TWI277657B - beta-type titanium alloy - Google Patents

beta-type titanium alloy Download PDF

Info

Publication number
TWI277657B
TWI277657B TW094136206A TW94136206A TWI277657B TW I277657 B TWI277657 B TW I277657B TW 094136206 A TW094136206 A TW 094136206A TW 94136206 A TW94136206 A TW 94136206A TW I277657 B TWI277657 B TW I277657B
Authority
TW
Taiwan
Prior art keywords
weight
contained
titanium alloy
rti
type titanium
Prior art date
Application number
TW094136206A
Other languages
Chinese (zh)
Other versions
TW200619396A (en
Inventor
Satoshi Matsumoto
Original Assignee
Sumitomo Metal Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Ind filed Critical Sumitomo Metal Ind
Publication of TW200619396A publication Critical patent/TW200619396A/en
Application granted granted Critical
Publication of TWI277657B publication Critical patent/TWI277657B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

It is an object of the present invention to provide a beta titanium alloy having a good cold workability, as well as a higher strength than a Ti-20V-4Al-1Snbeta titanium alloy. There is provided a beta titanium alloy which is characterized in that it comprises, in weight %, V: 5-15%, Fe: 0.5-2.5%, Mo: 0.5-6% and Cr: 0.5-5%, in which the value of Xv+2.95XFe+1.5XMo+1.65XCr is 15-23%, in which Xv represents the weight % of the contained V, XFe represents the weight % of the contained Fe, XMo represents the weight % of the contained MO and XCr represents the weight % of the contained Cr, said beta titanium alloy further comprises, in weight %, Al: 1.5-5%, and the residue comprises Ti and impurities.

Description

1277657 (1) 九、發明說明 【發明所屬之技術領域】 本發明是有關/3型鈦合金及其熱處理方法。 【先前技術】 鈦合金很輕而且強度很高,其中尤以被稱爲「Θ型鈦 合金」之由Θ相單體所成的欽合金,大多具有較之以α相 ® 爲主體的鈦合金更優異的冷間加工性,而且有許多的「石 型鈦合金」可藉由時效處理而獲得優異的強度。 已知的石型鈦合金,係有:Ti-20V-4Al-lSn(專利文 獻 1 ) ; Ti-15V-3Cr-3Al-3Sn ; Ti-22V-4A1 (專利文獻 2) ; Ti-15V-6Cr-4Al (專利文獻 3) ; Ti-13V-9Cr-3Al;1277657 (1) Description of the Invention [Technical Field of the Invention] The present invention relates to a /3 type titanium alloy and a heat treatment method therefor. [Prior Art] Titanium alloys are very light and have high strength. Among them, the alloys made of Θ phase monomers, which are called "Θ-type titanium alloys", mostly have titanium alloys mainly based on α-phases. More excellent cold workability, and many "stone-type titanium alloys" can obtain excellent strength by aging treatment. Known stone-type titanium alloys are: Ti-20V-4Al-lSn (Patent Document 1); Ti-15V-3Cr-3Al-3Sn; Ti-22V-4A1 (Patent Document 2); Ti-15V-6Cr -4Al (Patent Document 3); Ti-13V-9Cr-3Al;

Ti-15Mo-5Zr-3Al ; T i - 3 A1 - 8 V - 6 C r - 4 Μ ο - 4 Z r ; Ti-13V-llCr-3A1; Ti-4.5Fe-6.8Mo-l.5Al 等。 其中的 Ti-15V-6Cr-4Al ; Ti-13V-9Cr-3Al ; Ti_15Mo-_ 5Zr-3Al ; Ti-3 Al-8V-6Cr-4Mo-4Zr ; Ti -1 3 V · 1 1 Cr-3 A1 雖然 強度很高,但是因爲冷間和熱間時的變形阻抗很大,加工 性欠佳,僅能使用在特殊的用途而已。 相反地,Ti-20V-4Al-lSn; Ti-15V-3Cr-3Al-3Sn; Ti-22V-4A1則雖然是強度稍低一些,但是卻具有優異的冷間 加工性,所以廣泛地應用在一般用途,其中尤以Ti-20V_ 4Al-lSn因爲具有優異的冷間加工性和較高的強度,所以 被使用在以高爾夫球桿、自行車等的運動用品爲首的各種 用途。 -4- (2) 1277657 · 近年來,基於擴大用途、更加地輕量化、降低成本等 的各種目的,Θ型鈦合金被要求更高強度化,希望能夠兼 具備與上述的Ti-20V_4Al-lSn同樣優異的冷間加工性以及 更高的強度。 然而,至目前爲止的硏究結果,尙未發現出既有優異 的冷間加工性而且具有較之Ti-20V-4Al-lSn更高的強度之 冷型欽合金,因此尙未能符合上述的要求。 [專利文獻1] 專利文獻1是指:日本特許第26404 1 5號公報。 [專利文獻2] 專利文獻2是指:日本特公平6-99765號公報。 [專利文獻3] 專利文獻3是指:日本特開2000-144286號公報。 【發明內容】 [本發明所欲解決的課題] 本發明的技術課題是:鑒於上述問題點,而提供:既 有優異的冷間加工性而且又具有較之Ti-20V-4A1-1 Sn /3型 鈦合金更高的強度之鈦合金。 [用以解決課題之手段] -5- 1277657 · (3) 本發明人爲了解決上述課題,經過通盤地檢討之結 果,找出了如下的創見: 就是針對於要如何來決定鈦合金的Θ相穩定化元素 (也就是乂、?6、]\4〇、0)的含量多寡,並不是依據一般常 例之將其各別單獨添加到鈦金屬時的爲了穩定/3相所需的 最少添加量的比値來決定的,而可藉由採用考慮了各元素 的相互作用後的新的係數,作爲正確地顯示出Θ相穩定化 的指標。 更具體地說,含在Θ型鈦合金中的元素,一般是根據 以各元素單體可將鈦變成yS相單體所需的最低量的逆數來 提供各元素的相穩定化效果的指標,一般的見解是因爲 已經知道了 :以重量%計,含 V : 15 %、Fe : 3.6 %、 Mo : 10%、Cr : 6.3%的話,可將鈦變成冷相單體,因此 若以V作爲基準的話,將所含的F e的重量%乘以3.6分 之15(即,15/ 3.6)後所得到的數値,就和含有該數値的v 的情況等價。 基於這種見解’若想根據以往的想法來計算出Θ相穩 定化的程度,以V當作基準時,所含的V的重量%爲 Xv、所含的Fe的重量%爲XFe、所含的Mo的重量%爲 Xm。、所含的Cr的重量%爲XCr時,理應是可以從 Xv + (15/3.6)XFe + (15/10)XM〇 + (15/6.3)XCr 的値來獲得,但 是根據本發明人的實驗結果加以檢討後,發現了藉由採 用:Xv + 2.95XFe+1.5XMo+1.65Xcr的値,可作爲正確地顯 示/3相穩定化的程度之指標,進而完成了本發明。 -6 - (4) 1277657 亦即,本發明所提供的/3型鈦合金,其特徵爲·以重 量%計,含有 V: 5 〜15%、Fe: 〇·5 〜2.5%、M〇· 〇·5 〜6 %、Cr: 0.5〜5%,且所含的V的重量%爲Xv、所含的 Fe的重量%爲xFe、所含的Mo的重量%爲Xm°、所含的 Cr 的重量 %爲 xCr 時,xv + 2.95XFe+1.5XM〇+1.65Xcr 的値 是15〜23%,而且含有A1: 1.5〜5%,其餘則是由Tl和 雜質所組成的。 [發明的效果] 根據本發明的/3型鈦合金,與τί-2〇ν-4Α1“δη/3型欽 合金相較之下,除了含V之外,又含 以重量%計,含有V: 5〜15%、Fe: 0.5〜2.5%、Mo: 0.5〜6%、Cr : 0.5〜5%,且所含的V的重量%爲Xv、所 含的Fe的重量%爲XFe、所含的Mo的重量%爲χΜ。、所 含的 Cr 的重量 %爲 XCr 時,Xv + 2.95XFe+1.5XM〇+l_65XCr 的値是15〜23%,因此既可維持優異的冷間加工性’又可 藉由固熔強化的作用而具有較之Ti-20V-4A1-1SnP型駄合 金更優異的強度。 【實施方式】 [發明之最佳實施形態] 茲說明決定本實施形態的鈦合金所含的各元素的量之 理由如下。 本實施形態的鈦合金所含有的各元素的量’以重量% (5) 1277657 · 計,V: 5 〜15%、Fe: 0.5 〜2·5%、Mo: 0.5 〜6%、Cr: 0.5〜5%,Al: 1.5〜5%,其餘則是由Ti和雑質所組成 的。 將這些元素所組成的鈦合金熔解之後予以急速冷卻的 話,即可變成具有優異的冷間加工性的Θ型鈦合金。 接下來,將上述/3型鈦合金加工成所希望的形狀之 後,實施所謂的「時效處理」之熱處理’使得強度較之A ® 相更高的α相晶析在上述Θ型鈦合金內’如此一來’即可 提高強度。 V的重量%選定在5〜15%的理由是:如果V未滿5 %的話,yS型鈦合金的冷間加工性會降低,而變成無法獲 得優異的冷間加工性。又,如果V超過1 5 %的話,在實 施上述的時效處理時,將會妨礙α相晶析出來,而無法獲 得較之Ti-20V-4Al-lSny3型鈦合金更優異的強度。Ti-15Mo-5Zr-3Al ; T i - 3 A1 - 8 V - 6 C r - 4 Μ ο - 4 Z r ; Ti-13V-llCr-3A1; Ti-4.5Fe-6.8Mo-l.5Al. Among them, Ti-15V-6Cr-4Al; Ti-13V-9Cr-3Al; Ti_15Mo-_ 5Zr-3Al; Ti-3 Al-8V-6Cr-4Mo-4Zr; Ti -1 3 V · 1 1 Cr-3 A1 Although the strength is high, the deformation resistance is large due to the cold and hot occasions, and the workability is poor, and it can be used only for special purposes. On the contrary, Ti-20V-4Al-lSn; Ti-15V-3Cr-3Al-3Sn; Ti-22V-4A1, although it has a slightly lower strength, has excellent cold workability, so it is widely used in general. In particular, Ti-20V_4Al-lSn is used in various applications including sporting goods such as golf clubs and bicycles because of its excellent cold-working property and high strength. -4- (2) 1277657 - In recent years, the niobium-type titanium alloy is required to have higher strength for various purposes such as expanding the use, reducing the weight, and reducing the cost. It is desirable to have both Ti-20V_4Al-lSn and the above. Also excellent in cold workability and higher strength. However, as a result of the research so far, 冷 has not found a cold-type alloy which has excellent cold-workability and higher strength than Ti-20V-4Al-lSn, so it fails to meet the above-mentioned Claim. [Patent Document 1] Patent Document 1 refers to Japanese Patent No. 26404-15. [Patent Document 2] Patent Document 2 refers to Japanese Patent Publication No. Hei 6-99765. [Patent Document 3] Patent Document 3 refers to Japanese Laid-Open Patent Publication No. 2000-144286. SUMMARY OF THE INVENTION [Problems to be Solved by the Invention] The technical problem of the present invention is to provide an excellent cold interprocessability and a Ti-20V-4A1-1 Sn / in view of the above problems. Titanium alloy with higher strength of type 3 titanium alloy. [Means for Solving the Problem] -5 - 1277657 (3) In order to solve the above problems, the inventors have found out the following findings based on the results of a comprehensive review: How to determine the Θ phase of titanium alloy The amount of stabilizing elements (ie, 乂, 66, ]\4 〇, 0) is not the minimum amount required to stabilize the /3 phase when it is separately added to titanium alone according to the usual practice. The ratio is determined by the comparison, and the new coefficient after considering the interaction of each element can be used as an index to correctly show the stabilization of the Θ phase. More specifically, the element contained in the bismuth type titanium alloy generally provides an index of the phase stabilizing effect of each element based on the inverse number of the minimum amount required to change the titanium into the yS phase monomer by each element monomer. The general opinion is because it is known that, in terms of % by weight, including V: 15%, Fe: 3.6%, Mo: 10%, Cr: 6.3%, titanium can be changed into a cold phase monomer, so if V is As a standard, the number obtained by multiplying the weight % of Fe contained by 15/3.6 (ie, 15/3.6) is equivalent to the case of v containing the number 値. Based on this insight, if you want to calculate the degree of Θ phase stabilization based on the conventional idea, when V is used as a reference, the weight % of V contained is Xv, and the weight % of Fe contained is XFe. The weight % of Mo is Xm. When the weight % of Cr contained is XCr, it is supposed to be obtained from Xv + (15/3.6) XFe + (15/10) XM 〇 + (15/6.3) XCr, but according to the present inventors After reviewing the results of the experiment, it was found that the enthalpy of using: Xv + 2.95XFe + 1.5XMo + 1.65Xcr can be used as an index for accurately indicating the degree of stabilization of the /3 phase, and the present invention has been completed. -6 - (4) 1277657 That is, the titanium alloy of the type /3 provided by the present invention is characterized by containing V: 5 to 15% by weight, Fe: 〇·5 to 2.5%, M〇· 〇·5 to 6 %, Cr: 0.5 to 5%, and the weight % of V contained is Xv, the weight % of Fe contained is xFe, the weight % of Mo contained is Xm°, and the contained Cr When the weight % is xCr, the enthalpy of xv + 2.95XFe + 1.5XM 〇 + 1.65Xcr is 15 to 23%, and contains A1: 1.5 to 5%, and the rest is composed of Tl and impurities. [Effects of the Invention] The /3 type titanium alloy according to the present invention, in addition to V, contains V in addition to V, in addition to τί-2〇ν-4Α1"δη/3 type alloy. 5 to 15%, Fe: 0.5 to 2.5%, Mo: 0.5 to 6%, Cr: 0.5 to 5%, and the weight % of V contained is Xv, and the weight % of Fe contained is XFe, which is contained The weight % of Mo is χΜ. When the weight % of Cr contained is XCr, the enthalpy of Xv + 2.95XFe + 1.5XM 〇 + l_65XCr is 15 to 23%, so that excellent cold workability can be maintained. It is possible to have more excellent strength than the Ti-20V-4A1-1SnP type niobium alloy by the action of solid solution strengthening. [Embodiment] [Best Embodiment of the Invention] It is explained that the titanium alloy of the present embodiment is included. The reason for the amount of each element is as follows. The amount of each element contained in the titanium alloy of the present embodiment is % by weight (5) 1277657 · V: 5 to 15%, Fe: 0.5 to 2.5%, Mo : 0.5 to 6%, Cr: 0.5 to 5%, Al: 1.5 to 5%, and the rest is composed of Ti and tannin. After the titanium alloy composed of these elements is melted and then rapidly cooled, it becomes have Different cold-processed niobium-type titanium alloys. Next, after processing the above-mentioned /3 type titanium alloy into a desired shape, a so-called "aging treatment" heat treatment is performed to make the strength higher than that of A ® . Crystallization of the alpha phase in the above-described niobium-type titanium alloy can increase the strength. The reason why the weight % of V is selected to be 5 to 15% is that if V is less than 5%, the cold workability of the yS type titanium alloy is lowered, and excellent cold workability cannot be obtained. Further, if V is more than 15%, the above-mentioned aging treatment will hinder the crystallization of the α phase, and the strength superior to that of the Ti-20V-4Al-1Sny3 type titanium alloy cannot be obtained.

Fe的重量%選定在0.5〜2.5%的理由是:如果Fe未 ® 滿0 · 5 %的話,無法獲得固熔強化的效果,而將無法獲得 較之Ti-20V-4Al-lSn/3型鈦合金更優異的強度。此外’如 果Fe超過2.5%的話,/3型鈦合金內將會產生Fe的偏 晶,而導致其特性不穩定。The reason why the weight % of Fe is selected to be 0.5 to 2.5% is that if Fe is not over 0 · 5 %, the effect of solid solution strengthening cannot be obtained, and Ti-2V-4Al-lSn/3 type titanium cannot be obtained. The alloy has superior strength. Further, if Fe exceeds 2.5%, Fe crystals will be generated in the /3 type titanium alloy, resulting in unstable properties.

Mo的重量%選定在0.5〜6%的理由是:如果Mo未 滿0 · 5 %的話,無法獲得固熔強化的效果,而將無法獲得 較之Ti-20V-4Al-lSnyS型鈦合金更優異的強度。此外’如 果Mo超過6 %的話,將變成無法獲得優異的冷間加工 性。而且Mo的原料很昂貴,如果添加量加多的話也會有 -8 - 1277657 · (6) 導致成本變高的問題。The reason why the weight % of Mo is selected to be 0.5 to 6% is that if Mo is less than 0.5%, the effect of solid solution strengthening cannot be obtained, and it is impossible to obtain an alloy which is superior to Ti-20V-4Al-lSnyS type titanium alloy. Strength of. In addition, if Mo exceeds 6%, excellent cold workability cannot be obtained. Moreover, Mo's raw materials are very expensive, and if the amount of addition is increased, there will be -8 - 1277657. (6) The problem of high cost.

Cr的重量%選定在0·5〜5%的理由是:如果Cr未滿 0.5%的話,無法獲得固熔強化的效果,而將無法獲得較 之Ti-20V-4Al-lSn冷型鈦合金更優異的強度。此外,如果 Cr超過5%的話,0型鈦合金內將會產生Cr的偏晶,而 導致其特性不穩定。 V、Fe、Mo、Cr是用來穩定/3相的元素,相對於此, ® A1則是具有穩定α相的作用。A1的重量%選定在1 .5〜5 %的理由是:如果Α1未滿1 . 5 %的話,在實施上述的時效 處理時,無法促進α相晶析出來,而將無法獲得較1^-20V-4Al-lSn/3型鈦合金更優異的強度。而且Α1具有抑制 ω相晶析出來的效果,如果A1未滿1 .5%的話,ω相將會 晶析出來而有脆化之虞。此外,如果Α1超過5 %的話,冷 間加工性會降低,而變成無法獲得優異的冷間加工性。 又,關於V、Fe、Mo、Cr的含量,假設所含的V的 ^ 重量%爲Xv、所含的Fe的重量%爲XFe、所含的Mo的 重量%爲 XM。、所含的 Cr的重量%爲 XCr時,將 Xv-f2.95XFe+1.5XM〇 + 1.65Xcr 的値選定在 1 5 〜2 3 % 的話, 可使其具有與TidOV^Al-lSnf型鈦合金同等的冷間加工 性,如果該數値未滿1 5 %的話,即使從沒變態點以上的溫 度開始的冷卻速度被提高,也難以獲得Θ單相的金相組 織,且會因爲麻田散鐵相、α相等的晶析出來而導致加工 性惡化。相反地,如果該數値超過2 3 %的話,在實施上述 的時效處理時,將會妨礙α相晶析出來,而無法獲得較之 -9 - (7) 1277657 ·The reason why the weight % of Cr is selected to be 0.5 to 5% is that if Cr is less than 0.5%, the effect of solid solution strengthening cannot be obtained, and it is impossible to obtain a cold titanium alloy which is more than Ti-20V-4Al-lSn. Excellent strength. Further, if Cr exceeds 5%, Cr crystals will be generated in the 0-type titanium alloy, resulting in unstable characteristics. V, Fe, Mo, and Cr are elements for stabilizing the /3 phase, whereas ® A1 has a function of stabilizing the α phase. The reason why the weight % of A1 is selected at 1.5 to 5% is that if Α1 is less than 1.5%, when the above aging treatment is carried out, the α phase crystallization cannot be promoted, and it is impossible to obtain more than 1^- 20V-4Al-lSn/3 titanium alloy has superior strength. Further, Α1 has an effect of suppressing crystallization of the ω phase, and if A1 is less than 1.5%, the ω phase will be crystallized and embrittled. In addition, if Α1 exceeds 5%, the cold workability is lowered, and excellent cold workability cannot be obtained. Further, regarding the contents of V, Fe, Mo, and Cr, it is assumed that the wt% of V contained is Xv, the wt% of Fe contained is XFe, and the weight % of Mo contained is XM. When the weight % of Cr contained is XCr, the enthalpy of Xv-f2.95XFe+1.5XM〇+ 1.65Xcr is selected to be 1 5 ~2 3 %, so that it can be made with TidOV^Al-lSnf type titanium alloy. The same cold interdability, if the number is less than 15%, even if the cooling rate from the temperature above the metamorphic point is increased, it is difficult to obtain the metallurgical structure of the single phase, and it will be because of the metal Crystallization of equal phase and α causes the processability to deteriorate. On the contrary, if the number 値 exceeds 23%, the above-mentioned aging treatment will hinder the crystallization of the α phase, and it is impossible to obtain -9 - (7) 1277657

TidOVIAl-lSnA型鈦合金更優異的強度。 此外,如果有Θ相以外的其他金相例如:^相晶析出 來的話,將會有導致冷間加工性降低之虞,因此’基於抑 制其他的金相晶析出來的考量,從/3變態點以上的溫度開 始進行冷卻時,至少在降低至500 °C以前的階段’所採用 的平均冷卻速度是1〜1 0 0 °C /秒爲宜,因爲採用這種範圍 的冷卻速度的話,其他的金相晶析出來的可能性較少。 尤其是 Xv + 2.95XFe+1.5XM〇+1.65XCr 的値爲 17% 以下 的組成分者,很容易因爲低冷卻速度而導致其他金相的晶 析出來,因此是以採用上述的範圍的冷卻速度來進行冷卻 爲宜。 上述冷卻速度選定在1〜1 00 °C /秒的範圍之理由是: 如果是1 °c /秒以下的話,容易晶析出Θ相以外的其他金 相;然而即使將冷卻速度提高至1 00 °C /秒以上’也不容 易再提高防止^相以外的其他金相晶析出來的效果。TidOVIAl-lSnA type titanium alloy has superior strength. In addition, if there is a metal phase other than the Θ phase, for example, the crystal phase is precipitated, there is a problem that the cold workability is lowered. Therefore, based on the consideration of suppressing other metallographic crystallization, the value is above the /3 metamorphic point. When the temperature starts to cool, at least in the stage before the temperature is lowered to 500 °C, the average cooling rate is preferably 1 to 100 °C / sec, because other metallographic crystals are used in this range of cooling rate. There are fewer possibilities for analysis. In particular, XV + 2.95XFe + 1.5XM 〇 + 1.65XCr has a enthalpy of 17% or less, and it is easy to crystallize other metal phases due to a low cooling rate, so the cooling rate in the above range is employed. It is advisable to carry out cooling. The reason why the cooling rate is selected in the range of 1 to 100 ° C / sec is that if it is 1 ° C / sec or less, it is easy to crystallize other metal phases other than the Θ phase; however, even if the cooling rate is increased to 100 ° It is not easy to increase the effect of preventing the metallographic crystallization other than the phase.

此外,用以穩定Θ相的元素,除了 V、Fe、Mo、Cr 之外,亦可單獨或者倂用^、^、…、“^(^等元素。 這些元素的含量,Nb: 〇·5〜2%、Ta: 0.5〜2%、Nl· 0.25 〜1%、Μη: 0.25 〜1%、Co· 0.25 〜1% ’ 而且所 S 的V的重量%爲Xv、所含的Fe的重量%爲xFe、所含的 Mo的重量%爲XM。、所含的Cr的重量%爲Xcr、所含的 Nb的重量%爲XNb、所含的Ta的重量%爲XTa 、所含的 Ni的重量%爲XNi、所含的Μη的重量%爲、所含的 Co 的重量 % 爲 Xc。時,xv + 2.95XFe+ 1.5XMc)+ 1.65Xcr + -10- 1277657 *In addition, the elements used to stabilize the Θ phase, in addition to V, Fe, Mo, Cr, can also be used alone or in combination with ^, ^, ..., "^ (^ and other elements. The content of these elements, Nb: 〇 · 5 〜2%, Ta: 0.5 to 2%, Nl·0.25 to 1%, Μη: 0.25 to 1%, Co·0.25 to 1%' and the weight % of V of S is Xv, and the weight % of Fe contained The weight % of Mo contained in xFe is XM. The weight % of Cr contained is Xcr, the weight % of Nb contained is XNb, and the weight % of Ta contained is XTa and the weight of Ni contained. % is XNi, the weight % of Μη contained is, and the weight % of Co contained is Xc. When xv + 2.95XFe+ 1.5XMc) + 1.65Xcr + -10- 1277657 *

【Is /3相穩定化 指標※1 19.8 20.6 19.6 20.5 20.5 20.5 22.0 20.1 20.9 cn r-H (Ν ! 21.2 16.5 26.8 10.5 20.0 27.9 24.9 23.5 成分(%) 其餘 1其餘I 其餘 其餘 其餘 其餘 其餘 其餘 i其餘 其餘 其餘 i其餘 其餘 其餘 其餘 其餘 1其餘1 Μη ο ο 〇 ο ο ο 〇 ο ο ο ο ο ο ο ο ο ο ο Ο ο ο 〇 ο ο ο 〇 ο d ο ο ο ο ο ο ο ο 参”Η ο ο 〇 ο ο ο 〇 Ο ο ο ο ο ο ο ο ο ο cd Η ο ο 〇 ο ο ο d ο ο ο ο ο ο ο ο ο ο JO Ζ ο ο 〇 ο ο ο in ο ο ^Τ) d ΜΟ Ο ο ο ο ο ο ο ο Ν ο ο 〇 ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο 〇 τ-Η Ο ο ο ο ο ο ο ο ο ο ο ο ο ΐ'·Ή cn m m m cn m m m cn m m m (Τ) m cn 寸 m Μο Ο (Ν ο ο ο (Ν d ο d d ο ο ο ο ο Ο Vh U 寸 寸 in d 寸 寸 寸 寸 寸 寸 寸 CN ο Ον ν〇 寸 <υ ν/Ί τ-Η r-H 1—H r-H in t—Η Η ^T) r-H τ—Η τ-Η m ο ο Ο ο r-H > 00 00 00 00 00 00 00 00 00 00 00 00 ο (Ν m τ-Η ^Η τ··Η 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 實施例8 實施例9 實施例ίο 實施例11 比較例1 比較例2 比較例3 比較例4 比較例5 比較例6 。M}s。UXIc^i+ixε·(N+gx9·ΐ¾:εd+fx寸Όΐxς9Ί+ix「l弋¾ς6·(N+>x:l※ϊi^ •12- (10) 1277657 _ 實施過熔體化處理後,以平均冷卻速度爲4 °C /秒的 速度冷卻至5 0 〇t,然後,自然冷卻至室溫爲止。 然後,除去鏽皮後,進行冷乳以製作成厚度1 mm的 /5型鈦合金的薄片試料。 (評價方式) 針對於各實施例、比較例,就下列的項目進行評價。 <熱間變形阻抗> 從鑄塊切割出直徑8mmx長度12mm的試驗片,使用 此一試驗片以加熱式自動変態記録裝置進行試驗,以求出 熱間變形阻抗。具體而言,以紅外線將上述試驗片急速加 熱至900°C,並且求出:以50mm/秒的速度,以50%的 壓縮率進行壓縮加工時的應力,將此一應力當作「熱間變 形阻抗」。 參 <臨界冷軋輥乳率> 將鑄塊熱軋成厚度4mm之後,實施熔體化處理,冷 卻之後,將上下表面個削掉0 · 5 mm以去除鏽皮,使得板厚 度變成3mm。 接下來,以# 1 〇0號的砂紙將端面硏磨之後,進行冷 軋。每實施過1 〇%的冷軋之後,就觀察端面一次,以確認 是否有裂縫產生。 如果每10mm的範圍內有1根以上的裂縫(該裂縫的深 -13- (11) 1277657 · 度是從端面起算1 mm以上)產生時,該時點的輥軋率就被 當作「臨界冷軋輥軋率」。 此外,關於臨界冷軋輥軋率,是以70% (〇.9mm厚度) 的値當作最大,來進行評價。 <耐力以及拉伸強度> 將厚度1 mm的薄片試料製作成兩種試料,一種是先 ® 在真空中實施熱處理後,進行熔體化處理(800 °C X 15分 鐘);另一種則是在上述的熔體化處理後,又實施了時效 處理(5 00 °C x8小時)的。將這些經過熱處理後的薄片試料 製作成:平行部位的寬度是6.25mm;標點間距離是25mm 的二分之一尺寸的拉伸試驗片,並且依據JIS Z 2241的拉 伸試驗方法,以0.1mm/分鐘的速度進行拉伸試驗,以求 出拉伸強度以及0.2%耐力。 將以上各項的評價結果匯整顯示於表2。 -14- (12) 1277657 - (12)[Is / 3 phase stabilization index ※1 19.8 20.6 19.6 20.5 20.5 20.5 22.0 20.1 20.9 cn rH (Ν ! 21.2 16.5 26.8 10.5 20.0 27.9 24.9 23.5 Ingredients (%) Remaining 1 remaining I remaining the rest remaining rest remaining i remaining rest remaining i rest the rest of the rest of the remaining 1 remaining 1 Μ ο ο 〇 ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο Cn ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο Mm cn mmm cn mmm (Τ) m cn inch m Μο Ο (Ν ο ο ο (Ν d ο dd ο ο ο ο ο Ο Vh U inch inch in d inch inch inch inch inch inch CN ο Ον ν〇 inch<υ ν/ τ τ-Η rH 1—H rH in t—Η Η ^T) rH τ—Η τ-Η m ο ο Ο ο rH > 00 00 00 00 00 00 00 00 00 00 00 00 ο (Ν m τ-Η ^Η τ··Η Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example ίο Example 11 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 M}s. UXIc^i+ixε·(N+gx9·ΐ3⁄4: εd+fx inch Όΐxς9Ί+ix "l弋3⁄4ς6·(N+>x: l※ϊi^ •12- (10) 1277657 _ After the melt treatment, it is cooled to 50 〇t at an average cooling rate of 4 °C / sec, and then naturally cooled to room temperature. After the scale was removed, cold milk was applied to prepare a sheet sample of a type 5 titanium alloy having a thickness of 1 mm. (Evaluation method) The following items were evaluated for each of the examples and the comparative examples. <Heat deformation resistance> A test piece having a diameter of 8 mm x a length of 12 mm was cut out from the ingot, and the test piece was tested by a heating type automatic recording apparatus to obtain a heat distortion resistance. Specifically, the test piece was rapidly heated to 900 ° C by infrared rays, and the stress at the time of compression processing at a compression ratio of 50% at a speed of 50 mm/sec was determined, and this stress was regarded as "heat room". Deformation impedance". <Critical Cold Rolling Emulsion Rate> After hot rolling the ingot to a thickness of 4 mm, a melt treatment was carried out, and after cooling, the upper and lower surfaces were scraped off by 0.5 mm to remove the scale, so that the thickness of the sheet became 3 mm. . Next, the end faces were honed with sandpaper of #1 〇0, and then cold rolled. After each 1% of cold rolling was performed, the end faces were observed once to confirm whether cracks were generated. If there is more than one crack per 10 mm (the depth of the crack is -13 - (11) 1277657 · the degree is 1 mm or more from the end face), the rolling rate at that time is regarded as "critical cold". Rolling rate". Further, regarding the critical cold rolling ratio, the enthalpy of 70% (〇.9 mm thickness) was taken as the maximum. <Endurance and tensile strength> A sample having a thickness of 1 mm was prepared into two samples, one of which was first subjected to heat treatment in a vacuum and then subjected to a melt treatment (800 ° C X for 15 minutes); the other was After the above melt treatment, aging treatment (500 ° C x 8 hours) was carried out. These heat-treated sheet samples were prepared such that the width of the parallel portion was 6.25 mm; the distance between the punctuation points was a half-size tensile test piece of 25 mm, and according to the tensile test method of JIS Z 2241, 0.1 mm. A tensile test was performed at a speed of /min to determine tensile strength and 0.2% endurance. The evaluation results of the above items are shown in Table 2. -14- (12) 1277657 - (12)

【(Ns 時效處理後 拉伸強度 (MPa) 1446 1394 1334 1042 1412 1203 1405 1395 1342 1350 1305 950 1 1198 1009 1146 1190 耐力(MPa) 1360 1316 1252 1337 1345 1_ 1120 1342 1331 1295 1296 1210 870 讎 1088 940 1034 1050 時效處理前 拉伸強度 (MPa) 882 857 699 ! 844 852 845 840 845 842 850 725 839 1 672 885 856 860 耐力(MPa) 831 814 654 812 815 820 807 815 810 812 450 782 1 642 866 834 822 臨界冷軋輥軋率 (%) 〇 卜 〇 卜 〇 卜 〇 卜 〇 卜 〇 卜 〇 卜 〇 〇 卜 〇 卜 〇 卜 〇 〇 CN 〇 卜 〇 卜 〇 卜 〇 熱間變形阻抗 (MPa) 205 190 201 208 207 215 205 210 214 213 193 233 丨 175 185 295 270 225 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 實施例8 實施例9 實施例10 實施例11 比較例1 比較例2 比較例3 比較例4 比較例5 比較例6 -15- (13) 1277657 . 此外,表3是顯示參考例1〜7的條件和觀察其是否 形成了其他金相的狀況。這些參考例1〜7,進行過熔體化 處理後冷卻至5 〇 〇 c爲止的平均冷卻速度是如表3所不的 條件。除了平均冷卻速度不同之外,其他的條件都是與實 施例1的試料的條件相同。此外,上述的觀察方法是使用 X射線繞射裝置從圖表來判斷是否形成了 Θ相以外的其他 金相。 表3][(Ns aging treatment tensile strength (MPa) 1446 1394 1334 1042 1412 1203 1405 1395 1342 1350 1305 950 1 1198 1009 1146 1190 endurance (MPa) 1360 1316 1252 1337 1345 1_ 1120 1342 1331 1295 1296 1210 870 雠1088 940 1034 1050 aging treatment tensile strength (MPa) 882 857 699 ! 844 852 845 840 845 842 850 725 839 1 672 885 856 860 endurance (MPa) 831 814 654 812 815 820 807 815 810 812 450 782 1 642 866 834 822 critical Cold rolling rate (%) 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 215 205 210 214 213 193 233 丨 175 185 295 270 225 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Example 1 Comparison Example 1 Comparison Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 -15- (13) 1277657. Further, Table 3 shows the conditions of Reference Examples 1 to 7 and the state in which it was observed whether or not other metal phases were formed. 1~7, over-melting The average cooling rate after cooling to 5 〇〇c after the treatment was a condition as shown in Table 3. The other conditions were the same as those of the sample of Example 1 except that the average cooling rate was different. The observation method is to use an X-ray diffraction device to determine from the chart whether or not a metal phase other than the Θ phase is formed. Table 3]

熔體化處理後冷卻至500°C爲 止的平均冷卻速度(°C /秒) 其他金相白勺 形成狀 參考例1 5 0 未發一 參考例2 10 未發 參考例3 2 未發 參考例4 80 未發 參考例5 0.5 觀察到 參考例6 0.1 觀察到 參考例7 0.01 觀察到iJL 由表2的結果可知: 實施例1〜1 1與比較例3的Ti-20V-4A1-1 Sn 0型鈦合 金的結果相較,臨界冷軋輥軋率並不會下降,而是具_ ^ Ti-20V-4Al-lSn/3型鈦合金同樣優異的冷間加工性。 此外,實施例1〜11與比較例3的Ti-20V-4AMSn3 -16- (14) 、1277657 · 型鈦合金的結果相較’時效處理前後也都顯示t 値。因此可知依據本發明可獲得較Ti-2〇V-4A1. 合金更優異的強度之鈦合金。 此外,從參考例1〜7的結果可知,只要并 理後冷卻至 5 0 0 °C爲止的平均冷卻速度(°C /秒 定範圍內的話,即可降低Θ相以外的其他金相』 虞。 i較高的數 lSn/5型鈦 F熔體化處 )選定在預 3析出來之 -17-Average cooling rate (°C / sec) after cooling to 500 ° C after melt treatment Other forms of metallographic reference Example 1 0 0 No reference example 2 10 No reference example 3 2 No reference example 4 80 No reference example 5 0.5 Reference Example 6 was observed 0.1 Reference Example 7 was observed 0.01 iJL was observed From the results of Table 2, it was found that Examples 1 to 1 1 and Ti-20V-4A1-1 Sn 0 of Comparative Example 3 As a result of the titanium alloy, the critical cold rolling rate does not decrease, but the cold inter-processability is also excellent with the _ ^ Ti-20V-4Al-lSn/3 type titanium alloy. Further, the results of Examples 1 to 11 and Ti-20V-4AMSn3 -16-(14) and 1277657-type titanium alloys of Comparative Example 3 showed t 前后 before and after the aging treatment. Therefore, it is understood that a titanium alloy having superior strength to Ti-2〇V-4A1. alloy can be obtained according to the present invention. Further, from the results of Reference Examples 1 to 7, it is understood that the average cooling rate until the temperature is cooled to 500 ° C after the combination (in the range of ° C / sec, the metallographic phase other than the Θ phase can be lowered) 虞i higher number lSn/5 type titanium F melter) selected in the pre-3 precipitation -17-

Claims (1)

(1) 1277657 十、申請專利範圍 1. 一種yS型鈦合金,其特徵爲: 以重量%計,含有 V: 5〜15%、Fe: 0.5〜2.5%、 Μο: 0.5〜6%、Cr: 0.5〜5%,且所含的 V的重量%爲 Xv、所含的Fe的重量%爲XFe、所含的Mo的重量%爲 Xm。、所含的 Cr 的重量 %爲 XCr 時,Xv + 2.95XFe+ 1·5ΧΜο + 1.65XCr的値是15〜23%,而且含有Al: 1.5〜5%,其餘 ®則是由Ti和雜質所組成的。 2. —種;8型鈦合金,其特徵爲: 以重量%計,含有 V:5〜15%、Fe:0.5〜2.5%、 Mo: 0.5〜6%、Cr: 0.5〜5%,且所含的 V的重量%爲 Xv、所含的Fe的重量%爲XFe、所含的Mo的重量%爲 Xm。、所含的 Cr的重量%爲 XCr時,Xv+ 2.95XFe + 1.5XM〇+ 1.65XCr的値是 15〜23% ;而且含有Al: 1.5以 上未滿5% ;含有Sn : 5%以下與Zr : 5%以下的至少其中 ^ 一方;所含的A1的重量%爲XA1、所含的Sn的重量%爲 XSn、所含的 Zr的重量%爲XZr時,XA1+ ( XSn/ 3 ) + (Xzr/6)的値是1.5〜5,其餘則是由Ti和雜質所組成 的。 3. —種/3型鈦合金,其特徵爲: 以重量%計,含有 V:5〜15%、Fe:0.5〜2.5%、 Mo: 0.5 〜6%、Cr: 0.5 〜5%,且含有由 Nb: 0.5 〜2%、 Ta: 0.5 〜2%、Ni: 0.25 〜1%、Μη: 0.25 〜1%、Co: 0.25〜1%之中所選出來的至少一種;且所含的V的重量 -18- (2) 1277657 %爲Xv、所含的Fe的重量%爲XFe、 %爲Xm。、所含的Cr的重量%爲XCr、 %爲XNb、所含的Ta的重量%爲XTa %爲XNi、所含的Μη的重量%爲XMn, % 爲 Xc。時,Xv + 2.95XFe+ 1·5ΧΜο + 0.3XTa+ 1.6XNi + 2.3XMn + 2.1Xc。的値是 有Al: 1.5〜5% ;其餘則是由Ti和雜f 4. 一種/3型鈦合金,其特徵爲: 以重量%計,含有 V:5〜15%、 Mo: 0.5 〜6%、Cr: 0.5 〜5%,且含有 Ta : 0.5 〜2 %、Ni : 0.25 〜1 %、Μη : 0.25〜1%之中所選出來的至少一種;i %爲Xv、所含的Fe的重量%爲XFe、 %爲Xm。、所含的Cr的重量%爲XCr、 %爲XNb、所含的Ta的重量%爲XTa %爲XNi、所含的Μη的重量%爲XMn、 % 爲 Xc。 時 , Xv + 2.95XFe + 0.4XNb + 〇.3XTa+ 1.6X]SIi+2.3XMn + 2· lXc〇 而且含有 Al:1.5以上未滿 5%;含 Zr : 5 %以下的至少其中一方;所含 XA1、所含的Sn的重量%爲XSn、所售 Xzr 時,XA1+ ( Xsn / 3 ) + ( XZr / 6 )的 則是由Ti和雜質所組成的。 5 . —種/3型鈦合金的熱處理方法, 所含的Μ 〇的重量 所含的Nb的重量 、所含的N i的重量 、所含的C 〇的重量 1.65XCr+ 0.4XNb + 15〜23% ;而且含 ί所組成的。 Fe : 0.5 〜2.5 %、 由 Nb : 0.5 〜2%、 0.25 〜1 %、Co : L所含的V的重量 所含的Mo的重量 所含的Nb的重量 、所含的N i的重量 所含的C 〇的重量 1 .5Xm〇+1 .65Xcr + 的値是1 5〜2 3 % ; 有 Sn : 5%以下與 的 A1的重量%爲 •的Zr的重量%爲 値是1 . 5〜5,其餘 是申請專利範圍第 -19 - (3) 1277657 1項至第4項的任何一項所述的/3型鈦合金的熱處理方 法,其特徵爲:先加熱至Θ變態點溫度以上,然後以1〜 1 00 °C /秒的平均冷卻速度,冷卻到至少5 00 °C以下的溫 度。(1) 1277657 X. Patent Application Range 1. A yS type titanium alloy characterized by: V: 5 to 15% by weight, Fe: 0.5 to 2.5%, Μο: 0.5 to 6%, Cr: 0.5 to 5%, and the weight % of V contained is Xv, the weight % of Fe contained is XFe, and the weight % of Mo contained is Xm. When the weight % of Cr contained is XCr, the enthalpy of Xv + 2.95XFe + 1·5ΧΜο + 1.65XCr is 15 to 23%, and contains Al: 1.5 to 5%, and the remaining ® is composed of Ti and impurities. . 2. A type 8 titanium alloy characterized by: V: 5 to 15% by weight, Fe: 0.5 to 2.5%, Mo: 0.5 to 6%, Cr: 0.5 to 5%, and The weight % of V contained is Xv, the weight % of Fe contained is XFe, and the weight % of Mo contained is Xm. When the weight % of Cr contained is XCr, the enthalpy of Xv+ 2.95XFe + 1.5XM 〇 + 1.65XCr is 15 to 23%; and Al: 1.5 or more and less than 5%; and Sn: 5% or less and Zr: At least one of 5% or less; the weight % of A1 contained is XA1, the weight % of Sn contained is XSn, and the weight % of Zr contained is XZr, XA1+ ( XSn / 3 ) + (Xzr/ The enthalpy of 6) is 1.5 to 5, and the rest is composed of Ti and impurities. 3. A type/3 type titanium alloy characterized by: V: 5 to 15% by weight, Fe: 0.5 to 2.5%, Mo: 0.5 to 6%, Cr: 0.5 to 5%, and containing At least one selected from the group consisting of Nb: 0.5 to 2%, Ta: 0.5 to 2%, Ni: 0.25 to 1%, Μη: 0.25 to 1%, and Co: 0.25 to 1%; and Weight -18- (2) 1277657 % is Xv, and the weight % of Fe contained is XFe and % is Xm. The weight % of Cr contained is XCr, % is XNb, and the weight % of Ta contained is XTa % is XNi, and the weight % of Mn contained is XMn, and % is Xc. When, Xv + 2.95XFe + 1·5ΧΜο + 0.3XTa + 1.6XNi + 2.3XMn + 2.1Xc. The crucible is Al: 1.5 to 5%; the rest is Ti and hetero-f 4. A type/3 type titanium alloy characterized by: V: 5 to 15% by weight, Mo: 0.5 to 6 %, Cr: 0.5 to 5%, and at least one selected from Ta: 0.5 to 2%, Ni: 0.25 to 1%, Μη: 0.25 to 1%; i% is Xv, and Fe contained The weight % is XFe and the % is Xm. The weight % of Cr contained is XCr, % is XNb, and the weight % of Ta contained is XTa % is XNi, and the weight % of Μη contained is XMn and % is Xc. When Xv + 2.95XFe + 0.4XNb + 〇.3XTa+ 1.6X]SIi+2.3XMn + 2· lXc〇 and contains Al: 1.5 or more and less than 5%; and at least one of Zr: 5% or less; XA1 When the weight % of Sn contained is XSn or Xzr sold, XA1+ ( Xsn / 3 ) + ( XZr / 6 ) is composed of Ti and impurities. 5 . The heat treatment method of the type / 3 type titanium alloy, the weight of the niobium contained in the weight of the niobium contained, the weight of the Ni contained, and the weight of the C 含 contained 1.65XCr + 0.4XNb + 15~23 % ; and consists of ί. Fe: 0.5 to 2.5%, Nb: 0.5 to 2%, 0.25 to 1%, the weight of V contained in the weight of V contained in Co: L, the weight of Nb, and the weight of Ni contained. The weight of C 〇 containing 1.5 X 〇 . . . . 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 ; ; ; ; ; 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有</ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; Then, at an average cooling rate of 1 to 100 ° C / sec, cool to a temperature of at least 500 ° C. -20--20-
TW094136206A 2004-10-15 2005-10-17 beta-type titanium alloy TWI277657B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301186A JP4939740B2 (en) 2004-10-15 2004-10-15 β-type titanium alloy

Publications (2)

Publication Number Publication Date
TW200619396A TW200619396A (en) 2006-06-16
TWI277657B true TWI277657B (en) 2007-04-01

Family

ID=36148452

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094136206A TWI277657B (en) 2004-10-15 2005-10-17 beta-type titanium alloy

Country Status (5)

Country Link
US (1) US20080092997A1 (en)
JP (1) JP4939740B2 (en)
CN (1) CN101010438B (en)
TW (1) TWI277657B (en)
WO (1) WO2006041166A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4783214B2 (en) * 2006-06-09 2011-09-28 株式会社神戸製鋼所 Titanium alloys and press-molded parts with excellent press workability
JP5130850B2 (en) 2006-10-26 2013-01-30 新日鐵住金株式会社 β-type titanium alloy
GB2470613B (en) * 2009-05-29 2011-05-25 Titanium Metals Corp Alloy
RU2425164C1 (en) 2010-01-20 2011-07-27 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Secondary titanium alloy and procedure for its fabrication
JP5807648B2 (en) * 2013-01-29 2015-11-10 信越半導体株式会社 Double-side polishing apparatus carrier and wafer double-side polishing method
CN103114224B (en) * 2013-02-01 2015-01-28 宝钛集团有限公司 Multi-component alloy composite reinforced high-strength titanium alloy and preparation method thereof
US10000838B2 (en) * 2014-01-28 2018-06-19 Titanium Metals Corporation Titanium alloys exhibiting resistance to impact or shock loading
EP3449024B1 (en) * 2016-04-25 2020-12-30 Howmet Aerospace Inc. Bcc materials of titanium, aluminum, niobium, vanadium, and molybdenum, and additive manufacturing method using said materials
US11136650B2 (en) 2016-07-26 2021-10-05 The Boeing Company Powdered titanium alloy composition and article formed therefrom
CN106086740B (en) * 2016-08-19 2018-03-06 西北有色金属研究院 A kind of method for improving high-strength titanium alloy ingot casting turning processability
CN106148761B (en) * 2016-08-31 2017-12-08 中国船舶重工集团公司第七二五研究所 A kind of anti-corrosion solderable titanium alloy of high intensity high impact toughness and preparation method thereof
CN107747002A (en) * 2017-11-01 2018-03-02 五华县新锐科技有限公司 A kind of titanium alloy and its manufacture method applied to sporting goods
CN109082561A (en) * 2018-09-27 2018-12-25 燕山大学 A kind of high-ductility titanium alloy and preparation method thereof
CN112779437B (en) * 2019-10-23 2022-12-27 大田精密工业股份有限公司 Titanium alloy material for golf club head and golf titanium alloy club head
CN110846535A (en) * 2019-11-25 2020-02-28 江苏威拉里新材料科技有限公司 Titanium alloy powder
CN115466869A (en) * 2022-08-19 2022-12-13 西安建筑科技大学 Preparation method of low-cost high-strength Ti-Al-V-Fe alloy material
CN115404382B (en) * 2022-09-22 2023-06-06 东南大学 High-strength high-plasticity titanium alloy and preparation method thereof
CN115874081A (en) * 2022-12-02 2023-03-31 国网福建省电力有限公司 Titanium alloy material, preparation method thereof and prepared submarine cable metal sleeve

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676460B1 (en) * 1991-05-14 1993-07-23 Cezus Co Europ Zirconium PROCESS FOR THE MANUFACTURE OF A TITANIUM ALLOY PIECE INCLUDING A MODIFIED HOT CORROYING AND A PIECE OBTAINED.
JPH05255780A (en) * 1991-12-27 1993-10-05 Nippon Steel Corp High strength titanium alloy having uniform and fine structure
US6444165B1 (en) * 1999-01-12 2002-09-03 C. Edward Eckert Heated trough for molten aluminum
RU2169782C1 (en) * 2000-07-19 2001-06-27 ОАО Верхнесалдинское металлургическое производственное объединение Titanium-based alloy and method of thermal treatment of large-size semiproducts from said alloy
RU2169204C1 (en) * 2000-07-19 2001-06-20 ОАО Верхнесалдинское металлургическое производственное объединение Titanium-based alloy and method of thermal treatment of large-size semiproducts from said alloy
DE10329899B8 (en) * 2003-07-03 2005-05-19 Deutsche Titan Gmbh Beta titanium alloy, process for producing a hot rolled product from such alloy and its uses
JP4263987B2 (en) * 2003-11-27 2009-05-13 株式会社神戸製鋼所 High-strength β-type titanium alloy

Also Published As

Publication number Publication date
CN101010438B (en) 2011-01-26
JP2006111934A (en) 2006-04-27
US20080092997A1 (en) 2008-04-24
WO2006041166A1 (en) 2006-04-20
TW200619396A (en) 2006-06-16
JP4939740B2 (en) 2012-05-30
CN101010438A (en) 2007-08-01

Similar Documents

Publication Publication Date Title
TWI277657B (en) beta-type titanium alloy
TWI572721B (en) High strength alpha/beta titanium alloy
JP5196083B2 (en) High-strength α + β-type titanium alloy hot-rolled sheet excellent in cold coil handling and manufacturing method thereof
TW200938639A (en) Weldable oxidation resistant nickel-iron-chromium-aluminum alloy
JP6169950B2 (en) Aluminum alloy substrate for magnetic disk
JP5278494B2 (en) Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability
JP2015525287A (en) Super sag resistant and melt resistant fin material with very high strength
US3994695A (en) Composite aluminum brazing sheet
WO2005118898A1 (en) Titanium alloy and method of manufacturing titanium alloy material
JP2021526594A (en) A method for producing an Al-Mg-Mn alloy plate product having improved corrosion resistance.
JPS5985837A (en) Al alloy for fin material of heat exchanger with superior sag resistance
US3342590A (en) Precipitation hardenable stainless steel
JPH0641623B2 (en) Controlled expansion alloy
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
JP2831157B2 (en) Al-Mg based superplastic aluminum alloy sheet excellent in strength and corrosion resistance and method for producing the same
JP3683443B2 (en) Aluminum alloy composite material for heat exchanger and manufacturing method thereof
JPH10324956A (en) Ferritic stainless steel sheet excellent in ridging property and workability and manufacturing therefor
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
JP4202626B2 (en) Titanium alloy for eyeglass frames with excellent cold workability and fatigue strength after brazing
JP4167166B2 (en) High Al content ferritic stainless steel hot rolled steel strip with excellent toughness and method for producing the same
JP4001368B2 (en) High hardness aluminum alloy extruded material with excellent brazeability and machinability and its manufacturing method
JP2003138330A (en) Copper-base alloy and its manufacturing method
JP3099911B2 (en) Damping alloy
JPH06287670A (en) Al-mg alloy having high corrosion resistance and high strength and its production
US3970449A (en) Heat treatable nickel-base alloys

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees