JP3981825B2 - Pattern forming method and lower layer film forming material - Google Patents

Pattern forming method and lower layer film forming material Download PDF

Info

Publication number
JP3981825B2
JP3981825B2 JP2002372829A JP2002372829A JP3981825B2 JP 3981825 B2 JP3981825 B2 JP 3981825B2 JP 2002372829 A JP2002372829 A JP 2002372829A JP 2002372829 A JP2002372829 A JP 2002372829A JP 3981825 B2 JP3981825 B2 JP 3981825B2
Authority
JP
Japan
Prior art keywords
group
film
lower layer
etching
derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002372829A
Other languages
Japanese (ja)
Other versions
JP2004205685A (en
Inventor
畠山  潤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002372829A priority Critical patent/JP3981825B2/en
Priority to TW93118153A priority patent/TWI282908B/en
Publication of JP2004205685A publication Critical patent/JP2004205685A/en
Application granted granted Critical
Publication of JP3981825B2 publication Critical patent/JP3981825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子などの製造工程における微細加工に用いられる反射防止膜材料として有効な下層膜形成材料及びこれを用いた遠紫外線、ArFエキシマレーザー光(193nm)、F2レーザー光(157nm)、Kr2レーザー光(146nm)、Ar2レーザー光(126nm)露光に好適なレジストパターン形成方法に関するものである。
【0002】
【従来の技術】
近年、LSIの高集積化と高速度化に伴い、パターンルールの微細化が求められている中、現在汎用技術として用いられている光露光を用いたリソグラフィーにおいては、光源の波長に由来する本質的な解像度の限界に近づきつつある。
【0003】
レジストパターン形成の際に使用するリソグラフィー用の光源として、水銀灯のg線(436nm)もしくはi線(365nm)を光源とする光露光が広く用いられており、更なる微細化のための手段として、露光光を短波長化する方法が有効とされてきた。このため、64MビットDRAM加工方法の量産プロセスには、露光光源としてi線(365nm)に代わって短波長のKrFエキシマレーザー(248nm)が利用された。しかし、更に微細な加工技術(加工寸法が0.13μm以下)を必要とする集積度1G以上のDRAMの製造には、より短波長の光源が必要とされ、特にArFエキシマレーザー(193nm)を用いたリソグラフィーが検討されてきている。
【0004】
一方、従来、段差基板上に高アスペクト比のパターンを形成するには2層レジスト法が優れていることが知られており、更に、2層レジスト膜を一般的なアルカリ現像液で現像するためには、ヒドロキシ基やカルボキシル基等の親水基を有する高分子シリコーン化合物が必要である。
【0005】
シリコーン系化学増幅ポジ型レジスト材料としては、安定なアルカリ可溶性シリコーンポリマーであるポリヒドロキシベンジルシルセスキオキサンのフェノール性水酸基の一部をt−Boc基で保護したものをベース樹脂として使用し、これと酸発生剤とを組み合わせたKrFエキシマレーザー用シリコーン系化学増幅ポジ型レジスト材料が提案された(特開平7−118651号公報、SPIE vol.1925(1993) p377等)。また、ArFエキシマレーザー用としては、シクロヘキシルカルボン酸を酸不安定基で置換したタイプのシルセスキオキサンをベースにしたポジ型レジストが提案されている(特開平10−324748号、同11−302382号公報、SPIE vol.3333−07(1998) p62)。更に、F2レーザー用としては、ヘキサフルオロイソプロパノールを溶解性基として持つシルセスキオキサンをベースにしたポジ型レジストが提案されている(特開2002−55456号公報)。上記ポリマーは、トリアルコキシシシラン、又はトリハロゲン化シランの縮重合によるラダー骨格を含むポリシルセスキオキサンを主鎖に含むものである。
【0006】
珪素が側鎖にペンダントされたレジスト用ベースポリマーとしては、珪素含有(メタ)アクリルエステル系ポリマーが提案されている(特開平9−110938号公報、J. Photopolymer Sci. and Technol. Vol. 9 No.3(1996) p435−446)。
【0007】
2層レジスト法の下層膜としては、酸素ガスによるエッチングが可能な炭化水素化合物であり、更にその下の基板をエッチングする場合におけるマスクになるため、高いエッチング耐性を有することが必要である。酸素ガスエッチングにおいては、珪素原子を含まない炭化水素のみで構成される必要がある。また、上層の珪素含有レジストの線幅制御性を向上させ、定在波によるパターン側壁の凹凸とパターンの崩壊を低減させるためには、反射防止膜としての機能も有し、具体的には下層膜からレジスト膜内への反射率を1%以下に抑える必要がある。
【0008】
ここで、単層レジストプロセス用の下地反射防止膜は、その下がポリシリコンやアルミニウムなどの高反射基板の場合では、最適な屈折率(n値)、吸光係数(k値)の材料を適切な膜厚に設定することによって、基板からの反射を1%以下に低減でき、極めて大きな効果を発揮することができる。例えば、波長193nmにおいて、レジストの屈折率が1.7として、下層反射防止膜の屈折率(屈折率の実数部)n=1.5、消光係数(屈折率の虚数部)k=0.5、膜厚42nmであれば、反射率が0.5%以下になる(図1参照)。しかし、下地に段差がある場合は、段差上で反射防止膜の膜厚が大きく変動する。下地の反射防止効果は、光の吸収だけでなく、最適な膜厚を設定することによる干渉効果も利用しているため、干渉効果が強い40〜45nmの第一底辺はそれだけ反射防止効果も高いが、膜厚の変動によって大きく反射率が変動する。反射防止膜材料に用いるベース樹脂の分子量を上げて段差上での膜厚変動を抑えコンフォーマル性を高めた材料が提案されているが(特開平10−69072号公報)、ベース樹脂の分子量が高くなると、スピンコート後にピンホールが発生し易くなる問題や、濾過できなくなるといった問題、経時的に粘度変動が生じ膜厚が変化するといった問題、ノズルの先端に結晶物が析出するといった問題が生じ、また、コンフォーマル性が発揮できるのは比較的高さの低い段差に限定される。
【0009】
次に、膜厚変動による反射率の変動が比較的小さい第3底辺以上の膜厚(170nm以上)を採用する方法においては、k値が0.2〜0.3の間で膜厚が170nm以上であれば膜厚の変化に対する反射率の変動が小さく、しかも反射率を1.5%以下に抑えることができる。しかしながら、上層レジストのエッチング負荷を考えると、反射防止膜の厚膜化は限界があり、せいぜい100nm以下の第2底辺程度の厚膜化が限界である。
【0010】
反射防止膜の下地が酸化膜や窒化膜などの透明膜で、更にその透明膜の下に段差がある場合、透明膜の表面がCMPなどで平坦化されていたとしても、透明膜の膜厚が変動する。この場合、その上の反射防止膜の膜厚は一定にすることは可能であるが、反射防止膜の下地透明膜の膜厚が変動すると最低反射膜の厚みが透明膜の膜厚分だけずれることになる。反射防止膜の膜厚を、下地が反射膜の時の最低反射膜厚に設定しても、透明膜の膜厚変動によって反射率が高くなる場合がある。
【0011】
反射防止膜の材料は、無機系と有機系に大別できる。無機系はSiON膜が挙げられる。これは、シランとアンモニアの混合ガスによるCVDなどで形成され、レジストに対するエッチング選択比が大きいため、レジストへのエッチングの負荷が小さい利点があるが、剥離が困難なため、適用できる場合に制限がある。窒素原子を含む塩基性基板であるため、ポジレジストではフッティング、ネガレジストではアンダーカットプロファイルになり易いという欠点もある。
【0012】
有機系はスピンコート可能でCVDやスパッタリングなどの特別な装置を必要としない点、レジストと同時に剥離可能な点、裾引き等の発生がなく、形状が素直で、レジストとの接着性も良好である点が利点であり、多くの有機材料をベースとした反射防止膜が提案された。例えば、特公平7−69611号公報記載のジフェニルアミン誘導体とホルムアルデヒド変性メラミン樹脂との縮合体、アルカリ可溶性樹脂と吸光剤とからなるものや、米国特許第5294680号明細書記載の無水マレイン酸共重合体とジアミン型吸光剤の反応物、特開平6−118631号公報記載の樹脂バインダーとメチロールメラミン系熱架橋剤を含有するもの、特開平6−118656号公報記載のカルボン酸基とエポキシ基と吸光基を同一分子内に有するアクリル樹脂ベース型、特開平8−87115号公報記載のメチロールメラミンとベンゾフェノン系吸光剤からなるもの、特開平8−179509号公報記載のポリビニルアルコール樹脂に低分子吸光剤を添加したもの等が挙げられる。これらのすべては、バインダーポリマーに吸光剤を添加、あるいはポリマーに置換基として導入する方法をとっている。しかし、吸光剤の多くが芳香族基、あるいは2重結合を有するため、吸光剤の添加によってドライエッチング耐性が高まり、レジストとのドライエッチング選択比がそれほど高くないという欠点がある。微細化が進行し、レジストの薄膜化にも拍車がかかっており、更に次世代のArF露光においては、レジスト材料にアクリル又は脂環族のポリマーを使うことになるため、レジストのエッチング耐性が低下する。更に、前述の通り、反射防止膜の膜厚を厚くしなければならないという問題もある。このため、エッチングは深刻な問題であり、レジストに対してエッチング選択比の高い、即ち、エッチングスピードが速い反射防止膜が求められている。
【0013】
一方、2層レジストプロセス用の下層膜における反射防止膜として要求される機能は、単層レジストのそれとは異なっている。2層レジストプロセス用の下層膜は、基板をエッチングするときのマスクとなるため、基板エッチングの条件で高いエッチング耐性を有しなければならない。単層レジストプロセスにおける反射防止膜として、単層レジストへの負荷を軽くするために早いエッチング速度が要求されるのに対して、逆の特性が要求される。また、十分な基板エッチング耐性を確保するため、下層膜の膜厚は単層レジストと同等程度又はそれ以上の300nm以上にまで厚くしなければならない。300nm以上の膜厚では、膜厚の変化による反射率の変動はほぼ収束し、位相差制御による反射防止効果は期待できない。
【0014】
ここで、最大500nmの膜厚までの反射率を計算した結果を図2、3に示す。露光波長は193nm、上層レジストのn値を1.74、k値を0.02と仮定し、図2では下層膜のk値を0.3に固定し、縦軸にn値を1.0〜2.0、横軸に膜厚0〜500nmの範囲で変動させたときの基板反射率を示す。膜厚が300nm以上の2層レジスト用下層膜を想定した場合、上層レジストと同程度かあるいはそれよりも少し屈折率が高い1.6〜1.9の範囲で反射率を1%以下にできる最適値が存在する。
【0015】
図3では、n値を1.5に固定し、k値を0.1〜0.8の範囲で変動させたときの反射率を示す。k値が0.24〜0.15の範囲で反射率を1%以下にすることが可能である。一方、40nm程度の薄膜で用いられる単層レジスト用の反射防止膜の最適k値は0.4〜0.5であり、300nm以上の2層レジスト用下層の最適k値とは異なる。2層レジスト用下層では、より低いk値、即ちより高透明な下層膜が必要であることが示されている。
【0016】
ここで、193nm用の下層膜形成材料として、SPIE Vol.4345p50(2001)に紹介されているようにポリヒドロキシスチレンとアクリルの共重合体が検討されている。ポリヒドロキシスチレンは193nmに非常に強い吸収を持ち、そのもの単独ではk値が0.6前後と高い値である。そこで、k値が殆ど0であるアクリルと共重合させることによって、k値を0.25前後に調整しているのである。
【0017】
しかしながら、ポリヒドロキシスチレンに対して、アクリルの基板エッチングにおけるエッチング耐性は弱く、しかもk値を下げるためにかなりの割合のアクリルを共重合せざるを得ず、結果的に基板エッチングの耐性はかなり低下する。エッチングの耐性は、エッチング速度だけでなく、エッチング後の表面ラフネスの発生にも現れてくる。アクリルの共重合によってエッチング後の表面ラフネスの増大が深刻なほど顕著になっている。
【0018】
ベンゼン環よりも193nmにおける透明性が高く、エッチング耐性が高いものの一つにナフタレン環がある。特開2002−14474号公報にナフタレン環、アントラセン環を有する下層膜が提案されている。しかしながら、ナフトール共縮合ノボラック樹脂、ポリビニルナフタレン樹脂のk値は0.3〜0.4の間であり、目標の0.1〜0.3の透明性には未達であり、更に透明性を上げなくてはならない。また、ナフトール共縮合ノボラック樹脂、ポリビニルナフタレン樹脂の193nmにおけるn値は低く、本発明者らの測定した結果では、ナフトール共縮合ノボラック樹脂で1.4、ポリビニルナフタレン樹脂に至っては1.2である。特開2001−40293号、同2002−214777号公報で示されるアセナフチレン重合体においても、波長248nmに比べて193nmにおけるn値が低く、k値は高く、共に目標値には達していない。n値が高く、k値が低く透明でかつエッチング耐性が高い下層膜が求められている。
【0019】
ここで、特開平6−202317号、同8−179502号、同8−220750号、同8−292565号、同9−15855号公報にクレゾールとジシクロペンタジエンとの共縮合ポリマーをベースとするi線レジストが示され、より高透明なノボラック樹脂としてジシクロペンタジエンとの共重合が検討された。特開平10−282666号公報には、レゾールとジシクロペンタジエンとの共縮合ポリマーにグリシジル基をペンダントした硬化性樹脂が提案されている。一方、特開平6−80760号、同7−5302号公報においては、ナフトールをアルデヒドで縮合させたレジスト組成物が提案されている。
【特許文献1】
特開平7−118651号公報
【特許文献2】
特開平10−324748号公報
【特許文献3】
特開平11−302382号公報
【特許文献4】
特開2002−55456号公報
【特許文献5】
特開平9−110938号公報
【特許文献6】
特開平10−69072号公報
【特許文献7】
特公平7−69611号公報
【特許文献8】
米国特許第5294680号明細書
【特許文献9】
特開平6−118631号公報
【特許文献10】
特開平6−118656号公報
【特許文献11】
特開平8−87115号公報
【特許文献12】
特開平8−179509号公報
【特許文献13】
特開2002−14474号公報
【特許文献14】
特開2001−40293号公報
【特許文献15】
特開2002−214777号公報
【特許文献16】
特開平6−202317号公報
【特許文献17】
特開平8−179502号公報
【特許文献18】
特開平8−220750号公報
【特許文献19】
特開平8−292565号公報
【特許文献20】
特開平9−15855号公報
【特許文献21】
特開平10−282666号公報
【特許文献22】
特開平6−80760号公報
【特許文献23】
特開平7−5302号公報
【非特許文献1】
SPIE vol.1925(1993) p377
【非特許文献2】
SPIE vol.3333−07(1998) p62
【非特許文献3】
J. Photopolymer Sci. and Technol. Vol. 9 No.3(1996) p435−446
【非特許文献4】
SPIE Vol.4345 p50(2001)
【0020】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、特に、珪素含有2層レジストプロセス用下層膜として、優れた反射防止膜として機能し、ポリヒドロキシスチレン、クレゾールノボラック、ナフトールノボラックなどよりも透明性が高く、最適なn値、k値を有し、しかも基板加工におけるエッチング耐性が優れた下層膜形成材料、及びパターン形成方法を提供するものである。
【0021】
【課題を解決するための手段】
本発明者らは、上記目的を達成するため鋭意検討を行った結果、ナフトール誘導体とジシクロペンタジエンとの共縮合体が、193nmにおいて最適なn値、k値を有し、かつエッチング耐性にも優れる珪素含有2層レジストプロセス用下層膜として有望な材料であることを見出し、本発明をなすに至った。
【0022】
即ち、本発明は、珪素含有バイレイヤープロセスに適用可能な新規な下層膜として、特に波長193nmにおける膜厚200nm以上の反射防止効果に優れ、かつエッチング耐性に優れる、ナフトール誘導体とジシクロペンタジエンとの共縮合ノボラック樹脂をベースにする材料を提案するもので、このものは、最適なn値、k値を有することによって膜厚200nm以上における基板反射を抑えることが可能であり、基板エッチングの条件におけるエッチング耐性に優れる特徴がある。
【0023】
従って、本発明は、下記のパターン形成方法及びこれに用いる下層膜形成材料を提供する。
請求項1:
反射防止膜としてナフトール誘導体とジシクロペンタジエンとの共縮合物を含むフォトレジスト下層膜を被加工基板上に適用し、該下層膜の上にフォトレジスト組成物の層を適用し、パターン回路領域に放射線を照射し、現像液で現像してレジストパターンを形成し、ドライエッチング装置でフォトレジスト層をマスクにして下層膜層及び被加工基板を加工することを特徴とするパターン形成方法。請求項2:
フォトレジスト組成物が珪素原子含有ポリマーを含み、フォトレジスト層をマスクにして下層膜を加工するドライエッチングが、酸素ガスを主体とするエッチングガスを用いて行う請求項1記載のパターン形成方法。
請求項3:
酸素ガスエッチング後、下層膜をマスクにして行う被加工基板加工がドライエッチングによるものである請求項2記載のパターン形成方法。
請求項4:
請求項1、2又は3記載のパターン形成方法に用いるフォトレジスト下層膜形成材料であって、ナフトール誘導体とジシクロペンタジエンとの共縮合物が、下記一般式(1)又は(2)で表されることを特徴とする下層膜形成材料。
【化2】

Figure 0003981825
(式中、R1〜R8は互いに独立に水素原子、水酸基、炭素数1〜6の置換可アルキル基、炭素数1〜6の置換可アルコキシ基、炭素数2〜6の置換可アルコキシカルボキシル基、炭素数6〜10の置換可アリール基、炭素数1〜6のヒドロキシアルキル基、イソシアネート基、又はグリシジル基である。m、nは正の整数である。)
請求項5:
更に、有機溶剤、架橋剤及び酸発生剤を含有する請求項4記載の下層膜形成材料。
【0024】
【発明の実施の形態】
以下、本発明につき更に詳しく説明する。
本発明のパターン形成方法は、反射防止膜としてナフトール誘導体とジシクロペンタジエンとの共縮合物を含むフォトレジスト下層膜を基板上に適用し、該下層膜の上にフォトレジスト組成物の層を適用し、パターン回路領域に放射線を照射し、現像液で現像してレジストパターンを形成し、ドライエッチング装置でフォトレジスト層をマスクにして下層膜層及び基板を加工するものであるが、ここで用いる下層膜形成材料は、
(A)ナフトール誘導体とジシクロペンタジエンとの共縮合物からなるベースポリマー
を必須成分とし、好ましくは
(B)有機溶剤、
(C)架橋剤、
(D)酸発生剤
を含むものである。
【0025】
ここで、上記(A)成分のナフトール誘導体とジシクロペンタジエンとの共縮合物としては、下記一般式(1)又は(2)で表されるものが好ましい。
【化3】
Figure 0003981825
【0026】
上記式中、R1〜R8は互いに独立に水素原子、水酸基、炭素数1〜6の置換可アルキル基、炭素数1〜6の置換可アルコキシ基、炭素数2〜6の置換可アルコキシカルボキシル基、炭素数6〜10の置換可アリール基、炭素数1〜6のヒドロキシアルキル基、イソシアネート基、又はグリシジル基である。m、nは正の整数である。
【0027】
ここで、一般式(1)及び(2)に挙げられる繰り返し単位を得るためのナフトール誘導体は、1−ナフトール、2−ナフトール、2−メチル−1−ナフトール、4−メトキシ−1−ナフトール、7−メトキシ−2−ナフトール及び1,5−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン等のジヒドロキシナフタレン、3−ヒドロキシ−ナフタレン−2−カルボン酸メチルが挙げられる。ジシクロペンタジエンは、シクロペンタジエンの2量体であり、エンド体とエキソ体の二つの異性体が存在するが、本発明に用いられる樹脂の原料となるジシクロペンタジエンはいずれの異性体であってもよく、また二つの異性体の混合物であってもよい。異性体の混合物を用いる場合、異性体の比率は特に制限されない。
【0028】
一般式(1)及び(2)に挙げられる繰り返し単位は、酸触媒存在下、ジシクロペンタジエンとナフトール類を付加反応させることにより得ることができる。反応に用いる酸触媒は、三フッ化ホウ素のエタノール錯体や塩化アルミニウムなどのルイス酸、塩酸、硝酸、硫酸などの無機酸、メタンスルホン酸、n−ブタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、m−キシレンスルホン酸、p−キシレンスルホン酸、メジチレンスルホン酸などのスルホン酸、トリフルオロメタンスルホン酸、ノナフルオロメタンスルホン酸、ペンタフルオロベンゼンスルホン酸などのパーフルオロスルホン酸のような超強酸、ナフィオンなどの末端スルホン酸基を持つパーフルオロアルキルポリマー、スルホン酸残基を持つポリスチレンなどのアニオン交換樹脂などが挙げられる。特にメタンスルホン酸、トシル酸、トリフルオロメタンスルホン酸が好ましく、その使用量は、メタンスルホン酸の場合原料に対して0.01〜10重量%、好ましくは0.05〜5重量%の範囲であり、トリフルオロメタンスルホン酸の場合で0.0001〜5重量%、好ましくは0.0005〜1重量%の範囲である。
【0029】
ナフトールとジシクロペンタジエンの比率は、ナフトール1モルに対してジシクロペンタジエンが0.1〜2.0モル、好ましくは0.2〜1.8モルである。
【0030】
本発明はナフトール誘導体とジシクロペンタジエンとを共縮合させて得るポリマーを下層膜として適用することを特徴とするが、更にフェノール類を共縮合させることもできる。ここで挙げられるフェノール類としては、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、2,3−ジメチルフェノール、2,5−ジメチルフェノール、3,4−ジメチルフェノール、3,5−ジメチルフェノール、2,4−ジメチルフェノール、2,6−ジメチルフェノール、2,3,5−トリメチルフェノール、3,4,5−トリメチルフェノール、2−t−ブチルフェノール、3−t−ブチルフェノール、4−t−ブチルフェノール、レゾルシノール、2−メチルレゾルシノール、4−メチルレゾルシノール、5−メチルレゾルシノール、カテコール、4−t−ブチルカテコール、2−メトキシフェノール、3−メトキシフェノール、2−プロピルフェノール、3−プロピルフェノール、4−プロピルフェノール、2−イソプロピルフェノール、3−イソプロピルフェノール、4−イソプロピルフェノール、2−メトキシ−5−メチルフェノール、2−t−ブチル−5−メチルフェノール、ピロガロール、チモール、イソチモール等を挙げることができる。その他、ナフトールと共縮合可能なモノマーとしては、インデン、ヒドロキシアントラセン、アセナフチレン、ビフェニルなどが挙げられ、これらのものを加えた3元以上の共重合体であってもかまわない。
【0031】
なお、上記共縮合されるフェノール単位の割合は、ナフトール誘導体とジシクロペンタジエンとの共縮合物を含むベースポリマーの60モル%以下、特に0〜50モル%が好ましい。
【0032】
反応は、ジシクロペンタジエンがナフトールの水酸基と付加反応し、エーテル化する第一段階と、そのエーテル体が転移反応によりナフトール樹脂が形成される第二段階とに分類される。反応温度は、20〜200℃、好ましくは40〜160℃の範囲である。反応終了後、未反応ナフトール化合物を、任意の方法により留去して、ナフトール−ジシクロペンタジエン樹脂を得ることができるが、本発明の目的に用いるに際しては、洗浄工程を導入することが望ましい。その洗浄方法は任意の方法でよいが、例示すれば、アルカリ金属の水酸化物を用い、アルカリ金属塩として水に不溶となる成分を除去する方法、トルエン、キシレン等の芳香族炭化水素、メチルエチルケトン、メチルイソブチルケトン等のケトン類、アミルアルコール、イソアミルアルコール、ヘプタノール、2−ヘプタノール、オクタノール、イソオクタノール等の高級アルコール類等の有機溶剤を用いて水洗する方法、上記有機溶剤を用いて希塩酸洗浄する方法、1,2−ジクロロエタン、クロロホルム、メチルセロソルブ、エチルセロソルブ、ジメチルホルムアミド、ジメチルアセトアミド等の溶媒を用いてシリカゲル、アルミナ、活性炭等の吸着剤を用いて処理する方法等がある。これらのいずれかの方法、あるいはこれらの方法の組み合わせ等により、ゲル成分や酸性成分、金属イオン等の不純物を極力低減することが望ましい。
【0033】
重量平均分子量は1,500〜200,000の範囲が好ましく、より好ましくは2,000〜10,000の範囲である。分子量分布は特に制限がなく、分画によって低分子体及び高分子体を除去し、分散度を小さくすることも可能であり、分子量、分散度が異なる2つ以上のナフトール−ジシクロペンタジエン樹脂の混合、あるいは組成比の異なる2種以上のナフトール−ジシクロペンタジエン樹脂を混合してもかまわない。
【0034】
本発明のナフトール−ジシクロペンタジエン共重合樹脂の透明性を更に向上させるために、水素添加を行うことができる。好ましい水素添加の割合は、ナフトールなどの芳香族基の50モル%以下である。
【0035】
本発明の下層膜形成材料用のベース樹脂は、ナフトール−ジシクロペンタジエン樹脂を含むことを特徴とするが、前述の反射防止膜材料として挙げられている従来のポリマーとブレンドすることもできる。ナフトール−ジシクロペンタジエン樹脂のガラス転移点は150℃以上であり、このもの単独ではビアホールなどの深いホールの埋め込み特性が劣る場合がある。ホールをボイドの発生なく埋め込むためには、ガラス転移点の低いポリマーを用い、架橋温度よりも低い温度で熱フローさせながらホールの底にまで樹脂を埋め込む手法がとられる(特開2000−294504号公報)。ガラス転移点の低いポリマー、特にガラス転移点が180℃以下、とりわけ100〜170℃のポリマー、例えばアクリル誘導体、ビニルアルコール、ビニルエーテル類、アリルエーテル類、スチレン誘導体、アリルベンゼン誘導体、エチレン、プロピレン、ブタジエンなどのオレフィン類、メタセシス開環重合などによるポリマーとブレンドすることによってガラス転移点を低下させ、ビアホールの埋め込み特性を向上させることができる。
【0036】
この場合、ナフトール誘導体とジシクロペンタジエンとの共縮合物と、上記低ガラス転移点のポリマーとのブレンド割合は、重量比として、1:0.1〜1:10、特には1:0.2〜1:5が好ましい。
【0037】
もう一つのガラス転移点を下げるための方法としては、ナフトールジシクロペンタジエンノボラック樹脂のヒドロキシ基の水酸基を炭素数1〜20の直鎖状、分岐状又は環状のアルキル基、t−ブチル基、t−アミル基、アセタールなどの酸不安定基、アセチル基、ピバロイル基などで置換する方法を挙げることができる。
この時の置換率は、ナフトールジシクロペンタジエンノボラック樹脂の水酸基の10〜60モル%、好ましくは15〜50モル%の範囲である。
【0038】
反射防止膜を含む下層膜に要求される性能の一つとして、レジストとのインターミキシングがないこと、レジスト層ヘの低分子成分の拡散がないことが挙げられる[Proc. SPIE Vol.2195、p225−229(1994)]。これらを防止するために、一般的に反射防止膜のスピンコート後のベークで熱架橋するという方法がとられている。そのため、反射防止膜材料の成分として架橋剤を添加する場合、ポリマーに架橋性の置換基を導入する方法がとられることがある。
【0039】
本発明で使用可能な架橋剤の具体例を列挙すると、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基で置換されたメラミン化合物、グアナミン化合物、グリコールウリル化合物又はウレア化合物、エポキシ化合物、チオエポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基などの2重結合を含む化合物を挙げることができる。これらは添加剤として用いてもよいが、ポリマー側鎖にペンダント基として導入してもよい。また、ヒドロキシ基を含む化合物も架橋剤として用いられる。
【0040】
前記諸化合物のうち、エポキシ化合物を例示すると、トリス(2,3−エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテルなどが例示される。メラミン化合物を具体的に例示すると、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1〜6個のメチロール基がメトキシメチル化した化合物及びその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1〜6個がアシロキシメチル化した化合物又はその混合物が挙げられる。グアナミン化合物としては、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1〜4個のメチロール基がメトキシメチル化した化合物及びその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1〜4個のメチロール基がアシロキシメチル化した化合物及びその混合物が挙げられる。グリコールウリル化合物としては、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1〜4個がメトキシメチル基化した化合物、又はその混合物、テトラメチロールグリコールウリルのメチロール基の1〜4個がアシロキシメチル化した化合物又はその混合物が挙げられる。ウレア化合物としてはテトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1〜4個のメチロール基がメトキシメチル基化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。
【0041】
アルケニルエーテル基を含む化合物としては、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2−プロパンジオールジビニルエーテル、1,4−ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4−シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテルなどが挙げられる。
【0042】
一般式(1)又は(2)のナフトール−ジシクロペンタジエン樹脂のヒドロキシ基がグリシジル基で置換されている場合は、ヒドロキシ基を含む化合物の添加が有効である。特に分子内に2個以上のヒドロキシ基を含む化合物が好ましい。例えば、ナフトールノボラック、m−及びp−クレゾールノボラック、ナフトール−ジシクロペンタジエンノボラック、m−及びp−クレゾール−ジシクロペンタジエンノボラック、4,8−ビス(ヒドロキシメチル)トリシクロ[5.2.1.02,6]−デカン、ペンタエリトリトール、1,2,6−ヘキサントリオール、4,4’,4’’−メチリデントリスシクロヘキサノール、4,4’−[1−[4−[1−(4−ヒドロキシシクロヘキシル)−1−メチルエチル]フェニル]エチリデン]ビスシクロヘキサノール、[1,1’−ビシクロヘキシル]−4,4’−ジオール、メチレンビスシクロヘキサノール、デカヒドロナフタレン−2,6−ジオール、[1,1’−ビシクロヘキシル]−3,3’,4,4’−テトラヒドロキシなどのアルコール基含有化合物、ビスフェノール、メチレンビスフェノール、2,2’−メチレンビス[4−メチルフェノール]、4,4’−メチリデン−ビス[2,6−ジメチルフェノール]、4,4’−(1−メチル−エチリデン)ビス[2−メチルフェノール]、4,4’−シクロヘキシリデンビスフェノール、4,4’−(1,3−ジメチルブチリデン)ビスフェノール、4,4’−(1−メチルエチリデン)ビス[2,6−ジーメチルフェノール]、4,4’−オキシビスフェノール、4,4’−メチレンビスフェノール、ビス(4−ヒドロキシフェニル)メタノン、4,4’−メチレンビス[2−メチルフェノール]、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスフェノール、4,4’−(1,2−エタンジイル)ビスフェノール、4,4’−(ジエチルシリレン)ビスフェノール、4,4’−[2,2,2−トリフルオロ−1−(トリフルオロメチル)エチリデン]ビスフェノール、4,4’,4’’−メチリデントリスフェノール、4,4’−[1−(4−ヒドロキシフェニル)−1−メチルエチル]フェニル]エチリデン]ビスフェノール、2,6−ビス[(2−ヒドロキシ−5−メチルフェニル)メチル]−4−メチルフェノール、4,4’,4’’−エチリジントリス[2−メチルフェノール]、4,4’,4’’−エチリジントリスフェノール、4,6−ビス[(4−ヒドロキシフェニル)メチル]1,3−ベンゼンジオール、4,4’−[(3,4−ジヒドロキシフェニル)メチレン]ビス[2−メチルフェノール]、4,4’,4’’,4’’’−(1,2−エタンジイリデン)テトラキスフェノール、4,4’,4’’,4’’’−エタンジイリデン)テトラキス[2−メチルフェノール]、2,2’−メチレンビス[6−[(2−ヒドロキシ−5−メチルフェニル)メチル]−4−メチルフェノール]、4,4’,4’’,4’’’−(1,4−フェニレンジメチリジン)テトラキスフェノール、2,4,6−トリス(4−ヒドロキシフェニルメチル)1,3−ベンゼンジオール、2,4’,4’’−メチリデントリスフェノール、4,4’,4’’’−(3−メチル−1−プロパニル−3−イリデン)トリスフェノール、2,6−ビス[(4−ヒドロキシ−3−フロロフェニル)メチル]−4−フルオロフェノール、2,6−ビス[4−ヒドロキシ−3−フルオロフェニル]メチル]−4−フルオロフェノール、3,6−ビス「(3,5−ジメチル−4−ヒドロキシフェニル)メチル」1,2−ベンゼンジオール、4,6−ビス「(3,5−ジメチル−4−ヒドロキシフェニル)メチル」1,3−ベンゼンジオール、p−メチルカリックス[4]アレン、2,2’−メチレンビス[6−[(2,5/3,6−ジメチル−4/2−ヒドロキシフェニル)メチル]−4−メチルフェノール、2,2’−メチレンビス[6−[(3,5−ジメチル−4−ヒドロキシフェニル)メチル]−4−メチルフェノール、4,4’,4’’,4’’’−テトラキス[(1−メチルエチリデン)ビス(1,4−シクロヘキシリデン)]フェノール、6,6’−メチレンビス[4−(4−ヒドロキシフェニルメチル)−1,2,3−ベンゼントリオール、3,3’,5,5’−テトラキス[(5−メチル−2−ヒドロキシフェニル)メチル]−[(1,1’−ビフェニル)−4,4’−ジオール]などのフェノール低核体が挙げられる。
【0043】
本発明における架橋剤の配合量は、ベースポリマー(全樹脂分)100部(重量部、以下同じ)に対して5〜50部が好ましく、特に10〜40部が好ましい。5部未満であるとレジストとミキシングを起こす場合があり、50部を超えると反射防止効果が低下したり、架橋後の膜にひび割れが入ることがある。
【0044】
本発明においては、熱による架橋反応を更に促進させるための酸発生剤を添加することができる。酸発生剤は熱分解によって酸を発生するものや、光照射によって酸を発生するものがあるが、いずれのものも添加することができる。
【0045】
本発明で使用される酸発生剤としては、
i.下記一般式(P1a−1)、(P1a−2)、(P1a−3)又は(P1b)のオニウム塩、
ii.下記一般式(P2)のジアゾメタン誘導体、
iii.下記一般式(P3)のグリオキシム誘導体、
iv.下記一般式(P4)のビススルホン誘導体、
v.下記一般式(P5)のN−ヒドロキシイミド化合物のスルホン酸エステル、
vi.β−ケトスルホン酸誘導体、
vii.ジスルホン誘導体、
viii.ニトロベンジルスルホネート誘導体、
ix.スルホン酸エステル誘導体
等が挙げられる。
【0046】
【化4】
Figure 0003981825
(式中、R101a、R101b、R101cはそれぞれ炭素数1〜12の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ炭素数1〜6のアルキレン基を示す。K-は非求核性対向イオンを表す。R101d、R101e、R101f、R101gは、R101a、R101b、R101cに水素原子を加えて示される。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3〜10のアルキレン基を示す。)
【0047】
上記R101a、R101b、R101c、R101d、R101e、R101f、R101gは互いに同一であっても異なっていてもよく、具体的にはアルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2−オキソシクロペンチル基、2−オキソシクロヘキシル基等が挙げられ、2−オキソプロピル基、2−シクロペンチル−2−オキソエチル基、2−シクロヘキシル−2−オキソエチル基、2−(4−メチルシクロヘキシル)−2−オキソエチル基等を挙げることができる。アリール基としては、フェニル基、ナフチル基等や、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としてはベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、2−フェニル−2−オキソエチル基、2−(1−ナフチル)−2−オキソエチル基、2−(2−ナフチル)−2−オキソエチル基等の2−アリール−2−オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネートが挙げられる。
【0048】
(P1a−1)と(P1a−2)は光酸発生剤、熱酸発生剤の両方の効果があるが、(P1a−3)は熱酸発生剤として作用する。
【0049】
【化5】
Figure 0003981825
(式中、R102a、R102bはそれぞれ炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。R103は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基を示す。R104a、R104bはそれぞれ炭素数3〜7の2−オキソアルキル基を示す。K-は非求核性対向イオンを表す。)
【0050】
上記R102a、R102bとして具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4−シクロへキシレン基、1,2−シクロへキシレン基、1,3−シクロペンチレン基、1,4−シクロオクチレン基、1,4−シクロヘキサンジメチレン基等が挙げられる。R104a、R104bとしては、2−オキソプロピル基、2−オキソシクロペンチル基、2−オキソシクロヘキシル基、2−オキソシクロヘプチル基等が挙げられる。K-は式(P1a−1)、(P1a−2)及び(P1a−3)で説明したものと同様のものを挙げることができる。
【0051】
【化6】
Figure 0003981825
(式中、R105、R106は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。)
【0052】
105、R106のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としてはトリフルオロメチル基、1,1,1−トリフルオロエチル基、1,1,1−トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としてはフェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。ハロゲン化アリール基としてはフルオロフェニル基、クロロフェニル基、1,2,3,4,5−ペンタフルオロフェニル基等が挙げられる。アラルキル基としてはベンジル基、フェネチル基等が挙げられる。
【0053】
【化7】
Figure 0003981825
(式中、R107、R108、R109は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1〜6の直鎖状又は分岐状のアルキレン基を示す。)
【0054】
107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
【0055】
【化8】
Figure 0003981825
(式中、R101a、R101bは上記と同様である。)
【0056】
【化9】
Figure 0003981825
(式中、R110は炭素数6〜10のアリーレン基、炭素数1〜6のアルキレン基又は炭素数2〜6のアルケニレン基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4の直鎖状又は分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1〜8の直鎖状、分岐状又は置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4のアルキル基又はアルコキシ基;炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3〜5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。)
【0057】
ここで、R110のアリーレン基としては、1,2−フェニレン基、1,8−ナフチレン基等が、アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン−2,3−ジイル基等が、アルケニレン基としては、1,2−ビニレン基、1−フェニル−1,2−ビニレン基、5−ノルボルネン−2,3−ジイル基等が挙げられる。R111のアルキル基としては、R101a〜R101cと同様のものが、アルケニル基としては、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、3−ブテニル基、イソプレニル基、1−ペンテニル基、3−ペンテニル基、4−ペンテニル基、ジメチルアリル基、1−ヘキセニル基、3−ヘキセニル基、5−ヘキセニル基、1−ヘプテニル基、3−ヘプテニル基、6−ヘプテニル基、7−オクテニル基等が、アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。
【0058】
なお、更に置換されていてもよい炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等が、炭素数1〜4のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基等が、炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、フェニル基、トリル基、p−tert−ブトキシフェニル基、p−アセチルフェニル基、p−ニトロフェニル基等が、炭素数3〜5のヘテロ芳香族基としては、ピリジル基、フリル基等が挙げられる。
【0059】
具体的には、例えばトリフルオロメタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸テトラn−ブチルアンモニウム、ノナフルオロブタンスルホン酸テトラフェニルアンモニウム、p−トルエンスルホン酸テトラメチルアンモニウム、トリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、p−トルエンスルホン酸ジフェニルヨードニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p−トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、p−トルエンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p−トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p−トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2−オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩。
【0060】
ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(n−アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec−アミルスルホニル)ジアゾメタン、ビス(tert−アミルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−アミルスルホニル)ジアゾメタン、1−tert−アミルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体。
【0061】
ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(n−ブタンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(シクロヘキサンスルホニル)−α−ジメチルグリオキシム、ビス−O−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−O−(カンファースルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体。
【0062】
ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス−p−トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体。
【0063】
2−シクロヘキシルカルボニル−2−(p−トルエンスルホニル)プロパン、2−イソプロピルカルボニル−2−(p−トルエンスルホニル)プロパン等のβ−ケトスルホン誘導体。
p−トルエンスルホン酸2,6−ジニトロベンジル、p−トルエンスルホン酸2,4−ジニトロベンジル等のニトロベンジルスルホネート誘導体。
1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体。
【0064】
N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミドエタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−オクタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシスクシンイミドp−メトキシベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド2−クロロエタンスルホン酸エステル、N−ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド−2,4,6−トリメチルベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ナフタレンスルホン酸エステル、N−ヒドロキシスクシンイミド2−ナフタレンスルホン酸エステル、N−ヒドロキシ−2−フェニルスクシンイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドエタンスルホン酸エステル、N−ヒドロキシ−2−フェニルマレイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドメタンスルホン酸エステル、N−ヒドロキシフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシフタルイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドp−トルエンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体等が挙げられるが、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン等のビススルホン誘導体、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体が好ましく用いられる。
【0065】
なお、上記酸発生剤は1種を単独で又は2種以上を組み合わせて用いることができる。
【0066】
酸発生剤の添加量は、ベースポリマー100部に対して好ましくは0.1〜50部、より好ましくは0.5〜40部である。0.1部より少ないと酸発生量が少なく、架橋反応が不十分な場合があり、50部を超えると上層レジストへ酸が移動することによるミキシング現象が起こる場合がある。
【0067】
更に、本発明の下層膜形成材料には、保存安定性を向上させるための塩基性化合物を配合することができる。
塩基性化合物としては、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。
【0068】
このような塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。
【0069】
具体的には、第一級の脂肪族アミン類として、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示され、第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示され、第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。
【0070】
また、混成アミン類としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリドン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
【0071】
更に、カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン)等が例示され、スルホニル基を有する含窒素化合物として3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示され、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノ−ル、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。アミド誘導体としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。イミド誘導体としては、フタルイミド、サクシンイミド、マレイミド等が例示される。
【0072】
塩基性化合物の配合量は全ベースポリマー100部に対して0.001〜2部、特に0.01〜1部が好適である。配合量が0.001部より少ないと配合効果がなく、2部を超えると熱で発生した酸を全てトラップして架橋しなくなる場合がある。
【0073】
本発明の下層膜形成材料において使用可能な有機溶剤としては、前記のベースポリマー、酸発生剤、架橋剤、その他添加剤等が溶解するものであれば特に制限はない。その具体例を列挙すると、シクロヘキサノン、メチル−2−アミルケトン等のケトン類;3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類;プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル,プロピオン酸tert−ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノtert−ブチルエーテルアセテート等のエステル類が挙げられ、これらの1種又は2種以上を混合使用できるが、これらに限定されるものではない。本発明においては、これら有機溶剤の中でもジエチレングリコールジメチルエーテルや1−エトキシ−2−プロパノール、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート及びこれらの混合溶剤が好ましく使用される。
【0074】
溶剤の配合量は、全ベースポリマー100部に対して500〜10,000部が好ましく、特に1,000〜5,000部とすることが好ましい。
【0075】
本発明の下層膜は、フォトレジストと同様にスピンコート法などで被加工基板上に作製することが可能である。スピンコート後、溶媒を蒸発し、上層レジストとミキシング防止のため、架橋反応を促進させるためにベークをすることが望ましい。ベーク温度は80〜300℃の範囲内で、10〜300秒の範囲内が好ましく用いられる。なお、この下層膜の厚さは適宜選定されるが、100〜20,000nm、特に150〜15,000nmとすることが好ましい。下層膜を作製した後、その上にレジスト層を作製する。
【0076】
この場合、このレジスト層を形成するためのフォトレジスト組成物としては公知のものを使用することができる。酸素ガスエッチング耐性の点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、更に有機溶剤、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト組成物が使用される。なお、珪素原子含有ポリマーとしては、この種のレジスト組成物に用いられる公知のポリマーを使用することができる。
【0077】
上記フォトレジスト組成物によりレジスト層を形成する場合、上記下層膜を形成する場合と同様に、スピンコート法が好ましく用いられる。レジストをスピンコート後、プリベークを行うが、80〜180℃で10〜300秒の範囲が好ましい。その後常法に従い、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行い、レジストパターンを得る。なお、レジスト膜の厚さは特に制限されないが、30〜500nm、特に50〜400nmが好ましい。
【0078】
次に、得られたレジストパターンをマスクにして酸素ガスを主体とするエッチングを行う。このエッチングは常法によって行うことができる。この時、酸素ガスに加えて、He、Arなどの不活性ガスや、CO、CO2、NH3、SO2、N2、NO2ガスを加えることも可能である。特に後者のガスはパターン側壁のアンダーカット防止のための側壁保護のために用いられる。
【0079】
次の被加工基板のエッチングも、常法によって行うことができ、例えば基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、p−SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行う。本発明の下層膜は、これら被加工基板のエッチング耐性に優れる特徴がある。
【0080】
なお、被加工基板としては、基板上に形成される。基板としては、特に限定されるものではなく、Si、α−Si、p−Si、SiO2、SiN、SiON、W、TiN、Al等で被加工膜(被加工基板)と異なる材質のものが用いられる。被加工膜としては、Si、SiO2、SiON、SiN、p−Si、α−Si、W、W−Si、Al、Cu、Al−Si等種々のLow−k膜及びそのストッパー膜が用いられ、通常50〜10,000nm、特に100〜5,000nm厚さに形成し得る。
【0081】
【実施例】
以下、合成例、重合例及び実施例と比較例を示して本発明を具体的に説明するが、本発明はこれらの記載によって限定されるものではない。
【0082】
[合成例1]
300mLのフラスコに1−ナフトール144g(1モル)、トリフルオロメタンスルホン酸0.01gを加え、50℃で撹拌しながらジシクロペンタジエン132g(1モル)を1時間滴下した。同温度で1時間撹拌後、150℃にまで昇温、2時間撹拌し、反応を終了させた。未反応物を減圧蒸留で除去し、200gの1,2−ジクロロエタンに溶解させ、水洗により触媒と金属不純物を除去し、1,2−ジクロロエタンを減圧除去することによって、230gのポリマー1を得た。
ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算の分子量(Mw)、分散度(Mw/Mn)を求め、1H−NMR分析によりポリマー中のナフトールとジシクロペンタジエンの比率を以下のように求めた。
ポリマー1;1−ナフトール:ジシクロペンタジエン(モル比)=0.55:0.45
Mw4,400、Mw/Mn3.1
【0083】
[合成例2]
300mLのフラスコに1−ナフトール144g(1モル)、トリフルオロメタンスルホン酸0.007gを加え、50℃で撹拌しながらジシクロペンタジエン66g(0.5モル)を1時間滴下した。同温度で1時間撹拌後、150℃にまで昇温、2時間撹拌し、反応を終了させた。未反応物を減圧蒸留で除去し、200gの1,2−ジクロロエタンに溶解させ、水洗により触媒と金属不純物を除去し、1,2−ジクロロエタンを減圧除去することによって、180gのポリマー2を得た。
GPCにより分子量(Mw)、分散度(Mw/Mn)を求め、1H−NMR分析によりポリマー中のナフトールとジシクロペンタジエンの比率を以下のように求めた。
ポリマー2;1−ナフトール:ジシクロペンタジエン(モル比)=0.77:0.23
Mw5,200、Mw/Mn2.8
【0084】
[合成例3]
300mLのフラスコに7−メトキシ−1−ナフトール174g(1モル)、トリフルオロメタンスルホン酸0.007gを加え、50℃で撹拌しながらジシクロペンタジエン66g(0.5モル)を1時間滴下した。同温度で1時間撹拌後、150℃にまで昇温、2時間撹拌し、反応を終了させた。未反応物を減圧蒸留で除去し、200gの1,2−ジクロロエタンに溶解させ、水洗により触媒と金属不純物を除去し、1,2−ジクロロエタンを減圧除去することによって、221gのポリマー3を得た。
GPCにより分子量(Mw)、分散度(Mw/Mn)を求め、1H−NMR分析によりポリマー中のナフトールとジシクロペンタジエンの比率を以下のように求めた。
ポリマー3;7−メトキシ−1−ナフトール:ジシクロペンタジエン(モル比)
=0.77:0.23
Mw3,200、Mw/Mn2.6
【0085】
[合成例4]
500mLのフラスコにシクロヘキサン100mL、合成例1で得られた1−ナフトール/ジシクロペンタジエンノボラック樹脂100gとテトラメチルアンモニウムブロマイド5gを溶解させ、エピクロルヒドリン38gを滴下し、80℃で1時間撹拌し付加反応を行い、8gの水酸化ナトリウムを添加し、80℃にて3時間閉環反応を行いエポキシ化合物を得た。その後水洗によって未反応のエピクロルヒドリンと水酸化ナトリウムを除去し、酢酸エチルを減圧乾燥により除去し、122gのグリシジル基置換1−ナフトール/ジシクロペンタジエンノボラック樹脂を得た。
GPCにより分子量(Mw)、分散度(Mw/Mn)を求め、1H−NMR分析によりポリマー中のグリシジル基置換ナフトールとジシクロペンタジエンの比率を以下のように求めた。
ポリマー4;グリシジル基置換1−ナフトール:ジシクロペンタジエン(モル比)=0.55:0.45
Mw6,100、Mw/Mn3.1
【0086】
[実施例、比較例]
ポリマー1〜4で示されるナフトール−ジシクロペンタジエン、AG1,2で示される酸発生剤、CR1,2で示される架橋剤を、FC−430(住友スリーエム社製)0.1重量%を含む溶媒中に表1に示す割合で溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって下層膜溶液をそれぞれ調製した。比較例用のポリマー1としては、Mw8,900、Mw/Mn4.8のm−クレゾールノボラック樹脂、比較例ポリマー2としてはMw3,300、Mw/Mn3.5の1−ナフトール樹脂、比較例ポリマー3としてはMw33,000、Mw/Mn1.9のp−ヒドロキシスチレン:アクリル酸ヒドロキシエチル30/70(モル比)を用いた。
【0087】
下層膜形成材料の溶液をシリコン基板上に塗布して、200℃で60秒間ベークして膜厚400nmの下層膜を形成し(以下、UDL1〜7と略称する)、J.A.ウーラム社の入射角度可変の分光エリプソメーター(VASE)で波長193nmにおけるUDL1〜7の屈折率(n,k)を求め、結果を表1に示した。
【0088】
【表1】
Figure 0003981825
PGMEA;プロピレングリコールモノメチルエーテルアセテート
【0089】
【化10】
Figure 0003981825
【0090】
次に、下層膜形成材料の溶液を膜厚300nmのSiO2基板上に塗布して、200℃で60秒間ベークして膜厚400nmの下層膜を形成した(以下、UDL1〜7と略称する)。表2に示す組成で珪素含有ポリマー1,2、酸発生剤PAG1、塩基添加剤AACN、溶媒からなるArF用珪素含有レジスト液1,2を調製した。このレジスト液を上記下層膜UDL1〜7上に塗布して、110℃で60秒間ベークし、膜厚200nmの珪素含有レジスト膜層を形成した。次いで、ArF露光装置(ニコン社製;S305B、NA0.68、σ0.85、2/3輪体照明、Crマスク)で露光し、110℃で90秒間ベーク(PEB)し、2.38重量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で現像し、ポジ型のパターンを得た。得られたパターンの0.10μmL/Sのパターン形状を観察し、表3に示すように基板付近で裾引きやアンダーカット、インターミキシング現象が起きておらず、矩形のパターンが得られていることを確認した。
【0091】
次いで、ドライエッチング耐性のテストを行った。まず、前記屈折率測定に用いたものと同じ下層膜(UDL1〜7)を作製し、これらの下層膜のCHF3/CF4系ガスでのエッチング試験として下記(1)の条件で試験した。この場合、東京エレクトロン株式会社製ドライエッチング装置TE−8500Pを用い、エッチング前後の下層膜及びレジストの膜厚差を測定した。結果を表4に示す。(1)CHF3/CF4系ガスでのエッチング試験
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 1,300W
ギャップ 9mm
CHF3ガス流量 30ml/min
CF4ガス流量 30ml/min
Arガス流量 100ml/min
時間 60sec
【0092】
更に、上記下層膜(UDL1〜7)を用いて、下記(2)の条件でCl2/BCl3系ガスでのエッチング試験を行った。この場合、日電アネルバ株式会社製ドライエッチング装置L−507D−Lを用い、エッチング前後のポリマー膜の膜厚差を求めた。結果を表5に示す。
(2)Cl2/BCl3系ガスでのエッチング試験
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 300W
ギャップ 9mm
Cl2ガス流量 30ml/min
BCl3ガス流量 30ml/min
CHF3ガス流量 100ml/min
2ガス流量 2ml/min
時間 60sec
【0093】
一方、上記ArF露光と現像後にて得られた0.10μmL/Sパターンの珪素含有レジストを酸素ガスによるエッチングを行った。
エッチング条件は下記に示す通りである。
チャンバー圧力 450mTorr
RFパワー 600W
Arガス流量 40sccm
2ガス流量 60sccm
ギャップ 9mm
時間 20sec
【0094】
次に、(1)に示される条件でCHF3/CF4系ガスでのエッチングを行い、SiO2基板を加工した。
現像後、酸素ガスエッチング後、基板加工のCHF3/CF4系ガスエッチング後のパターンの断面を日立製作所製電子顕微鏡(S−4700)にて観察し、形状を比較し、表3にまとめた。現像後は珪素含有レジストの断面形状、酸素エッチング後とCHF3/CF4エッチング後は下層膜の断面形状を観察した。
【0095】
【表2】
Figure 0003981825
【0096】
【化11】
Figure 0003981825
【0097】
【表3】
Figure 0003981825
【0098】
【表4】
Figure 0003981825
【0099】
【表5】
Figure 0003981825
【0100】
表1に示すように、本発明の下層膜の屈折率のn値が1.5〜1.9、k値が0.15〜0.3の範囲であり、これは200nm以上の膜厚で十分な反射防止効果を発揮できるだけの最適な屈折率(n)と消光係数(k)であり、また表4,5に示すように、CF4/CHF3ガス及びCl2/BCl3系ガスエッチングの速度もノボラック樹脂と同程度であり、ポリヒドロキシスチレン/ヒドロキシエチルアクリレート共重合に比べるとエッチング速度が低く、高いエッチング耐性を有する。また、表3に示すように、現像後のレジスト形状、酸素エッチング後、基板加工エッチング後の下層膜の形状も良好であることが認められた。
【0101】
【発明の効果】
本発明の下層膜形成材料は、屈折率のn値が1.5〜1.9、k値が0.15〜0.3の範囲であり、200nm以上の膜厚で十分な反射防止効果を発揮できるだけの吸光係数であり、基板加工に用いられるCF4/CHF3ガス及びCl2/BCl3系ガスエッチングの速度もノボラック樹脂と同程度であり、高いエッチング耐性を有する。また、パターニング後のレジスト形状も良好である。
【図面の簡単な説明】
【図1】反射防止膜の膜厚と反射率の関係を示すグラフである。
【図2】下層膜屈折率k値が0.3固定で、n値を1.0〜2.0の範囲で変化させた下層膜の膜厚と反射率の関係を示すグラフである。
【図3】下層膜屈折率n値が1.5固定で、n値を0.1〜1.0の範囲で変化させた下層膜の膜厚と反射率の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an underlayer film forming material effective as an antireflection film material used for microfabrication in a manufacturing process of a semiconductor element or the like, far ultraviolet rays using this, ArF excimer laser light (193 nm), F 2 Laser light (157 nm), Kr 2 Laser light (146 nm), Ar 2 The present invention relates to a resist pattern forming method suitable for laser light (126 nm) exposure.
[0002]
[Prior art]
In recent years, with the increasing integration and speed of LSIs, there is a need for finer pattern rules. In lithography using light exposure, which is currently used as a general-purpose technology, the essence derived from the wavelength of the light source The resolution limit is approaching.
[0003]
As a light source for lithography used in forming a resist pattern, light exposure using a mercury lamp g-line (436 nm) or i-line (365 nm) as a light source is widely used, and as a means for further miniaturization, A method of shortening the wavelength of exposure light has been considered effective. For this reason, a short wavelength KrF excimer laser (248 nm) was used as an exposure light source in place of the i-line (365 nm) in the mass production process of the 64-Mbit DRAM processing method. However, in order to manufacture a DRAM having a degree of integration of 1G or more, which requires a finer processing technique (processing dimension is 0.13 μm or less), a light source with a shorter wavelength is required, and in particular, an ArF excimer laser (193 nm) is used. Lithography has been studied.
[0004]
On the other hand, conventionally, it is known that a two-layer resist method is excellent for forming a pattern with a high aspect ratio on a stepped substrate, and further, a two-layer resist film is developed with a general alkaline developer. Requires a high molecular silicone compound having a hydrophilic group such as a hydroxy group or a carboxyl group.
[0005]
As the silicone-based chemically amplified positive resist material, a base resin in which a part of the phenolic hydroxyl group of polyhydroxybenzylsilsesquioxane, which is a stable alkali-soluble silicone polymer, is protected with a t-Boc group is used. There has been proposed a silicone-based chemically amplified positive resist material for KrF excimer laser, which is a combination of an acid generator and an acid generator (JP-A-7-118651, SPIE vol. 1925 (1993) p377, etc.). For ArF excimer lasers, positive resists based on silsesquioxane in which cyclohexyl carboxylic acid is substituted with an acid labile group have been proposed (Japanese Patent Laid-Open Nos. 10-324748 and 11-302382). No., SPIE vol. 3333-07 (1998) p62). In addition, F 2 For lasers, a positive resist based on silsesquioxane having hexafluoroisopropanol as a soluble group has been proposed (Japanese Patent Laid-Open No. 2002-55456). The polymer contains a polysilsesquioxane having a ladder skeleton formed by condensation polymerization of trialkoxysilane or trihalogenated silane in the main chain.
[0006]
A silicon-containing (meth) acrylic ester-based polymer has been proposed as a resist base polymer in which silicon is pendant to the side chain (Japanese Patent Laid-Open No. 9-110938, J. Photopolymer Sci. And Technol. Vol. 9 No. .3 (1996) p435-446).
[0007]
The lower layer film of the two-layer resist method is a hydrocarbon compound that can be etched with oxygen gas, and further serves as a mask when etching the underlying substrate, and therefore needs to have high etching resistance. In oxygen gas etching, it is necessary to be composed only of hydrocarbons that do not contain silicon atoms. In addition, in order to improve the line width controllability of the upper-layer silicon-containing resist and reduce pattern sidewall irregularities and pattern collapse due to standing waves, it also has a function as an antireflection film, specifically the lower layer It is necessary to suppress the reflectance from the film into the resist film to 1% or less.
[0008]
Here, when the underlying antireflection film for the single layer resist process is a highly reflective substrate such as polysilicon or aluminum, a material having an optimum refractive index (n value) and extinction coefficient (k value) is appropriately used. By setting the film thickness to a small value, reflection from the substrate can be reduced to 1% or less, and a very large effect can be exhibited. For example, at a wavelength of 193 nm, the refractive index of the resist is 1.7, the refractive index of the lower antireflection film (real part of refractive index) n = 1.5, and the extinction coefficient (imaginary part of refractive index) k = 0.5. When the film thickness is 42 nm, the reflectance is 0.5% or less (see FIG. 1). However, when there is a step on the base, the thickness of the antireflection film varies greatly on the step. The antireflection effect of the base uses not only the absorption of light but also the interference effect by setting the optimum film thickness, so the first base of 40 to 45 nm where the interference effect is strong also has a high antireflection effect. However, the reflectivity greatly varies depending on the film thickness. A material has been proposed in which the molecular weight of the base resin used for the antireflection film material is increased to suppress the film thickness fluctuation on the step and the conformality is improved (Japanese Patent Laid-Open No. 10-69072). If it is high, problems such as pinholes are likely to occur after spin coating, filtration cannot be performed, viscosity changes with time, film thickness changes, and crystals precipitate at the tip of the nozzle. In addition, the conformal property can be exhibited only at a step having a relatively low height.
[0009]
Next, in a method employing a film thickness of the third base or more (170 nm or more) in which the reflectance variation due to film thickness variation is relatively small, the k value is between 0.2 and 0.3 and the film thickness is 170 nm. If it is above, the fluctuation | variation of the reflectance with respect to the change of a film thickness is small, and also a reflectance can be restrained to 1.5% or less. However, considering the etching load of the upper layer resist, there is a limit to increasing the thickness of the antireflection film, and at most, increasing the thickness of the second bottom of about 100 nm or less is the limit.
[0010]
When the base of the antireflection film is a transparent film such as an oxide film or a nitride film, and there is a step under the transparent film, the film thickness of the transparent film is not limited even if the surface of the transparent film is flattened by CMP or the like. Fluctuates. In this case, it is possible to make the film thickness of the antireflection film thereover constant, but if the film thickness of the base transparent film of the antireflection film varies, the thickness of the minimum reflection film shifts by the film thickness of the transparent film. It will be. Even if the film thickness of the antireflection film is set to the minimum reflection film thickness when the base is a reflection film, the reflectance may increase due to the film thickness variation of the transparent film.
[0011]
Antireflection film materials can be broadly classified into inorganic and organic materials. An inorganic system is a SiON film. This is formed by CVD using a mixed gas of silane and ammonia, and has a large etching selection ratio with respect to the resist. Therefore, there is an advantage that the etching load on the resist is small. is there. Since it is a basic substrate containing nitrogen atoms, there is a disadvantage that it tends to have a footing in a positive resist and an undercut profile in a negative resist.
[0012]
Organic systems can be spin-coated, do not require special equipment such as CVD or sputtering, can be peeled off at the same time as the resist, do not cause tailing, have a straight shape, and have good adhesion to the resist. There is an advantage, and antireflection films based on many organic materials have been proposed. For example, a condensate of a diphenylamine derivative and a formaldehyde-modified melamine resin described in JP-B-7-69611, an alkali-soluble resin and a light-absorbing agent, or a maleic anhydride copolymer described in US Pat. No. 5,294,680 And a reaction product of a diamine type light absorber, a resin binder described in JP-A-6-186863 and a methylolmelamine-based thermal crosslinking agent, a carboxylic acid group, an epoxy group and a light-absorbing group described in JP-A-6-118656 A resin-based acrylic resin having the same molecular weight, consisting of methylol melamine and a benzophenone light absorber described in JP-A-8-87115, and adding a low-molecular light absorber to a polyvinyl alcohol resin described in JP-A-8-179509 And the like. All of these take the method of adding a light absorber to the binder polymer or introducing it into the polymer as a substituent. However, since many of the light-absorbing agents have aromatic groups or double bonds, the addition of the light-absorbing agent increases the dry etching resistance and has a drawback that the dry etching selectivity with the resist is not so high. As the miniaturization progresses and the thinning of the resist is accelerated, the resist resistance of etching is reduced because the next generation ArF exposure uses acrylic or alicyclic polymer as the resist material. To do. Further, as described above, there is a problem that the thickness of the antireflection film must be increased. For this reason, etching is a serious problem, and there is a demand for an antireflection film having a high etching selectivity with respect to a resist, that is, a high etching speed.
[0013]
On the other hand, the function required as an antireflection film in the lower layer film for the two-layer resist process is different from that of the single-layer resist. Since the lower layer film for the two-layer resist process serves as a mask when etching the substrate, it must have high etching resistance under the conditions of substrate etching. As an antireflection film in a single layer resist process, a high etching rate is required to lighten the load on the single layer resist, whereas the reverse characteristics are required. Further, in order to ensure sufficient substrate etching resistance, the thickness of the lower layer film must be increased to 300 nm or more, which is equal to or higher than that of the single layer resist. When the film thickness is 300 nm or more, the change in reflectance due to the change in film thickness almost converges, and the antireflection effect by phase difference control cannot be expected.
[0014]
Here, the results of calculating the reflectance up to a maximum film thickness of 500 nm are shown in FIGS. Assuming that the exposure wavelength is 193 nm, the n value of the upper layer resist is 1.74, and the k value is 0.02, the k value of the lower layer film is fixed at 0.3 in FIG. -2.0, the horizontal axis represents the substrate reflectance when the film thickness is varied in the range of 0 to 500 nm. Assuming a lower layer film for a two-layer resist having a film thickness of 300 nm or more, the reflectance can be reduced to 1% or less in the range of 1.6 to 1.9, which is the same as or slightly higher than the upper layer resist. An optimal value exists.
[0015]
FIG. 3 shows the reflectance when the n value is fixed to 1.5 and the k value is varied in the range of 0.1 to 0.8. The reflectance can be reduced to 1% or less when the k value is in the range of 0.24 to 0.15. On the other hand, the optimum k value of the antireflection film for a single layer resist used in a thin film of about 40 nm is 0.4 to 0.5, which is different from the optimum k value of the lower layer for a two layer resist of 300 nm or more. It has been shown that a lower layer for a two-layer resist requires a lower k value, that is, a higher transparent lower layer film.
[0016]
Here, as an underlayer film forming material for 193 nm, SPIE Vol. Copolymers of polyhydroxystyrene and acrylic have been studied as introduced in 4345p50 (2001). Polyhydroxystyrene has a very strong absorption at 193 nm, and the k value alone is a high value of around 0.6. Therefore, the k value is adjusted to around 0.25 by copolymerizing with acrylic whose k value is almost zero.
[0017]
However, with respect to polyhydroxystyrene, the etching resistance of acrylic on the substrate etching is weak, and in order to lower the k value, a considerable proportion of acrylic must be copolymerized, resulting in a considerable decrease in the resistance of substrate etching. To do. The resistance to etching appears not only in the etching rate but also in the occurrence of surface roughness after etching. The increase in surface roughness after etching becomes more prominent as a result of acrylic copolymerization.
[0018]
One of the ones having higher transparency at 193 nm and higher etching resistance than a benzene ring is a naphthalene ring. JP-A-2002-14474 proposes a lower layer film having a naphthalene ring and an anthracene ring. However, the k value of naphthol co-condensed novolak resin and polyvinyl naphthalene resin is between 0.3 and 0.4, and the target transparency of 0.1 to 0.3 has not been achieved. I have to raise it. Further, the n value at 193 nm of the naphthol co-condensed novolak resin and the polyvinyl naphthalene resin is low, and as a result of measurement by the present inventors, it is 1.4 for the naphthol co-condensed novolak resin and 1.2 for the polyvinyl naphthalene resin. . Also in the acenaphthylene polymer shown by Unexamined-Japanese-Patent No. 2001-40293 and 2002-214777, the n value in 193 nm is low compared with wavelength 248 nm, k value is high, and both have not reached the target value. There is a need for a lower layer film that has a high n value, a low k value, is transparent and has high etching resistance.
[0019]
Here, JP-A-6-202317, JP-A-8-179502, JP-A-8-220750, JP-A-8-292565, and JP-A-9-15855 disclose i based on a co-condensation polymer of cresol and dicyclopentadiene. A line resist was shown, and copolymerization with dicyclopentadiene as a more transparent novolak resin was studied. Japanese Patent Application Laid-Open No. 10-282666 proposes a curable resin in which a glycidyl group is pendant on a co-condensation polymer of resole and dicyclopentadiene. On the other hand, JP-A-6-80760 and 7-5302 propose resist compositions obtained by condensing naphthol with aldehyde.
[Patent Document 1]
JP-A-7-118651
[Patent Document 2]
Japanese Patent Laid-Open No. 10-324748
[Patent Document 3]
JP-A-11-302382
[Patent Document 4]
JP 2002-55456 A
[Patent Document 5]
JP-A-9-110938
[Patent Document 6]
Japanese Patent Laid-Open No. 10-69072
[Patent Document 7]
Japanese Patent Publication No. 7-69611
[Patent Document 8]
US Pat. No. 5,294,680
[Patent Document 9]
Japanese Patent Laid-Open No. 6-118631
[Patent Document 10]
JP-A-6-118656
[Patent Document 11]
JP-A-8-87115
[Patent Document 12]
JP-A-8-179509
[Patent Document 13]
JP 2002-14474 A
[Patent Document 14]
JP 2001-40293 A
[Patent Document 15]
JP 2002-214777 A
[Patent Document 16]
JP-A-6-202317
[Patent Document 17]
JP-A-8-179502
[Patent Document 18]
JP-A-8-220750
[Patent Document 19]
JP-A-8-292565
[Patent Document 20]
Japanese Patent Laid-Open No. 9-15855
[Patent Document 21]
Japanese Patent Laid-Open No. 10-282666
[Patent Document 22]
JP-A-6-80760
[Patent Document 23]
Japanese Patent Laid-Open No. 7-5302
[Non-Patent Document 1]
SPIE vol. 1925 (1993) p377
[Non-Patent Document 2]
SPIE vol. 3333-07 (1998) p62
[Non-Patent Document 3]
J. et al. Photopolymer Sci. and Technol. Vol. 9 No. 3 (1996) p435-446
[Non-Patent Document 4]
SPIE Vol. 4345 p50 (2001)
[0020]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that it functions as an excellent antireflection film, particularly as a lower layer film for a silicon-containing two-layer resist process, and is more transparent than polyhydroxystyrene, cresol novolak, naphthol novolak, etc. An underlayer film forming material having a high n value and a k value, and having excellent etching resistance in substrate processing, and a pattern forming method are provided.
[0021]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that a co-condensate of a naphthol derivative and dicyclopentadiene has an optimum n value and k value at 193 nm, and also has an etching resistance. The inventors have found that this is a promising material as an excellent lower layer film for a silicon-containing two-layer resist process, and have made the present invention.
[0022]
That is, the present invention is a novel underlayer film applicable to a silicon-containing bilayer process, particularly an anti-reflective effect having a film thickness of 200 nm or more at a wavelength of 193 nm and an etching resistance, and a naphthol derivative and dicyclopentadiene. A material based on a co-condensed novolac resin is proposed. This material can suppress substrate reflection at a film thickness of 200 nm or more by having an optimum n value and k value, and can be used under the conditions of substrate etching. It is characterized by excellent etching resistance.
[0023]
Accordingly, the present invention provides the following pattern forming method and a lower layer film forming material used therefor.
Claim 1:
A photoresist underlayer film containing a co-condensate of a naphthol derivative and dicyclopentadiene is applied as an antireflection film on the substrate to be processed, and a layer of the photoresist composition is applied over the underlayer film to form a pattern circuit region. A pattern forming method comprising irradiating radiation, developing with a developing solution to form a resist pattern, and processing a lower layer film layer and a substrate to be processed using a photoresist layer as a mask with a dry etching apparatus. Claim 2:
The pattern forming method according to claim 1, wherein the photoresist composition includes a silicon atom-containing polymer, and the dry etching for processing the lower layer film using the photoresist layer as a mask is performed using an etching gas mainly containing oxygen gas.
Claim 3:
The pattern forming method according to claim 2, wherein after the oxygen gas etching, the processed substrate processing using the lower layer film as a mask is performed by dry etching.
Claim 4:
A photoresist underlayer film forming material used in the pattern forming method according to claim 1, wherein a co-condensate of a naphthol derivative and dicyclopentadiene is represented by the following general formula (1) or (2): A material for forming an underlayer film.
[Chemical 2]
Figure 0003981825
(Wherein R 1 ~ R 8 Are independently of each other a hydrogen atom, a hydroxyl group, a C 1-6 substituted alkyl group, a C 1-6 substituted alkoxy group, a C 2-6 substituted alkoxy carboxyl group, and a C 6-10 substitution. It is an aryl group, a C1-C6 hydroxyalkyl group, an isocyanate group, or a glycidyl group. m and n are positive integers. )
Claim 5:
Furthermore, the lower layer film forming material of Claim 4 containing an organic solvent, a crosslinking agent, and an acid generator.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
In the pattern forming method of the present invention, a photoresist underlayer film containing a co-condensate of a naphthol derivative and dicyclopentadiene is applied on a substrate as an antireflection film, and a layer of the photoresist composition is applied on the underlayer film. Then, the pattern circuit region is irradiated with radiation, developed with a developing solution to form a resist pattern, and the lower layer film layer and the substrate are processed using the photoresist layer as a mask with a dry etching apparatus. Underlayer film forming material
(A) Base polymer comprising a cocondensate of a naphthol derivative and dicyclopentadiene
Is an essential component, preferably
(B) an organic solvent,
(C) a crosslinking agent,
(D) Acid generator
Is included.
[0025]
Here, as a co-condensate of the naphthol derivative of component (A) and dicyclopentadiene, those represented by the following general formula (1) or (2) are preferable.
[Chemical 3]
Figure 0003981825
[0026]
In the above formula, R 1 ~ R 8 Are independently of each other a hydrogen atom, a hydroxyl group, a C 1-6 substituted alkyl group, a C 1-6 substituted alkoxy group, a C 2-6 substituted alkoxy carboxyl group, and a C 6-10 substitution. It is an aryl group, a C1-C6 hydroxyalkyl group, an isocyanate group, or a glycidyl group. m and n are positive integers.
[0027]
Here, the naphthol derivatives for obtaining the repeating units listed in the general formulas (1) and (2) are 1-naphthol, 2-naphthol, 2-methyl-1-naphthol, 4-methoxy-1-naphthol, 7 Examples include -methoxy-2-naphthol and 1,5-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, dihydroxynaphthalene such as 2,6-dihydroxynaphthalene, and methyl 3-hydroxy-naphthalene-2-carboxylate. Dicyclopentadiene is a dimer of cyclopentadiene, and there are two isomers, an endo isomer and an exo isomer, but dicyclopentadiene that is a raw material for the resin used in the present invention is any isomer. It may also be a mixture of two isomers. When a mixture of isomers is used, the ratio of isomers is not particularly limited.
[0028]
The repeating units listed in the general formulas (1) and (2) can be obtained by addition reaction of dicyclopentadiene and naphthols in the presence of an acid catalyst. The acid catalyst used in the reaction is an ethanol complex of boron trifluoride, a Lewis acid such as aluminum chloride, an inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid, methanesulfonic acid, n-butanesulfonic acid, benzenesulfonic acid, p-toluenesulfone. Super strong acids such as acids, m-xylene sulfonic acid, p-xylene sulfonic acid, sulfonic acid such as mesitylene sulfonic acid, perfluorosulfonic acid such as trifluoromethane sulfonic acid, nonafluoromethane sulfonic acid, pentafluorobenzene sulfonic acid And perfluoroalkyl polymers having terminal sulfonic acid groups such as Nafion, anion exchange resins such as polystyrene having sulfonic acid residues, and the like. In particular, methanesulfonic acid, tosylic acid, and trifluoromethanesulfonic acid are preferable, and the amount used is 0.01 to 10% by weight, preferably 0.05 to 5% by weight, based on the raw material in the case of methanesulfonic acid. In the case of trifluoromethanesulfonic acid, it is in the range of 0.0001 to 5% by weight, preferably 0.0005 to 1% by weight.
[0029]
The ratio of naphthol to dicyclopentadiene is 0.1 to 2.0 mol, preferably 0.2 to 1.8 mol, of dicyclopentadiene with respect to 1 mol of naphthol.
[0030]
The present invention is characterized in that a polymer obtained by cocondensation of a naphthol derivative and dicyclopentadiene is applied as an underlayer film, and phenols can also be cocondensed. Examples of phenols mentioned here include phenol, o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,5-dimethylphenol, 3,4-dimethylphenol, and 3,5-dimethylphenol. 2,4-dimethylphenol, 2,6-dimethylphenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol, 2-t-butylphenol, 3-t-butylphenol, 4-t-butylphenol , Resorcinol, 2-methylresorcinol, 4-methylresorcinol, 5-methylresorcinol, catechol, 4-t-butylcatechol, 2-methoxyphenol, 3-methoxyphenol, 2-propylphenol, 3-propylphenol, 4-propyl Phenol, 2 Isopropyl phenol, 3-isopropyl phenol, 4-isopropyl phenol, 2-methoxy-5-methylphenol, 2-t-butyl-5-methylphenol, it may be mentioned pyrogallol, thymol, the Isochimoru like. In addition, examples of the monomer that can be co-condensed with naphthol include indene, hydroxyanthracene, acenaphthylene, biphenyl, and the like, and a ternary or higher copolymer including these may be used.
[0031]
The proportion of the phenol units to be co-condensed is preferably 60 mol% or less, particularly preferably 0 to 50 mol% of the base polymer containing the co-condensate of naphthol derivative and dicyclopentadiene.
[0032]
The reaction is classified into a first stage in which dicyclopentadiene undergoes an addition reaction with a hydroxyl group of naphthol and etherifies, and a second stage in which the ether form forms a naphthol resin by a transfer reaction. The reaction temperature is in the range of 20 to 200 ° C, preferably 40 to 160 ° C. After completion of the reaction, the unreacted naphthol compound can be distilled off by an arbitrary method to obtain a naphthol-dicyclopentadiene resin. However, when used for the purpose of the present invention, it is desirable to introduce a washing step. The cleaning method may be any method. For example, an alkali metal hydroxide is used to remove components that are insoluble in water as an alkali metal salt, aromatic hydrocarbons such as toluene and xylene, and methyl ethyl ketone. , Washing with water using an organic solvent such as ketones such as methyl isobutyl ketone, higher alcohols such as amyl alcohol, isoamyl alcohol, heptanol, 2-heptanol, octanol and isooctanol, and washing with dilute hydrochloric acid using the above organic solvent And a method of treating with an adsorbent such as silica gel, alumina and activated carbon using a solvent such as 1,2-dichloroethane, chloroform, methyl cellosolve, ethyl cellosolve, dimethylformamide and dimethylacetamide. It is desirable to reduce impurities such as gel components, acidic components, and metal ions as much as possible by any of these methods, or a combination of these methods.
[0033]
The weight average molecular weight is preferably in the range of 1,500 to 200,000, more preferably in the range of 2,000 to 10,000. The molecular weight distribution is not particularly limited, and low molecular weight and high molecular weight substances can be removed by fractionation to reduce the degree of dispersion. Two or more naphthol-dicyclopentadiene resins having different molecular weights and degrees of dispersion can be used. Two or more naphthol-dicyclopentadiene resins having different composition ratios may be mixed or mixed.
[0034]
In order to further improve the transparency of the naphthol-dicyclopentadiene copolymer resin of the present invention, hydrogenation can be performed. A preferable hydrogenation ratio is 50 mol% or less of an aromatic group such as naphthol.
[0035]
The base resin for the lower layer film-forming material of the present invention is characterized by containing a naphthol-dicyclopentadiene resin, but can also be blended with conventional polymers mentioned as the above-mentioned antireflection film material. Naphthol-dicyclopentadiene resin has a glass transition point of 150 ° C. or higher, and the naphthol-dicyclopentadiene resin alone may have poor deep hole filling characteristics such as via holes. In order to embed holes without generation of voids, a method is used in which a polymer having a low glass transition point is used, and resin is embedded to the bottom of the holes while heat-flowing at a temperature lower than the crosslinking temperature (Japanese Patent Laid-Open No. 2000-294504). Publication). Polymers having a low glass transition point, especially polymers having a glass transition point of 180 ° C. or lower, particularly 100 to 170 ° C., such as acrylic derivatives, vinyl alcohol, vinyl ethers, allyl ethers, styrene derivatives, allylbenzene derivatives, ethylene, propylene, butadiene By blending with olefins such as the above, polymers by metathesis ring-opening polymerization, etc., the glass transition point can be lowered, and the via hole filling properties can be improved.
[0036]
In this case, the blend ratio of the co-condensate of naphthol derivative and dicyclopentadiene and the polymer having the low glass transition point is 1: 0.1 to 1:10, particularly 1: 0.2 as a weight ratio. ~ 1: 5 is preferred.
[0037]
As another method for lowering the glass transition point, a hydroxyl group of a hydroxy group of a naphthol dicyclopentadiene novolak resin is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a t-butyl group, t -The method of substituting with acid labile groups, such as an amyl group and an acetal, an acetyl group, a pivaloyl group, etc. can be mentioned.
The substitution rate at this time is in the range of 10 to 60 mol%, preferably 15 to 50 mol% of the hydroxyl group of the naphthol dicyclopentadiene novolak resin.
[0038]
One of the performances required for the lower layer film including the antireflection film is that there is no intermixing with the resist and there is no diffusion of low molecular components to the resist layer [Proc. SPIE Vol. 2195, p225-229 (1994)]. In order to prevent these problems, a method is generally employed in which thermal crosslinking is performed by baking after spin coating of the antireflection film. Therefore, when a crosslinking agent is added as a component of the antireflection film material, a method of introducing a crosslinkable substituent into the polymer may be used.
[0039]
Specific examples of the crosslinking agent that can be used in the present invention include a melamine compound, a guanamine compound, a glycoluril compound, or a urea compound substituted with at least one group selected from a methylol group, an alkoxymethyl group, and an acyloxymethyl group. Examples of the compound include a double bond such as an epoxy compound, a thioepoxy compound, an isocyanate compound, an azide compound, and an alkenyl ether group. These may be used as additives, but may be introduced as pendant groups in the polymer side chain. A compound containing a hydroxy group is also used as a crosslinking agent.
[0040]
Examples of the epoxy compound among the various compounds include tris (2,3-epoxypropyl) isocyanurate, trimethylolmethane triglycidyl ether, trimethylolpropane triglycidyl ether, triethylolethane triglycidyl ether and the like. Specific examples of the melamine compound include hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, and a mixture thereof, hexamethoxyethyl melamine, hexaacyloxymethyl melamine, Examples thereof include compounds in which 1 to 6 methylol groups of hexamethylolmelamine are acyloxymethylated, or a mixture thereof. Examples of the guanamine compound include tetramethylolguanamine, tetramethoxymethylguanamine, a compound in which 1 to 4 methylol groups of tetramethylolguanamine are methoxymethylated, and a mixture thereof, tetramethoxyethylguanamine, tetraacyloxyguanamine, and tetramethylolguanamine. Examples include compounds in which 4 methylol groups are acyloxymethylated and mixtures thereof. Examples of the glycoluril compound include tetramethylol glycoluril, tetramethoxyglycoluril, tetramethoxymethylglycoluril, a compound in which 1 to 4 of the methylol groups of tetramethylolglycoluril are methoxymethylated, or a mixture thereof, tetramethylolglycoluril Or a mixture thereof in which 1 to 4 of the methylol groups are acyloxymethylated. Examples of the urea compound include tetramethylol urea, tetramethoxymethyl urea, a compound in which 1 to 4 methylol groups of tetramethylol urea are methoxymethylated, or a mixture thereof, tetramethoxyethyl urea, and the like.
[0041]
Examples of the compound containing an alkenyl ether group include ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether, neopentyl glycol divinyl ether, Examples include trimethylolpropane trivinyl ether, hexanediol divinyl ether, 1,4-cyclohexanediol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, and trimethylolpropane trivinyl ether.
[0042]
When the hydroxy group of the naphthol-dicyclopentadiene resin of the general formula (1) or (2) is substituted with a glycidyl group, it is effective to add a compound containing a hydroxy group. Particularly preferred are compounds containing two or more hydroxy groups in the molecule. For example, naphthol novolak, m- and p-cresol novolak, naphthol-dicyclopentadiene novolak, m- and p-cresol-dicyclopentadiene novolak, 4,8-bis (hydroxymethyl) tricyclo [5.2.1.0. 2,6 ] -Decane, pentaerythritol, 1,2,6-hexanetriol, 4,4 ′, 4 ″ -methylidenetriscyclohexanol, 4,4 ′-[1- [4- [1- (4-hydroxycyclohexyl) ) -1-methylethyl] phenyl] ethylidene] biscyclohexanol, [1,1′-bicyclohexyl] -4,4′-diol, methylenebiscyclohexanol, decahydronaphthalene-2,6-diol, [1, Alcohol group-containing compounds such as 1′-bicyclohexyl] -3,3 ′, 4,4′-tetrahydroxy, bisphenol, methylenebisphenol, 2,2′-methylenebis [4-methylphenol], 4,4′-methylidene -Bis [2,6-dimethylphenol], 4,4 '-(1-methyl-ethylidene) bis [2-methylphenol], 4 4′-cyclohexylidenebisphenol, 4,4 ′-(1,3-dimethylbutylidene) bisphenol, 4,4 ′-(1-methylethylidene) bis [2,6-dimethylphenol], 4,4 ′ -Oxybisphenol, 4,4'-methylenebisphenol, bis (4-hydroxyphenyl) methanone, 4,4'-methylenebis [2-methylphenol], 4,4 '-[1,4-phenylenebis (1-methyl) Ethylidene)] bisphenol, 4,4 ′-(1,2-ethanediyl) bisphenol, 4,4 ′-(diethylsilylene) bisphenol, 4,4 ′-[2,2,2-trifluoro-1- (trifluoro Methyl) ethylidene] bisphenol, 4,4 ′, 4 ″ -methylidenetrisphenol, 4,4 ′-[1- (4-hydroxyphenyl) -1-methyl Ruethyl] phenyl] ethylidene] bisphenol, 2,6-bis [(2-hydroxy-5-methylphenyl) methyl] -4-methylphenol, 4,4 ′, 4 ″ -ethylidinetris [2-methylphenol] 4,4 ′, 4 ″ -ethylidene trisphenol, 4,6-bis [(4-hydroxyphenyl) methyl] 1,3-benzenediol, 4,4 ′-[(3,4-dihydroxyphenyl) Methylene] bis [2-methylphenol], 4,4 ′, 4 ″, 4 ′ ″-(1,2-ethanediylidene) tetrakisphenol, 4,4 ′, 4 ″, 4 ′ ″-ethanediylidene) Tetrakis [2-methylphenol], 2,2′-methylenebis [6-[(2-hydroxy-5-methylphenyl) methyl] -4-methylphenol], 4,4 ′, 4 ″, 4 ′ ″ -(1,4-Fe Rangemethylidyne) tetrakisphenol, 2,4,6-tris (4-hydroxyphenylmethyl) 1,3-benzenediol, 2,4 ′, 4 ″ -methylidenetrisphenol, 4,4 ′, 4 ″ '-(3-Methyl-1-propanyl-3-ylidene) trisphenol, 2,6-bis [(4-hydroxy-3-fluorophenyl) methyl] -4-fluorophenol, 2,6-bis [4- Hydroxy-3-fluorophenyl] methyl] -4-fluorophenol, 3,6-bis “(3,5-dimethyl-4-hydroxyphenyl) methyl” 1,2-benzenediol, 4,6-bis “(3 , 5-dimethyl-4-hydroxyphenyl) methyl "1,3-benzenediol, p-methylcalix [4] arene, 2,2'-methylenebis [6-[(2,5 / 3 6-dimethyl-4 / 2-hydroxyphenyl) methyl] -4-methylphenol, 2,2′-methylenebis [6-[(3,5-dimethyl-4-hydroxyphenyl) methyl] -4-methylphenol, 4 , 4 ′, 4 ″, 4 ′ ″-tetrakis [(1-methylethylidene) bis (1,4-cyclohexylidene)] phenol, 6,6′-methylenebis [4- (4-hydroxyphenylmethyl) -1,2,3-benzenetriol, 3,3 ′, 5,5′-tetrakis [(5-methyl-2-hydroxyphenyl) methyl]-[(1,1′-biphenyl) -4,4′- Diol] and the like.
[0043]
The blending amount of the crosslinking agent in the present invention is preferably 5 to 50 parts, particularly preferably 10 to 40 parts, relative to 100 parts (parts by weight, hereinafter the same) of the base polymer (total resin). If it is less than 5 parts, it may cause mixing with the resist. If it exceeds 50 parts, the antireflection effect may be reduced, or cracks may occur in the crosslinked film.
[0044]
In the present invention, an acid generator for further promoting the crosslinking reaction by heat can be added. There are acid generators that generate an acid by thermal decomposition and those that generate an acid by light irradiation, and any of them can be added.
[0045]
As the acid generator used in the present invention,
i. An onium salt of the following general formula (P1a-1), (P1a-2), (P1a-3) or (P1b),
ii. A diazomethane derivative of the following general formula (P2):
iii. A glyoxime derivative of the following general formula (P3):
iv. A bissulfone derivative of the following general formula (P4):
v. A sulfonic acid ester of an N-hydroxyimide compound of the following general formula (P5),
vi. β-ketosulfonic acid derivatives,
vii. Disulfone derivatives,
viii. Nitrobenzyl sulfonate derivatives,
ix. Sulfonic acid ester derivatives
Etc.
[0046]
[Formula 4]
Figure 0003981825
(Wherein R 101a , R 101b , R 101c Are each a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, an alkenyl group, an oxoalkyl group or an oxoalkenyl group, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms, or An aryloxoalkyl group is shown, and part or all of the hydrogen atoms of these groups may be substituted with an alkoxy group or the like. R 101b And R 101c May form a ring, and in the case of forming a ring, R 101b , R 101c Each represents an alkylene group having 1 to 6 carbon atoms. K - Represents a non-nucleophilic counter ion. R 101d , R 101e , R 101f , R 101g Is R 101a , R 101b , R 101c Shown by adding a hydrogen atom to R 101d And R 101e , R 101d And R 101e And R 101f May form a ring, and in the case of forming a ring, R 101d And R 101e And R 101d And R 101e And R 101f Represents an alkylene group having 3 to 10 carbon atoms. )
[0047]
R above 101a , R 101b , R 101c , R 101d , R 101e , R 101f , R 101g May be the same as or different from each other. Specifically, as an alkyl group, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group Hexyl group, heptyl group, octyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopropylmethyl group, 4-methylcyclohexyl group, cyclohexylmethyl group, norbornyl group, adamantyl group and the like. Examples of the alkenyl group include a vinyl group, an allyl group, a propenyl group, a butenyl group, a hexenyl group, and a cyclohexenyl group. Examples of the oxoalkyl group include 2-oxocyclopentyl group, 2-oxocyclohexyl group, and the like. 2-oxopropyl group, 2-cyclopentyl-2-oxoethyl group, 2-cyclohexyl-2-oxoethyl group, 2- (4 -Methylcyclohexyl) -2-oxoethyl group and the like can be mentioned. Examples of the aryl group include phenyl group, naphthyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group, m-tert-butoxyphenyl group. Alkylphenyl groups such as alkoxyphenyl groups, 2-methylphenyl groups, 3-methylphenyl groups, 4-methylphenyl groups, ethylphenyl groups, 4-tert-butylphenyl groups, 4-butylphenyl groups, dimethylphenyl groups, etc. Alkyl naphthyl groups such as methyl naphthyl group and ethyl naphthyl group, alkoxy naphthyl groups such as methoxy naphthyl group and ethoxy naphthyl group, dialkyl naphthyl groups such as dimethyl naphthyl group and diethyl naphthyl group, dimethoxy naphthyl group and diethoxy naphthyl group Dialkoxynaphthyl group And the like. Examples of the aralkyl group include a benzyl group, a phenylethyl group, and a phenethyl group. As the aryloxoalkyl group, 2-aryl-2-oxoethyl group such as 2-phenyl-2-oxoethyl group, 2- (1-naphthyl) -2-oxoethyl group, 2- (2-naphthyl) -2-oxoethyl group, etc. Groups and the like. K - Examples of non-nucleophilic counter ions include halide ions such as chloride ions and bromide ions, triflate, fluoroalkyl sulfonates such as 1,1,1-trifluoroethanesulfonate, and nonafluorobutanesulfonate, tosylate, and benzenesulfonate. -Aryl sulfonates such as fluorobenzene sulfonate and 1,2,3,4,5-pentafluorobenzene sulfonate, and alkyl sulfonates such as mesylate and butane sulfonate.
[0048]
(P1a-1) and (P1a-2) have the effects of both a photoacid generator and a thermal acid generator, while (P1a-3) acts as a thermal acid generator.
[0049]
[Chemical formula 5]
Figure 0003981825
(Wherein R 102a , R 102b Each represents a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms. R 103 Represents a linear, branched or cyclic alkylene group having 1 to 10 carbon atoms. R 104a , R 104b Each represents a 2-oxoalkyl group having 3 to 7 carbon atoms. K - Represents a non-nucleophilic counter ion. )
[0050]
R above 102a , R 102b Specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, cyclopentyl group, cyclohexyl group , Cyclopropylmethyl group, 4-methylcyclohexyl group, cyclohexylmethyl group and the like. R 103 As methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, 1,4-cyclohexylene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, 1,4-cyclooctylene group, 1,4-cyclohexanedimethylene group and the like can be mentioned. R 104a , R 104b Examples thereof include 2-oxopropyl group, 2-oxocyclopentyl group, 2-oxocyclohexyl group, 2-oxocycloheptyl group and the like. K - Can be the same as those described in formulas (P1a-1), (P1a-2) and (P1a-3).
[0051]
[Chemical 6]
Figure 0003981825
(Wherein R 105 , R 106 Represents a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, an aryl group or halogenated aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms. )
[0052]
R 105 , R 106 As the alkyl group, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, amyl group, cyclopentyl group, Examples include a cyclohexyl group, a cycloheptyl group, a norbornyl group, an adamantyl group, and the like. Examples of the halogenated alkyl group include a trifluoromethyl group, a 1,1,1-trifluoroethyl group, a 1,1,1-trichloroethyl group, and a nonafluorobutyl group. As the aryl group, an alkoxyphenyl group such as a phenyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group, m-tert-butoxyphenyl group, Examples thereof include alkylphenyl groups such as 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, and dimethylphenyl group. Examples of the halogenated aryl group include a fluorophenyl group, a chlorophenyl group, and 1,2,3,4,5-pentafluorophenyl group. Examples of the aralkyl group include a benzyl group and a phenethyl group.
[0053]
[Chemical 7]
Figure 0003981825
(Wherein R 107 , R 108 , R 109 Represents a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, an aryl group or halogenated aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms. R 108 , R 109 May be bonded to each other to form a cyclic structure. 108 , R 109 Each represents a linear or branched alkylene group having 1 to 6 carbon atoms. )
[0054]
R 107 , R 108 , R 109 As the alkyl group, halogenated alkyl group, aryl group, halogenated aryl group and aralkyl group, 105 , R 106 And the same groups as described above. R 108 , R 109 Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, and a hexylene group.
[0055]
[Chemical 8]
Figure 0003981825
(Wherein R 101a , R 101b Is the same as above. )
[0056]
[Chemical 9]
Figure 0003981825
(Wherein R 110 Represents an arylene group having 6 to 10 carbon atoms, an alkylene group having 1 to 6 carbon atoms, or an alkenylene group having 2 to 6 carbon atoms, and part or all of the hydrogen atoms of these groups are further directly bonded to 1 to 4 carbon atoms. It may be substituted with a chain or branched alkyl group or alkoxy group, a nitro group, an acetyl group, or a phenyl group. R 111 Represents a linear, branched or substituted alkyl group, alkenyl group, alkoxyalkyl group, phenyl group, or naphthyl group having 1 to 8 carbon atoms, and some or all of the hydrogen atoms of these groups further have carbon atoms. An alkyl group or an alkoxy group having 1 to 4 carbon atoms; a phenyl group optionally substituted by an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a nitro group, or an acetyl group; a heteroaromatic group having 3 to 5 carbon atoms; or chlorine It may be substituted with an atom or a fluorine atom. )
[0057]
Where R 110 As the arylene group, 1,2-phenylene group, 1,8-naphthylene group, etc., and as the alkylene group, methylene group, ethylene group, trimethylene group, tetramethylene group, phenylethylene group, norbornane-2,3- Examples of the alkenylene group such as a diyl group include a 1,2-vinylene group, a 1-phenyl-1,2-vinylene group, and a 5-norbornene-2,3-diyl group. R 111 As the alkyl group, R 101a ~ R 101c As the alkenyl group, vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 3-butenyl group, isoprenyl group, 1-pentenyl group, 3-pentenyl group, 4-pentenyl group, A dimethylallyl group, a 1-hexenyl group, a 3-hexenyl group, a 5-hexenyl group, a 1-heptenyl group, a 3-heptenyl group, a 6-heptenyl group, a 7-octenyl group, , Ethoxymethyl group, propoxymethyl group, butoxymethyl group, pentyloxymethyl group, hexyloxymethyl group, heptyloxymethyl group, methoxyethyl group, ethoxyethyl group, propoxyethyl group, butoxyethyl group, pentyloxyethyl group, Hexyloxyethyl group, methoxypropyl group, ethoxypropyl group, propoxyp Propyl group, butoxy propyl group, methoxybutyl group, ethoxybutyl group, propoxybutyl group, a methoxy pentyl group, an ethoxy pentyl group, a methoxy hexyl group, a methoxy heptyl group.
[0058]
In addition, examples of the optionally substituted alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group. As the alkoxy group of ˜4, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a tert-butoxy group and the like are an alkyl group having 1 to 4 carbon atoms, an alkoxy group, and a nitro group. As the phenyl group which may be substituted with an acetyl group, a phenyl group, a tolyl group, a p-tert-butoxyphenyl group, a p-acetylphenyl group, a p-nitrophenyl group, etc. are heterocycles having 3 to 5 carbon atoms. Examples of the aromatic group include a pyridyl group and a furyl group.
[0059]
Specifically, for example, tetramethylammonium trifluoromethanesulfonate, tetramethylammonium nonafluorobutanesulfonate, tetra-n-butylammonium nonafluorobutanesulfonate, tetraphenylammonium nonafluorobutanesulfonate, tetramethyl p-toluenesulfonate Ammonium, trifluoromethanesulfonic acid diphenyliodonium, trifluoromethanesulfonic acid (p-tert-butoxyphenyl) phenyliodonium, p-toluenesulfonic acid diphenyliodonium, p-toluenesulfonic acid (p-tert-butoxyphenyl) phenyliodonium, trifluoromethane Triphenylsulfonium sulfonate, trifluoromethanesulfonic acid (p-tert-butoxyphenyl) di Enylsulfonium, bis (p-tert-butoxyphenyl) phenylsulfonium trifluoromethanesulfonate, tris (p-tert-butoxyphenyl) sulfonium trifluoromethanesulfonate, triphenylsulfonium p-toluenesulfonate, p-toluenesulfonic acid (p -Tert-butoxyphenyl) diphenylsulfonium, bis (p-tert-butoxyphenyl) phenylsulfonium p-toluenesulfonate, tris (p-tert-butoxyphenyl) sulfonium p-toluenesulfonate, triphenylsulfonium nonafluorobutanesulfonate , Triphenylsulfonium butanesulfonate, trimethylsulfonium trifluoromethanesulfonate, trimethylsulfonium p-toluenesulfonate Cyclohexylmethyl trifluoromethanesulfonate (2-oxocyclohexyl) sulfonium, p-toluenesulfonate cyclohexylmethyl (2-oxocyclohexyl) sulfonium, trifluoromethanesulfonate dimethylphenylsulfonium, p-toluenesulfonate dimethylphenylsulfonium, trifluoromethane Dicyclohexylphenylsulfonium sulfonate, dicyclohexylphenylsulfonium p-toluenesulfonate, trinaphthylsulfonium trifluoromethanesulfonate, cyclohexylmethyl (2-oxocyclohexyl) sulfonium trifluoromethanesulfonate, (2-norbornyl) methyl trifluoromethanesulfonate (2- Oxocyclohexyl) sulfonium, ethylenebis [ Onium salts such as methyl (2-oxocyclopentyl) sulfonium trifluoromethanesulfonate], 1,2'-naphthylcarbonylmethyltetrahydrothiophenium triflate.
[0060]
Bis (benzenesulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (xylenesulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (cyclopentylsulfonyl) diazomethane, bis (n-butylsulfonyl) diazomethane, bis (isobutylsulfonyl) ) Diazomethane, bis (sec-butylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, bis (tert-butylsulfonyl) diazomethane, bis (n-amylsulfonyl) diazomethane, bis (isoamylsulfonyl) ) Diazomethane, bis (sec-amylsulfonyl) diazomethane, bis (tert-amylsulfonyl) diazomethane, B hexylsulfonyl-1-(tert-butylsulfonyl) diazomethane, 1-cyclohexyl sulfonyl-1-(tert-amylsulfonyl) diazomethane, 1-tert-amylsulfonyl-1-(tert-butylsulfonyl) diazomethane derivatives such as diazomethane.
[0061]
Bis-O- (p-toluenesulfonyl) -α-dimethylglyoxime, bis-O- (p-toluenesulfonyl) -α-diphenylglyoxime, bis-O- (p-toluenesulfonyl) -α-dicyclohexylglyoxime Bis-O- (p-toluenesulfonyl) -2,3-pentanedione glyoxime, bis-O- (p-toluenesulfonyl) -2-methyl-3,4-pentanedione glyoxime, bis-O- ( n-butanesulfonyl) -α-dimethylglyoxime, bis-O- (n-butanesulfonyl) -α-diphenylglyoxime, bis-O- (n-butanesulfonyl) -α-dicyclohexylglyoxime, bis-O— (N-butanesulfonyl) -2,3-pentanedione glyoxime, bis-O- (n-butanesulfonyl) -2- Til-3,4-pentanedione glyoxime, bis-O- (methanesulfonyl) -α-dimethylglyoxime, bis-O- (trifluoromethanesulfonyl) -α-dimethylglyoxime, bis-O- (1,1 , 1-trifluoroethanesulfonyl) -α-dimethylglyoxime, bis-O- (tert-butanesulfonyl) -α-dimethylglyoxime, bis-O- (perfluorooctanesulfonyl) -α-dimethylglyoxime, bis -O- (cyclohexanesulfonyl) -α-dimethylglyoxime, bis-O- (benzenesulfonyl) -α-dimethylglyoxime, bis-O- (p-fluorobenzenesulfonyl) -α-dimethylglyoxime, bis-O -(P-tert-butylbenzenesulfonyl) -α-dimethylglyoxime, Scan -O- (xylene sulfonyl)-.alpha.-dimethylglyoxime, bis -O- (camphorsulfonyl)-.alpha.-glyoxime derivatives such as dimethylglyoxime.
[0062]
Bissulfone derivatives such as bisnaphthylsulfonylmethane, bistrifluoromethylsulfonylmethane, bismethylsulfonylmethane, bisethylsulfonylmethane, bispropylsulfonylmethane, bisisopropylsulfonylmethane, bis-p-toluenesulfonylmethane, and bisbenzenesulfonylmethane.
[0063]
Β-ketosulfone derivatives such as 2-cyclohexylcarbonyl-2- (p-toluenesulfonyl) propane and 2-isopropylcarbonyl-2- (p-toluenesulfonyl) propane.
Nitrobenzyl sulfonate derivatives such as 2,6-dinitrobenzyl p-toluenesulfonate and 2,4-dinitrobenzyl p-toluenesulfonate.
Sulfonic acid ester derivatives such as 1,2,3-tris (methanesulfonyloxy) benzene, 1,2,3-tris (trifluoromethanesulfonyloxy) benzene, 1,2,3-tris (p-toluenesulfonyloxy) benzene .
[0064]
N-hydroxysuccinimide methanesulfonic acid ester, N-hydroxysuccinimide trifluoromethanesulfonic acid ester, N-hydroxysuccinimide ethanesulfonic acid ester, N-hydroxysuccinimide 1-propanesulfonic acid ester, N-hydroxysuccinimide 2-propanesulfonic acid ester, N-hydroxysuccinimide 1-pentanesulfonic acid ester, N-hydroxysuccinimide 1-octanesulfonic acid ester, N-hydroxysuccinimide p-toluenesulfonic acid ester, N-hydroxysuccinimide p-methoxybenzenesulfonic acid ester, N-hydroxysuccinimide 2 -Chloroethane sulfonic acid ester, N-hydroxysuccinimide benzene sulfonic acid ester, N- Droxysuccinimide-2,4,6-trimethylbenzenesulfonate, N-hydroxysuccinimide 1-naphthalenesulfonate, N-hydroxysuccinimide 2-naphthalenesulfonate, N-hydroxy-2-phenylsuccinimide methanesulfonate N-hydroxymaleimide methanesulfonic acid ester, N-hydroxymaleimide ethanesulfonic acid ester, N-hydroxy-2-phenylmaleimide methanesulfonic acid ester, N-hydroxyglutarimide methanesulfonic acid ester, N-hydroxyglutarimide benzenesulfonic acid Esters, N-hydroxyphthalimide methanesulfonate, N-hydroxyphthalimidebenzenesulfonate, N-hydroxyphthalate Imidotrifluoromethanesulfonic acid ester, N-hydroxyphthalimide p-toluenesulfonic acid ester, N-hydroxynaphthalimide methanesulfonic acid ester, N-hydroxynaphthalimide benzenesulfonic acid ester, N-hydroxy-5-norbornene-2,3- Dicarboximide methanesulfonate, N-hydroxy-5-norbornene-2,3-dicarboximide trifluoromethanesulfonate, N-hydroxy-5-norbornene-2,3-dicarboximide p-toluenesulfonate Sulfonic acid ester derivatives of N-hydroxyimide compounds such as triphenylsulfonium trifluoromethanesulfonate, trifluoromethanesulfonic acid (p-tert-butoxy), and the like. Phenyl) diphenylsulfonium, trifluoromethanesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, p-toluenesulfonic acid triphenylsulfonium, p-toluenesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, p-toluenesulfonic acid Tris (p-tert-butoxyphenyl) sulfonium, trifluoromethanesulfonic acid trinaphthylsulfonium, trifluoromethanesulfonic acid cyclohexylmethyl (2-oxocyclohexyl) sulfonium, trifluoromethanesulfonic acid (2-norbornyl) methyl (2-oxocyclohexyl) sulfonium Onium salts such as 1,2′-naphthylcarbonylmethyltetrahydrothiophenium triflate, bis (benzenesulfonate L) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (n-butylsulfonyl) diazomethane, bis (isobutylsulfonyl) diazomethane, bis (sec-butylsulfonyl) diazomethane, bis (n-propyl) Diazomethane derivatives such as sulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, bis (tert-butylsulfonyl) diazomethane, bis-O- (p-toluenesulfonyl) -α-dimethylglyoxime, bis-O- (n-butanesulfonyl) ) -Α-dimethylglyoxime and other glyoxime derivatives; bissulfone derivatives such as bisnaphthylsulfonylmethane; N-hydroxysuccinimide methanesulfonate; Cinimide trifluoromethanesulfonate ester, N-hydroxysuccinimide 1-propanesulfonate, N-hydroxysuccinimide 2-propanesulfonate, N-hydroxysuccinimide 1-pentanesulfonate, N-hydroxysuccinimide p-toluenesulfonate A sulfonic acid ester derivative of an N-hydroxyimide compound such as an ester, N-hydroxynaphthalimide methanesulfonic acid ester, or N-hydroxynaphthalimide benzenesulfonic acid ester is preferably used.
[0065]
In addition, the said acid generator can be used individually by 1 type or in combination of 2 or more types.
[0066]
The addition amount of the acid generator is preferably 0.1 to 50 parts, more preferably 0.5 to 40 parts with respect to 100 parts of the base polymer. If the amount is less than 0.1 part, the amount of acid generated is small and the crosslinking reaction may be insufficient. If the amount exceeds 50 parts, a mixing phenomenon may occur due to the acid moving to the upper resist.
[0067]
Furthermore, the lower layer film-forming material of the present invention can be blended with a basic compound for improving storage stability.
As a basic compound, it plays the role of the quencher with respect to an acid in order to prevent the acid which generate | occur | produced in trace amount from the acid generator to advance a crosslinking reaction.
[0068]
Examples of such basic compounds include primary, secondary, and tertiary aliphatic amines, hybrid amines, aromatic amines, heterocyclic amines, nitrogen-containing compounds having a carboxy group, and sulfonyl groups. A nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyphenyl group, an alcoholic nitrogen-containing compound, an amide derivative, an imide derivative, and the like.
[0069]
Specifically, primary aliphatic amines include ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, tert- Amylamine, cyclopentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cetylamine, methylenediamine, ethylenediamine, tetraethylenepentamine, etc. are exemplified as secondary aliphatic amines. Dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, dipentylamine, disi Lopentylamine, dihexylamine, dicyclohexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, didodecylamine, dicetylamine, N, N-dimethylmethylenediamine, N, N-dimethylethylenediamine, N, N-dimethyltetraethylenepenta Examples of tertiary aliphatic amines include trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, and tripentylamine. , Tricyclopentylamine, trihexylamine, tricyclohexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, tridodecylamine, Examples include cetylamine, N, N, N ′, N′-tetramethylmethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethyltetraethylenepentamine and the like. Is done.
[0070]
Examples of hybrid amines include dimethylethylamine, methylethylpropylamine, benzylamine, phenethylamine, and benzyldimethylamine. Specific examples of aromatic amines and heterocyclic amines include aniline derivatives (eg, aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N, N-dimethylaniline, 2-methylaniline, 3- Methylaniline, 4-methylaniline, ethylaniline, propylaniline, trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitroaniline, 3,5- Dinitroaniline, N, N-dimethyltoluidine, etc.), diphenyl (p-tolyl) amine, methyldiphenylamine, triphenylamine, phenylenediamine, naphthylamine, diaminonaphthalene, pyrrole derivatives (eg pyrrole, 2H-pyrrole, 1-methylpyrrole, 2,4-dim Lupyrrole, 2,5-dimethylpyrrole, N-methylpyrrole, etc.), oxazole derivatives (eg oxazole, isoxazole etc.), thiazole derivatives (eg thiazole, isothiazole etc.), imidazole derivatives (eg imidazole, 4-methylimidazole, 4 -Methyl-2-phenylimidazole, etc.), pyrazole derivatives, furazane derivatives, pyrroline derivatives (eg pyrroline, 2-methyl-1-pyrroline etc.), pyrrolidine derivatives (eg pyrrolidine, N-methylpyrrolidine, pyrrolidinone, N-methylpyrrolidone etc.) ), Imidazoline derivatives, imidazolidine derivatives, pyridine derivatives (eg pyridine, methylpyridine, ethylpyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) pyridine, dimethyl) Lysine, trimethylpyridine, triethylpyridine, phenylpyridine, 3-methyl-2-phenylpyridine, 4-tert-butylpyridine, diphenylpyridine, benzylpyridine, methoxypyridine, butoxypyridine, dimethoxypyridine, 1-methyl-2-pyridone, 4-pyrrolidinopyridine, 1-methyl-4-phenylpyridine, 2- (1-ethylpropyl) pyridine, aminopyridine, dimethylaminopyridine, etc.), pyridazine derivatives, pyrimidine derivatives, pyrazine derivatives, pyrazoline derivatives, pyrazolidine derivatives, piperidine Derivatives, piperazine derivatives, morpholine derivatives, indole derivatives, isoindole derivatives, 1H-indazole derivatives, indoline derivatives, quinoline derivatives (eg quinoline, 3-quinoline carbo Nitriles), isoquinoline derivatives, cinnoline derivatives, quinazoline derivatives, quinoxaline derivatives, phthalazine derivatives, purine derivatives, pteridine derivatives, carbazole derivatives, phenanthridine derivatives, acridine derivatives, phenazine derivatives, 1,10-phenanthroline derivatives, adenine derivatives, adenosine Examples include derivatives, guanine derivatives, guanosine derivatives, uracil derivatives, uridine derivatives and the like.
[0071]
Furthermore, examples of the nitrogen-containing compound having a carboxy group include aminobenzoic acid, indolecarboxylic acid, amino acid derivatives (for example, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, glycylleucine, leucine, methionine. , Phenylalanine, threonine, lysine, 3-aminopyrazine-2-carboxylic acid, methoxyalanine) and the like, and examples of the nitrogen-containing compound having a sulfonyl group include 3-pyridinesulfonic acid, pyridinium p-toluenesulfonate, and the like. Nitrogen-containing compounds having a hydroxyl group, nitrogen-containing compounds having a hydroxyphenyl group, and alcoholic nitrogen-containing compounds include 2-hydroxypyridine, aminocresol, 2,4-quinolinediol, and 3-indolemethanol. Drate, monoethanolamine, diethanolamine, triethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, triisopropanolamine, 2,2'-iminodiethanol, 2-aminoethanol, 3-amino-1-propanol 4-amino-1-butanol, 4- (2-hydroxyethyl) morpholine, 2- (2-hydroxyethyl) pyridine, 1- (2-hydroxyethyl) piperazine, 1- [2- (2-hydroxyethoxy) Ethyl] piperazine, piperidineethanol, 1- (2-hydroxyethyl) pyrrolidine, 1- (2-hydroxyethyl) -2-pyrrolidinone, 3-piperidino-1,2-propanediol, 3-pyrrolidino-1,2-propane Diol, 8-Hydroxyurolid , 3-cuincridinol, 3-tropanol, 1-methyl-2-pyrrolidineethanol, 1-aziridineethanol, N- (2-hydroxyethyl) phthalimide, N- (2-hydroxyethyl) isonicotinamide, etc. Is done. Examples of amide derivatives include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide and the like. Examples of imide derivatives include phthalimide, succinimide, maleimide and the like.
[0072]
The compounding amount of the basic compound is suitably 0.001 to 2 parts, particularly 0.01 to 1 part, based on 100 parts of the total base polymer. When the blending amount is less than 0.001 part, there is no blending effect, and when it exceeds 2 parts, all of the acid generated by heat may be trapped and crosslinking may not occur.
[0073]
The organic solvent that can be used in the lower layer film-forming material of the present invention is not particularly limited as long as the base polymer, the acid generator, the cross-linking agent, and other additives can be dissolved. Specific examples thereof include ketones such as cyclohexanone and methyl-2-amyl ketone; 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol and the like. Alcohols: ethers such as propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, lactic acid Ethyl, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate , Tert-butyl acetate, tert-butyl propionate, propylene glycol monomethyl ether acetate, propylene glycol mono tert-butyl ether acetate and the like, and one or more of these can be used in combination. It is not limited. In the present invention, among these organic solvents, diethylene glycol dimethyl ether, 1-ethoxy-2-propanol, ethyl lactate, propylene glycol monomethyl ether acetate and mixed solvents thereof are preferably used.
[0074]
The blending amount of the solvent is preferably 500 to 10,000 parts, particularly preferably 1,000 to 5,000 parts with respect to 100 parts of the total base polymer.
[0075]
The underlayer film of the present invention can be formed on a substrate to be processed by a spin coating method or the like, similar to a photoresist. After spin coating, it is desirable to evaporate the solvent and bake to accelerate the crosslinking reaction in order to prevent mixing with the upper layer resist. The baking temperature is preferably in the range of 80 to 300 ° C. and in the range of 10 to 300 seconds. Although the thickness of this lower layer film is appropriately selected, it is preferably 100 to 20,000 nm, particularly 150 to 15,000 nm. After producing the lower layer film, a resist layer is produced thereon.
[0076]
In this case, a well-known thing can be used as a photoresist composition for forming this resist layer. From the point of resistance to oxygen gas etching, a positive type photopolymer containing a silicon atom-containing polymer such as a polysilsesquioxane derivative or vinylsilane derivative as a base polymer, and further containing an organic solvent, an acid generator, and a basic compound if necessary. A resist composition is used. In addition, as a silicon atom containing polymer, the well-known polymer used for this kind of resist composition can be used.
[0077]
When forming a resist layer with the said photoresist composition, a spin coat method is used preferably similarly to the case where the said lower layer film is formed. Pre-baking is performed after spin-coating the resist, and a range of 10 to 300 seconds at 80 to 180 ° C. is preferable. Thereafter, exposure is performed according to a conventional method, post-exposure baking (PEB), and development is performed to obtain a resist pattern. The thickness of the resist film is not particularly limited, but is preferably 30 to 500 nm, particularly 50 to 400 nm.
[0078]
Next, etching mainly using oxygen gas is performed using the obtained resist pattern as a mask. This etching can be performed by a conventional method. At this time, in addition to oxygen gas, inert gases such as He and Ar, CO, CO 2 , NH Three , SO 2 , N 2 , NO 2 It is also possible to add gas. In particular, the latter gas is used for side wall protection for preventing undercut of the pattern side wall.
[0079]
The next substrate to be processed can also be etched by a conventional method. 2 In the case of SiN, etching mainly using a chlorofluorocarbon gas is performed, and in the case of p-Si, Al, or W, etching mainly using a chlorine or bromine gas is performed. The underlayer film of the present invention is characterized by excellent etching resistance of these substrates to be processed.
[0080]
The substrate to be processed is formed on the substrate. The substrate is not particularly limited, and Si, α-Si, p-Si, SiO 2 , SiN, SiON, W, TiN, Al and the like are made of a material different from the film to be processed (substrate to be processed). As the film to be processed, Si, SiO 2 Various Low-k films such as SiON, SiN, p-Si, α-Si, W, W-Si, Al, Cu, and Al—Si and their stopper films are used, and usually 50 to 10,000 nm, particularly 100 It can be formed to a thickness of ˜5,000 nm.
[0081]
【Example】
EXAMPLES Hereinafter, although a synthesis example, a polymerization example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited by these description.
[0082]
[Synthesis Example 1]
To a 300 mL flask, 144 g (1 mol) of 1-naphthol and 0.01 g of trifluoromethanesulfonic acid were added, and 132 g (1 mol) of dicyclopentadiene was added dropwise for 1 hour while stirring at 50 ° C. After stirring at the same temperature for 1 hour, the temperature was raised to 150 ° C. and stirred for 2 hours to complete the reaction. Unreacted substances were removed by distillation under reduced pressure, dissolved in 200 g of 1,2-dichloroethane, the catalyst and metal impurities were removed by washing with water, and 1,2-dichloroethane was removed under reduced pressure to obtain 230 g of polymer 1. .
The molecular weight (Mw) in terms of polystyrene (Mw / Mn) is determined by gel permeation chromatography (GPC). 1 The ratio of naphthol and dicyclopentadiene in the polymer was determined by H-NMR analysis as follows.
Polymer 1; 1-naphthol: dicyclopentadiene (molar ratio) = 0.55: 0.45
Mw 4,400, Mw / Mn 3.1
[0083]
[Synthesis Example 2]
To a 300 mL flask, 144 g (1 mol) of 1-naphthol and 0.007 g of trifluoromethanesulfonic acid were added, and 66 g (0.5 mol) of dicyclopentadiene was added dropwise for 1 hour while stirring at 50 ° C. After stirring at the same temperature for 1 hour, the temperature was raised to 150 ° C. and stirred for 2 hours to complete the reaction. Unreacted substances were removed by distillation under reduced pressure, dissolved in 200 g of 1,2-dichloroethane, the catalyst and metal impurities were removed by washing with water, and 1,2-dichloroethane was removed under reduced pressure to obtain 180 g of polymer 2. .
Obtain molecular weight (Mw) and dispersity (Mw / Mn) by GPC, 1 The ratio of naphthol and dicyclopentadiene in the polymer was determined by H-NMR analysis as follows.
Polymer 2; 1-naphthol: dicyclopentadiene (molar ratio) = 0.77: 0.23
Mw 5,200, Mw / Mn 2.8
[0084]
[Synthesis Example 3]
To a 300 mL flask, 174 g (1 mol) of 7-methoxy-1-naphthol and 0.007 g of trifluoromethanesulfonic acid were added, and 66 g (0.5 mol) of dicyclopentadiene was added dropwise for 1 hour while stirring at 50 ° C. After stirring at the same temperature for 1 hour, the temperature was raised to 150 ° C. and stirred for 2 hours to complete the reaction. Unreacted substances were removed by distillation under reduced pressure, dissolved in 200 g of 1,2-dichloroethane, the catalyst and metal impurities were removed by washing with water, and 1,2-dichloroethane was removed under reduced pressure to obtain 221 g of polymer 3. .
Obtain molecular weight (Mw) and dispersity (Mw / Mn) by GPC, 1 The ratio of naphthol and dicyclopentadiene in the polymer was determined by H-NMR analysis as follows.
Polymer 3; 7-methoxy-1-naphthol: dicyclopentadiene (molar ratio)
= 0.77: 0.23
Mw 3,200, Mw / Mn 2.6
[0085]
[Synthesis Example 4]
In a 500 mL flask, 100 mL of cyclohexane, 100 g of 1-naphthol / dicyclopentadiene novolac resin obtained in Synthesis Example 1 and 5 g of tetramethylammonium bromide were dissolved, 38 g of epichlorohydrin was added dropwise, and the mixture was stirred at 80 ° C. for 1 hour to carry out the addition reaction. Then, 8 g of sodium hydroxide was added, and a ring closure reaction was performed at 80 ° C. for 3 hours to obtain an epoxy compound. Thereafter, unreacted epichlorohydrin and sodium hydroxide were removed by washing with water, and ethyl acetate was removed by drying under reduced pressure to obtain 122 g of a glycidyl group-substituted 1-naphthol / dicyclopentadiene novolak resin.
Obtain molecular weight (Mw) and dispersity (Mw / Mn) by GPC, 1 The ratio of glycidyl group-substituted naphthol and dicyclopentadiene in the polymer was determined by 1 H-NMR analysis as follows.
Polymer 4: Glycidyl group-substituted 1-naphthol: dicyclopentadiene (molar ratio) = 0.55: 0.45
Mw 6,100, Mw / Mn 3.1
[0086]
[Examples and Comparative Examples]
A solvent containing 0.1% by weight of FC-430 (manufactured by Sumitomo 3M), naphthol-dicyclopentadiene represented by polymers 1 to 4, an acid generator represented by AG1 and 2, and a crosslinking agent represented by CR1 and 2. The lower layer membrane solutions were respectively prepared by dissolving in the proportions shown in Table 1 and filtering through a 0.1 μm fluororesin filter. The polymer 1 for the comparative example is an m-cresol novolak resin with Mw 8,900 and Mw / Mn 4.8, the comparative example polymer 2 is a 1-naphthol resin with Mw 3,300 and Mw / Mn 3.5, the comparative example polymer 3 As for p-hydroxystyrene of Mw 33,000 and Mw / Mn 1.9: hydroxyethyl acrylate 30/70 (molar ratio) was used.
[0087]
A lower layer film forming material solution is applied onto a silicon substrate and baked at 200 ° C. for 60 seconds to form a lower layer film having a thickness of 400 nm (hereinafter abbreviated as UDL 1 to 7). A. The refractive index (n, k) of UDLs 1 to 7 at a wavelength of 193 nm was determined using a Woollam Inc. variable-angle spectroscopic ellipsometer (VASE). The results are shown in Table 1.
[0088]
[Table 1]
Figure 0003981825
PGMEA; propylene glycol monomethyl ether acetate
[0089]
[Chemical Formula 10]
Figure 0003981825
[0090]
Next, the solution of the lower layer film forming material is changed to SiOnm having a film thickness of 300 nm. 2 It was applied on a substrate and baked at 200 ° C. for 60 seconds to form a lower layer film having a thickness of 400 nm (hereinafter abbreviated as UDL 1 to 7). ArF silicon-containing resist solutions 1 and 2 comprising the silicon-containing polymers 1 and 2, the acid generator PAG1, the base additive AACN, and a solvent having the composition shown in Table 2 were prepared. This resist solution was applied onto the lower layer films UDL1 to UDL1 and baked at 110 ° C. for 60 seconds to form a silicon-containing resist film layer having a thickness of 200 nm. Next, the film was exposed with an ArF exposure apparatus (Nikon Corp .; S305B, NA 0.68, σ 0.85, 2/3 ring illumination, Cr mask), baked at 110 ° C. for 90 seconds (PEB), and 2.38 wt%. Development was performed with an aqueous tetramethylammonium hydroxide (TMAH) solution to obtain a positive pattern. Observe the pattern shape of 0.10 μmL / S of the obtained pattern, and as shown in Table 3, there is no skirting, undercut, or intermixing phenomenon near the substrate, and a rectangular pattern is obtained It was confirmed.
[0091]
Next, a dry etching resistance test was performed. First, the same lower layer films (UDL1 to 7) used for the refractive index measurement were prepared, and CHFs of these lower layer films were prepared. Three / CF Four As an etching test using a system gas, the test was performed under the following conditions (1). In this case, the difference in film thickness between the lower layer film and the resist before and after etching was measured using a dry etching apparatus TE-8500P manufactured by Tokyo Electron Limited. The results are shown in Table 4. (1) CHF Three / CF Four Etching test with system gas
Etching conditions are as shown below.
Chamber pressure 40.0Pa
RF power 1,300W
Gap 9mm
CHF Three Gas flow rate 30ml / min
CF Four Gas flow rate 30ml / min
Ar gas flow rate 100ml / min
60 sec
[0092]
Further, using the lower layer films (UDL1 to 7), Cl is applied under the condition (2) below. 2 / BCl Three An etching test with a system gas was performed. In this case, the thickness difference of the polymer film before and after etching was determined using a dry etching apparatus L-507D-L manufactured by Nidec Anelva Corporation. The results are shown in Table 5.
(2) Cl 2 / BCl Three Etching test with system gas
Etching conditions are as shown below.
Chamber pressure 40.0Pa
RF power 300W
Gap 9mm
Cl 2 Gas flow rate 30ml / min
BCl Three Gas flow rate 30ml / min
CHF Three Gas flow rate 100ml / min
O 2 Gas flow rate 2ml / min
60 sec
[0093]
On the other hand, a silicon-containing resist having a 0.10 μmL / S pattern obtained after the ArF exposure and development was etched with oxygen gas.
Etching conditions are as shown below.
Chamber pressure 450mTorr
RF power 600W
Ar gas flow rate 40sccm
O 2 Gas flow rate 60sccm
Gap 9mm
Time 20sec
[0094]
Next, CHF under the conditions shown in (1) Three / CF Four Etching with a system gas and SiO 2 The substrate was processed.
After development, oxygen gas etching, substrate processing CHF Three / CF Four The cross section of the pattern after system gas etching was observed with an electron microscope (S-4700) manufactured by Hitachi, Ltd., the shapes were compared, and the results were summarized in Table 3. After development, cross-sectional shape of silicon-containing resist, after oxygen etching and CHF Three / CF Four After etching, the cross-sectional shape of the lower layer film was observed.
[0095]
[Table 2]
Figure 0003981825
[0096]
Embedded image
Figure 0003981825
[0097]
[Table 3]
Figure 0003981825
[0098]
[Table 4]
Figure 0003981825
[0099]
[Table 5]
Figure 0003981825
[0100]
As shown in Table 1, the n value of the refractive index of the lower layer film of the present invention is 1.5 to 1.9, and the k value is 0.15 to 0.3. This is a film thickness of 200 nm or more. The optimum refractive index (n) and extinction coefficient (k) are sufficient to exhibit a sufficient antireflection effect, and as shown in Tables 4 and 5, CF Four / CHF Three Gas and Cl 2 / BCl Three The rate of system gas etching is similar to that of novolak resin, and the etching rate is lower than that of polyhydroxystyrene / hydroxyethyl acrylate copolymer, and the etching resistance is high. Moreover, as shown in Table 3, it was recognized that the resist shape after development, the shape of the lower layer film after the oxygen etching, and the substrate processing etching were also good.
[0101]
【The invention's effect】
The underlayer film forming material of the present invention has a refractive index n value of 1.5 to 1.9 and a k value of 0.15 to 0.3, and has a sufficient antireflection effect with a film thickness of 200 nm or more. An extinction coefficient that can be exhibited and used for substrate processing. Four / CHF Three Gas and Cl 2 / BCl Three The rate of system gas etching is similar to that of novolak resin and has high etching resistance. Also, the resist shape after patterning is good.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the thickness of an antireflection film and the reflectance.
FIG. 2 is a graph showing the relationship between the film thickness of a lower layer film and the reflectance when the lower layer film refractive index k value is fixed at 0.3 and the n value is changed in the range of 1.0 to 2.0.
FIG. 3 is a graph showing the relationship between the thickness of a lower layer film and the reflectance when the lower layer film refractive index n value is fixed at 1.5 and the n value is changed in the range of 0.1 to 1.0.

Claims (5)

反射防止膜としてナフトール誘導体とジシクロペンタジエンとの共縮合物を含むフォトレジスト下層膜を被加工基板上に適用し、該下層膜の上にフォトレジスト組成物の層を適用し、パターン回路領域に放射線を照射し、現像液で現像してレジストパターンを形成し、ドライエッチング装置でフォトレジスト層をマスクにして下層膜層及び被加工基板を加工することを特徴とするパターン形成方法。A photoresist underlayer film containing a co-condensate of a naphthol derivative and dicyclopentadiene is applied as an antireflection film on the substrate to be processed, and a layer of the photoresist composition is applied over the underlayer film to form a pattern circuit region. A pattern forming method comprising irradiating radiation, developing with a developing solution to form a resist pattern, and processing a lower layer film layer and a substrate to be processed using a photoresist layer as a mask with a dry etching apparatus. フォトレジスト組成物が珪素原子含有ポリマーを含み、フォトレジスト層をマスクにして下層膜を加工するドライエッチングが、酸素ガスを主体とするエッチングガスを用いて行う請求項1記載のパターン形成方法。The pattern forming method according to claim 1, wherein the photoresist composition includes a silicon atom-containing polymer, and the dry etching for processing the lower layer film using the photoresist layer as a mask is performed using an etching gas mainly containing oxygen gas. 酸素ガスエッチング後、下層膜をマスクにして行う被加工基板加工がドライエッチングによるものである請求項2記載のパターン形成方法。The pattern forming method according to claim 2, wherein after the oxygen gas etching, the processed substrate processing using the lower layer film as a mask is by dry etching. 請求項1、2又は3記載のパターン形成方法に用いるフォトレジスト下層膜形成材料であって、ナフトール誘導体とジシクロペンタジエンとの共縮合物が、下記一般式(1)又は(2)で表されることを特徴とする下層膜形成材料。
Figure 0003981825
(式中、R1〜R8は互いに独立に水素原子、水酸基、炭素数1〜6の置換可アルキル基、炭素数1〜6の置換可アルコキシ基、炭素数2〜6の置換可アルコキシカルボキシル基、炭素数6〜10の置換可アリール基、炭素数1〜6のヒドロキシアルキル基、イソシアネート基、又はグリシジル基である。m、nは正の整数である。)
A photoresist underlayer film forming material used in the pattern forming method according to claim 1, wherein a co-condensate of a naphthol derivative and dicyclopentadiene is represented by the following general formula (1) or (2): A material for forming an underlayer film.
Figure 0003981825
(In the formula, R 1 to R 8 are each independently a hydrogen atom, a hydroxyl group, a C 1-6 substituted alkyl group, a C 1-6 substituted alkoxy group, or a C 2-6 substituted alkoxy carboxyl. Group, a substituted aryl group having 6 to 10 carbon atoms, a hydroxyalkyl group having 1 to 6 carbon atoms, an isocyanate group, or a glycidyl group, where m and n are positive integers.)
更に、有機溶剤、架橋剤及び酸発生剤を含有する請求項4記載の下層膜形成材料。Furthermore, the lower layer film forming material of Claim 4 containing an organic solvent, a crosslinking agent, and an acid generator.
JP2002372829A 2002-12-24 2002-12-24 Pattern forming method and lower layer film forming material Expired - Lifetime JP3981825B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002372829A JP3981825B2 (en) 2002-12-24 2002-12-24 Pattern forming method and lower layer film forming material
TW93118153A TWI282908B (en) 2002-12-24 2004-06-23 Pattern forming method and material for forming underlayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372829A JP3981825B2 (en) 2002-12-24 2002-12-24 Pattern forming method and lower layer film forming material

Publications (2)

Publication Number Publication Date
JP2004205685A JP2004205685A (en) 2004-07-22
JP3981825B2 true JP3981825B2 (en) 2007-09-26

Family

ID=32811322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372829A Expired - Lifetime JP3981825B2 (en) 2002-12-24 2002-12-24 Pattern forming method and lower layer film forming material

Country Status (2)

Country Link
JP (1) JP3981825B2 (en)
TW (1) TWI282908B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447775A1 (en) 2010-11-01 2012-05-02 Shin-Etsu Chemical Co., Ltd. Resist underlayer film composition and patterning process using the same
US8617800B2 (en) 2008-09-03 2013-12-31 Shin-Etsu Chemical Co., Ltd. Patterning process

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662052B2 (en) * 2005-03-11 2011-03-30 信越化学工業株式会社 Photoresist underlayer film forming material and pattern forming method
JP4539845B2 (en) * 2005-03-17 2010-09-08 信越化学工業株式会社 Photoresist underlayer film forming material and pattern forming method
WO2006132088A1 (en) * 2005-06-10 2006-12-14 Nissan Chemical Industries, Ltd. Coating-type underlayer film forming composition containing naphthalene resin derivative for lithography
JP4659678B2 (en) * 2005-12-27 2011-03-30 信越化学工業株式会社 Photoresist underlayer film forming material and pattern forming method
TWI414893B (en) * 2006-03-14 2013-11-11 Jsr Corp Composition for forming under film and method for forming pattern
JP4548616B2 (en) 2006-05-15 2010-09-22 信越化学工業株式会社 Thermal acid generator, resist underlayer film material containing the same, and pattern formation method using this resist underlayer film material
JP4883286B2 (en) * 2006-08-01 2012-02-22 日産化学工業株式会社 Lithographic resist underlayer film with inclined structure
JP4910168B2 (en) * 2006-09-07 2012-04-04 Jsr株式会社 Resist underlayer film forming composition and pattern forming method
JP4671046B2 (en) * 2006-10-12 2011-04-13 信越化学工業株式会社 Resist underlayer film material and pattern forming method
JP5101541B2 (en) 2008-05-15 2012-12-19 信越化学工業株式会社 Pattern formation method
JP5336306B2 (en) 2008-10-20 2013-11-06 信越化学工業株式会社 Resist underlayer film forming method, pattern forming method using the same, and resist underlayer film material
JP4813537B2 (en) 2008-11-07 2011-11-09 信越化学工業株式会社 Resist underlayer material containing thermal acid generator, resist underlayer film forming substrate, and pattern forming method
JP4826841B2 (en) 2009-01-15 2011-11-30 信越化学工業株式会社 Pattern formation method
JP4826840B2 (en) 2009-01-15 2011-11-30 信越化学工業株式会社 Pattern formation method
JP4826846B2 (en) 2009-02-12 2011-11-30 信越化学工業株式会社 Pattern formation method
JP5112380B2 (en) 2009-04-24 2013-01-09 信越化学工業株式会社 Pattern formation method
JP5068828B2 (en) 2010-01-19 2012-11-07 信越化学工業株式会社 Resist underlayer film forming composition, resist underlayer film forming method, and pattern forming method
JP5068831B2 (en) 2010-02-05 2012-11-07 信越化学工業株式会社 Resist underlayer film material, resist underlayer film forming method, pattern forming method
JP5229278B2 (en) 2010-06-21 2013-07-03 信越化学工業株式会社 Naphthalene derivative, resist underlayer film material, resist underlayer film forming method and pattern forming method
JP5395012B2 (en) 2010-08-23 2014-01-22 信越化学工業株式会社 Resist underlayer film material, resist underlayer film forming method, pattern forming method, fullerene derivative
JP5556773B2 (en) 2010-09-10 2014-07-23 信越化学工業株式会社 Naphthalene derivative and method for producing the same, resist underlayer film material, resist underlayer film forming method and pattern forming method
KR101423171B1 (en) 2010-12-30 2014-07-25 제일모직 주식회사 Hardmask composition and method of forming patterns and semiconductor integrated circuit device including the patterns
JP5598489B2 (en) 2011-03-28 2014-10-01 信越化学工業株式会社 Biphenyl derivative, resist underlayer film material, resist underlayer film forming method and pattern forming method
US9343324B2 (en) 2011-07-07 2016-05-17 Nissan Chemical Industries, Ltd. Resist underlayer film-forming composition which contains alicyclic skeleton-containing carbazole resin
JP5653880B2 (en) 2011-10-11 2015-01-14 信越化学工業株式会社 Resist underlayer film forming material and pattern forming method
JP5925721B2 (en) 2012-05-08 2016-05-25 信越化学工業株式会社 Organic film material, organic film forming method and pattern forming method using the same
JP5894106B2 (en) 2012-06-18 2016-03-23 信越化学工業株式会社 Compound for forming resist underlayer film, resist underlayer film material using the same, resist underlayer film forming method, pattern forming method
CN104603691B (en) * 2012-09-10 2019-09-13 Jsr株式会社 Resist lower membrane, which is formed, uses composition and pattern forming method
JP6119667B2 (en) 2013-06-11 2017-04-26 信越化学工業株式会社 Underlayer film material and pattern forming method
JP6119669B2 (en) 2013-06-11 2017-04-26 信越化学工業株式会社 Underlayer film material and pattern forming method
JP6119668B2 (en) 2013-06-11 2017-04-26 信越化学工業株式会社 Underlayer film material and pattern forming method
JP6135600B2 (en) 2013-06-11 2017-05-31 信越化学工業株式会社 Underlayer film material and pattern forming method
JP6196190B2 (en) 2014-07-08 2017-09-13 信越化学工業株式会社 Multilayer film forming method and pattern forming method
JP6165690B2 (en) 2014-08-22 2017-07-19 信越化学工業株式会社 Method for producing composition for forming organic film
JP6378146B2 (en) 2014-10-16 2018-08-22 信越化学工業株式会社 Multilayer film forming method and pattern forming method
JP6404757B2 (en) 2015-03-27 2018-10-17 信越化学工業株式会社 Polymer for resist underlayer film material, resist underlayer film material, and pattern forming method
JP6372887B2 (en) 2015-05-14 2018-08-15 信越化学工業株式会社 Organic film material, organic film forming method, pattern forming method, and compound
JP6502885B2 (en) 2015-05-18 2019-04-17 信越化学工業株式会社 Resist underlayer film material and pattern formation method
US9899218B2 (en) 2015-06-04 2018-02-20 Shin-Etsu Chemical Co., Ltd. Resist under layer film composition and patterning process
JP6625934B2 (en) 2015-07-14 2019-12-25 信越化学工業株式会社 Resist underlayer film material, pattern forming method, and compound
JP6714492B2 (en) 2015-12-24 2020-06-24 信越化学工業株式会社 Organic film forming compound, organic film forming composition, organic film forming method, and pattern forming method
JP6714493B2 (en) 2015-12-24 2020-06-24 信越化学工業株式会社 Organic film forming compound, organic film forming composition, organic film forming method, and pattern forming method
JP6462602B2 (en) 2016-01-12 2019-01-30 信越化学工業株式会社 Multilayer film forming method and pattern forming method
JP6697416B2 (en) 2016-07-07 2020-05-20 信越化学工業株式会社 Resist underlayer film material, pattern forming method, resist underlayer film forming method, and compound for resist underlayer film material
JP6853716B2 (en) 2017-03-31 2021-03-31 信越化学工業株式会社 Resist underlayer film material, pattern forming method, and resist underlayer film forming method
JP6718406B2 (en) 2017-03-31 2020-07-08 信越化学工業株式会社 Resist underlayer film material, pattern forming method, and resist underlayer film forming method
JP6800105B2 (en) 2017-07-21 2020-12-16 信越化学工業株式会社 Organic film forming composition, pattern forming method, and organic film forming resin
US10514605B2 (en) 2017-08-04 2019-12-24 International Business Machines Corporation Resist multilayer film-attached substrate and patterning process
US11042090B2 (en) 2017-08-04 2021-06-22 Shin-Etsu Chemical Co., Ltd. Composition for forming organic film
JP6981945B2 (en) 2018-09-13 2021-12-17 信越化学工業株式会社 Pattern formation method
JP7082087B2 (en) 2019-05-08 2022-06-07 信越化学工業株式会社 Organic film forming composition, pattern forming method and polymer
JP7103993B2 (en) 2019-05-16 2022-07-20 信越化学工業株式会社 Organic film forming composition, pattern forming method and polymer
JP7209588B2 (en) 2019-06-04 2023-01-20 信越化学工業株式会社 Organic film forming composition, pattern forming method and polymer
JP7194651B2 (en) 2019-07-12 2022-12-22 信越化学工業株式会社 COMPOSITION FOR FORMING RESIST UNDERLAYER FILM, PATTERN FORMING METHOD AND POLYMER
JP7145143B2 (en) 2019-12-12 2022-09-30 信越化学工業株式会社 Organic film forming material, organic film forming method, pattern forming method, and compound
JP7285209B2 (en) 2019-12-26 2023-06-01 信越化学工業株式会社 Underlayer film forming material, underlayer film forming method, and pattern forming method
JP7316237B2 (en) 2020-03-02 2023-07-27 信越化学工業株式会社 Organic film forming material, organic film forming method, pattern forming method and compound
JP7465679B2 (en) 2020-03-05 2024-04-11 信越化学工業株式会社 Coating-type organic film-forming composition, pattern forming method, polymer, and method for producing polymer
JP7368322B2 (en) 2020-06-12 2023-10-24 信越化学工業株式会社 Resist underlayer film material, pattern forming method, and resist underlayer film forming method
JP7445583B2 (en) 2020-11-25 2024-03-07 信越化学工業株式会社 Resist underlayer film material, pattern forming method, and resist underlayer film forming method
US20220214617A1 (en) 2020-12-25 2022-07-07 Shin-Etsu Chemical Co., Ltd. Material for forming organic film, patterning process, compound, and polymer
JP7401424B2 (en) 2020-12-25 2023-12-19 信越化学工業株式会社 Organic film-forming materials, pattern-forming methods, and polymers
JP2023048891A (en) 2021-09-28 2023-04-07 信越化学工業株式会社 Composition for forming organic film, patterning process, and compound and polymer for forming organic film
JP2023056788A (en) 2021-10-08 2023-04-20 信越化学工業株式会社 Material for forming organic film, patterning process, and compound
JP2023070577A (en) 2021-11-09 2023-05-19 信越化学工業株式会社 Resist underlayer film material, patterning method, and method for forming resist underlayer film
JP2023074248A (en) 2021-11-17 2023-05-29 信越化学工業株式会社 Composition for forming organic film, patterning process, and compound and polymer for forming organic film
JP2023077221A (en) 2021-11-24 2023-06-05 信越化学工業株式会社 Resist underlay film material, pattern formation method, and resist underlay film formation method
JP2023077955A (en) 2021-11-25 2023-06-06 信越化学工業株式会社 Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, and patterning process
JP2023124171A (en) 2022-02-25 2023-09-06 信越化学工業株式会社 Flattening agent for organic film formation, composition for organic film formation, organic film formation method, and pattern formation method
JP2023128578A (en) 2022-03-03 2023-09-14 信越化学工業株式会社 Composition for forming organic film, patterning method, and compound
JP2023129266A (en) 2022-03-03 2023-09-14 信越化学工業株式会社 Composition for forming metal oxide film, patterning method, and method for forming metal oxide film
JP2023166976A (en) 2022-05-10 2023-11-22 信越化学工業株式会社 Composition for forming metal oxide film, method for forming pattern, and method for forming metal oxide film
JP2023180781A (en) 2022-06-10 2023-12-21 信越化学工業株式会社 Resist underlayer film material, pattern forming method, and resist underlayer film forming method
JP2024008372A (en) 2022-07-08 2024-01-19 信越化学工業株式会社 Composition for forming metal oxide film, pattern formation method and metal oxide film formation method
JP2024024828A (en) 2022-08-10 2024-02-26 信越化学工業株式会社 Wafer edge protective film forming method, pattern forming method, and wafer edge protective film forming composition
IL305619A (en) 2022-09-14 2024-04-01 Shinetsu Chemical Co Compound for forming metal-containing film, composition for forming metal-containing film, patterning process, and semiconductor photoresist material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617800B2 (en) 2008-09-03 2013-12-31 Shin-Etsu Chemical Co., Ltd. Patterning process
EP2447775A1 (en) 2010-11-01 2012-05-02 Shin-Etsu Chemical Co., Ltd. Resist underlayer film composition and patterning process using the same
US8877422B2 (en) 2010-11-01 2014-11-04 Shin-Etsu Chemical Co., Ltd. Resist underlayer film composition and patterning process using the same

Also Published As

Publication number Publication date
TWI282908B (en) 2007-06-21
JP2004205685A (en) 2004-07-22
TW200600969A (en) 2006-01-01

Similar Documents

Publication Publication Date Title
JP3981825B2 (en) Pattern forming method and lower layer film forming material
JP4069025B2 (en) Resist underlayer film material and pattern forming method
JP4105036B2 (en) Resist underlayer film material and pattern forming method
JP4355943B2 (en) Photoresist underlayer film forming material and pattern forming method
JP4659678B2 (en) Photoresist underlayer film forming material and pattern forming method
JP4662063B2 (en) Photoresist underlayer film forming material and pattern forming method
JP4539845B2 (en) Photoresist underlayer film forming material and pattern forming method
JP4662052B2 (en) Photoresist underlayer film forming material and pattern forming method
JP4466854B2 (en) Photoresist underlayer film forming material and pattern forming method
JP4496432B2 (en) Photoresist underlayer film forming material and pattern forming method
JP4388429B2 (en) Resist underlayer film material and pattern forming method
JP4575214B2 (en) Resist underlayer film material and pattern forming method
JP4671046B2 (en) Resist underlayer film material and pattern forming method
JP4013057B2 (en) Pattern forming method and lower layer film forming material
JP4013058B2 (en) Pattern forming method and lower layer film forming material
JP4666166B2 (en) Resist underlayer film material and pattern forming method
US7358025B2 (en) Photoresist undercoat-forming material and patterning process
JP4482763B2 (en) Photoresist underlayer film forming material and pattern forming method
JP4252872B2 (en) Resist underlayer film material and pattern forming method
US20060019195A1 (en) Photoresist undercoat-forming material and patterning process
JP2004271838A (en) Resist underlayer film material and pattern forming method
JP2006293207A (en) Resist underlayer film material and pattern forming method
JP4220361B2 (en) Photoresist underlayer film forming material and pattern forming method
US7427464B2 (en) Patterning process and undercoat-forming material
JP4355643B2 (en) Resist underlayer film material and pattern forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3981825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

EXPY Cancellation because of completion of term