成材料,如 SPIE Vol· 4345 P50 ( 2001)所揭示之聚羥基苯乙烯與丙烯之 1282908 (7) 共聚物被檢討中,聚羥基苯乙烯在193 nm具有非常強的 吸收,該物單獨之k値爲0.6前後之高値。因此,因與k 値幾乎爲〇之丙烯共聚,故使k値調整爲0.25前後。 但是,相對於聚羥基苯乙烯,在丙烯之基板鈾刻中蝕 刻耐性弱,而且因使k値降低故必須使相當比率之丙烯共 聚,結果使得基板鈾刻時之蝕刻耐性相當降低。餽刻耐性 ,並非只是蝕刻速度,亦顯現於蝕刻後之表面粗糙度之產 生。因丙烯之共聚使得飩刻後之表面粗糙度之増大更爲重 要。 與苯環比較1 93 nm中透明性高,蝕刻耐性高者之一 之萘環。在特開2002- 1 4474號公報具有萘環,蒽環之光 阻下層膜被提案。但是,萘酚共聚酚醛淸漆樹脂,聚乙烯 萘樹脂之k値在0.3〜0.4之間,在目標之0.1〜0.3之透明 性並未達成,必須更使透明性提高。又,萘酚共聚酚醛淸 漆樹脂,聚乙烯萘樹脂之193 nm中η値低,在本發明人 等之測定結果,在萘酚共聚酚醛淸漆樹脂可至1 ·4,在聚 乙烯萘樹脂可至1.2。在特開200卜40293號,同2002-2 1 4777號公報所示之萘嵌戊烯聚合物中,與波長248nm 比較在19 3 nm中η値低,k値高,均無法達到目標値。η 値高,k値低透明且蝕刻耐性高之下層膜爲所期望。 在此,特開平6-202317號,同8-1795 02號,同8-220750號,同8-292565號,同9-15855號公報表示甲酚 與二環戊二烯之共縮聚合物爲底層之i線光阻,在更高透 明酚醛淸漆樹脂方面,與倍環戊二烯之共聚正被檢討中。 -10- (8) 1282908 在特開平1 0-282666號公報,在可溶酚醛樹脂與倍環戊二 烯之共聚物聚合物將環氧丙基予以側基化之硬化性樹脂被 提案。一方面,在特開平6-80760號,同7-5302號公報 中,將萘酚以醛縮合之光阻組成物被提案。 【專利文獻1】特開平6_ 1 1 865 1號公報 【專利文獻2】特開平1 0-3 24748號公報 【專利文獻3】特開平1 1 -3 023 82號公報 【專利文獻4】特開2002 -5 545 6號公報 【專利文獻5】特開平9- 1 1 093 8號公報。 【專利文獻6】特開平1 0-69072號公報 【專利文獻7】特公平7-69611號公報】 【專利文獻8】美國專利第5294680號說明書 【專利文獻9】特開平6_ 1 1 863 1號公報 【專利文獻10】特開平6- 1 1 865 6號公報 【專利文獻11】特開平8 - 8 7 1 1 5號公報 【專利文獻12】特開平8 - 1 795 09號公報 【專利文獻13】特開2002- 1 4474號公報 【專利文獻14】特開200 1 -40293號公報 【專利文獻15】特開2002-2 1 4777號公報 【專利文獻16】特開平6-2023 1 7號公報 【專利文獻17】特開平8 - 1 795 02號公報 【專利文獻18】特開平8 -22075 0號公報 【專利文獻1 9】特開平8 - 2 9 2 5 6 5號公報 【專利文獻20】特開平9- 1 5 8 5 5號公報 1282908 (9) 【專利文獻21】特開平1 0-2 8 2666號公報 【專利文獻22】特開平6-80760號公報 【專利文獻23】特開平7-5 3 02號公報 【非專利文獻 1】SPIE vol.1925 ( 1 993 ) p377 【非專利文獻 2】SPIE vol.3333 ( 1998) p62 【非專利文獻 3】光聚合物科學與技術月刊J .PhotopolymerSci.andTechnol .V〇1.9N0.3 ( 1 9 9 6 ) p 4 3 5 【非專利文獻 4】SP IE V 01.434 5 p5 0 ( 200 1 ) 【發明內容】 〔發明欲解決課題〕 本發明欲解決課題,尤其是,作爲含矽2層光阻過程 用下層膜方面,可提供以優異防反射膜作用,與聚羥基苯 乙烯,甲酚酚醛淸漆,萘酚酚醛淸漆等比較透明性高,具 有最適η値、k値,而且基板加工中蝕刻耐性優異之下層 膜形成材料,及圖型形成方法。 〔解決課題之手段〕 本發明人等,爲達成上述目的經刻意檢討結果發現, 萘酚衍生物與倍環戊二烯之共聚物,在1 93 nm中具有最 適η値,k値,且蝕刻耐性亦優異,作爲含矽2層光阻過 程用下層膜爲可期望之材料,因而完成本發明。 亦即,在本發明,作爲可適用於含矽層(by layer ) 過程之新穎下層膜,尤其是波長193nm中膜厚2 00nm以 -12- (10) 1282908 上之防反射效果優異,且蝕刻耐性優異,將萘酚衍生物與 倍環戊二烯之共縮合酚醛淸漆樹脂爲底層之材料予以提案 者,此物,因具有最適η値、k値,而可抑制膜厚2〇〇nm 以上中之基板反射,在基板蝕刻之條件中蝕刻耐性優異爲 其特徴者 因此,本發明,係提供下述之圖型形成方法及使用此 之下層膜形成材料。 1 · 一種圖型形成方法,其特徵爲,作爲防反射膜係將 含有萘酚衍生物與倍環戊二烯之共縮合物之光阻下層膜適 用於被加工基板上,在該下層膜之上適用光阻組成物之層 ,在圖型電路領域照射放射線,以顯像液顯像來形成光阻 圖型,以乾蝕刻裝置使光阻層成爲光罩來進行下層膜層及 被加工基板之加工者。 2 ·如申請專利範圍第1項之圖型形成方法,其中,光 阻組成物含有含矽原子之聚合物,使光阻層成爲光罩進行 下層膜加工之乾蝕刻,係使用以氧氣體爲主體之蝕刻氣體 來進行。 3 ·如申請專利範圍第2項之圖型形成方法,其中, 在氧氣體蝕刻後,使下層膜成爲光罩所進行被加工基丨反力口 工係由乾蝕刻所致者。 4 · 一種下層膜形成材料,其特徵爲,如申請專利範匱| 第1,2或3項之圖型形成方法所用之光阻下層膜形成材 料,其中萘酚衍生物與倍環戊二烯之共縮合物,係下述一 般式(1)或(2)所示者, -13- (11) 12829081282908 Λι (1) . 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 , , , , , 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体The exposure of ArF excitation (193 nm), F2 laser light (157 nm), Kr2 laser light (146 nm), Ar2 laser light (126 nm), etc. is appropriate, and the photoresist pattern formation method. [Inventional Technology] In recent years, with the high integration of LSI and high-speed carbonization, the miniaturization of pattern rules has been demanded. Among them, the currently used lithography using light exposure is widely approaching The wavelength of the source is essentially the boundary of the resolution. In the light source for lithography used in the formation of the photoresist pattern, light exposure using a g-line (43 6 nm) or an i-line (3 65 nm) of a mercury lamp is widely used, and further miniaturization is used. In terms of means, the method of making the exposure light shorter wavelength is considered to be effective. Therefore, for example, in the mass production process of the 6 4Mb DRAM processing method, it is used as an exposure light source instead of a short-wavelength KrF-excited laser (248 nm) of i line (3 65 nm). However, in the manufacture of DRAMs having a fine processing technique (for example, a processing size of 0.1 3 or less) which is necessary for a cumulative degree of 1 G or more, a light source of a shorter wavelength is necessary, in particular, lithography using an ArF-excited laser (193 nm). The surgery is being reviewed. On the one hand, it is known to form a high aspect ratio pattern on a high and low difference substrate, -4- 1282908 (2) 2-layer photoresist method is excellent self-evident, especially, in order to make the two-layer photoresist film with a general alkali When a liquid is imaged, a polymer polyoxyl compound having a hydrophilic group such as a hydroxyl group or a carboxyl group is suitable. In the case of a polyfluorene-based chemically amplified positive photoresist material, a part of the phenolic hydroxyl group of the polyhydroxybenzyl sesquioxane which is a stable alkali-soluble polyoxynoxy polymer is protected by a t-Boc group. It is proposed to use a KrF-excited polyfluorene-based chemically-enhanced positive-type photoresist material in combination with an acid generator for use as a base resin (Japanese Patent Laid-Open No. Hei 7-118651, SPIE vol. 1 925 (1 993) P 3 7 7 etc.). Further, in the case of Ar F excitation laser, it is proposed to use a cyclohexyl carboxylic acid in the form of an acid-unstable group substituted sesquioxane as a positive-type photoresist of the underlayer (Japanese Patent Laid-Open No. 10-324748, the same as 11- Bulletin No. 302382, SPIE vol. 3333-07 1998) P62). Further, in the case of the F 2 laser, a positive-type photoresist having ruthenium sesquioxane in which hexafluoroisopropanol is present in a solvent-based manner is proposed (JP-A-2002-55456). The above polymer contains a polyfluorinated sesquioxane having a trapezoidal skeleton due to polycondensation of a trialkoxysilane or a trihalogenated decane. In the case of the underlayer polymer in which the side chain is laterally grouped, a sand-containing (meth) acrylate-based polymer is proposed (Japanese Patent Laid-Open No. 9-1 093 8 Technology Monthly j. PhotopolymerSci.and, Technol. Vol. 9 No. 3 (1 996) P43 5 -446 ). In the case of a film under the two-layer photoresist method, it is a hydrocarbon compound which is uranium engraved by oxygen gas, and it is necessary to have high etching resistance in order to make the underlying substrate a mask for etching. In the case of oxygen etching, it is necessary to form only a hydrocarbon group containing no germanium atoms. In addition, it is necessary to improve the line width controllability of the upper layer of the yttrium-containing atom. 5 - 1282908 (3), and to reduce the unevenness of the sidewall of the pattern caused by the standing wave and the collapse of the pattern, it is necessary to function as an anti-reflection film. Specifically, the reflectance from the underlayer film to the photoresist film needs to be suppressed to less than 1%, and the underlying anti-reflection film for the single-layer photoresist process, even under polyfluorene or In the case of a highly reflective substrate such as aluminum, the material having an optimum refractive index (η値) and extinction coefficient (k値) can be set to a suitable film thickness, and the reflection from the substrate can be reduced to less than 1%. The effect. For example, at a wavelength of 193 nm, the refractive index of the photoresist film is 1.7, and the refractive index (real part of the refractive index) η of the lower anti-reflection film is 1.5, and the extinction coefficient (imaginary part of the refractive index) k is When the film thickness is 42 nm, the reflectance is 0.5% or less (refer to Fig. 1). However, in the case where the bottom layer has a difference in height, the film thickness of the antireflection film greatly changes in height difference. The anti-reflection effect of the bottom layer is not only the absorption of light, but also the dry effect caused by setting the optimum film thickness. Therefore, the anti-reflection effect of the first bottom edge of 40~45 nm with strong cognac effect is so high, but The reflectance changes due to variations in film thickness. A material for improving the molecular weight of the base resin of the antireflection film material to suppress the film thickness variation in the height difference to improve conformality is proposed (JP-A-10-9072), and the molecular weight of the base resin. When it is high, there is a problem that the pinhole is likely to occur after the spin coating, or there is a problem that the filtration cannot be performed, and the viscosity changes over time to change the film thickness, or the crystal precipitates at the tip of the nozzle. problem. Moreover, those who can exhibit shape retention are limited to low height differences. -6 - (4) 1282908 Next, the film thickness (i70nm or more) of the third base or less which is relatively small due to the variation in film thickness is used, and the film is between k値0·2 and 0.3. When the thickness is I70 nm or more, the reflectance variation with respect to the change in film thickness is small, and the number of reflectances of 1.5% or less can be suppressed. However, when the etching load of the upper photoresist film is considered, the thick film of the antireflection film has its boundary, and the thick film of the second base having a charge of about 100 nm or less is also a boundary. Further, the underlayer of the antireflection film is a transparent film such as an oxide film or a nitride film, and further has a height difference under the transparent film. Even if the surface of the transparent film is planarized by CMP or the like, the transparent film is The film thickness changes. In this case, the film thickness of the antireflection film thereon is constant, and when the film thickness of the underlying transparent film of the antireflection film is changed, the film thickness of the minimum reflectance is only the film thickness portion of the transparent film. Even when the film thickness of the antireflection film is set to the lowest reflection film thickness when the underlayer is a reflection film, the reflectance becomes high due to the variation in the film thickness of the transparent film. The material of the antireflection film can be roughly classified into an inorganic system and an organic system. The inorganic system is exemplified by a SiON film. This is formed by CVD or the like caused by a mixed gas of decane and ammonia, and has a large etching selectivity with respect to the photoresist film. Therefore, there is an advantage that the etching of the photoresist is small, but it is difficult to peel off. There are restrictions on the application. Further, since the positive-type resist is liable to cause a footing due to the inert substrate containing a nitrogen atom, the negative-type photoresist has a drawback that an undercut profile is liable to occur. The organic system is not necessary for the special device such as CVD or splatter which can be spin-coated, and the edge of the photoresist film can be peeled off at the same time. Since the 1282908 (5) does not cause the hemming bottom (hemming bottom) The shape is flat, so that the adhesion to the photoresist film is good, and an antireflection film having a plurality of organic materials as a base is proposed. For example, a condensate of a diphenylamine derivative and a formaldehyde-modified melamine resin described in Japanese Patent Publication No. 7-6961-1, an alkali-soluble resin and a light-absorbing agent, or a product described in the specification of US Pat. No. 529,468 A reaction product containing a resin binder and a methylol melamine-based thermal crosslinking agent described in JP-A-6-181643, the reaction product of the butadiene anhydride copolymer and the diamine type light-absorbing agent. An acryl resin base type having a carboxylic acid group, an epoxy group, and a light absorbing group in the same molecule, which is described in JP-A-6-1 1 8 65, and a methylol group described in JP-A-8-8 1 1 5 A melamine and a diphenyl ketone-based light absorbing agent are used, and a low molecular weight light absorbing agent or the like is added to a polyvinyl alcohol resin as described in JP-A-8-79595. These are all employed by adding a light absorbing agent to the binder polymer or introducing the substituent into the polymer. However, since a plurality of light absorbing agents have an aromatic group or a double bond, the dry etching resistance is increased by the addition of the light absorbing agent, and the dry uranium engraving ratio of the photoresist cannot be improved. In the case of miniaturization, the thin film formation of the photoresist can be promoted. Further, in the next-generation ArF exposure, the uranium resistance of the photoresist is lowered due to the use of the propylene or alicyclic polymer in the photoresist material. Further, as described above, there is a problem that the film thickness of the antireflection film must be made thicker. Therefore, etching is an extremely important problem, and an antireflection film having a high etching selectivity with respect to the photoresist etching speed, that is, an etching speed is desired. On the one hand, in the underlying film for the 2-layer photoresist process, the function required for the anti-reflection film is not the same as that of the single-layer photoresist. For 2-layer photoresist process -8- 1282908 (6) The underlayer film is used as a mask when etching the substrate, and must have high uranium resistance under the condition of substrate etching. In the single-layer photoresist process, the anti-reflection film is required to have a fast etching speed in order to reduce the load of the single-layer photoresist, and the opposite characteristic is also required. Further, in order to ensure sufficient substrate etching resistance, the film thickness of the underlayer film must be equal to or thicker than the thickness of the single layer photoresist to 300 nm or more. At a film thickness of 300 nm or more, the change in reflectance due to a change in film thickness is substantially concentrated, and the antireflection effect due to phase difference control cannot be expected. Here, the calculation results of the reflectance up to a film thickness of 500 nm are shown in Figs. 2 and 3. Assuming an exposure wavelength of 193 nm, the resistive upper film has n 値 of 1.74 and k 値 of 0.02. In Fig. 2, k値 of the underlayer film is fixed at 0.3, the x-axis is η値, the horizontal axis is the film thickness, and η値 is in the range of 1.〇~2.0, and the film thickness is varied in the range of 〇~50Onm. The substrate reflectance is expressed. In the case of assuming a lower film of two layers of photoresist having a film thickness of 30 Onm or more, a range of a refractive index of 1.6 to 1.9 which is the same as or slightly higher than that of the upper photoresist film, the optimum reflectance of 1% or less is presence. In Fig. 3, the reflectance when η値 is fixed at 1.9, and k値 is varied in the range of 0.1 to 0.8. The k 値 is in the range of 0.24 to 0.15 so that the reflectance becomes 1% or less. On the one hand, the optimum k 防 of the antireflection film for a single-layer photoresist used for a film of 40 nm is 0.4 to 0.5, which is different from the optimum k 2 of the lower layer of the two layers of photoresist above 300 nm. In the lower layer of the two-layer photoresist, it can represent a lower k値, that is, a higher transparent underlayer film is necessary. Here, as a film forming material for 193 nm, a copolymer of polyhydroxystyrene and propylene 1282908 (7) as disclosed in SPIE Vol. 4345 P50 (2001) is reviewed, and polyhydroxystyrene has a very high at 193 nm. Strong absorption, the substance alone k 値 is 0.6 前后 high. Therefore, since k 値 is almost copolymerized with propylene, k 値 is adjusted to 0.25 before and after. However, compared with polyhydroxystyrene, the etching resistance in the uranium engraving of propylene is weak, and a certain ratio of propylene must be copolymerized due to a decrease in k?, with the result that the etching resistance of the substrate during uranium engraving is considerably lowered. Feed resistance, not just the etching speed, but also the surface roughness after etching. The copolymerization of propylene makes the surface roughness after engraving larger and more important. Compared with the benzene ring, the naphthalene ring is one of those having high transparency and high etching resistance at 93 nm. In JP-A-2002-1-4474, a film having a naphthalene ring and a photoresist ring of an anthracene ring has been proposed. However, the naphthol copolymerized phenolic enamel resin and the polyethylene naphthalene resin have a k 値 of 0.3 to 0.4, and transparency of 0.1 to 0.3 of the target is not achieved, and transparency must be further improved. Further, the naphthol copolymer phenolic enamel resin and the polyethylene naphthalene resin have a low η 193 at 193 nm, and the results of the measurement by the present inventors, the naphthol copolymer phenolic enamel resin can be up to 1.4, in the polyethylene naphthalene resin. Can be up to 1.2. In the phthalocyanine polymer shown in JP-A No. 200, No. 4,293, and the phthalocyanine polymer shown in the publication No. 2002-2 1 4777, η 値 is low and z 値 is high at 19 3 nm as compared with the wavelength of 248 nm, and the target enthalpy cannot be achieved. A film of η 値 high, k 値 low transparency, and high etching resistance is desirable. Here, Japanese Patent Publication No. Hei 6-202317, the same as No. 8-1795-02, the same as No. 8-220750, the same as No. 8-292565, and No. 9-15855, the copolymer of cresol and dicyclopentadiene is The i-line resist of the bottom layer, in the case of higher transparent phenolic enamel resin, copolymerization with p-cyclopentadiene is being reviewed. Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. On the other hand, in Japanese Patent Publication No. Hei 6-80760, the same as the publication No. 7-5302, a photoresist composition in which an an aldehyde is condensed with an aldehyde is proposed. [Patent Document 1] Japanese Laid-Open Patent Publication No. JP-A No. Hei. No. Hei. Japanese Patent Publication No. Hei 9- 1 1 093 No. 8-A. [Patent Document 7] Japanese Patent Publication No. 5294680 (Patent Document 8) Japanese Patent No. 5294680 (Patent Document 9) Japanese Patent Publication No. 6_1 1 863 1 [Patent Document 10] Japanese Laid-Open Patent Publication No. JP-A No. Hei. No. Hei. Japanese Laid-Open Patent Publication No. JP-A No. Hei. No. Hei. No. Hei. No. Hei. [Patent Document No. 1] [Patent Document No. 8 - 2,075,075] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 6-80760 (Patent Document No. 2). -5 3 02 [Non-Patent Document 1] SPIE vol. 1925 (1 993) p377 [Non-Patent Document 2] SPIE vol. 3333 ( 1998) p62 [Non-Patent Document 3] Photopolymer Science and Technology Monthly J. PhotopolymerSci. and Technol. V〇1.9N0.3 (1 9 9 6 ) p 4 3 5 [Non-Patent Document 4] SP IE V 01.434 5 p5 0 (200 1 ) [Disclosed from the Invention] [Problems to be Solved by the Invention] The present invention has been made to solve the problems, and in particular, as an underlayer film for a ruthenium-containing two-layer photoresist process, it is possible to provide an excellent antireflection film and polyhydroxybenzene. Ethylene, cresol novolac lacquer, naphthol phenolic enamel paint, etc., which have high transparency, optimum η値, k値, and excellent film formation resistance in substrate processing, and pattern formation method. [Means for Solving the Problem] The inventors of the present invention found that the copolymer of a naphthol derivative and a pentylene pentadiene has an optimum η 値, k 値 and etch at 93 nm in order to achieve the above objective. It is also excellent in patience, and it is a desirable material as a lower film for a ruthenium-containing two-layer photoresist process, and thus the present invention has been completed. That is, in the present invention, as a novel underlayer film applicable to a layer-by-layer process, especially at a wavelength of 193 nm, a film thickness of 200 nm is excellent in antireflection effect on -12-(10) 1282908, and etching is performed. Excellent resistance, the co-condensation of a naphthol derivative and a cyclopentadiene co-condensation phenolic enamel resin as a material of the underlayer, which has an optimum η値, k値, and can suppress a film thickness of 2 〇〇 nm. The above-mentioned substrate reflection is excellent in etching resistance under the conditions of substrate etching. Therefore, the present invention provides the following pattern forming method and the use of the underlayer film forming material. 1 . A pattern forming method, characterized in that, as an antireflection film, a photoresist underlayer film containing a cocondensate of a naphthol derivative and a cyclopentadiene is applied to a substrate to be processed, and the underlayer film is used. The layer of the photoresist composition is applied, the radiation is irradiated in the field of the pattern circuit, the photoresist pattern is formed by the development of the developing liquid, and the photoresist layer is used as a mask by the dry etching device to perform the underlayer film and the substrate to be processed. The processor. 2. The method for forming a pattern according to claim 1, wherein the photoresist composition contains a polymer containing a ruthenium atom, and the photoresist layer is used as a mask for dry etching of the underlayer film, and oxygen gas is used. The etching gas of the main body is performed. 3. The pattern forming method according to the second aspect of the patent application, wherein after the oxygen gas is etched, the underlayer film is formed into a mask, and the substrate is subjected to dry etching. 4 . An underlayer film forming material characterized by, for example, a photoresist underlayer film forming material used in the pattern forming method of claim 1, 2 or 3, wherein the naphthol derivative and the cyclopentadiene The cocondensate is represented by the following general formula (1) or (2), -13- (11) 1282908

Γ R8 R1Γ R8 R1

(式中,Rl〜R8爲,互相獨立之氫原子、羥基、碳 原子數1〜6之可取代烷基,碳原子數1〜6之可取代烷氧 基’碳原子數2〜6之可取代烷氧羧基,碳原子數6〜10 之可取代芳基、碳原子數1〜6之羥基烷基、異氰酸酯基 、或環氧丙基,m、η爲正整數)。 5 ·如申請專利範圍第4項之下層膜形成材料,其更 含有’有機溶劑,交聯劑及酸產生劑者。。 〔發明實施型態〕 以下,就本發明進而予以詳細說明。 本發明之圖型形成方法,在防反射膜方面係將含有萘 酚衍生物與倍環戊二烯之共縮合物之光阻下層膜適用於基 板上,在該下層膜上可適用光阻組成物之層,在圖型電路 領域照射放射線,以顯像液顯像以形成光阻圖型,在乾蝕 刻裝置將光阻層成爲光罩而將下層膜層及基板予以加工者 ,在此所用之下層膜形成材料,係由 (A )萘酚衍生物與倍環戊二烯之共縮合物所成底層 聚合物爲必須成分,較佳爲含有(B )有機溶劑, -14- 1282908 (12) (C )交聯劑, (D)酸產生劑者。 在此,在上記(A )成分之萘酚衍生物與倍環戊二烯 之共聚物方面,以下述一般式(1 )或(2 )所示者較佳。(wherein R1 to R8 are independently a hydrogen atom, a hydroxyl group, a substitutable alkyl group having 1 to 6 carbon atoms, and a substitutable alkoxy group having 1 to 6 carbon atoms; 2 to 6 carbon atoms; The substituted alkoxycarboxy group, a substitutable aryl group having 6 to 10 carbon atoms, a hydroxyalkyl group having 1 to 6 carbon atoms, an isocyanate group or a glycidyl group, and m and η are positive integers). 5 · If the film forming material is under the fourth paragraph of the patent application, it further contains 'organic solvent, crosslinking agent and acid generator. . [Embodiment of the Invention] Hereinafter, the present invention will be described in detail. In the pattern forming method of the present invention, in the aspect of the antireflection film, a photoresist underlayer film containing a cocondensate of a naphthol derivative and a cyclopentadiene is applied to a substrate, and a photoresist composition is applicable to the underlayer film. The layer of the object is irradiated with radiation in the field of the pattern circuit, and is developed by a developing liquid to form a photoresist pattern. In the dry etching apparatus, the photoresist layer is used as a mask to process the underlying film layer and the substrate, and is used herein. The underlayer film forming material is an essential component of the underlayer polymer of (A) a cocondensate of a naphthol derivative and a cyclopentadiene, preferably containing (B) an organic solvent, -14-1282908 (12 (C) Crosslinking agent, (D) Acid generator. Here, in the copolymer of the naphthol derivative of the component (A) and the cyclopentadiene, it is preferred to be represented by the following general formula (1) or (2).

上記式中’R1〜R8爲互相獨立之氫原子、羥基、碳 原子數1〜6之可取代烷基,碳原子數1〜6之可取代烷氧 基、碳原子數2〜6之可取代烷氧羧基、碳原子數6〜10 之可取代芳基、碳原子數1〜6之羥基烷基,異氰酸酯基In the above formula, 'R1 to R8 are mutually independent hydrogen atoms, a hydroxyl group, a substitutable alkyl group having 1 to 6 carbon atoms, a substitutable alkoxy group having 1 to 6 carbon atoms, and a carbon atom number of 2 to 6 may be substituted. Alkoxycarboxyl group, substitutable aryl group having 6 to 10 carbon atoms, hydroxyalkyl group having 1 to 6 carbon atoms, isocyanate group

或環氧丙基。m,η爲正整數。 在此爲獲得,一般式(1 )及(2 )所列舉之重覆單元 之萘酚衍生物可例舉,1-萘酚,2-萘酚、2-甲基-1-萘酚、 4 -甲氧基-1-萘酚、7 -甲氧基-2-萘酚及1,5 -二羥基萘、丨,7_ 二羥基萘、2,6 -二羥基萘等之二羥萘、3 -羥基-萘基-羧 酸甲酯。倍環戊二烯係、環戊二烯之2聚物’以內向形體 (endo )與外向形體(exo )之二種異構體存在,然而本 發明所使用之作爲樹脂之原料之倍環戊二烯可爲任一種異 構體,又亦可爲二種異構體之混合物。在使用異構體之混 合物之情形,異構體之比率並無特別限定。 -15- (13) 1282908 一般式(1 )及(2 )所舉之重覆單元,係在酸催化劑 存在下,使倍環戊二烯與萘酚類進行加成反應所得者。反 應所用之酸催化劑,可例舉三氟化硼之乙醇錯合物或氯化 鋁等之路易士酸、鹽酸、硝酸、硫酸等之無機酸、甲烷磺 酸、正丁磺酸、苯磺酸、對甲苯磺酸、間二甲苯磺酸、對 一甲苯磺酸、均三甲苯(mesitylene)磺酸等之磺酸、三 氟甲烷甲磺酸、九氟甲烷磺酸、五氟苯磺酸等全氟磺酸般 之超強酸、Nafion等之具有末端磺酸基之全氟烷聚合物, 具有磺酸残基之聚苯乙烯等之陰離子交換樹脂等。尤其是 甲烷甲磺酸、甲苯磺酸(to sy late )、三氟甲烷磺酸爲佳 ,其使用量,在甲烷甲磺酸之場合,相對於原料爲 0.01〜10重量%,較佳爲〇.〇5〜5重量%之範圍,在三氟甲 烷甲磺酸之情形爲〇 . 0 0 0 1〜5重量%,較佳爲0.0 0 0 5〜1重 量%之範圍。 萘酚與倍環戊二烯之比率,相對於萘酚1莫耳,倍環 戊二烯爲0.1〜2.0莫耳,較佳爲〇.2〜1.8莫耳。 本發明係萘酚衍生物與倍環戊二烯共縮合所得聚合物 適用於爲下層膜爲其特徵者,進而可與苯酚類共縮合。在 此所舉之苯酚類方面,可例舉苯酚、鄰甲酚、間甲酚、對 甲酚、2,3 -二甲苯酚、2,5 -二甲苯酚、3,4 -二甲苯酚、3,5-二甲苯酚、2,4 -二甲苯酚、2,6 -二甲苯酚、2,3, 5 -三甲苯酚 、3,4,5-三甲苯酚、2·三級丁基苯酚、3-三級丁基苯酚、 4-三級丁基苯酚、間苯二酚、2-甲基間苯二酚、4-甲基間 苯二酚、5 ·甲基間苯二酚、兒茶酚、4 -三級丁基兒茶酚、 -16- (14) 1282908 2-甲氧基苯酚、3-甲氧基苯酚、2-丙基苯酚、3-丙基苯酚 、4 -丙基苯酚、2 -異丙基苯酚、3 -異丙基苯酚、4 -異丙基 苯酚、2-甲氧基-5-甲基苯酚、2-三級丁基-5-甲基-苯酚、 焦焙 (pyrogallol)、百里香S分(thymol)、異百里香 酚等。其他,與萘酚可共聚之單體方面,可例舉二氫茚、 羥基萘、萘嵌戊烯(acenaPhthylene)、聯苯基等,添加 該等之3元以上之共聚物亦無妨。 又,上述共縮合之苯酚單位之比率,係含有萘酚衍生 物與倍環戊二烯之共縮合物之底層聚合物之60莫耳%以 下,尤其是〇〜50莫耳%爲佳。 反應可被分類爲倍環戊二烯與萘酚之羥基進行加成反 應,予以醚化之第一階段與,該醚體藉由轉移反應來形成 萘酚樹脂之第二階段。反應温度係在20〜200°C,較佳爲 4〇〜1 6(TC之範圍。反應完成後,可將未反應之萘酚化合 物以任意方法餾除,而可獲得萘酚-倍環戊二烯樹脂,在 以本發明爲目的使用之際,導入洗淨工程爲所期望。該洗 淨方法可爲任意之方法,試舉例之,使用驗金屬氫氧化物 以鹼金屬鹽方式將不溶於水之成分除去之方法,可使用甲 苯、二甲苯等之芳香族烴、甲基乙基酮、甲基異丁基酮等 之酮類、戊烷醇、異戊烷基醇、庚醇、2 -庚醇、辛醇、異 辛醇等之高級醇類等之有機溶劑予以水洗之方法,使用上 述有機溶劑來洗淨稀鹽酸洗淨之方法,使用1 5 2 -二氯乙烷 、氯仿、甲基溶纖素、乙基溶纖素、二甲基甲醯胺、二甲 基乙醯胺等之溶媒、使用矽膠、氧化鋁、活性炭等之吸着 -17- (15) 1282908 劑來處理之方法等。藉由該等任一種之方法,或者該等方 法之組合等,使凝膠成分或酸性成分,金屬離子等之不純 物極力低減爲所望。 重量平均分子量以1,5 00〜200,000之範圍爲佳,較佳 爲2,000〜10,000之範圍。分子量分布並無特別限制,藉 由劃分來將低分子體及高分子體除去使分散度變小爲可行 ,分子量、分散度不同之二種以上苯酚-倍環戊二烯樹脂 之混合,或者組成比不同之二種以上苯酚-倍環戊二烯樹 脂予以混合亦無妨。 爲使本發明之萘酚-倍環戊二烯共聚合樹脂之透明性 更加提高,可進行氫化。較佳氫化之比率爲,萘酚等之芳 香族基之50莫耳%以下。 本發明之下層膜形成材料用之基層樹脂,係含有萘 酚-倍環戊二嫌樹脂爲其特徵,但可例舉前述防反射膜材 料之與習知聚合物摻和者。萘酣-倍環戊二嫌樹脂之玻璃 轉移溫度爲150°C以上,此物單獨會有盲孔(Wa hole) 等之深孔之埋入特性差之情形。在要將孔以不產生空洞之 方式埋入’可採用玻璃轉移溫度低之聚合物,在比交聯溫 度低之溫度下進行熱吹風,同時將使樹脂埋入至孔底爲止 之方法(特開2000-294504號公報】。玻璃轉移溫度低之 尔口物’尤其是玻璃轉移溫度爲1 8 0 °C以下,特別是1 q 〇 〜1 7 〇 C之聚合物,例如丙烯衍生物、乙烯醇、乙烯醚類 、烯丙基醚類、苯乙烯衍生物、烯丙基苯衍生物、乙烯、 丙烯、丁烯等之烯烴類,復分解開環聚合等所致聚合物與 -18- (16) 1282908 摻和而可使玻璃轉移溫度降低,盲孔之埋入特性提高。 在此情形,萘酚衍生物與倍環戊二烯之共縮合物與’ 上述低玻璃轉移溫度之聚合物之摻和比率,在重量比爲 1:0.1〜1:10,尤其是1:0.2〜1:5爲佳。 另外一種使玻璃轉移溫度降低之方法方面,可例舉萘 酚倍環戊二烯酚醛淸漆樹脂之羥基之羥基以碳原子數1〜 20之直鏈狀,分支鏈狀或環狀之烷基、三級丁基、三級 戊基、縮醛等之酸不安定基、乙醯基、三甲基乙醯基所取 代之方法。 此時之取代率,係萘酚倍環戊二烯酚醛淸漆樹脂之羥 基之10〜60莫耳%,較佳爲15〜50莫耳%之範圍。 在含防反射膜之下層膜所要求性能之一方面,可例舉 並無與光阻之混合(intermixing),且無對光阻層低分子 成分之擴散者[Pro c.SPIE Vol.2195,P225 -229 ( 1994)] 。爲防止其發生,一般係採用以防反射膜之旋轉塗布後之 烘烤進行熱交聯之方法。因此,在防反射膜材料之成分方 面添加交聯劑之情形,則有採用在聚合物導入交聯性取代 基之方法。 本發明可使用之交聯劑之具體例試列舉如下,選自羥 甲基、烷氧甲基、醯氧基甲基至少一基所取代之三聚氰胺 化合物、鳥糞胺化合物、乙炔脲化合物或脲素化合物、環 氧化合物、異氰酸酯化合物、疊氮化合物、鏈烯醚基等含 雙鍵之化合物等,該等可作爲添加劑使用,但亦可在聚合 物側鏈以側基(pendant )方式導入,又,含羥基之化合 -19- 1282908 (17) 物亦可作爲交聯劑使用。 前述諸化合物中,環氧化合物可例示如下,三(2,3 -環氧丙基)異三聚氰酸酯、三羥甲基甲烷三環氧丙基醚、 三羥甲基丙烷三環氧丙基醚、三羥乙基乙烷三環氧丙基醚 等。三聚氰胺化合物予以具體例示,六羥甲基三聚氰胺、 六甲氧基甲三聚氰胺、六羥甲基三聚氰胺之丨〜6個之羥甲 基被甲氧基甲基化之化合物及其混合物,六甲氧基乙基三 聚氰胺、六醯氧基甲三聚氰胺、六羥甲基三聚氰胺之羥甲 基之1〜6個被醯氧基甲基化之化合物或其混合物等。鳥糞 胺(guanamine )化合物方面,可例舉四羥甲基鳥糞胺、 四甲氧基甲鳥糞胺、四羥甲基鳥糞胺之1〜4個之羥甲基被 甲氧基甲基化之化合物及其混合物,四甲氧基乙基鳥糞胺 、四醯氧基鳥糞胺、四羥甲基鳥糞胺之1〜4個之羥甲基被 醯氧基甲基化之化合物及其混合物等。乙炔脲化合物方面 ,可例舉四羥甲基乙炔脲、四甲氧基乙炔脲、四甲氧基甲 乙炔脲、四羥甲基乙炔脲之羥甲基之1〜4個被甲氧基甲基 化之化合物,或其混合物’四羥甲基乙炔脲之羥甲基之 1〜4個被醯氧基甲基化之化合物或其混合物等。脲素化合 物方面,可例舉四經甲基脲素、四甲氧基甲基脲素、四經 甲基脲素之1〜4個之羥甲基被甲氧基甲基化之化合物或其 混合物,四甲氧基乙基脲素等。 在含鏈烯醚基之化合物方面’可例示乙二醇二乙烯醚 、三乙二醇二乙烯醚、丨,2·丙二醇二乙烯醚、丨,4·丁二醇 二乙烯醚、四伸丁二醇二乙烯醚、新戊二醇二乙烯醚、三 -20- (18) 1282908 羥甲基丙烷三乙烯醚、己二醇二乙烯醚、丨,4-環己二醇二 乙烯醚、新戊四醇三乙烯醚、新戊四醇四乙烯醇、山梨醇 四乙烯醚、山梨醇五乙烯醚、三羥甲基丙烷三乙烯醚等。 一般式(1 )或(2 )之萘酚-倍環戊二烯樹脂之羥基 被環氧丙基所取代之情形,含羥基之化合物之添加爲有效 。尤其是分子内含2個以上之羥基之化合物爲佳。例如, 萘酚酚醛淸漆、間及對甲酚酚醛淸漆、萘酚-倍環戊二烯 酚醛淸漆、間及對甲酚-倍環戊二烯酚醛淸漆、4,8-雙(羥 甲基)三環[5.2.1. 02·6]-癸烷、新戊四醇、1,2,6-己三醇、 454、4,,-亞甲基(methylidene )三環己醇、4,4’ -[1-[4-[1- (4-羥基環己基)-1-甲基乙基]苯基]亞乙基]雙環己醇、 [1,1’_二環己基]-4,4’-二醇、亞甲基雙環己醇、十氫萘-2,6-二醇、[1,1’-二環己基]-3,3’4,4’-四羥基等之含醇基化 合物、雙酚、亞甲基雙酚、2,2’-亞甲基雙[4_甲基苯酚]、 4,4’ -亞甲基-雙[2,6 -二甲苯酚]、4,4’ -(1·甲基-亞乙基 )雙[2_甲基苯酚]、4,4’ -環亞己基雙酚、4,4’- (1,3-二甲 基亞丁基)雙酚、4,4’ -(卜甲基亞乙基)雙[2,6 -二甲苯 酚]、4,4’-氧基雙酚、4,4’ -亞甲基雙酚、雙(4-羥基苯基 )甲酮、4,4,-亞甲基雙[2-甲苯酚]、4,4’ -[1,4_亞苯基 雙(1-甲基亞乙基)]雙酚、4,4’-(1,2-乙烷二基)雙酚、 4,4’·(二乙基亞矽烷基(silylene))雙酚、4,4’-[2,2,2-三氟-1-(三氟甲基)亞乙基]雙酚、4,4’,4"-亞甲基三苯酚 、4,4’-[1-(4 -羥基苯基)-1-甲基乙基]苯基]亞乙基]雙酚 、2,6-雙[(2 -羥基-5 -甲苯基)甲基]·4 -甲基苯酚、 (19) 1282908Or epoxy propyl. m, η is a positive integer. Here, the naphthol derivative of the repeating unit of the general formulae (1) and (2) can be exemplified, 1-naphthol, 2-naphthol, 2-methyl-1-naphthol, 4 -methoxy-1-naphthol, 7-methoxy-2-naphthol and 1,5-dihydroxynaphthalene, anthracene, 7-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, etc. Methyl-hydroxy-naphthyl-carboxylate. The cyclopentadiene-based and cyclopentadiene 2-mers are present as two isomers of an inward form (endo) and an exo form (exo), but the present invention is used as a raw material for the resin. The diene may be either an isomer or a mixture of two isomers. In the case of using a mixture of isomers, the ratio of the isomers is not particularly limited. -15- (13) 1282908 The repeating unit of the general formulae (1) and (2) is obtained by subjecting a cyclopentadiene to a naphthol to an addition reaction in the presence of an acid catalyst. The acid catalyst used in the reaction may, for example, be an alcoholic compound of boron trifluoride or a mineral acid such as Lewis acid, hydrochloric acid, nitric acid or sulfuric acid such as aluminum chloride, methanesulfonic acid, n-butylsulfonic acid or benzenesulfonic acid. , p-toluenesulfonic acid, m-xylenesulfonic acid, p-toluenesulfonic acid, mesitylene sulfonic acid, etc., sulfonic acid, trifluoromethane methanesulfonic acid, nonafluoromethanesulfonic acid, pentafluorobenzenesulfonic acid, etc. Perfluorosulfonic acid-like super acid, a perfluoroalkane polymer having a terminal sulfonic acid group such as Nafion, an anion exchange resin such as polystyrene having a sulfonic acid residue, or the like. In particular, methane methanesulfonic acid, tosy sulfonic acid (to sy late), and trifluoromethanesulfonic acid are preferred, and the amount thereof used is 0.01 to 10% by weight, preferably 〇, based on the raw material in the case of methane methanesulfonic acid. The range of 5 to 5 wt% in the case of trifluoromethane methanesulfonic acid is in the range of 〇. 0 0 0 1 to 5 wt%, preferably 0.00 0 5 to 1 wt%. The ratio of naphthol to pentacyclopentadiene is from 0.1 to 2.0 moles, preferably from 0.2 to 1.8 moles, per mole of naphthol. The polymer obtained by co-condensation of a naphthol derivative and a pentylene pentadiene of the present invention is suitable for use as a lower layer film, and further co-condensable with a phenol. The phenols mentioned herein may, for example, be phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,5-xylenol or 3,4-xylenol. 3,5-xylenol, 2,4-xylenol, 2,6-xylenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol, 2·tert-butylphenol, 3-tertiary butyl phenol, 4-tributyl phenol, resorcinol, 2-methyl resorcinol, 4-methyl resorcinol, 5 · methyl resorcinol, catechu Phenol, 4-tributyl catechol, -16- (14) 1282908 2-methoxyphenol, 3-methoxyphenol, 2-propyl phenol, 3-propyl phenol, 4-propyl phenol , 2-isopropylphenol, 3-isopropylphenol, 4-isopropylphenol, 2-methoxy-5-methylphenol, 2-tributyl-5-methyl-phenol, coke bake (pyrogallol), thyme S (thymol), iso thymol and the like. Other examples of the monomer copolymerizable with naphthol include dihydroanthracene, hydroxynaphthalene, acenaPhthylene, and biphenyl. It is also possible to add a copolymer of three or more of these. Further, the ratio of the above-mentioned co-condensed phenol unit is preferably 60 mol% or less, particularly preferably 〇 50 50 mol%, of the underlying polymer containing the cocondensate of the naphthol derivative and the p-cyclopentadiene. The reaction can be classified into an addition reaction of a cyclopentadiene with a hydroxyl group of naphthol, a first stage of etherification, and a second stage of formation of a naphthol resin by a transfer reaction. The reaction temperature is in the range of 20 to 200 ° C, preferably 4 〇 to 16 (the range of TC. After the reaction is completed, the unreacted naphthol compound can be distilled off by any method to obtain naphthol-cyclopentylene. When the diene resin is used for the purpose of the present invention, it is desirable to introduce a washing process. The washing method may be any method, for example, using a metal hydroxide to be insoluble in an alkali metal salt method. As a method of removing the components of water, an aromatic hydrocarbon such as toluene or xylene, a ketone such as methyl ethyl ketone or methyl isobutyl ketone, a pentanol, an isopentyl alcohol or a heptanol can be used. a method in which an organic solvent such as heptyl alcohol, octanol or isooctyl alcohol is washed with water, and the above organic solvent is used to wash the diluted hydrochloric acid, and 1 2 2 -dichloroethane or chloroform is used. A solvent such as methyl cellosolve, ethyl cellosolve, dimethylformamide or dimethylacetamide is treated with a sorbent -17-(15) 1282908 agent such as tannin extract, alumina or activated carbon. Method, etc. by any one of the methods, or a combination of the methods, etc. Or an acidic component, an impurity such as a metal ion, and the like are preferably minimized. The weight average molecular weight is preferably in the range of 1,500 to 200,000, preferably in the range of 2,000 to 10,000. The molecular weight distribution is not particularly limited, and is divided by It is possible to remove low molecular weight and high molecular weight to reduce the degree of dispersion, and to mix two or more kinds of phenol-penecyclopentadiene resins having different molecular weights and dispersities, or two or more kinds of phenol-polycyclic rings having different composition ratios. It is also possible to mix the pentadiene resin. In order to further improve the transparency of the naphthol-cyclopentadiene copolymer resin of the present invention, hydrogenation can be carried out. The preferred hydrogenation ratio is an aromatic group such as naphthol. 50 mol% or less. The base resin for a film forming material of the present invention is characterized by containing a naphthol-p-cyclopentadiene resin, but may be exemplified by the above-mentioned antireflective film material blended with a conventional polymer. The naphthoquinone-p-cyclopentane resin has a glass transition temperature of 150 ° C or more, and this material alone may have poor buried characteristics of deep holes such as Wa holes. The side that creates the void A method of embedding a polymer having a low glass transition temperature, performing a hot air blowing at a temperature lower than the crosslinking temperature, and embedding the resin in the bottom of the hole (Japanese Laid-Open Patent Publication No. 2000-294504). a low-transfer temperature of the mouth material, especially a glass transition temperature of below 180 ° C, especially a polymer of 1 q 〇~1 7 〇C, such as propylene derivatives, vinyl alcohol, vinyl ethers, allyl groups Ethers, styrene derivatives, allylbenzene derivatives, olefins such as ethylene, propylene, butylene, etc., polymers obtained by metathesis ring-opening polymerization, etc., can be blended with -18-(16) 1282908 to make glass The transfer temperature is lowered, and the embedding property of the blind via is improved. In this case, the blend ratio of the naphthol derivative to the cyclopentadiene co-condensate to the polymer of the above low glass transition temperature is in the weight ratio of 1 : 0.1 to 1:10, especially 1:0.2 to 1:5 is preferred. In another method for lowering the glass transition temperature, a hydroxyl group having a hydroxyl group of a naphthol pentadiene phenol oxime resin may be exemplified by a linear chain having a carbon number of 1 to 20, a branched or cyclic alkyl group. A method in which an acid unstable group such as a tertiary butyl group, a tertiary pentyl group or an acetal is substituted with an ethyl hydrazino group or a trimethyl ethane group. The substitution ratio at this time is in the range of 10 to 60 mol%, preferably 15 to 50 mol%, based on the hydroxyl group of the naphthol pentene pentadiene phenol oxime resin. One of the properties required for the underlying film containing the antireflection film can be exemplified by no mixing with the photoresist, and no diffusion of the low molecular component of the photoresist layer [Pro c. SPIE Vol. 2195, P225-229 (1994)]. In order to prevent this from occurring, a method of thermally crosslinking by baking after spin coating of an antireflection film is generally employed. Therefore, in the case where a crosslinking agent is added to the components of the antireflection film material, a method of introducing a crosslinkable substituent into the polymer is employed. Specific examples of the crosslinking agent which can be used in the present invention are as follows, which are selected from the group consisting of a melamine compound substituted with at least one group of a methylol group, an alkoxymethyl group, a decyloxymethyl group, a guanine compound, an acetylene urea compound or a urea. a compound containing a double bond such as a compound, an epoxy compound, an isocyanate compound, an azide compound or an alkene group, etc., which may be used as an additive, but may be introduced as a pendant in a polymer side chain. Further, the hydroxyl group-containing compound -19- 1282908 (17) can also be used as a crosslinking agent. Among the above compounds, the epoxy compound can be exemplified as follows, tris(2,3-epoxypropyl)isocyanate, trimethylolethanetriepoxypropyl ether, trimethylolpropane triepoxy Propyl ether, trishydroxyethylethane triepoxypropyl ether, and the like. The melamine compound is specifically exemplified by a compound of hexamethylol melamine, hexamethoxymethyl melamine, hexamethylol melamine, hexamethylene hydroxymethyl group, methoxymethylated compound, and a mixture thereof, hexamethoxyethyl 1 to 6 methoxymethylated compounds of melamine, hexamethoxymethyl melamine, hexamethylol melamine, or a mixture thereof, or the like. In the case of a guanamine compound, one to four hydroxymethyl groups of tetramethylol guanamine, tetramethoxymethylguanine, and tetramethylol guanamine can be exemplified by methoxymethyl. The compound of the group and the mixture thereof, tetramethylol guanamine, tetradecyl guanine, and hydroxymethyl group of tetramethylol guanamine are methylated by oxime Compounds, mixtures thereof, and the like. As the acetylene urea compound, one to four methoxymethyl groups of tetramethylol acetylene urea, tetramethoxy acetylene urea, tetramethoxymethyl acetylene urea, tetramethylol acetylene urea, and hydroxymethyl group can be exemplified. A compound of the group, or a mixture thereof, 1 to 4 of a methylol group of tetramethylol acetylene urea, or a mixture thereof, or a mixture thereof. The urea compound may, for example, be a compound in which methoxymethyl group of 1,4-methylurea, tetramethoxymethylurea, and 1,4-methylurea is methoxymethylated or Mixture, tetramethoxyethylurea, and the like. In the case of the compound containing an olefinic ether group, ethylene glycol divinyl ether, triethylene glycol divinyl ether, hydrazine, 2, propylene glycol divinyl ether, hydrazine, 4·butylene glycol divinyl ether, tetra-butylene can be exemplified. Glycol divinyl ether, neopentyl glycol divinyl ether, tri-20-(18) 1282908 methylolpropane trivinyl ether, hexanediol divinyl ether, hydrazine, 4-cyclohexanediol divinyl ether, new Pentaerythritol trivinyl ether, neopentyl alcohol tetravinyl alcohol, sorbitol tetravinyl ether, sorbitol pentavinyl ether, trimethylolpropane trivinyl ether, and the like. In the case where the hydroxyl group of the naphthol-penecyclopentadiene resin of the general formula (1) or (2) is substituted by a glycidyl group, the addition of a hydroxyl group-containing compound is effective. In particular, a compound having two or more hydroxyl groups in the molecule is preferred. For example, naphthol phenolic enamel paint, m- and cresol novolac lacquer, naphthol-cyclopentadiene phenolic enamel paint, and p-cresol-cyclopentadiene phenolic enamel paint, 4,8-double ( Hydroxymethyl)tricyclo[5.2.1. 02·6]-nonane, neopentyl alcohol, 1,2,6-hexanetriol, 454,4,-methyleneidene tricyclohexanol ,4,4'-[1-[4-[1-(4-hydroxycyclohexyl)-1-methylethyl]phenyl]ethylidene]bicyclohexanol, [1,1'-dicyclohexyl ]-4,4'-diol, methylene dicyclohexanol, decalin-2,6-diol, [1,1'-dicyclohexyl]-3,3'4,4'-tetrahydroxy Etc. alcohol-containing compound, bisphenol, methylene bisphenol, 2,2'-methylenebis[4-methylphenol], 4,4'-methylene-bis[2,6-dimethyl Phenol], 4,4'-(1·methyl-ethylene)bis[2-methylphenol], 4,4'-cyclohexylene bisphenol, 4,4'-(1,3-dimethyl Butyl butyl), bisphenol, 4,4'-(dimethylethylene) bis[2,6-xylenol], 4,4'-oxybisphenol, 4,4'-methylene bisphenol, Bis(4-hydroxyphenyl)methanone, 4,4,-methylenebis[2-cresol], 4,4'-[1,4-phenylenebis(1-methylethylidene) ]double , 4,4'-(1,2-ethanediyl)bisphenol, 4,4'·(diethylsilylene)bisphenol, 4,4'-[2,2,2- Trifluoro-1-(trifluoromethyl)ethylidene]bisphenol, 4,4',4"-methylenetriphenol, 4,4'-[1-(4-hydroxyphenyl)-1- Methyl ethyl]phenyl]ethylidene]bisphenol, 2,6-bis[(2-hydroxy-5-tolyl)methyl]·4-methylphenol, (19) 1282908

4,4’,4"-次乙基三[2 -甲基苯酚]、4,4’,4’’次乙基三苯酚、 4,6-雙[(4-羥基苯基)甲基]1,3_苯二醇、4,4’-[(3,4-二 羥基苯基)亞甲基]雙[2-甲基苯酚]、4,4’,4",4"’·( 1,2-乙 基二亞基)四苯酚、4,4f,4’’,4’’’-乙二亞基)四[2-甲基苯 酚]、2,2’-亞甲基雙[6·[(2-羥基-5-甲苯基)甲基]-4-甲 基-苯酚]、4,4’,4",4’"- ( 1,4-亞苯基二次甲基 Metyridine )四苯酚、2,4,6-三(4-羥基苯基甲基)1,3-苯二醇、 2,4’,4’’-亞甲基三苯酚、454’,4"’-(3-甲基-1-丙烯__3-亞基 乂11(161^)三苯酚、2,6-雙[(4-羥基-3-氯苯基)甲基]-4-氟 苯酚、2,6-雙[4-羥基-3-氟苯基]甲基]-4-氟苯酚、3,6_雙「 (3,5-二甲基-4_羥基苯基)甲基」1,2-苯二醇、4,6-雙「4,4',4"-Subethyltris[2-methylphenol], 4,4',4''-ethylidenetriphenol, 4,6-bis[(4-hydroxyphenyl)methyl] 1,3_Benzenediol, 4,4'-[(3,4-dihydroxyphenyl)methylene]bis[2-methylphenol], 4,4',4",4"'·( 1,2-ethyldiylidene)tetraphenol, 4,4f,4'',4'''-ethylenediphenyl)tetrakis[2-methylphenol], 2,2'-methylene double 6·[(2-hydroxy-5-tolyl)methyl]-4-methyl-phenol], 4,4',4",4'"- (1,4-phenylene secondary methyl Metyridine) tetraphenol, 2,4,6-tris(4-hydroxyphenylmethyl)1,3-benzenediol, 2,4',4''-methylenetriphenol, 454',4" -(3-methyl-1-propene__3-ylidene 11 (161^) trisphenol, 2,6-bis[(4-hydroxy-3-chlorophenyl)methyl]-4-fluorophenol, 2,6-bis[4-hydroxy-3-fluorophenyl]methyl]-4-fluorophenol, 3,6-bis(3,5-dimethyl-4-hydroxyphenyl)methyl"1 , 2-Benzenediol, 4,6-double"

(3,5_二甲基-4-羥基苯基)甲基」1,3-苯二醇、對甲基杯 芳[4]烴、2,2’-亞甲基雙[6-[ ( 2,5/3,6_二甲基-4/2-羥基苯 基)甲基]-4-甲基苯酚、2,2’-亞甲基雙[6-[ (3,5-二甲基-4-羥基苯基)甲基]-4-甲基苯酚、4,4’,4",4"’-肆[(1_甲基 亞乙基)雙(1,4-環亞己基(hexylidene))]-苯酚、6,6f-亞甲基雙[4- (4-羥基苯基甲基)-1,2,3·苯三醇、3,3,,5,5,-四[(5-甲基-2-羥基苯基)甲基]-[(1,1’-聯苯基)-4,4’二 醇]等之苯酚低核體。 本發明中交聯劑之配合量,相對於基底聚合物(全樹 脂份)100份(重量份,以下同)以5〜50份爲佳,尤其 是以1 0〜4 0份爲佳。不足5份時會有與光阻混合之情形, 超過5 0份時會有防反射效果降低’或在交聯後之膜有裂 紋之情形。 -22- (20) 1282908 在本發明,可添加進而可促進熱等所致交聯反應之酸 產生劑。酸產生劑會因熱分解而產生酸或,因光照射而使 酸產生,但可添加任一種。 本發明所使用酸產生劑方面,可例舉 i)下述一般式(Pla-1),(Pla-2),(Pla-3)或(Plb )之鑰鹽, Π)下述一般式(P2)之重氮甲烷衍生物, iii )下述一般式(P3 )之乙二肟衍生物, iv )下述一般式(P4 )之雙碾衍生物, V )下述一般式(P5 )之N-羥基醯亞胺化合物之磺酸 酯, vi ) /3 —酮基磺酸衍生物, vii)二碾衍生物, viii )硝苄基磺酸酯衍生物, ix)磺酸酯衍生物等。(3,5-Dimethyl-4-hydroxyphenyl)methyl"1,3-benzenediol, p-methylcup aryl[4]hydrocarbon, 2,2'-methylenebis[6-[ ( 2,5/3,6-Dimethyl-4/2-hydroxyphenyl)methyl]-4-methylphenol, 2,2'-methylenebis[6-[(3,5-dimethyl) 4-hydroxyphenyl)methyl]-4-methylphenol, 4,4',4",4"'-肆[(1_methylethylidene) bis(1,4-cyclohexylene) (hexylidene))]-phenol, 6,6f-methylenebis[4-(4-hydroxyphenylmethyl)-1,2,3-benzenetriol, 3,3,,5,5,-four A phenolic low nucleus such as [(5-methyl-2-hydroxyphenyl)methyl]-[(1,1'-biphenyl)-4,4'diol]. The amount of the crosslinking agent to be used in the present invention is preferably from 5 to 50 parts, particularly preferably from 10 to 40 parts, per 100 parts by weight (parts by weight) of the base polymer (total resin portion). When there are less than 5 parts, there is a case where it is mixed with the photoresist, and when it exceeds 50 parts, there is a case where the antireflection effect is lowered or the film after the crosslinking is cracked. -22- (20) 1282908 In the present invention, an acid generator which further promotes a crosslinking reaction caused by heat or the like can be added. The acid generator generates acid due to thermal decomposition, and acid is generated by light irradiation, but any one may be added. The acid generator used in the present invention may, for example, be i) the following general formula (Pla-1), (Pla-2), (Pla-3) or (Plb) key salt, Π) the following general formula ( a diazomethane derivative of P2), iii) an ethylenediazine derivative of the following general formula (P3), iv) a double-milled derivative of the following general formula (P4), V) of the following general formula (P5) Sulfonic acid ester of N-hydroxy quinone imine compound, vi ) /3 - keto sulfonic acid derivative, vii) di-milled derivative, viii) nitric acid sulfonate derivative, ix) sulfonate derivative, etc. .

(式中,Rim、Rioib、r1g1c表示各爲碳原子數卜;^ 之直鍵狀’分支鏈狀或環狀之烷基、鏈烯基、側氧烷基或 側氧鏈烯基、碳原子數6〜20之芳基、或碳原子數7〜12之 芳ί完基或芳側氧烷基,該等基之氫原子之一部份或全部可 被烷氧基等所取代。又,R 1 01 b與R 1 0 1 e可形成環,在形成 環之情形,RlGlb、R1Gle各表示碳原子數1〜6之烯烴基。 K·表示非親核性對向離子。RlGld、RlGle、RlGlf、Rl〇lg, -23- (21) 1282908 表示在 Rl〇ia、R1Glb、R1Gle 添加氫原子。尺1()1(1與 R1()le、 Rl(Ud與與R1()lf可各自結合形成環,在形成環之情 形,111()1(1與R1Gle及&1{)1(1與&1()16與RlGlf表示碳原子數 3〜1 0之烯烴.基。)(wherein, Rim, Rioib, and r1g1c each represent a carbon atom; a straight-bonded 'branched chain or cyclic alkyl group, alkenyl group, pendant oxyalkyl group or pendant oxyalkenyl group, carbon atom; An aryl group of 6 to 20 or an aromatic or aryloxyalkyl group having 7 to 12 carbon atoms, and a part or all of one of the hydrogen atoms of the group may be substituted by an alkoxy group or the like. R 1 01 b and R 1 0 1 e may form a ring, and in the case of forming a ring, RlGlb and R1Gle each represent an olefin group having 1 to 6 carbon atoms. K· represents a non-nucleophilic counter ion. RlGld, RlGle, RlGlf, Rl〇lg, -23-(21) 1282908 denotes the addition of a hydrogen atom to Rl〇ia, R1Glb, R1Gle. Rule 1()1(1 and R1()le, Rl(Ud and R1()lf can each In combination with the formation of a ring, in the case of forming a ring, 111()1(1 and R1Gle and &1{)1 (1 and & 1()16 and RlGlf represent an olefin group having 3 to 10 carbon atoms.)

上述 Ri〇la、R1Glb、R101c、R1()ld、R1〇le、R1〇lf、 Ri〇U可互爲相同或相異,具體而言在烷基方面,可例舉 甲基、乙基、丙基、異丙基、正丁基、、二級丁基、三級 丁基、戊基、己基、庚基、辛基、環戊基、環己基、環庚 基、環丙基甲基、4-甲基環己基、環己基甲基、正萡基、 金剛烷基等。在鏈烯基方面,可例舉乙烯基、烯丙基、丙 烯基、丁烯基、己烯基、環己烯基等。在氧基烷基方面, 可例舉2-氧基環戊基、2-氧基環己基等、2-氧基丙基、2-環戊基-2-氧基乙基、2-環己基-2-氧基乙基、2- (4 -甲基 環己基)-2-氧基乙基等。在芳基方面,可例舉苯基、萘 基等’或對甲氧苯基、間甲氧苯基、鄰甲氧苯基、乙氧苯 基 '對三級丁氧苯基、間三級丁氧苯基等之烷氧苯基、2-甲基苯基、3-甲基苯基、4-甲基苯基、乙基苯基、4-三級 丁基苯基、4 -丁基苯基、二甲苯基等之烷、苯基、甲基萘 S'乙S蔡基等之烷萘基、甲氧基萘基、乙氧基萘基等之 ί完氧奈基、二甲基萘基、二乙基萘基等之二烷萘基、二甲 氧基奈基、二乙氧基萘基等之二烷氧萘基等。在芳烷基方 面可例舉爷基、苯基乙基、苯乙基等。芳氧基烷基方面, 可例舉2 -苯基· 2 -側氧乙基、2 -(卜萘基2 -側氧乙基、 2- ( 2-蔡基)側氧乙基等之2_芳基-2_側氧乙基等。κ- -24- (22) 1282908 之非親核性對向離子方面,可例舉氯化物離子、溴化物離 子等之鹵化物離子、三氟甲磺酸、1,1,1 -三氟乙烷磺酸酯 、九氟丁烷磺酸酯等之氟烷磺酸酯、對甲苯磺醯酸鹽、苯 磺酸酯、4 -氟苯磺酸酯、1,2,3,4,5 -五氟苯磺酸酯等之芳基 磺酸酯、甲磺醯鹽、丁烷磺酸酯等之烷磺酸酯。 (Pla-Ι )與(Pla-2 )具有光酸產生劑,熱酸產生劑 之兩種效果,但(P1 a-3 )係以熱酸產生劑作用。 R102a !R102bThe above Ri〇la, R1Glb, R101c, R1()ld, R1〇le, R1〇lf, Ri〇U may be the same or different from each other, and specifically, in terms of an alkyl group, a methyl group, an ethyl group, Propyl, isopropyl, n-butyl, secondary butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclopropylmethyl, 4-methylcyclohexyl, cyclohexylmethyl, n-decyl, adamantyl and the like. The alkenyl group may, for example, be a vinyl group, an allyl group, a propenyl group, a butenyl group, a hexenyl group or a cyclohexenyl group. The oxyalkyl group may, for example, be a 2-oxycyclopentyl group, a 2-oxycyclohexyl group or the like, a 2-oxypropyl group, a 2-cyclopentyl-2-oxyethyl group or a 2-cyclohexyl group. 2-Oxoethyl, 2-(4-methylcyclohexyl)-2-oxyethyl, and the like. The aryl group may, for example, be a phenyl group, a naphthyl group or the like, or a p-methoxyphenyl group, a m-methoxyphenyl group, an o-methoxyphenyl group, an ethoxyphenyl group, a tert-butoxyphenyl group, or a tertiary intermediate. Alkoxyphenyl such as butoxyphenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, ethylphenyl, 4-tributylphenyl, 4-butyl An alkane group such as a phenyl group or a xylyl group, a phenyl group, a methyl naphthalene group such as an alkylnaphthyl group such as a methoxyphenyl group, a methoxynaphthyl group or an ethoxynaphthyl group; a dialkoxynaphthyl group such as a naphthylnaphthyl group such as a naphthyl group or a diethylnaphthyl group, a dimethoxynaphthyl group or a diethoxynaphthyl group. The arylalkyl group may, for example, be a styrene group, a phenylethyl group or a phenethyl group. The aryloxyalkyl group may, for example, be 2-phenyl-2-oxoethyl, 2-(p-naphthyl-2-oxoethyl, 2-(2-caiyl)-side oxyethyl, etc. The group 2 - side oxyethyl group, etc. The non-nucleophilic counter ion of κ- -24- (22) 1282908 may, for example, be a halide ion such as a chloride ion or a bromide ion, or a trifluoromethanesulfonic acid. , 1,1,1-trifluoroethane sulfonate, fluoroalkane sulfonate such as nonafluorobutane sulfonate, p-toluenesulfonate, benzenesulfonate, 4-fluorobenzenesulfonate, An alkanesulfonate such as an arylsulfonate such as 1,2,3,4,5-pentafluorobenzenesulfonate, a methanesulfonate or a butanesulfonate. (Pla-Ι) and (Pla- 2) It has two effects of photoacid generator and thermal acid generator, but (P1 a-3) acts as a thermal acid generator. R102a !R102b

Rl〇4a_st^Rl〇3_g+_Ri〇4b Κ: κ: (Plb) (式中,R1G2a、R1G2b各表示碳原子數1〜8之直鏈狀 ,分支鏈狀或環狀之烷基。R1G3表示碳原子數1〜10之直 鏈狀,分支鏈狀或環狀之烯烴基。R1()4a、各表示碳 原子數3〜7之2 -側氧院基。K -表示非親核性對向離子) 〇 上述R1G2a、R1G2b具體而言,可例舉甲基、乙基、丙 基、異丙基、正丁基、二級丁基、三級丁基、戊基、己基 、庚基、辛基、環戊基、環己基、環丙基甲基、4 -甲基環 己基、環己基甲基等。R103方面,可例舉亞甲基、亞乙基 、亞丙基、亞丁基、亞戊基、亞己基、亞庚基、亞辛基、 亞壬基、1,4_環亞己基、1,2-環亞己基、丨,%環亞戊基、 1,4 -環亞辛基、1,4 -環己院一亞甲基等。在r1〇“, R10 4 b方面,可例舉2 -氧基丙基、2 -氧基環戊基2 ·側氧環 己基、2-側氧環庚基等。可例舉與式(ph·〗),(pla-2 )及(Pla-3 )所説明者相同之物。 -25- (23) 1282908 , ίί2 R105—S02~C-S02~R106 (P2) (式中,R1G5,R1G6係表示碳原子數之直鏈狀 ,分支鏈狀或環狀之烷基或鹵化烷基,碳原子數6〜20之 芳基或鹵化芳基,或碳原子數7〜12之芳院基)Rl〇4a_st^Rl〇3_g+_Ri〇4b Κ: κ: (Plb) (wherein R1G2a and R1G2b each represent a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms. R1G3 represents a linear, branched or cyclic olefinic group having 1 to 10 carbon atoms. R1() 4a each represents a carbon atomic number of 3 to 7 - a side oxygen group. K - represents a non-nucleophilic pair Specific examples of the above R1G2a and R1G2b include a methyl group, an ethyl group, a propyl group, an isopropyl group, a n-butyl group, a secondary butyl group, a tertiary butyl group, a pentyl group, a hexyl group, a heptyl group, and the like. Octyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, 4-methylcyclohexyl, cyclohexylmethyl and the like. In the case of R103, a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, an anthranylene group, a 1,4-cyclohexylene group, and 1, 2-cyclohexylene, anthracene, % cyclopentylene, 1, 4-cyclooctylene, 1,4-cycloheximide monomethylene, and the like. In the case of r1〇", R10 4 b, a 2-oxypropyl group, a 2-oxycyclopentyl group 2 side-oxycyclohexyl group, a 2-oxocycloheptyl group, etc. may be mentioned. · 〗 〖, (pla-2) and (Pla-3) are the same as those described. -25- (23) 1282908 , ίί2 R105—S02~C-S02~R106 (P2) (where R1G5, R1G6 Is a linear, branched or cyclic alkyl or halogenated alkyl group, an aryl or halogenated aryl group having 6 to 20 carbon atoms, or a aryl group having 7 to 12 carbon atoms)

Rl〇5,Rl〇6之烷基方面可例舉甲基、乙基、丙基、異 丙基、正丁基、二級丁基、三級丁基、戊基、己基、庚基 、辛基、戊烷基、環戊基、環己基、環庚基、正萡基、金 剛烷基等。在鹵化烷基方面可例舉三氟甲基、1,1,1 -三氟 乙基、1,1,1·三氯乙基、九氟丁基等。在芳基方面可例舉 苯基、對甲氧基苯基、間甲氧基苯基、鄰甲氧基苯基、乙 氧苯基、對三級丁氧基苯基、間三級丁氧基苯基等之烷氧 苯基、2-甲苯基、3-甲苯基、4-甲苯基、乙基苯基、4-三 級丁基苯基、4-丁基苯基、二甲基苯基等之烷苯基。在鹵 化芳基方面可例舉氟苯基、氯苯基、1,2,3,4,5五氟苯基等 。在芳烷基方面可例舉苄基、苯乙基等。Rl〇5, Rl〇6 alkyl group can be exemplified by methyl, ethyl, propyl, isopropyl, n-butyl, secondary butyl, tert-butyl, pentyl, hexyl, heptyl, octyl Base, pentylene, cyclopentyl, cyclohexyl, cycloheptyl, n-decyl, adamantyl and the like. The halogenated alkyl group may, for example, be a trifluoromethyl group, a 1,1,1-trifluoroethyl group, a 1,1,1·trichloroethyl group or a nonafluorobutyl group. The aryl group may, for example, be phenyl, p-methoxyphenyl, m-methoxyphenyl, o-methoxyphenyl, ethoxyphenyl, p-tertiary butoxyphenyl or m-butoxy Alkoxyphenyl such as phenyl, 2-tolyl, 3-tolyl, 4-tolyl, ethylphenyl, 4-tributylphenyl, 4-butylphenyl, dimethylbenzene An alkylphenyl group. The halogenated aryl group may, for example, be a fluorophenyl group, a chlorophenyl group, a 1,2,3,4,5 pentafluorophenyl group or the like. The aralkyl group may, for example, be a benzyl group or a phenethyl group.

| I ri〇5_s〇2 一 〇 一N==c:—c=3Ni 一 Ο 一 S02 一:R107 (P3) (式中,R1G7、R1G8、R1G9爲碳原子數1〜12之直鏈狀 ,分支鏈狀或環狀之烷基或鹵化烷基,碳原子數6〜20之 芳基或鹵化芳基,或碳原子數7〜12之芳烷基。R1()8、R109 可互相結合形成環狀構造,在形成環狀構造之情形,R108 、R1G9各表示碳原子數1〜6之直鏈狀或分支鏈狀之烯烴基 〇 在R 1 0 7、R 1 0 8、R 1 0 9之烷基、鹵化烷基、芳基、鹵化 -26- (24) 1282908 芳基、芳烷基方面,可例舉與R1G5、R1G6所説明者相同之 基。另外,在R1()8、R1()9之烯烴基方面可例舉亞甲基、亞 乙基、亞丙基、亞丁基、亞己基等。 0 0| I ri〇5_s〇2 一〇一N==c:—c=3Ni 一Ο一S02 一:R107 (P3) (wherein R1G7, R1G8, and R1G9 are linear chains of 1 to 12 carbon atoms, a branched or cyclic alkyl or halogenated alkyl group, an aryl group or a halogenated aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms. R1()8, R109 may be bonded to each other to form a branched or cyclic alkyl group or a halogenated alkyl group. In the case of a ring-shaped structure, R108 and R1G9 each represent a linear or branched chain olefin group having 1 to 6 carbon atoms in R 1 0 7 , R 1 0 8 , and R 1 0 9 . The alkyl group, the halogenated alkyl group, the aryl group, or the halogenated -26-(24) 1282908 aryl group or the aralkyl group may, for example, be the same as those described for R1G5 and R1G6. Further, in R1()8, R1 The olefin group of (9) may, for example, be a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group or the like.

Rl〇la 一I—R101bRl〇la I-R101b

II II Ο ο (Ρ4) (式中,Rim、R^lb與前述相同。) Ο ιιII II Ο ο (Ρ4) (where Rim, R^lb are the same as above.) Ο ιι

R110/N—O-SO2—RmR110/N-O-SO2-Rm

CC

II O (PS)II O (PS)

(式中,R11G表示碳原子數6〜10之伸芳基、碳原子 數1〜6之烯烴基或碳原子數2〜6之亞鏈烯基、該等基之氫 原子之一部份或全部進而可以碳原子數1〜4之直鏈狀或分 支鏈狀之烷基或烷氧基、硝基、乙醯基、或苯基取代。 R111係碳原子數1〜8之直鏈狀、分支鏈狀或取代之烷基、 鏈烯基或烷氧烷基、苯基、或萘基、該等基之氫原子之一 部份或全部進而可以碳原子數1〜4之烷基或烷氧基;碳原 子數1〜4之烷基、烷氧基、硝基或乙醯基取代之苯基;碳 原子數3〜5之雜芳香族基;或可以氯原子、氟原子取代。 ) 在此,R11G之伸芳基方面,可例舉1,2-亞苯基、1,8-亞萘基等,烯烴基方面,可例舉亞甲基、亞乙基、三亞甲 基、四亞甲基、苯基亞乙基、降萡烷-2,3-二基等,亞鏈燃 基方面,可例舉1,2-亞乙烯基、1·苯基-l,2-亞乙烯基、5-降萡烯-2,3-二基等。R111之烷基方面,與R1GIa〜相 -27- (25) 1282908 同者,鏈烯基方面,可例舉乙烯基、1-丙烯基、烯丙基、 1-丁烯基、3 -丁烯基、異戊間二烯基、1-戊烯基、3 -戊烯 基、4-戊烯基、二甲基烯丙基、1-己烯基、3-己烯基、5-己烯基、1-戊烯基、3_戊烯基、6-戊烯基、7 -辛烯基等, 烷氧烷基方面,甲氧基甲基、乙氧甲基、丙氧甲基、丁氧 甲基、戊氧甲基、己氧甲基、庚氧甲基、甲氧乙基、乙氧 乙基、丙氧乙基、丁氧基乙基、戊氧乙基、己氧乙基、甲 氧基丙基、乙氧丙基、丙氧丙基、丁氧基丙基、甲氧基丁 基、乙氧丁基、丙氧丁基、甲氧基戊基、乙氧戊基、甲氧 基己基、甲氧基庚基等。 另外,在可進而取代之碳原子數1〜4之烷基方面,可 例舉甲基、乙基、丙基、異丙基丙基、正丁基、異丁基、 三級丁基等,在碳原子數1〜4之烷氧基方面,可例舉甲氧 基、乙氧基、丙氧基、異丙氧基、正丁氧基、異丁氧基、 三級丁氧基等,可被碳原子數1〜4之烷基、烷氧基、硝基 或乙醯基取代之苯基方面,可例舉苯基、甲苯基、對三級 丁氧基苯基、對乙醯苯基、對硝苯基等,在碳原子數3〜5 之雜芳香族基方面,有吡啶基、呋喃基等。 具體而言,例如三氟甲烷甲磺酸四甲銨、九氟丁烷石黃 酸四甲銨、九氟丁烷磺酸四正丁基銨、九氟丁烷磺酸四苯 基銨、對甲苯磺酸四甲銨、三氟甲烷甲磺酸二苯基碘鑰Ξ 氟甲烷甲磺酸(對三級丁氧基苯基)苯基碘鎗、對甲苯石黃 酸二苯基碘鐵、對甲苯磺酸(對三級丁氧基苯基)苯基戰 鏺、三氟甲烷甲磺酸三苯基鎏、三氟甲烷甲磺酸(對三級 -28- (26) 1282908 〜荷、二氟甲烷甲磺酸雙(對三級丁氧 丁氧基苯基)二苯基鎏一氟中机十 ^ 一气甲烷甲磺酸三(對三級丁氧基苯基 基苯基)苯基鎏、二氟甲丨兀 )鎏、對甲苯礦酸三苯基鎏、對甲苯磺酸(對三級丁氧基 苯基)二苯_、肖㈣額雙(衫訂氧s苯基)苯 二® 丁萄某苯基)鎏、九氟丁院 基鎏、對甲苯磺酸三(對一級丁联 確酸三苯基_、丁院擴酸三苯基蜜、三氟甲院甲擴酸三甲 产 辦一甲鎏、=氟甲烷甲擴酸環己基甲(2_氧 鎏、對甲苯磺酸二甲金一弗、卞(wherein R11G represents a aryl group having 6 to 10 carbon atoms, an olefin group having 1 to 6 carbon atoms or an alkenylene group having 2 to 6 carbon atoms; or a part of a hydrogen atom of the group or All of them may be substituted by a linear or branched alkyl group having 1 to 4 carbon atoms, an alkoxy group, a nitro group, an ethyl fluorenyl group or a phenyl group. R111 is a linear chain having 1 to 8 carbon atoms. a branched or substituted alkyl, alkenyl or alkoxyalkyl group, a phenyl group, or a naphthyl group, a part or all of one or more of the hydrogen atoms of the groups may further be an alkyl or alkane having 1 to 4 carbon atoms. An oxy group; a phenyl group substituted with an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a nitro group or an ethyl fluorenyl group; a heteroaromatic group having 3 to 5 carbon atoms; or a chlorine atom or a fluorine atom. Here, the aspect of the aryl group of R11G may, for example, be a 1,2-phenylene group or a 1,8-naphthylene group, and the olefin group may, for example, be a methylene group, an ethylene group, a trimethylene group or a tetra group. Methylene, phenylethylene, norbornane-2,3-diyl, etc., in terms of subchain flammability, 1,2-vinylidene, 1 phenyl-l,2-vinylidene Base, 5-northene-2,3-diyl, and the like. The alkyl group of R111 is the same as R1GIa~ phase-27-(25) 1282908, and the alkenyl group may, for example, be a vinyl group, a 1-propenyl group, an allyl group, a 1-butenyl group or a 3-butene group. Base, iso-pentadienyl, 1-pentenyl, 3-pentenyl, 4-pentenyl, dimethylallyl, 1-hexenyl, 3-hexenyl, 5-hexene , 1-pentenyl, 3-pentenyl, 6-pentenyl, 7-octenyl, etc., alkoxyalkyl, methoxymethyl, ethoxymethyl, propoxymethyl, butyl Oxymethyl, pentoxymethyl, hexyloxymethyl, heptyloxymethyl, methoxyethyl, ethoxyethyl, propoxyethyl, butoxyethyl, pentyloxyethyl, hexyloxyethyl, Methoxypropyl, ethoxypropyl, propoxypropyl, butoxypropyl, methoxybutyl, ethoxybutyl, propoxybutyl, methoxypentyl, ethoxypentyl, A Oxyhexyl, methoxyheptyl and the like. Further, the alkyl group having 1 to 4 carbon atoms which may be further substituted may, for example, be a methyl group, an ethyl group, a propyl group, an isopropyl propyl group, a n-butyl group, an isobutyl group or a tertiary butyl group. The alkoxy group having 1 to 4 carbon atoms may, for example, be a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a n-butoxy group, an isobutoxy group or a tertiary butoxy group. The phenyl group which may be substituted by an alkyl group, an alkoxy group, a nitro group or an ethyl fluorenyl group having 1 to 4 carbon atoms may, for example, be a phenyl group, a tolyl group, a p-tertiary butoxyphenyl group or a p-ethenebenzene group. Examples of the heterocyclic aromatic group having 3 to 5 carbon atoms include a pyridyl group and a furyl group. Specifically, for example, tetramethylammonium trifluoromethane methanesulfonate, tetramethylammonium nonafluorobutane phthalate, tetra-n-butylammonium nonafluorobutanesulfonate, tetraphenylammonium nonafluorobutanesulfonate, Tetramethylammonium tosylate, diphenyl iodide trifluoromethanesulfonate, fluoromethane methanesulfonic acid (p-tert-butoxyphenyl) phenyl iodine gun, p-toluene diphenyl iodine iron, P-toluenesulfonic acid (p-tert-butoxyphenyl)phenyl wart, triphenylmethanesulfonate triphenylsulfonium, trifluoromethane methanesulfonic acid (for tertiary -28-(26) 1282908~? Difluoromethane methanesulfonic acid bis(p-tertiary butoxybutoxyphenyl)diphenylfluorene-fluorine machine ten^one gas methane methanesulfonic acid tris(p-tert-butoxyphenylphenyl)phenyl鎏, difluoromethyl hydrazine) 鎏, p-toluene ortho-triphenyl sulfonium, p-toluene sulfonic acid (p-tert-butoxyphenyl) diphenyl _, Xiao (four) bis (nitroxy s phenyl) benzene ® 某 某 苯基 苯基 鎏 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九Sanjiao production office, one methyl hydrazine, = fluoromethane, acid expansion ring Hexyl group (2_oxanthene, p-toluenesulfonic acid dimethyl-gold)

基環己基)_、對甲苯擴酸環己基甲(2·氧基環己基)璧 、三氟甲院甲擴酸二甲苯基鎏、肖甲苯擴酸二甲苯基鎏、 三氟甲垸甲擴酸二環己基苯基鎏、對甲苯擴酸二環己基苯 基鎏、三氟甲烷甲磺酸三萘基鎏、三氟甲烷甲磺酸(2-正 萡基)甲(2-氧基環己基)鎏、乙烯雙[甲(2_氧基環戊 )鎏三氟甲院擴酸鹽、I,2,-萘基羰甲基四氫噻吩鎗三氟甲 磺酸鹽等之鑰鹽。Cyclohexyl)_, p-toluene acid extension cyclohexylmethyl (2. oxycyclohexyl) fluorene, trifluoromethyl methacrylate, dimethylphenyl hydrazine, dimethyl hydrazine, trifluoromethyl hydrazine Acid dicyclohexylphenyl fluorene, p-toluic acid dicyclohexyl phenyl fluorene, trinaphthyl trifluoromethanesulfonate, trifluoromethane methanesulfonic acid (2-n-decyl) methyl (2-oxy ring) Hexyl) bismuth, ethylene bis [methyl(2-oxycyclopentanyl) fluorene compound, salt of I, 2,-naphthylcarbonylmethyltetrahydrothiophene trifluoromethanesulfonate and the like.

雙(苯磺醯基)重氮甲烷、雙(對甲苯磺醯基)重氮 甲院、雙(二甲苯磺醯基)重氮甲烷、雙(環己基磺醯基 )重氮甲烷、雙(環戊磺醯基)重氮甲院、雙(正丁基磺 醯基)重氮甲烷、雙(異丁基磺醯基)重氮甲院、雙(二 級丁基磺醯基)重氮甲院、雙(正丙基石貝釀基)重氮甲院 、雙(異丙基磺醯基)重氮甲烷、雙(三級丁基磺醯基) 重氮甲烷、雙(正戊烷基磺醯基)重氮甲烷、雙(異戊烷 基磺醯基)重氮甲烷、雙(二級戊烷基磺醯基)重氮甲烷 、雙(三級戊烷基磺醯基)重氮甲烷、1 -環己基磺醯基-卜(三級丁基磺醯基)重氮甲烷、I -環己基磺醯基-1 一( -29- (27) 1282908 三級戊烷基磺醯基)重氮甲烷、1 _三級戊烷基磺醯基-1 -(三級丁基磺醯基)重氮甲烷等之重氮甲烷衍生物。 雙-0-(對甲苯磺醯基)-α -二甲基乙二肟、雙·0-( 對甲苯磺醯基)-α -二苯基乙二肟、雙-〇-(對甲苯磺醯 基)· α -二環己基乙二肟、雙-0-(對甲苯磺醯基)-2,3-戊二酮乙二肟、雙-〇-(對甲苯磺醯基)-2-甲基- 3,4-戊二 酮乙二肟、雙-〇-(正丁烷磺醯基)-α -二甲基乙二肟、 雙- 0-(正丁烷磺醯基)-α-二苯基乙二肟、雙-〇-(對甲 苯磺醯基)-α -二環己基乙二肟、雙-〇-(對甲苯磺醯基 )-2,3-戊二酮乙二肟、雙-〇-(對甲苯磺醯基)-2-甲基-3,4-戊二酮乙二0亏、雙-〇-(正丁院磺醯基)1- 一甲基乙 二肟、雙-〇·(正丁烷磺醯基)-α -二苯基乙二肟、雙-0-(正丁烷磺醯基)_ α二環己基乙二肟、雙-〇-(正丁烷擴 醯基)-2,3·戊二酮乙二肟、雙-〇-(正丁烷磺醯基)-2-甲 基-3,4-戊二酮乙二肟、雙-〇-(甲烷磺醯基)-α-二甲基 乙二肟、雙-0-(三氟甲烷磺醯基)-α-二甲基乙二肟、 雙-0-(1,1,1-三氟乙烷磺醯基)-“-二甲基乙二肟、雙-0-(-三級丁基磺醯基)-α-二甲基乙二肟、雙-〇·(全氟 辛烷磺醯基)-α ·二甲基乙二肟、雙-〇 -(環己烷磺醯基 )-α-二甲基乙二肟、雙-〇-(苯磺醯基)-α -二甲基乙二 肟、雙-0-(對氟苯磺醯基)二甲基乙二肟、雙-〇-( 對三級丁基苯磺醯基)-α -二甲乙二肟、雙-〇-(二甲苯 磺醯基)-α -二甲基乙二肟、雙-〇 -(樟腦磺醯基)-α -二 甲基乙二肟等之乙二肟衍生物。 -30- 1282908 (28) 雙萘基磺醯基甲烷、雙三氟甲磺醯基甲烷 醯基甲烷、雙乙基磺醯基甲烷、雙丙基磺醯基 丙基磺醯基甲烷、雙對甲苯磺醯基甲烷、雙苯 等之雙硕衍生物。 2-環己基羰基-2-(對甲苯磺醯基)丙烷、 基-2-(對甲苯磺醯基)丙烷等之/3 -酮基硕衍兰 對甲苯磺酸2,6-二硝苄基、對甲苯磺酸2 等之硝苄基磺酸酯衍生物。 1,2,3-三(甲烷磺醯基氧基)苯、1,2,3-三 磺醯基氧基)苯、1,2,3-三(對甲苯磺醯基氧 磺酸酯衍生物。 N-羥基琥珀醯亞胺醯基甲烷甲磺酸酯、N· 亞胺醯基三氟甲烷甲磺酸酯、N-羥基琥珀醯亞 磺酸酯、N-羥基琥珀醯亞胺醯基1 -丙烷磺酸 琥珀醯亞胺醯基2-丙烷磺酸酯、N-羥基琥珀 1·戊烷磺酸酯、N —羥基琥珀醯亞胺醯基1-辛 N-羥基琥珀醯亞胺醯基對甲苯磺酸酯、N-羥基 醯基、對甲氧基苯磺酸酯、N-羥基琥珀醯亞月 乙烷磺酸酯、N-羥基琥珀醯亞胺醯基苯磺酸酯 珀醯亞胺醯基-2,4,6-三甲苯磺酸酯、N-羥基琥 基1-萘磺酸酯、N-羥基琥珀醯亞胺醯基2-萘 羥基-2-苯基琥珀醯亞胺醯基甲烷甲磺酸酯、 烯二醯亞胺甲烷甲磺酸酯、N-羥基順丁烯二醯 酸酯、N-羥基-2-苯基順丁烯二醯亞胺甲烷甲 、雙甲基磺 甲烷、雙異 磺醯基甲烷 2-異丙基羰 物。 ,4-二硝苄基 (三氟甲烷 基)苯等之 •經基號拍釀 胺醯基乙烷 酯、N-羥基 醯亞胺醯基 烷磺酸酯、 琥珀醯亞胺 安釀基2 -氛 、N-經基琥 珀醯亞胺醯 磺酸酯、N-N-羥基順丁 亞胺乙烷磺 磺酸酯、N- -31 - (29) 1282908 羥基戊二醯亞胺甲烷甲磺酸酯、N -羥基戊二醯亞胺苯磺酸 酯、N-羥基酞醯亞胺甲烷甲磺酸酯、N-羥基酞醯亞胺苯磺 酸酯、N —羥基酞醯亞胺三氟甲烷甲磺酸酯、N-羥基酞醯 亞胺對甲苯磺酸酯、N-羥基(L)二甲醯亞胺甲烷甲磺酸酯、 N-羥基(L)二甲醯亞胺苯磺酸酯、N-羥基_5-降萡烯- 2,3-二 羧基醯亞胺甲烷甲磺酸酯、N_羥基-5-降萡烯-2,3-二羧醯 亞胺三氟甲烷甲磺酸酯、N-羥基-5-降萡烯-2,3-二羧醯亞 胺對甲苯磺酸酯等之N-羥基醯亞胺化合物之磺酸酯衍生 物等。三氟甲烷甲磺酸三苯基鎏、三氟甲烷甲磺酸(對三 級丁氧基苯基)二苯基鎏、三氟甲烷甲磺酸三(對三級丁 氧基苯基)鎏、對甲苯磺酸三苯基鎏、對甲苯磺酸(對三 級丁氧基苯基)二苯基鎏、對甲苯磺酸三(對三級丁氧基 苯基)鎏、三氟甲烷甲磺酸三萘基鎏、三氟甲烷磺酸環己 基甲基(2-側氧環己基)鎏、三氟甲烷甲磺酸(2-正萡基 )甲基(2-氧基環己基)鎏、1,2’-萘基羰甲基四氫噻吩鐵 (thiophenium )三氟甲磺酸鹽等之鑰鹽,雙(苯磺醯基 )重氮甲烷、雙(對甲苯磺醯基)重氮甲烷、雙(環己基 磺醯基)重氮甲烷、雙(正丁基磺醯基)重氮甲烷、雙( 異丁基磺醯基)重氮甲烷、雙(二級丁基磺醯基)重氮基 甲烷甲烷、雙(正丙基磺醯基)重氮甲烷甲烷、雙(異丙 基磺醯基)重氮甲烷、雙(三級丁基磺醯基)重氮甲烷等 之重氮甲烷衍生物、雙- 0-(對甲苯磺醯基)二甲基 乙二肟、雙-〇-(正丁烷磺醯基)-α -二甲基乙二肟等之 乙二肟衍生物、雙萘基磺醯基甲烷等之雙硕衍生物,Ν-羥 -32- (30) 1282908 基琥珀醯亞胺醯基甲烷甲磺酸酯、N-羥基琥珀醯亞胺醯基 三氟甲烷甲磺酸酯、N-羥基琥珀醯亞胺醯基1-丙烷磺酸 酯、N-羥基琥珀醯亞胺醯基2-丙烷磺酸酯、N-羥基琥珀 醯亞胺醯基1-戊烷磺酸酯、N-羥基琥珀醯亞胺醯基對甲 苯磺酸酯、N-羥基(L)二甲醯亞胺甲烷甲磺酸酯、N_羥基(L) 二甲醯亞胺苯磺酸酯等之N-羥基醯亞胺化合物之磺酸酯 衍生物可恰當的使用。又,上述酸產生劑可單獨使用一種 或組合二種以上使用。 酸產生劑之添加量,相對於基底聚合物1 00份較佳爲 〇·1〜50份,更佳爲0.5〜40份。比0.1份更少時酸產生量 少,交聯反應有不充分之情形,超過5 0份時,因酸往上 層光阻膜移動所致混合顯像會有產生之情形。 再者’在本發明之下層膜材料,可將提高保存安定性 用之鹼性化合物予以配合。 在鹼性化合物方面,由酸產生劑所微量產生之酸爲防 止使交聯反應進行用之,可適於對酸之消化體(quencher )有用的化合物。 在此種鹼性化合物方面,可例舉一級、二級、三級之 脂肪族胺類、混成胺類、芳香族胺類、雜環胺類、具羧基 之含氮化合物、具磺醯基之含氮化合物、具羥基之含氮化 合物、具羥基苯基之含氮化合物、醇性含氮化合物、醯胺 衍生物、醯亞胺衍生物等。 具體而g,第一級之脂肪族胺類,可例示氨、甲胺、 乙胺、正丙胺、異丙胺、正丁胺、異丁胺、二級丁胺、三 -33· (31) 1282908 級丁胺、戊胺、三級戊烷基胺、環戊胺、己胺、環己基胺 、庚胺、辛胺、壬胺、癸胺、十二胺、十六胺、亞甲二胺 、亞乙二胺、四亞乙戊胺等、二級脂肪族胺類方面,可例 示二甲胺、二乙胺、二正丙胺、二異丙胺、二正丁胺、二 異丁基胺、二-二級丁胺、二戊胺、二環戊胺、二己胺、 二環己胺、二庚胺、二辛胺、二壬胺、二癸胺、二個十二 胺、二個十六胺、N,N-二甲基亞甲二胺、ν,Ν·二甲基亞乙 二胺、Ν,Ν·二甲基四亞乙戊胺等,三級之脂肪族胺類方面 ,可例示三甲胺、三乙胺、三正丙胺、三異丙胺、三正丁 胺、三異丁胺、三個二級丁胺、三戊胺、三環戊胺、三己 胺、三環己基胺、三庚胺、三辛胺、三壬胺、三癸胺、三 個十二胺、三個十六胺、Ν,Ν,Ν’,Ν’-四甲基亞甲二胺、 Ν,Ν,Ν’ 、Ν’-四甲基亞乙二胺、Ν,Ν,Ν, ,Ν,-四甲基四亞 乙戊胺等。 又,在混成胺類方面,可例示例如二甲基乙基胺、甲 基乙基丙基胺、卡基胺、苯乙基胺、爷基二甲胺等。 在芳香族胺類及雜環胺類之具體例方面,可例示苯胺 衍生物(例如苯胺、N-甲苯胺、Ν-乙基苯胺、Ν••丙基苯胺 、Ν,Ν-二甲苯胺、2-甲苯胺、3-甲苯胺、4-甲苯胺、乙苯 胺、丙基苯胺、三甲苯胺、2 -硝苯胺、3 -硝苯胺、4 -硝苯 胺、2,4-二硝苯胺、2,6-二硝苯胺、3,5-二硝苯胺、Ν,Ν-二甲基鄰甲苯胺等)、二苯基(對甲苯)胺、甲二苯基胺 、三苯基胺、亞苯基二胺、萘基胺、二胺基萘、吡咯衍生 物(例如吡咯、2 Η -吡咯、1 ·甲吡咯、2,4 -二甲吡咯、 -34- 1282908 (32) 2,5 - 一甲D比咯、n -甲吡略等)、噁坐衍生物(例如噁坐、 異D惡坐等)、噻唑衍生物(例如噻唑、異噻唑等)、咪唑 衍生物(例如咪唑、4 -甲咪Π坐、4 -甲_ 2 -苯基咪唑等)、吡 α坐衍生物、夫則(furazan )衍生物、吡略啉衍生物(例 如哦咯啉、2 -甲-1 _吡咯啉等)、吡咯啶衍生物(例如吡 咯啶、N ·甲吡咯啶、吡咯啶酮、N _甲吡咯啶酮等)、咪唑 啉衍生物、咪唑啶衍生物、吡啶衍生物(例如吡啶、甲吡 啶、乙基吡啶、丙基吡啶、丁基吡啶、4 - ( 1 - 丁基戊基) 吡啶、二甲吡啶、三甲吡啶、三乙基吡啶、苯基吡啶、3 _ 甲-2 -苯基吡啶、4 -三級丁基吡啶、二苯基吡啶、苄基吡 啶、甲氧基吡啶、丁氧基吡啶、二甲氧基吡啶、;[-甲-2 -吡啶酮、4-吡咯啶基吡啶、1-甲-4-苯基吡啶、2-(卜乙基 丙基)吡啶、胺基吡啶、二甲胺基吡啶等)、嗒哄衍生物 、密啶衍生物、吡哄衍生物、吡唑啉衍生物、吡唑啶衍生 物、哌啶衍生物、哌畊衍生物、咪啉衍生物、吲哚衍生物 、異吲哚衍生物、1 吲唑衍生物、吲哚啉衍生物、D奎啉 衍生物(例如喹啉、3-喹啉菁(carbonitrile )等)、異喹 啉衍生物、曾啉衍生物、_唑啉衍生物、_鸣啉衍生物、 酞嗪衍生物、嘌呤衍生物、蝶啶衍生物、咔唑衍生物、啡 啶衍生物、吖啶衍生物、啡哄衍生物、1,1 〇 -鄰啡啉衍生 物、腺嘌呤衍生物、腺苷衍生物、鳥嘌呤衍生物、鳥苷衍 生物、脲嘧啶衍生物、脲苷衍生物等。 再者,在具有羧基之含氮化合物方面,可例示例如胺 基苯甲酸、吲哚羧酸、胺基酸衍生物(例如菸鹼酸、丙胺 -35- (33) 1282908 酸、精胺酸、天冬醯胺酸、麩醯胺酸、苷胺酸、組胺酸、 異白胺酸、苷氨醯白胺酸、白胺酸、甲硫胺酸、苯基丙胺 酸、蘇胺酸(threonine )、離胺酸、3 -胺基吡d井-2 -羧酸 、甲氧基丙胺酸)等,在具有磺醯基之含氮化合物方面可 例示3 ·吡啶磺酸、對甲苯磺酸吡啶鑰等,在具有羥基之 含氮化合物、具有羥基苯基之含氮化合物、醇性含氮化合 物方面,可例示2_羥基吡啶、胺基-甲酚、2,4_喹啉二醇 、3 -吲哚甲醇氫氧化物、單乙醇胺、二乙醇胺、三乙醇胺 、N -乙基二乙醇胺、N,N -二乙基乙醇胺、三異丙醇胺、 2,2’_亞胺基二乙醇、2-胺基乙醇、3-胺基-1-丙醇、4-胺 基-1 - 丁醇、4 ·( 2 -羥乙基)咪啉、2 _( 2 -羥乙基)吡啶、 1 - ( 2 -羥基乙基)哌哄、1 - [ 2 _( 2 -羥基乙氧基)乙基]哌 啡、哌啶乙醇、1 - ( 2 -羥基乙基)吡咯啶、1 - ( 2 -羥乙基 )-2 -吡咯啶酮、3 -六氫吡啶基-1,2 -丙二醇、3 - N -吡咯啶 基-1,2-丙二醇、8-羥基九洛尼啶(julolidine) 、3-咱核醇 、3•托品(tropanal) 、1-甲基- 2-0比咯D定乙醇1-氮雜環丙 烷(aziridine)乙醇、N- (2-羥基乙基)酞醯亞胺、N-( 2-羥基乙基)異菸鹼醯胺等。醯胺衍生物方面,可例示甲 醯胺、N-甲基甲醯胺、Ν,Ν·二甲基甲醯胺、乙醯胺、N-甲 基乙醯胺、Ν,Ν-二甲基乙醯胺、丙醯胺、苯甲醯胺等。 在醯亞胺衍生物方面,可例示酞醯亞胺、琥珀醯亞胺 、順丁烯二醯亞胺等、鹼性化合物之配合量,相對於全基 底聚合物100份爲0,001〜2份,尤其是以0.01〜1份爲恰 當。配合量比0.001份少時,配合效果不好,超過2份時 1282908 (34) 熱所產生之酸完全被截留而有無法交聯之情形。 在本發明之下層膜形成材料中可使用之有機溶劑,若 爲可溶解前述底層聚合物、酸氧化劑、交聯劑,其他添加 劑等並無特別限制。試例舉其具體例,環己酮、甲基-2-戊烷基酮等之酮類;3 -甲氧基丁醇、3 -甲基-3-甲氧基丁醇 、1-甲氧基-2-丙醇、1-乙氧基-2-丙醇等之醇類;丙二醇單 甲醚、乙二醇單甲醚、丙二醇單乙醚、乙二醇單乙醚、丙 二醇二甲醚、二乙二醇二甲醚等之醚類;丙二醇單甲醚乙 酸酯、丙二醇單乙醚乙酸酯、乳酸乙酯、丙酮酸乙酯、乙 酸丁酯、3_甲氧基丙酸甲酯、3 -乙氧基丙酸乙酯、乙酸三 級丁酯、丙酸三級丁酯、丙二醇單甲醚乙酸酯、丙二醇單 三級丁基-醚乙酸酯等之酯類,可混合該等該等1種或或 2種以上使用,但並不限於該等。本發明中,在該等有機 溶劑之中二乙二醇二甲醚或乙氧基-2-丙醇、乳酸乙酯 、丙二醇單甲醚乙酸酯及該等之混合溶劑可恰當使用。 溶劑之配合量,相對於全基底聚合物1〇〇份以5 00〜 1〇5〇00部爲佳,尤其是以1 000〜5,000部爲佳。 本發明之下層膜’與光阻相同,以旋轉塗布法等可在 被加工基板上製作。在旋轉塗布後,將溶劑蒸發,並爲防 止與光阻上層膜混合’且爲促進交聯反應則加以烘烤爲所 望。烘烤溫度係在80〜3 00 °C之範圍内,在1 0〜3 〇〇秒之範 圍内可恰當的使用。又’此下層膜之厚度可適宜選定,但 以100〜20,000nm,尤其是150〜1 5,000nm爲佳。在製作下 層膜後,在其上製作光阻層。 -37- (35) 1282908 此時,在形成此光阻層用之光阻組成物方面,可使用 習知之物。而就氧氣體蝕刻耐性之點而言,基底聚合物係 使用聚矽倍半噁烷衍生物或乙烯矽烷衍生物等之含矽原子 聚合物,進而可使用有機溶劑,酸產生劑,可因應需要使 用含有鹼性化合物等之正型等光阻組成物。又,在含有矽 原子之聚合物方面,可使用此種使用於光阻組成物之習知 聚合物。 由上述光阻組成物來形成光阻層之情形,與上述形成 下層膜之情形相同,可恰當的使用旋轉塗布法。在將光阻 予以旋轉塗布後,可進行預烘烤,但以在80〜180 °C , 10〜3 00秒之範圍進行爲佳。其後,依照習知方法,進行 多層光阻膜圖型電路領域之曝光,進行曝光後烘烤(P E B )、顯像,而獲得光阻圖型,又,光阻膜之厚度並無特 別限定,而以30〜500nm,尤其是50〜400nm爲佳。 接著,將所得光阻圖型成爲光罩進行以氧氣體爲主體 之鈾刻。該蝕刻可依照習知方法進行。此時,添加氧氣體 、He、Ar 等之惰性氣體或、CO、C02、NH、SO、N、 N02氣體亦爲可行。尤其是後者之氣體則使用於圖型側壁 之防切割不足(u n d e r c u t )用之側壁保護之用。 其次被加工基板之蝕刻亦可依照習知方法進行,例如 基板爲Si02、SiN時以碳氟系氣體爲主體之蝕刻,P_Si或 A、W進行以氯系,溴系氣體爲主體之蝕刻。本發明之下 層膜,該等被加工基板之蝕刻耐性優異爲其特徵。 另外,在被加工基板方面,可在基板上形成。在基板 -38- (36) 1282908 方面,並無特別限定,可使用 Si、α-Si、P-Si、Si02、 SiN、SiON、W、TiN、A1等與被加工膜(被加工基板) 不同之材質。被加工膜方面,可使用 Si、SiO、SiON、 SiN、p-Si、a-Si、W、W-Si、Al、Cu、Al-Si 等各種 Low-K膜及其檔止膜,通常可以50〜1 0,000nm,尤其是 100〜5,000nm之厚度形成。 【實施方式】 以下,以合成例、聚合例、實施例與比較例例示來具 體說明本發明,但本發明並非限定於該等記載。 [合成例1] 在300mL之燒瓶添力□ 1-萘酚I449g(l莫耳),三氟 甲烷磺酸O.Olg,在50°C攪拌同時將倍環戊二烯i 3 29g ( 1 莫耳)滴下1小時。在同温度下攪拌1小時後,昇溫至 1 5 0 °C爲止,進行攪拌2小時,使反應完成。將未反應物 以減壓蒸餾除去,溶解於2 0 0 g之1,2 -二氯乙烷,以水洗 將催化劑與金屬不純物除去,將1,2-二氯乙烷減壓除去, 可得到2 3 0 g之聚合物-1。 藉由凝膠滲透層析法G PC求得苯乙烯換算之分子 量(Mw),分散度(Mw/Mn),並由1H-NMR分析將聚 合物中萘酚與倍環戊二烯之比以以下方式求得。 聚合物1;卜萘酚:倍環戊二烯(莫耳比)=〇.55:〇·45 Mw4,400,Mw/Mn3.1 -39- 1282908 (37) [合成例2] 在300mL之燒瓶添力卩1-萘酚144g(l莫耳),三氟 甲烷磺酸〇.〇〇7g,在50t攪拌同時將倍環戊二烯66g( 〇. 5莫耳)滴下1小時。在同温度下攪拌一小時後,昇溫 至1 5 (TC爲止,攪拌二小時,使反應完成。將未反應物以 減壓蒸餾除去,溶解於200g之1,2-二氯乙烷,以水洗將 催化劑與金屬不純物除去,將1,2-二氯乙烷減壓除去,可 獲得180g聚合物-2。 藉由 G PC求得分子量(Mw),分散度(Mw/Mn ) ,並由1 Η -N MR分析將聚合物中萘酚與倍環戊二烯之比 以以下方式求得。 聚合物2 ; 1-萘酚:倍環戊二烯(莫耳比)=0.77:023 Mw5,2 00 5 Mw/Mn2.8 [合成例3] 在300mL之燒瓶添加7-甲氧基-1-萘酚174g ( 1莫耳 ) 三氟甲烷磺酸0.00 7g,在50 °C攪拌同時將倍環戊二 烯66g ( 0.5莫耳)滴下1小時。在同温度下攪拌一小時 後,昇溫至1 5 0 °C爲止,攬拌二小時’使反應完成。將未 反應物以減壓蒸餾除去,溶解於200g之1,2-二氯乙烷, 以水洗將催化劑與金屬不純物除去,將1,2-二氯乙烷減壓 除去,可獲得221g聚合物-3 。 藉由G P C求得分子量(Mw ),分散度(Mw/Mn ) (38) 1282908 ,並由1 H -NMR分析將聚合物中萘酚與倍環戊二烯比以 以下方式求得。 聚合物一 3;7 —甲氧基 1 一萘酚:倍環戊二烯(莫耳 比)=0.77:0.23Bis(phenylsulfonyl)diazomethane, bis(p-toluenesulfonyl)diazide, bis(xylsulfonyl)diazomethane, bis(cyclohexylsulfonyl)diazomethane, double Cyclopentasulfonyl) diazocarbazide, bis(n-butylsulfonyl)diazomethane, bis(isobutylsulfonyl)diazide, bis(dibutylsulfonyl)diazo A hospital, bis (n-propyl sulphate) diazocarbazone, bis(isopropylsulfonyl)diazomethane, bis(tertiary butylsulfonyl)diazomethane, bis(n-pentanyl) Sulfhydryl)diazomethane, bis(isopentylsulfonyl)diazomethane, bis(secondary pentaalkylsulfonyl)diazomethane, bis(tripentylsulfonylsulfonyl)diazo Methane, 1-cyclohexylsulfonyl-bu (tertiary butylsulfonyl)diazomethane, I-cyclohexylsulfonyl-1-(-29-(27) 1282908 trispentanesulfonyl a diazomethane derivative such as diazomethane, 1 -tridecylsulfonyl-1 -(tert-butylsulfonyl)diazomethane. Double-0-(p-toluenesulfonyl)-α-dimethylglyoxime, bis-0-(p-toluenesulfonyl)-α-diphenylglyoxime, bis-indole-(p-toluene)醯)) α-dicyclohexylethylenediazine, bis--0-(p-toluenesulfonyl)-2,3-pentanedione ethanedioxime, bis-indole-(p-toluenesulfonyl)-2- Methyl-3,4-pentanedione ethanedioxime, bis-indole-(n-butanesulfonyl)-α-dimethylglyoxime, bis- 0-(n-butanesulfonyl)-α -diphenylglyoxime, bis-indole-(p-toluenesulfonyl)-α-dicyclohexylethylenedifluoride, bis-indole-(p-toluenesulfonyl)-2,3-pentanedione Bismuth, bis-indole-(p-toluenesulfonyl)-2-methyl-3,4-pentanedione Ethyl 2-oxo, bis-indole-(Zhengdingyuan sulfonyl) 1-methylidene Bismuth, bis-indole (n-butanesulfonyl)-α-diphenylglyoxime, bis--0-(n-butanesulfonyl)_α-dicyclohexylethanediamine, bis-indole-( n-Butane dilatyl)-2,3·pentanedione ethanedioxime, bis-indole-(n-butanesulfonyl)-2-methyl-3,4-pentanedione ethanedioxime, bis- 〇-(methanesulfonyl)-α-dimethylglyoxime, bis-0-(trifluoromethanesulfonyl)-α-dimethylglyoxime, double-0-(1,1 1-trifluoroethanesulfonyl)-"-dimethylglyoxime, bis--0-(-tertiary butylsulfonyl)-α-dimethylglyoxime, bis-indole (full Fluoxane sulfonyl)-α-dimethylglyoxime, bis-indolyl-(cyclohexanesulfonyl)-α-dimethylglyoxime, bis-indole-(phenylsulfonyl)- α-Dimethylglyoxime, bis-O-(p-fluorophenylsulfonyl)dimethylglyoxime, bis-indole-(p-tert-butylphenylsulfonyl)-α-dimethyl ethane , bis-indole-(xylsulfonyl)-α-dimethylglyoxime, bis-indole-(camphorsulfonyl)-α-dimethylglyoxime and the like. 30- 1282908 (28) bisnaphthylsulfonyl methane, bistrifluoromethanesulfonylmethane methane methane, bisethylsulfonyl methane, bispropylsulfonylpropylsulfonyl methane, di-p-toluene a bis-derivative derivative of sulfhydrylmethane, bisbenzene, etc. 2-cyclohexylcarbonyl-2-(p-toluenesulfonyl)propane, benzyl-2-(p-toluenesulfonyl)propane, etc. a nitrobenzyl sulfonate derivative of 2,6-dinitrobenzyl, p-toluenesulfonic acid 2, etc. 1,2,3-tris(methanesulfonyloxy)benzene, 1 ,2,3- Trisulphonyloxy)benzene, 1,2,3-tris(p-toluenesulfonyloxysulfonate derivative. N-hydroxysuccinimide, mercaptomethane methanesulfonate, N-imine Trifluoromethane methanesulfonate, N-hydroxy amber sulfonate, N-hydroxy amber succinimide decyl 1-propane sulfonate succinimide fluorenyl 2-propane sulfonate, N-hydroxy amber 1 Pentane sulfonate, N-hydroxy succinimide fluorenyl 1-octyl N-hydroxy amber succinimide fluorenyl p-toluene sulfonate, N-hydroxy decyl, p-methoxybenzene sulfonate, N -hydroxyammonia oxime oxime sulfonate, N-hydroxy succinimide, fluorenyl benzene sulfonate, peryleneimine fluorenyl-2,4,6-trimethyl sulfonate, N-hydroxysuccinyl 1 -naphthalenesulfonate, N-hydroxysuccinimide, fluorenyl 2-naphthylhydroxy-2-phenylsuccinimide, mercaptomethane methanesulfonate, enediminoimide methane methanesulfonate, N-hydroxyl Maleic acid ester, N-hydroxy-2-phenyl maleimide imide methane, dimethylsulfone, bisisosulfonyl methane 2-isopropylcarbonyl. , 4-dinitrobenzyl (trifluoromethyl) benzene, etc. • Acryl mercapto ethane ester, N-hydroxy quinone iminyl alkane sulfonate, amber ruthenium amide - atmosphere, N-carbyl succinimide oxime sulfonate, NN-hydroxy cis-butylenimine ethane sulfonate, N- -31 - (29) 1282908 hydroxypentamethylene imide methane methane sulfonate , N-hydroxypentadienyl benzene sulfonate, N-hydroxy quinone methane methane sulfonate, N-hydroxy quinone benzene sulfonate, N-hydroxy quinone imine trifluoromethane Sulfonic acid ester, N-hydroxy quinone imine p-toluenesulfonate, N-hydroxy (L) dimethyl sulfoximine methane methane sulfonate, N-hydroxy (L) dimethyl sulfonium benzene sulfonate, N-hydroxy-5-nordecene-2,3-dicarboxyindolimethane methanesulfonate, N-hydroxy-5-northene-2,3-dicarboxylimine imine trifluoromethane methanesulfonic acid a sulfonate derivative of an N-hydroxyquinone imine compound such as an ester, N-hydroxy-5-northene-2,3-dicarboxylimenide p-toluenesulfonate or the like. Triphenylsulfonium trifluoromethane methanesulfonate, trifluoromethane methanesulfonic acid (p-tert-butoxyphenyl)diphenylphosphonium, trifluoromethanesulfonic acid tris(p-tert-butoxyphenyl)phosphonium , triphenylsulfonium p-toluenesulfonate, p-toluenesulfonic acid (p-tert-butoxyphenyl)diphenylphosphonium, p-toluenesulfonic acid tris(p-tert-butoxyphenyl)phosphonium, trifluoromethane Trinaphthylsulfonate, cyclohexylmethyl (2-oxocyclohexyl)phosphonium trifluoromethanesulfonate, (2-n-decyl)methyl(2-oxocyclohexyl)phosphonium trifluoromethane methanesulfonate Key salt of 1,2'-naphthylcarbonylmethyltetrahydrothiophene thiophenium trifluoromethanesulfonate, bis(phenylsulfonyl)diazomethane, bis(p-toluenesulfonyl)diazo Methane, bis(cyclohexylsulfonyl)diazomethane, bis(n-butylsulfonyl)diazomethane, bis(isobutylsulfonyl)diazomethane, bis(2-butylsulfonyl) Diazo of diazomethane methane, bis(n-propylsulfonyl)diazomethane, bis(isopropylsulfonyl)diazomethane, bis(tert-butylsulfonyl)diazomethane Methane derivative, double- 0-( p-Tolylsulfonyl) dimethylglyoxime, bis-indole-(n-butanesulfonyl)-α-dimethylglyoxime, etc., bis-naphthylsulfonyl methane, etc. Bismuth derivative, hydrazine-hydroxy-32-(30) 1282908-based amber quinone iminyl methane methanesulfonate, N-hydroxy amber succinimide fluorenyl trifluoromethane methane sulfonate, N-hydroxy amber醯iminodecyl 1-propane sulfonate, N-hydroxysuccinimide fluorenyl 2-propane sulfonate, N-hydroxy amber succinimide decyl 1-pentane sulfonate, N-hydroxy amber oxime N-hydroxy quinone imine such as imindolyl p-toluenesulfonate, N-hydroxy (L) dimethyl sulfoximine methane mesylate, N-hydroxy (L) dimethyl sulfoxide The sulfonate derivative of the compound can be suitably used. Further, the above acid generators may be used alone or in combination of two or more. The amount of the acid generator to be added is preferably from 1 to 50 parts, more preferably from 0.5 to 40 parts, per 100 parts by weight of the base polymer. When the amount is less than 0.1 part, the amount of acid generated is small, and the crosslinking reaction is insufficient. When the amount exceeds 50 parts, mixed image formation due to movement of the acid to the upper photoresist film may occur. Further, the film material under the present invention can be blended with an alkaline compound for improving storage stability. In the case of the basic compound, the acid generated in a trace amount from the acid generator is used for preventing the crosslinking reaction, and is suitable for a compound useful for the acid quencher. The basic compound may, for example, be a primary, secondary or tertiary aliphatic amine, a mixed amine, an aromatic amine, a heterocyclic amine, a nitrogen-containing compound having a carboxyl group, or a sulfonyl group. A nitrogen-containing compound, a nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyphenyl group, an alcohol-containing nitrogen-containing compound, a guanamine derivative, a quinone imide derivative, or the like. Specifically, g, the first stage of the aliphatic amines, may be exemplified by ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, secondary butylamine, tri-33· (31) 1282908 Butane, pentylamine, tertiary pentylamine, cyclopentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, decylamine, decylamine, dodecylamine, hexadecylamine, methylenediamine, Examples of the ethylenediamine, tetraethyleneamine, and the like, and the secondary aliphatic amines include dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, and - secondary butylamine, diamylamine, dicyclopentylamine, dihexylamine, dicyclohexylamine, diheptylamine, dioctylamine, diamine, diamine, two dodecylamine, two sixteen Amine, N,N-dimethylmethylenediamine, ν, Ν·dimethylethylenediamine, hydrazine, hydrazine dimethyltetraethylene ethylamine, etc., tertiary aliphatic amines, Examples of trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, three secondary butylamines, triamylamine, tricyclopentylamine, trihexylamine, tricyclohexylamine , triheptylamine, trioctylamine, tridecylamine, tridecylamine, Dodecylamine, three hexadecylamine, hydrazine, hydrazine, Ν', Ν'-tetramethylmethylenediamine, hydrazine, hydrazine, hydrazine , Ν'-tetramethylethylenediamine, hydrazine, hydrazine , hydrazine, hydrazine, - tetramethyltetraethylene ethylamine, and the like. Further, examples of the mixed amines include dimethylethylamine, methylethylpropylamine, calamine, phenethylamine, and dimethylamine. Specific examples of the aromatic amines and the heterocyclic amines include aniline derivatives (for example, aniline, N-toluidine, oxime-ethylaniline, guanidine propyl aniline, hydrazine, hydrazine-dimethylaniline, 2-toluidine, 3-toluidine, 4-toluidine, ethylaniline, propylaniline, trimethylamine, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2, 6-dinitroaniline, 3,5-dinitroaniline, hydrazine, hydrazine-dimethyl-o-toluidine, etc.), diphenyl (p-toluene) amine, methyl diphenylamine, triphenylamine, phenylene Diamine, naphthylamine, diaminonaphthalene, pyrrole derivatives (eg pyrrole, 2 Η-pyrrole, 1 ·methylpyrrole, 2,4-dipyrrole, -34-1282908 (32) 2,5 - one A D-pyrrol, n-methylpyrrolidone, etc.), vaginal derivatives (such as stagnation, stagnation, etc.), thiazole derivatives (such as thiazole, isothiazole, etc.), imidazole derivatives (such as imidazole, 4-methylpyrimidine) Squatting, 4-methyl-2-phenylimidazole, etc., pyrazidin derivatives, furazan derivatives, pyroline derivatives (eg oxaporphyrin, 2-methyl-1 -pyrroline, etc.) Pyrrolidine derivatives (eg pyridinium) Pyridine, N-methylpyrrolidine, pyrrolidone, N-methylpyrrolidone, etc.), imidazoline derivatives, imidazolium derivatives, pyridine derivatives (eg pyridine, mepyridyl, ethylpyridine, propylpyridine, butyl) Pyridine, 4-(1-butylpentyl)pyridine, dimethylpyridine, trimethylpyridine, triethylpyridine, phenylpyridine, 3-methyl-2-phenylpyridine, 4-tributylpyridine, two Phenylpyridine, benzylpyridine, methoxypyridine, butoxypyridine, dimethoxypyridine, [-methyl-2-pyridone, 4-pyrrolidinopyridine, 1-methyl-4-phenylpyridine , 2-(i-ethylpropyl)pyridine, aminopyridine, dimethylaminopyridine, etc.), anthracene derivatives, pyridine derivatives, pyridinium derivatives, pyrazoline derivatives, pyrazole derivatives, piperazine Pyridine derivatives, piperene derivatives, morpholine derivatives, anthracene derivatives, isoindole derivatives, 1 carbazole derivatives, porphyrin derivatives, D-quinoline derivatives (eg quinoline, 3-quinoline) Carbonitrile, etc., isoquinoline derivatives, porphyrin derivatives, oxazoline derivatives, _ morphine derivatives, oxazine derivatives, hydrazine derivatives , pteridine derivatives, carbazole derivatives, phenidine derivatives, acridine derivatives, morphine derivatives, 1,1 〇-orthophenone derivatives, adenine derivatives, adenosine derivatives, guanine derivatives , guanosine derivatives, uracil derivatives, uridine derivatives, and the like. Further, in the case of the nitrogen-containing compound having a carboxyl group, for example, an aminobenzoic acid, an anthracenecarboxylic acid, or an amino acid derivative (for example, nicotinic acid, propylamine-35-(33) 1282908 acid, arginine, Aspartic acid, glutamic acid, aglyconic acid, histidine, isoleucine, glycosaminoglycine, leucine, methionine, phenylalanine, threonine (threonine) ), lysine, 3-aminopyridin-2-carboxylic acid, methoxyalanine, etc., in the case of a nitrogen-containing compound having a sulfonyl group, 3 · pyridine sulfonic acid, p-toluene sulfonic acid pyridine In the case of a nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyphenyl group, or an alcohol-containing nitrogen-containing compound, 2-hydroxypyridine, amino-cresol, 2,4-quinolinediol, and 3 may be exemplified. - hydrazine methanol hydroxide, monoethanolamine, diethanolamine, triethanolamine, N-ethyldiethanolamine, N,N-diethylethanolamine, triisopropanolamine, 2,2'-iminodiethanol, 2-Aminoethanol, 3-amino-1-propanol, 4-amino-1-butanol, 4 ·(2-hydroxyethyl) morpholine, 2 _(2-hydroxyethyl)pyridine, 1 - (2-hydroxyethyl Piperidin, 1-[2-(2-hydroxyethoxy)ethyl]pipepene, piperidineethanol, 1-(2-hydroxyethyl)pyrrolidine, 1-(2-hydroxyethyl)- 2-pyrrolidone, 3-hexahydropyridyl-1,2-propanediol, 3-N-pyrrolidinyl-1,2-propanediol, 8-hydroxyluronidine, 3-decane nucleoside, 3•tropanal, 1-methyl-2-0 ratio D-ethanol 1-aziridine ethanol, N-(2-hydroxyethyl) quinone imine, N-( 2 -Hydroxyethyl)isonicotinamide and the like. As the guanamine derivative, for example, formamide, N-methylformamide, hydrazine, hydrazine dimethylformamide, acetamide, N-methylacetamide, hydrazine, hydrazine-dimethyl group can be exemplified. Acetamide, acetamide, benzamide, and the like. In the case of the quinone imine derivative, the compounding amount of the basic compound such as quinone imine, amber imine, maleimide or the like can be exemplified, and it is 0,001 to 2 parts based on 100 parts of the total base polymer. Especially 0.01 to 1 part is appropriate. When the compounding amount is less than 0.001 parts, the mixing effect is not good. When more than 2 parts are used, 1282908 (34) The acid generated by the heat is completely trapped and cannot be crosslinked. The organic solvent which can be used in the film forming material of the present invention is not particularly limited as long as it can dissolve the underlayer polymer, acid oxidizing agent, crosslinking agent, and other additives. Specific examples thereof include ketones such as cyclohexanone and methyl-2-pentanone; 3-methoxybutanol, 3-methyl-3-methoxybutanol, and 1-methoxy Alcohols such as benzyl-2-propanol and 1-ethoxy-2-propanol; propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, two Ethers such as ethylene glycol dimethyl ether; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, 3 - esters of ethyl ethoxypropionate, tertiary butyl acetate, tertiary butyl propionate, propylene glycol monomethyl ether acetate, propylene glycol monoterpene butyl-ether acetate, etc. One type or two or more types are used, but are not limited thereto. In the present invention, among these organic solvents, diethylene glycol dimethyl ether or ethoxy-2-propanol, ethyl lactate, propylene glycol monomethyl ether acetate, and the like may be suitably used. The amount of the solvent is preferably from 50,000 to 1 〇 5 〇 based on 1 part of the total base polymer, particularly preferably from 1,000 to 5,000. The underlayer film 'under the present invention is the same as the photoresist, and can be formed on a substrate to be processed by a spin coating method or the like. After the spin coating, the solvent is evaporated, and it is desirable to bake in order to prevent mixing with the photoresist upper layer and to promote the crosslinking reaction. The baking temperature is in the range of 80 to 300 ° C, and can be suitably used within the range of 10 to 3 sec. Further, the thickness of the underlayer film can be suitably selected, but it is preferably 100 to 20,000 nm, particularly 150 to 1 5,000 nm. After the underlayer film is formed, a photoresist layer is formed thereon. -37- (35) 1282908 At this time, a conventional one can be used for forming the photoresist composition for the photoresist layer. In terms of oxygen gas etching resistance, the base polymer is a ruthenium-containing polymer such as a polyfluorenated sesquioxane derivative or a vinyl decane derivative, and an organic solvent or an acid generator can be used, which can be used as needed. A positive resistive composition such as a basic compound or the like is used. Further, as the polymer containing a ruthenium atom, such a conventional polymer used for a photoresist composition can be used. In the case where the photoresist layer is formed of the above-mentioned photoresist composition, as in the case of forming the underlayer film described above, the spin coating method can be suitably used. After the photoresist is spin-coated, prebaking may be performed, but it is preferably carried out at a temperature of 80 to 180 ° C for 10 to 300 seconds. Thereafter, exposure is performed in the field of the multilayer photoresist film pattern according to a conventional method, and post-exposure baking (PEB) and development are performed to obtain a photoresist pattern. Further, the thickness of the photoresist film is not particularly limited. It is preferably 30 to 500 nm, especially 50 to 400 nm. Next, the obtained photoresist pattern is used as a mask to carry out uranium engraving mainly composed of oxygen gas. This etching can be carried out in accordance with a conventional method. At this time, it is also possible to add an inert gas such as oxygen gas, He, or Ar, or CO, CO 2 , NH, SO, N, or N02 gas. In particular, the latter gas is used for sidewall protection of the pattern sidewalls for undercutting (u n d e r c u t ). Next, etching of the substrate to be processed can be carried out according to a conventional method. For example, when the substrate is SiO 2 or SiN, the fluorocarbon-based gas is mainly used for etching, and P_Si or A and W are etched mainly by a chlorine-based or bromine-based gas. The underlayer film of the present invention is characterized in that the substrate to be processed is excellent in etching resistance. Further, in terms of the substrate to be processed, it can be formed on the substrate. The substrate-38-(36) 1282908 is not particularly limited, and Si, α-Si, P-Si, SiO 2 , SiN, SiON, W, TiN, A1, etc. may be used differently from the film to be processed (substrate to be processed). Material. As the film to be processed, various Low-K films such as Si, SiO, SiON, SiN, p-Si, a-Si, W, W-Si, Al, Cu, Al-Si, and their stopper films can be used, and usually A thickness of 50 to 1 0,000 nm, especially 100 to 5,000 nm is formed. [Embodiment] Hereinafter, the present invention will be specifically described by way of Synthesis Examples, Polymerization Examples, Examples and Comparative Examples, but the present invention is not limited thereto. [Synthesis Example 1] Adding force to a flask of 300 mL □ 1-naphthol I449g (l mole), trifluoromethanesulfonic acid O.Olg, stirring at 50 ° C while p-cyclopentadiene i 3 29g (1 Mo Ear) drip for 1 hour. After stirring at the same temperature for 1 hour, the temperature was raised to 150 ° C, and the mixture was stirred for 2 hours to complete the reaction. The unreacted product was distilled off under reduced pressure, dissolved in 200 g of 1,2-dichloroethane, and the catalyst and metal impurities were removed by washing with water, and 1,2-dichloroethane was removed under reduced pressure to obtain 2 30 g of polymer-1. The molecular weight (Mw) in terms of styrene, the degree of dispersion (Mw/Mn) was determined by gel permeation chromatography G PC, and the ratio of naphthol to pentacyclopentadiene in the polymer was analyzed by 1H-NMR. The following way is obtained. Polymer 1; naphthol: Cyclopentadiene (Mole Ratio) = 〇.55: 〇·45 Mw 4,400, Mw/Mn3.1 -39- 1282908 (37) [Synthesis Example 2] In 300 mL The flask was charged with 144 g of 1-naphthol (1 mol), ruthenium trifluoromethanesulfonate (7 g), and 66 g of p-cyclopentadiene (〇. 5 mol) was dropped for 1 hour while stirring at 50 t. After stirring at the same temperature for one hour, the temperature was raised to 15 (TC), and the mixture was stirred for two hours to complete the reaction. The unreacted product was distilled off under reduced pressure, dissolved in 200 g of 1,2-dichloroethane, and washed with water. The catalyst and the metal impurities were removed, and 1,2-dichloroethane was removed under reduced pressure to obtain 180 g of polymer-2. The molecular weight (Mw), the degree of dispersion (Mw/Mn) was determined by GPC, and was determined by 1 Η-N MR analysis determined the ratio of naphthol to pentacyclopentadiene in the polymer in the following manner: Polymer 2; 1-naphthol: Cyclopentadiene (Morby) = 0.77: 023 Mw5, 2 00 5 Mw/Mn2.8 [Synthesis Example 3] In a 300 mL flask, 7-methoxy-1-naphthol 174 g (1 mol) of trifluoromethanesulfonic acid 0.007 g was added, and the mixture was stirred at 50 ° C while being doubled. 66 g (0.5 mol) of cyclopentadiene was dropped for 1 hour, and after stirring at the same temperature for one hour, the temperature was raised to 150 ° C, and the mixture was stirred for two hours to complete the reaction. The unreacted material was distilled off under reduced pressure. Dissolved in 200 g of 1,2-dichloroethane, the catalyst and metal impurities were removed by washing with water, and 1,2-dichloroethane was removed under reduced pressure to obtain 221 g of polymer-3. By GPC The molecular weight (Mw), the degree of dispersion (Mw/Mn) (38) 1282908, and the ratio of naphthol to pentocyclopentadiene in the polymer were determined by 1 H-NMR analysis in the following manner. 7-Methoxy 1 naphthol: Cyclopentadiene (Morby) = 0.77: 0.23

Mw3,200,Mw/Mn2.6 [合成例4 ] 在5 00mL之燒瓶使環己烷l〇〇mL,合成例1所得1_ 萘酚/倍環戊二烯酚醛淸漆樹脂l〇〇g與溴化四甲基銨5g 溶解,將表氯醇3 8 g滴下,在8 0 °C攪拌1小時進行加成 反應,添加8 g之氫氧化鈉,在8 0 °C進行3小時閉環反應 以獲得環氧化合物。其後以水洗將未反應之表氯醇與氫氧 化鈉除去,將乙酸乙酯藉由減壓乾燥除去,獲得1 22g之 環氧丙基基取代1-萘酚/倍環戊二烯酚醛淸漆樹脂。 藉由 G PC求得分子量(Mw),分散度(Mw/Mn) ,並由1 Η -NMR分析將聚合物中環氧丙基取代萘酚與倍 環戊二烯之比以以下方式求得。 聚合物4;環氧丙基取代1 一萘酚:倍環戊二烯(莫耳 比)=0.55:0.45Mw 3,200, Mw/Mn2.6 [Synthesis Example 4] In a 500 mL flask, 1 mL of cyclohexane was obtained, and 1 to naphthol/cyclopentadiene phenolic enamel resin l〇〇g obtained in Synthesis Example 1 was 5 g of tetramethylammonium bromide was dissolved, and 3 g of epichlorohydrin was dropped, stirred at 80 ° C for 1 hour to carry out an addition reaction, 8 g of sodium hydroxide was added, and a ring closure reaction was carried out at 80 ° C for 3 hours. An epoxy compound is obtained. Thereafter, unreacted epichlorohydrin and sodium hydroxide were removed by washing with water, and ethyl acetate was removed by drying under reduced pressure to obtain 1 22 g of a glycidyl group-substituted 1-naphthol/penecyclopentadienyl phenol hydrazide. Paint resin. The molecular weight (Mw), the degree of dispersion (Mw/Mn) were determined by G PC, and the ratio of the epoxypropyl-substituted naphthol to the cyclopentadiene in the polymer was determined by 1 Η-NMR analysis in the following manner. . Polymer 4; epoxypropyl substituted 1 naphthol: cyclopentadiene (mole ratio) = 0.55: 0.45

Mw6,100,Mw/Mn3.1, [實施例,比較例] 將聚合物1〜4所示之萘酚-倍環戊二烯,AG1,2所示 之酸產生劑,C R 1,2所示之交聯劑,在含F C - 4 3 0 (住友 (39) 1282908 3 Μ公司製)0 · 1重量%之溶劑中如表1所示比率予以溶解 ,以0 · 1 // m之氟樹脂製之過濾器過濾藉以各自調製下層 膜溶液。在比較例用之聚合物· 1方面,使用M w 8,9 0 0, M w/Mn4.8之間甲酚酚醛淸漆樹脂,比較例聚合物-2方面 使用Mw3,3 00,Mw/Mn3.5之1-萘酚樹脂,比較例聚合 物-3方面使用Mw3 3,000,Mw/Mnl.9之對羥基苯乙烯:丙 烯酸羥基乙酯3 0/70 (莫耳比)。Mw6, 100, Mw/Mn3.1, [Examples, Comparative Examples] Naphthol-penecyclopentadiene represented by polymers 1 to 4, acid generator represented by AG1, 2, CR 1,2 The cross-linking agent was dissolved in a solvent containing 0. 1% by weight of FC-430 (manufactured by Sumitomo (39) 1282908 3 Μ) as shown in Table 1, to a fluorine content of 0 · 1 / m The resin filter was filtered to separately prepare the underlayer film solution. In the case of the polymer used in the comparative example, a cresol novolac lacquer resin between M w 8,900 and M w/Mn4.8 was used, and in the comparative polymer-2, Mw 3,300, Mw/ was used. 1-naphthol resin of Mn3.5, Comparative Example Polymer-3 used Mw3 3,000, Mw/Mnl.9 p-hydroxystyrene: hydroxyethyl acrylate 3 0/70 (mole ratio).

將下層膜形成材料之溶液塗布於矽基板上,在200°C 進行60秒烘烤形成膜厚400 nm之下層膜(以下,簡稱爲 UDL1〜7) ,J A Woollam公司之入射角度可變之分光 橢圓計(ellipsometer) (VASE)來求得波長i93nm中 U D L 1〜7之折射率(η,k ),結果如表1所示。A solution of the underlayer film forming material is applied onto a ruthenium substrate, and baked at 200 ° C for 60 seconds to form a film having a film thickness of 400 nm (hereinafter referred to as UDL 1 to 7 for short), and JA Woollam's variable angle of incident angle is obtained. The refractive index (η, k ) of UDL 1 to 7 in the wavelength i93 nm was determined by an ellipsometer (VASE), and the results are shown in Table 1.

-42- (40) 1282908 表1-42- (40) 1282908 Table 1

No. 聚合物 (重量份) 交聯劑 (重量份) 酸產生劑 (重量份) 溶劑 (重量份) 波長193 mm中折射率 n値 k値 UDL1 聚合物1 (28.0) CR1 (10) AG1 (5) PGMEA (1〇〇) 1.67 0.20 UDL2 聚合物2 (28.0) CR1 (1〇) AG1 (5) PGMEA (100) 1.61 0.25 UDL3 聚合物3 (28.0) CR1 (10) AG1 (5) PGMEA (100) 1.69 0.24 UDL4 聚合物4 (10.0) 聚合物1 (18.0) - AG1 (5) PGMEA (100) 1.68 0.20 UDL5 聚合物1 (18.0) 比較聚合物3 (10.0) CR1 (10) AG1 (5) PGMEA (100) 1.69 0.22 UDL6 聚合物1 (28.0) CR2 (10) AG1 (5) PGMEA (100) 1.67 0.21 UDL7 聚合物1 (28.0) CR1 (10) AG2 (5) PGMEA (100) 1.67 0.19 比較例 1 比較聚合物1 (25.0) CR1 (10) AG1 (5) PGMEA (100) 1.32 0.62 比較例 2 比較聚合物2 (28.0) CR1 (10) AG1 (5) PGMEA (100) 1.40 0.33 比較例 3 比較聚合物3 (22.0) CR1 (10) AG1 (5) PGMEA (100) 1.70 0.25 PGMEA;丙二醇單甲基醚乙酸酯 (41) 1282908No. Polymer (parts by weight) Crosslinking agent (parts by weight) Acid generator (parts by weight) Solvent (parts by weight) Wavelength 193 mm Medium refractive index n値k値UDL1 Polymer 1 (28.0) CR1 (10) AG1 ( 5) PGMEA (1〇〇) 1.67 0.20 UDL2 Polymer 2 (28.0) CR1 (1〇) AG1 (5) PGMEA (100) 1.61 0.25 UDL3 Polymer 3 (28.0) CR1 (10) AG1 (5) PGMEA (100) ) 1.69 0.24 UDL4 Polymer 4 (10.0) Polymer 1 (18.0) - AG1 (5) PGMEA (100) 1.68 0.20 UDL5 Polymer 1 (18.0) Comparative Polymer 3 (10.0) CR1 (10) AG1 (5) PGMEA (100) 1.69 0.22 UDL6 Polymer 1 (28.0) CR2 (10) AG1 (5) PGMEA (100) 1.67 0.21 UDL7 Polymer 1 (28.0) CR1 (10) AG2 (5) PGMEA (100) 1.67 0.19 Comparative Example 1 Comparative Polymer 1 (25.0) CR1 (10) AG1 (5) PGMEA (100) 1.32 0.62 Comparative Example 2 Comparative Polymer 2 (28.0) CR1 (10) AG1 (5) PGMEA (100) 1.40 0.33 Comparative Example 3 Comparative Polymerization 3 (22.0) CR1 (10) AG1 (5) PGMEA (100) 1.70 0.25 PGMEA; propylene glycol monomethyl ether acetate (41) 1282908

AG2AG2

N八N八Ο〆 ΜN eight N Ο〆 Μ

〇、' CRl〇, 'CRl

CK2CK2

接著,將下層膜形成材料之溶液塗布於膜厚3 00nm 之Si02基板上,在20(TC烘烤60秒以形成膜厚400nm之 下層膜(以下,簡稱爲UDL 1〜7 )。以表2所示組成調 製含矽聚合物_1,2,酸產生劑PAG1,鹼添加劑AACN,溶 劑所成ArF用含矽光阻液1,2。將此光阻液塗布於上述下 層膜UDL1〜7上,在1 10°C烘烤60秒,形成膜厚200nm 之含矽光阻膜層。接著,以ArF曝光裝置(Nikon公司製 ;S 305 B,NA0.68,σθ.85,2/3 輪體照明,CR 光罩)進 行曝光,在1 l〇°C進行90秒烘烤(ΡΕΒ )以2.38重量%四 甲銨羥基(TMAH )水溶液顯像,得到正型圖型。觀察所 得圖型之〇.1〇 RmL/S之圖型形狀,在表3所示基板附近並 不會產生摺邊貼邊或切割不足,混合現象,可確認得到矩 形之圖型。 接著,進行乾蝕刻耐性之試驗。首先,與前述折射率 -44- 1282908 (42) 測定所用者相同來製作下層膜(UDL 1〜7 ),該等下層膜 之CHFs/CF4系氣體之鈾刻試驗係以下述(i )條件試驗。 在此情形,使用東京 Electron公司製乾鈾刻裝置 TE-8 5 OOP,來測定蝕刻前後之下層膜及光阻之膜厚差。結果 如表4所示。 C H F 3 / C F 4系氣體之倉虫亥!1試驗倉虫亥ij條件係如下述。 腔室壓力40.0Pa RF 功率 1 3 00 W 間隙9mm CHF3氣體流量30ml/min CF4氣體流量30ml/min Ar氣體流量1 00ml/min 時間60秒 再者,使用上述下層膜(UDL1〜7 ),以下述(2 ) 條件進行在C12/BC13系氣體之蝕刻試驗。在此情形,使 用日電Anelva公司製乾蝕刻裝置L-5 07D-L,求得蝕刻前 後之聚合物膜之膜厚差。結果如表5所示。 C12/BC13系氣體之鈾刻試驗 蝕刻條件係如下述所示。 腔室壓力40.0Pa RF功率3 00W 間隙9 m m C I2氣體流量30ml/min B C 13氣體流量30ml/min - 45- (43) 1282908 C H F3 氣體流量 l〇〇ml/min 〇2氣體流量2ml/min 時間60秒 一方面,在上述ArF曝光與顯像後所得O.lOpmL/S圖 型之含矽光阻進行因氧氣體所致蝕刻。蝕刻條件如下述所 不 ° 腔室壓力450mTorr RF功率600W Ar氣體流量40sccm 〇2氣體流量60sccm 間隙9 m m 時間2 0秒 接著,在(1 )所示條件進行CHF3/CF4系氣體之蝕刻 ,進行Si02基板加工。 在顯像後,氧氣體蝕刻後,將基板加工之CHF3/CF4 系氣體蝕刻後之圖型剖面以日立製作所公司製電子顯微鏡 (S - 4 7 0 0 )觀察,比較其形狀,歸納於表3。在顯像後觀 察含矽光阻之剖面形狀,氧蝕刻後與CHF3/CF4蝕刻後觀 察下層膜之剖面形狀 -46- (44) 1282908 表2Next, a solution of the underlayer film forming material was applied onto a SiO 2 substrate having a thickness of 300 nm, and baked at 20 (TC for 60 seconds to form a film having a thickness of 400 nm (hereinafter, abbreviated as UDL 1 to 7). The composition shown modulates the ruthenium-containing polymer _1, 2, the acid generator PAG1, the alkali additive AACN, and the solvent is used to form a ruthenium-containing photoresist 1 for ArF. The photoresist is applied to the above-mentioned underlayer films UDL1 to 7. Bake at 110 ° C for 60 seconds to form a ruthenium-containing photoresist film having a film thickness of 200 nm. Next, an ArF exposure apparatus (manufactured by Nikon Corporation; S 305 B, NA 0.68, σ θ.85, 2/3 wheel) Body illumination, CR mask), exposed, and baked at 1 l ° ° C for 90 seconds (ΡΕΒ ) with 2.38 wt% aqueous solution of tetramethylammonium hydroxy (TMAH) to obtain a positive pattern. Observe the resulting pattern图.1〇RmL/S has a pattern shape, and the folded edge is not formed in the vicinity of the substrate shown in Table 3. The pattern of the rectangle is confirmed by the mixing phenomenon. Next, the dry etching resistance test is performed. First, the underlayer film (UDL 1 to 7) is formed in the same manner as the above-mentioned refractive index - 44-1282908 (42), and the underlayer film is formed. The uranium engraving test of CHFs/CF4 gas was tested under the following condition (i). In this case, the film thickness of the film and photoresist under and after etching was measured using a dry uranium engraving apparatus TE-8 5 OOP manufactured by Tokyo Electron Co., Ltd. The results are shown in Table 4. The CHF 3 / CF 4 system gas worms! 1 test worms ij conditions are as follows. Chamber pressure 40.0Pa RF power 1 3 00 W gap 9mm CHF3 gas flow 30ml / Min CF4 gas flow rate 30 ml/min Ar gas flow rate 1 00 ml/min Time 60 seconds Further, the above-mentioned underlayer film (UDL1 to 7) was used, and the etching test of the C12/BC13-based gas was carried out under the following condition (2). The film thickness difference of the polymer film before and after etching was determined using a dry etching apparatus L-5 07D-L manufactured by Nippon Anelva Co., Ltd. The results are shown in Table 5. The uranium etching test etching conditions of the C12/BC13 system gas are as follows. The chamber pressure is 40.0Pa RF power 3 00W Clearance 9 mm C I2 gas flow 30ml/min BC 13 gas flow 30ml/min - 45- (43) 1282908 CH F3 Gas flow rate l〇〇ml/min 〇2 gas flow 2ml/min time 60 seconds On the one hand, after the above ArF exposure and development, O.lOpmL/S The type of tantalum-containing photoresist is etched by oxygen gas. The etching conditions are as follows: chamber pressure 450 mTorr RF power 600 W Ar gas flow 40 sccm 〇 2 gas flow 60 sccm gap 9 mm time 2 0 seconds Next, at (1) The CHF3/CF4 gas was etched under the conditions shown, and the SiO 2 substrate was processed. After the development of the oxygen gas, the pattern profile of the CHF3/CF4 gas after the etching of the substrate was observed by an electron microscope (S - 4 7 0 0 ) manufactured by Hitachi, Ltd., and the shape was compared and summarized in Table 3. . After the development, the cross-sectional shape of the tantalum-containing photoresist was observed, and the cross-sectional shape of the underlying film was observed after etching with CHF3/CF4 after oxygen etching -46- (44) 1282908 Table 2

No. 聚合物 (重量份) 酸產生劑 (重量份) 鹼(重量份) 溶劑 (重量份) 光阻1 ArF含矽聚合物1 (100) PAG1 (2.2) AACN (〇.3) PGMEA (1,200) 光阻2 ArF含矽聚合物2 (100) PAG1 (2.2) AACN (0.3) PGMEA (800)No. Polymer (parts by weight) Acid generator (parts by weight) Base (parts by weight) Solvent (parts by weight) Photoresist 1 ArF ytterbium-containing polymer 1 (100) PAG1 (2.2) AACN (〇.3) PGMEA (1,200 ) Photoresist 2 ArF germanium containing polymer 2 (100) PAG1 (2.2) AACN (0.3) PGMEA (800)

(含ArF砂聚合物-1) (含ArF砂聚合物-2) (a=0.40,b=0.50,c=0.1 Mw=8,800) (d=0.30, e=0.70 Mw=2,500)(including ArF sand polymer-1) (including ArF sand polymer-2) (a=0.40, b=0.50, c=0.1 Mw=8,800) (d=0.30, e=0.70 Mw=2,500)

47 1282908 (45) 表347 1282908 (45) Table 3

No. 顯像後 圖型形狀 氧氣體蝕刻 後形狀 CF4/CHF3 氣體 蝕刻後形狀 UDL1 垂直形狀 垂直形狀 垂直形狀 UDL2 垂直形狀 垂直形狀 垂直形狀 UDL3 垂直形狀 垂直形狀 垂直形狀 UDL4 垂直形狀 垂直形狀 垂直形狀 UDL5 垂直形狀 垂直形狀 垂直形狀 UDL6 垂直形狀 垂直形狀 垂直形狀 UDL7 垂直形狀 垂直形狀 垂直形狀 比較例1 圖型崩塌 比較例2 切割不足形狀,駐波 所致側壁之粗糙度 錐形形狀 錐形形狀 比較例3 垂直形狀 垂直形狀 錐形形狀與膜 變薄 -48- 1282908 表4防反射膜,光阻No. CHF3/CF4系氣體鈾亥[J速度 (nm/min ) UDL 1 92 UDL2 95 UDL3 99 UDL4 90 UDL5 103 UDL6 92 UDL7 93 比較例1 98 比較例2 95 比較例3 144 -49- 1282908 (47) 表5 防反射膜,光阻No. C12/BC13系氣體蝕刻速度 (nm/min ) UDL1 118 UDL2 120 UDL3 122 UDL4 123 UDL5 126 UDL6 110 UDL7 133 比較例1 125 比較例2 118 比較例3 166 如表1所示’本發明之下層膜之折射率之η値爲1 .5 〜1.9,k値在0.15〜0.3之範圍,此係在200nm以上之膜 厚可儘量發揮充分防反射效果之最適折射率(η )與消光 係数(k ),又如表 4,5所示,在 CF4/CHF3氣體及 C12/BC13系氣體蝕刻之速度亦與酚醛淸漆樹脂相同程度 ,與聚羥基苯乙烯羥基乙基丙烯酸共聚比較則蝕刻速度低 ,具有高度鈾刻耐性。又,如表3所示,可確認顯像後之 光阻形狀,氧蝕刻後,基板加工蝕刻後下層膜之形狀亦爲 良好。 -50- 1282908 (48) 〔發明效果〕 本發明之下層形成材料,折射率n値在i · 5〜i · 9, k値在0.1 5〜0.3之範圍’在2〇〇_以上之膜厚爲僅可發 揮充分防反射效果之吸光係数,基板加工所用之 CFWCHF3氣體及C12/BC13系氣體蝕刻之速度亦與酚醛淸 漆樹脂相同程度,具有高度蝕刻耐性。又,圖型化後之光 阻形狀亦爲良好。 【圖面之簡單説明】 【第1圖】爲防反射膜之膜厚與反射率之關係之圖。 【第2圖】下層膜折射率k値固定於0.3,使η値在 1 · G〜2 · 0之範圍下變化之下層膜之膜厚與反射率之關係之 圖。 【第3圖】下層膜屈折率η値固定於1.5,使η値在 0.1〜1.0之範圍變化之下層膜之膜厚與反射率之關係之圖 -51 -No. After image pattern shape Oxygen gas etched shape CF4/CHF3 Gas etched shape UDL1 Vertical shape Vertical shape Vertical shape UDL2 Vertical shape Vertical shape Vertical shape UDL3 Vertical shape Vertical shape Vertical shape UDL4 Vertical shape Vertical shape Vertical shape UDL5 Vertical Shape Vertical shape Vertical shape UDL6 Vertical shape Vertical shape Vertical shape UDL7 Vertical shape Vertical shape Vertical shape Comparative example 1 Pattern collapse Comparative example 2 Undercut shape, side wall roughness due to standing wave Conical shape Conical shape Comparative example 3 Vertical Shape Vertical Shape Conical Shape and Film Thinning -48-1282908 Table 4 Antireflection Film, Photoresist No. CHF3/CF4 System Gas Uranium [J Speed (nm/min) UDL 1 92 UDL2 95 UDL3 99 UDL4 90 UDL5 103 UDL6 92 UDL7 93 Comparative Example 1 98 Comparative Example 2 95 Comparative Example 3 144 -49- 1282908 (47) Table 5 Antireflection film, photoresist No. C12/BC13 system gas etching rate (nm/min) UDL1 118 UDL2 120 UDL3 122 UDL4 123 UDL5 126 UDL6 110 UDL7 133 Comparative Example 1 125 Comparative Example 2 118 Comparative Example 3 166 As shown in Table 1 Under the invention, the refractive index of the film is η 1 1.5 to 1.9, and k 値 is in the range of 0.15 to 0.3. The film thickness of 200 nm or more can exert the optimum refractive index (η ) and extinction of the antireflection effect as much as possible. The coefficient (k), as shown in Tables 4 and 5, is also etched at the same rate as the phenolic enamel resin in the CF4/CHF3 gas and the C12/BC13 gas, and is etched in comparison with the polyhydroxystyrene hydroxyethyl acrylate copolymer. Low speed and high uranium tolerance. Further, as shown in Table 3, the shape of the photoresist after development was confirmed, and after the oxygen etching, the shape of the underlayer film after the substrate was processed and etched was also good. -50- 1282908 (48) [Effect of the invention] The underlayer forming material of the present invention has a refractive index n 値 in the range of i · 5 to i · 9, k 値 in the range of 0.1 5 to 0.3 'above 2 〇〇 _ In order to exhibit only a sufficient antireflection effect, the CFWCHF3 gas and the C12/BC13 gas used for substrate processing are also etched at the same rate as the phenolic enamel resin, and have high etching resistance. Moreover, the shape of the photoresist after patterning is also good. [Simplified Explanation of the Drawing] [Fig. 1] is a graph showing the relationship between the film thickness of the antireflection film and the reflectance. [Fig. 2] A graph showing the relationship between the film thickness of the underlayer film and the reflectance under the range in which the refractive index k 下 of the underlayer film is fixed at 0.3 and the range of η 値 is changed from 1 · G to 2 · 0. [Fig. 3] The relationship between the film thickness and the reflectance of the underlayer film under the range of 0.1 to 1.0, and the underlying film yield η値 is fixed at 1.5.

Claims (1)

1282908 (1) 拾、申請專利範圍 1 · 一種圖型形成方法,其特徵爲,作爲防反射膜之含 有萘酚衍生物與倍環戊二烯之共縮合物之光阻下層膜適用 於被加工基板上,在該下層膜之上適用光阻組成物之層, 在圖型電路領域照射放射線,以顯像液顯像來形成光阻圖 型’以乾蝕刻裝置使光阻層成爲光罩來進行下層膜層及被 加工基板之加工者。1282908 (1) Pickup, Patent Application No. 1 · A pattern forming method, characterized in that a photoresist underlayer film containing a cocondensate of a naphthol derivative and a cyclopentadiene as an antireflection film is suitable for being processed On the substrate, a layer of a photoresist composition is applied on the underlayer film, radiation is irradiated in the field of the pattern circuit, and a photoresist pattern is formed by developing a liquid image to form a photoresist layer by a dry etching device. A processor that performs the underlayer and the substrate to be processed. 2 ·如申請專利範圍第1項之圖型形成方法,其中,光 阻組成物含有含矽原子之聚合物,使光阻層成爲光罩進行 下層膜加工之乾蝕刻,係使用以氧氣體爲主體之蝕刻氣體 來進行。 3 .如申請專利範圍第2項之圖型形成方法,其中, 在氧熟體触刻後’使下層膜成爲光罩所進行被加工基板加 工係由乾蝕刻所致者。2. The method for forming a pattern according to claim 1, wherein the photoresist composition contains a polymer containing a ruthenium atom, and the photoresist layer is used as a mask for dry etching of the underlayer film, and oxygen gas is used. The etching gas of the main body is performed. 3. The method of forming a pattern according to the second aspect of the patent application, wherein the underlying film is formed into a reticle and the substrate processing system is subjected to dry etching after the oxygen cooked body is inscribed. 4 ·種下層膜形成材料,其特徵爲,如申請專利範圍 第1 ’ 2或3項之圖型形成方法所用之光阻下層膜形成材 料,其中萘酚衍生物與倍環戊二烯之共縮合物,係下述一 般式(1)或(2)所示者,4) An underlayer film forming material characterized by a photoresist underlayer film forming material used in the pattern forming method of claim 1 '2 or 3, wherein a naphthol derivative and a cyclopentadiene are co-produced. The condensate is represented by the following general formula (1) or (2), -52- 1282908 (2) (式中,R1〜R8爲,互相獨立之氫原子、淫基、碳 原子數1〜6之可取代烷基、碳原子數1〜6之可取代烷氧 基、碳原子數2〜6之可取代烷氧羧基、碳原子數6〜10 之可取代芳基、碳原子數1〜6之經基院基、異氰酸醋基 、或環氧丙基,m、η爲正整數)。 5 ·如申請專利範圍第4項之下層膜形成材μ 八 科’其吏a ’有機溶劑、交聯劑及酸產生劑者。-52- 1282908 (2) wherein R1 to R8 are independently a hydrogen atom, a thiol group, a substitutable alkyl group having 1 to 6 carbon atoms, a substitutable alkoxy group having 1 to 6 carbon atoms, a substitutable alkoxycarboxy group having 2 to 6 carbon atoms, a substitutable aryl group having 6 to 10 carbon atoms, a phenylene group having a carbon number of 1 to 6, an isocyanate group or an epoxy group, m , η is a positive integer). 5 · As in the scope of patent application, under the fourth paragraph, the film forming material μ 八 ’ 吏 a ' organic solvent, cross-linking agent and acid generator. -53--53-
TW93118153A 2002-12-24 2004-06-23 Pattern forming method and material for forming underlayer film TWI282908B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372829A JP3981825B2 (en) 2002-12-24 2002-12-24 Pattern forming method and lower layer film forming material

Publications (2)

Publication Number Publication Date
TW200600969A TW200600969A (en) 2006-01-01
TWI282908B true TWI282908B (en) 2007-06-21

Family

ID=32811322

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93118153A TWI282908B (en) 2002-12-24 2004-06-23 Pattern forming method and material for forming underlayer film

Country Status (2)

Country Link
JP (1) JP3981825B2 (en)
TW (1) TWI282908B (en)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662052B2 (en) * 2005-03-11 2011-03-30 信越化学工業株式会社 Photoresist underlayer film forming material and pattern forming method
JP4539845B2 (en) * 2005-03-17 2010-09-08 信越化学工業株式会社 Photoresist underlayer film forming material and pattern forming method
WO2006132088A1 (en) * 2005-06-10 2006-12-14 Nissan Chemical Industries, Ltd. Coating-type underlayer film forming composition containing naphthalene resin derivative for lithography
JP4659678B2 (en) * 2005-12-27 2011-03-30 信越化学工業株式会社 Photoresist underlayer film forming material and pattern forming method
TWI414893B (en) * 2006-03-14 2013-11-11 Jsr Corp Composition for forming under film and method for forming pattern
JP4548616B2 (en) 2006-05-15 2010-09-22 信越化学工業株式会社 Thermal acid generator, resist underlayer film material containing the same, and pattern formation method using this resist underlayer film material
JP4883286B2 (en) * 2006-08-01 2012-02-22 日産化学工業株式会社 Lithographic resist underlayer film with inclined structure
JP4910168B2 (en) * 2006-09-07 2012-04-04 Jsr株式会社 Resist underlayer film forming composition and pattern forming method
JP4671046B2 (en) * 2006-10-12 2011-04-13 信越化学工業株式会社 Resist underlayer film material and pattern forming method
JP5101541B2 (en) 2008-05-15 2012-12-19 信越化学工業株式会社 Pattern formation method
JP5336283B2 (en) 2008-09-03 2013-11-06 信越化学工業株式会社 Pattern formation method
JP5336306B2 (en) 2008-10-20 2013-11-06 信越化学工業株式会社 Resist underlayer film forming method, pattern forming method using the same, and resist underlayer film material
JP4813537B2 (en) 2008-11-07 2011-11-09 信越化学工業株式会社 Resist underlayer material containing thermal acid generator, resist underlayer film forming substrate, and pattern forming method
JP4826840B2 (en) 2009-01-15 2011-11-30 信越化学工業株式会社 Pattern formation method
JP4826841B2 (en) 2009-01-15 2011-11-30 信越化学工業株式会社 Pattern formation method
JP4826846B2 (en) 2009-02-12 2011-11-30 信越化学工業株式会社 Pattern formation method
JP5112380B2 (en) 2009-04-24 2013-01-09 信越化学工業株式会社 Pattern formation method
JP5068828B2 (en) 2010-01-19 2012-11-07 信越化学工業株式会社 Resist underlayer film forming composition, resist underlayer film forming method, and pattern forming method
JP5068831B2 (en) 2010-02-05 2012-11-07 信越化学工業株式会社 Resist underlayer film material, resist underlayer film forming method, pattern forming method
JP5229278B2 (en) 2010-06-21 2013-07-03 信越化学工業株式会社 Naphthalene derivative, resist underlayer film material, resist underlayer film forming method and pattern forming method
JP5395012B2 (en) 2010-08-23 2014-01-22 信越化学工業株式会社 Resist underlayer film material, resist underlayer film forming method, pattern forming method, fullerene derivative
JP5556773B2 (en) 2010-09-10 2014-07-23 信越化学工業株式会社 Naphthalene derivative and method for producing the same, resist underlayer film material, resist underlayer film forming method and pattern forming method
JP5266294B2 (en) 2010-11-01 2013-08-21 信越化学工業株式会社 Resist underlayer film material and pattern forming method using the same
KR101423171B1 (en) 2010-12-30 2014-07-25 제일모직 주식회사 Hardmask composition and method of forming patterns and semiconductor integrated circuit device including the patterns
JP5598489B2 (en) 2011-03-28 2014-10-01 信越化学工業株式会社 Biphenyl derivative, resist underlayer film material, resist underlayer film forming method and pattern forming method
WO2013005797A1 (en) 2011-07-07 2013-01-10 日産化学工業株式会社 Resist underlayer film-forming composition which contains alicyclic skeleton-containing carbazole resin
JP5653880B2 (en) 2011-10-11 2015-01-14 信越化学工業株式会社 Resist underlayer film forming material and pattern forming method
JP5925721B2 (en) 2012-05-08 2016-05-25 信越化学工業株式会社 Organic film material, organic film forming method and pattern forming method using the same
JP5894106B2 (en) 2012-06-18 2016-03-23 信越化学工業株式会社 Compound for forming resist underlayer film, resist underlayer film material using the same, resist underlayer film forming method, pattern forming method
JP6094587B2 (en) * 2012-09-10 2017-03-22 Jsr株式会社 Resist underlayer film forming composition and pattern forming method
JP6119668B2 (en) 2013-06-11 2017-04-26 信越化学工業株式会社 Underlayer film material and pattern forming method
JP6135600B2 (en) 2013-06-11 2017-05-31 信越化学工業株式会社 Underlayer film material and pattern forming method
JP6119669B2 (en) 2013-06-11 2017-04-26 信越化学工業株式会社 Underlayer film material and pattern forming method
JP6119667B2 (en) 2013-06-11 2017-04-26 信越化学工業株式会社 Underlayer film material and pattern forming method
JP6196190B2 (en) 2014-07-08 2017-09-13 信越化学工業株式会社 Multilayer film forming method and pattern forming method
JP6165690B2 (en) 2014-08-22 2017-07-19 信越化学工業株式会社 Method for producing composition for forming organic film
JP6378146B2 (en) 2014-10-16 2018-08-22 信越化学工業株式会社 Multilayer film forming method and pattern forming method
JP6404757B2 (en) 2015-03-27 2018-10-17 信越化学工業株式会社 Polymer for resist underlayer film material, resist underlayer film material, and pattern forming method
JP6372887B2 (en) 2015-05-14 2018-08-15 信越化学工業株式会社 Organic film material, organic film forming method, pattern forming method, and compound
JP6502885B2 (en) 2015-05-18 2019-04-17 信越化学工業株式会社 Resist underlayer film material and pattern formation method
US9899218B2 (en) 2015-06-04 2018-02-20 Shin-Etsu Chemical Co., Ltd. Resist under layer film composition and patterning process
JP6625934B2 (en) 2015-07-14 2019-12-25 信越化学工業株式会社 Resist underlayer film material, pattern forming method, and compound
JP6714493B2 (en) 2015-12-24 2020-06-24 信越化学工業株式会社 Organic film forming compound, organic film forming composition, organic film forming method, and pattern forming method
JP6714492B2 (en) 2015-12-24 2020-06-24 信越化学工業株式会社 Organic film forming compound, organic film forming composition, organic film forming method, and pattern forming method
JP6462602B2 (en) 2016-01-12 2019-01-30 信越化学工業株式会社 Multilayer film forming method and pattern forming method
JP6697416B2 (en) 2016-07-07 2020-05-20 信越化学工業株式会社 Resist underlayer film material, pattern forming method, resist underlayer film forming method, and compound for resist underlayer film material
JP6853716B2 (en) 2017-03-31 2021-03-31 信越化学工業株式会社 Resist underlayer film material, pattern forming method, and resist underlayer film forming method
JP6718406B2 (en) 2017-03-31 2020-07-08 信越化学工業株式会社 Resist underlayer film material, pattern forming method, and resist underlayer film forming method
JP6800105B2 (en) 2017-07-21 2020-12-16 信越化学工業株式会社 Organic film forming composition, pattern forming method, and organic film forming resin
US11042090B2 (en) 2017-08-04 2021-06-22 Shin-Etsu Chemical Co., Ltd. Composition for forming organic film
US10514605B2 (en) 2017-08-04 2019-12-24 International Business Machines Corporation Resist multilayer film-attached substrate and patterning process
JP6981945B2 (en) 2018-09-13 2021-12-17 信越化学工業株式会社 Pattern formation method
JP7082087B2 (en) 2019-05-08 2022-06-07 信越化学工業株式会社 Organic film forming composition, pattern forming method and polymer
JP7103993B2 (en) 2019-05-16 2022-07-20 信越化学工業株式会社 Organic film forming composition, pattern forming method and polymer
JP7209588B2 (en) 2019-06-04 2023-01-20 信越化学工業株式会社 Organic film forming composition, pattern forming method and polymer
JP7194651B2 (en) 2019-07-12 2022-12-22 信越化学工業株式会社 COMPOSITION FOR FORMING RESIST UNDERLAYER FILM, PATTERN FORMING METHOD AND POLYMER
JP7145143B2 (en) 2019-12-12 2022-09-30 信越化学工業株式会社 Organic film forming material, organic film forming method, pattern forming method, and compound
JP7285209B2 (en) 2019-12-26 2023-06-01 信越化学工業株式会社 Underlayer film forming material, underlayer film forming method, and pattern forming method
JP7316237B2 (en) 2020-03-02 2023-07-27 信越化学工業株式会社 Organic film forming material, organic film forming method, pattern forming method and compound
JP7465679B2 (en) 2020-03-05 2024-04-11 信越化学工業株式会社 Coating-type organic film-forming composition, pattern forming method, polymer, and method for producing polymer
JP7368322B2 (en) 2020-06-12 2023-10-24 信越化学工業株式会社 Resist underlayer film material, pattern forming method, and resist underlayer film forming method
JP7401424B2 (en) 2020-12-25 2023-12-19 信越化学工業株式会社 Organic film-forming materials, pattern-forming methods, and polymers
JP7472011B2 (en) 2020-12-25 2024-04-22 信越化学工業株式会社 Organic film forming material, pattern forming method, and compound and polymer
JP2023048891A (en) 2021-09-28 2023-04-07 信越化学工業株式会社 Composition for forming organic film, patterning process, and compound and polymer for forming organic film
JP2023056788A (en) 2021-10-08 2023-04-20 信越化学工業株式会社 Material for forming organic film, patterning process, and compound
JP2023070577A (en) 2021-11-09 2023-05-19 信越化学工業株式会社 Resist underlayer film material, patterning method, and method for forming resist underlayer film
JP2023074248A (en) 2021-11-17 2023-05-29 信越化学工業株式会社 Composition for forming organic film, patterning process, and compound and polymer for forming organic film
JP2023077221A (en) 2021-11-24 2023-06-05 信越化学工業株式会社 Resist underlay film material, pattern formation method, and resist underlay film formation method
JP2023077955A (en) 2021-11-25 2023-06-06 信越化学工業株式会社 Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, and patterning process
JP2023124171A (en) 2022-02-25 2023-09-06 信越化学工業株式会社 Flattening agent for organic film formation, composition for organic film formation, organic film formation method, and pattern formation method
JP2023128578A (en) 2022-03-03 2023-09-14 信越化学工業株式会社 Composition for forming organic film, patterning method, and compound
JP2023129266A (en) 2022-03-03 2023-09-14 信越化学工業株式会社 Composition for forming metal oxide film, patterning method, and method for forming metal oxide film
JP2023166976A (en) 2022-05-10 2023-11-22 信越化学工業株式会社 Composition for forming metal oxide film, method for forming pattern, and method for forming metal oxide film
JP2023180781A (en) 2022-06-10 2023-12-21 信越化学工業株式会社 Resist underlayer film material, pattern forming method, and resist underlayer film forming method
JP2024008372A (en) 2022-07-08 2024-01-19 信越化学工業株式会社 Composition for forming metal oxide film, pattern formation method and metal oxide film formation method
JP2024024828A (en) 2022-08-10 2024-02-26 信越化学工業株式会社 Wafer edge protection film forming method, patterning process, and composition for forming wafer edge protection film
IL305619A (en) 2022-09-14 2024-04-01 Shinetsu Chemical Co Compound for forming metal-containing film, composition for forming metal-containing film, patterning process, and semiconductor photoresist material
JP2024068637A (en) 2022-11-08 2024-05-20 信越化学工業株式会社 Compound for forming metal-containing film, composition for forming metal-containing film, and method for forming pattern

Also Published As

Publication number Publication date
TW200600969A (en) 2006-01-01
JP3981825B2 (en) 2007-09-26
JP2004205685A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
TWI282908B (en) Pattern forming method and material for forming underlayer film
TWI286672B (en) Resist lower layer film and method for forming a pattern
TWI310048B (en) Photoresist undercoat-forming material and patterning process
TWI390356B (en) Photoresist undercoat-forming material and patterning process
TWI381250B (en) Resist undercoat-forming material and patterning process
TWI333130B (en) Bottom resist layer composition and patterning process using the same
KR100841859B1 (en) Resist Lower Layer Film Material and Method for Forming a Pattern
JP4355943B2 (en) Photoresist underlayer film forming material and pattern forming method
KR100971842B1 (en) Photoresist Undercoat-Forming Material and Patterning Process
TWI553043B (en) Phenolic resin and base film-forming material for lithography
TWI338816B (en) Photoresist undercoat-forming material and patterning process
JP4671046B2 (en) Resist underlayer film material and pattern forming method
JP4482763B2 (en) Photoresist underlayer film forming material and pattern forming method
JP4013057B2 (en) Pattern forming method and lower layer film forming material
TWI388932B (en) Antireflection film composition and patterning process using the same
TWI719999B (en) Compound, resin, material for forming lithographic underlayer film, composition for forming lithographic underlayer film, lithographic underlayer film, method for forming resist pattern, method for forming circuit pattern, and purification method
JP4623309B2 (en) Resist underlayer film material and pattern forming method using the same
TWI632139B (en) Compound, material for forming lower layer film for lithography, lower layer film for lithography, and pattern-forming method
JP6781959B2 (en) Compound, resin, underlayer film forming material for lithography, underlayer film for lithography, pattern forming method and purification method of compound or resin
JP4220361B2 (en) Photoresist underlayer film forming material and pattern forming method
JP2005114921A (en) Resist underlayer film material and method for forming pattern
TW201241025A (en) Aromatic hydrocarbon resin, composition for forming lithographic underlayer film, and method for forming multilayer resist pattern
US7427464B2 (en) Patterning process and undercoat-forming material
JP4355643B2 (en) Resist underlayer film material and pattern forming method
KR100929968B1 (en) Pattern Forming Method and Underlayer Film Forming Material