TWI269549B - Method, base station and terminal in a multiple-access multiple-input multiple-output communication system - Google Patents

Method, base station and terminal in a multiple-access multiple-input multiple-output communication system Download PDF

Info

Publication number
TWI269549B
TWI269549B TW091132665A TW91132665A TWI269549B TW I269549 B TWI269549 B TW I269549B TW 091132665 A TW091132665 A TW 091132665A TW 91132665 A TW91132665 A TW 91132665A TW I269549 B TWI269549 B TW I269549B
Authority
TW
Taiwan
Prior art keywords
terminal
channel
data
terminals
snr
Prior art date
Application number
TW091132665A
Other languages
Chinese (zh)
Other versions
TW200302642A (en
Inventor
Jay R Walton
Mark Wallace
Steven J Howard
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200302642A publication Critical patent/TW200302642A/en
Application granted granted Critical
Publication of TWI269549B publication Critical patent/TWI269549B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/066Combined feedback for a number of channels, e.g. over several subcarriers like in orthogonal frequency division multiplexing [OFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0687Full feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

Techniques to achieve better utilization of the available resources and robust performance for the downlink and uplink in a multiple-access MIMO system. Techniques are provided to adaptively process data prior to transmission, based on channel state information, to more closely match the data transmission to the capacity of the channel. Various receiver processing techniques are provided to process a data transmission received via multiple antennas at a receiver unit. Adaptive reuse schemes and power back-off are also provided to operate the cells in the system in a manner to further increase the spectral efficiency of the system (e.g., reduce interference, improve coverage, and attain high throughput). Techniques are provided to efficiently schedule data transmission on the downlink and uplink. The scheduling schemes may be designed to optimize transmissions (e.g., maximize throughput) for single or multiple terminals in a manner to meet various constraints and requirements.

Description

1269549 ⑴ 坎、發明說明 (發明說明應㈣:發明所屬之技術領域、先前技術、内容、f施方式賴式簡單說明) 發明背景 發明領域1269549 (1) Kan, invention description (invention description should (4): the technical field, prior art, content, and method of the invention belong to the invention) BACKGROUND OF THE INVENTION

本發明係大體上關於資料通信,更明確係關於—種多向 近接多重輸入多重輸出通信系統。 π·發明背景The present invention is generally directed to data communication, more specifically to a multi-directional proximity multiple input multiple output communication system. π·invention background

典在通信系統係廣泛地發展以提供各種通信型式,例女 語音、資料等等。這些系、统可為多向近接系統,其藉由在 享可用之系統資源(如頻寬及傳輸功率)而能支援與多^ 使用者之通信(相繼或同時)。此系統可架構於分碼多向交 接(CDMA)、分時多向近接(TDMA)、分頻多向近接 或其他多向近接技術。 在無線通信系統中(如一蜂巢式系統、一廣播系統、一 多重通道多點分佈系統(MMDS)及其他),來自一發射器單 元之射頻調變信號可經由許多傳播路徑達到一接收器單 元。傳播路徑之特徵通常因為許多因子而隨時間改變,例 如漸弱與多重路徑。 為提供分集以因應不利的路徑影響及改進性能,可使用 多重傳送與接收天線。如果介於傳送與接收天線間之傳播 路徑係線性獨立(意即在一路徑上之傳輸不形成其他路經 上傳輸之一線性組合)’至少大體上在某些程度上係屬實 的,則正確接收一資料傳輸之可能性將隨天線數目之增加 而增加。隨著傳送與接收天線數目之增加,大體上可達成 分集增加與性能改進。 1269549The communication system is widely developed to provide various communication types, such as female voices, materials, and so on. These systems can be multi-directional proximity systems that support communication (sequential or simultaneous) with multiple users by enjoying available system resources such as bandwidth and transmission power. The system can be architected in code division multi-directional handover (CDMA), time division multi-directional proximity (TDMA), crossover multi-directional proximity or other multi-directional proximity technology. In a wireless communication system (such as a cellular system, a broadcast system, a multi-channel multi-point distribution system (MMDS), and others), the RF modulated signal from a transmitter unit can reach a receiver unit via a plurality of propagation paths. . The characteristics of the propagation path usually change over time due to many factors, such as fading and multipath. Multiple transmit and receive antennas can be used to provide diversity to account for adverse path effects and improve performance. If the propagation path between the transmitting and receiving antennas is linearly independent (meaning that the transmission over one path does not form a linear combination of transmissions on other paths), at least in part to the extent that it is true, then correct The possibility of receiving a data transmission will increase as the number of antennas increases. As the number of transmit and receive antennas increases, diversity increases and performance improvements are generally achieved. 1269549

一多重輸入多重輸出(ΜΙΜΟ)通信系統使用多重(Ντ)傳 送天線與多重(Nr)接收天線用於資料通信。使用Ντ傳送與 nr接收天線形成之一多重輸入多重輸出通道可分解成Nc 獨立通道,其中S min {NT,NR}。每一個Nc獨立通道代 表ΜΙΜΟ通道的一空間子通道且對應於一範圍。如果藉由 使用多重傳送與接收天線產生額外之範圍,ΜΙΜΟ系統將 可提供經改進之性能(如增加傳輸容量)。 一已知通信系統之資源通常受限於各種控制束制與要 求’以及其他實際上之考量。然而,該系統可能需要支援 許多終端機、提供各種服務、達成某些性能目標等等。 因此需求用於一多向近接ΜΙΜΟ系統之技術,能彈性操 作及提供改進之系統性能。 發明概要 本發明一特點提供可用以使一無線通信系統内之上行 鍵路與下行鏈路達成較佳利用可用資源(如傳送功率與頻 寬)與健全性能之技術。這些技術有利於使用在一 ΜΙμ〇系 、一夕向近接系統(如CDMA、TDMA或FDMA系統)、一 OFDM系統或使用上述之任何組合的一通信系統(如一多 向近接ΜΙΜΟ系統、使用QFDMi MIM〇系統等等)。 一特點提供技術以適於在傳輸前依據通道狀態資訊處 理貝料,以較嚴密地匹配資料傳輸與通道容量。隨著適應 陘傳迗處理,可依據通信通道之特徵(可藉由通道狀態資 訊(CSI)加以量化選定用於資料傳輸之編碼及調變方案。 CSI可在一接收器單元處(如一終端機)決定而提送至一發 (3) 1269549 射器單元(如一基地台)。發射器單元於是可依據提報之 c S I調整資料傳輸之編碼與調變。A multiple input multiple output (ΜΙΜΟ) communication system uses multiple (Ντ) transmit antennas and multiple (Nr) receive antennas for data communication. One of the multiple input multiple output channels formed using Ντ transmission and nr receive antennas can be decomposed into Nc independent channels, where S min {NT, NR}. Each Nc independent channel represents a spatial subchannel of the channel and corresponds to a range. If additional ranges are created by using multiple transmit and receive antennas, the system will provide improved performance (such as increased transmission capacity). The resources of a known communication system are typically limited by various control bundles and requirements' and other practical considerations. However, the system may need to support many terminals, provide various services, achieve certain performance goals, and more. Therefore, there is a need for a multi-directional proximity system that can flexibly operate and provide improved system performance. SUMMARY OF THE INVENTION A feature of the present invention provides techniques for enabling better utilization of available resources (e.g., transmit power and bandwidth) and robust performance for uplink and downlink within a wireless communication system. These techniques facilitate the use of a communication system (such as a multi-directional proximity system, using QFDMi) in a system, a proximity system (such as a CDMA, TDMA or FDMA system), an OFDM system, or any combination of the above. MIM〇 system, etc.). One feature provides techniques to process the bedding material based on channel state information prior to transmission to more closely match data transmission and channel capacity. With the adaptation of the transmission process, the coding and modulation scheme for data transmission can be selected according to the characteristics of the communication channel (CSI can be quantized by channel state information (CSI). The CSI can be at a receiver unit (such as a terminal) The decision is sent to a transmitter (3) 1269549 (such as a base station). The transmitter unit can then adjust the coding and modulation of the data transmission according to the reported c SI.

在另一特點,提供技術以在一接收器單元處理經由多重 天線接收的一資料傳輸。各種接收器處理技術在此經描 述’包括一通道關聯矩陣反轉(CCMI)技術、最小均方誤差 (MMSE)技術、MMSE線性等化器(MMSE-LE)技術、一決策 回授等化器(DFE)技術及一連續消除接收器處理技術。這 些接收器處理技術可有利地用以與適應性傳送處理結合 以達到南性能。 在又一特點中,提供技術以操作系統内之細胞,使其進 一步增加系統之空間效率。經由適應性再使用方案與功率 退痕’在下行鏈路及/或上行鏈路上傳送之功率可被限制 於一經架構之方式以減低干擾、改進覆蓋率與維持高通 量 。 在又一特點,提供技術以有效排程在下行鏈路與上行鏈 路上之資料傳輸。這些排程方案經設計以使單一或多個終 端機傳輸最佳化(例如使通量增至最高),以符合各種限制 與要求(例如請求需求、載入、公平性標準、資料傳輸率 能力、通道條件等等)。系統之部份性質(如多使用者變 化、接收器處理技術等等)也可供利用以提供經改進之性 能。 有關本發明上述及其他特點、具體實施例及特徵將在下 文中進一步詳述。本發明進一步提供可實施本發明各種特 點、具體實施例及特徵之方法、發射器單元、肖收器單元 1269549 _ (ΑΛ 發竭說艰續頁 基地台、終端機、系統、裝置、程式產品等等,如下文中 進一步之詳述。 圖式簡單說明 配合圖式,從下面提出的詳細說明中將會更清楚本發明 的特徵、特性及優點,在各圖式中,相同的元件符號將代 表相同的元件,其中: 圖1係可實施本發明各種特點與具體實施例之多向近接 通信系統圖式; 圖2A與2B係分別供下行鏈路與上行鏈路資料傳輸的一 基地台與二終端機方塊圖; 圖3 A係具有依據部份可用之部分CSI調整其處理方式 的一具體實施例之ΜΙΜΟ發射器單元方塊圖; 圖3Β係具有依據選定通道回轉調整其處理方式的一具 體實施例之發射器單元方塊圖; 圖3C係具有依據整體CSI調整其處理方式的一具體實 施例之發射器單元方塊圖; 圖3 D係具有為各組傳輸通道獨立編碼與調變的一具體 實施例之發射器單元方塊圖; 圖3 Ε係具有為OFDM之各頻率子通道獨立處理資料的一 具體實施例之發射器單元方塊圖; 圖4A係在一接收器單元内之RX ΜΙΜΟ/資料處理器的具 體實施例之方塊圖; 圖4Β、4C、4D與4Ε係分別具有能實施CCMI技術、MMSE 技術、D F Ε技術及持續消去接收器處理技術的四具體實施 1269549 發瞵說_續頁 (5) 例之空間-時間處理器之方塊圖。 圖4F係在一接收器單元内之通道ΜΙΜΟ/資料處理器的 具體實施例之方塊圖; 圖4 G係在一干擾消除器的具體實施例之方塊圖; 圖5係顯示持續消去接收器處理技術的流程圖; 圖6 Α顯示依據許多再使用模式在系統内之終端機達成 信號雜訊比之累積分佈函數(CDF)的範例;In another feature, techniques are provided to process a data transmission received via a multiple antenna at a receiver unit. Various receiver processing techniques are described herein as including a channel correlation matrix inversion (CCMI) technique, minimum mean square error (MMSE) technique, MMSE linear equalizer (MMSE-LE) technique, and a decision feedback equalizer. (DFE) technology and a continuous elimination receiver processing technique. These receiver processing techniques can be advantageously used in conjunction with adaptive transmission processing to achieve south performance. In yet another feature, the technology is provided to cells within the operating system to further increase the spatial efficiency of the system. The power transmitted over the downlink and/or uplink via adaptive re-use schemes and power snagging can be limited to an architectural approach to reduce interference, improve coverage, and maintain high throughput. In yet another feature, techniques are provided to efficiently schedule data transfers on the downlink and uplink. These scheduling schemes are designed to optimize single or multiple terminal transmissions (eg, maximize throughput) to meet various constraints and requirements (eg request requirements, load, fairness criteria, data transfer rate capabilities) , channel conditions, etc.). Some of the properties of the system (such as multi-user changes, receiver processing techniques, etc.) are also available to provide improved performance. The above and other features, specific embodiments and features of the present invention are described in further detail below. The present invention further provides a method, a transmitter unit, and a transceiver unit that can implement various features, embodiments, and features of the present invention. 1269549 _ (Don't talk about the hard page base station, terminal, system, device, program product, etc. The features, characteristics, and advantages of the present invention will become more apparent from the detailed description of the appended claims. 1 is a multi-directional proximity communication system diagram that can implement various features and embodiments of the present invention; FIGS. 2A and 2B are a base station and a second terminal for downlink and uplink data transmission, respectively. Figure 3A is a block diagram of a transmitter unit having a specific embodiment according to a portion of the available CSI adjustments; Figure 3 is a specific embodiment of the method for adjusting the processing according to the selected channel rotation. Block diagram of a transmitter unit; FIG. 3C is a block diagram of a transmitter unit having a specific embodiment in accordance with an overall CSI adjustment; 3D is a block diagram of a transmitter unit having a specific embodiment for independently encoding and modulating each group of transmission channels; FIG. 3 is a transmitter having a specific embodiment for independently processing data for each frequency subchannel of OFDM. Figure 4A is a block diagram of a specific embodiment of an RX ΜΙΜΟ/data processor in a receiver unit; Figure 4 Β, 4C, 4D and 4Ε are respectively capable of implementing CCMI technology, MMSE technology, DF Ε technology And the four implementations of the continuous elimination of the receiver processing technology 1269549 瞵 _ _ Continuation (5) Example of the space-time processor block diagram. Figure 4F is a channel ΜΙΜΟ / data processor specific in a receiver unit Figure 4 is a block diagram of a specific embodiment of an interference canceller; Figure 5 is a flow chart showing the technique of continuously erasing the receiver processing; Figure 6 is a diagram showing the system in accordance with a number of reuse modes. An example of a cumulative distribution function (CDF) of a signal to noise ratio achieved by a terminal;

圖6B顯示在單細胞再使用模式的一細胞内之終端機達 成信號雜訊比(SNR)之CDF的範例; 圖6 C顯示三細胞再使用模式之資源劃分與佈置之具體 實施例的圖形, 圖7係適應再使用規劃之程序的一具體實施例流程圖; 圖8 A係依據權限排程終端機進行資料傳輸之程序的一 具體實施例流程圖; 圖8B係依據權限指定終端機通道之程序的一具體實施 例流程圖;6B shows an example of a CDF that achieves a signal to noise ratio (SNR) in a cell within a cell in a single cell reuse mode; FIG. 6C shows a graph of a specific embodiment of resource partitioning and arrangement of a three cell reuse mode, 7 is a flow chart of a specific embodiment of a program for adapting to reuse planning; FIG. 8 is a flow chart of a specific embodiment of a program for data transmission according to a rights scheduling terminal; FIG. 8B is a channel for specifying a terminal according to rights. Flow chart of a specific embodiment of the program;

圖8 C係依據權限升級終端機至較佳通道之程序的一具 體實施例流程圖; 圖9 A與1 0 A係排程終端機分別進行下行鏈路與上行鏈 路資料傳輸時程之程序的一具體實施例流程圖; 圖9B係指定傳送天線予終端機使用最大-最大標準用於 下行鏈路資料傳輸的一具體實施例流程圖; 圖9C與10B係排程一組Ντ最高權限之終端機分別進行 下行鏈路與上行鏈路資料傳輸時程之程序的一具體實施 -10- 1269549 發·醜縛頁 (6) 例流程圖; 圖1 1 A顯示在許多操作模式中每一終端機具四傳送天 線與四接收天線之ΜΙΜΟ系統的平均下行鏈路通量; 圖1 1 Β顯示有關四接收天線與各種數目之單一天線終 端機的平均上行鏈路通量;及 圖11C顯示模擬具有1、2與4傳送天線終端機同時傳送 之細胞網路的細胞通量。8 is a flow chart of a specific embodiment of a procedure for upgrading a terminal to a preferred channel according to the authority; FIG. 9 is a program for performing downlink and uplink data transmission time intervals respectively for the A and 10 A scheduling terminals. FIG. 9B is a flow chart of a specific embodiment for specifying a transmitting antenna to a terminal using a maximum-maximum standard for downlink data transmission; and FIGS. 9C and 10B are scheduling a set of Ντ highest authority. A specific implementation of the procedures for the downlink and uplink data transmission time intervals of the terminal respectively - 1269549 · 丑 页 (6) Example flow chart; Figure 1 1 A shows each terminal in many operating modes The average downlink flux of the system between the four transmit antennas and the four receive antennas; Figure 1 1 shows the average uplink flux for four receive antennas with various numbers of single antenna terminals; and Figure 11C shows the simulation with 1, 2 and 4 transmit the cell flux of the cell network simultaneously transmitted by the antenna terminal.

發明詳細說明 I.整體系統 圖1顯示支援數名使用者且能夠實施本發明具體實施例 之無線通信系統100的圖式。系統100提供用於許多覆蓋範 圍102a至102g之通信,其各個均藉由對應之基地台104(其 可代表一近接點、節點B或某些術語)提供服務。各個基地 台覆蓋範圍的定義可例如終端機能達到特定服務程度 (Go S)之範圍。基地台及或其覆蓋範圍通常被統稱為「細 胞」。DETAILED DESCRIPTION OF THE INVENTION I. Overall System Figure 1 shows a diagram of a wireless communication system 100 that supports a number of users and is capable of implementing embodiments of the present invention. System 100 provides communications for a number of coverage ranges 102a through 102g, each of which is serviced by a corresponding base station 104 (which may represent a proximity, Node B, or some terminology). The definition of the coverage of each base station can be, for example, the extent to which the terminal can reach a specific level of service (Go S). Base stations and their coverage are often referred to collectively as "cells."

如圖1所示,各種終端機106係分集在系統中,而各終端 機可為固定(即回定點)或行動端。各終端機可在任何時間 在下行鏈路及/或上行鏈路上與一或多個基地台進行通 信,取決於其是否在開機狀態、是否「軟交遞」使用中等 等。下行鏈路(正向鏈路)代表從基地台至終端機的傳輸, 而上行鏈路(反向鏈路)代表從終端機至基地台的傳輸。 圖1中,基地台104a與終端機106a通信、基地台104b與終端 機106b、106c與106d通信、基地台104c與終端機106e、106f -11 - 1269549As shown in Figure 1, the various terminals 106 are diversityd in the system, and each terminal can be a fixed (i.e., a fixed point) or an active end. Each terminal can communicate with one or more base stations on the downlink and/or uplink at any time, depending on whether it is powered on, whether it is "soft handover" or not. The downlink (forward link) represents the transmission from the base station to the terminal, and the uplink (reverse link) represents the transmission from the terminal to the base station. In Fig. 1, base station 104a communicates with terminal unit 106a, base station 104b communicates with terminals 106b, 106c and 106d, base station 104c and terminal sets 106e, 106f -11 - 1269549

⑺ 與106g通信等等。 系統1 0 0也可經設計以實施任何數量之標準,且經設計 用於CDMA、TDMA、FDMA與其他多向近接系統。cDMa 標準包括 IS_95、Cdma2000、IS-856、W-CDMA 與 TS_CDMA伊 準,而TDMA標準包括全球行動通信系統(GSM)標準。這 些標準係已知的技術,並且本文中以引用方式併入這些標 準 〇 系統100可為使用多重(Ντ)傳送天線與多重(Nr)接收天 線供資料傳輸之多重輸入多重輸出(MIMO)系統。由%傳 送與nr接收天線形成之多重輸入多重輸出通道可分解成 Nc獨立通道,其中nc S min {NT,Nr}。每一個Nc獨立通道 也代表ΜΙΜΟ通道的一空間子通道。ΜΙΜΟ系統可提供改進 性能(如增加傳輸容量),如果可使用藉由多重傳送與接收 天線產生之空間子通道。 系統1 0 0可具選擇性或額外地使用正交分頻多工器 (OFDM),其有效地劃分操作頻寬成為多數(Nf)頻率子通道 (即頻率箱)。在各時槽處(其係取決於頻率子通道之頻寬 的一特定時間間隔),可在N F頻率子通道上傳送一調變符 號。 系統1 0 0可經操作以經由許多「傳輸」通道傳送資料。 對於未使用〇FDM之ΜΙΜΟ系統,其通常只有一頻率子通道 且各空間子通道可當作傳輪通道。對使用OFDM之ΜΙΜΟ系 統’各頻率子通道之2間子通道可當作傳輸通道。且對未 使用ΜΙΜΟ之OFDM系統,只具一空間子通道而各頻率子通(7) Communicate with 106g, etc. System 100 can also be designed to implement any number of standards and is designed for use in CDMA, TDMA, FDMA, and other multi-directional proximity systems. The cDMa standard includes IS_95, Cdma2000, IS-856, W-CDMA and TS_CDMA standards, while the TDMA standard includes the Global System for Mobile Communications (GSM) standard. These standards are known techniques and are incorporated herein by reference to the standards. The system 100 can be a multiple input multiple output (MIMO) system that uses multiple (Ντ) transmit antennas and multiple (Nr) receive antennas for data transmission. The multiple input multiple output channels formed by the % transmit and nr receive antennas can be decomposed into Nc independent channels, where nc S min {NT, Nr}. Each Nc independent channel also represents a spatial subchannel of the ΜΙΜΟ channel. The ΜΙΜΟ system provides improved performance (such as increased transmission capacity) if space sub-channels generated by multiple transmit and receive antennas are available. System 100 can selectively or additionally use orthogonal frequency division multiplexer (OFDM), which effectively divides the operating bandwidth into a majority (Nf) frequency subchannel (i.e., frequency bin). At each time slot (which is a specific time interval depending on the bandwidth of the frequency sub-channel), a modulation symbol can be transmitted on the NF frequency sub-channel. System 100 can be operated to transfer data via a number of "transport" channels. For systems that do not use 〇FDM, they usually have only one frequency subchannel and each spatial subchannel can be used as a transit channel. For the sub-channels of each frequency sub-channel using the OFDM system, the two sub-channels can be regarded as transmission channels. And for an OFDM system that does not use ΜΙΜΟ, there is only one spatial subchannel and each frequency sub-pass

1269549 _ ⑻ I發嗎說明續買 道可當作一傳輸通道。 下列通道與子通道可由系統加以支援: • 通道-一傳輸單元,在一 TDMA系統可為一時槽,在 一 FDMA或OFDM系統一為頻率子通道或在一 CDMA系 統中為一編碼通道; •通信通道-介於傳送與接收天線間之射頻傳播通 道; •傳輸通道-一空間子通道、一頻率子通道或一頻率 子通道之空間子通道,其中可傳送獨立之資料流; •空間子通道-在傳送與接收天線間由通信通道之空 間範圍形成之獨立通道;及 • 頻率子通道-在OFDM系統内的一頻率箱。 在發射器單元與接收器單元(即NR X Ντ ΜΙΜΟ)二處使用 多重天線係一用於增強多向近接系統(即蜂巢式、PCS、 LAN等等)之容量的有效技術。使用ΜΙΜΟ,一發射器單元 可在同一通信通道内藉由耦合傳送與接收天線之通信通 道的空間範圍發送多重獨立資料流至單一或多重接收器 單元。 系統1 0 0可經設計以支援多數操作模式。在系統中,各 基地台可配備多重傳送與接收天線用於資料傳輸與接1269549 _ (8) I send a note that the renewal can be used as a transmission channel. The following channels and subchannels can be supported by the system: • Channel-one transmission unit, which can be a time slot in a TDMA system, a frequency subchannel in an FDMA or OFDM system, or a coding channel in a CDMA system; Channel - a radio frequency propagation channel between the transmitting and receiving antennas; • a transmission channel - a spatial subchannel, a frequency subchannel or a spatial subchannel spatial subchannel in which separate data streams can be transmitted; • spatial subchannels - An independent channel formed by the spatial extent of the communication channel between the transmit and receive antennas; and • a frequency subchannel - a frequency bin within the OFDM system. Multiple antenna systems are used at both the transmitter unit and the receiver unit (i.e., NR X Ντ ΜΙΜΟ) - an efficient technique for enhancing the capacity of a multi-directional proximity system (i.e., cellular, PCS, LAN, etc.). Using ΜΙΜΟ, a transmitter unit can transmit multiple independent streams to a single or multiple receiver unit over the same communication channel by the spatial extent of the communication channel that couples the transmit and receive antennas. System 100 can be designed to support most modes of operation. In the system, each base station can be equipped with multiple transmit and receive antennas for data transmission and connection.

A 收,而各終端機可配備單一傳送/接收天線或多重傳送/ 接收天線用於資料傳輸與接收。用於各型終端機之天線數 目取決於各種因子,例如需由終端機支援之服務(如語 音、資料或二者)、成本限制、管理上之限制、安全問題 -13 - 1269549 _ (9) 發_鎳_續頁 等等。表1综整了可支援系統100之操作模式矩陣。 表1 傳送 天線 接收天線 1 Nr 1 SISO SIMO Ν τ MISO ΜΙΜΟ 下文簡要說明表1之操作模式:A is received, and each terminal can be equipped with a single transmit/receive antenna or multiple transmit/receive antennas for data transmission and reception. The number of antennas used for each type of terminal depends on various factors, such as services that are supported by the terminal (such as voice, data, or both), cost limits, management restrictions, and security issues - 13 - 1269549 _ (9) Send _ nickel _ continuation page and so on. Table 1 summarizes the operational mode matrix of the supportable system 100. Table 1 Transmitting Antenna Receiving Antenna 1 Nr 1 SISO SIMO Ν τ MISO ΜΙΜΟ The following briefly describes the operating modes of Table 1:

• SISO (單一輸入/單一輸出)-該射頻鏈路之特徵為單 一傳送天線與單一接收天線。 • SIMO (單一輸入/多重輸出)-該射頻鏈路之特徵為 單一傳送天線與多重接收天線。此操作模式可用於分 集接收。 • MISO (多重輸入/單一輸出)-該射頻鏈路之特徵為 多重傳送天線與單一接收天線。此操作模式可用於分 集傳送。• SISO (Single Input / Single Output) - This RF link features a single transmit antenna and a single receive antenna. • SIMO (Single Input / Multiple Output) - This RF link features a single transmit antenna and multiple receive antennas. This mode of operation is available for diversity reception. • MISO (Multiple Input / Single Output) - This RF link features multiple transmit antennas and a single receive antenna. This mode of operation can be used for diversity transfers.

• ΜΙΜΟ (多重輸入/多重輸出)-該射頻鏈路之特徵為 多重傳送天線與多重接收天線。 當使用ΜΙΜΟ時,系統1 0 0可進一步經設計以支援下列操 作模式: •只具分集-使用多重傳送與接收天線(即傳送與接 收分集)以達到高度可靠地傳輸單一資料流。 • 空間多工處理、單一使用者(單一使用者ΜΙΜΟ模式)-使用多重傳送與接收天線以藉由利用通信通道之空 間範圍產生之多重平行傳輸通道而使單一終端機達 -14 - 1269549 (丨 〇) 到高資料傳輸率。 鲁處理,多數使用者(多數使用考MTMO模式 使用多重傳送與接收天線以提供與目前在相同通道 上之多數終端機進行通信。 • -使用多重傳送與接收天線以提供與目前 在相同通道上之SIMO與ΜΙΜΟ組合的多數終端機進 行通信 。 上述操作模式可視為ΜΙΜ〇模式之子類型。• ΜΙΜΟ (Multiple Input/Multiple Output) – This RF link is characterized by multiple transmit antennas and multiple receive antennas. When using ΜΙΜΟ, System 100 can be further designed to support the following modes of operation: • Diversity only - Use multiple transmit and receive antennas (i.e., transmit and receive diversity) to achieve a highly reliable transmission of a single data stream. • Spatial multiplex processing, single user (single user mode) - use multiple transmit and receive antennas to make a single terminal up to -1269549 by utilizing multiple parallel transmission channels generated by the spatial extent of the communication channel (丨〇) To high data transfer rate. Lu processing, most users (mostly use the MTMO mode to use multiple transmit and receive antennas to provide communication with most terminals currently on the same channel. • • Use multiple transmit and receive antennas to provide the same channel as currently SIMO communicates with most terminals in combination with ΜΙΜΟ. The above mode of operation can be considered as a subtype of ΜΙΜ〇 mode.

由各基地台與各終端機支援之特定操作模式部份取決 於基地台與終端機處可用之傳送與接收天線之數目。配備 夕重傳送天線與多重接收天線之一基地台能夠支援前面 所列之操作模式。一終端機可設計為具有任何數目之傳送 天線與接收天線。在下行鏈路上,具單一接收天線之一終 端機(如經設計專用於語音服務)可支援SIS〇與MIS〇模 式’而具多重接收天線之終端機可支援SIMO與ΜΙΜΟ模 式。傳送分集之某些型式(即MIS 0)可利用於單一接收天 線終端機之部份傳輸。在上行鏈路中,單一傳送天線終端 機可支援SISO與SIMO模式,而多重傳送天線終端機可支 援MISO與ΜΙΜΟ模式。 多向近接網路内之空間多工處理 結合ΜΙΜΟ之空間多工模式提供相當大之系統彈性且進 一步支援混合型式之終端機。系統設置以用於下行鏈路與 上行鏈路可能因各種因子而有所不同,例如不同服務需 求、成本限制與不同型式終端機之能力。 -15- 1269549The specific mode of operation supported by each base station and each terminal depends in part on the number of transmit and receive antennas available at the base station and the terminal. A base station equipped with an antenna transmission antenna and multiple receiving antennas can support the operation modes listed above. A terminal can be designed to have any number of transmit and receive antennas. On the downlink, a terminal with a single receive antenna (if designed for voice services) can support SIS and MIS modes. Terminals with multiple receive antennas can support SIMO and ΜΙΜΟ mode. Some types of transmit diversity (ie, MIS 0) can be utilized for partial transmission of a single receive antenna terminal. In the uplink, a single transmit antenna terminal can support SISO and SIMO modes, while a multiple transmit antenna terminal can support MISO and ΜΙΜΟ mode. Spatial multiplex processing in a multi-directional proximity network combined with the space multiplex mode provides considerable system resiliency and further supports mixed-mode terminals. System settings for the downlink and uplink may vary by various factors, such as different service requirements, cost constraints, and the capabilities of different types of terminals. -15- 1269549

(ii) 依多重使用者ΜΙΜΟ模式,可支援多重平行通道,其中 各個此類通道可用作SIMO、ΜΙΜΟ或某些組合。在下行鏈 路,基地台處多重傳送天線可使用平行傳輸通道發送資料 至不同終端機。在此情況下,各終端機可利用多重接收天 線協同空間處理以排除其他終端機之信號,而解調其本身 之信號。在上行鏈路中,基地台之接收器單元使用多重接 收天線協同空間處理以分開解調來自各自的終端機之傳(ii) Multiple parallel channels are supported in a multi-user mode, where each such channel can be used as SIMO, ΜΙΜΟ or some combination. In the downlink, multiple transmit antennas at the base station can use parallel transmission channels to send data to different terminals. In this case, each terminal can utilize the multiple receive antennas to coordinate spatial processing to exclude signals from other terminals and demodulate its own signals. In the uplink, the base station's receiver unit uses multiple receive antennas to coordinate spatial processing to separately demodulate the transmissions from their respective terminals.

輸。lose.

多重-使用者ΜΙΜΟ模式類似於空間區分多向近接 (SDMA)。依SDMA,與不同終端機關連之「空間簽署」 可利用以允許多重終端機在同一通道同時操作。一空間簽 署構成傳送天線與接收天線間之傳播路徑的完整射頻特 徵。在下行鏈路,空間簽署可在終端機處推導出而後提報 至基地台。該基地台可接著處理這些空間簽署以選定終端 機用於在同一通道進行資料傳輸,且衍生共同「正交」操 縱向量用於各獨立資料流以傳送至各選定之終端機。在上 行鏈路中,基地台可衍生出不同終端機之空間簽署。基地 台可接著處理這些空間簽署以排程終端機資料傳輸之程 序,且進一步處理由選定終端機之傳輸以分別解調各傳 輸。 如該終端機配備多重接收天線,則基地台無須終端機之 空間簽署以獲得SDMA之助益。基地台處所需僅係當終端 機解調後,少量來自終端機指明「後處理」SNR與來自基 地台傳送天線信號之關連的資訊。SNR預估程序可實施藉 -16- (12) 1269549The multi-user mode is similar to spatially differentiated multi-directional proximity (SDMA). According to SDMA, "space signing" with different terminal authorities can be utilized to allow multiple terminals to operate simultaneously on the same channel. A space signature constitutes the complete radio frequency characteristic of the propagation path between the transmitting antenna and the receiving antenna. On the downlink, space signing can be derived at the terminal and then reported to the base station. The base station can then process these space signatures to select the terminal for data transmission on the same channel, and derive a common "orthogonal" operational vertical amount for each individual data stream for transmission to each selected terminal. In the uplink, the base station can derive space signing for different terminals. The base station can then process the space signing procedures for scheduling terminal data transfers and further process the transmissions by the selected terminals to demodulate the respective transmissions. If the terminal is equipped with multiple receiving antennas, the base station does not need to sign the space of the terminal to obtain the benefit of SDMA. The base station needs only after the terminal demodulation, a small amount of information from the terminal indicating the "post-processing" SNR and the connection from the base station transmit antenna signal. The SNR estimation program can be implemented by -16- (12) 1269549

由各基地台傳译工Μ 專运天線週期性傳送-先導,如下文說明。 否二上行鏈路而言,基地台可藉由分配資源與 使用者,資1子取(例如一請求之架構上)。當資源分配予 、#^ τ經由—控制通道提供予使用者以指示使用 <特足操作模式。^ 性处产量之,料’系統可依據系統負載及/或某些 ,.且合碉整各種操作參數(例如操作模式、通 :、::傳:率、傳送天線、傳送功率等等)…之: 怨,如下又說明。 土 2. 方塊圖 圖2A係供下行鏈路資料傳輪用之系統刚内的— 台⑽與二二端機106的方塊圖。在基地台1〇4處,資料來源 2〇8提供貝料(即資訊位元)至一傳送資料處理器 21〇。對各傳送天線而言,τχ資料處i器2iq⑴依據特: 編碼万案將資料解碼,⑺依據特定之交錯方案交錯(即重 新組合)經編碼之位元’與(3)映射經交錯之位元至調變符 號供經選定用於資料傳輸的_或多個傳輸通道使用。該編 碼可增加該資料傳輸的可靠度。該交錯提供時間分集供編 碼位元使用’允許該資料依據傳輸通道的平均魏傳送、 對抗強弱不一之情形、移除用以形成各調變符號之編碼位 元間的關連,且如果經編碼位元係透過多重頻率子通道傳 送時可進一步提供頻率分集。在一特點中,編碼與調變(即 符號映射)可依據控制器230提供之控制信號而進行。 一 ΤΧ ΜΙΜΟ處理器220接收與解除來自於τχ資料處理器 2 10之調變符號的多工處理,以及提供用於各傳輸通道(例 -17- 1269549 (13) 舞解瞻續頁 如各傳送天線)的一調變符號流,每一時槽一調變符號。 ΤΧ ΜΙΜΟ處理器220可進一步預調整該調變符號用於各傳 輸通道,如果完整之C S I (例如一通道響應矩陣江)係可 用。ΜΙΜΟ與完整之CSI處理將於下文中進一步詳細說明。 、 如未運用OFDM,ΤΧ ΜΙΜΟ處理器220將提供一調變符號 、 流供用於資料傳輸之各傳送天線使用。而如果運用 OFDM,ΤΧ ΜΙΜΟ處理器220提供調變符號向量流供用於資 料傳輸之各傳送天線使用。且如果進行完整CSI處理(說明 於下),ΤΧ ΜΙΜΟ處理器220提供預調整之調變符號流或已 · 调整之調變符號向量供用於資料傳輸之各天線用。各資料 流經接收且藉由分別之調變器(M〇D) 222加以調變且經由 相關之天線2 2 4傳送。 在資料傳輸到達之各終端機1〇6處,一或多個天線25 2接 收傳送到之信號,而各接收天線提供接收到之信號至各自 的解调器(DEMOD) 254。各解調器(或前端單元)254實施與 調變器222互補之處理。來自各解調器254之調變符號接著 被提供至一接收(RX) MIM〇/資料處理器26〇而後經處理以 _ 回k傳送至遠終端機的一或多個資料流。RX MIM0/資料 處理态260實施與Τχ資料處理器21〇與τχ MIM〇處理器22〇 互補之處理,且提供解碼資料至一資料槽262。經由終端 機106之處理將進一步詳述於後。 _ 在有效的終端機106處,RXMIM〇/資料處理器26〇進一步 〜 預估下行鏈路之情況,且提供通道狀態資訊(csi)(例如後 處理SNR或通道增益預估)指明預估鏈路情況。控制器27〇 -18- 1269549The relay transmissions from the base stations are carried out periodically - the pilot, as explained below. In the case of the second uplink, the base station can be allocated by subscribing resources and users (for example, on a request basis). When the resource allocation to #^ τ is provided to the user via the control channel to indicate the use of the <special operation mode. ^ Sex production, the material 'system can be based on system load and / or some, and a variety of operational parameters (such as operating mode, pass:, :: transmission: rate, transmit antenna, transmit power, etc.)... It: Resentment, as explained below. Soil 2. Block Diagram Figure 2A is a block diagram of the station (10) and the two-terminal machine 106 in the system for the downlink data transmission. At the base station 1〇4, the data source 2〇8 provides the bedding material (ie, the information bit) to a transmission data processor 21〇. For each transmit antenna, the τχ data is stored in the ii 2iq(1) according to the special code: the code is decoded, and (7) the interleaved bits are interleaved (ie, recombined) according to a specific interleaving scheme and (3) are mapped. The meta-modulation symbol is used by _ or multiple transmission channels selected for data transmission. This code can increase the reliability of the data transmission. The interleaving provides time diversity for the coding bits to use 'allowing the data to be transmitted according to the average transmission of the transmission channel, against the case of strong and weak, removing the correlation between the coding bits used to form the modulation symbols, and if encoded The frequency diversity can be further provided when the bit is transmitted through the multiple frequency subchannel. In one feature, encoding and modulation (i.e., symbol mapping) can be performed in accordance with control signals provided by controller 230. The ΜΙΜΟ processor 220 receives and de-multiplexes the modulating symbols from the τχ data processor 2 10 and provides them for each transmission channel (eg, -17-1269549 (13). A modulation symbol stream of the antenna), each time slot is a modulation symbol. The processor 220 can further pre-adjust the modulation symbols for each of the transmission channels if a complete C S I (e.g., a channel response matrix) is available. The complete and complete CSI processing will be described in further detail below. If OFDM is not used, the processor 220 will provide a modulation symbol and stream for use by each transmit antenna for data transmission. And if OFDM is employed, the processor 220 provides a modulated symbol vector stream for use by each of the transmit antennas used for data transmission. And if a full CSI process is performed (described below), the processor 220 provides a pre-adjusted modulated symbol stream or an adjusted modulated symbol vector for each antenna used for data transmission. Each data stream is received and modulated by a respective modulator (M〇D) 222 and transmitted via the associated antenna 2 24 . At each of the terminals 1 to 6 where the data transmission arrives, one or more antennas 25 2 receive the signals transmitted thereto, and each of the receiving antennas provides the received signals to respective demodulator (DEMOD) 254. Each demodulator (or front end unit) 254 performs a process complementary to modulator 222. The modulated symbols from each of the demodulators 254 are then provided to a receive (RX) MIM/data processor 26 and then processed to _back k for transmission to one or more data streams of the remote terminal. The RX MIM0/data processing state 260 implements processing complementary to the data processor 21〇 and the τχ MIM processor 22, and provides decoded data to a data slot 262. The processing via terminal 106 will be described in further detail below. _ At the active terminal 106, the RXMIM/data processor 26 further estimates the downlink and provides channel status information (csi) (eg, post-processing SNR or channel gain estimate) indicating the predictive chain. Road situation. Controller 27〇 -18- 1269549

(14) 接收且可進一步轉換下行鏈路CSI (DL CST)成為某些其他 型式(例如資料傳輸率、編碼/調變方案等等)。一 TX資料 處理器280接著接收與處理下行鏈路CSI,且提供下行鏈 路CSI (直接或經由一 τχ μίμο處理器282)至一或多個調 變器2 5 4 °碉變器(s) 254進一步調整例經處理之資料且傳 送該下行鏈路C S I經由一相反通道回至基地台1〇4。下行鏈 路CSI可如下文說明由終端機使用各種發信技術提報。 在基地台104處,經傳送之回授信號係由天線224接收, 由解調器22 2解調變,而後提供至一 rx ΜΙΜΟ/資料處理器 24 0 ° RX ΜΙΜΟ/資料處理器240實施與經ΤΧ資料處理器280 與ΤΧ ΜΜ Ο處理器2 8 2 (如經使用)互補之處理,而後回復經 提送之CSI至控制器230與排程器234。 排程器2 3 4使用下行鏈路C S I以實施許多功能,例如(1) 選定最佳終端機組用於資料傳輸及(2)指定可用之傳送天 線至選定之終端機。排程器2 3 4或控制器2 3 0進一步使用經 提報之下行鏈路CSI以決定將供各傳送天線使用之編碼 與調變方案。排程器2 3 4可如下文說明排程終端機以達到 高通量及/或依據其他性能標準或度量。 圖2 Β係用於上行鏈路資料傳輸的一基地台1〇4與二終端 機1 0 6之方塊圖。在經排程用於上行鏈路資料傳輸之終端 機106處,一資料來源278提供資料至ΤΧ資料處理器280, 其編碼、交錯與映射資料成為調變符號。如果使用多重傳 送天線用於資料傳輸,ΤΧ ΜΙΜΟ處理器282接收與進一步 處理調變符號以提供一調變符號流 '預調整之調變符號、 -19- 1269549(14) Receive and further convert the downlink CSI (DL CST) into some other type (eg data rate, coding/modulation scheme, etc.). A TX data processor 280 then receives and processes the downlink CSI and provides downlink CSI (either directly or via a τχμίο processor 282) to one or more modulators 2 5 4 ° mutator(s) 254 further adjusts the processed data and transmits the downlink CSI back to the base station 1〇4 via an opposite channel. The downlink CSI can be reported by the terminal using various signaling technologies as explained below. At base station 104, the transmitted feedback signal is received by antenna 224, demodulated by demodulator 22, and then provided to an rx/data processor 24 0 RX/data processor 240. The data processor 280 is processed in a complementary manner to the processor 2 8 2 (if used), and then the delivered CSI is returned to the controller 230 and the scheduler 234. The scheduler 2 3 4 uses the downlink C S I to perform many functions, such as (1) selecting the best terminal unit for data transmission and (2) designating the available transmission antenna to the selected terminal. Scheduler 2 3 4 or controller 203 further uses the reported downlink CSI to determine the coding and modulation scheme to be used by each transmit antenna. Scheduler 2 3 4 can be programmed as described below to achieve high throughput and/or according to other performance criteria or metrics. Figure 2 is a block diagram of a base station 1〇4 and a second terminal 1 0 6 for uplink data transmission. At the terminal 106 scheduled for uplink data transmission, a data source 278 provides data to the data processor 280, which encodes, interleaves, and maps the data into modulation symbols. If multiple transmission antennas are used for data transmission, the processor 282 receives and further processes the modulation symbols to provide a modulated symbol stream 'pre-adjusted modulation symbols, -19-1269549

(15) 調^付號向量或預調整之調變符號向量 — 資料傳輸。各資料流接著藉各自的調變器2 5 4接收與調 變,以及經一相關之天線252傳送。 在基地台104處,許多天線224接收經傳送之信號而各天 線提供接收之信號至各自的解調器2 2 2。各解調器2 2 2實施 與調變器254互補之處理。來自所有解調器222之調變符號 接著提供至RX ΜΙΜΟ/資料處理器240而後經處理以回復 、’二由被排足之終端機傳送的資料流。rx μιμ〇 /資料處理 器實施與ΤΧ資料處理器28〇與ΤΧ ΜΙΜ〇處理器2 82 (如 經使用)互補之處理,而後提供解碼資料至一資料槽242。 對於需要在一上行傳輸間隔傳送之各終端機106,RX ΜΙΜΟ/耷料處理器24〇進一步預估供上行鏈路之通道情況 且推導上行鏈路CSI (UL CSI),其將被提供至控制器。 排程器234也可接收與使用該上行鏈路csi以實^少 ⑺决义來自選定終端機之信號的特定處理順 足供各經排定終端機的各傳送天線使用之 ' 案。對各傳輸間隔,排程器234提供一上、、、與調變万 被選定用於資料傳輸之終端機及指定二路:程指明 场機的傳輸參數。經排定之各終端機的各傳、、:定之各、、、 參數可包括將使用的資料傳輸率與編碼鐵、'泉 < 傳輸 TX資料處理器210接收與處理上行鏈路T万案。 明排疋至一或多個調變器222排程的處:且提供指 進一步啪效a 士 、·欠μ '料。調變器222 调整經處理之資料且經由無線鐽故福 鍵路傳送上行鏈路 -20- 1269549 (16)(15) Adjust the pay vector or pre-adjusted modulation symbol vector — data transmission. The data streams are then received and modulated by respective modulators 254 and transmitted via an associated antenna 252. At base station 104, a plurality of antennas 224 receive the transmitted signals and each antenna provides the received signals to respective demodulators 2 2 2 . Each demodulator 2 2 2 performs a process complementary to the modulator 254. The modulation symbols from all of the demodulator 222 are then provided to the RX ΜΙΜΟ/data processor 240 and then processed to reply to the data stream transmitted by the terminal device being queued. The rx μιμ / data processor implements complementary processing with the data processor 28 and the processor 2 82 (if used), and then provides decoded data to a data slot 242. For each terminal 106 that needs to transmit at an upstream transmission interval, the RX/ΜΙΜΟ processor 24 further estimates the channel conditions for the uplink and derives the uplink CSI (UL CSI), which will be provided to the control. Device. The scheduler 234 can also receive and use the uplink csi to reduce (7) the specific processing of the signal from the selected terminal to be used by each of the transmitted antennas of each of the scheduled terminals. For each transmission interval, the scheduler 234 provides a terminal, which is selected for the data transmission, and a designated two-way: the transmission parameters of the field machine. Each of the scheduled transmissions, terminals, and parameters of the terminal may include the data transmission rate to be used and the coded iron, 'spring' transmission TX data processor 210 receiving and processing the uplink T million case . The display is routed to one or more of the modulators 222 schedules: and the indications are further in effect. The modulator 222 adjusts the processed data and transmits the uplink via the wireless port -20- 1269549 (16)

排程至終端機。可使用各種發信與傳訊技術將該上行鏈路 排程發送至終端機。 在各有效終端機106處,經傳送之信號係由天線252接 收、由解調器254解調,而後提供至RX ΜΙΜΟ /資料處理器 260。處理器26〇實施與ΤΧ ΜΙΜΟ處理器220與ΤΧ資料處理Schedule to the terminal. The uplink schedule can be sent to the terminal using various signaling and messaging techniques. At each active terminal 106, the transmitted signal is received by antenna 252, demodulated by demodulator 254, and then supplied to RX ΜΙΜΟ / data processor 260. The processor 26 is implemented and processed by the processor 220 and the data processing

器210互補之處理,而後回復用於該終端機(如有需要)之 該上行鏈路排程,而後供至控制器2 7 〇且用以控制經由該 終端機之上行鏈路傳輸。 在圖2Α與2Β中所示之排程器234係位於基地台1〇4。在 其他實施中,排程器2 3 4可位於系統1 〇 〇之某些其他元件内 (例如耦合於且與某些基地台有介面的一基地台控制器)。 II· 發射器單元The processor 210 is complementary to the process and then replies to the uplink schedule for the terminal (if needed) and then to the controller 27 to control the uplink transmission via the terminal. The scheduler 234 shown in Figures 2A and 2B is located at the base station 1〇4. In other implementations, scheduler 234 may be located within some other component of system 1 (e.g., a base station controller coupled to and interfaced with certain base stations). II· Transmitter unit

一種ΜΙΜΟ系統,如果使用由多重傳送與接收天線產生 之增加範圍,將可供改進之性能。增加系統效率與性能係 可能,如果該發射器單元具有描述由傳送天線至接收天線 之傳輸特徵的C S I (雖然此並非絕對需要)。C S I可以分類 為「完整CSI」或「部份CSI」。 完整C SI包括橫跨整個系統頻寬(即各頻率子通道)足夠 之特徵(例如幅度與相位),供(Ντ X NR) ΜΙΜΟ矩陣内各傳送 -接收天線對間之傳播路徑用。完整之C SI處理意味著(1) 通道特徵可用於發射器單元與接收器單元兩者,(2)發射 器單元推導ΜΙΜΟ通道之固有模式(說明於後)、決定將在 固有模式上傳送之調變符號、線性預調(過濾)該調變符號 及傳送該預調整調變符號,及(3)接收器單元依據通道特 -21 - (17) 1269549 微實施一與線性傳送處理互補之處理(如空間匹配過 遽),以#導供各傳輸通道(即各固有模式)之(空間匹配 慮係數。完整之CSI處理進-步負責依據供依據通道之 特徵值(說明於後)選^之各傳輸通道使用的適#編碼及 调變方案,以推導出調變符號。 部份⑶可包括例如傳輸通道之信號對雜訊加干擾比 (SMR)。特定傳輪通道之SNR可藉由偵測—資科流或在傳 輪道上傳送之導向器而推導出。部份⑶處埋意味著依據 供依據通道之81^汉值選定之各傳輸通道用的適當編碼及 ,變方案而處理。 在下行鏈路與上行鏈路二者上,完整或部份⑶可用以 调整各種系統之操作參數。在下行鏈路上,該終端機可推 導出供各傳輸通道用之SNR與經由相反之通道提報下行 鏈路CSI至基地台。基地台接著將使用此資訊以排程至2 瑞機之下行鏈路傳輸,及決定將使用之通道與天線指定、 操作模式、資料傳輸率及傳送功率。在上行鏈路上,基地 台可推導有關各自的終端機之SNR且接著運用此資訊排 程上行鏈路傳輸。相關資訊(例如排程、資科傳輸率、編 碼與調變方案、傳送功率等等)可經由下行鏈路上之控制 通道傳訊至受影響之終端機。 L [部份-CS丄處理之ΜΙΜΟ發射器單上 圖3八係麵〇發射器單元·卜纟體實施例之方塊圖, 其係圖2A與2B中基地台1〇4或終端機1〇6之發射器部份的 一具體實施例。發射器單元300a能依據可用之部份csi (例 -22- 1269549A helium system that would provide improved performance if an increased range produced by multiple transmit and receive antennas is used. Increasing system efficiency and performance is possible if the transmitter unit has a C S I that describes the transmission characteristics from the transmit antenna to the receive antenna (although this is not absolutely necessary). C S I can be classified as "complete CSI" or "partial CSI". The complete C SI includes sufficient features (e.g., amplitude and phase) across the entire system bandwidth (i.e., frequency subchannels) for the propagation path between the transmit-receive antenna pairs within the (Ντ X NR) ΜΙΜΟ matrix. The complete C SI processing means that (1) the channel characteristics can be used for both the transmitter unit and the receiver unit, and (2) the transmitter unit derives the natural mode of the channel (described later) and decides that it will be transmitted in the eigen mode. Modulation symbol, linear pre-modulation (filtering) the modulation symbol and transmitting the pre-adjustment modulation symbol, and (3) receiver unit according to channel special - 21 - (17) 1269549 micro-implementation processing complementary to linear transmission processing (If the space is matched too much), it is used to guide each transmission channel (that is, each eigenmode) (space matching factor. The complete CSI processing is based on the eigenvalue of the channel (described later). Each of the transmission channels uses a suitable encoding and modulation scheme to derive the modulation symbols. Part (3) may include, for example, a signal-to-noise plus interference ratio (SMR) of the transmission channel. The SNR of the specific transmission channel may be Detecting - the stream of funds or the directors transmitted on the trajectory is derived. Partial (3) burying means that it is processed according to the appropriate coding and variants for each transmission channel selected according to the 81^ han value of the channel. In On the downlink and uplink, either complete or partial (3) can be used to adjust the operating parameters of various systems. On the downlink, the terminal can derive the SNR for each transmission channel and report via the opposite channel. Downlink CSI to the base station. The base station will then use this information to schedule the downlink transmission to the 2 ray, and determine the channel and antenna designation, mode of operation, data rate and transmit power to be used. On the link, the base station can derive the SNR about the respective terminal and then use this information to schedule the uplink transmission. Relevant information (such as scheduling, ZECO transmission rate, coding and modulation scheme, transmission power, etc.) can be It is transmitted to the affected terminal through the control channel on the downlink. L [Partial-CS丄Processing Transmitter Single Figure 3 Block diagram of the eight-plane 〇 transmitter unit 纟 实施 , , A specific embodiment of the transmitter portion of the base station 1〇4 or the terminal unit 1〇6 in Figures 2A and 2B. The transmitter unit 300a can be based on the available portion of csi (Example -22- 1269549)

(18) 如由接收器單元提報者)調整其處理。發射器單元3〇〇a包 括(1) 一 TX資料處理器2 1 Oa,可接收與處理資訊位元以提 供調變符號,及(2) — ΤΧ ΜΙΜΟ處理器220a,可解調變符號 之多工處理用於Ντ傳送天線。(18) If it is reported by the receiver unit, adjust its processing. The transmitter unit 3A includes (1) a TX data processor 2 1 Oa, which can receive and process information bits to provide modulation symbols, and (2) a processor 220a that can demodulate the variable symbols. The multiplex processing is used for the Ντ transmission antenna.

TX資料處理器210a係圖2A與2B中之TX資料處理器210 與2 8 0的一具體實施例。在圖3 A所示之特定具體實施例 中,TX資料處理器210a包括一編碼器3 12,一通道交錯器 3 1 4與一符號映射元件3 1 6。編碼器3 1 2接收與依據一特定 編碼方案編碼資訊位元以提供經編碼之位元。編碼方案可 包含一迴旋碼、一加速碼、一方塊碼、一循環冗餘碼 (CRC)、一併置碼或其他碼或上述碼之組合。通道交錯器 3 1 4依據一特定交錯方案交錯經編碼之位元以提供分集。 而符號映射元件3 1 6映射經編碼之位元成為調變符號供一 或多個傳輸通道用於傳送資料。TX data processor 210a is a specific embodiment of TX data processors 210 and 208 in Figures 2A and 2B. In the particular embodiment illustrated in FIG. 3A, TX data processor 210a includes an encoder 3 12, a channel interleaver 3 14 and a symbol mapping component 3 16 . Encoder 3 1 2 receives and encodes information bits in accordance with a particular coding scheme to provide coded bits. The coding scheme may comprise a convolutional code, an accelerating code, a block code, a cyclic redundancy code (CRC), a co-colcode or other code or a combination of the above. The channel interleaver 3 1 4 interleaves the encoded bits in accordance with a particular interleaving scheme to provide diversity. The symbol mapping component 3 16 maps the encoded bit into a modulation symbol for one or more transmission channels for transmitting data.

雖然為簡化而未顯示於圖3 A中,前導碼(例如一已知模 式之資料)也可經編碼與經處理之資訊位元多工處理。經 處理之前導碼可在用以傳送資訊位元之所有傳輸通道或 其子集内傳送(例如依一分時多工處理(TDM)或一分碼多 工處理(CDM)方式)。前導碼可在接收器處使用以實施通道 預估、頻率與定時預估、相關資料解調變等等。 如圖3A中所示,可依據可用之部份CSI調整編碼與調 變,如在編碼與調變控制中所反映。在一具體實施例中, 適應性編碼係藉由使用一固定基本碼(例如一比率1 / 3加 速麟)以達成,及當由傳輸通道之SNR支援用以傳送資料 -23 - 1269549 發嗎鎳_續頁 (19) 時,調整穿透以達成該需求編碼率。對於此編碼方案,穿 透可在通道交錯後實施。在另一具體實施例中,可依據可 用之部份C S I使用不同編碼方案(例如各資料流可依一獨 立碼進行編碼)。Although not shown in Figure 3A for simplicity, a preamble (e.g., data of a known pattern) can also be encoded and processed with multiplexed information bits. The preamble can be transmitted in all transmission channels or subsets thereof for transmitting information bits (e.g., in one-time multiplex processing (TDM) or one-code multiplex processing (CDM)). The preamble can be used at the receiver to implement channel estimation, frequency and timing estimation, correlation data demodulation, and more. As shown in Figure 3A, the encoding and modulation can be adjusted based on the portion of the CSI available, as reflected in the encoding and modulation control. In a specific embodiment, the adaptive coding is achieved by using a fixed base code (eg, a ratio of 1 / 3 acceleration), and when the SNR is supported by the transmission channel for transmitting data -23 - 1269549 _ Continued on page (19), adjust the penetration to achieve the required coding rate. For this coding scheme, penetration can be implemented after channel interleaving. In another embodiment, different coding schemes may be used depending on the portion of the C S I that is available (e.g., each data stream may be encoded according to a separate code).

對於各傳輸通道,符號映射元件3 1 6可經設計以群集交 錯位元組以形成非二進位符號,而映射各非二進位符號至 一對應該選定傳輸通道的一特定調變方案(例如QPSK、 M-PSK、M-QAM或某些其他方案)之信號群中的一點。每個 映射的信號點對應於一調變符號。 可經傳送用於一特定性能程度(例如百分之一封包錯誤 率(PER))之各調變符號的資訊位元數目係視傳輸通道之 SNR而定。因此用於各傳輸通道之編碼方案與調變方案可 依據可用的部份CSI而加以選定。通道交錯亦可如虛線所 示進入方塊3 1 4之編碼控制而依據可用之部份C S I加以調 整。For each transmission channel, symbol mapping component 3 16 can be designed to cluster interleaved bytes to form non-binary symbols, while mapping each non-binary symbol to a particular modulation scheme (eg, QPSK) that should be selected for the transmission channel. A point in the signal group of M-PSK, M-QAM or some other scheme. Each mapped signal point corresponds to a modulation symbol. The number of information bits that can be transmitted for each particular level of performance (e.g., one percent packet error rate (PER)) depends on the SNR of the transmission channel. Therefore, the coding scheme and modulation scheme for each transmission channel can be selected based on the available partial CSI. The channel interleaving can also be adjusted according to the available portion C S I as shown by the dashed line entering the encoding control of block 314.

表2列出各種可用於許多SNR範圍之編碼率與調變方案 的組合。支援各傳輸通道之位元率可藉由任何可能之編碼 率與調變方案之一而達成。例如,每一調變符號一資訊位 元之達成可使用(1) 1/2與QPSK調變之編碼率,(2) 1/3與 8-PSK調變之編碼率,(3) 1/4與16-QAM之編碼率,或某些 其他編碼率調變方案之組合。在表2中,QPSK、16-QAM與 64-QAM係用於表列SNR範圍。其他調變方案例如8-PSK、 32-QAM、128-QAM等等也可使且落入本發明之範圍。 -24- 1269549 _ (20) I發螞說明續:頁 表2 SNR 資訊位元/ 調變 經編碼位元/ 編碼率 範圍 符號之號碼 符號 符號之號碼 1.5 - 4.4 1 QPSK 2 1/2 4.4 - 6.4 1.5 QPSK 2 3/4 6.4-8.35 2 16-QAM 4 1/2 8.35-10.4 2.5 16-QAM 4 5/8 10.4-12.3 3 16-QAM 4 3/4 12.3 - 14.15 3.5 64-QAM 6 7/12 14.15 -15.55 4 64-QAM 6 2/3 15.55 -17.35 4.5 64-QAM 6 3/4 >17.35 5 64-QAM 6 5/6Table 2 lists the various combinations of coding rates and modulation schemes that can be used for many SNR ranges. The bit rate supporting each transmission channel can be achieved by any of the possible coding rates and modulation schemes. For example, each modulation symbol-information bit can be achieved using (1) 1/2 and QPSK modulation coding rate, (2) 1/3 and 8-PSK modulation coding rate, (3) 1/ 4 and 16-QAM coding rate, or some combination of other coding rate modulation schemes. In Table 2, QPSK, 16-QAM and 64-QAM are used to list the SNR range. Other modulation schemes such as 8-PSK, 32-QAM, 128-QAM, etc. may also be included and fall within the scope of the invention. -24- 1269549 _ (20) I send instructions to continue: page 2 SNR information bits / modulation coded bits / code rate range symbol number symbol symbol number 1.5 - 4.4 1 QPSK 2 1/2 4.4 - 6.4 1.5 QPSK 2 3/4 6.4-8.35 2 16-QAM 4 1/2 8.35-10.4 2.5 16-QAM 4 5/8 10.4-12.3 3 16-QAM 4 3/4 12.3 - 14.15 3.5 64-QAM 6 7/ 12 14.15 -15.55 4 64-QAM 6 2/3 15.55 -17.35 4.5 64-QAM 6 3/4 >17.35 5 64-QAM 6 5/6

來自TX資料處理器210a之調變符號將提供至一 TX ΜΙΜΟ處理器220a,其係圖2A與2B中之ΤΧ ΜΙΜΟ處理器220 與282的一具體實施例。在一 ΤΧ ΜΙΜΟ處理器220a中,一多 路分配器3 24將接收之調變符號多路分配處理成為許多 (Ντ)調變符號流,一符號流供各天線用以傳送調變符號。 各調變符號流將提供至各自的調變器2 2 2。各調變器2 2 2 轉換該調變符號成為一或多個類比信號,且進一步放大、 過濾、、正交調變與上轉換信號以產生一適於經由相關天線 2 2 4透過無線鍵結傳輸的一調變信號。 如果空間子通道之數目少於可用之傳送天線(即Nc < Ντ) ,即各種方案可用於一資料傳輸。在一方案中,Nc調變 符號流經產生與在一可用之傳送天線子集(即N c)上傳 送。剩餘之(NT - Nc)傳送天線將不用於資料傳輸。在另一 方案中,由(NT - Nc)之額外傳送天線提供之額外自由度將 用以改進資料傳輸之可靠度。對於此一方案,各個一或多 -25 - 1269549 發嗎說瞵續買 (21) 個資料流可經編碼、可能經交錯,而後透過多重傳送天線 傳送。使用多重傳送天線於一給定之資料流可針對不利的 之路徑效應增加分集與改進可靠度。 2. 具選擇性通道回轉之ΜΙΜΟ發射器單元The modulation symbols from TX data processor 210a will be provided to a TX processor 220a, which is a specific embodiment of processors 220 and 282 in Figures 2A and 2B. In a processor 220a, a demultiplexer 3 24 processes the received modulated symbol demultiplexing into a plurality of (Ντ) modulated symbol streams for each antenna to transmit the modulated symbols. Each modulated symbol stream will be provided to a respective modulator 2 2 2 . Each modulator 2 2 2 converts the modulated symbol into one or more analog signals, and further amplifies, filters, quadrature modulates, and upconverts the signal to generate a wireless bond suitable for transmission via the associated antenna 2 24 A modulated signal transmitted. If the number of spatial subchannels is less than the available transmit antenna (ie, Nc < Ντ), then various schemes can be used for one data transmission. In one arrangement, the Nc modulation symbol stream is generated and transmitted with a subset of available transmit antennas (i.e., Nc). The remaining (NT - Nc) transmit antenna will not be used for data transmission. In another approach, the additional freedom provided by the additional transmit antenna (NT - Nc) will be used to improve the reliability of data transmission. For this solution, each one or more -25 - 1269549 is said to be purchased (21) streams can be encoded, possibly interleaved, and then transmitted through multiple transmit antennas. The use of multiple transmit antennas for a given data stream can increase diversity and improve reliability for unfavorable path effects. 2. ΜΙΜΟ transmitter unit with selective channel rotation

圖3 Β係發射器單元300b —具體實施例之方塊圖,其能依 據選擇性通道回轉處理資料。為簡化發射器與接收器單元 二處之資料處理,一共同編碼與調變方案可用於所有經選 擇用於資料傳輸之傳輸通道。在此情況下,發射器單元將 使用單一(例如迴旋或加速)碼與解碼率將資料編碼,且接 著使用單一(例如PSK或QAM)調變方案將產生之編碼位 元映射至調變符號。為支援此單一編碼與調變方案,用於 各選定傳輸通道之傳送功率位準可加以設定或調整以在 接收器單元處達到一特定之SNR。功率控制之達成可藉由 「回轉」選定之傳輸通道與適當地分佈可用的傳送功率於 所有選定之通道。Figure 3 is a block diagram of a specific embodiment of a tethered transmitter unit 300b that can process data in response to selective channel rotation. To simplify data processing at both the transmitter and receiver units, a common coding and modulation scheme can be used for all transmission channels selected for data transmission. In this case, the transmitter unit will encode the data using a single (e.g., convolution or acceleration) code and decoding rate, and then map the resulting coding bits to the modulation symbols using a single (e.g., PSK or QAM) modulation scheme. To support this single encoding and modulation scheme, the transmit power levels for each selected transmission channel can be set or adjusted to achieve a particular SNR at the receiver unit. The power control can be achieved by "swinging" the selected transmission channel and appropriately distributing the available transmit power to all selected channels.

如果用於所有可用傳輸通道之傳送功率均相等,且所有 通道之雜訊變異σ2均相等,則接收到有關傳輸通道(j,k)之 SNR,Y(j,k)可表示為: τϋΛ)If the transmit power for all available transmission channels is equal and the noise variation σ2 of all channels is equal, the SNR of the relevant transmission channel (j, k) is received, Y(j, k) can be expressed as: τϋΛ)

σ2ΝτΝΡ 方程式(1 ) 其中Prx(j,k)係用於傳輸通道(j,k)之接收功率(即第k頻率子 通道之第j空間子通道),Ptx係發射器單元處可用之整體傳 送功率,而H(j,k)係複合通道增益(如未使用ΜΙΜΟ,j=l, 而如未使用OFDM,k=l)。 -26- 1269549σ2ΝτΝΡ Equation (1) where Prx(j,k) is used for the received power of the transmission channel (j, k) (ie the jth space subchannel of the kth frequency subchannel), and the overall transmission available at the Ptx transmitter unit Power, and H(j,k) is the composite channel gain (if ΜΙΜΟ is not used, j=l, and if OFDM is not used, k=l). -26- 1269549

(22) 用以在選定之傳輸通迢中分佈整體傳送功率之常態化 因子β可表示為: β=~Στΰ^ 方程式(2) 广(/,太»决 其中hh係用以選擇傳輸通适的一 SNR臨界值。如方程式(2) 中所示,常態化因子β係依據所有選定傳輸通道之SNR (與 其和之倒數)而計算出。 要達到類似之接收S N R用於所有經選定之傳輪通道,各 選定傳輸通道(J,k)之調變符號可使用有關該通道snr之加 權量W(j,k)予以加權,其可以表示為: W{jfk) 方程式(3) 各傳輸通道經加權之傳送功率於是可表示為 βΡα< Λ八J,k) ,其中/C/,允)之4 ,其他 方程式(4)(22) The normalization factor β used to distribute the overall transmit power in the selected transmission wanted can be expressed as: β=~Στΰ^ Equation (2) Wide (/, too » decisions where hh is used to select transmissions An SNR threshold. As shown in equation (2), the normalization factor β is calculated from the SNR of all selected transmission channels (and the reciprocal of the sum). A similar received SNR is achieved for all selected transmissions. For the wheel channel, the modulation symbol of each selected transmission channel (J, k) can be weighted by the weighting amount W(j, k) of the channel snr, which can be expressed as: W{jfk) Equation (3) Each transmission channel The weighted transmission power can then be expressed as βΡα< Λ8 J,k), where /C/,4), other equations (4)

如 臨 專 利 請 信 置 方程式(4)中所示,只有經接收之s N R大 界值(即Y(j,k) 2 Yth)之傳輸通道才會被選定 選擇性通道回轉係經詳述於2001年5月1 7 利申請序號〇9/860,274,與2001年6月14日 申請序號09/881,6 10與2001年6月26曰申請 序號09/892,379中,上述三件標題均為r 系統中使用選擇性通道回轉用於處理資 」轉讓渡於本申請案之受讓人且以引用方 # <等於SNR ^吏用。 曰 中 之 +請之美國 $ <美國專 ^國專利申 在多 重通道通 式在此併入。 -27- 1269549As shown in the equation (4), only the transmission channel of the received s NR big boundary value (ie Y(j, k) 2 Yth) will be selected. The selective channel rotation system is detailed in In May 2001, the application number is 〇9/860,274, and on June 14, 2001, the application serial number 09/881,6 10 and June 26, 2001, application serial number 09/892,379, all three titles are r The use of selective channel reversal for processing in the system is assigned to the assignee of the present application and is used by the reference party # < equal to SNR ^.曰中的+请的美国 $ <US Patent Patent Application is incorporated in the multi-channel system. -27- 1269549

(23) 如圖3B中所示’發射器單元300b包括一 τχ資料處理器 2 合至一 τχ ΜΙΜΟ處理器220b。ΤΧ資料處理器21〇b包 括編碼器312、通道交錯器314與符號映射元件316,其操 作如上述。TX資料處理器210b進一步包括一符號加權元 件318,可依據一各自的加權值為各選定之傳輸通道加權 ’變符號’以提供經加權之調變符號。各選定傳輸通道之 加權值可如上述依據該通道之到達的S N R,與其他經選定 傳輸通道之SNR而加以決定。SNR臨界值Yth,可依前述美 國專利申請序號09/860,274、09/881,61〇與〇9/892,379中所述 加以決定。 3. 具完整CS1處理之Μ IMO發射器軍免 圖3 C係發射器單元300c之具體實施例的方塊圖,其能依 據由接收器單元提供完整CSI而處理資料。發射器單元 300c包括一 TX資料處理器210c耦合至一 ΤΧ ΜΙΜΟ處理器 220c。ΤΧ資料處理器21 Ob包括編碼器312、通道交錯器314 與符號映射元件3 16,其操作如上述。ΤΧ ΜΙΜΟ處理器220c 包括一通道ΜΙΜΟ處理器322與多路分配器324。 通道ΜΙΜΟ處理器3 2 2解經接收之調變符號的多工成為 許多(Nc)調變符號流,用於各空間子通道(即固有模式)之 一符號流將用以傳送該調變符號。對於完整C S1處理’通 道ΜΙΜΟ處理器3 22在各時槽預調節該Nc調變符號以產生 Ντ預調節調變符號如下: 、丨, 公12, ^1NC ^2 Μ = 彡21, e2Sc jVr” βΝτ2» eNTNc.(23) As shown in Fig. 3B, the transmitter unit 300b includes a τ χ data processor 2 coupled to a τ χ processor 220b. The data processor 21A includes an encoder 312, a channel interleaver 314 and a symbol mapping element 316, which operate as described above. TX data processor 210b further includes a symbol weighting component 318 that can be weighted by a respective weighting value to provide a weighted modulation symbol. The weighting value of each selected transmission channel can be determined as described above based on the S N R of the arrival of the channel and the SNR of the other selected transmission channels. The SNR threshold Yth can be determined as described in the aforementioned U.S. Patent Application Serial Nos. 09/860,274, 09/881, 61, and 9/892,379. 3. IMO Transmitter Army with Complete CS1 Processing Figure 3 is a block diagram of a specific embodiment of a C-Series transmitter unit 300c that can process data based on the complete CSI provided by the receiver unit. Transmitter unit 300c includes a TX data processor 210c coupled to a processor 220c. The data processor 21 Ob includes an encoder 312, a channel interleaver 314 and a symbol mapping element 3 16, which operate as described above. The processor 220c includes a channel buffer processor 322 and a demultiplexer 324. The channel ΜΙΜΟ processor 3 2 2 demultiplexes the received modulating symbol into a plurality of (Nc) modulated symbol streams, one of which is used for each spatial subchannel (ie, eigenmode) to transmit the modulating symbol . For the complete C S1 process, the channel ΜΙΜΟ processor 3 22 pre-adjusts the Nc modulation symbol in each time slot to generate the Ντ pre-adjusted modulation symbols as follows: , 丨, 12 12, ^1NC ^2 Μ = 彡21, e2Sc jVr ΝβΝτ2» eNTNc.

• b'· b2 M 方程式(5) -28- 1269549• b'· b2 M Equation (5) -28- 1269549

(24) 其中bi、b2、...與bNc分別為空間子通道1、2、... Nc之調 變符號,其中各Nc調變符號可使用例如 M-PSK、M-QAM或某些其他調變方案產生; 係有關由傳送天線至接收天線之傳輸特徵的一特 徵向量矩陣1的元件;及 xi、x2、...xNT係經預調節之調變符號。(24) where bi, b2, ..., and bNc are modulation symbols of spatial subchannels 1, 2, ..., Nc, respectively, wherein each Nc modulation symbol can use, for example, M-PSK, M-QAM, or some Other modulation schemes are generated; elements of a eigenvector matrix 1 relating to transmission characteristics from the transmit antenna to the receive antenna; and xi, x2, ... xNT are pre-conditioned modulation symbols.

特徵向量矩陣可由發射器單元加以計算或提供予發射 器單元(例如藉由接收器單元)。The eigenvector matrix may be calculated by the transmitter unit or provided to the transmitter unit (e.g., by a receiver unit).

對於完整CSI處理,各預調節之調變符號(Xi)用於一特 定傳送天線代表一線性組合(經加權)調變符號用於多達 Nc空間子通道。用於各調變符號之調變方案係依據固有 模式之有效SNR而加以選定,且係正比於特徵值(說明 如後)。用以產生各預調節調變符號之各個Nc調變符號可 關連至一不同之信號群。對於各時槽,由通道ΜΙΜΟ處理 器3 22產生之Ντ預調節調變符號係由一多路分配器3 24解 除多工處理與提供至Ντ調變器222。 完整CSI處理可依據可用的CSI與供所有或傳送天線之 子集而實施。完整C S I處理也可以是選擇性地及/或動態地 使用或不使用。例如,完整C S I處理可以對一特定資料傳 輸係可用而對某些其他資料傳輸係不可用。完整CSI處理 也可在某些條件下係可用,例如當通信鏈路具有適當之 SNR 時。 4. 具獨立處理之ΜΙΜΟ發射器單元 圖3 D係發射器單元300d的一具體實施例之方塊圖,其能 -29 - 1269549For complete CSI processing, each preconditioned modulation symbol (Xi) is used for a particular transmit antenna to represent a linear combination (weighted) modulation symbol for up to Nc spatial subchannels. The modulation scheme for each modulation symbol is selected based on the effective SNR of the natural mode and is proportional to the eigenvalue (described later). Each of the Nc modulation symbols used to generate each of the pre-conditioned modulation symbols can be associated to a different signal group. For each time slot, the Ντ pre-tuning modulation symbols generated by the channel ΜΙΜΟ processor 322 are demultiplexed and provided to the 调τ modulator 222 by a demultiplexer 3 24 . Complete CSI processing can be implemented depending on the available CSI and a subset of all or transmit antennas. The complete C S I process can also be used selectively and/or dynamically. For example, full C S I processing may be available for a particular data transmission system and not for some other data transmission system. Complete CSI processing can also be used under certain conditions, such as when the communication link has the appropriate SNR. 4. A transmitter unit with independent processing. Figure 3 is a block diagram of a specific embodiment of a D-system transmitter unit 300d, which can be -29 - 1269549

(25) 夠依據為該組選定之特定編碼與調變方案,而為各組傳輸 通道獨立編碼與調變資料。在—具體實施例中,各組對應 至一傳送天線,而在各組中之傳輸通道可對應至該傳送天 線 < 頻率子通道。在另一具體實施例中,各組對應至一資 料傳輪1指向的一各自的接收器單元。通常,各組可包括許 多傳輸通道,其中資料係以一共同編碼與調變方案加以編 碼與調變。 發射器單元300d包括一 TX資料處理器21〇d耦合至_τχ ΜΙΜΟ處理器220d。ΤΧ資料處理器21〇d包括許多子通道資 料處理器3 10a至3 10t、一資料處理器3 1〇供各組之傳輸通 道用以獨立編碼與調變。在圖3 D所示之具體實施例中, 各資料處理器310包括編碼器312、通道交錯器3 14與符號 映射元件316,其操作如上述。 在圖3D所示之具體實施例中,來自各資料處理器31〇之 調變符號將提供至ΤΧ ΜΙΜΟ處理器220d内各自的組合器 3 26。如果各組中包括為一特定傳送天線選定之頻率子通 道’則組合為j 2 6結合經選足頻率子通道之調變符號以形 成各時槽之調變符號向量,接著將其提供至一各自的調變 器222。由各調變器222產生一調變信號之處理將說明如 後。在某些其他具體實施例中,ΤΧ ΜΙΜΟ處理器220d可包 括組合器及/或多路分配器用以結合調變符號及/或將該 調變符號多路分配至其適當之調變器222。 5. 具OFDM之ΜΙΜΟ發射器簞元 圖3 Ε係發射器單元3 0 0 e —具體實施例之方塊圖,其使用 -30 - 1269549(25) Independently encode and modulate the data for each group of transmission channels based on the specific coding and modulation scheme selected for the group. In a particular embodiment, each group corresponds to a transmit antenna, and the transmit channels in each group may correspond to the transmit antenna < frequency sub-channel. In another embodiment, each group corresponds to a respective receiver unit to which a data transfer wheel 1 is directed. Typically, each group can include a number of transmission channels, with the data being encoded and modulated by a common coding and modulation scheme. Transmitter unit 300d includes a TX data processor 21〇d coupled to _τχ ΜΙΜΟ processor 220d. The data processor 21〇d includes a plurality of subchannel data processors 3 10a to 3 10t and a data processor 31 for each group of transmission channels for independent encoding and modulation. In the particular embodiment illustrated in Figure 3D, each data processor 310 includes an encoder 312, a channel interleaver 314, and a symbol mapping component 316 that operates as described above. In the particular embodiment illustrated in Figure 3D, the modulation symbols from each of the data processors 31 are provided to respective combiners 3 26 within the processor 220d. If the frequency sub-channels selected for a particular transmit antenna are included in each group, then the modulation symbols of the selected frequency sub-channels are combined to form a modulation symbol vector for each time slot, which is then provided to Respective modulators 222. The process of generating a modulated signal by each of the modulators 222 will be described later. In some other specific embodiments, the processor 220d can include a combiner and/or a demultiplexer to combine the modulation symbols and/or to demultiplex the modulation symbols to their appropriate modulators 222. 5. OFDM ΜΙΜΟ transmitter unit 图 Figure 3 Ε 发射 transmitter unit 3 0 0 e — block diagram of a specific embodiment, using -30 - 1269549

(26)(26)

OFDM且能夠獨立為各頻率子通道處理資料。在一 τχ資料 處理器210e中,供各頻率子通道用於資料傳輸之資訊位元 流將提供至一各自的頻率子通道資料處理器3 3 0。各資料 處理器3 3 0為0 FDM系統之各自的頻率子通道處理資料,且 可實施類似TX資料處理器21〇a、210b或210d,或某些其他 之設計。在一具體實施例中,資料處理器3 3 0多路分配頻 率子通道資料流成為許多資料支流,一資料支流用於選定 用於該頻率子通道之各空間子通道。各資料支流於是經編 碼、交錯與符號映射以產生供該資料支流用之調變符號。 各頻率子通道資料流或各資料支流之編碼與調變,可依據 該編碼與調變控制信號加以調整。各資料處理器3 3 0提供 多達Nc之調變符號流供經選定用於該頻率子通道之Nc空 間子通道。OFDM and the ability to process data independently for each frequency subchannel. In a τ χ data processor 210e, the information bit stream for each frequency sub-channel for data transmission will be provided to a respective frequency sub-channel data processor 340. Each data processor 320 is a respective frequency subchannel processing material for the 0 FDM system and can be implemented similar to the TX data processor 21A, 210b or 210d, or some other design. In one embodiment, the data processor 309 multi-channel allocation frequency sub-channel data stream becomes a plurality of data tributaries, and a data tributary stream is used for each spatial sub-channel selected for the frequency sub-channel. Each data stream is then encoded, interleaved, and symbol mapped to produce a modulation symbol for the data stream. The coding and modulation of each frequency subchannel data stream or each data stream can be adjusted according to the coding and modulation control signals. Each data processor 310 provides a modulated symbol stream of up to Nc for the Nc spatial subchannel selected for that frequency subchannel.

對於使用OFDM之ΜΙΜΟ系統,調變符號可從多重傳送天 線及在多重頻率子通道上傳送。在一 ΤΧ ΜΙΜΟ處理器220e 中,來自各資料處理器3 3 0多達Nc之調變符號流將提供至 一各自的空間處理器3 3 2,其依據該通道控制及/或可用的 C S I處理經接收之調變符號。如果完整C S I處理未實施 時,各空間處理器332可簡單地實施一多路分配器(如圖 3 A中所示),或可在一 ΜΙΜΟ處理器後實施一多路分配器 (如圖3 C中所示),如果完整C S I處理係經實施。對於使用 OFDM的一 ΜΙΜΟ系統,完整CSI處理(即預調節)可實施於 各頻率子通道。 各空間處理器3 3 2多路分配各時槽多達N c調變符號成 -31-For systems using OFDM, the modulation symbols can be transmitted from multiple transmit antennas and on multiple frequency subchannels. In a processor 220e, the modulated symbol streams from each of the data processors 330 to Nc are provided to a respective spatial processor 323, which is controlled according to the channel and/or available for CSI processing. The modulated symbol received. If the full CSI process is not implemented, each spatial processor 332 can simply implement a demultiplexer (as shown in Figure 3A), or can implement a demultiplexer after a processor (Figure 3). As shown in C), if the complete CSI processing is implemented. For a system using OFDM, full CSI processing (i.e., pre-conditioning) can be implemented for each frequency sub-channel. Each spatial processor 3 3 2 multiplexes each time slot up to N c modulation symbol into -31-

1269549 (27) 為多達Ντ調變符號供經選定用於該頻率子通道之傳送天 線使用。對於各傳送天線,一組合器3 3 4接收多達N F頻率 子通道之調變符號經選定用於該傳送天線’結合供各時槽 之符號成為調變符號向量V,且提供該調變符號向量至各 自的調變器222。1269549 (27) Use up to Ντ modulation symbols for transmission antennas selected for this frequency subchannel. For each transmit antenna, a combiner 314 receives the modulation symbols of up to the NF frequency subchannels selected for the transmit antenna 'combined with the symbols for each time slot to become the modulated symbol vector V, and provides the modulated symbol The vectors are to respective modulators 222.

ΤΧ ΜΙΜΟ處理器220e因此接收及處理調變符號以提供多 達Ντ之調變符號(Vi至VNt),一調變符號向量供經選定用 於資料傳輸之各傳送天線使用。各調變符號向量V涵蓋一 單一時槽,而該調變符號向量V之各元件係連結至具有可 在其上傳送調變符號之獨一次載子的一特定頻率子通遒。 圖3E也顯示OFDM之調變器222的一具體實施例。來自 TX通道處理器220e之調變符號向量Vi至VNt將分別提供至 調變器222a至222t。在圖3E所示之具體實施例中,各調變 器222包括一反向快速傅立葉轉換器(IFFT) 340、一循環字 首產生器342及一上轉換器344。 IFFT 340使用IFFT將各個經接收之調變符號向量轉換成 為其時域指示(其稱為OFDM符號)。IFFT 340可設計在任何 數目之頻率子通道(如8、16、32、...、NF)上實施該IFFT。 在一具體實施例中,由於各調變符號向量轉換成一 OFDM 符號,循環字首產生器342重複OFDM符號之時域指示的一 部分以便為一特定傳送天線形成一「傳輸符號」。該循環 字首可保證該傳輸符號在存有多重路徑延遲展開下維持 其正交特性,藉此改進防止不利的路徑效應之效能。IFFT 340與循環字首產生器342之實施係先前已知之技術,因而 -32 - 1269549The processor 220e thus receives and processes the modulation symbols to provide modulation symbols (Vi to VNt) of up to Ντ, a modulation symbol vector for use by each of the transmit antennas selected for data transmission. Each of the modulated symbol vectors V encompasses a single time slot, and each component of the modulated symbol vector V is coupled to a particular frequency sub-pass with a unique carrier on which the modulated symbol can be transmitted. FIG. 3E also shows a specific embodiment of OFDM modulator 222. The modulation symbol vectors Vi to VNt from the TX channel processor 220e will be supplied to the modulators 222a through 222t, respectively. In the embodiment illustrated in FIG. 3E, each modulator 222 includes an inverse fast Fourier transformer (IFFT) 340, a cyclic prefix generator 342, and an upconverter 344. IFFT 340 uses IFFT to convert each received modulated symbol vector into its time domain indication (which is referred to as an OFDM symbol). The IFFT 340 can be designed to implement the IFFT on any number of frequency subchannels (e.g., 8, 16, 32, ..., NF). In one embodiment, since each modulated symbol vector is converted to an OFDM symbol, the cyclic prefix generator 342 repeats a portion of the time domain indication of the OFDM symbol to form a "transport symbol" for a particular transmit antenna. The cyclic prefix ensures that the transmitted symbol maintains its orthogonality under the presence of multiple path delay spreads, thereby improving the effectiveness of preventing adverse path effects. The implementation of IFFT 340 and cyclic prefix generator 342 is a previously known technique, thus -32 - 1269549

(28) 未及在此詳述。 來自循環字首產生器342之時域指示(即各天線之傳輸 符號)接著由上轉換器3 4 4處理(如轉換成一類比信號、經 肩’支、放大及過)慮)以產生一調變信號,其接著藉由一個 別之天線2 2 4傳送。 使用0 FDM之ΜΙΜΟ系統的一範例經揭示於2〇〇〇年3月3 0 曰申請之美國專利申請序號09/532,492中,其標題為「利 用多重載子調變之高效率、高性能通信系統」,其經讓渡 與本發明受讓人且以引用方式在此併入。〇FDM調變也經 描述於一標題為「用於資料傳輸之多重載子調變:其創見 已然來臨」,由John A.C· Bingham於1990年5月IEEE通信雜 洁所發表的文獻中,以引用方式在此併入。 圖3 A至3 E顯示某些編碼與調變方案之範例,其可有利 地被連同完整或部份C S I以提供改進之性能(例如較高之 通量)。部份此類編碼與調變方案係經進一步詳述於美國 專利申請案序號09/826,48 1與09/956,449中,二者之標題均 為「在無線通信系統中使用通道狀態資訊之方法與裝 置」。分別於2001年3月23日與2001年9月18日申請,以及 申請曰期為2001年5月11日之美國專利申請案序號 09/854,235 ’標題為「在一多重輸入多重輸出(MIM〇)通信 系統中使用通道狀態資訊供資料處理之方法與裝置」,某 些其他編碼與調變方案之範例經描述於2〇〇1年2月1日申 請之美國專利申請案序號09/776,075,標題為「用於無線 通k系統之編碼方案」。這些申請案均讓渡與本發明受讓 1269549 (29) 人且以引用方式在此併入。又另外的編碼與調變方案也可 使用,且此係落入本發明之範圍内。 6. 操作方式 可被使用於依據該可用的c S I而運用適應性發射器處理 技術於一 ΜΙΜΟ及/或一 0 FDM系統的各種操作方式均在此 詳述。下面將簡述其中幾項優點。(28) Not detailed here. The time domain indication from the cyclic prefix generator 342 (i.e., the transmitted symbols of the antennas) is then processed by the upconverter 34 4 (e.g., converted to an analog signal, shouldered, amplified, and over) to produce a tone. The signal is changed, which is then transmitted by a separate antenna 2 2 4 . An example of a system using a 0 FDM is disclosed in U.S. Patent Application Serial No. 09/532,492, filed on March 30, 2003, entitled "Using Multi-Tag Modulation for High Efficiency, High Performance Communication The system is hereby incorporated by reference to the assignee of the present disclosure. 〇FDM modulation is also described in a document titled “Multiple Carrier Modulation for Data Transmission: Its Transcendence Has Come,” by John AC Bingham in the May 1990 issue of IEEE Communications Hybrid. The manner of reference is incorporated herein. Figures 3A through 3E show examples of certain coding and modulation schemes that may advantageously be combined with full or partial CsI to provide improved performance (e.g., higher throughput). Some of these encoding and modulation schemes are further described in U.S. Patent Application Serial Nos. 09/826,48 1 and 09/956,449, both of which are entitled "Using Channel Status Information in a Wireless Communication System" And device". Applications filed on March 23, 2001 and September 18, 2001, respectively, and U.S. Patent Application Serial No. 09/854,235, filed on May 11, 2001, entitled "A Multiple Input Multiple Output (MIM) 〇) Method and apparatus for using channel status information for data processing in a communication system. Some examples of other coding and modulation schemes are described in U.S. Patent Application Serial No. 09/776,075, filed on Feb. 1, 2011. The title is "Encoding Scheme for Wireless Communication System". These applications are hereby incorporated by reference in its entirety in its entirety by reference in its entirety in its entirety in its entirety in Still other coding and modulation schemes can be used and are within the scope of the invention. 6. Mode of Operation Various modes of operation that can be used to apply adaptive transmitter processing techniques in accordance with the available c S I for a single and/or one of the F FDM systems are detailed herein. Some of the advantages will be outlined below.

在一操作方式中,各傳輸通道之編碼與調變方式係依據 該通道之傳輸能力加以選定,如由該通道之可用C SI (例 如SNR)所指明。特別是當與下文中說明之持續消去接收 器處理技術結合使用時,此方式可提供性能之改進。當有 一大差異介於最差條件與最佳條件之傳輸通道間時,編碼 可經選擇以引進足夠之冗餘,以允許該接收器單元能回復 初始之資料流。例如,該最差傳輸通道可接收器輸出處經 連結至一不佳SNR。正向糾錯(FEC)碼則可經選定以有效 地允許該符號在最差條件之傳輸通道上傳送,而由接收器 單元正確地接收。 當發射器係於每一個經回復之傳送信號上均具有 SNR,不同之編碼及/或調變方式將可被用於各傳送信 號。例如依據其S N R,一特定編碼與調變方式可經選定予 各傳送信號,以致有關該等傳送信號之錯誤率係接近相 等。在此方式中,該等傳送信號之通量係由其各自的SNR 支配,而不是藉由最差條件之傳送信號的SNR。 在另一操作方式中,該發射器並非每一傳輸通道均具有 C S I,但可具有一單一值指明其所有傳輸通道之平均特徵 -34- 1269549 (30) _魏賴續頁 ::毅:麵 (例如平均S N R),或某些可能指明那一個傳送天線將被用 於資料傳輸之資訊。在此方式中,該發射器可利用相同之 編碼與調變方案在所有用於資料傳輸之傳送天線上,其可 以是Ντ可用傳送天線的一子集。In one mode of operation, the encoding and modulation of each transmission channel is selected based on the transmission capability of the channel, as indicated by the available C SI (e.g., SNR) for that channel. This approach provides performance improvements, particularly when used in conjunction with the continuous erase receiver processing techniques described below. When there is a large difference between the worst-case and best-condition transmission channels, the code can be selected to introduce enough redundancy to allow the receiver unit to revert to the original data stream. For example, the worst transmission channel can be coupled to a poor SNR at the receiver output. A forward error correction (FEC) code can then be selected to effectively allow the symbol to be transmitted on the worst condition transmission channel and correctly received by the receiver unit. When the transmitter has an SNR on each of the recovered transmitted signals, different encoding and/or modulation methods can be used for each transmitted signal. For example, depending on its S N R, a particular coding and modulation scheme can be selected for each of the transmitted signals such that the error rates associated with the transmitted signals are nearly equal. In this manner, the flux of the transmitted signals is governed by their respective SNRs, rather than the SNR of the transmitted signal by the worst conditions. In another mode of operation, the transmitter does not have a CSI for each transmission channel, but may have a single value indicating the average characteristics of all its transmission channels - 34 - 1269549 (30) _ Wei Lai Continuation Page:: Yi: Face (for example Average SNR), or some information that may indicate which transmit antenna will be used for data transmission. In this manner, the transmitter can utilize the same coding and modulation scheme on all transmit antennas for data transmission, which can be a subset of the available transmit antennas.

如果該編碼與調變方案係用於所有或多數傳送信號,則 附有最差SNR之經回復傳送信號將具有最高之解碼錯誤 率。此可極度地限制ΜΙΜΟ系統之性能,因為編碼與調變 方案係經選定,致使有關最差條件傳送信號之錯誤率符合 整體錯誤率要求。為改進效率,額外之接收天線可用以提 供在經回復之傳送信號上錯誤率性能之改進。藉此利用比 傳送天線較多之接收天線,第一回復傳送信號之錯誤率具 有之變異度為(NR - NT + 1),且可靠度係增加。If the coding and modulation scheme is used for all or most of the transmitted signals, the recovered transmitted signal with the worst SNR will have the highest decoding error rate. This greatly limits the performance of the system because the coding and modulation schemes are selected such that the error rate for the worst-case transmitted signals meets the overall error rate requirements. To improve efficiency, additional receive antennas can be used to provide an improvement in error rate performance over the transmitted transmitted signal. By using a receiving antenna having a larger number of transmitting antennas, the error rate of the first reply transmitted signal has a degree of variability (NR - NT + 1), and the reliability is increased.

在又一操作方式中,該傳送資料流係「循環地」橫跨所 有可用之傳送天線。此方式改進各個經回復之傳送信號的 SNR統計值,因為該傳送資料並非關於最差條件傳輸通 道,而是為所有傳輸通道。有關一特定資料流之解碼器係 有效地以「軟決策」來表示,其係代表橫跨所有傳送-接 收天線對之平均值。此操作方式係進一步描述於歐洲專利 申請案序號99302692.1,標題為「在發射器與接收器二處 利用多重元件天線而具有空間時間架構之無線通信系 統」’且以引用方式在此併入。 7. 傳送天線 基地台處之傳送天線組可以是實際上不同之「開孔」 組,其個別均可用以直接傳送各自的資料流。各開孔可以 -35- 1269549 發畴酬賴 (31) 由一或多個天線元件之集合形成,其分佈在2間中(例如 實際上位於一單一位置或分佈在多個位置)。另一選擇 是,天線開孔可在一或多個(固定)波束形成矩陣之前,其 中各矩陣係用以合成一與該組開孔不同組之天線波束。在 此情況下,上述傳送天線之說明可同樣地應用在轉換天線 束。In yet another mode of operation, the transport stream "circulates" across all available transmit antennas. This approach improves the SNR statistics for each of the recovered transmitted signals because the transmitted data is not about the worst conditional transmission channel but for all transmission channels. The decoder for a particular data stream is effectively represented by a "soft decision" which represents the average across all transmit-receive antenna pairs. This mode of operation is further described in European Patent Application Serial No. 99302692.1, entitled "Wireless Communication System with Space Time Architecture Using Multiple Component Antennas at Transmitter and Receiver 2" and is incorporated herein by reference. 7. Transmitting Antennas The transmitting antenna groups at the base station can be actually different "opening" groups, each of which can be used to directly transmit their respective data streams. Each opening may be -35- 1269549 (31) formed by a collection of one or more antenna elements distributed in two (e.g., actually in a single location or distributed in multiple locations). Alternatively, the antenna apertures may be preceded by one or more (fixed) beamforming matrices, wherein each matrix is used to synthesize an antenna beam of a different set than the set of apertures. In this case, the above description of the transmitting antenna can be equally applied to the switching antenna beam.

多數固定束形成矩陣可事先加以定義,而該終端機可為 各可能之矩陣(天線波束組)評估該後處理,而後將S N R向 量發送至基地台。通常不同轉換天線波束組可達到不同之 性能(即後處理SNR),而此可在經提報之SNR向量内反映 出。基地台於是可為各個可能之波束形成矩陣實施排程與 天線指定(使用經提報之SNR向量),且選擇一特定之波束 形成矩陣以及一組終端機與其指定天線以達到可用資源 的最佳使用。Most fixed beam forming matrices can be defined in advance, and the terminal can evaluate the post processing for each possible matrix (antenna beam group) and then send the S N R vector to the base station. Usually different types of converted antenna beams can achieve different performance (i.e., post-processing SNR), which can be reflected in the reported SNR vector. The base station can then schedule and antenna design (using the reported SNR vectors) for each possible beamforming matrix, and select a particular beamforming matrix and a set of terminals and their designated antennas to achieve the best available resources. use.

波束形成矩陣之使用提供在排程終端機時額外之彈 性,且可進一步提供性能之改進。如範例中,下列狀態可 以充分適合於波束形成之轉換: • ΜΙΜΟ通道内之關連性很高,以致少量資料流即可達 到最佳性能。然而,只以可用傳送天線之子集(且只 使用其相關之傳送放大器)傳送,將產生較小之傳送 功率。可選定一轉換以使用所有之傳送天線(及其放 大器)用於發送該資料流。在此情況下,可達到較高 之傳送功率用於傳送資料流。 •實質上分集之終端機可依其位置在某些程度上加以 -36- 1269549 發嚷戴明續Μ (32) 隔開。在此情況下,終端機之功用可藉由一標準F F Τ 型式轉換將水平分置的開孔轉成一組指向不同方位 角的波束。 III. 接收器單元The use of a beamforming matrix provides additional flexibility in scheduling the terminal and can further provide improved performance. In the example, the following states are well suited for beamforming conversion: • The connectivity within the channel is so high that a small amount of data stream can achieve optimal performance. However, transmission only with a subset of the available transmit antennas (and only with its associated transmit amplifier) will result in a smaller transmit power. A conversion can be selected to use all of the transmit antennas (and their amplifiers) for transmitting the data stream. In this case, a higher transmission power can be achieved for transmitting the data stream. • Substantially diversity terminals can be separated to some extent by their location -36- 1269549 嚷 明 Μ Μ (32). In this case, the function of the terminal can convert the horizontally split aperture into a set of beams pointing to different azimuth angles by a standard F F Τ type conversion. III. Receiver unit

本發明一特點提供在一 ΜΙΜΟ系統中處理接收信號以回 復該傳送資料之技術,及預估ΜΙΜΟ通道之特徵。指明通 道特徵之C S I接著被提報回至發射器單元,且用以調整信 號處理(例如編碼、調變等等)。以此方式,可依據經決定 之通道條件而達到高性能。 如果接收天線之數目等於或超過傳送天線之數目(即Nr 之Ντ),則數種接收器處理技術可被用於單一使用者與多 重使用者ΜΙΜΟ模式。這些接收器處理技術可群集成二種 主要類型: •空間與空間時間接收器處理技術(也稱之為同等化技 術),及A feature of the present invention provides a technique for processing a received signal in a system to recover the transmitted data, and estimating the characteristics of the channel. The C S I indicating the channel characteristics is then reported back to the transmitter unit and used to adjust signal processing (e.g., encoding, modulation, etc.). In this way, high performance can be achieved depending on the determined channel conditions. If the number of receive antennas equals or exceeds the number of transmit antennas (i.e., Ντ of Nr), several receiver processing techniques can be used for single-user and multiple-user modes. These receiver processing techniques can be clustered into two main types: • Space and space time receiver processing techniques (also known as equalization techniques), and

• 「持續無效/同等化與干擾消除」接收器處理技術(或 簡稱「持續消除」接收器處理技術)。 通常,空間與空間時間接收器處理技術期望在接收器單 元隔開傳送信號,而各個經隔開之傳送信號可進一步經處 理以回復包括在信號内之資料。持續消除接收器處理技術 期望(逐次地)回復傳送信號與消除各回復信號所致之干 擾,使得較後回復次信號經歷較少之干擾與較高之SNR。 持續消除接收器處理技術大體上勝過(即具有較大通量) 空間/空間時間接收器處理技術。 -37- 1269549 發螨讜磁:绩賀 (33) 持續消除接收器處理技術之使用可受限於某些情況。特 別是干擾消除只有在一回復信號產生之干擾可被準確地 估計時才有效,其將需要零誤差偵測(即解調變與解碼) 該回復信號。• “Continuous Invalidation/Equivalent and Interference Cancellation” Receiver Processing Technology (or “Continuous Elimination” Receiver Processing Technology). In general, spatial and spatial time receiver processing techniques desirably separate transmission signals at the receiver unit, and each separated transmission signal can be further processed to recover data included in the signal. The continuous cancellation receiver processing technique expects (sequentially) to reply to the transmitted signal and eliminate the interference caused by each of the recovered signals, such that the later recovered secondary signal experiences less interference and a higher SNR. Continuous elimination of receiver processing techniques generally outperforms (ie, has greater throughput) spatial/spatial time receiver processing techniques. -37- 1269549 Hairpin: Jihe (33) The use of continuous elimination receiver processing technology can be limited to certain situations. In particular, interference cancellation is only effective if the interference generated by a reply signal can be accurately estimated, which would require zero error detection (i.e., demodulation and decoding) of the reply signal.

在下行鏈路上,如果使用單一使用者ΜΙΜΟ模式而終端 機配備有多重接收天線,則持績消除接收器處理技術將可 使用。如果使用多重使用者ΜΙΜΟ模式,一具備ΜΙΜΟ能力 之終端機可使用空間/空間時間接收器處理技術(即無持 續消除)。此因該具備ΜΙΜΟ能力之終端機可能無法回復預 定供另一終端機用之傳送信號(由於選定用於此經傳送信 號之編碼與調變方式可能係依據其他終端機之後處理 SNR)而因而可能無法消除對此傳送信號之干擾。On the downlink, if a single user port mode is used and the terminal is equipped with multiple receive antennas, the performance cancellation receiver processing technique will be available. If multiple user mode is used, a capable terminal can use space/space time receiver processing (ie, no persistent cancellation). Therefore, the terminal capable of the capability may not be able to reply to the transmission signal scheduled for another terminal (because the encoding and modulation method selected for the transmitted signal may be based on the processing SNR of other terminals) Interference with this transmitted signal cannot be eliminated.

對下行鏈路而言,最簡單就是當利用多重使用者ΜΙΜΟ 模式時,使所有終端機均使用空間/空間時間接收器處理 技術。在終端機處推導出各傳送信號之後處理SNR可提報 至基地台,其於是可使用該資訊以便最佳地排程終端機用 於資料傳輸、指定傳送天線予終端機與適當編碼與調變資 料。 在上行鏈路上,在基地台處的一單一接收器單元回復由 自一或多個終端機傳送來之信號,而該持續消除接收器處 理技術大體上可用於單一使用者與多數使用者ΜΙΜΟ模 式。在單一使用者ΜΙΜΟ模式中,基地台接收器單元推導 出各傳送信號之後處理SNR,而後此資訊可用於排程以及 與編碼與調變。在多重使用者ΜΙΜΟ模式中,基地台接收 -38- (34) _ 1269549 可推導出驅動終端機(即 垤SN^,而德+欠H田 而求貝科傳輸者)之後處 阳傻此資訊可用以選摇具 、 輸,以5 、 佳(.、且終端機供資料傳 、及用於各傳送天線之編碼與調變方式。 依據吣M0通道之特徵, 射,其牿料π 彳供收器處理技For the downlink, the simplest is to use space/space time receiver processing techniques for all terminals when using the multiple user mode. After deriving the respective transmitted signals at the terminal, the processed SNR can be reported to the base station, which can then use the information to optimally schedule the terminal for data transmission, specify the transmit antenna to the terminal, and properly encode and modulate data. On the uplink, a single receiver unit at the base station replies with signals transmitted from one or more terminals, and the continuous cancellation receiver processing technique is generally applicable to single-user and majority-user modes. . In the single-user mode, the base station receiver unit derives the transmitted signals and processes the SNR, which can then be used for scheduling and coding and modulation. In the multi-user mode, the base station receives -38- (34) _ 1269549 to derive the driver terminal (ie 垤SN^, and ** owes H field and seeks the Bec transmitter). It can be used to select the rocker, the input, the 5, the good (., and the terminal for data transmission, and the coding and modulation method for each transmitting antenna. According to the characteristics of the 吣M0 channel, the π 彳 彳Receiver processing technology

破可區分為非散佈性或散一 通遒經厣 非欢佈性MIMC 少),而千哀退(即檢跨整個系統頻寬幾乎等量之減 )而—散佈性腦0通道經歷頻率.選擇性衰退(如即橫 #正個系統頻寬有不相同之減少量)。Break can be divided into non-distributive or non-distributive 遒 遒 厣 厣 厣 MI MI MI MI MI , , , , , 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千Sexual recession (such as the horizontal system has a different system bandwidth).

、對於—非散佈性ΜΙΜ0通道,線性空間處理技術(例如下 又中進一步詳加說明之通道關聯矩陣反轉(CCM”技術、最 小均方誤差(MMSE)技術與完整CSI技術可用以在解調= 與解碼前處理該接收信號。還可使用其他接收器處理技 術’並且均屬於本發明的範疇。可在接收器單元處利用这 些空間處理技術以去除不需要之信號,或在出現來自其他 信號之雜訊與干擾時最大化各構成信號之接收。有效 去除不需要信號或最大化SNR之能力,取決於描述傳$與 接收天線間之通道響應的通道係數矩陣EL之關聯作用。 對於一散佈性ΜΙΜΟ通道,通道内時間散亂引發符號間 之干擾(IS I)。為改進性能,企圖回復一特定傳送資料流 的一接收器單元將需要改善來自於其他傳送信號之「交互 干擾」,以及來自於其他傳送信號之符號間干擾等二者。 要處理交互干擾與符號間干擾,該空間處理(其可妥善處 理交互千擾但無法有效處理符號間之干擾)可用空間時間 處理來替代 -39- 1269549 _ (35) I發嗎戴烟續ΐ 在,具體實施例中,MMSE線性等化器(MMSE-LE)可用於 空間時間處理一散佈性通道。以MMSE-LE技術,空間時間 處理假定一與非散佈性通道之空間處理類似的型式。然而 如下文中將進一步詳加說明,空間處理器内之各「過濾指 定」包栝不只一指定。當通道估計值(即通道係數矩陣江) 準確時,使用MMSE-LE技術於空間時間處理將更為有效。 在另,具體實施例中,一決策回授等化器(DFE)可用於 該空間時間處理。D F E係一非線性等化器,其對於嚴重幅 度失真之通道具有功能且使用決策回授以消除已被偵測 出之符號的干擾。如果資料流可被無誤差地解碼(或具有 最少誤差)’則由對應於解碼資料位元之調變符號產生的 符號間千擾可被有效地消除。 在又,具體實施例中,一最大可能性順序估算器(MLSE) 可用於該空間時間處理。 當通道估計值並非如此準確時,DFE與MLSE技術可減低 或可能消除性能之退化。DFE與MLSE技術將進一步詳加 說明於S.L. Ariyavistakul等之文獻中,其標題為「具散佈性 干擾之最佳空間時間處理器:整體性分析與需求過濾器研 發」,1999年7月號IEEE通信月刊第7卷,且以引用方式在 此併入。 圖4A係RX ΜΙΜΟ/資料處理器260a—具體實施例之方塊 圖,其係圖2A與2B之基地台104或終端機106之接收器部 份的一具體實施例。來自(多達)Ν τ傳送天線所傳送之信 號係由各N r天線252a至25 2r所接收,而後分配路徑至各自 1269549 發嗎說敏績頁 (36) 的解調器2 5 4 (亦稱前端處理器)。各解調器2 5 4調節(例如 過濾與放大)各自的接收信號,各下轉換經調節之信號至 一中繼頻率或基頻,而後數位化經向下轉換之信號以提供 資料樣本。各解調器2 5 4可進一步以回復先導解調變該資 料樣本以產生一接收之調變符號流,其將提供予一空間/ 空間時間處理器4 1 0。For the non-dispersive ΜΙΜ0 channel, linear spatial processing techniques (such as the channel association matrix inversion (CCM) technique, minimum mean square error (MMSE) technique and complete CSI technology, which are further elaborated below, can be used in demodulation = Processing the received signal before decoding. Other receiver processing techniques can also be used' and are within the scope of the invention. These spatial processing techniques can be utilized at the receiver unit to remove unwanted signals, or in the presence of other signals. The noise and interference maximize the reception of each constituent signal. The ability to effectively remove unwanted signals or maximize SNR depends on the association of the channel coefficient matrix EL describing the channel response between the transmitting antenna and the receiving antenna. Sexual channel, time-spaced interference in the channel causes inter-symbol interference (IS I). To improve performance, a receiver unit attempting to reply to a particular transmitted data stream will need to improve "interactive interference" from other transmitted signals, and Both inter-symbol interference from other transmitted signals, etc. To handle crosstalk and intersymbol interference, Space processing (which can properly handle interactive interference but can't effectively deal with inter-symbol interference) can be replaced by space time processing -39- 1269549 _ (35) I send a cigarette. In the specific example, MMSE linear, etc. The MMSE-LE can be used for spatial time processing of a scatter channel. With MMSE-LE technology, spatial time processing assumes a similar pattern to the spatial processing of non-scattering channels. However, as will be further explained below, space Each "filtering specification" packet in the processor is not only specified. When the channel estimation value (ie channel coefficient matrix) is accurate, it is more efficient to use MMSE-LE technology for spatial time processing. In another embodiment A decision feedback equalizer (DFE) can be used for the spatial time processing. The DFE is a nonlinear equalizer that has functions for channels of severe amplitude distortion and uses decision feedback to eliminate the detected symbols. Interference between symbols if the data stream can be decoded without error (or with minimal error)' then the intersymbol interference generated by the modulation symbol corresponding to the decoded data bit can be valid In a further embodiment, a maximum likelihood sequence estimator (MLSE) can be used for the spatial time processing. When the channel estimates are not so accurate, the DFE and MLSE techniques can reduce or possibly eliminate performance degradation. The DFE and MLSE technologies will be further elaborated in the literature by SL Ariyavistakul et al., entitled "Optimal Space Time Processor with Dispersive Interference: Integrated Analysis and Demand Filter Development", July 1999 IEEE Communications Monthly Volume 7 and incorporated herein by reference. Figure 4A is a block diagram of an RX ΜΙΜΟ/data processor 260a - a particular embodiment of a base station 104 or terminal 106 of Figures 2A and 2B A specific embodiment of the serving. The signals transmitted from the (up to) Ντ transmit antennas are received by the N r antennas 252a through 25 2r , and then the paths are assigned to the respective 1269549 rounds. The demodulator page (36) of the demodulator 2 5 4 (also Called the front-end processor). Each demodulator 254 adjusts (e. g., filters and amplifies) the respective received signals, each downconverts the conditioned signal to a relay frequency or fundamental frequency, and then digitizes the down converted signal to provide a data sample. Each demodulator 254 may further transform the data samples with a return pilot to produce a received modulated symbol stream that will be provided to a spatial/spatial time processor 410.

如果利用OFDM於資料傳輸,各解調器254進一步實施與 圖3 E中所示之調變器2 2 2所實施互補之處理。在此情況 下,各解調器254包括一 FFT處理器(未顯示),可產生資料 樣本之轉換指示且提供一調變符號向量流。各向量包括供 NF頻率子通道之NF調變符號,而一向量係供一各時槽。 來自於所有NR解調器之FFT處理器的調變符號向量流,則 提供予一多路分配器/組合器(未顯示於圖4A中),其首先 「通道化」來自各FFT處理器之調變符號向量流成為多數 (多達NF)調變符號流。對於各頻率子通道係獨立處理的一 傳送處理方案,該多路分配器/組合器提供各個(多達)Nf 調變符號流至各自的空間/空間時間處理器4 1 0。 對於未使用OFDM的一 ΜΙΜΟ系統,空間/空間時間處理 器4 1 0可被用以對來自於NR接收天線之調變符號實施 ΜΙΜΟ處理。而對於一使用OFDM之ΜΙΜΟ系統,空間/空間 時間處理器410可被用以對來自於供各NF頻率子通道用 於資料傳輸之NR接收天線的調變符號實施ΜΙΜΟ處理。另 一選擇是,空間/空間時間處理器4 1 0可被用以對用於所有 NF頻率子通道之調變符號實施ΜΙΜΟ處理,例如以一時間 -41 - 1269549 (37) 發嗎鍊瞒續屬<: ::¾¾毅:;發:;翔毅毅:?毅毅$;: 多工處理方式。 1. CCM1技術(空間處理) 在附有Ν τ傳送天線與N R接收天線之ΜΙΜΟ系統中,在N R 接收天線輸出處之接收信號可表示為: r - Hx + η 方程式(6)If OFDM is used for data transmission, each demodulator 254 further implements a process complementary to that implemented by the modulator 2 22 shown in Figure 3E. In this case, each demodulator 254 includes an FFT processor (not shown) that produces a conversion indication of the data samples and provides a stream of modulated symbol vectors. Each vector includes an NF modulation symbol for the NF frequency subchannel, and a vector is provided for each time slot. The modulated symbol vector streams from the FFT processors of all NR demodulators are provided to a demultiplexer/combiner (not shown in Figure 4A), which is first "channelized" from each FFT processor. The modulated symbol vector stream becomes the majority (up to NF) modulated symbol stream. For a transport processing scheme in which each frequency subchannel is independently processed, the demultiplexer/combiner provides each (up to) Nf modulated symbol stream to a respective spatial/spatial time processor 410. For a system that does not use OFDM, the spatial/spatial time processor 410 can be used to perform ΜΙΜΟ processing on the modulated symbols from the NR receive antenna. For a system using OFDM, the spatial/spatial time processor 410 can be used to perform ΜΙΜΟ processing on the modulated symbols from the NR receive antennas for data transmission for each NF frequency subchannel. Alternatively, the spatial/spatial time processor 410 can be used to perform ΜΙΜΟ processing on the modulation symbols for all NF frequency subchannels, for example, at a time of -41 - 1269549 (37). Dependent <: ::3⁄43⁄4毅:; hair:; Xiang Yiyi:? Yi Yi $;: multiplex processing. 1. CCM1 technology (spatial processing) In a system with a Ντ transmit antenna and an NR receive antenna, the received signal at the output of the NR receive antenna can be expressed as: r - Hx + η Equation (6)

其中L係接收符號向量(即輸出自ΜΙΜΟ通道之NR χ 1向量, 在接收天線處量測),Η係在一特定時間表示Ν τ傳送天線 與N R接收天線通道反應之NR X Ντ通道係數矩陣,&係傳送 符號向量(即輸入至ΜΙΜΟ通道之Ντ X 1向量),而η係代表 雜訊加干擾的一 NR X 1向量。接收符號向量L包括在一特定 時槽處經過>^接收天線接收之號内的NR調變符號。 同樣地,傳送符號向量2L包括在一特定時槽處經過Ντ傳送 天線傳送之Ντ信號内之Ντ調變符號。 對於CCMI空間處理技術,接收器單元首先對接收符號 向量L實施一通道匹配過遽操作。經過滤之輸出可表示為: HHr - HhHx + HHn 方程式(7) 其中上標” Ηπ代表移項與共軛複數。一方形矩陣I可被用以 表示通道係數矩陣Η與其共軛移項KH之乘積(即K=iLHiD。 通道係數矩陣£L可由例如隨同交流資料傳送之前導碼 傳送。為實施「最佳」接收與預估傳輸通道之SNR,通常 慣於插入已知之前導碼(例如所有順序)至該傳送資料流 與透過一或多個傳輸通道傳送該前導碼。依據一先導信號 及/或資料傳輸預估單一傳輸通道之方法可在有關先前技 -42 - 1269549 (38) 術的許多可用文獻中獲知。其中一通道預估方便係經F. Ling描述於標題為「最佳接收、性能範圍與截斷率分析參 考輔助共生CDMA通信與應用」,IEEE通信月刊1999年10 月號。此一或其他通道預估技術可引申為矩陣型式以推導 出該通道係數矩陣ϋ。Where L is the received symbol vector (ie, the NR χ 1 vector of the output channel is measured at the receiving antenna), and the NR X Ντ channel coefficient matrix representing the response of the τ transmitting antenna to the NR receiving antenna channel at a specific time , & is a symbol vector (ie, Ντ X 1 vector input to the channel), and η represents an NR X 1 vector of noise plus interference. The received symbol vector L includes an NR modulation symbol within the number received by the receiving antenna at a particular time slot. Similarly, the transmitted symbol vector 2L includes the Ντ modulation symbol in the τ signal transmitted by the Ντ transmitting antenna at a particular time slot. For CCMI spatial processing techniques, the receiver unit first performs a channel matching overrun operation on the received symbol vector L. The filtered output can be expressed as: HHr - HhHx + HHn Equation (7) where the superscript " Η π represents the shift term and the conjugate complex number. A square matrix I can be used to represent the product of the channel coefficient matrix Η and its conjugate shift term KH ( That is, K = iLHiD. The channel coefficient matrix £L can be transmitted, for example, by transmitting the preamble along with the AC data. To implement the "best" reception and estimation of the SNR of the transmission channel, it is usually customary to insert a known preamble (eg, all orders). The preamble is transmitted to and from the one or more transmission channels. The method of estimating a single transmission channel based on a pilot signal and/or data transmission can be used in many of the prior art techniques - 42 - 1269549 (38) It is known in the literature. One of the channel estimation conveniences is described by F. Ling in the title "Best Reception, Performance Range and Cutoff Rate Analysis Reference Auxiliary Symbiosis CDMA Communication and Application", IEEE Communications Monthly, October 1999 issue. Or other channel estimation techniques can be derived as a matrix type to derive the channel coefficient matrix ϋ.

傳送符號向量(I)預估值之獲得可藉由預先將匹配過濾 向量ilH L乘以方形矩陣Ε_之倒數(或虛-倒數),其可表示 為:The transmission symbol vector (I) estimate can be obtained by multiplying the matched filter vector ilH L by the reciprocal (or imaginary-reciprocal) of the square matrix Ε_, which can be expressed as:

i - R-1HHL =2L + 方程式(8) =x. + iLf 由上述方程式可觀測到傳送符號向量1可回復,係藉由匹 配過濾(即先乘以矩陣ilH)接收符號向量L而後將過濾結杲 先乘以方形矩陣1之倒數。i - R-1HHL = 2L + Equation (8) = x. + iLf It can be observed from the above equation that the transmitted symbol vector 1 can be recovered, and the symbol vector L is received by matching filtering (that is, multiplied by the matrix ilH first) and then filtered. The knot is first multiplied by the reciprocal of the square matrix 1.

傳輸通道之SNR可經決定如下:一雜訊向量il之自動關 聯矩陣inn首先由接收信號計算出。通常inn係一 Hermitian 矩陣,即其係對稱共軛複數。如果通道雜訊之成份未關聯 且進一步獨立而相等地分佈(iid),該雜訊向量il之自動關 聯矩陣Inn可表示為:The SNR of the transmission channel can be determined as follows: The auto-associated matrix inn of a noise vector il is first calculated from the received signal. Usually, inn is a Hermitian matrix, that is, its symmetric conjugate complex number. If the components of the channel noise are uncorrelated and further independent and equally distributed (iid), the automatic correlation matrix Inn of the noise vector il can be expressed as:

Inn = ,及 方程式(9) tnn 〇; 其中U系單位矩陣(即沿對角為1否則為0)而σ =係接收信號 之雜訊變異量。後處理之雜訊向量iL’的自動關聯矩陣ln,n, -43 - 1269549 (39) (即經匹配過濾與預乘以矩陣BJ1後)可表示為:Inn = , and Equation (9) tnn 〇; where U is the identity matrix (ie, 1 along the diagonal, otherwise 0) and σ = the amount of noise variation in the received signal. The auto-correlation matrix ln,n, -43 - 1269549 (39) of the post-processing noise vector iL' (ie after matched filtering and pre-multiplied by the matrix BJ1) can be expressed as:

In n =E[|L’iL’H] 發嗎锶瞵績買 方程式(10) 由方程式(1 0)中,後處理雜訊iL’之第i元件的雜訊變異量σ 係等於σ丨r,其中r係1之第i個斜角線元件。對於未使用 a a OFDM之ΜΙΜΟ系統,第i元件代表第i接收天線。而如果使 用OFDM,則下標「i」可分解成下標「jk」,其中「j」 代表第j空間子通道而「k」代表第k頻率子通道。 對於CCMI技術,接收符號之第i元件之SNR在處理後之 向量(即i之第i元件)可表示為:In n =E[|L'iL'H] Is the performance of the buyer program (10) From the equation (1 0), the noise variation σ of the i-th component of the post-processing noise iL' is equal to σ丨r, where r is the i-th diagonal line element of 1. For a system that does not use a a OFDM, the i-th element represents the ith receive antenna. If OFDM is used, the subscript "i" can be decomposed into subscript "jk", where "j" represents the jth space subchannel and "k" represents the kth frequency subchannel. For CCMI technology, the SNR of the ith element of the received symbol after processing (ie, the i-th component of i) can be expressed as:

2 方程式(11) 如果第i傳送符號|4_|2之變異量平均等於(1.0),則接收符號 向量之SNR可表示為: 雜訊變異量可以用一 1/ ^常態化接收符號向量的第i元 件。 如果複製一調變符號流且透過多重傳送天線傳送,則這 些調變符號可加總在一起以形成组合調變符號。例如,如 果一資料流經由所有天線傳送,則對應於所有Ντ傳送天 線之調變符號將被加總,而該組合調變符號可表示為: 方程式(12) ί=*1 rii -44- 1269549 (40) I國讀買2 Equation (11) If the variation of the ith transmission symbol |4_|2 is equal to (1.0), the SNR of the received symbol vector can be expressed as: The amount of noise variation can be 1/^ normalized to receive the symbol vector i component. If a modulated symbol stream is replicated and transmitted through multiple transmit antennas, then these modulated symbols can be added together to form a combined modulation symbol. For example, if a data stream is transmitted via all antennas, the modulation symbols corresponding to all ττ transmit antennas will be summed, and the combined modulation symbol can be expressed as: Equation (12) ί=*1 rii -44- 1269549 (40) I buy and buy

或者,發射器單元可經操作以在許多傳輸通道上傳送一 或多個資料流,或在部份或所有傳送天線上使用相同之編 碼與調變方案。在此情況下,所有傳輸通道只需要一 S N R (例如平均SNR)。例如,如果應用相同之編碼與調變方案 於所有傳送天線上(例如使用選擇性通道逆轉),則組合調 變符號SNRtQtal之SNR可被推導出。此SNRtQtal於是將具有一 最大結合之SNR,其等於來自NR接收天線之信號的SNR之 總和:經組合之SNR可經表示為:Alternatively, the transmitter unit can be operative to transmit one or more data streams over a plurality of transmission channels or to use the same coding and modulation scheme on some or all of the transmission antennas. In this case, only one S N R (e.g., average SNR) is required for all transmission channels. For example, if the same coding and modulation scheme is applied to all transmit antennas (e. g., using selective channel reversal), the SNR of the combined modulation symbol SNRtQtal can be derived. This SNRtQtal will then have a maximum combined SNR equal to the sum of the SNRs of the signals from the NR receive antenna: the combined SNR can be expressed as:

,=Λς:7 方程式(13) ση /-1,=Λς:7 Equation (13) ση /-1

圖4B係一空間/空間時間處理器4 10b —具體實施例之方 塊圖,其能夠實施CCMI技術。在空間/空間時間處理器410b 内,來自於NR接收天線之接收調變符號向量l流將提供予 一匹配過濾器412且由其過濾,其將各向量l預先乘以其共 軛-移項通道係數矩陣iiH,如方程式(7)所示。藉由乘算器 4 1 4將經過濾之向量經進一步預乘以一方形矩陣gj1之倒 數以形成傳送調變符號向量2L的之預估值i,如上述方程 式(8)所示。 預估之調變符號玄經提供予可預估通道係數矩陣Η (例 如,依據類似於習知先導輔助單一與多重載子系統之先導 信號,如此技術中已知。)的一通道估算器4 1 8。通常,通 道係數矩陣ϋ可依據有關前導碼或交流資料或二者之調 變符號加以預估。該通道係數矩陣Η隨後提供至一矩陣處 理器420,其可依據Κ二『Η導出如上述之方形矩陣R。 -45 - 1269549Figure 4B is a block diagram of a spatial/spatial time processor 4 10b, which is capable of implementing CCMI techniques. Within the spatial/spatial time processor 410b, the received modulated symbol vector 1 stream from the NR receive antenna will be provided to and filtered by a match filter 412 which pre-multiplied each vector l by its conjugate-shift term channel The coefficient matrix iiH is as shown in equation (7). The filtered vector is further pre-multiplied by a multiplier of a square matrix gj1 by a multiplier 4 1 4 to form an estimated value i of the transmitted modulation symbol vector 2L, as shown in equation (8) above. The estimated modulation symbol oracle is provided to a predictable channel coefficient matrix Η (for example, based on a pilot signal similar to a conventional pilot-assisted single and multiple carrier subsystem, as is known in the art). 1 8. In general, the channel coefficient matrix 预估 can be estimated based on the preamble or communication data or the modulation symbols of both. The channel coefficient matrix Η is then provided to a matrix processor 420 which can derive a square matrix R as described above. -45 - 1269549

(41) 遠預估调變符號J及/或組合調變符號呈,也將提供予一 CSI處理器448’其決定完整或部份CSI將用於傳輸通道。 例如’ CSI處理器448可依據接收之先導信號預估第i傳輸 通逍的一雜訊協方差矩陣虻η而後計算SNR。傳輸通道之 SNR包含可回報至發射器單元的部份CSI。 對於某些傳送處理方案,來自所有或多數天線用於傳輸 一資料流之符號流可提供予組合器4 i 6,其組合橫跨時 間、空間與頻率之冗餘資訊。該組合調變符號左隨後即提 供予RX資料處理器4 8 0。對於其他通信模式,預估調變符 號i可直接提供予RX資料處理器480(未顯示於圖4B中)。(41) The far-predicted modulation symbol J and/or the combined modulation symbol representation will also be provided to a CSI processor 448' which determines whether the full or partial CSI will be used for the transmission channel. For example, the 'CSI processor 448 can estimate the SNR of the ith transmission coherence matrix 虻η according to the received preamble signal and then calculate the SNR. The SNR of the transmission channel contains a portion of the CSI that can be reported back to the transmitter unit. For some transport processing schemes, the symbol streams from all or most of the antennas used to transmit a data stream may be provided to combiner 4i6, which combines redundant information across time, space and frequency. The combined modulation symbol is then provided to the RX data processor 480. For other modes of communication, the estimated modulation symbol i can be provided directly to the RX data processor 480 (not shown in Figure 4B).

空間/空間時間處理器4 1 0因而產生一或多個對應於一 或多個傳送資料流的獨立符號流。各符號流包括後處理之 調變符號,其發射器單元在處理完整/部份C S I前對應於調 變符號且為其預估值。該(後處理)符號流於是提供至RX 資料處理器480。The spatial/spatial time processor 410 thus produces one or more independent symbol streams corresponding to one or more transport streams. Each symbol stream includes a post-processed modulation symbol whose transmitter unit corresponds to the modulation symbol and is estimated for it before processing the full/partial C S I . This (post-processed) symbol stream is then provided to RX data processor 480.

圖4A顯示RX資料處理器480的一具體實施例。在此具體 實施例中,一選擇器4 8 2由空間/空間時間處理器4 1 0接收 一或多個符號流且抽取對應於將被回復之需求資料流的 調變符號。在另一具體實施例中,RX資料處理器480係具 有調變符號流對應於需求之資料流,而調變符號抽取藉由 可在空間/空間時間處理器4 1 0中之組合器4 1 6而實施。任 何情況下,抽取出之調變符號流將提供予解調變元件484。 對於各傳輸通道之資料流係獨自編碼與調變(例如依據 通道之S N R)的一具體實施例,經選定傳輸通道之回復調 -46 - 1269549 發畴__ (42)FIG. 4A shows a specific embodiment of an RX data processor 480. In this particular embodiment, a selector 482 receives one or more symbol streams from the spatial/spatial time processor 410 and extracts the modulation symbols corresponding to the demand data stream to be replied. In another embodiment, the RX data processor 480 has a modulated symbol stream corresponding to the data stream of the demand, and the modulated symbol extraction is performed by the combiner 4 1 in the spatial/spatial time processor 410. 6 and implemented. In any event, the extracted modulated symbol stream will be provided to demodulation element 484. For a specific embodiment in which the data stream of each transmission channel is encoded and modulated independently (for example, according to the S N R of the channel), the response of the selected transmission channel is adjusted to -46 - 1269549. __ (42)

變符號係依據一與用於傳輸通道之調變方案互補的解調 變方案(例如M-PSK、M-QAM)而加以解調變。來自於解調 變元件484之解調變資料於是藉由一解交錯器486以與在 發射器單元之實施互補的方式解交錯,而後該解交錯之資 料將進一步藉由一解碼器488以與在發射器單元之實施互 補的方式加以解碼。例如,如果加速碼或迴旋碼被分別實 施於傳送器單元處時,一加速解碼器或威特比(Viterbi)解 碼器可用作解碼器48 8。來自於解碼器48 8之該解碼資料流 代表被回復之傳送資料流的估計值。 2. MMSE技術(空間處理) 對於MMSE技術,接收器單元實施將一接收符號向量l 預先乘以一矩陣以導出傳送符號向量2L的一初始MMSE 預估至,表示為: X = Mr 方程式(14)The variable symbols are demodulated according to a demodulation variant (e.g., M-PSK, M-QAM) complementary to the modulation scheme used for the transmission channel. The demodulation data from demodulation element 484 is then deinterleaved by a deinterleaver 486 in a manner complementary to the implementation of the transmitter unit, and the deinterleaved data is further passed by a decoder 488. Decoding is performed in a complementary manner to the implementation of the transmitter unit. For example, an acceleration decoder or a Viterbi decoder can be used as the decoder 48 8 if the accelerometer or whirling code is implemented at the transmitter unit, respectively. The decoded data stream from decoder 48 8 represents an estimate of the transmitted data stream being replied to. 2. MMSE technique (spatial processing) For MMSE techniques, the receiver unit implements an initial MMSE estimate of a received symbol vector l pre-multiplied by a matrix to derive the transmitted symbol vector 2L, expressed as: X = Mr equation (14 )

矩陣經選定使得介於初始MMSE預估i與傳送符號向量 2L(即,間的一誤差向量L之均方誤差為最小。該矩陣 Μ可表示為: Μ = ΗΗ(ΗΗΗ + inn)·1 方程式(15) 依據方程式(14)與(15),傳送符號向量2L初始MMSE預估 X可定為: 方程式(16) X == Mr -Ηη(ΗΗη + φηη)-1Γ -47-The matrix is selected such that the mean squared error between the initial MMSE estimate i and the transmitted symbol vector 2L (ie, an error vector L between the two is minimal. The matrix Μ can be expressed as: Μ = ΗΗ(ΗΗΗ + inn)·1 Equation (15) According to equations (14) and (15), the initial MMSE estimate X of the transmitted symbol vector 2L can be determined as: Equation (16) X == Mr -Ηη(ΗΗη + φηη)-1Γ -47-

1269549 (43) I的一未偏離最小均方誤差預估值(幻,可藉由將初始預估 X預先乘以一對角矩陣D;;1而獲得,如下式: X - D :1!, 方程式(17) \ 其中 ·1269549 (43) I does not deviate from the minimum mean square error estimate (magic, can be obtained by pre-multiplying the initial estimate X by a pair of angular matrices D; 1), as follows: X - D : 1! , equation (17) \ where

Dv—^ diag(l/vu,l/v22,…,1/vNrN) 而v i i係矩陣之斜角線元件,其可表示為: V - Hh + Η^Η)-1 處理後之接收符號向量的(即i之第i元件)可表示為: SNR/=feil 方程式(18) uu 其中Un係一誤差向量S之第i元件的變異量,其定義為 e = 2L* £ ?而該矩陣LL可表示為:Dv—^ diag(l/vu, l/v22,...,1/vNrN) and the diagonal element of the vii matrix, which can be expressed as: V - Hh + Η^Η)-1 Received symbol vector after processing (i, the i-th element of i) can be expressed as: SNR/=feil Equation (18) uu where Un is the variation of the i-th element of the error vector S, which is defined as e = 2L* £ ? and the matrix LL Can be expressed as:

辽=i- 1 方程式(19) 如果第i傳送符號Xi之變異量(@)之平均等於1(1.0),而 由方程式(19)化=丄-1,該接收符號向量之SNR可表示 為: SNRi=-^- 方程式(20) 1 - 預估調變符號(g)可經組合以獲得組合調變符號左,如上述 關於CCM1技術。 -48 - 1269549Liao = i - 1 Equation (19) If the average of the variation (@) of the ith transmitted symbol Xi is equal to 1 (1.0) and the equation (19) is = 丄-1, the SNR of the received symbol vector can be expressed as : SNRi=-^- Equation (20) 1 - The estimated modulation symbols (g) can be combined to obtain a combined modulation symbol left, as described above for the CCM1 technique. -48 - 1269549

(44) 圖4 C顯示空間/空間時間處理器4 1 0 c —具體實施例,其 能夠實施MMSE技術。類似於CCMI技術,矩陣ϋ與Inn可首 先依據接收到之先導信號及/或資料傳輸加以估算。加權 係數矩陣胜則將依據方程式(1 5)加以計算。 在空間/空間時間處理器410c中,來自於NR接收天線之 接收調變符號向量L流,將藉由一乘算器422預先乘以矩陣(44) Figure 4C shows a spatial/spatial time processor 4 1 0 c - a specific embodiment that is capable of implementing MMSE techniques. Similar to CCMI technology, the matrix In and Inn can be estimated first based on the received pilot signal and/or data transmission. The weighted coefficient matrix win will be calculated according to equation (15). In the spatial/spatial time processor 410c, the received modulated symbol vector L stream from the NR receive antenna is pre-multiplied by a multiplier 422.

以形成一傳送符號向量之初始預估至,如上述方程式 (I6)。初始預估茎係進一步藉由一乘算器424預先乘以斜角 線矩陣以形成傳送符號向量£的一未偏離預估至,如上 述方程式(1 7 )中所示。To form an initial estimate of the transmitted symbol vector, to the above equation (I6). The initial predicted stem system is further pre-multiplied by a scale matrix by a multiplier 424 to form a non-offset estimate of the transmitted symbol vector £, as shown in equation (17) above.

再次,對於某些傳送處理方案,多個對應於用以傳送資 科成(许多傳送天線的預估調變符號i流可提供至一組 合器4 2 6,其組合橫跨時間、空間與頻率之冗餘資訊。該 組合調變符號坌於是將被提供至rX資料處理器4 8 〇。而對 於某些其他傳送處理方案,該預估調變符號|可直接提供 予RX資料處理器480。RX資料處理器480解調變、解交錯 與解碼對應於被回復之資料流的調變符號流,如上述。 預估調變符號i及/或組合調變符號i,也將提供予CSI處 理器448’其決定芫整或部份csi用於傳輸通道。例如, CSI處理器448可依據方程式(18)至(20)預估第i傳送信號 之SNR。用於傳送信號之SNR包含回報至發射器單元之部 份 C S I 〇 預估調變符號i將進一步提供予一適應性處理器42 8可 依據方程式(1 5 )與(1 7)分別地推導出矩陣Μ與斜角線矩陣 -49- 1269549 (45)Again, for some transmission processing schemes, a plurality of streams corresponding to the transmitted modulation (the estimated modulation symbol i stream of many transmit antennas can be provided to a combiner 4 2 6, the combination spans time, space and frequency Redundant information. The combined modulation symbol will then be provided to the rX data processor 48. For some other transmission processing schemes, the estimated modulation symbol | may be provided directly to the RX data processor 480. The RX data processor 480 demodulates, deinterleaves, and decodes the modulated symbol stream corresponding to the recovered data stream, as described above. The estimated modulation symbol i and/or the combined modulation symbol i will also be provided to the CSI processing. The 448' determines whether the modulo or partial csi is used for the transmission channel. For example, the CSI processor 448 can estimate the SNR of the ith transmitted signal according to equations (18) through (20). The SNR for transmitting the signal includes a return to A portion of the CSI 〇 estimated modulation symbol i of the transmitter unit is further provided to an adaptive processor 42 8 which can derive matrix Μ and oblique line matrix -49 according to equations (15) and (17), respectively. - 1269549 (45)

3. mmse-le技術(空間時間處理、 多個芝間時間處理技術可用以處理經由一時間-散佈性 通道接收之信號。這些技術包括使用時域通道同等化技 術’例如MMSE-LE、DFE、MLSE與其他可能之技術,結合 上述用於非散佈性通遒之空間處理技術。空間時間處理係 在RX ΜΙΜΟ/資料處埋器260之處於Nr輸入信號上實施。 在時間散佈性出現時,通道係數矩陣氐可在一延遲範圍 取得,而矩陣ϋ之各元件作為一線性轉換函數而非一係 數。在此情況下,通道係數矩陣Η可被寫成一通道轉換函 數矩陣ϋ(τ)之型式,其可表示為: H⑴叫hg(T)}用於1 si SNR,與1 SNt 方程式(21) 其中心⑴係由第j傳送天線至第i接收天線的一線性轉換 函數。如線性轉換函數心⑴的結果,接收信號向量£(〇係 通道轉換函數矩陣ϋ(τ)與傳送信號向量χ⑴的迴旋,其可 表示為·· r(t) = \Urmt-r)dr 方程式(22) 作為解調變函數的一部份(由圖4A中之解調器254所 實施),該接收信號經取樣以提供接收樣本。在不失通用 性下,時間-散佈性通道與接收信號可在下文說明中以一 離散時間表示法加以表示。首先,有關第』傳送天線在延 遲k之通道轉換函數向量b(k)可表示為: -50 - 1269549 (46) PP輝續頁 kj(k) = [hdk) h2j(k) Λ h〜(k)]T 用於 OSkSL 方程式(23) 其中h^k)係通道轉換函數之第k tap加權,有關第j傳送天 ^ 線與第i接收天線間之路徑,而L係通道時間分集之最大範 ^ 圍(在樣本區間内)。其次,延遲k之NRxNT通道轉換函數 、 矩陣可表示為: ii(k) = [kKk) 3b(k) Λ h 〜(k)]用於 OSkSL 方程式(24) 在樣本時間η之接收信號向量t(n)可表示為: · r(n) = 2]H(A:)x(/7-k) + n(n) = Ηχ(τ?) + n(n) 方程式(25) k=0 其中g係一 NR x (L+1)NT方塊構形矩陣,代表經取樣本之通 道矩陣轉換函數迁(k),且可表示為: g = ⑼ S(1)AH(L)] 而l(n)係在L+ 1樣本區間抓取之接收樣本的L+ 1向量的序3. mmse-le technology (space time processing, multiple inter-time processing techniques can be used to process signals received over a time-scattered channel. These techniques include the use of time domain channel equalization techniques such as MMSE-LE, DFE, The MLSE and other possible techniques incorporate the above-described spatial processing techniques for non-dispersive overnight. The spatial time processing is implemented on the Nr input signal at the RX ΜΙΜΟ/data sink 260. When time scatter occurs, the channel The coefficient matrix 氐 can be obtained in a delay range, and the elements of the matrix 作为 are used as a linear conversion function rather than a coefficient. In this case, the channel coefficient matrix Η can be written as a channel conversion function matrix ϋ(τ). It can be expressed as: H(1) is called hg(T)} for 1 si SNR, and 1 SNt is the equation (21) whose center (1) is a linear transfer function from the jth transmitting antenna to the ith receiving antenna. As a result of (1), the received signal vector £(the system channel transfer function matrix ϋ(τ) and the transmitted signal vector χ(1) are convoluted, which can be expressed as ··r(t) = \Urmt-r)dr Equation (22) as a solution Tune A portion of the variable function (implemented by demodulator 254 in Figure 4A), the received signal is sampled to provide a received sample. Without loss of versatility, the time-scattering channel and the received signal can be described below. It is expressed in a discrete time representation. First, the channel transfer function vector b(k) of the transmission antenna at delay k can be expressed as: -50 - 1269549 (46) PP continuation page kj(k) = [hdk H2j(k) Λ h~(k)]T is used for OSkSL equation (23) where h^k) is the k-th tap weight of the channel transfer function, and the path between the jth transmission line and the ith receiving antenna And the maximum range of L system channel time diversity (within the sample interval). Secondly, the NRxNT channel transfer function with delay k, the matrix can be expressed as: ii(k) = [kKk) 3b(k) Λ h ~(k)] for OSkSL equation (24) Receive signal vector t at sample time η (n) can be expressed as: · r(n) = 2]H(A:)x(/7-k) + n(n) = Ηχ(τ?) + n(n) Equation (25) k=0 Where g is an NR x (L+1)NT block configuration matrix representing the channel matrix transfer function of the sampled sample (k), and can be expressed as: g = (9) S(1)AH(L)] (n) The order of the L+ 1 vector of the received sample captured in the L+ 1 sample interval

列,其中各向量包含相對於N r接收天線之N r樣本,且可 » 表TF為 · l(n) 办-1) Μ _x(n - L) 傳送符號向量在時間η的一初始預估值至(η),可藉由實 施接收信號向量L(n)之序列與2Κ+1序列、N R X Ν τ加權矩 陣MX k)的一迴旋而推導出,如下列: -51 - 1269549 (47) 發嗎第_•績·Κ X㈨=㈨咖-幻= 方程式(26) 其中这= [ΜΧ-Κ)八M(o) Λ Μ(κ)],Κ係決定等化器過濾器延遲 範圍的參數,且 >(η + Κ) Μ一 r(«)= L(n) Μ U(卜Κ)」Column, where each vector contains N r samples relative to the N r receive antenna, and can be » Table TF is · l(n) do-1) Μ _x(n - L) An initial estimate of the transmitted symbol vector at time η The value to (η) can be derived by implementing a convolution of the sequence of the received signal vector L(n) with the 2Κ+1 sequence and the NRX Ν τ weighting matrix MX k), as follows: -51 - 1269549 (47)发?第_•绩·Κ X(九)=(九)咖-幻 = Equation (26) where this = [ΜΧ-Κ) eight M(o) Λ Μ(κ)], the system determines the equalizer filter delay range Parameter, and >(η + Κ) Μ一r(«)= L(n) Μ U(卜Κ)

加權矩陣Kk)之序列係經選定以最小化均方誤差。 MMSE之解答可說明為加權矩陣M_(k)之序列,其滿足下 列線性限制: 女=-κ 〇, Η^(-λ),〇, - Κ$λ< - L -L<X<0 0<λ<Κ 方程式(27) 其中K(k)係一 NR χ NR空間時間關聯矩陣之序列,其可表示 為: R(k) = E{r(n - k)rH (η)} = ^The sequence of weighting matrices Kk) is selected to minimize the mean square error. The solution of MMSE can be illustrated as a sequence of weighting matrices M_(k) that satisfies the following linear limits: Female =-κ 〇, Η^(-λ), 〇, - Κ$λ< - L -L<X<0 0&lt ;λ<Κ Equation (27) where K(k) is a sequence of NR χ NR spatial time correlation matrices, which can be expressed as: R(k) = E{r(n - k)rH (η)} = ^

min( L,L—A) m-riwx(0,,*) -L^k<L 方程式(28) 其他 其中cpnn(k)係雜訊自動關聯函數,其可表示為: ^n(k) = Ε{η(λ-^)ηΗ(λ)} 方程式(29)' 對於白色(暫時未關聯之)雜訊,ln(k) = ιηδ(1〇,其中 在此情況下只代表空間關聯矩陣。對於空間地與暫時地未 關聯之雜訊而各接收天線處之功率相等時,必^(k)= -52- 1269549 (48) 發碼巍瞒續頁·· σ2[δ(1〇。 方程式(2 7)可進一步表示為: 昼'或重"a;1 方程式(30) 其中E=係托布利(Toeplitz)方塊而方塊j,k係由K(j - k)給定,而 H(L)Min( L,L—A) m-riwx(0,,*) -L^k<L Equation (28) Other cpnn(k) is a noise automatic correlation function, which can be expressed as: ^n(k) = Ε{η(λ-^)ηΗ(λ)} Equation (29)' For white (temporarily uncorrelated) noise, ln(k) = ιηδ(1〇, where in this case only the spatial correlation matrix is represented For spatially and temporarily unassociated noise and the power at each receiving antenna is equal, ^(k)= -52- 1269549 (48) Code continuation page·· σ2[δ(1〇. Equation (27) can be further expressed as: 昼' or heavy"a;1 Equation (30) where E = is the Toeplitz square and the square j, k is given by K(j - k), And H(L)

S(L,1)S(L,1)

Μ H(〇)Μ H(〇)

Qk.NrxNt 其中Lmxn,係一 mxn零矩陣。 傳送信號向量在時間n的一未偏離MMSE-LE預估值i(n) 可表示為: x(«) = DvX(^) = DvMr(^) 方程式(3 1 ) 其中Qk.NrxNt where Lmxn is a mxn zero matrix. The non-offset MMSE-LE estimate i(n) of the transmitted signal vector at time n can be expressed as: x(«) = DvX(^) = DvMr(^) Equation (3 1 )

D;1 =diag(\/vu ,1/ν22 ?Λ,1/νΝτΝτ) 方程式(32) 其中νυ係矩陣V第i個對角元件〇“係一純量),其可以表 示為: V-MH^R Η 方程式(33) 該誤差協方差矩陣有關該未偏離MMSE-LE可表示為: L = Π = [ί⑻一5ν Mr(zz)][x(/z)-r^^M^Dy]} 方程式(34) = I-D"vY-VDv +DyVDy -53 - 1269549 (49) 有關在第i傳送天線上傳送之符號的預估S Ν R最後可表示 為: 方程式(35) MMSE-LE技術可藉由圖4C中之空間/空間時間處理器 410c加以實施。在此情況下,乘算器4 2 2實施接收信號向 量L(n)之序列與加權矩陣M_(k)之序列的迴旋,以獲得初始 預估i(n),如方程式(26)中所示。乘算器424實施將初始 預估至(η)預先乘以對角矩陣以獲得未偏離mmSE-LE預 估盒(η) ’如方程式(3 1)中所示。適應性處理器428推導出 方程式(30)中所示之加權矩陣虹(k),與方程式(32)中所示 I對角矩陣。隨後之處理可依上述MMSE技術之類似方 式而達成。由第1傳送天線傳送之符號流的Snr可藉CSI處 理器448依據方程式(35)預估。 4· D F E技術(空間時間處挪j 圖4D係空間/空間時間處理器41〇d一具體實施例之方塊 圖其把夠男施DFE技術。在空間/空間時間處理器41〇d 中,來自於&接收天線之接收調變符號向量L(n)流,係藉 由正向接收處理器4 3 2處理以提供將回復之資料流的預 估調變符號。正向接收處理器432可實施上述CCMI或 MMSE技術’或者是某些其他線性空間同等化技術。加總 杏434隨後結合由一回授處理器44〇提供之預估失真成份 以及來自正向接收處理器43 2之預估調變符號,以提供使 失真成份幾乎移除之「同等化」調變符號。初始,預估失 -54- 1269549 發瞵辉银黌買 (50) 真成份係零而同等化調變符號僅等於預估調變符號。來自 加總器4 3 4之同等化調變符號係傳送符號向量2L之預估值 X 〇D;1 =diag(\/vu ,1/ν22 ?Λ,1/νΝτΝτ) Equation (32) where νυ 矩阵 matrix V ith diagonal element 〇 “a scalar quantity”, which can be expressed as: V- MH^R Η Equation (33) The error covariance matrix can be expressed as follows: = = [ί(8)一5ν Mr(zz)][x(/z)-r^^M^Dy ]} Equation (34) = I-D"vY-VDv +DyVDy -53 - 1269549 (49) The estimated S Ν R for the symbol transmitted on the ith transmit antenna can be expressed as: Equation (35) MMSE- The LE technique can be implemented by the spatial/spatial time processor 410c in Figure 4C. In this case, the multiplier 4 2 2 implements a sequence of received signal vectors L(n) and a sequence of weighting matrices M_(k) Cyclotron to obtain an initial estimate i(n) as shown in equation (26). Multiplier 424 implements initial estimation to (n) pre-multiplied by a diagonal matrix to obtain a non-offset mmSE-LE prediction box (η) 'As shown in equation (31). The adaptive processor 428 derives the weighting matrix rainbow (k) shown in equation (30), and the I diagonal matrix shown in equation (32). The processing can be based on the above MMSE technology and the like. In this way, the Snr of the symbol stream transmitted by the first transmitting antenna can be estimated by the CSI processor 448 according to equation (35). 4. DFE technology (space time shift j Figure 4D space/space time processor 41〇 d is a block diagram of a specific embodiment which is capable of applying DFE technology to the male. In the spatial/spatial time processor 41〇d, the received modulation symbol vector L(n) stream from the & receiving antenna is positive Processing is processed by the receive processor 423 to provide predictive modulation symbols for the data stream to be replied. The forward receive processor 432 can implement the CCMI or MMSE techniques described above or some other linear space equalization technique. 434 then combines the estimated distortion components provided by a feedback processor 44 and the estimated modulation symbols from the forward receive processor 43 2 to provide an "equivalent" modulation symbol that substantially removes the distortion components. Initially, the estimated loss -54 - 1269549 hair 瞵 黉 黉 ( (50) The true component is zero and the equalization modulation symbol is only equal to the estimated modulation symbol. The equalization modulation symbol from the adder 4 3 4 Estimated value of the transmitted symbol vector 2L X 〇

對於某些傳送處理方式,對應於多數用於傳送一資料流 之傳送天線的多數之預估調變符號i流,可被提供予一組 合器4 3 6,其組合橫跨時間、空間與頻率之冗餘資訊。組 合之調變符號支於是被提供予RX資料處理器4 8 0。而對於 某些其他傳送處理方式,預估調變符號i可直接提供予RX 資料處理器4 8 0。RX資料處理器4 8 0解調變、解交錯與解 碼關於將回復之資料流的該調變符號流,如上文圖4 A所 述 °For some transport processing modes, a majority of the estimated modulated symbol i streams corresponding to the majority of the transmit antennas used to transmit a data stream may be provided to a combiner 433, the combination of which spans time, space and frequency. Redundant information. The combined modulation symbol is then provided to the RX data processor 4800. For some other transmission processing methods, the estimated modulation symbol i can be directly supplied to the RX data processor 480. The RX data processor 480 demodulates, deinterleaves, and decodes the modulated symbol stream with respect to the data stream that will be replied, as illustrated in Figure 4A above.

經解碼之資料流也藉由通道資料處理器4 3 8,再予編碼 與再調變以「再調變」符號,其係於發射器處之調變符號 的預估值。通道資料處理器4 3 8對該資料流實施與在發射 器處相同之處理(例如編碼、交錯與調變)。來自通道資料 處理器43 8之再調變符號經提供予回授處理器440,其處理 該符號以推導出該預估失真成份。回授處理器440可實施 一線性空間等化器(例如一線性截線等化器)。 對於DFE技術,經解碼之資料流係用以推導出由已解碼 資訊位元產生之失真的一預估。如果資料流經解碼而無誤 差(或具最小誤差),則可準確地預估失真成份,而由已解 碼資訊位元產生之符號間干擾可被有效地消除。由正向接 收處理器43 2與回授處理器440實施之處理,通常係同時加 以調整以最小化同等化調變符號内符號間干擾之均方誤 -55 - 1269549 _— (51) I發霞轉頁 差(MSE)。DFE處理進一步詳加說明於前述Ariy avistakul等 之文獻中。 對於DFE技術,傳送符號在時間η的一初始預估i(n)向 量可表示為: X⑻=+ -免) 方程式(36) 其中L(n)係如上述方程式(25)中之接收調變符號向量,χ(η) 係由RX資料處理器480提供符號決策向量,Mf(k),S k S 0 係由正向接收處理器43 2使用之(Κβΐ) (NT x NR)前授係數 矩陣之序列,而Mb(k),1 S k S K2係由回授處理器440使用之 反2-(>^\1^)回授係數矩陣之序列。方程式(36)也可表示為: 方程式(37)The decoded data stream is also encoded and re-modulated by the channel data processor 433 to "remodulate" the symbol, which is the estimated value of the modulation symbol at the transmitter. The channel data processor 438 performs the same processing (e.g., encoding, interleaving, and modulation) on the data stream as at the transmitter. The remodulated symbols from the channel data processor 43 8 are provided to a feedback processor 440 which processes the symbols to derive the estimated distortion components. The feedback processor 440 can implement a linear space equalizer (e.g., a linear cut equalizer). For DFE technology, the decoded data stream is used to derive an estimate of the distortion produced by the decoded information bits. If the data stream is decoded without error (or with minimal error), the distortion component can be accurately predicted, and the intersymbol interference generated by the decoded information bits can be effectively eliminated. The processing performed by the forward receive processor 43 2 and the feedback processor 440 is usually adjusted at the same time to minimize the mean square error of the intersymbol interference within the equalized modulation symbol - 55 - 1269549 _ - (51) I Xia Zhu page difference (MSE). The DFE treatment is further described in detail in the aforementioned literature by Ariy avistakul et al. For the DFE technique, an initial estimate of the transmitted symbol at time η, i(n) vector, can be expressed as: X(8) = + - exempt) Equation (36) where L(n) is the receive modulation in equation (25) above The symbol vector, χ(η) is provided by the RX data processor 480, and the symbol decision vector, Mf(k), S k S 0 is used by the forward receiving processor 43 2 (Κβΐ) (NT x NR) pre-coefficient The sequence of matrices, and Mb(k), 1 S k S K2, is a sequence of inverse 2-(>^\1^) feedback coefficient matrices used by feedback processor 440. Equation (36) can also be expressed as: Equation (37)

x(n) = r(n) + \{n) 其 中x(n) = r(n) + \{n)

Μ/ =咝(-κ,) Μ(-K, +1)八 M(0)],Μ广[Μ⑴ Μ(2) λ M(K2)], 办-1) _ "Κη + Κ,)" ί(π-2) ,且 £(勺= rO + Ki-i) Μ Μ 步-κ2)_ _ r⑻ , 如果使用MMSE標準以尋找係數矩陣,則最小化均方誤 差It、與M=b 之解答即可使用。供前授過濾之MMSE解答於 是可表示為: 二I"S_1 方程式(38) -56 - 1269549 _ (52) I發瞵說_續頁 其中 Η: Q(Kt-L)NaxMT H(L) H(L-l) M H(0) 而I係一由NR X NR方塊組成之(Ki + 1)NR X (Ki + 1)NR矩陣。昼 内第(i,j)方塊係定為: κ,-/+ι Ι(〇·)= Σ Η⑽+ /-7Ησ2ί的-/) 方程式(39)Μ / =咝(-κ,) Μ(-K, +1)八M(0)],Μ广[Μ(1) Μ(2) λ M(K2)], do-1) _ "Κη + Κ, )" ί(π-2) , and £(spoon = rO + Ki-i) Μ Μ step - κ2)_ _ r(8) , if the MMSE standard is used to find the coefficient matrix, the mean square error It, and M are minimized The answer to =b is ready to use. The MMSE solution for pre-filtering can then be expressed as: II I"S_1 Equation (38) -56 - 1269549 _ (52) I 瞵 _ 续 Η Η: Q(Kt-L)NaxMT H(L) H (Ll) MH(0) and I is a (Ki + 1) NR X (Ki + 1) NR matrix composed of NR X NR blocks. The first (i,j) block in 昼 is defined as: κ,-/+ι Ι(〇·)= Σ Η(10)+ /-7Ησ2ί-/) Equation (39)

回授過濾器之MMSE解答係: μ#)=- ΣΑωιι(卜力,i<k<K2y—κ, 方程式(40) 如上述之MMSE-LE,一未偏離預估|(n)可表示為: X(n) = Dvdfc x(n) ~ + 方程式(41) 其中 iVdfc ·The MMSE solution for the feedback filter: μ#)=- ΣΑωιι(卜力, i<k<K2y-κ, equation (40) MMSE-LE as described above, one without deviation prediction | (n) can be expressed as : X(n) = Dvdfc x(n) ~ + Equation (41) where iVdfc ·

Wag(Vdfc l!,V吮,22,Λ,Vdfc,"r/Vr ) 方程式(42) 且VdtwHI、Y_dfe第i個對角元件,其可表示為 方程式(43) 〜〜Μ\〜Wag (Vdfc l!, V吮, 22, Λ, Vdfc, "r/Vr) Equation (42) and VdtwHI, Y_dfe ith diagonal element, which can be expressed as Equation (43) ~ ~ Μ \ ~

Yafc=MrH = H R Η 其合成誤差協方差矩陣係定為: -57- 1269549Yafc=MrH = H R Η The composite error covariance matrix is defined as: -57- 1269549

(53) =Ϊ -SvarcXafc - VdfcD-ldfc 、和斗m、 万程式(44) 有關在第i傳送天線上傳送之符號的預估之SNR可表示 為: SNR- —= --^ 方程式(45)(53) = Ϊ -SvarcXafc - VdfcD-ldfc, and bucket m, 10,000 program (44) The estimated SNR for the symbols transmitted on the ith transmit antenna can be expressed as: SNR- —= --^ Equation (45 )

Wdlb,7 1-Vdfcj/Wdlb, 7 1-Vdfcj/

5. 完整CSI技術(空間處理) 對於完整CSI技術,在凡1^接收天線之輸出處的接收信號 可表示於方程式(6),其係: r = Hx + η 由通道矩陣與其共轭移項之乘積形成之漢密遜(Hermitian) 矩陣的特徵向量分解可表示為: Ηη Η = ΕΛΕη 方程式(46)5. Complete CSI technique (spatial processing) For the complete CSI technique, the received signal at the output of the receiver antenna can be expressed in equation (6), which is: r = Hx + η from the channel matrix and its conjugate shift term The eigenvector decomposition of the Hermitian matrix formed by the product can be expressed as: Ηη Η = ΕΛΕη Equation (46)

其中艮係特徵向量矩陣,而Α係特徵值的一對角矩陣,二 者之次元均為Ντ X Ντ。發射器使用該特徵向量矩陣E預調 節一組Ντ調變符號k,如上述方程式(5)中所示。由Ντ傳送 天線傳送來之預調節調變符號因而可表示為: X = 方程式(47) 由於2^过_係漢密遜,特徵向量矩陣係單位矩陣。因此,如 果k之元件具有相等之次方,2L之元件也具有相等之次方。 -58- 1269549 發瑪锶祕續頁 (54) 接收信號則可表示為: r - HEb + a 方程式(48) 接收器實施一通道-匹配-過濾操作,隨後以正確特徵向 量預先相乘。接收器實施一通道-匹配-過濾與預先相乘之 操作結果為一向量1,其可表示為: 方程式(49) z - EH HH HEb + EH ΗH n =AbL + n1Among them, the eigenvector vector matrix and the pair of angular matrices of the eigenvalues are both Ντ X Ντ. The transmitter uses the eigenvector matrix E to pre-set a set of Ντ modulation symbols k as shown in equation (5) above. The pre-adjusted modulation symbol transmitted by the Ντ transmission antenna can thus be expressed as: X = Equation (47) Since 2^ over _ system Hamilton, the eigenvector matrix is a unit matrix. Therefore, if the elements of k have equal powers, the elements of 2L have equal powers. -58- 1269549 玛玛锶秘页 (54) The received signal can be expressed as: r - HEb + a Equation (48) The receiver implements a channel-match-filter operation, which is then pre-multiplied with the correct eigenvector. The receiver implements a channel-match-filter and pre-multiplied operation result as a vector 1, which can be expressed as: Equation (49) z - EH HH HEb + EH ΗH n =AbL + n1

其中新雜訊項具有之協方差可表示為: 方程式(50) Ε{ήήΗ) = E(Eh Hh nnH HE) = ΕΗ Ηη HE = Λ 即雜訊成份與由特徵值給定之變異量不相關。I之第i成份 之SNR係 λ,,其係i之第i個對角元件。 完整CSI處理係進一步詳加說明於美國專利申請案序號 09/532,492 中 °The covariance of the new noise term can be expressed as: Equation (50) Ε{ήήΗ) = E(Eh Hh nnH HE) = ΕΗ Ηη HE = Λ That is, the noise component is not related to the variation given by the eigenvalue. The SNR of the i-th component of I is λ, which is the i-th diagonal element of i. The complete CSI processing system is further described in detail in U.S. Patent Application Serial No. 09/532,492

圖4B中所示之空間/空間時間處理器具體實施例可被用 以實施完整C S I技術。接收調變符號向量係經由匹配過濾 器4 1 2加以過濾,其將各向量[先乘以共軛移項通道係數矩 陣ϋΗ,如上述方程式(4 9)所示。過濾向量經進一步由乘算 器4 1 4先乘以正確特徵向量,以形成調變符號向量L之ι 的一預估值,如上述方程式(49)所示。對於完整CSI技術, 矩陣處理器420可被組態以提供正確特徵向量ΚΗ。隨後之 處理(例如由組合器4 1 6與RX資料處理器4 8 0)可如上述加 以實施。 對於完整C S I技術,發射器單元可依據特徵值給定之 -59- (55) 1269549The spatial/spatial time processor embodiment shown in Figure 4B can be used to implement the full C S I technique. The received modulation symbol vector is filtered by a matching filter 4 1 2 which multiplies each vector [first multiplied by the conjugate shift term channel coefficient matrix ϋΗ as shown in equation (49) above. The filter vector is further multiplied by the multiplier 4 14 to the correct feature vector to form an estimate of the modulation symbol vector L, as shown in equation (49) above. For the full CSI technique, the matrix processor 420 can be configured to provide the correct feature vector. Subsequent processing (e.g., by combiner 416 and RX data processor 480) can be implemented as described above. For the complete C S I technology, the transmitter unit can be given according to the characteristic value -59- (55) 1269549

S N R選擇編碼方案與一調變方案(即一信號群)用於各 特徵向量。限制條件為通道條件並未在c s丨於接收器單元 處測f與提報之時間,與其用以在發射器單元處預調節該 傳輸之時間一者間之間隔有明顯改變,通信系統之性能可 等於一組具有已知SNR之獨立AWGN通道。 6· 收器處理 對於持、$/肖除接收器處理技術,初始N R接收信號經處 理以持々地在〜時間回復一傳送信號。隨著各傳送信號經 回k 〃將在回復下一個傳送信號前由接收信號處移除 (即消除)如果傳送資料流可被無誤差地解碼(或具最小 誤差)且如果通遒反應預估係合理地準確,則可有效地消 除接收L 5虎由於先前經回復之傳送信號之干擾,而各個將 被持績回復之各傳送信號之SNR將獲得改善。依此方式, 所有傳迗k號址可達到較高之性能(可能除了第一個將被 回復之傳送信號)。 圖5係"員不持續消除接收器處理技術處理N R接收信號 以回復Ν τ傳送作*站a %, τ坪疋仏唬的一流程圖。為求簡化,下列圖5之說The S N R selects a coding scheme and a modulation scheme (i.e., a signal group) for each feature vector. The constraint is that the channel condition does not change the time between the f and the reporting at the receiver unit, and the interval between the time it is used to pre-condition the transmission at the transmitter unit, the performance of the communication system Can be equal to a set of independent AWGN channels with known SNR. 6. Receiver Processing For the hold, $/branch receiver processing technique, the initial NR receive signal is processed to continually reply a transmit signal at ~ time. As each transmitted signal passes back k 〃 will be removed (ie, eliminated) by the received signal before the next transmitted signal is returned. If the transmitted data stream can be decoded error-free (or with minimal error) and if the overnight response is estimated Reasonably accurate, it can effectively eliminate the interference of the receiving L 5 tiger due to the previously transmitted transmission signal, and the SNR of each transmitted signal that will be recovered by the performance will be improved. In this way, all transmissions can achieve higher performance (possibly except for the first transmission signal that will be replied to). Figure 5 is a flow chart of the keeper who does not continuously eliminate the receiver processing technique to process the NR received signal to respond to Ν τ transmission as * station a %, τ 疋仏唬. For the sake of simplicity, the following figure 5

明假設(1)傳輸通道之數目等於傳送天線之數目(即NC=NT ’而傳輸通道係未使用OFDM之ΜΙΜΟ系統之空間子通 道)’及(2)每一傳送天線傳送一獨立資料流。 一開始在步騾5 1 2,接收器單元在N R接收信號上實施空 間及/或空間時間處理意圖隔開包括於接收信號内之該多 重傳送信號。空間處理可在該接收信號上實施,如果該 ΜΙΜΟ通道係非散佈性。其可能需要或需求在接收信號上 -60- 1269549 發瑪戴濟績荑 (56) 實施線性或非線性暫態處理(即空間時間處理),如果該 ΜΙΜΟ通道係時間-分集。該空間處理可依據CCMI、MMSE 或某些其他技術,而空間時間處理可依據MMSE-LE、 DFE、MLSE或某些其他技術。可達成信號隔離之數目取 決於傳送信號間關聯之數目,而如果傳送信號間具有較少 之關聯,則可以有較多之信號隔離。It is assumed that (1) the number of transmission channels is equal to the number of transmitting antennas (i.e., NC = NT ' and the transmission channel is a spatial sub-channel of a system that does not use OFDM)' and (2) each transmitting antenna transmits an independent data stream. Initially at step 512, the receiver unit performs spatial and/or spatial time processing on the NR received signal intended to separate the multiple transmitted signals included in the received signal. Spatial processing can be performed on the received signal if the channel is non-dispersive. It may be required or required to receive signals on the -60-1269549 fascination (56) to implement linear or nonlinear transient processing (ie, spatial time processing) if the ΜΙΜΟ channel is time-diversity. This spatial processing can be based on CCMI, MMSE or some other technology, while spatial time processing can be based on MMSE-LE, DFE, MLSE or some other technology. The number of signal isolations that can be achieved depends on the number of associations between the transmitted signals, and if there is less correlation between the transmitted signals, there can be more signal isolation.

空間或空間時間處理提供Ντ「後處理」信號,其係Ντ 傳送信號之預估。在步騾5 14,Ντ後處理信號之SNR則將 決定。在一具體實施例中,在步騾5 16SNR係由最高至最 低SNR依序加以分級,而具有最高SNR之後處理信號經選 定且進一步處理(即「經偵測」)以獲得一解碼資料流。此 偵測通常包括解調變、解交錯與解碼該經選定之後處理信 號。解碼資料流係在此疊代過程回復之傳送信號上的資料 流之預估。將被偵測之特定後處理信號也可依據某些其他 方案加以選定(例如藉由一排程或發射器單元明確地辨 識)。 在步驟5 1 8中,所有傳送信號是否已被回復將在此確 定。如果所有傳送信號均已回復,則接收器處理將終止。 否則,由於解碼資料流所致之干擾將被預估,而由接收信 號移除以產生「經修改」之信號用於下一疊代以回復下一 個傳送信號。 在步驟5 2 0,解碼資料流係用以形成由於在各接收信號 上之傳送信號(有關剛被解碼之資料流)所致干擾之預 估。干擾之預估可藉由首先再編碼該已解碼之資料流,交 -61 - 1269549 發嗎說_續頁 (57)The spatial or spatial time processing provides a Ντ "post-processing" signal, which is an estimate of the τ τ transmitted signal. The SNR of the processed signal after step 5 14, τ will be determined. In one embodiment, the 16 SNR is ranked sequentially from highest to lowest SNR in step 5, and the processed signal is selected and further processed (i.e., "detected") to obtain a decoded data stream with the highest SNR. This detection typically involves demodulating, deinterleaving, and decoding the selected processed signal. The decoded data stream is an estimate of the data stream on the transmitted signal replied to by this iterative process. The particular post-processing signal to be detected may also be selected in accordance with some other scheme (e.g., by a schedule or transmitter unit). In step 5 18, whether all transmitted signals have been replied will be determined here. If all transmitted signals have been replied, the receiver processing will terminate. Otherwise, the interference due to the decoded data stream will be estimated and removed by the received signal to produce a "modified" signal for the next iteration to reply to the next transmitted signal. In step 520, the decoded data stream is used to form an estimate of the interference due to the transmitted signal on each received signal (with respect to the data stream just decoded). The interference can be estimated by first re-encoding the decoded data stream, handing over -61 - 1269549, saying _ continued (57)

錯該再編碼資料與符號映射該交錯資料(對此資料流使用 與用於發射器單元處相同之解碼、交錯與調變方式)以獲 得一 「再調變」符號流。該再調變符號流係先前由Ν τ傳 送天線傳送而由NR接收天線接收之調變符號流的一預 估。該再調變符號流於是由預估通道反應向量I内之各N R 元件以推導出N R由於第j個已回復傳送信號所致之干擾信 號。在步騾522,該向量kj係(NR X Ντ)通道係數矩陣Η的特 定一行。該>^干擾信號於是由關接收信號減去以推 導出N R經修改信號。這些修改之信號代表接收天線處之 信號,如果由於解碼資料流之成份未被傳送(即假設已有 效實施干擾消除)。 在步騾512至5 16之處理實施於是將在NR修改信號上重 複(而非收信號)以回復另一傳送信號。步騾5 12至5 16 因此將對各個將回復之傳送信號重複,而如果有另一個傳 送信號將被回復則步騾520與5 22將實施。The re-encoded data and symbols map the interleaved data (this data stream uses the same decoding, interleaving, and modulation methods as used at the transmitter unit) to obtain a "remodulated" symbol stream. The remodulated symbol stream is an estimate of the modulated symbol stream previously received by the NR receive antenna and transmitted by the NR receive antenna. The remodulated symbol stream is then derived from each of the N R elements within the channel response vector I to derive an interference signal due to the jth recovered transmission signal. At step 522, the vector kj is a particular row of the (NR X Ντ) channel coefficient matrix Η. The > ^ interference signal is then subtracted from the off received signal to derive the NR modified signal. These modified signals represent the signals at the receiving antenna if they are not transmitted due to the components of the decoded data stream (i.e., it is assumed that interference cancellation is effectively implemented). The processing at steps 512 through 5 16 will then repeat (rather than receive) the NR modification signal to reply to the other transmission signal. Steps 5 12 through 5 16 will therefore repeat for each of the transmitted signals to be recovered, and steps 520 and 5 22 will be implemented if another transmitted signal is to be recovered.

對於第一次疊代,輸入信號係來自於Nr接收天線之Nr 接收信號。而對於持續之各疊代,輸入信號係來自於前次 疊代由干擾消除器來之改信號。各次疊代之處理係 以一類似方式適當地替代輸入信號而進行。更明確言之, 在第一次疊代之後之各次疊代,在先前疊代偵測之信號假 設將被消除,因此在隨後之各疊代通道係數矩陣之範圍將 減小。 持續消除接收器處理技術因而實施多次疊代,每一將回 復之傳送信號一次疊代。各次疊代(除最後)實施一兩部份 -62 - 1269549 發螞說_績買 (58) 發嗎缵頁 處理以回復一傳送信號與產生下一疊代所需之修改信 號。在第一部份中,空間處理或空間時間處理係在N R接 收信號上實施以提供Ν τ後處理信號,而該後處理信號之 一係經偵測以回復對應此傳送信號之資料流。在第二部份 (其在最後疊代將不需要被實施),由於該解碼資料流所致 之干擾將從接收信號中消除以推導出回復成份已被移除 之修改信號。 一開始,第一疊代之輸入信號L1係接收信號L,其可表 示為 : η Μ 方程式(51) 這些輸入信號為線性或線性處理以提供Ντ後處理信號 I1,其可表示為: f m I txl 1¾ Μ l^r ______」 方程式(52) 後處理信號之SNR可加以預估,其可表示為: 方程式(53) 該後處理信號之一經選定用於進一步處理(例如具有最 高SNR之後處理信號)以提供一解碼資料流。此解碼資料 流於是將用以預估由該回復信號產生之干擾i1,其可表示 為: -63 - 1269549 (59) 1 " Μ 方程式(5 4) 义 於是在此次疊代,干擾i1將由輸入信號向量Li中減去,以 推導出包含用於下次疊代之輸入信號向量L2的修改信 號。干擾消除作用可表示為:For the first iteration, the input signal is derived from the Nr receive signal of the Nr receive antenna. For each of the iterations, the input signal is derived from the previous iteration of the signal from the interference canceller. The processing of each iteration is performed in a similar manner as the input signal is appropriately replaced. More specifically, in the case of each iteration after the first iteration, the signal hypothesis in the previous iterative detection will be eliminated, so the range of the matrix matrix of the subsequent iterations will be reduced. The receiver processing technique is continuously eliminated and thus multiple iterations are performed, each of which will repeat the transmitted signal one time. Each iteration (except the last) is implemented in one or two parts. -62 - 1269549 Sending an actor says that the product is processed to recover a signal and the modification signal required to generate the next iteration. In the first part, spatial processing or spatial time processing is performed on the NR received signal to provide a τ post-processing signal, and one of the post-processed signals is detected to recover the data stream corresponding to the transmitted signal. In the second part (which will not need to be implemented in the last iteration), the interference due to the decoded data stream will be removed from the received signal to derive a modified signal that the reply component has been removed. Initially, the first iteration of input signal L1 is a received signal L, which can be expressed as: η Μ Equation (51) These input signals are linear or linearly processed to provide a τ post-processed signal I1, which can be expressed as: fm I Txl 13⁄4 Μ l^r ______” Equation (52) The SNR of the post-processed signal can be estimated, which can be expressed as: Equation (53) One of the post-processed signals is selected for further processing (eg, processing the signal with the highest SNR) ) to provide a decoded data stream. The decoded data stream will then be used to estimate the interference i1 generated by the reply signal, which can be expressed as: -63 - 1269549 (59) 1 " Μ Equation (5 4) is defined in this iteration, interference i1 It will be subtracted from the input signal vector Li to derive a modified signal containing the input signal vector L2 for the next iteration. Interference cancellation can be expressed as:

方程式(55)Equation (55)

相同之處理於是將在下一疊代重複,而該向量包含用 於此疊代之輸入信號。 以持續消除接收器處理方案’每一次疊代將回復一傳送 信號,而第j個傳送信號之SNR將在第k次疊代回復,而 <可 被提供作為使用於此回復信號之傳輸通道的C S I。舉例而 言’如果第一後處理信號X丨係在第一次疊代中回復,第二 後處理信號X〗係在第二次疊代中回復等等,而%後處理信 號V將在最後疊代中回復,則可被提報用於這些回復信 號之CSI可表示為:r = 〇;,,22,.,以]。 圖4E係能夠實施持續消除接收器處理技術之RX ΜΙΜΟ/ 資料處理器260e的方塊圖。由(多達)Ντ傳送天線傳送之信 號係由各NR天線252a至252r接收且分配路徑至各自的解 調器2 5 4。各解調器2 5 4處理各自的接收信號與提供一接收 調變符號流至RX ΜΙΜΟ/資料處理器26〇e。 對於使用OFDM之ΜΙΜΟ系統,RX MIM〇/資科處理器260e -64 - 1269549The same process will then be repeated in the next iteration, and the vector contains the input signal for this iteration. In order to continuously eliminate the receiver processing scheme, each iteration will reply a transmission signal, and the SNR of the jth transmission signal will be recovered in the kth iteration, and < can be provided as the transmission channel used for this reply signal. CSI. For example, 'If the first post-processing signal X丨 is replied in the first iteration, the second post-processing signal X is replied in the second iteration, etc., and the % post-processing signal V will be at the end. In the case of replies, the CSI that can be reported for these reply signals can be expressed as: r = 〇;,,22,., to]. 4E is a block diagram of an RX®/data processor 260e capable of implementing a continuous cancellation receiver processing technique. The signals transmitted by the (up to) 传送τ transmit antennas are received by the NR antennas 252a through 252r and assigned paths to respective demodulators 254. Each demodulator 254 processes the respective received signals and provides a received modulated symbol stream to the RX ΜΙΜΟ/data processor 26〇e. For systems using OFDM, RX MIM〇/Sco processor 260e -64 - 1269549

(60) 可用以處理來自供各NF頻率子通遒用於資料傳輸之^接 收天線的該NR调變符號流。而對於未使用〇FDM之ΜΙΜΟ . 系統’ RX ΜΙΜΟ/資料處理器26〇e可被用以處理來自Nr接收 : 天線之NR調變符號流。 < 在圖4E中所不的一具體實施例,mM〇/資料處理器 260e包括許多持續的(即串聯的)接收器處理階段45〇,每 一個各傳送信號一階段用於回復。在一傳送處理方式中, 資料流係在各傳輸通道上傳送,而各資料流係獨立處理 · (例如使用其自有之編碼與調變方案)且由各自的傳送天 線傳送。對於此傳送處理方案,資料流之數目係等於傳送 信號之數目’也等於供資料傳輸之傳送天線的數目(其可 為可用(傳送天線的子集)。為求明確表示此傳送處理方 案,RX ΜΙΜΟ/資料處理器260e特此說明。 各接收器處理階段450 (除了最後階段45〇n)包括一通道 ΜΙΜΟ/資料處理器460耦合至一干擾消除器47〇,而最後階 段450η只包括通道ΜΙΜΟ/資料處理器46〇η。對於第一接收 參 器處理階段450a ’通道ΜΙΜΟ/資料處理器46〇a接收與處理 來自解調器254a至25打之NR調變符號流,以提供第一傳送 7[吕號一解碼資料流。而對於各個第二至最後階段450b至 450η,該階段之通道ΜΙΜΟ/資料處理器46〇接收與處理來 : 自前一階段之干擾消除器的〜^經修改之符號流,以推導 : 出由該階段回復供該等傳送信號用的一解碼資料流。各通 道ΜΙΜΟ/資料處理器460進一步提供csi (例如SNR)用於相 關之傳輸通道。 -65 - (61) 1269549(60) may be used to process the NR modulated symbol stream from a receiving antenna for each NF frequency sub-pass for data transmission. For systems that do not use 〇FDM, the system 'RX ΜΙΜΟ/data processor 26〇e can be used to process the NR modulated symbol stream from the Nr receive: antenna. < In a specific embodiment not shown in Figure 4E, the mM®/data processor 260e includes a plurality of continuous (i.e., in series) receiver processing stages 45, each of which transmits a phase for recovery. In a transport processing scheme, data streams are transmitted on each transport channel, and each data stream is processed independently (e.g., using its own coding and modulation scheme) and transmitted by its respective transport antenna. For this transport processing scheme, the number of data streams is equal to the number of transmitted signals 'is also equal to the number of transmit antennas for data transmission (which may be available (a subset of transmit antennas). To clearly indicate this transport processing scheme, RX The data processing unit 260e is hereby described. Each receiver processing stage 450 (except the final stage 45〇n) includes a channel/data processor 460 coupled to an interference canceller 47A, and the final stage 450n includes only channels/ The data processor 46 〇 η. For the first receive modulator processing stage 450a 'channel ΜΙΜΟ / data processor 46 〇 a receives and processes the NR modulated symbol stream from the demodulators 254a through 25 to provide the first transfer 7 [Lü No. 1 decodes the data stream. For each of the second to final stages 450b to 450n, the channel/data processor 46 of this stage receives and processes: the modified symbol of the interference canceller from the previous stage Streaming, to derive: a decoded data stream for replying to the transmitted signals by the stage. Each channel/data processor 460 further provides a csi (eg, SNR) for the associated transmission channel -65 - (61) 1269549

對於第— 、一接收器處理階段450a,干擾消除器470a接收來 自所有Μ ^ 調器254s之NR調變符號流。而對於第二至最後 · I ^ 器、 ’干擾消除器4 7 〇接收來自前一階段之千擾消除 ' R、、二修改之符號流。各干擾消除器4 7 0也接收來自相 ,‘ Θ階段士、s _ * 、u 、遒MIM0/資料處理器460之解碼資料流,與實 施處理(存,1 4 如編碼、交錯、調變、通道反應等等)以推導出 Y系^1U ^ ^ ^ < 預估的nr再調變符號流,由於接收調變符 二4對應於此解碼資料流。再調變符號流於是將由接收調 _ 又#號:μ中減去’以推導出包括所有除了減去的(即經消 除)< 干擾成份的Nr修改符號流。該Nr經修改符號流於是 將提供至下一階段。 在圖4£中’經顯示的一控制器2 7 〇係耦合至RX μίμο/資 料處理器26〇e且可被用以主導持續消除接收器處理内之 各步騾。 圖4E顯不當各資料流傳送透過各自的傳送天線,可用 於直接万式的一接收器構造(即對應於各傳送信號的一資 料流)。在此情況下,各接收器處理階段45 0可經操作以回 復傳送信號之一,與提供對應於該回復傳送信號之解碼資 料流。 對於某些其他傳送處理方案,一資料流可透過多重傳送 天線、頻率子通遒及/或時間區間傳送,以分別提供空間、 頻率與時間分集。對於這些方案,接收器處理開始先推導 出在各來、率子通遒之各傳送天線上傳送之信號的接收調 變付唬流。用於多重傳送天線、頻率子通道及/或時間區 -66 - 1269549For the first, a receiver processing stage 450a, the interference canceller 470a receives the NR modulated symbol streams from all of the modulators 254s. For the second to last I, the 'interference canceller 4' receives the symbol stream from the previous stage of the interference cancellation 'R, and the second modification. Each interference canceller 470 receives the decoded data stream from the phase, 'Θ期, s_*, u, 遒MIM0/data processor 460, and performs processing (storage, 1 4 such as encoding, interleaving, modulation) , channel response, etc.) to derive the Y system ^1U ^ ^ ^ < estimated nr remodulation symbol stream, since the receive modulator 2 corresponds to the decoded data stream. The modulating symbol stream will then be subtracted from the received modulo _##: μ to derive a stream of Nr modified symbols including all of the subtracted (i.e., eliminated) < interference components. The Nr modified symbol stream will then be provided to the next stage. A controller 27 shown in Figure 4 is coupled to the RX μίμο/data processor 26〇e and can be used to dominate the various steps within the receiver cancellation process. Figure 4E shows that each data stream is transmitted through its own transmit antenna and can be used in a direct receiver configuration (i.e., a stream corresponding to each transmitted signal). In this case, each receiver processing stage 45 0 can be operated to reply to one of the transmitted signals and to provide a decoded stream corresponding to the reply transmitted signal. For some other transport processing schemes, a data stream can be transmitted through multiple transmit antennas, frequency sub-compasses, and/or time intervals to provide spatial, frequency, and time diversity, respectively. For these schemes, the receiver process begins by deriving a receive modulation stream of signals transmitted on each of the transmit and receive antennas. For multiple transmit antennas, frequency subchannels and/or time zones -66 - 1269549

(62) 間之調變符號,可依與在發射器單元處實施之解多工互補 之方式加以組合。組合調變符號之流於是經處理以提供相 對之解碼資料流。 圖4F係通道ΜΙΜΟ /資料處理器460x的一具體實施例的 方塊圖,其可用於圖4E中之各通道ΜΙΜΟ/資料處理器460a 至460η。在此具體實施例中,處理器46〇χ包括一空間/空間 時間處理器410χ耦合至RX資料處理器480。The modulation symbols between (62) can be combined in a manner complementary to the multiplexed implementation at the transmitter unit. The stream of combined modulation symbols is then processed to provide a relatively decoded data stream. Figure 4F is a block diagram of one embodiment of a channel ΜΙΜΟ / data processor 460x that can be used for each of the channel ΜΙΜΟ / data processors 460a through 460n in Figure 4E. In this particular embodiment, processor 46A includes a spatial/spatial time processor 410 coupled to RX data processor 480.

空間/空間時間處理器41 Οχ在N r輸入信號上實施空間或 空間時間處理。空間/空間時間處理器410χ可實施非散佈 性通道之CCMI、MMSE或某些其他空間處理技術,且可實 施用於一散佈性通道之MMSE-LE、DFE、MLSE或某些其他 空間時間處理技術。 圖4G係一干擾消除器470x—具體實施例的方塊圖,其可 經使用於圖4E中之各干擾消除器470。在干擾消除器47〇χ 中,來自於相同階段内之通道ΜΙΜΟ/資料處理器46〇之解 碼資料流(k),經由一ΤΧ資料處理器210χ再編碼、交錯與 再調變以提供再調變符號,其係在MIM〇處理與通道失真 前在發射器處之調變符號的預估。τχ資料處理器21〇乂實 施與在發射器單元處對該資料流相同之處理(例如解碼、 交錯與調變)。該再調變符號於是被提供予一通道模擬器 4 7 2 ’其以預估之通道反應處理該符號俾提供由於解碼資 料流所致千擾之預估。 對於一非散佈性通遒,通道模擬器47 2將有關第j傳送天 線之調變符號流乘以該向量匕,其係介於該資料流經回復 -67- 1269549The spatial/spatial time processor 41 performs spatial or spatial time processing on the Nr input signal. The spatial/spatial time processor 410 can implement CCMI, MMSE, or some other spatial processing technique for non-distributive channels, and can implement MMSE-LE, DFE, MLSE, or some other spatial time processing technique for a non-distributive channel. . Figure 4G is a block diagram of an interference canceller 470x, which may be used with each of the interference cancellers 470 of Figure 4E. In the interference canceller 47A, the decoded data stream (k) from the channel/data processor 46 in the same phase is re-encoded, interleaved and re-modulated via a data processor 210 to provide retuning. Variable symbol, which is an estimate of the modulation symbol at the transmitter before MIM〇 processing and channel distortion. The τ χ data processor 21 〇乂 implements the same processing (e.g., decoding, interleaving, and modulation) of the data stream at the transmitter unit. The remodulation symbol is then provided to a channel simulator 4 7 2 ' which processes the symbol in an estimated channel response to provide an estimate of the interference due to the decoded stream. For a non-dispersive overnight, the channel simulator 47 2 multiplies the modulated symbol stream of the jth transmission antenna by the vector 匕, which is between the data flowing back -67- 1269549

(63) 之第j傳送天線與各N R接收天線間之通道反應的預估。該 向量L可表示為:(63) Estimation of the channel response between the jth transmit antenna and each of the N R receive antennas. The vector L can be expressed as:

方程式(56)Equation (56)

A 且係通道反應矩陣產之預估的一行,其可表示為:A is the predicted row of the channel response matrix, which can be expressed as:

方程式(57) H =Equation (57) H =

Κι (2 A \nt h 八 石2,NT Μ MO ΜΚι (2 A \nt h eight stone 2, NT Μ MO Μ

^Nk,2 ^ ^Nft.NT 矩陣i可在相同階段内由通道ΜΙΜΟ/資料處理器460加以 提供。 如果關於第j傳送天線之再調變符號流係表示為χ』,則 由於第j回復傳送信號之預估干擾成份P可表示為: K)The ^Nk, 2^^Nft.NT matrix i can be provided by the channel/data processor 460 in the same phase. If the remodulated symbol stream for the jth transmit antenna is denoted as "χ", then the estimated interference component P of the jth reply transmitted signal can be expressed as: K)

Μ 方程式(58)Μ Equation (58)

KrxJ 基於在第j傳送天線傳送的符號流,干擾向量内之N R 元件對應於各N R接收天線處接收信號的成份。各向量之 元件代表由於在相關接收調變符號流内之解碼資料流的 一預估成份。這些成份係對>^&接收調變符號流(即向量Lk) 内其餘(尚未經偵測出)之傳送信號的干擾,且係藉一加總 器4 74由接收信號向量Lk減去(即消除),以提供已移除來 -68 - 1269549KrxJ is based on the symbol stream transmitted at the jth transmit antenna, and the NR elements in the interference vector correspond to the components of the received signal at each NR receive antenna. The elements of each vector represent an estimated component of the decoded data stream due to the associated received modulated symbol stream. These components are for the interference of the remaining (not yet detected) transmitted signals in the modulated symbol stream (i.e., vector Lk), and are subtracted from the received signal vector Lk by a sum master 4 74. (ie eliminate) to provide removed has been -68 - 1269549

(64) 自解碼資料流之成份的一修改向量f+i。此消除可表示如 方裎式(55)中所示。經修改之向量Lk+1經提供為下一接收 M 器處理階段之輸入向量,如圖4 E中所示。 * 對於一散佈性通道,向量i係由定義於一方程式(23)中 : 之通道轉換函數向量(i(k),0 S k S L)的預估所取代。於 是在時間η之預估干擾向量p (η)可表示為:(64) A modified vector f+i of the components of the self-decoded data stream. This elimination can be expressed as shown in the equation (55). The modified vector Lk+1 is provided as the input vector for the next receive M processor processing stage, as shown in Figure 4E. * For a scatter channel, the vector i is replaced by an estimate of the channel transfer function vector (i(k), 0 S k S L) defined in one of the programs (23). The estimated interference vector p(η) at time η can then be expressed as:

方程式(5 9) ^Kj{k)Xj{n-k)Equation (5 9) ^Kj{k)Xj{n-k)

Jt=S〇 iA 卿Jt=S〇 iA Qing

Ic^Q M .*=〇 其中xj(n)係時間n之再調變符號。方程式(59)有效地以用 於各傳送-接收天線對之通道反應預估以迴旋再調變符 號。 為求簡化,圖4E中所示之接收器架構提供(接收或經修 改)之凋變符號流予各接收器處理階段4 5 〇,而這些流中由 於先前解碼資料流所致之干擾成份已移除(即消除)。在圖 4E所不的一具體實施例中,各階段移除由於先前解碼資 料流所致之干擾成份。在某些其他設計中,可將接收調變 符號流提供至所有階段,而各階段可實施消除來自所有先 前解碼資料流之干擾成份(其可由前一階段提供"干擾消 除可掠過一或多個階段(如果資料流之SNR較高)。可對圖 4E中所示接收器架構進行各種修改而仍落入本發明之範 圍。 -69- 1269549Ic^Q M .*=〇 where xj(n) is the remodulation symbol of time n. Equation (59) is effectively used to estimate the channel response for each transmit-receive antenna pair to swirl the re-modulation symbol. For simplicity, the receiver architecture shown in Figure 4E provides (received or modified) corrupted symbols to the receiver processing stages 4 5 〇, and the interference components in these streams due to previously decoded data streams have been Remove (ie remove). In a particular embodiment of Figure 4E, the stages remove interference components due to previously decoded data streams. In some other designs, the received modulated symbol stream can be provided to all stages, and each stage can be implemented to eliminate interference components from all previously decoded data streams (which can be provided by the previous stage " interference cancellation can be swept by one or Multiple stages (if the SNR of the data stream is high) Various modifications can be made to the receiver architecture shown in Figure 4E while still falling within the scope of the invention. -69- 1269549

(65) 持續消 國申請專 等在標題 資料傳輸 其以引用 7. HJ 完整或 訊。可當 於下。 在一具 號功率除 輸通道用 SNR也可 體實施例 SNR指標 在另一 加雜訊功 輸通道或 在又另 功率與雜 通道或一 在又另 上一串列 除接收器處理技術經進一步詳加說明於前述美 利案序號09/854,235中,以及在由p w w〇lniansky 為「V-衝擊:透過廣泛分集無線通道達成極高 率之架構」,義大利比薩發行ISSSE-98之文獻中, 方式在此併入。(65) Continued Consumer Abdication in the title data transmission It is quoted 7. HJ Complete or News. Can be as below. In the case of a power-receiving channel, the SNR can also be used in another method of adding a noise power transmission channel or in another power and miscellaneous channel or in another series of receiver processing techniques. Explain in detail in the aforementioned Murray case serial number 09/854,235, and in the literature on the "V-impact: reaching a very high rate through extensive diversity of wireless channels" by pww〇lniansky, in the literature published by ISSSE-98 in Italy. The manner is incorporated herein.

提報完整或部份C 5U 部份CSI可包含任何型式表示通信鏈路特徵之資 作完整或部份CSI提供之各種型式資訊範例達述Reporting complete or partial C 5U Part of the CSI may include any type of information indicating the characteristics of the communication link, or some types of information provided by CSI.

部份C SI 體實施例中,部份CSI包含SNR,其經推導為信 以雜訊加干擾功率。S NR通常經預估且提供各傳 於資料傳輸(例如各傳送資料流),雖然,累計之 提供予多數之傳輸通道。SNR之預估在又另一具 中,在一具體實施例中,SNR之預估將映射至一 ,例如使用一查詢表。 具體實施例中,部份CSI包含一信號功率與干擾 率。這二成份可分開地加以推導,且提供予各傳 一組用於資料傳輸之傳輸通道。 一具體實施例中,部份CSI包含信號功率、干擾 訊功率。這三個成份可經推導出以提供予各傳輸 組用於資料傳輸之傳輸通道。 一具體實施例中,部份c S I包含信號對雜訊比加 各可觀測之干擾的干擾功率。此資訊可經推導出 1269549 (66) 而供各傳輸通道或一組用於資料傳輸之傳輸通道。In some C SI body embodiments, part of the CSI contains SNR, which is derived as noise and interference power. The S NR is typically estimated and provides for each data transmission (e.g., each transport stream), although it is cumulatively provided to the majority of the transmission channels. The estimation of SNR is yet another. In one embodiment, the estimate of SNR will be mapped to one, for example using a lookup table. In a specific embodiment, a portion of the CSI includes a signal power and interference rate. These two components can be derived separately and provided to each of a set of transmission channels for data transmission. In one embodiment, part of the CSI includes signal power and interference power. These three components can be derived to provide a transmission channel for each transmission group for data transmission. In one embodiment, the portion c S I contains the interference power of the signal-to-noise ratio plus the observable interference. This information can be derived from 1269549 (66) for each transmission channel or a set of transmission channels for data transmission.

在又另一具體實施例中,部份c s I包含矩陣型式之信號 成份(例如NR X Ντ複合輸入供所有傳送-接收天線對),與 矩陣型式之雜訊加干擾成份(例如Nr χ Ντ複合輸入)。發 射器單元於是可正確地組合信號成份與雜訊加上干擾成 份並且適當之傳送-接收天線對推導出各傳輸通道用於資 料傳輸之品質(例如在接收器單元處接收之各傳送資料流 的後處理SNR)。 在又另一具體實施例中In yet another embodiment, a portion of cs I includes a matrix type signal component (eg, a NR X Ντ composite input for all transmit-receive antenna pairs), and a matrix type of noise plus interference component (eg, Nr χ Ντ composite) Enter). The transmitter unit can then correctly combine the signal components with the noise plus interference components and the appropriate transmit-receive antenna pair to derive the quality of each transmission channel for data transmission (eg, for each transmitted data stream received at the receiver unit) Post processing SNR). In yet another embodiment

流的一資料傳輸率指標。將使用於資料傳輸之傳輸通道』 貝可在開始加以決定(例如依據傳輸通道之S ν r預估),$ 有關經決定通道品質之資料傳輸率於是可經辨識(例如食 據一查詢表)。經辨識之資料傳輸率係最大資料傳輸率々 指示,其可在傳輸通道上傳送需求之性能位準。該資料詞 輸率可被映射至一資料傳輸率指標(DRI)且由其代表,其 可有效地予以編碼。例如,㈤果(多達)七個可用之资料傳 輸率係由發射器單元的各傳送天線加以支援,則一 3 _位元A data transmission rate indicator of the flow. The transmission channel that will be used for data transmission is determined at the beginning (for example, based on the S ν r of the transmission channel), and the data transmission rate of the determined channel quality can then be identified (eg, a questionnaire). . The identified data transmission rate is the maximum data transmission rate 指示 indication that can transmit the required performance level on the transmission channel. The data word rate can be mapped to and represented by a Data Rate Indicator (DRI), which can be effectively encoded. For example, (5) fruit (up to) seven available data transmission rates are supported by the transmitter antennas of the transmitter unit, then a 3 _ bit

值將可被用以代表七玄D 以DRI其中例如零可表示零資料傳 率(即不使用該傳送天毺、,^ , 迗天,'泉)叩1至7可用以表示七個不同的 資料傳輸率。在一典型之每放士 ^ ]的The value will be used to represent the seven Xuan D in DRI where, for example, zero can represent zero data transfer rate (ie, no use of the transmission teleport, ^, 迗天, '泉) 叩 1 to 7 can be used to represent seven different Data transfer rate. In a typical per ambulance ^ ]

褚#、 ,、土乏κ她中,通道品質量度(例如SNI 預估)可依據例如-查詢表直接映射至㈣。 -在又另-具體實施例中,部份csi包含將用於發 各傳送資料流之特定處理方案的-指標。在此具體實 列中,指標可辨識將用於傳送資料流之該特定編碼與調 -71-褚#, ,, soil κ, her channel quality (such as SNI estimate) can be directly mapped to (4) according to, for example, the lookup table. - In yet another embodiment, the portion csi contains an indicator that will be used to communicate a particular processing scheme for each transport stream. In this specific implementation, the indicator identifies the particular code and tone that will be used to transmit the data stream.

1269549 (67) 辦方案’以達成^ ^ <十生能位* $ ° 在又另一具體實施例中,部份C s 1包含用於傳輸通道之· 特定品質量度之不同指標。一開始,傳輸通遒之SNR或DRI ' 成某些其他品質量度經決定與提報如同一參考量度值。隨 r 後,持續監控傳輸通道之品質,而後決定上次提報量度與 現行量度間之差異。該差異於是可量化成一或多個位元, 而經量化之差異經映射至且由差分指標所代表,其隨後被 加以提報。差分指標可以一特定等級大小表示上次提報量 鲁 度值增加或減少(或維持上次提報之量度值)。例如,差分 指標可表示(1)用於一特定傳輸通道之可觀剛SNR已增加 或減少一特定等級大小’或(2)應調整一特定量之資料傳 輸率,或某些其他改變。該參考量度值可經迥期性傳送以 確保在差分指標内之誤差及/或這些指標之誤差接收不合 累積。1269549 (67) Plan to achieve ^ ^ < ten energy level * $ ° In yet another embodiment, part C s 1 contains different indicators of the quality of the particular product used for the transmission channel. Initially, the SNR or DRI of the transmitted wanted is determined by the same reference metric as the quality of some other products. After r, the quality of the transmission channel is continuously monitored and then the difference between the last reported metric and the current metric is determined. The difference can then be quantized into one or more bits, and the quantized difference is mapped to and represented by a differential indicator, which is then reported. The difference indicator can indicate the increase or decrease of the last reported amount of lunar value (or maintain the last reported metric value) in a specific level. For example, the difference indicator may indicate (1) that the apparent SNR for a particular transmission channel has increased or decreased by a particular level size' or (2) that a particular amount of data transmission rate should be adjusted, or some other change. The reference metric values may be transmitted periodically to ensure that errors within the differential metrics and/or errors in these metrics are not cumulatively received.

完整CSI 在一具體實施例中,完整CSI包含固有楔式加上任何表 示或等於SNR之其他資訊。例如,SNR相關次: 、— 貝訊可為母^一 固有模式之資料傳輸率指示、將使用於每— 母 固有模式之編 碼與調變方案的指示、每一固有模式之幹% 仏竣與干擾功率、 每一固有模式之信號對干擾比等等。上 上途部份CSI之資訊 也可經提供為SNR相關資訊。Complete CSI In a specific embodiment, the complete CSI contains an intrinsic wedge plus any other information that is expressed or equal to SNR. For example, the SNR correlation times: -, the information can be the data transmission rate indication of the eigenmode, the indication of the coding and modulation scheme to be used for each ancestor mode, and the dry % of each eigenmode Interference power, signal-to-interference ratio for each eigenmode, and so on. Some of the CSI information on the way up can also be provided as SNR related information.

在另一具體實施例中,完整C S I包厶 ,c . H ^ 口 一矩陣!=迁η迀。此 矩陣Α足以決定通道之固有模式與特 啊攸值,且可為通道之 更有效表示(例如可需要較少位元以傳适完整csi)。 -72- 1269549 (68) pwmmm 差異更新技術也可被用於所有之完整c s i資料型式。例 如,完整c s I特徵之差異更新可被定期發送,當通道改變 某些數等等。 其他型式之完整或部份CSI也可被使用而落入本發明之 範圍。通常,完整或部份CSI包括可被用以在發射器單元 處調整處理之任何型式的足夠資訊,以致可達成傳送資料 流所需求之性能位準。In another embodiment, the complete C S I package, c. H ^ port a matrix! = Move η迀. This matrix is sufficient to determine the inherent mode and characteristics of the channel and can be a more efficient representation of the channel (for example, fewer bits may be needed to pass the full csi). -72- 1269549 (68) The pwmmm difference update technique can also be used for all complete c s i data types. For example, a difference update of a complete c s I feature can be sent periodically, when the channel changes some number, and so on. All or part of the CSI of other types may also be used without departing from the scope of the invention. In general, full or partial CSI includes sufficient information to be used in any form of adjustment processing at the transmitter unit so that the level of performance required to transmit the data stream can be achieved.

推導與提報CSI 可依據由發射器單元傳送與在接收器單元接收之信號 推導出CSI。在一具體實施例中,CSI係依據包括於傳送 信號内的一先導推導出。另一選擇或额外地,可依據包括 傳送信號内之資料推導出CSI。The derivation and reporting CSI can derive CSI based on the signals transmitted by the transmitter unit and received at the receiver unit. In a specific embodiment, the CSI is derived from a preamble included in the transmitted signal. Alternatively or additionally, the CSI can be derived from the information included in the transmitted signal.

在另一具體實施例中,CSI包含一或多個在由接收器單 元至發射器單元之反向鏈路上傳送之信號。在某些系統 中,關聯作用可存在於下行鏈路與上行鏈路間(例如分時 雙工(TDD)系統,其中上行鏈路與下行鏈路以一分時多工 方式分享相同系統頻寬)。在這些系統,下行鏈路之品質 可依據上行鏈路之品質加以預估(至一必要之準確程 度),其可依據由接收器單元傳送之信號(例如先導信號) 加以預估。在上行鏈路上傳送之先導信號於是將代表一平 均值,發射器單元可藉以預估在接收器單元處可觀測到之 CSI。在TDD系統中,發射器單元能推導出通道係數矩陣 H (例如依據在上行鏈路上傳送之先導)、說明傳送與接收 陣列副本間之差異與在接收器單元接收雜訊變異量之預 -73 - 1269549In another embodiment, the CSI includes one or more signals transmitted on the reverse link from the receiver unit to the transmitter unit. In some systems, the association may exist between the downlink and the uplink (eg, a time division duplex (TDD) system where the uplink and downlink share the same system bandwidth in a time division multiplex manner ). In these systems, the quality of the downlink can be estimated based on the quality of the uplink (to the extent necessary), which can be estimated based on the signal transmitted by the receiver unit (e.g., the pilot signal). The pilot signal transmitted on the uplink will then represent an average value by which the transmitter unit can estimate the CSI observable at the receiver unit. In a TDD system, the transmitter unit can derive a channel coefficient matrix H (eg, based on a preamble transmitted on the uplink), a difference between the transmission and reception array copies, and a pre-73 reception noise variation at the receiver unit. - 1269549

(69) 估。陣列副本間之差異可藉一可涉及在接收器單元與發射 器單元間回授之定期校準步驟加以解決。 * 信號品質可在接收器單元依據各種技術加以預估。某些 這種技術係在以下的專利中說明,其皆讓渡予本發明受讓 -人,在此以引用方式併入: • 1998年8月25日頒行之美國專利第5,799,005號,標題為 「用於在一 CDMA通信系統中決定接收先導功率與路 徑損耗之系統與方法」; φ • 1999年5月1 1曰頒行之美國專利第5,903,554號,標題為 「用於在一展頻通信系統中測量鏈路品質之方法與 裝置」; •分別於1991年10月8日與1993年1 1月23日頒行之美國 專利第5,056,109,與5,265,119號,標題均為「用於在 CDMA蜂巢式行動電話系統中控制傳輸功率之方法與 裝置」:及(69) Estimate. The difference between the array copies can be addressed by a periodic calibration step that can involve feedback between the receiver unit and the transmitter unit. * Signal quality can be estimated at the receiver unit based on various techniques. Some of the techniques are described in the following patents, which are assigned to the assignee of the present invention, which is hereby incorporated by reference: • U.S. Patent No. 5,799,005, issued Aug. 25, 1998, title "System and method for determining the reception of pilot power and path loss in a CDMA communication system"; φ • US Patent No. 5,903,554, issued May 1, 1999, entitled "Used in a Spread Spectrum" Method and apparatus for measuring link quality in a communication system; • U.S. Patent Nos. 5,056,109 and 5,265,119, issued October 8, 1991 and January 23, 1993, respectively, entitled " Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system": and

• 2000年8月1曰頒行之美國專利第6,097,972號,標題為 「用於在CDMA行動電話系統中處理功率控制信號之 方法與裝置」。 C S I可使用各種C S I傳輸方案回報至發射器單元。例 如,C SI可以完整、差別地或其組合加以發送。在一具體 實施例中,完整或部份C S I係定期地提報,而差異更新則 依據先前傳送之CSI發送。如完整CSI之範例中,更新資 料可為經提報之固有模式的修正(依據一誤差信號)。該特 徵值通常不如固有模式改變地那麼快,因此這些可以一較 -74 - (70) 1269549• U.S. Patent No. 6,097,972, issued August 1, 2000, entitled "Method and Apparatus for Processing Power Control Signals in a CDMA Mobile Telephone System." C S I can be reported to the transmitter unit using various C S I transmission schemes. For example, C SI can be sent in whole, differentially, or a combination thereof. In a specific embodiment, the full or partial C S I is periodically reported, and the difference update is sent based on the previously transmitted CSI. As in the example of a complete CSI, the updated data may be a correction to the reported inherent mode (based on an error signal). This trait value is usually not as fast as the eigenmode changes, so these can be compared to -74 - (70) 1269549

低之速率更新。在另一具體實施例中,CSI只有在有改變 時才發送(例如當該改變超過一特定之臨界值),其可能降 * 低回授通道之有效速率,如部份cs;[之範例,該SNR只有r· 在改變時才被送回(例如差別地)。對於一 〇FDm系統(具或, 不具ΜΙΜΟ)、可採用頻率域之關聯以允許減低將被回授之 csi數量。如同使用部份cs;[之0FDM系統的範例,如果對 應於用於nm頻率子通道的特定空間子通道之snr係類 似,該SNR與當其此條件為真時之第一與最後頻率子通道 φ 可被提報。其他減低CSI資料回授量之壓縮與回授通道誤 差回復技術也可使用且落入本發明之範圍。 各種用於CSI之資訊型式與各種CS][提報機制係經說明 於1997年11月3曰申請之美國專利申請案序號〇8/963,386 中,標題為「用於高速率封包資料傳輸之方法與裝置」, 其讓渡予本申請案之受讓人,以及在「TIE/ELA/IS_856 cdma2000高速率封包資料無線界面規格」中,其均在此以Low rate update. In another embodiment, the CSI is sent only when there is a change (eg, when the change exceeds a certain threshold), which may decrease the effective rate of the low feedback channel, such as a portion of cs; This SNR is only sent back when r· is changed (eg differentially). For a FDM system (with or without ΜΙΜΟ), the frequency domain association can be used to allow the number of csi to be returned to be reduced. As with the partial cs; [the example of the OFDM system, if the snr system corresponding to a particular spatial subchannel for the nm frequency subchannel is similar, the SNR and the first and last frequency subchannels when this condition is true φ can be reported. Other compression and feedback channel error recovery techniques that reduce the amount of CSI data feedback may also be used and fall within the scope of the present invention. Various types of information for use in CSI and various CS] [reporting mechanisms are described in US Patent Application Serial No. 8/963,386, filed on November 3, 1997, entitled, And the device, which is assigned to the assignee of the present application, and in the "TIE/ELA/IS_856 cdma2000 high-rate packet data wireless interface specification",

使用在此說明之部份CSI (例如CCMI、MMSE、MMSE-LE 與DFE)技術或者是完整CSI技術中之一,可獲得用於接收 信號之各傳輸通道的完整或部份CSI。用於傳輸通道之經 決定完整或部份CSI於是可經由反向通道被回報至發射 器單元。對於部份C SI技術,一適應性處理可無須完整之 CSI而達成。對於完整CSI技術,足夠資訊(且無須顯性特 徵值與固有模式)將回授至發射器單元以有助於計算各頻 率子通遒使用之特徵值與固有模式。藉回授該CSI,將可 -75- 1269549Using one of the CSI (e.g., CCMI, MMSE, MMSE-LE and DFE) techniques described herein or one of the complete CSI techniques, complete or partial CSI for each transmission channel for receiving signals can be obtained. The complete or partial CSI for the transmission channel is then reported back to the transmitter unit via the reverse channel. For some C SI technologies, an adaptive process can be achieved without the need for a complete CSI. For complete CSI techniques, sufficient information (and no explicit feature values and eigenmodes) will be fed back to the transmitter unit to help calculate the eigenvalues and eigenmodes used by each frequency sub-pass. By reciprocating the CSI, it will be -75- 1269549

(71) 能實施適應性處理(例如適應性編碼與調變)以改善ΜΙΜΟ 通道之使用性。 請回顧圖2 A,在下行鏈路上,由rX ΜΙΜΟ處理器2 6 0決 \ 定之完整或部份CSI (例如通道SNR)將提供至一 ΤΧ資料處 , 理器2 8 0,其處理c S I且提供經處理之資料至一或多個調 變器2 5 4。碉變器2 5 4進一步調節經處理之資料且將c s I經 上行鏈路傳回基地台。 在基地台104處,經傳送之回授信號由天線224接收、由 解調器222解調變與提供至一 rX ΜΙΜΟ/資料處理器240。 RX ΜΙΜΟ/資料處理器240實施與在ΤΧ資料處理器280處之 實施互補的處理,且回復經提報之完整/部份C S I,其接著 將提供至ΤΧ資料處理器210與ΤΧ ΜΙΜΟ處理器220且由其 用以調整該處理。 基地台104可依據來自終端機106之完整或部份CSI調整 (即適應)其處理。例如,用於各傳輸通道之解碼可經調整 使該資訊位元率匹配由通道S N R支援之傳輸能力。此外, 傳輸通道之調變方案可依據通道SNR加以選定。其他處理 (例如交錯)也可加以調整而落入本發明之範圍。依據經決 定之通道SNR對各傳輸通道處理之調整允許ΜΙΜΟ系統達 成高性能(即達到特定性能位準之高通量或位元率)°適應 性傳送處理可被應用至單一載子ΜΙΜ0系統或多重載子基 礎ΜΙΜΟ系統(例如一使用0FDM之ΜΙΜ0系統)。 在發射器單元處編碼之調整與調變方式之選擇可依據 許多技術而達成’某些此技術係在上述美國專利申請案序(71) Adaptive processing (eg, adaptive coding and modulation) can be implemented to improve the usability of the channel. Referring back to Figure 2A, on the downlink, the complete or partial CSI (eg, channel SNR) determined by the rX ΜΙΜΟ processor 260 will be provided to a data location, processor 2 80, which processes c SI The processed data is provided to one or more modulators 254. The mutator 2 5 4 further adjusts the processed data and transmits c s I back to the base station via the uplink. At base station 104, the transmitted feedback signal is received by antenna 224, demodulated by demodulator 222, and provided to an rX ΜΙΜΟ/data processor 240. The RX/data processor 240 performs processing complementary to the implementation at the data processor 280 and replies to the reported complete/partial CSI, which is then provided to the data processor 210 and the processor 220. And it is used to adjust the process. The base station 104 can adjust (i.e., adapt) its processing in accordance with the full or partial CSI from the terminal unit 106. For example, the decoding for each transmission channel can be adjusted to match the information bit rate to the transmission capability supported by channel S N R . In addition, the modulation scheme of the transmission channel can be selected according to the channel SNR. Other processing (e.g., interleaving) can also be adjusted to fall within the scope of the present invention. The adjustment of the processing of each transmission channel based on the determined channel SNR allows the system to achieve high performance (ie, high throughput or bit rate to a specific performance level). Adaptive transmission processing can be applied to a single carrier ΜΙΜ0 system or Multi-carrier basic system (for example, a system using 0FDM). The choice of adjustment and modulation of the code at the transmitter unit can be achieved in accordance with a number of techniques. [Some of this technique is in the aforementioned U.S. Patent Application.

-76- 1269549-76- 1269549

(72) 號 09/776,975,09/532,492,與 09/854,235 中說明。 部份CSI技術(例如CCMI、MMSE、MMSE-LE與DFE技術) · 與完整CSI技術係一接收器處理技術,其允許一 ΜΙΜΟ系統 ^ 使用藉利用多重傳送與接收天線產生之額外範圍,其係利 1 用ΜΙΜΟ的一主要優勢。部份CSI技術可允許使用與完整 CSI之MEMO系統相同數目之調變符號用於各時槽内傳 送。然而,接收器處理技術也可與在此說明之完整/部份 C S I技術結合使用而仍落入本發明之範圍。類似地,圖4 B 至4 E代表接收器單元的四個具體實施例,其能處理ΜΙΜΟ 之傳輸、決定傳輸通道之特徵(例如SNR)與提報完整或部 份C S I回到發射器單元。其他依據在此出現與其他接收器 處理技術而設計之技術可視為在本發明之範圍。 IV. 適應拄再使用 本發明一特點提供技術以(i)在系統之細胞間劃分與分 配可用之系統資源(例如頻譜),及(2)分配各細胞内之資 源予終端機供資料傳輸。動態地及/或適應地分配資源至 細胞之能力與細胞能具智慧地分配資源至終端機之能 力,可使系統達成高位準之效率與性能。 在修〃丁-再使用系統中,在一細胞中可由一終端機使用 之「通道」只有當另一細胞也具有相同通道再使用模式 時’才可被另一細胞再使用。例如,考慮一含有細胞1、2 與3之3 -細胞再使用群集。在此方案中,不同通道組經分 配至位於此第一再使用群集之各細胞。各通道可為TDM系 統内的一時槽、CDM系統内的一編碼通道、FDM/OFDM系(72) Nos. 09/776,975, 09/532,492, and 09/854,235. Part of the CSI technology (eg CCMI, MMSE, MMSE-LE and DFE technology) · With the complete CSI technology, a receiver processing technology that allows a single system to use the additional range generated by the use of multiple transmit and receive antennas Lee 1 has a major advantage. Some CSI techniques allow the same number of modulation symbols as the full CSI MEMO system to be used for transmission in each time slot. However, receiver processing techniques can also be used in conjunction with the full/partial C S I techniques described herein while still falling within the scope of the present invention. Similarly, Figures 4B through 4E represent four specific embodiments of the receiver unit that are capable of processing the transmission of ΜΙΜΟ, determining the characteristics of the transmission channel (e.g., SNR), and reporting the complete or partial Cs I back to the transmitter unit. Other techniques that are designed to occur with other receiver processing techniques are considered to be within the scope of the present invention. IV. Adaptation and Reuse A feature of the present invention provides techniques for (i) dividing and distributing available system resources (e.g., frequency spectrum) between cells of the system, and (2) allocating resources within each cell to the terminal for data transmission. The ability to dynamically and/or adaptively allocate resources to cells and the ability of cells to intelligently allocate resources to the terminal allows the system to achieve high levels of efficiency and performance. In the repair-re-use system, the "channel" that can be used by one terminal in one cell can be reused by another cell only when another cell also has the same channel reuse mode. For example, consider a 3-cell-containing cluster containing cells 1, 2, and 3. In this protocol, different channel groups are assigned to each cell located in this first reuse cluster. Each channel can be a one-time slot in the TDM system, a coding channel in the CDM system, and an FDM/OFDM system.

-77- 1269549 _ (73) I爹明鎳明續買 統内的一頻率子通道等等。分配至一再使用群集内之任何 細胞之該組的通道,係正交於分配至群集内其他細胞之其 他組的通道。再使用群集係以某些指定方式在整個網路中 重複。此策略降低或消除由在一再使用群集中之終端機造 成的共同干擾。雖然修訂-再使用方式可被用以使終端機 能符合最小需求SNR之百分比最大,其大體上仍有所不足 因為其利用一高再使用因子。-77- 1269549 _ (73) I 爹 镍 明 续 续 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一The channels assigned to the group that repeatedly use any of the cells within the cluster are orthogonal to the channels assigned to other groups of other cells within the cluster. The cluster is then repeated throughout the network in some specific way. This strategy reduces or eliminates the common interference caused by the terminals in the cluster. While the revision-reuse method can be used to maximize the percentage of the terminal function to meet the minimum demand SNR, it is still generally insufficient because it utilizes a high reuse factor.

圖6A顯示一系統中之終端機達到SNR的累積分佈函數 (CDF)之範例,其依據由模擬終端機隨機分佈於整個覆蓋 範圍所獲得之許多再使用模式。水平軸之X代表SNR,而 垂直軸代表一特定終端機之S NR達到少於水平軸中所示 值,即P(SNR < X)之或然率。如圖6A中所示,實際上無終 端機達到低於0 dB之SNR。圖6A也顯示較大SNR之或然率 隨著較大之再使用而增加。因此7 -細胞再使用模式之 P(SNR > X)係大於1 -細胞再使用模式之P(SNR > X)。Figure 6A shows an example of a cumulative distribution function (CDF) of a terminal in a system that achieves SNR, based on a number of reuse patterns obtained by randomly distributing the analog terminals over the entire coverage. The X of the horizontal axis represents the SNR, and the vertical axis represents the S NR of a particular terminal that is less than the value shown in the horizontal axis, i.e., the probability of P (SNR < X). As shown in Figure 6A, virtually no terminal achieves an SNR below 0 dB. Figure 6A also shows that the probability of a larger SNR increases with greater reuse. Therefore, the P (SNR > X) of the 7-cell reuse pattern is greater than the P (SNR > X) of the 1-cell reuse pattern.

圖6 A中之SNR CDF可被用以特徵化系統之潛在性能。如 範例中,假設需要至少10 dB之SNR以在99.99%之時間中符 合1 Mbps之最小瞬間位元率。使用再使用因子為一(即 N R E U S E = 1,每一細胞均再使用相同通道),未達成需求性 能之然率(即中斷之或然率)將近12%。類似地,細胞再使 用因子為3、4與7對應之中斷或然率分別為5.4%、3.4%與 1.1%。因此為使99%之終端機達成10 dB之SNR,在此範例 中需要再使用因子至少為柒(NREUSE 2 7)。 圖6 B顯示1 -細胞再使用模式之細胞内的終端機達到 -78 - 1269549 _ (74) I發秀愈辞缓頁The SNR CDF in Figure 6A can be used to characterize the potential performance of the system. As in the example, assume that an SNR of at least 10 dB is required to meet the minimum instantaneous bit rate of 1 Mbps in 99.99% of the time. Using the reuse factor of one (i.e., N R E U S E = 1, each cell uses the same channel), the probability of not achieving the required performance (ie, the probability of interruption) is nearly 12%. Similarly, the cell re-use factors of 3, 4, and 7 correspond to interrupt susceptibility of 5.4%, 3.4%, and 1.1%, respectively. Therefore, in order to achieve a 10 dB SNR for 99% of the terminals, the re-use factor is at least 柒 (NREUSE 2 7) in this example. Figure 6B shows that the terminal in the cell of the 1-cell re-use mode reaches -78 - 1269549 _ (74) I

SNR CDF的範例。對於上行鏈路,圖6B内之SNR CDF係在 基地台處達成,供各細胞内各通道上以全功率傳送的一終 端機。而對於下行鏈路,所有細胞均以全功率傳送時SNR CDF可在終端機處達到。在二情況下,終端機係不均勻地 分佈(即隨機定位)於細胞内。該SNR CDF提供表示細胞内 終端機具有之SNR大於一特定SNR值的百分比。由圖6B, 可看出細胞内具有不同的SNR特徵與可能達到不同性能 位準或特定性能位準之終端機,可能需要以不同的功率位 準傳送。具有至服務細胞之路徑損耗較小的終端機,通常 具有較高之SNR,其意味著將能夠達成較高之通量。 在一典型之系統中,系統中較大百分比之終端機能夠達 到使SNR等於或超過設定點。該設定點係需要達成需求性 能位準的一特定SNR,其可經量化為如在1% BER或0.01% 中斷或然率或某些其他標準時的一特定平均資料傳輸An example of SNR CDF. For the uplink, the SNR CDF in Figure 6B is achieved at the base station for a full-power transmission on each channel within each cell. For the downlink, the SNR CDF can be reached at the terminal when all cells are transmitting at full power. In both cases, the terminal system is unevenly distributed (i.e., randomly located) within the cell. The SNR CDF provides a percentage indicating that the intracellular terminal has an SNR greater than a particular SNR value. From Figure 6B, it can be seen that terminals with different SNR characteristics in the cell and possibly reaching different performance levels or specific performance levels may need to be transmitted at different power levels. Terminals with less path loss to the serving cell typically have a higher SNR, which means that a higher throughput will be achieved. In a typical system, a larger percentage of the terminals in the system are able to achieve an SNR equal to or greater than the set point. The set point is a specific SNR that needs to achieve the required performance level, which can be quantified as a specific average data transmission as in 1% BER or 0.01% interrupt probability or some other standard.

率。對於這些終端機,一再使用模式為一(NREUSE = 1)可被 用以達到系統之高效率。系統中只有一部分之終端機通常 係隨時處於不利之狀態。對於該部分SNR達到低於設定點 之終端機,某些其他再使用方案及/或技術將可被利用以 提供需要之性能。 適應性再使用方式將在此提供以動態地及/或適應性劃 分與分配可用的系統資源至細胞,依據許多因子例如可觀 測到之載入條件、系統需要等等。再使用計劃係在一開始 即經定義,而各細胞係分配一部份之整體可用的系統資 源。分配可使各細胞同時使用整個可用資源的大部份,如 -79 - 1269549 (75) 需求的或必須的。隨著系統改變,再使用計劃可被重新定 義以便在系統中反映改變。以此方式,適應性再使用計劃 可達到一極低效率之再使用因子(例如接近1 ),而能滿足 其他系統需求。rate. For these terminals, the repeated use mode of one (NREUSE = 1) can be used to achieve high system efficiency. Only a portion of the terminals in the system are usually at a disadvantage. For terminals where the SNR reaches below the set point, certain other re-use schemes and/or techniques may be utilized to provide the required performance. Adaptive reuse will be provided herein to dynamically and/or adaptively allocate and allocate available system resources to cells, based on a number of factors such as observable loading conditions, system needs, and the like. The reuse plan is defined at the outset, and each cell line is assigned a portion of the overall available system resources. Allocating allows the cells to use most of the available resources at the same time, such as -79 - 1269549 (75) required or required. As the system changes, the reuse plan can be redefined to reflect the changes in the system. In this way, an adaptive reuse plan can achieve a very inefficient reuse factor (for example, close to 1) to meet other system requirements.

系統資源也可經劃分使得各細胞可分配到一組具有不 同性能位準之通道。對於例如輕度分享通道及/或結合鄰 近細胞低傳送功率位準,可達成較高之性能。相反地,較 低性能可起因於例如通道之低傳送功率位準。藉由定義通 道不同的退讓因子,可獲得具有不同性能位準之通道,詳 如下文。 在上行鏈路上,各細胞内之終端機依據終端機之干擾容 許誤差位準與通道之性能被指定至通道。例如,需要較佳 之防止干擾的不佳終端機可被指定至可提供較多保護之 通道。相反地,具有利傳播條件之優勢終端機可被指定至 較重度共用及/或使用時具有相對較大干擾位準之通道。System resources can also be divided such that each cell can be assigned to a set of channels with different performance levels. Higher performance can be achieved for, for example, a lightly shared channel and/or a low transmission power level in conjunction with adjacent cells. Conversely, lower performance can result from, for example, low transmit power levels of the channel. Channels with different performance levels can be obtained by defining different backoff factors for the channel, as described below. On the uplink, the terminals in each cell are assigned to the channel based on the interference tolerance level of the terminal and the performance of the channel. For example, a poor terminal that requires better interference prevention can be assigned to a channel that provides more protection. Conversely, an advantage terminal with favorable propagation conditions can be assigned to channels that are more heavily shared and/or have relatively large interference levels when used.

圖6C係一 3 -細胞再使用模式(即NREUSE = 3)的資源劃分 與分配之具體實施例圖式。在此範例中,系統資源經劃分 成1 2片段。區分可實施於時間、頻率或編碼域或其組合。 因此,圖6C中之水平軸可代表時間或頻率中之一,取決 於係利用TDM或FDM/OFDM。例如,該12片段可代表一 TDM 基本方案之12個分時多工時槽對或一 FDM基本方案之12 個頻率帶。各個片段在此也可稱為一「通道」,而各通道 係正交於其他通道。 對於3 -細胞再使用模式,系統資源可藉由聚集可用通道 -80- 1269549 (76) _曝說《續頁 成為3組而加以劃分,而一 3 -細胞群集内之各細胞可分配 一通道組。各通道組包括部份或所有12可用通道,取決於 被利用之特定再使用方案。對於圖6 C中所示之具體實施 例,各細胞經分配一相等數目之通道,細胞1被分配通道1 至4、細胞2被分配通道5至8,而細胞3被分配通道9至1 2。 在一些其他具體實施例中,各細胞可被分配各自可包括任 何數目之通道的通道組,其中部份也可分配予其他細胞。Figure 6C is a diagram of a specific embodiment of resource partitioning and allocation for a 3-cell reuse pattern (i.e., NREUSE = 3). In this example, system resources are divided into 12 segments. The distinction can be implemented in time, frequency or coding domains or a combination thereof. Thus, the horizontal axis in Figure 6C can represent one of time or frequency, depending on whether TDM or FDM/OFDM is utilized. For example, the 12 segments may represent 12 time-division multi-time slot pairs of a TDM basic scheme or 12 frequency bands of an FDM basic scheme. Each segment may also be referred to herein as a "channel" and each channel is orthogonal to the other channels. For the 3-cell re-use mode, system resources can be divided by aggregating the available channels -80-1269549 (76), and the cells in the 3-cell cluster can be assigned a channel. group. Each channel group includes some or all of the 12 available channels, depending on the particular reuse scheme being utilized. For the specific embodiment shown in Figure 6C, each cell is assigned an equal number of channels, cell 1 is assigned channels 1 through 4, cell 2 is assigned channels 5 through 8, and cell 3 is assigned channels 9 through 12 . In some other specific embodiments, each cell can be assigned a set of channels each of which can include any number of channels, some of which can also be assigned to other cells.

1. 適應性再使用方案 適應性再使用方案可經設計以採用通信系統之某些特 徵,以達到高系統性能。這些系統特徵包括負載效應與終 端機對不同干擾的容許誤差。1. Adaptive reuse scenarios Adaptive reuse scenarios can be designed to take advantage of certain features of communication systems to achieve high system performance. These system characteristics include the loading effect and the tolerance of the terminal to different disturbances.

細胞處之負載影響系統之整體性能(例如通量)。在低負 載下,可用的系統資源可被劃分成「正交」通道組,其於 是可被指定予細胞,在一再使用群集中每一細胞一通道。 因為在各組中之通道係正交於其他組之通道,在這些正交 通道上之干擾較低,而高C/Ι值即可達成。隨著負載增加, 各組中之正交通道數目可能不足以符合需求,而細胞可經 允許以脫離只使用該正交通道之限制。在非正交通道上之 傳輸增加了在使用通道内可觀測到之平均干擾位準。然 而,藉適當控制非正交通道上之傳輸位準,即使在較高負 載時干擾量仍可被控制而達成高性能。 隨著負載增加,要求資料傳輸之現用終端機的數目也增 加,而一細胞可能選擇排程用於資料傳輸與指定予通道之 不良終端機也增加。各不良之終端機呈現對系統内其他終 -81 - 1269549 _ (77) I發嗎說艇讀页The load at the cell affects the overall performance of the system (eg flux). At low loads, the available system resources can be divided into "orthogonal" channel groups, which can then be assigned to cells, one channel per cell in the cluster. Since the channels in each group are orthogonal to the channels of the other groups, the interference on these orthogonal channels is lower, and a high C/Ι value can be achieved. As the load increases, the number of orthogonal channels in each group may not be sufficient to meet the demand, and the cells may be allowed to detach from the limitations of using only the orthogonal channels. Transmission on non-orthogonal channels increases the average interference level observed in the used channel. However, by properly controlling the transmission level on the non-orthogonal channel, the amount of interference can be controlled to achieve high performance even at higher loads. As the load increases, the number of active terminals that require data transmission also increases, and a cell that may select a schedule for data transmission and a bad terminal assigned to the channel also increases. Each bad terminal is presented to the other end of the system -81 - 1269549 _ (77) I issued a boat reading page

端機之干擾,而該干擾位準可(部份)取決於終端機對服務 中之細胞,與對其他鄰近細胞與終端機之相對位置。具有 較大鏈路限度之終端機對干擾有較大之容許誤差。該終端 機之不同干擾特徵可被採用於排程終端機與指定通道,以 達成緊湊地再使用(即接近1 )。特別是當負載增加,具對 干擾有較高容許誤差之終端機可被指定至具有較大接收 高干擾位準可能性之通道。The interference of the terminal, which can be (partially) depends on the terminal to the cell in the service, and the relative position of the other neighboring cells to the terminal. Terminals with large link limits have a large tolerance for interference. Different interference characteristics of the terminal can be used in the scheduled terminal and the designated channel for compact reuse (i.e., close to 1). In particular, when the load is increased, a terminal having a higher tolerance for interference can be assigned to a channel having a higher probability of receiving a high interference level.

圖7係一適應性再使用方案之程序700的一具體實施例 之流程圖。再使用計劃之產生與再使用計劃對系統條件改 變之適應性,可與系統正常操作併同實施。Figure 7 is a flow diagram of a particular embodiment of a process 700 for an adaptive reuse scenario. The adaptability of the re-use plan and the reuse plan to system condition changes can be implemented in conjunction with the normal operation of the system.

一開始,在步騾7 1 0系統依一或多個參數且根據為系統 收集而可被儲存在一資料庫7 3 0之資訊加以分類。例如, 隨著在各細胞(對於上行鏈路)處所觀測,或在各終端機 (對於下行鏈路)處所觀測,可加以決定終端機所經歷之干 擾,而一干擾特徵分類即可產生。干擾特徵分類可在一細 胞基準上實施,且可參與產生干擾位準的一統計特徵分 類,例如功率分佈。用於特徵分類之資訊可定期予以更 新,以考慮到新細胞與終端機,且可反映系統内之改變。 在步驟7 1 2,可使用產生之系統特徵分類與其他系統限 制與考量加以定義再使用計劃。再使用計劃包含各種成 份,例如一特定再使用因子NREUSE與依據再使用因子 NreuSE的一特定再使用細胞配置。例如,再使用因子可符 合一卜細胞、3 -細胞、7 -細胞或,1 9 -細胞再使用模式或 群集。再使用因子之選擇與再使用細胞配置之設計,可依 -82- 1269549 (78) 赘瑪說敏績頁 據在步驟7 1 0產生之資料與任何其他可用的資料達成。該 再使用計劃提供用於操作系統的一體制。Initially, the system is classified in accordance with one or more parameters and based on information stored in a database 730 for collection by the system. For example, as observed at each cell (for the uplink), or at each terminal (for the downlink), the interference experienced by the terminal can be determined, and an interference feature classification can be generated. The interference feature classification can be implemented on a cell basis and can participate in a statistical feature classification that produces interference levels, such as power distribution. Information for feature classification can be updated periodically to take into account new cells and terminals and to reflect changes within the system. In step 7 1 2, the reuse plan can be defined using the resulting system feature classification and other system limitations and considerations. The reuse plan contains various components, such as a specific reuse factor NREUSE and a specific reuse cell configuration based on the reuse factor NreuSE. For example, the re-use factor can be in accordance with a cell, a 3-cell, a 7-cell or a 19-cell re-use pattern or cluster. The choice of re-use factor and the design of the reusable cell configuration can be achieved according to the data generated in step 7 10 0 and any other available data. This reuse plan provides a system for the operating system.

在步驟7 1 4,額外的系統參數及/或操作條件也可加以定 義。此通常包括劃分整個可用系統資源成為通道,以該通 道對應至時間單元、頻率子通道、編碼通道或某些其他單 元。將利用之通道Nch數目可依據在步騾712定義之再使用 計劃加以決定。可用的通道於是將關連至各組而各細胞經 分配一各自的通道組。該組可包括重疊通道(即一特定通 道可被包括於一個以上之組内)。資源劃分與分配將進一 步詳述於下。 其他參數也可在步騾7 1 4中定義,例如傳輸間隔、系統 内細胞之設定點、關連至分配通道之退讓因子、退讓因子 界限、調整退讓因子之步騾大小與其他。退讓因子決定通 道峰值傳送功率位準之減低。將進一步詳述於後之這些參 數與條件,係在正常操作下細胞將遵循的一組操作規則。Additional parameter parameters and/or operating conditions may also be defined in step 71. This typically involves dividing the entire available system resource into a channel, with the channel corresponding to a time unit, a frequency sub-channel, a coded channel, or some other unit. The number of channels Nch to be utilized can be determined in accordance with the reuse plan defined in step 712. The available channels will then be associated to each group and each cell will be assigned a respective channel group. The group may include overlapping channels (i.e., a particular channel may be included in more than one group). Resource allocation and allocation will be further detailed below. Other parameters can also be defined in step 7.1, such as the transmission interval, the set point of cells in the system, the backoff factor associated with the assigned channel, the limit of the backoff factor, the size of the adjustment factor, and others. The backoff factor determines the reduction in the peak transmit power level of the channel. These parameters and conditions, which are further detailed below, are a set of operational rules that cells will follow under normal operation.

系統接著依據經定義之再使用計劃與細胞及/或終端機 傳送資料加以操作(例如排程)。在操作中,系統性能在步 驟7 1 6中將依經定義之再使用計劃加以評估。此評估可包 括例如決定介於各終端機與數個鄭近細胞間之有效路徑 損耗,以及相關鏈路限度、通量、中斷或然率與其他性能 之量度。例如,各細胞各通道内經排程之各終端機的有效 鏈路限度可藉以決定。依據計算出之鏈路限度,系統平均 通量以及終端機個別性能的一預估即可產生。 一旦系統性能經評估出,在步騾7 1 8中將可做出經定義 -83 - 1269549 (79)The system then operates (e.g., schedules) based on the defined reuse plan and the transfer of data to the cells and/or terminals. In operation, system performance will be evaluated in accordance with the defined reuse plan in step 716. This assessment may include, for example, determining the effective path loss between each terminal and several nearby cells, as well as a measure of the associated link limits, throughput, interruption probability, and other performance. For example, the effective link limits of each of the scheduled terminals in each channel of each cell can be determined. Based on the calculated link limits, an estimate of the system's average throughput and individual performance of the terminal can be generated. Once the system performance has been evaluated, it will be defined in step 7 1 8 -83 - 1269549 (79)

之再使用計劃之效率(即性能)的相關決定。如果系統性能 未被接受,則該處理將回復至步驟7 1 2而該再使用計劃將 再行定義。系統性能可不被接受,如果其不符合一組系統 需求及/或未達成需求的性能位準。再行定義之再使用計 劃可包括各種操作參數之改變,且甚至可包括選擇另一再 使用模式及/或再使用細胞配置。例如,如果遭受過量之 干擾,該再使用模式可予以增加(例如由3 -細胞至7 -細 胞)。步騾7 1 2至7 1 8可交替地實施直到系統目標達成(例如 最大化通量而同時滿足在覆蓋範圍内之終端機的最小性 能需求)。步騾7 1 2至7 1 8也代表系統操作時的一進行中之 處理。 如果系統性能係可接受(即符合系統需求),則將在步騾 7 2 0做出一決定而不論系統是否已改變。如果未改變,處 理將終止。否則,資料庫73 0將在步騾724更新,以反映系 統内之改變而後該系統將再行分類。The decision on the efficiency (ie performance) of the reuse plan. If system performance is not accepted, the process will revert to step 7 1 2 and the reuse plan will be defined again. System performance may not be acceptable if it does not meet a set of system requirements and/or performance levels that do not meet the requirements. The redefined usage plan may include changes to various operational parameters, and may even include selecting another reuse mode and/or reusing the cellular configuration. For example, if subjected to excessive interference, the reuse pattern can be increased (e.g., from 3-cell to 7-cell). Steps 7 1 2 to 7 1 8 can be alternately implemented until the system goal is achieved (e.g., maximizing throughput while meeting the minimum performance requirements of the terminal within coverage). Steps 7 1 2 to 7 1 8 also represent an ongoing process during system operation. If system performance is acceptable (ie, meets system requirements), then a decision will be made in step 702 regardless of whether the system has changed. If it has not changed, the processing will terminate. Otherwise, database 73 0 will be updated at step 724 to reflect changes within the system and the system will be reclassified.

圖7中所示之處理可定期或在偵測出系統改變時實施。 例如,處理可在系統成長或改變時實施,例如當新細胞與 終端機加入以及當現有細胞與終端機被移除或經修改。此 程序允許系統適應改變(例如在終端機分佈、拓樸法、地 形法上)。 2. 功率退讓 依據本發明一特點,一通道構造可由系統加以定義與利 用,以致當負載增加時,可以較大百分比之時間使用通道 以達成可靠之性能。對於一特定細胞,可能某些終端機比 -84- 1269549 (80) pmmMm 其他終端機對其他細胞或其他終端機之干擾更具免疫 力。藉提供具有此優勢的一通道構造,系統通量與性能之 改進將可實現。The process shown in Figure 7 can be performed periodically or upon detection of a system change. For example, processing can be performed as the system grows or changes, such as when new cells and terminals are added and when existing cells and terminals are removed or modified. This program allows the system to adapt to changes (for example, in terminal distribution, topology, and terrain). 2. Power Rebate According to one feature of the invention, a channel configuration can be defined and utilized by the system such that when the load increases, the channel can be used for a greater percentage of time to achieve reliable performance. For a particular cell, it is possible that some terminals are more immune to interference from other cells or other terminals than the -84-1269549 (80) pmmMm terminal. By providing a one-pass configuration with this advantage, system throughput and performance improvements will be achieved.

對於該通道構造,在再使用群集内之各細胞被分配一各 自的通道組,其可隨後被指定在其覆蓋範圍内之終端機。 各細胞經進一步指定一組退讓因子用於一組分配通道。用 於各分配通道之退讓因子代表可用於通道之全傳送功率 的最大百分比。該退讓因子可為任何介於零(〇·〇)至一(1.0) 之值,其中零表示沒有資料被允許在通道上傳輸,而一表 示在高達全傳送功率下傳輸資料。該退讓因子導致通道能 達到不同的性能位準。For this channel configuration, each cell within the reuse cluster is assigned a respective channel group, which can then be assigned a terminal within its coverage. Each cell is further assigned a set of concession factors for a set of distribution channels. The backoff factor for each assigned channel represents the maximum percentage of total transmit power available to the channel. The backoff factor can be any value between zero (〇·〇) and one (1.0), where zero means no data is allowed to be transmitted on the channel and one means that data is transmitted at up to full transmit power. This backoff factor causes the channel to reach different performance levels.

來自全傳送功率之退讓可應用至一或多個經選定之通 道、在一或多個選定時槽、由一或多個選定細胞或任何上 述之組合。退讓可外加地或具選擇地應用至細胞内選定之 終端機。在一具體實施例中,各細胞應用一退讓供各指定 通道用於資料傳輸,其中用於退讓之特定值係依據細胞之 操作條件,其使得需求的性能得以達成而限制與其他細胞 内終端機之干擾。 用於指定予各細胞之通道退讓因子,可依據許多因子例 如終端機之特徵、細胞處之負載條件、需求性能等等而加 以決定。指定予各細胞之該組退讓因子可為獨一,或可在 系統内不同細胞間共用。通常,分配予各細胞之通道與經 指定之退讓因子可依據例如操作條件(如系統負載)動態 地及/或適應地改變。 -85 - 1269549 _ (81) I發瞵說_續頁^ 在一具體實施例中,各細胞之退讓因子係依據細胞内整 體(現用中)終端機之可達到s N R值之分佈而加以決定。這 些終端機不一致加權可如下文描述依據其輪廓加以應 用。此加權可為適應地及/或動態地,例如時間-日期相依。The rebate from full transmit power can be applied to one or more selected channels, one or more selected time slots, one or more selected cells, or any combination thereof. The concession can be applied to the selected terminal in the cell either externally or selectively. In a specific embodiment, each cell applies a concession for each designated channel for data transmission, wherein the specific value for the concession is based on the operating conditions of the cell, which allows the performance of the demand to be achieved and is limited to other intracellular terminals. Interference. The channel backoff factor for assigning to each cell can be determined based on a number of factors such as the characteristics of the terminal, the loading conditions at the cell, the demand performance, and the like. The set of concession factors assigned to each cell can be unique or can be shared between different cells within the system. Typically, the channels assigned to each cell and the specified concession factor can be dynamically and/or adaptively varied depending, for example, on operating conditions (e.g., system load). -85 - 1269549 _ (81) I 瞵 _ 续 ^ ^ ^ 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在. These terminal inconsistencies can be applied according to their profiles as described below. This weighting can be adaptive and/or dynamic, such as time-date dependent.

特定終端機之SNR取決於各種因子,包括(1)介於終端 機與服務(或來源)細胞間之路徑損耗及(2)其他細胞或其 他終端機之干擾位準。在一修訂-終端機系統中,一終端 機之路徑損耗並不明顯地改變而可準確地預測終端機之 信號位準。在下行鏈路上,干擾位準取決於由其他干擾細 胞至終端機之路徑損耗,以及來自服務細胞之路徑損耗。 而在上行鏈路中,干擾位準取決於由其他干擾終端機至其 服務細胞之路徑損耗,以及由這些終端機至其關注之細胞 的路徑損耗。準確地預估干擾位準通常需要那一個細胞或 終端機正傳送中與其功率位準之瞬間知識。The SNR of a particular terminal depends on various factors, including (1) path loss between the terminal and the service (or source) cells and (2) interference levels of other cells or other terminals. In a revision-terminal system, the path loss of a terminal does not change significantly and the signal level of the terminal can be accurately predicted. On the downlink, the interference level depends on the path loss from other interfering cells to the terminal, as well as the path loss from the serving cell. In the uplink, the level of interference depends on the path loss from other interfering terminals to its serving cells, as well as the path loss from these terminals to the cells they care about. Accurately predicting the level of interference typically requires that the cell or terminal is transmitting a momentary knowledge of its power level.

可以做出許多假設以簡化下行鏈路與上行鏈路上之干 擾特徵。在下行鏈路,可假設干擾細胞以全功率操作。在 上行鏈路,可允許各細胞中之一終端機在分配予該細胞之 各通道上傳送,在最差情況下其他-終端機之干擾位準可 依據該終端機將以全功率傳送之假設加以決定。相對地, 各細胞内各終端機最差情況下之SNR可在最差情況下其 他-終端機之干擾位準可依據此終端機與其他干擾終端機 將以全功率傳送之假設加以預估。各細胞内之終端機的 SNR值可加以收集與用以特徵化細胞的一有效SNR CDF。 為推導出通道之退讓因子,各細胞内之終端機可依據其 -86 - 1269549 (82) 發嗎鱗明t頁 鏈路限度加以分類,而退讓因子於是可依據鏈路限度類型 加以選定。使用圖6 B中所示S N R分佈之範例,終端機之總 數可分類成組,其中各組包括經歷類似干擾位準(即具有 在一範圍值内之SNR)之終端機。如一範例中,圖6B中所 示之C D F可被劃分成Neh組,其中Nch係分配予每細胞之通 道總數。這些組可經選定為相同大小(即各組包括相同百 分比之終端機),然而也可定義不相同大小之組的劃分。Many assumptions can be made to simplify the interference characteristics on the downlink and uplink. On the downlink, it can be assumed that interfering cells operate at full power. On the uplink, one of the terminals in each cell can be allowed to transmit on each channel allocated to the cell. In the worst case, the interference level of the other terminal can be based on the assumption that the terminal will transmit at full power. Decide. In contrast, the worst-case SNR of each terminal in each cell can be estimated in the worst case. The interference level of other terminals can be estimated based on the assumption that the terminal and other interfering terminals will transmit at full power. The SNR values of the terminals within each cell can be collected and used to characterize a valid SNR CDF of the cells. To derive the channel's backoff factor, the terminals in each cell can be classified according to their link limits, and the backoff factor can then be selected based on the link limit type. Using the example of the S N R distribution shown in Figure 6 B, the total number of terminals can be grouped into groups, with each group including terminals that experience similar interference levels (i.e., have SNRs within a range of values). As an example, the C D F shown in Figure 6B can be divided into Neh groups, where the Nch is assigned to the total number of channels per cell. These groups can be selected to be the same size (i.e., each group includes terminals of the same percentage), however, divisions of groups of different sizes can also be defined.

表3代表Neh=12終端機之組而(欄位2)表列各個12終端 機組中終端機之最小S N R。由於有1 2個終端機組且各组係 相同大小,各組包括細胞内將近8.3%之終端機。第一組包 括之終端機具有10 dB或更少之SNR,第二組包括之終端機 具有介於10 dB至13 dB之SNR,第三組包括之終端機具有 介於13 dB至15 dB間之SNR等等,而最後一組包括之終端 機具有大於34.5 dB之SNR。Table 3 represents the group of Neh=12 terminals and (field 2) lists the minimum S N R of the terminals in each of the 12 terminal units. Since there are 12 terminal units and each group is the same size, each group includes nearly 8.3% of the terminals in the cell. The first group includes terminals with SNR of 10 dB or less, the second group includes terminals with SNR between 10 dB and 13 dB, and the third group includes terminals with between 13 dB and 15 dB. The SNR and so on, while the last set of terminals included has an SNR greater than 34.5 dB.

表3 終端機組 最小SNR範圍 _ s(n) (dB) /3(η) 1 <10 < -5 1.0000 2 10 -5 1,0000 3 13 -2 1.0000 4 15 0 1.0000 5 17 2 0.6310 6 18.5 3.5 0.4467 7 20.5 5.5 0.2818 8 22 7 0.1995 9 24 9 0.1259 10 26 11 0.0794 -87 - 1269549 (83)Table 3 Minimum SNR range of the terminal unit _ s(n) (dB) /3(η) 1 <10 < -5 1.0000 2 10 -5 1,0000 3 13 -2 1.0000 4 15 0 1.0000 5 17 2 0.6310 6 18.5 3.5 0.4467 7 20.5 5.5 0.2818 8 22 7 0.1995 9 24 9 0.1259 10 26 11 0.0794 -87 - 1269549 (83)

_蹲鎳_讀買I :::::::::::::¾¾¾¾¾¾¾¾^ 11 29.5 14.5 0.0355 12 > 34.5 > 19.5 0.0112_蹲 Nickel_Read Buy I :::::::::::::3⁄43⁄43⁄43⁄43⁄43⁄43⁄43⁄4^ 11 29.5 14.5 0.0355 12 > 34.5 > 19.5 0.0112

細胞可經設計以支援一特定設定點Ysp (或操作點),其係 能在一可接受誤差率下以需求的資料傳輸率操作的最小 需求S N R。在典型的系統中,設定點係經終端機選定之瞬 時資料傳輸率的一函數,且因此可在一終端機與另一終端 機間變化。如一簡單範例,其假設一 15 dB之設定點係細 胞内所有終端機必需具備的。 各組終端機之最小鏈路限度s(n),於是可計算為: s(n) = min{SNR(n)} - γ5ρ 其中 η = 1,2,…,Nch 方程式(60)The cells can be designed to support a particular set point Ysp (or operating point) that is the minimum requirement S N R that can be manipulated at a desired data rate at an acceptable error rate. In a typical system, the set point is a function of the instantaneous data rate selected by the terminal and can therefore vary between a terminal and another terminal. As a simple example, assume that a 15 dB set point is required for all terminals in the cell. The minimum link limit s(n) of each group of terminals can be calculated as: s(n) = min{SNR(n)} - γ5ρ where η = 1,2,...,Nch Equation (60)

各組終端機之最小鍵路限度s(n) ’係介於該組中終端機 最小SNR與設定點Ysp間之差異。依據系統内所有終端機均 為全傳送功率之假設,最小鏈路限度s(n)代表需求傳送功 率偏離設定點之值。一正鏈路限度表示SNR係大於需要達 成由設定點所定義之需求性能位準。因此,這些終端機之 傳送功率可正比於鏈路限度加以減量(即退讓)而仍能提 供需求的性能位準。 各細胞之退讓因子於是可依據介於終端機與細胞間之 路徑損耗以及干擾位準之特徵等消息而推導出。如果最大 傳送功率位準經常態化為1.0,則各組終端機經過常態化 之退讓因子可表示為: β(η) = min(1.0, 10·0 1 s(n))其中 η = 1, 2,…,Nch 方程式(61) 有關一特定終端機組退讓因子代表傳送功率之減量,其 -88- 1269549The minimum key limit s(n) of each group of terminals is the difference between the minimum SNR of the terminal and the set point Ysp in the group. Based on the assumption that all terminals in the system are full transmit power, the minimum link limit s(n) represents the value of the demand transfer power that deviates from the set point. A positive link limit indicates that the SNR system is greater than the required performance level defined by the set point. Therefore, the transmit power of these terminals can be reduced (ie, concessed) proportional to the link limit while still providing the required performance level. The concession factor for each cell can then be derived from messages such as path loss between the terminal and the cell and the characteristics of the interference level. If the maximum transmit power level is constantly normalized to 1.0, the normalized backoff factor for each group of terminals can be expressed as: β(η) = min(1.0, 10·0 1 s(n)) where η = 1, 2,...,Nch Equation (61) A specific terminal unit backoff factor represents the reduction in transmission power, which is -88-1269549

(84) 可應用至該組終端機而仍能維持需求的設定點Ysp及需求 的性能位準。在傳送功率之退讓係可行,因為這些終端機 能夠達成較佳之s N R。藉由依退讓因子減低終端機之傳送 功率,由於此終端機對其他終端機之干擾量可減低而不衝 擊此終端機之性能。(84) Can be applied to the group of terminals while still maintaining the required setpoint Ysp and the required performance level. The consignment of the transmission power is feasible because these terminals can achieve a better s N R . By reducing the transmission power of the terminal by the backoff factor, the interference of the terminal to other terminals can be reduced without impeding the performance of the terminal.

表3列出設定點γ5ρ為15 dB時各組終端機之最小鏈路限 度s(n)(欄位3)與退讓因子(欄位4)。如表3中所示,通道1 至4具有之鏈路限度為OdB或更少,與通道5至12具有漸佳 之鏈路限度。因此,通道1至4係在全功率下操作,而通道 5至1 2係在漸減之功率下操作。退讓因子可用於相關終端 機組之終端機的傳輸上。例如,既然第5組終端機具有17 dB或更佳之SNR且最小鏈路限度s(n)為2 dB,則這些終端 機之傳送功率可退讓至63.1%之峰值傳送功率。Table 3 lists the minimum link limits s(n) (field 3) and the backoff factor (field 4) for each group of terminals when the set point γ5ρ is 15 dB. As shown in Table 3, channels 1 through 4 have a link limit of 0 dB or less and have a gradual link limit with channels 5 through 12. Thus, channels 1 through 4 operate at full power, while channels 5 through 12 operate at decreasing power. The backoff factor can be used for the transmission of the terminal of the relevant terminal unit. For example, since Group 5 terminals have an SNR of 17 dB or better and the minimum link limit s(n) is 2 dB, the transmit power of these terminals can be withdrawn to 63.1% of the peak transmit power.

對於SNR低於設定點γ5ρ之終端機,有許多選擇可加以運 用。由這些終端機傳輸之資料傳輸率可減低至其可由SNR 加以支援。另一選擇是,可要求造成低SNR之干擾終端機 或細胞(暫時)減低其傳送功率或停止在其影響之通道上 傳送,直到該低SNR終端機可提供符合需求之服務。 在一具體實施例中,一旦決定在再使用模式之細胞的退 讓因子,在再使用模式之其他細胞的退讓因子可加以錯 開,例如對於一以1 2通道操作之Ν R E U S Ε = 3 (即3 -細胞)再使 用模式且使用Nch = 4通道偏移,細胞2之退讓因子可偏移4 模數-Neh,而細胞3之退讓因子可偏移8模數-Nch。對於此 再使用模式,細胞1應用退讓因子連結第1通道組(其包括 -89- 1269549 發嗎說明績頁 (85) 通道與如表3中攔位4所示之退讓因子),細胞2應用退讓因 子連結第2通道組(其包括通道與如表3中欄位4所示之退 讓因子,但向下移4通道且線回),而細胞3應用退讓因子 連結第3通道組(其包括通道與如表3中襴位4所示之退讓 因子但向下移8通道而線回)。一 4 -通道偏移係運用於此範 例中,但其他之偏移也可使用。For terminals with SNR below the set point γ5ρ, there are many options available. The data transmission rate transmitted by these terminals can be reduced to be supported by SNR. Alternatively, an interfering terminal or cell that causes a low SNR may be required (temporarily) to reduce its transmit power or stop transmitting on its affected channel until the low SNR terminal can provide a service that meets the demand. In a specific embodiment, once the factor of the cell in the reuse mode is determined, the yield factor of the other cells in the reuse mode can be staggered, for example, for a 12 channel operation, REUS Ε = 3 (ie, 3 - Cell) Reuse mode and using Nch = 4 channel offset, cell 2's backoff factor can be shifted by 4 modulus - Neh, while cell 3's backoff factor can be shifted by 8 modulus - Nch. For this re-use mode, Cell 1 applies a concession factor to link the first channel group (which includes -89-1269549 hairs to indicate the performance page (85) channel and the concession factor as shown in block 4 in Table 3), cell 2 application The backoff factor links the second channel group (which includes the channel and the backoff factor as shown in column 4 in Table 3, but moves down 4 channels and back), while cell 3 applies the backoff factor to the third channel group (which includes The channel is with the backoff factor shown in 4 position 4 in Table 3 but shifted down by 8 channels and back). A 4-channel offset is used in this example, but other offsets can be used.

表4表列細胞1至3之退讓因子,其使用表3中所示之退讓 因子與一 4 -通道偏移。例如,對於通道1,細胞1應用結合 第1組之通道1的退讓因子,細胞2應用結合第1組通道9之 退讓因子,而細胞3應用結合第1組通道5之退讓。 表4 通道η βι(η) 細胞1 βι(η) 細胞2 βι(η) 細胞3 1 1.0000 0.1259 0.6310 2 1.0000 0.0794 0.4467 3 1.0000 0,0355 0.2818 4 1.0000 0.0112 0.1995 5 0.6310 1.0000 0.1259 6 0.4467 1.0000 0.0794 7 0.2818 1.0000 0.0355 8 0.1995 1.0000 0.0112 9 0.1259 0.6310 1.0000 10 0.0794 0.4467 1.0000 11 0.0355 0.2818 1.0000 12 0.0112 0.1995 1.0000Table 4 lists the concession factors for cells 1 to 3 using the concession factor shown in Table 3 and a 4-channel shift. For example, for channel 1, cell 1 applies a concession factor that binds channel 1 of group 1, cell 2 uses a concession factor that binds to channel 1 of group 1, and cell 3 uses a concession that binds to channel 5 of group 1. Table 4 Channel η βι(η) Cell 1 βι(η) Cell 2 βι(η) Cell 3 1 1.0000 0.1259 0.6310 2 1.0000 0.0794 0.4467 3 1.0000 0,0355 0.2818 4 1.0000 0.0112 0.1995 5 0.6310 1.0000 0.1259 6 0.4467 1.0000 0.0794 7 0.2818 1.0000 0.0355 8 0.1995 1.0000 0.0112 9 0.1259 0.6310 1.0000 10 0.0794 0.4467 1.0000 11 0.0355 0.2818 1.0000 12 0.0112 0.1995 1.0000

在低負載時,各細胞指定「較佳的」分配通道予終端機。 對於表4中所示之通道分配,細胞1内之終端機被指定通道 -90 - 1269549At low loads, each cell assigns a "better" distribution channel to the terminal. For the channel assignment shown in Table 4, the terminal in cell 1 is assigned the channel -90 - 1269549

(86)(86)

1至4,細胞2内之終端機被指定通道5至8,而細胞3内之終 端機被指定通道9至1 2。當各細胞内之負載係4終端機或較 少時,並無來自鄰近細胞之終端機的通道相互干擾(由於 1 2通道係彼此正交),而各終端機均應能達成其用於下行 鏈路與上行鏈路傳輸之設定點。當一細胞内之負載超過4 終端機時,則該細胞可指定某些終端機予那些與其他細胞 非正交之通道。由於該負載通常在各細胞内單獨變化,很 可能所指定之非正交通道將不會被任何鄰近細胞所占 用。此情況之或然率(即π無碰撞”之或然率)係各鄭近細胞 負載的一函數。From 1 to 4, the terminals in the cell 2 are assigned channels 5 to 8, and the terminals in the cell 3 are assigned channels 9 to 12. When the load in each cell is 4 terminals or less, there is no channel from the terminal of the neighboring cell to interfere with each other (since the 12 channels are orthogonal to each other), and each terminal should be able to achieve its downward use. The set point for link and uplink transmission. When the load within a cell exceeds 4 terminals, the cell can specify certain terminals to those channels that are not orthogonal to other cells. Since this load typically varies individually within each cell, it is likely that the designated non-orthogonal channels will not be occupied by any neighboring cells. The probability of this case (i.e., the probability of π no collision) is a function of the load of each cell.

具退讓之通道構造可導致在系統内所有終端機均可觀 測到之有效限度的增加。表4中所示之退讓因子初始係依 據圖6Β中所示之SNR CDF而推導出,其係依據其他細胞以 全功率(用於下行鏈路)傳送,或其他細胞中之終端機以全 功率(用於上行鏈路)傳送之假設而產生。然而,當退讓因 子配合如表4中所示之錯開通道再使用方式應用時,由各 細胞内之終端機實際達成之SNR值可能大於表3攔位2所 提供之最小SNR值,由於來自其他細胞或其他細胞内之終 端機的可藉由應用退讓因子而減低。 一實際系統通常不符合上述理想化系統模型。例如,非 均勻分佈之終端機、非均句分佈之基地台佈置、多變的地 形與形態等等,全都可造成在各細胞内可觀測之干擾位準 的變化。細胞之特徵化與細胞性能之常態化通常較上述要 更複雜(即細胞之SNR CDF不可能相同)。再者,在各細胞 -91 - 1269549 _ (87) I發嗎說磁續冥 内終端機觀測之干擾位準通常與在其他細胞内之終端機 所觀測的不同。因此,可能需要較多之計算以常態化該有 效限度,使其進入橫越系統内各細胞的一特定臨界值位準 之内。A channel structure with a concession can result in an increase in the effective limit that can be observed at all terminals in the system. The backoff factors shown in Table 4 are initially derived from the SNR CDF shown in Figure 6Β, which is based on other cells delivered at full power (for the downlink), or at full power in other cells in the cell. Generated on the assumption of (for uplink) transmission. However, when the backoff factor is applied in the staggered channel reuse mode as shown in Table 4, the SNR value actually achieved by the terminal in each cell may be greater than the minimum SNR value provided by the block 2 of Table 3, due to other The terminal in a cell or other cell can be reduced by applying a concession factor. An actual system usually does not conform to the idealized system model described above. For example, non-uniformly distributed terminals, non-uniform distribution of base stations, variable geometries and morphologies, etc., all can cause observable disturbance levels in each cell. The characterization of cells and the normalization of cell properties are usually more complex than the above (ie, the SNR CDF of cells cannot be the same). Furthermore, in each cell -91 - 1269549 _ (87) I, the interference level observed in the terminal is usually different from that observed in other cells in the cell. Therefore, more calculations may be required to normalize the effective limit to within a certain threshold level of each cell across the system.

推導出供各細胞用之退讓因子可因此不同且可不為在 該再使用群集内之其他細胞的模數-偏移型式退讓因子。 此外如果需要的話,細胞及/或通道不同的設定點也可被 用以達成經過常態化之性能位準。設定點也可加以改變以 達成不一致系統性能。不同C/I CDF在退讓因子上之影響 與調整退讓因子以改進系統性能經詳述於2000年3月3 0曰 申請之美國專利申請案序號09/539,157中,其標題為「用 於控制通信系統傳輸之方法與裝置」,在此以引用方式將 其併入。It is derived that the concession factor for each cell may therefore differ and may not be the modulus-offset type concession factor of other cells within the reuse cluster. In addition, different set points for cells and/or channels can be used to achieve a normalized performance level if desired. Setpoints can also be changed to achieve inconsistent system performance. The effect of different C/I CDFs on the concession factor and the adjustment of the concession factor to improve the performance of the system are described in US Patent Application Serial No. 09/539,157, filed March 30, 2000, entitled Methods and apparatus for system transmission are incorporated herein by reference.

許多不同方案可用以決定細胞之退讓因子。在一方案 中,決定退讓因子之程序係經多次之疊代,而在每次疊代 時可調整退讓因子使所有通道符合可達到之最大設定 點。在一具體實施例中,在決定初始退讓因子時係假設最 差情況下之干擾位準。在另一具體實施例中,可使用其他 值以取代最差情況之干擾位準。例如,平均、中間或百分 之95的干擾分佈可用以決定初始退讓因子。在又一具體實 施例中,該干擾位準係經適應性預估,而退讓因子定期地 經調整以反映預估之干擾位準。各細胞使用之退讓因子可 或不可與鄰近細胞通信。 在某些具體實施例中,一細胞中經分配通道之子集可具 -92- 1269549Many different protocols can be used to determine the cell's concession factor. In one scenario, the procedure for determining the backoff factor is repeated several times, and the escape factor can be adjusted for each pass to match all channels to the maximum setpoint that can be reached. In a specific embodiment, the worst-case interference level is assumed when determining the initial backoff factor. In another embodiment, other values may be used in place of the worst case interference level. For example, an average, intermediate, or 95% interference distribution can be used to determine the initial backoff factor. In yet another embodiment, the interference level is adaptively estimated, and the backoff factor is periodically adjusted to reflect the estimated interference level. The concession factor used by each cell may or may not be communicated to neighboring cells. In some embodiments, a subset of the dispensed channels in a cell can have -92-1269549

(88)(88)

有某些形式之「保護」。該保護可藉由在一週期架構上保 留一或多個通道供該細胞内之終端機專用而達成。該專用 性也可定義為只有在需要時才可運用,且其程度只需滿足 不佳終端機之需求。經保護之通道可藉由各種方法讓鄰近 之細胞辨識出。例如,一細胞可將受保護通道之清單傳訊 予其鄰近細胞。鄰近細胞於是可減低或避免其覆蓋範圍内 之終端機在被保護頻道上之資料傳輸。通道保護可被用以 服務因為來自其他細胞或其他終端機之過度干擾而無法 達成需求SNR的不佳終端機。在這些情況下,一旦這些不 佳終端機使用時通道保護可被移除。There are some forms of "protection." This protection can be achieved by retaining one or more channels on a periodic architecture for terminal use within the cell. This specificity can also be defined to be used only when needed, and to the extent that it does not meet the needs of a poor terminal. Protected channels allow adjacent cells to be identified by a variety of methods. For example, a cell can communicate a list of protected channels to its neighboring cells. The neighboring cells can then reduce or avoid the transmission of data on the protected channel by the terminal within its coverage. Channel protection can be used to service poor terminals that cannot achieve the required SNR due to excessive interference from other cells or other terminals. In these cases, channel protection can be removed once these poor terminals are used.

在某些具體實施例中,一細胞可使用「阻擋」(即在其 覆蓋範圍内不使用終端機傳輸)在一些通道上,如果該通 道條件降低至一不可接受之位準(例如萬一 F E R係在某一 百分比之上,或該中斷或然率超過一特定臨界值)。各細 胞可量度通道之性能與自行阻擋不良之實施通道,直到能 合理的確定該通道條件業經改進且可達成可靠的通信量。 該通道保護與阻擋可依據例如細胞之條件動態地及/或 具適應性地實施。 用於下行鏈路與上行鏈路之適應性再使用與功率退讓 分別進一步詳述於前述美國專利申請案號09/539,157與 2001年5月3曰申請之美國專利申請案序號09/848,937中,標 題為「用於控制無線通信系統之上行鏈路傳輸的方法與裝 置」,其讓渡與本發明受讓人且以引用方式在此併入。 V·排程 -93 - 1269549 發嗎說噚續頁 (89)In some embodiments, a cell may use "blocking" (ie, not using a terminal to transmit within its coverage) on some channels if the channel condition is reduced to an unacceptable level (eg, in case FER Is above a certain percentage, or the probability of interruption exceeds a certain threshold). Each cell can measure the performance of the channel and its own barrier to implementation, until it can be reasonably determined that the channel conditions are improved and reliable communication can be achieved. The channel protection and blocking can be performed dynamically and/or adaptively depending on, for example, the conditions of the cells. The adaptive re-use and power retreat for the downlink and the uplink are further described in detail in the aforementioned U.S. Patent Application Serial No. 09/539,157, the entire disclosure of which is incorporated herein by reference. The title is "Method and Apparatus for Controlling Uplink Transmissions of a Wireless Communication System," the assignee of which is incorporated herein by reference. V· Scheduling -93 - 1269549 Sending a comment on the page (89)

藉由排程與指定終端機至經分配之通道以支援這些通 道同時傳輸資料,各種排程方案可設計且用以最大化系統 之通量。一排程器可針對任何系統限制與需求,評估那些 終端機之特定組合可提供最佳系統性能(例如最高通 量)。藉由採用多重使用者分集,該排程器可發現「相容」 終端機之組合,用於同時在經分配之通道上傳輸資料。對 於一 ΜΙΜΟ系統,藉由採用個別終端機之「空間簽署」(及 可行之頻率簽署)(即其通道反應預估),平均系統通量也 可增加。By scheduling and assigning terminals to assigned channels to support the simultaneous transmission of data, various scheduling schemes can be designed to maximize system throughput. A scheduler can be used to evaluate any specific combination of terminals to provide optimal system performance (eg, maximum throughput) for any system limitations and needs. By employing multiple user diversity, the scheduler can discover a combination of "compatible" terminals for simultaneously transmitting data on the assigned channels. For a system, the average system throughput can also be increased by using the “space signing” (and the feasible frequency signature) of individual terminals (ie, the channel response estimate).

可依據各種因子排程終端機用於傳輸資料。一組因子可 關連至系統限制與需求,例如需求的服務品質(QoS)、最 大潛在因素、平均資料傳輸率等等。某些或所有這些因子 可能需要滿足在一多向近接系統内之每一終端機架構上 (即用於各終端機)另一組因子可關連至系統性能,其以可 藉由平均系統通量率或某些其他性能之指示加以量化。這 些各種因子將進一步詳述於後。 該排程可實施於各傳輸區間,其可經定義為任何時間間 隔(例如一訊框或多數訊框)。 系統内之細胞可依據適應性再使用計劃操作(依上述方 式程式化)且依據指定之規則與條件。在正常操作下,各 細胞由細胞内許多終端機處接收需求用於資料傳輸。細胞 於是排程終端機用於資料傳輸,以符合目標與需求。可於 各細胞處實施排程(即用於分佈式排程方案),藉一中央排 程器(即用於集中式排程方案)或一混合式方案,其中一些 -94- v 1269549The data can be transmitted by scheduling terminals according to various factors. A set of factors can be related to system constraints and requirements, such as quality of service (QoS) of demand, maximum potential factor, average data transfer rate, and so on. Some or all of these factors may need to be met on each terminal architecture within a multi-directional proximity system (ie for each terminal) and another set of factors may be related to system performance, which may be achieved by averaging system throughput The rate or some other indication of performance is quantified. These various factors will be further detailed later. The schedule can be implemented in each transmission interval, which can be defined as any time interval (e.g., a frame or a majority frame). Cells within the system may operate according to an adaptive reuse plan (stylized as described above) and in accordance with specified rules and conditions. Under normal operation, each cell receives demand from many terminals within the cell for data transmission. The cells then schedule the terminal for data transmission to meet the goals and needs. Scheduling can be performed at each cell (ie for distributed scheduling), with a central scheduler (ie for centralized scheduling) or a hybrid solution, some of which -94- v 1269549

(90) 細胞排程其自身之傳輸而一中央排程器排程用於一組細 胞之傳輸。 在下文中,初始描述之排程用於一系統,其中該終端機 以SISO模式操作。用於單一使用者與多重使用者ΜΙΜΟ模 式與混合模式之排程將詳述於後。 1 · 用於排程終端機與指定通道之參數(90) Cell scheduling is its own transmission and a central scheduler schedule is used for the transmission of a group of cells. In the following, the initially described schedule is used in a system in which the terminal operates in SISO mode. The scheduling for single-user and multi-user models and mixed modes will be detailed later. 1 · Parameters for scheduling terminals and specified channels

在排程終端機用於資料傳輸與指定通道予終端機時,可 考慮各種因子。這些因子包括(1) 一或多個通道度量,(2) 指定現用中終端機之權限,(3)相關標準與其他因子。 一或多個通道度量可被用以排程終端機及/或指定通 道。此通道度量可包括依據通量、干擾、中斷或然率或某 些其他測量之度量。表示「優點」之通道度量的範例詳述 於下。然而,應暸解其他通道度量也可被程式化且落於本 發明之範圍。Various factors can be considered when the scheduling terminal is used for data transmission and designated channels to the terminal. These factors include (1) one or more channel metrics, (2) the authority to specify the terminal in use, and (3) the relevant criteria and other factors. One or more channel metrics can be used to schedule the terminal and/or specify a channel. This channel metric may include metrics based on flux, interference, interrupt probability or some other measurement. An example of a channel metric that represents "advantages" is detailed below. However, it should be understood that other channel metrics can also be programmed and fall within the scope of the present invention.

用於一已知終端機之通道度量可依據各種因子,例如(1) 終端機之路徑損耗,(2)全部可用的傳送功率,(3)干擾之 特徵,(4)退讓因子與其他可能。在一具體實施例中,一 用於現用中終端機之通道度量dm(n,k)可經定義如下: 其中:The channel metric for a known terminal can be based on various factors such as (1) path loss of the terminal, (2) all available transmit power, (3) interference characteristics, (4) backoff factor and other possibilities. In a specific embodiment, a channel metric dm(n,k) for an active terminal can be defined as follows:

Pm (η)係有關細胞m之通道η的退讓因子,其中0<β€1。 (當β m(n) = 0,即等於避免細胞m使用通道η); Pmax(k)係用於終端機k之最大傳送功率;Pm (η) is a concession factor for the channel η of the cell m, where 0 < β € 1. (When β m(n) = 0, it is equal to avoiding the use of channel η by cell m); Pmax(k) is used for the maximum transmission power of terminal k;

Gm(k)係介於終端機k與細胞m間之路徑損耗; -95 - 1269549Gm(k) is the path loss between terminal k and cell m; -95 - 1269549

(91)(91)

Im(n)係在細胞m之通道η處可觀測之干擾功率;及 f(x)係描述引數X之「優點」的一函數,其中X係正比於 SNR。Im(n) is the observable interference power at channel η of cell m; and f(x) is a function describing the "advantage" of argument X, where X is proportional to SNR.

對於上行鏈路,正確計算干擾Im (η)需要由各干擾終端 機(即經指定至相同通道η)至其服務細胞間,以及在考量 下至細胞m之路徑損耗之資料。如果使用功率控制,則至 服務細胞之路徑損耗決定了將由干擾終端機傳送之功率 量。而至細胞m之路徑損耗決定由干擾終端機傳送之功率 量,其將被接收之細胞m視為干擾。直接計算其他-細胞 之干擾Im(n)通常是不實際,由於有關干擾終端機之資訊通 常不具可用性(例如這些終端機係經由其他細胞在幾乎相 同之時間内排程與指定),且用於這些終端機之路徑損耗 特徵通常係不準確地(例如可能依據平均值且無法反映衰 退)。For the uplink, the correct calculation of the interference Im(η) requires information from the interfering terminals (i.e., assigned to the same channel η) to their serving cells, and the path loss to the cell m. If power control is used, the path loss to the serving cell determines the amount of power that will be transmitted by the interfering terminal. The path loss to the cell m determines the amount of power transmitted by the interfering terminal, which treats the received cell m as interference. It is usually impractical to directly calculate other-cell interferences Im(n), since information about interfering terminals is usually not available (for example, these terminals are scheduled and specified in almost the same time by other cells) and are used for The path loss characteristics of these terminals are often inaccurate (eg, may be based on averages and do not reflect degradation).

因此可依據各種方案預估干擾Im(n)。在一干擾預估方案 中,各細胞維持接收干擾功率之統計用於各通道。細胞m 處對於通道η之全部接收功率1。,“11)包含功率Ck(n),接收用 於通道η内經排程之終端機k,以及由其他細胞内其他干擾 終端機接收之干擾功率(加上溫度與其他背景雜訊)。因 此,其他-細胞干擾可預估為: /m(n) - I〇,m(n)-Ck(n) 方程式(63) 其中/ m(n)係經預估對於通道η内之細胞m之其他-細胞干 擾。該其他-細胞干擾/ m(n)可被預估對於各通道且在各傳 輸區間處以形成各通道之其他-細胞干擾分佈。此分佈之 -96 - 1269549Therefore, the interference Im(n) can be estimated according to various schemes. In an interference prediction scheme, each cell maintains statistics on the received interference power for each channel. The total received power 1 for the channel η at cell m. "11" contains power Ck(n), which receives the terminal k for scheduling in channel η, and the interference power received by other interfering terminals in other cells (plus temperature and other background noise). , other - cell interference can be predicted as: /m(n) - I〇,m(n)-Ck(n) Equation (63) where / m(n) is estimated for cells in channel ηm Other-cell interference. This other-cell interference/m(n) can be estimated for each channel and at each transmission interval to form a different-cell interference distribution for each channel. This distribution is -96 - 1269549

(92) 平均值、最差情況或某些百一分段值於是可在方程式(62) 中用作其他-細胞干擾Im(n)。 各種函數f(x)可被用於通道度量。在一具體實施例中, 通道度量dm(n,k)代表通道η内細胞m中之終端機k的中斷或 然率。在另一具體實施例中,通道度量dm(n,k)代表可被可 靠地維持在SNR = x之最大資料傳輸率。其他函數也可用 於通道度量且落入本發明之範圍内。(92) The mean, worst case or some hundred segmentation values can then be used in equation (62) as other-cell interference Im(n). Various functions f(x) can be used for channel metrics. In a specific embodiment, the channel metric dm(n, k) represents the interruption probability of the terminal k in the cell m in the channel η. In another embodiment, the channel metric dm(n, k) represents the maximum data transmission rate that can be reliably maintained at SNR = x. Other functions may also be used for channel metrics and fall within the scope of the present invention.

通道度量dm(n,k)可被用以排程終端機用於資料傳輸或 指定通道予終端機,或二者皆是。在排程終端機及/或指 定通道時,通道度量可用於細胞内各通道之各現用終端機 計算。各終端機可關連至多達Nch值,其表示多達Nch可用 於指定之通道的預期性能。對於一特定終端機,具有最佳 度量之通道可為指定予終端機之最佳通道。例如,如通道 度量dm(n,k)代表中斷或然率,則具有最低中斷或然率之通 道係將指定予終端機之最佳通道。The channel metric dm(n, k) can be used to schedule the terminal for data transmission or to specify a channel to the terminal, or both. When scheduling a terminal and/or specifying a channel, the channel metric can be used for each active terminal calculation for each channel within the cell. Each terminal can be tied up to a maximum of Nch values, which indicates that up to Nch can be used for the intended performance of the designated channel. For a particular terminal, the channel with the best metric can be the best channel assigned to the terminal. For example, if the channel metric dm(n,k) represents the interrupt probability, the channel with the lowest interrupt probability will be assigned to the best channel of the terminal.

通道度量dm(n,k)可依據參數之預估計算至一信賴程 度,包含函數f (X)(例如終端機k至細胞m之路徑損耗、由 細胞m觀測之干擾功率Im(n)等等)。dm(n,k)之值可對一時段 加以平均以增進準確性。dm(n,k)值之波動將可能發生,由 於信號與干擾二者之小信號衰退,干擾源處的改變造成干 擾功率之改變與可能偶爾之遮蔽(例如阻擋主要信號路 徑)。為說明該波動,具較大退讓因子之通道可被選定以 提供某限度,而該資料傳輸率也可依據操作條件之改變而 加以適應。 -97 - 1269549The channel metric dm(n,k) can be calculated to a degree of trust according to the estimation of the parameter, including the function f (X) (for example, the path loss of the terminal k to the cell m, the interference power Im(n) observed by the cell m, etc. Wait). The value of dm(n,k) can be averaged over a period of time to improve accuracy. Fluctuations in the dm(n,k) value will likely occur due to the small signal degradation of both the signal and the interference, and the change at the source of the interference causes a change in the interference power and possibly occasional obscuration (e.g., blocking the main signal path). To account for this fluctuation, a channel with a larger backoff factor can be selected to provide a certain limit, and the data transfer rate can be adapted to the change in operating conditions. -97 - 1269549

(93) 終端機可依據其優先順序排程資料傳輸與指定通道,使 得較高優先順序之終端機大體上在較低優先順序之終端 機前先適用。優先化通常產生一簡單之終端機排程與通道 指定程序,而也可用以確保終端機間一相當程度之公平 性,如下文中詳述。各細胞内之終端機可依據許多標準加 以優先化,例如平均通量、終端機之延遲歷程等等。某些 此標準將詳述於後。(93) The terminal can schedule data transmissions and designated channels according to its priority order, so that higher priority terminals are generally applied before lower priority terminals. Prioritization typically results in a simple terminal scheduling and channel assignment procedure, but can also be used to ensure a fair degree of fairness between terminals, as detailed below. Terminals within each cell can be prioritized according to a number of criteria, such as average throughput, delay history of the terminal, and the like. Some of this standard will be detailed later.

在一終端機優先化方案中,終端機係依據其平均通量按 優先順序處理。在此方案中,維持的一「評分」係針對各 現用將排程於資料傳輸之終端機。一細胞可維持此評分予 其服務之現用終端機(即於一散佈控制方案),或一中央控 制器可對所有現用終端機維持該評分(即以一集中控制方 案)。終端機之現用狀態可被建立在通信系統之較高層。In a terminal prioritization scheme, the terminals are processed in order of priority based on their average throughput. In this scenario, a "score" maintained is for each active terminal that will schedule the transmission of the data. A cell can maintain this rating for its active terminal (i.e., in a distributed control scheme), or a central controller can maintain the rating for all active terminals (i.e., with a centralized control scheme). The active state of the terminal can be established at a higher level of the communication system.

在一具體實施例中,表示平均通量之評分⑴係維持於 各現用終端機中。在一實施中,終端機k在訊框i處之評分 (K(i)係計算成一指數之平均通量,且可表示為: 方程式(64) 么(/)=闪 * & (卜 1) + & (/) / rr 其中(j>k(i) = 0,對於 i < 0, rk(i)係終端機k在訊框i之資料傳輸率(單元位元/訊 框),及 _ α〇與a i係用於指數平均之時間常數。 通常rk(i)係限制在一特定最大可達到之資料傳輸率rma: 與一特定最小資料傳輸率(例如零)間。一較大之α ^值(相 對於α 〇)對應至較長之平均時間常數。例如,如α 〇與a i均 -98 - 1269549In a specific embodiment, the score (1) indicating the average flux is maintained in each of the active terminals. In one implementation, the score of terminal k at frame i (K(i) is calculated as the average flux of an index, and can be expressed as: Equation (64) (/) = flash * & (Bu 1 + & (/) / rr where (j>k(i) = 0, for i < 0, rk(i) is the data transmission rate of the terminal k in frame i (unit bit/frame) , and _ α〇 and ai are time constants used for exponential averaging. Usually rk(i) is limited to a specific maximum achievable data transmission rate rma: and a specific minimum data transmission rate (such as zero). The large α ^ value (relative to α 〇) corresponds to a longer average time constant. For example, such as α 〇 and ai are both -98 - 1269549

(94) 係0.5,則現行資料傳輸率rk(i)係給定相等加權如來自先前 傳輸區間之評分φ“ι-1)。評分(t>k(i)係接近正比於終端機之 常態化平均通量。 資料傳輸率rk(i)對於終端機k可為一「可實現的」(即「可 行的」)資料傳輸率,依據針對此終端機已達成(即經測量) 或可達到的(即經預估)之SNR。終端機k之資料傳輸率可 表_ TF為 · rk (0 = ck ^ ^°S2 0 + ) 方程式(65)(94) If the system is 0.5, the current data transmission rate rk(i) is given the equal weighting as the score φ “ι-1” from the previous transmission interval. The score (t>k(i) is close to the normal state of the terminal. The average transmission rate. The data transmission rate rk(i) can be an "achievable" (ie "feasible") data transmission rate for the terminal k, according to which the terminal has been achieved (ie measured) or achievable (ie estimated) SNR. The data transmission rate of terminal k can be expressed as _TF is rk (0 = ck ^ ^°S2 0 + ) Equation (65)

其中ck係反映理論容量之片段的一正常數,可藉由經選定 用於終端機k之編碼與調變方案而達成。資料傳輸率rk(i) 也可為在現行排程期間將被指定之實際資料傳輸率,或某 些其他可量化之資料傳輸率。可實現資料傳輸率的使用在 通道指定處理中導入一「曳步」效應,其可增進某些不佳 終端機之性能,詳述如下。Where ck is a normal number reflecting a segment of theoretical capacity, which can be achieved by a coding and modulation scheme selected for terminal k. The data transfer rate rk(i) can also be the actual data transfer rate that will be specified during the current schedule, or some other quantifiable data transfer rate. The use of data transfer rates can be introduced into the channel designation process to introduce a "stroll" effect that can improve the performance of some poor terminal devices, as detailed below.

在一其他實施中,終端機k在訊框i之評分φ“〇用於經計 算為一線性平均通量,在某時間區間内達成且可表示為:In a further implementation, the score φ of the terminal k at frame i is used to calculate a linear average flux, which is achieved within a certain time interval and can be expressed as:

1 I ⑽=7 方程式(66) 終端機平均(可實現或實際的)通量可涵蓋一特定數目之 訊框而計算(例如涵蓋至少1 0訊框而作為該評分。可預期 有其他針對現用終端機而用於評分(|)k(i)之公式,且落入本 發明之範圍。 當一終端機需求資料傳輸時,其評分開始係設為零,而 -99- 12695491 I (10)=7 Equation (66) The average (achievable or actual) throughput of the terminal can be calculated by covering a specific number of frames (eg covering at least 10 frames as the score. Others are expected for current use) The terminal is used to score the formula of (|)k(i) and falls within the scope of the present invention. When a terminal requires data transmission, its score is initially set to zero, and -99-1269549

(95) 隨後在各訊框内更新。只要一終端機係未經排程在一訊框 内傳輸,其用於該訊框之資料傳輸率係設為零(即rk⑴二〇) ,而其評分係據以更新。如果訊框係誤由一終端機接收, 則該終端機用於該訊框之有效資料傳輸率可被設為零。該 訊框誤差可能不會立即獲知(例如由於一用於資料傳輸之 確認/否認(Ack/Nak)方式之來回延遲),但一旦此資訊係可 用的,評分將據以調整。(95) Then updated in each frame. As long as a terminal is not scheduled for transmission in a frame, the data transmission rate for the frame is set to zero (ie rk(1) two), and its rating is updated accordingly. If the frame is incorrectly received by a terminal, the effective data transmission rate of the terminal for the frame can be set to zero. The frame error may not be immediately known (for example due to a round-trip delay in the Ack/Nak method for data transmission), but once this information is available, the score will be adjusted accordingly.

一排程器可使用該評分以按優先順序處理終端機用於 排程及/或通道指定。在一特定具體實施例中,該組現用 終端機係按優先順序處理,使得具最低評分之終端機被指 定予最高優先順序’而具最南評分之終端機被指定予最低 優先順序。在實施按優先順序處理時,排程處理器也可指 定非均勻加權因子至終端機評分。在決定終端機之優先順 序時,此非均句加權因子可考量其他因子(例如下文中說 明)。A scheduler can use this score to prioritize the terminal for scheduling and/or channel assignment. In a particular embodiment, the set of active terminal devices are prioritized such that the lowest rated terminal is assigned the highest priority' and the most south rated terminal is assigned the lowest priority. The schedule processor can also specify a non-uniform weighting factor to the terminal score when implementing prioritized processing. This non-uniform weighting factor can take into account other factors (such as explained below) when determining the priority order of the terminal.

終端機之優先順序也可為各種其他因子之函數,例如酬 載需求、可達到之SNR與需求之設定點、終端機之延遲經 歷、中斷或然率、對鄰近細胞之干擾、來自其他細胞之干 擾、資料傳輸率、最大傳輸功率、傳輸資料型式、提供資 料服務型式等等。一較大之酬載可被指定具較大退讓因子 之通道,且可被指定予一較高之優先順序,由於其通常係 較難以排程較大酬載之資料傳輸。具較高達成SNR之終端 機可被指定予一較高之優先順序,如果需求較高平均系統 通量。經歷較長延遲之終端機之優先順序可升級以確保一 -100- 1269549The priority order of the terminals can also be a function of various other factors, such as payload requirements, setpoints of achievable SNR and demand, delay experience of the terminal, interruption probability, interference to neighboring cells, interference from other cells, Data transmission rate, maximum transmission power, transmission data type, data service type, etc. A larger payload can be assigned a channel with a larger backoff factor and can be assigned a higher priority order because it is generally more difficult to schedule a larger payload for data transmission. Terminals with a higher SNR can be assigned a higher priority if higher demand for average system throughput. The priority of terminals that experience longer delays can be upgraded to ensure a -100-1269549

(96) 最低服務位準。較高之優先順序可被指定予時間係關鍵之 資料(如再傳送之資料)。以上並非無遣漏之列舉。其他因 子也可預期且落入本發明之範圍。 該因子可被加權與組合以推導出終端機之優先順序。不 同的加權方式可被使用,取決於最佳化系統目標之設定。 如一範例,要最佳化細胞之平均通量,可給予較大之加權 至終端機的可達到SNP。(96) Minimum service level. Higher priority order can be assigned to time-critical data (such as retransmitted data). The above is not an example of no leakage. Other factors are also contemplated and fall within the scope of the invention. This factor can be weighted and combined to derive the priority order of the terminal. Different weighting methods can be used depending on the setting of the optimization system target. As an example, to optimize the average flux of cells, a greater weight can be given to the terminal to achieve a SNP.

一公平性標準可被採用於排程終端機與指定通道以確 保(或甚至保證)一最低服務等級(Go S)。該公平性標準係 通常應用至所有系統内之終端機,儘管一特定子集之終端 機(例如特製之終端機)也可被選定用於公平性標準之應 用〇A fairness criterion can be used for scheduling terminals and designated channels to ensure (or even guarantee) a minimum service level (Go S). This fairness standard is typically applied to terminals in all systems, although a particular subset of terminals (e.g., specially crafted terminals) may be selected for fairness standards applications.

對於上述終端機優先化方案,資源之分配可依據評分比 而進行。在此情況下,所有現用終端機之評分可被關聯至 最大之終端機評分,以形成一經修改之評分gk(i),其可表 示為: ^(0 = ^(〇/max{^(〇} 方程式(6 7 ) 分配資源至一特定終端機則可依據其經修改之評分。例 如,如果終端機1具有之評分係二倍於終端機2,則排程器 可分配一通道(或多數通道)具有之容量需要使此二終端 機之資料率相等(此通道係可用的)。基於公平性之考量。 排程器將企圖常態化可用於各傳輸區間之資料傳輸率。其 他公平性標準也可被採用且落入本發明之範圍。 2. 以適應性再使用排程 -101 - 1269549 發嗎戴_續頁 (97) 排程方案可被實施以併入經結構之通道功率界限,其可 被採用於上行鏈路與下行鏈路通道上,如上述用於功率退 讓上。在下行键路上’終端機可被指定具有最大功率界限 之通道,其係符合其選定之操作模式、資料傳輸率與設定 點。在上行鏈路上,類似之排程方案可被使用當具有類似 鏈路限度之終端機,被指定符合其選定之操作模式、資料 傳輸率與峰值功率限制之通道。For the above-mentioned terminal prioritization scheme, the allocation of resources can be performed according to the scoring ratio. In this case, the scores of all active terminals can be correlated to the maximum terminal score to form a modified score gk(i), which can be expressed as: ^(0 = ^(〇/max{^(〇 } Equation (6 7 ) Assigning resources to a specific terminal can be based on its modified score. For example, if the terminal 1 has a rating twice that of the terminal 2, the scheduler can allocate one channel (or majority). The capacity of the channel) needs to make the data rate of the two terminals equal (this channel is available). Based on the fairness considerations, the scheduler will attempt to normalize the data transmission rate that can be used for each transmission interval. Other fairness standards It can also be employed and falls within the scope of the present invention. 2. Adaptive Reuse Schedule - 101 - 1269549 Hair Issues - Continued (97) The scheduling scheme can be implemented to incorporate the channel power limits of the structure. It can be used on the uplink and downlink channels, as described above for power backoff. On the downlink key, the terminal can be assigned a channel with the maximum power limit, which matches its selected operating mode, data. Transmission rate and setting Point. On the uplink, similar to the scheduling scheme may be used when a link having a similar terminal limits, which are designated in line with the selected mode of operation, data transfer rate and the peak power channel limits.

該系統可經設計以使得功率控制以及流率控制。對於下 行鏈路與上行鏈路,最大化通量涉及使用已知之設定點用 於不同的操作模式與相關資料傳輸率。在分配資源時,排 程方案可決定需要支援一已知資料傳輸率與操作模式之 最小傳送功率。在下行鏈路,功率調整可在每一使用者基 礎上。在上行鏈路,此資訊可被顯示地或隱示地傳送至終 端機(例如藉由指定附有已知最大功率界限之特定通道)。The system can be designed to enable power control as well as flow rate control. For downlink and uplink, maximizing throughput involves using known setpoints for different modes of operation and associated data transfer rates. When allocating resources, the scheduling scheme determines the minimum transmit power needed to support a known data rate and mode of operation. On the downlink, power adjustments can be made on a per-user basis. On the uplink, this information can be transmitted to the terminal device either explicitly or implicitly (e.g., by specifying a particular channel with a known maximum power limit).

圖8 A係依據優先順序為基礎之排程方案供排程終端機 於資料傳輸之程式8 0 0的一具體實施例流程圖。此優先順 序為基礎之排程方案可被用於下行鏈路或上行鏈路,且進 一步依據終端機優先順序排程現用終端機用於資料傳 輸。該可被排程用於在各傳輸區間傳輸資料之特定數目的 終端機,可受限於可用通道之數目。例如,每一細胞多達 Nch終端機可被排程在Neh可用通道上傳輸。 _ 初始,用於排程終端機之參數先於步驟8 1 0更新。這些 參數可包括退讓因子、干擾特徵、用於終端機之路徑損耗 與其他的可能。該參數可如上述被用以決定用於終端機之 -102- 1269549Figure 8A is a flow chart of a specific embodiment of a program for scheduling data transmission by a scheduler based on a priority order. This prioritization-based scheduling scheme can be used for downlink or uplink, and further schedules the active terminal for data transmission based on the priority of the terminal. The particular number of terminals that can be scheduled for transmission of data in each transmission interval can be limited by the number of available channels. For example, up to Nch terminals per cell can be scheduled to be transmitted on the Neh available channel. _ Initially, the parameters for the scheduled terminal are updated before step 8 1 0. These parameters can include backoff factors, interference characteristics, path loss for the terminal, and other possibilities. This parameter can be used to determine the terminal for the above -102-1269549

(98) 通道度量。(98) Channel metrics.

在步驟8 1 2,終端機於是按優先順序排程及分級。大體 上,只是需求資料傳輸之現用終端機被考慮列入排程’而 後這些終端機按優先順序排程及分級。終端機之優先化處 理可使用任何許多終端機-評等方案之一加以實施,且可 依據一或多個因子(例如平均通量、酬載等等)。現用終端 機於是據以基於終端機優先順序進行分級,由最高優先順 序至最低優先順序。 在步騾814,可用通道於是經指定予現用終端機。通道 之指定通常涉及許多步驟。首先,一或多個通道度量可依 據更新之參數針對各可用通道之各終端機加以計算。任何 數目之通道度量均可使用,例如方程式(62)中所示之一。 該終端機於是依據終端機優先順序、計算出之通道度量與 其他可能的因子(例如請求規格)指定可用通道。該通道之 指定可依據各種通道指定方案(一些將詳述如下)而實施。In step 8 1 2, the terminal then schedules and ranks in order of priority. In general, only the active terminals that require data transmission are considered for inclusion in the schedule' and then these terminals are scheduled and ranked in order of priority. The prioritization of the terminal can be implemented using any of a number of terminal-rate schemes and can be based on one or more factors (e.g., average throughput, payload, etc.). The active terminals are then ranked based on the priority of the terminal, from the highest priority to the lowest priority. At step 814, the available channel is then assigned to the active terminal. The designation of a channel usually involves many steps. First, one or more channel metrics can be calculated for each terminal of each available channel based on updated parameters. Any number of channel metrics can be used, such as one shown in equation (62). The terminal then specifies the available channels based on the terminal priority, the calculated channel metrics, and other possible factors (such as request specifications). The designation of this channel can be implemented according to various channel designation schemes (some will be detailed below).

通道之指定可意味著一特定通道被指定於資料傳輸,以 及將被使用之資料傳輸率。各可行之資料傳輸率可關聯至 各自的編碼與調變方案。各經排程之終端機依據指定之資 料傳輸率可明暸(例如先前已知)將使用適當之編碼與調 變方案。或者,該編碼與調變方案可被傳送至經排程之終 端機。 _ 系統參數於是在步騾8 1 6被更新,以反映通道之指定。 將更新之系統參數可包括例如,針對該細胞内通道調整退 讓因子,依據(1)對於此細胞中經排程之終端機其通道之 -103 - 1269549 (99) 賊續買 指定,(2)來自其他細胞用於調整退讓因子等等。該細胞 也可要求鄰近細胞調整退讓因子。The designation of a channel can mean that a particular channel is assigned to the data transmission and the data transmission rate that will be used. The available data transfer rates can be linked to their respective coding and modulation schemes. Each of the scheduled terminals will be able to use the appropriate coding and modulation scheme based on the specified data transmission rate (e.g., previously known). Alternatively, the encoding and modulation scheme can be transmitted to the scheduled terminal. The system parameter is then updated in step 8 1 6 to reflect the channel assignment. The system parameters to be updated may include, for example, adjusting the concession factor for the intracellular channel, according to (1) for the scheduled terminal of the cell, the passage of the -103 - 1269549 (99) thief continued to purchase the designation, (2) From other cells used to adjust the concession factor and so on. The cell may also require adjacent cells to adjust for the concession factor.

在步騾8 1 8,資料於是經由指定通道傳送至或接收自經 排程之終端機。由資料傳輸中,各種數量可被預估且用於 一未來之傳輸區間,例如在各通道上觀測到之干擾。大體 上,步驟810至818係在正常操作細胞時實施。在步騾820 將做出一決定,不管另一傳輸區間是否存在。如果答案係 是,於是程序回復至步騾8 1 0,而後該終端機經排程用於 下一之傳輸。否則,程序在步騾820暫停。某些這些步騾 將詳述於後。 通道指定 依據各種方案與考慮各種因子,該可用通道可被指定予 現用終端機。這些通道指定方案包括(1)以優先順序為基 礎之通道指定方案,(2)以要求為基礎之通道指定方案, (3)具有升級方案的一通道指定與其他。In step 8 1 8, the data is then transmitted to or received from the scheduled terminal via the designated channel. From the data transmission, the various quantities can be estimated and used for a future transmission interval, such as interference observed on each channel. In general, steps 810 through 818 are performed while the cells are being operated normally. At step 820 a decision will be made, regardless of whether another transmission interval exists. If the answer is yes, then the program reverts to step 8 1 0 and the terminal is scheduled for the next transmission. Otherwise, the program is halted at step 820. Some of these steps will be detailed later. Channel Assignment The available channels can be assigned to the active terminal, depending on various scenarios and considering various factors. These channel designations include (1) priority-based channel assignment schemes, (2) requirement-based channel assignment schemes, and (3) one-channel assignment with upgrade schemes and others.

在以一優先順序為基礎之通道指定方中,在一時間内係 實施通道指定於一終端機上,具最高優先順序之終端機被 考慮首先指定通道,而具最低優先順序之終端機被考慮最 後指定通道。所有細胞内之現用終端機係依據許多因子 (例如上文中說明者)開始優先順序處理。 圖8 B係用於以優先順序為基礎之通道指定方案的程序 8 3 0之具體實施例的流程圖。一開始在步騾8 3 2,通道度量 係針對現用終端機與可用的通道加以計算。各種通道度量 可被使用,例如上文中說明者。在步驟8 3 4,現用終端機 -104- 1269549 (100)In a channel designation party based on a priority order, the implementation channel is assigned to a terminal at a time, and the terminal with the highest priority is considered to specify the channel first, and the terminal with the lowest priority is considered. Finally specify the channel. All in-cell terminal devices begin to prioritize processing based on a number of factors, such as those described above. Figure 8B is a flow diagram of a particular embodiment of a procedure 830 for a channel designation scheme based on prioritization. Initially at step 8 3 2, the channel metric is calculated for the active terminal and the available channels. Various channel metrics can be used, such as those described above. At step 8 3 4, the current terminal -104 - 1269549 (100)

於是依據上文中說明之因子按優先順序處理與分級。優先 順序處理也可依據在步驟8 3 2中計算出之通道度量。終端 機優先順序與通道度量於是被用以實施通道之指定。The processing and ranking are then prioritized according to the factors described above. The prioritization process can also be based on the channel metrics calculated in step 832. The terminal prioritization and channel metrics are then used to implement the designation of the channel.

在步驟8 3 6,最高優先順序之終端機係由現用終端機之 清單中加以選定,且經在步騾8 3 8中被指定一可用的通 道。在一具體實施例中,經選定終端機係給予第一優先選 擇通道且被指定一具最佳通道度量之可用通道。在另一具 體實施例中,經選定之終端機被指定一具最差度量的可用 通道而仍能符合終端機之需求。在步騾840,經選定終端 機也被指定一特定之資料傳輸率,依據(1)該終端機所需 最大速率,(2)關於該指定通道之可用傳送功率與退讓因 子,及(3)該終端機之需求(例如中斷標準)。At step 836, the highest priority terminal is selected from the list of active terminals and an available channel is designated in step 838. In a specific embodiment, the selected terminal system is given a first priority selection channel and is assigned an available channel with the best channel metric. In another embodiment, the selected terminal is assigned a channel with the worst metric and still meets the needs of the terminal. At step 840, the selected terminal is also assigned a specific data transmission rate based on (1) the maximum rate required by the terminal, (2) the available transmission power and the backoff factor for the designated channel, and (3) The requirements of the terminal (such as the interrupt standard).

在步騾8 4 2,經指定之終端機於是被從現用終端機之清 單中移走。接著在步騾844中將決定現用終端機清單是否 已空白,如果清單並非空白,則程序回至步騾8 3 6且一具 高優先順序而最未經指定之終端機將被選定用於通道指 定。否則,如果所有現用終端機均被指定通道,則程序終 止0 在一具體實施例中,如果在通道指定時有發生平手之情 形(例如多個終端機具有相同或類似通道度量),則通道並 未立即被指定。反而是那些造成平手之通道被加以標註, 而繼續評估其他較低優先順序之終端機。如果下一個終端 機之最大度量關聯至任何被標註之通道,則該通道可被指 定予該終端機且從可用通道清單中移走。當用於一特定終 -105 - (101)1269549In step 8 4 2, the designated terminal is then removed from the list of active terminals. Next, in step 844, it will be determined whether the active terminal list is blank. If the list is not blank, the program returns to step 8 3 6 and a high priority order and the most unspecified terminal will be selected for the channel. Specified. Otherwise, if all active terminals are designated channels, the program terminates 0. In a specific embodiment, if there is a tie condition when the channel is specified (eg, multiple terminals have the same or similar channel metrics), then the channel is Not specified immediately. Instead, the channels that cause the tie are marked and continue to evaluate other lower priority terminals. If the next metric of the next terminal is associated with any of the marked channels, the channel can be assigned to the terminal and removed from the list of available channels. When used for a specific end -105 - (101)1269549

端機之經 予最高優 如果通 具有額外 於設定點 十生能位準 該退讓因 加終端機 加終端機 料傳輸率 各經排程 如果一 通道,則 資料傳輸 傳輸區間 終端機視 終端機之 間被提早 在一要 系統可用 需求將被 需求之終 多可用通 要較高之· 標註通道的清單減少至 先順序之終端機。 道指足導致一終端機對需 @ M 、和疋資料傳輸率 的鏈路限度(即在指定 ,、 疋通迢上終瑞機之SNIU$大 )’則(1)終端機之資料傳輸率 A r、、隹4 竹傅m羊了 ~加至滿足需求 的-位準’或⑺傳送功率可被減低(例如藉降低 子)至達鏈路限度的量以減低系统内之干擾。增 之資料傳輸率(如由有效鏈路限度所支援心 以及系統之通量。藉由依據其通道指定而調整; 及/或退讓因子,功率控制因而可有效地行使於 之終端機。 終端機係指定予一未能支援需Φ + 丁 不文谈而农資料傳輸率的 (1)該終端機可排程於以一減低(「 、 較弱的」)之 率傳送’或(2)該終端機之資料傳輪可掠過現行 (「空白化」),在該情況下該通道可被另一現用 為可用’或可實施某些其他動作。較弱或空白化 優先順序可被增加,增進該終端機在下一傳輸區 考慮的機會。 求為基礎之通道指定方案中,當通遒之指定可使 的資源被較佳地使用時,該終端機之要求或酬載 考量。對於一組特定的可用通道,具有較小酬載 端機(其可滿足於較低之資料傳輪率)可接受許 道之服務,而具有較大酬載需求之終端機(其需 賢料傳輸率)可被較少量之可用通遒服務。The highest priority of the terminal is provided. If the pass has an additional level of ten points, the transfer rate is increased by the terminal and the terminal transfer rate. If the channel is transmitted, the data transmission and transmission interval terminal is regarded as the terminal. The first time the system is available, the demand will be increased by the end of the demand. The list of marked channels is reduced to the first order. The Dow's foot leads to the link limit of the terminal to the @M, and the data transmission rate (that is, the SNIU$ is large on the designated, 疋通迢), then (1) the data transmission rate of the terminal A r, 隹 4 bamboo 傅 羊 羊 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到Increased data transmission rate (such as the core supported by the effective link limit and the flux of the system. By adjusting according to its channel designation; and/or the backoff factor, the power control can be effectively exercised in the terminal. (1) The terminal can be scheduled to transmit at a reduced (", weaker" rate" or (2) the specified information is not supported. The data transfer of the terminal can be passed through the current ("blank"), in which case the channel can be made available for another use or some other action can be implemented. The weaker or blanking priority can be increased, Enhance the opportunity that the terminal considers in the next transmission area. In the channel-specific scheme, when the specified resources can be used better, the terminal requirements or payload considerations. A specific available channel, with a smaller payload (which can satisfy the lower data transfer rate) can accept the service of the channel, and the terminal with a large payload demand (which requires the transmission rate) can be Less available available clothing .

-106- 1269549-106- 1269549

(102) 用於以要求為基礎之通道指定方案之流程圖可依類似 圖8B顯示用於以優先順序為基礎之通道指定方案而實 施。在一具體實施例中,選用於通道指定之各終端機被指 定一具有最差度量的可用通道而仍能符合該終端機之需 求。在另一具體實施例中,終端機之優先順序可經修改以 使具較大酬載之終端機被考慮提早被指定。許多其他變更 也屬可行且係落入本發明之範圍。(102) A flowchart for a request-based channel designation scheme can be implemented similarly to Figure 8B for a priority-based channel assignment scheme. In one embodiment, each of the terminals selected for the channel designation is assigned an available channel with the worst metric while still meeting the needs of the terminal. In another embodiment, the priority order of the terminal can be modified to allow the terminal with greater payload to be considered for early assignment. Many other variations are also possible and fall within the scope of the invention.

在一具升級方式之通道指定中,現用終端機係先指定通 道(如上文中說明依據終端機優先順序或要求)而之後再 升級至一較佳通道,如果有任何可用的。在某些上述方案 之具體實施例中,較高優先順序之終端機可先被指定一最 差通道而仍能符合其需求,而較佳通道係保留用於較低優 先順序終端機如果其需要時。這些方案可導致持續地使較 低優先順序之終端機被指定較佳之通道,其相關之較大退 讓因子係接近一(即較大傳送功率)。In an upgrade mode channel designation, the active terminal system first specifies the channel (as explained above based on the terminal priority or requirements) and then upgrades to a preferred channel, if any. In certain embodiments of the above aspects, higher priority terminals may be assigned a worst channel first while still meeting their needs, while preferred channels are reserved for lower priority terminals if they are needed Time. These schemes can result in continuously lowering the priority of the terminal to the preferred channel, with a associated larger yield factor being close to one (i.e., larger transmit power).

如果現用終端機之數目少於可用通道之數目,其可讓終 端機升級至較佳之通道。一終端機可被升級至另一比初始 指定通道具較高限度之未經指定通道。升級該終端機之原 因係可增加可靠性及/或降低支援傳輸所需之有效傳送功 率。由於許多未經指定之通道滿足終端機之需求,重新指 定該終端機至具較高限度之通道允許減低傳送功率達到 該限度之量。 各種方案均可被用以升級通道,部份詳述於後。各種其 他更新機制均可實施,且落入本發明的範圍。 -107- 1269549If the number of active terminals is less than the number of available channels, it allows the terminal to be upgraded to the preferred channel. A terminal can be upgraded to another unspecified channel with a higher limit than the initial designated channel. The reason for upgrading the terminal is to increase reliability and/or reduce the effective transmission power required to support the transmission. Since many unspecified channels meet the needs of the terminal, reassigning the terminal to a higher channel allows the transmission power to be reduced to this limit. Various schemes can be used to upgrade the channel, some of which are detailed later. Various other update mechanisms are possible and are within the scope of the invention. -107- 1269549

(103) 在一通道升級方案中,終端機被重新指定予較佳可用通 道,如果這些通道符合該終端機之需求且能提供較大鏈路 限度。如果通道係可使用,通道升級之實施係依據優先順 序使較高優先順序之終端機首先升級,而較低優先順序之 終端機較後升級。此升級方案可允許部份或所有現用終端 機得享具有較高鏈路限度之較佳通道。(103) In a one-lane upgrade scenario, the terminals are reassigned to the preferred available channels if they meet the needs of the terminal and provide a larger link limit. If the channel is available, the implementation of the channel upgrade first upgrades the higher priority terminals in the first order, while the lower priority terminals are upgraded later. This upgrade scheme allows some or all of the active terminals to enjoy better access with higher link limits.

圖8 C依據終端機優先順序而升級終端機至較佳通道之 程序8 5 0的具體實施例之流程圖。在著手通道升級程序 前,現用終端機被指定至其初始通道指定,其可使用圖8 B 中說明之通道指定方案達成。在步騾852中之決定,將不 論所有可用通道是否已被指定予現用終端機。如果所有通 道已被指定,則無通道係可用於升級而程序前進至步騾 8 7 0。否則,該終端機將升級至可用的通道,如果這些通 道係比原先指定之通道較佳(即關聯至較佳通道度量)。Figure 8 is a flow diagram of a particular embodiment of a procedure 850 for upgrading a terminal to a preferred channel in accordance with the priority order of the terminal. The active terminal is assigned to its initial channel designation before proceeding with the channel upgrade procedure, which can be achieved using the channel assignment scheme illustrated in Figure 8B. In decision 852, it will be determined whether all available channels have been assigned to the active terminal. If all channels have been assigned, no channel is available for the upgrade and the program proceeds to step 780. Otherwise, the terminal will be upgraded to an available channel if these channels are better than the originally designated channel (i.e., associated with the preferred channel metric).

在步騾854,來自現用終端機清單之最高優先順序終端 機被選用於可能之通道升級。對於經選定之終端機,來自 未指定通道清單之「最佳」通道係在步騾8 5 6選定。最佳 通道可對應於具有最佳通道度量可用於經選定之終端機 的通道。 在步驟8 5 8所作之決定,將不論升級是否可能用於經選 定之終端機。如果最佳可用通道之通道度量係劣於該終端 機原先指定之通道,將不實施升級而程序將前進至步騾 866。否則經選定之終端機將在步驟860升級至最佳可用通 道。其隨後將在步驟862自可用通道清單中移走。原先指 -108 - 1269549At step 854, the highest priority terminal from the list of active terminals is selected for possible channel upgrades. For selected terminals, the "best" channel from the unspecified channel list is selected in step 865. The best channel can correspond to the channel with the best channel metric available for the selected terminal. The decision made in step 8 58 will be used regardless of whether the upgrade is possible for the selected terminal. If the channel metric for the best available channel is inferior to the channel originally specified by the terminal, the upgrade will not be performed and the program will proceed to step 866. Otherwise the selected terminal will be upgraded to the best available channel at step 860. It will then be removed from the list of available channels at step 862. Originally referred to as -108 - 1269549

(104) 定予經選定終端機之通道可被置於可用通道清單之後’可 在步騾8 6 4用於指定至某些其他較低優先順序之終端機。 經選定之終端機於是係在步驟8 6 6中從現用終端機清單中 移走,不管通道升級是否在實施。(104) The channel assigned to the selected terminal can be placed after the list of available channels' can be used in step 8 6 4 to assign to certain other lower priority terminals. The selected terminal is then removed from the list of active terminals in step 8.6, regardless of whether the channel upgrade is in effect.

在步騾868中所作之決定,將不論現用終端機之清單是 否係空白。如果終端機清單不是空白,程序回至步驟8 5 2 而清單上最高優先順序將被選用於可能的通道升級。否 則,如果沒有通道可用於升級或如果所有現用終端機已被 考慮過。則程序前進至步騾8 70,而用於所有通道之退讓 因子均被調整以減低經排程與指定終端機之傳送功率。程 序於是終止。The decision made in step 868 will be blank regardless of whether the list of active terminals is blank. If the terminal list is not blank, the program returns to step 8 5 2 and the highest priority on the list will be selected for possible channel upgrades. Otherwise, if there are no channels available for upgrade or if all active terminals have been considered. The program then proceeds to step 8 70, and the backoff factors for all channels are adjusted to reduce the transmit power of the scheduled and designated terminals. The procedure is then terminated.

圖8 C中之升級程序有效地升級現用終端機至較可能提 供改進性能之可用通道。圖8 C中所示升級方案之通道可 被修改以提供改進之通道升級。例如,對於一特定終端 機,可能由一較低優先順序終端機脫離之通道係較適合此 終端機。然而該終端機未被指定此通道,係因為其在較低 優先順序終端機被考慮選定時已被由終端機清單中移 走。圖8 C之程序因此被疊代許多次,或將實施其他測試 以針對此情況。 在另一其他通道升級方案中,經指定之終端機係依可用 通道之數目而升級。例如,如果有三個可用通道,各經排 程與指定之終端機移至三時槽。此升級方案允許大多數 (如果非全部)終端機可分享較佳通道。 在一其他通道指定方案中,與該通道關聯之通道度量間 -109 - 1269549The upgrade procedure in Figure 8 C effectively upgrades the active terminal to an available channel that is more likely to provide improved performance. The channel of the upgrade scheme shown in Figure 8C can be modified to provide an improved channel upgrade. For example, for a particular terminal, a channel that may be detached by a lower priority terminal is more suitable for the terminal. However, the terminal is not assigned this channel because it has been removed from the list of terminals when the lower priority terminal is considered for selection. The procedure of Figure 8C is therefore iterated many times, or other tests will be implemented to address this situation. In another alternative channel upgrade scenario, the designated terminal is upgraded based on the number of available channels. For example, if there are three available channels, each is scheduled to move to the third time slot with the specified terminal. This upgrade scheme allows most (if not all) terminals to share better channels. In a other channel designation, the channel metric associated with the channel -109 - 1269549

(105)(105)

之差異可在通道指定中被列入考慮。在其他例子中,最好 不要將具最佳通道度量之通道指定予最高優先順序終端 機。例如,許多通道可將幾乎類似之度量關聯至一特定終 端機,或許多通道可提供需要之SNR。在這些例子中,終 端機可被指定予數通道之一而仍能正確地操作。如果一較 低優先順序終端機使其最佳通道與較高優先順序之終端 機所選定的相同,且如果在較低優先順序終端機之最佳與 次佳通道間具有較大之差距不同,則最理想是指定次佳通 道予較高優先順序之終端機而指定最佳通道予較低優先 順序終端機。 在又一通道指定方案中,最高優先順序終端機標註提供 需求性能之可用通道(類似如上述標註造成平手之通 道)。次一較低優先順序終端機則標註其可接受之通道。 通道指定於是實施而使得較低優先順序終端機首先被指 定通道,但由較高優先順序終端機需要之通道係被保留。The difference can be considered in the channel designation. In other examples, it is best not to assign the channel with the best channel metric to the highest priority terminal. For example, many channels can associate nearly similar metrics to a particular terminal, or many can provide the required SNR. In these examples, the terminal can be assigned to one of several channels while still operating correctly. If a lower priority terminal has its best channel selected the same as the higher priority terminal, and if there is a large difference between the best and lower quality channels of the lower priority terminal, It is most desirable to specify a sub-optimal channel to a higher priority terminal and specify the best channel to the lower priority terminal. In yet another channel designation, the highest priority terminal is labeled to provide an available channel for demand performance (similar to the channel that is labeled as described above). The next lower priority terminal identifies its acceptable channel. The channel designation is then implemented such that the lower priority terminal is first assigned the channel, but the channel required by the higher priority terminal is reserved.

在又一通道指定方案中,藉由考慮在細胞内現用終端機 之群組間較大數目之換置,通道將更理想地被指定予細胞 内之現用終端機。在此情況下,對於一特定終端機通道指 定之決定並非僅以終端機之度量與優先順序為基礎。在一 實施中,終端機之優先順序可轉換成一加權,用以於計算 細胞内之通道指定時排列該度量。 排程終端機用於資料傳輸與指定通道時,其他因子也可 列入考慮。首先,一特定終端機可被指定至多重通道如果 此通道係可用與如果一通道係不具備符合該終端機之需 -110- 1269549 發辨魏釀續頁 (106)In yet another channel designation, by considering a larger number of transpositions between groups of active in-cell terminals within the cell, the channel will be more desirably assigned to the active terminal within the cell. In this case, the decision to specify for a particular terminal channel is not based solely on the measurement and prioritization of the terminal. In one implementation, the priority order of the terminals can be converted to a weighting that is used to rank the metrics when calculating channel assignments within the cell. Other factors can also be considered when scheduling terminals for data transmission and designated channels. First, a specific terminal can be assigned to multiple channels. If this channel is available and if one channel system does not meet the requirements of the terminal -110-1269549, the continuation page (106)

求。其次,一特定終端機可被指定至不同傳輸的不同通道 以提供「曳步」效應,其可提供某些情況下之干擾平均且 可改進不佳終端機之性能。第三,其他終端機在一特定通 道上傳送之或然率也可列入考量。如果許多通道具有接近 相等之通道度量而無須考量佔用或然率,則具有最低被使 用在其他細胞之或然率的通道即可被指定。第四,過度之 中斷或然率可通道指定時被列入考慮。如果一終端機對一 特定通道之預期中斷或然率係超過標準,則很有可能在該 通道上的整體傳輸將會劣化而將需要被重新傳送,且最好 完全不要指定該通道或指定該通道至另一可較適合使用 其之終端機。begging. Second, a particular terminal can be assigned to different channels of different transmissions to provide a "strolling" effect that provides interference averaging in some cases and can improve the performance of poor terminals. Third, the probability of other terminals transmitting on a particular channel can also be considered. If many channels have near-equal channel metrics without considering occupancy probabilities, then the channel with the lowest probability of being used in other cells can be specified. Fourth, excessive interruption probability can be considered when channel assignment is specified. If the expected interruption probability of a terminal to a particular channel exceeds the standard, then it is likely that the overall transmission on that channel will degrade and will need to be retransmitted, and it is best not to specify the channel at all or specify that channel to Another terminal that is more suitable for use.

可用通道也可被指定予具大約沒有條件或限制用途之 終端機。此條件可包括例如(1)資料傳輸率之限制,(2)最 大傳送功率,(3)設定點之限制等等。最大傳送功率限制 可置於某些指定通道上。如果系統内之細胞有在其他細胞 之通道的功率資料,則干擾位準可被就近以較高程度之確 定性計算,且可以較佳地計劃與排程。 一特定設定點可運用於一指定通道上,例如在高度負載 情況下。一(例如低優先順序)之終端機可被指定不符合需 求最小中斷或然率之通道(即該指定之通道具有之預期 SNR係低於需要)。在此情況下,終端機將需要使用該指 定之通道在滿足該需要性能標準之較低設定點下操作。該 使用之設定點可為靜態或可隨系統負載調整。同時,該設 定點可用於每一通道基礎上。 -111 - (107) 1269549 β 3. 用於ΜΙΜΟ系統之下行鍅The available channels can also be assigned to terminals with approximately no conditions or restricted use. Such conditions may include, for example, (1) data transfer rate limitations, (2) maximum transfer power, (3) set point limits, and the like. The maximum transmit power limit can be placed on certain designated channels. If the cells in the system have power data for channels in other cells, the level of interference can be calculated with a higher degree of certainty and can be better planned and scheduled. A specific set point can be applied to a specific channel, for example under high load conditions. A (e.g., low priority) terminal can be assigned a channel that does not meet the minimum interrupt probability of demand (i.e., the designated channel has an expected SNR that is lower than needed). In this case, the terminal will need to use the designated channel to operate at a lower set point that meets the required performance criteria. The set point used can be static or can be adjusted with system load. At the same time, this set point can be used on a per channel basis. -111 - (107) 1269549 β 3. Used under the system 鍅

本發明-特點提供技術以増心〇系統之下行鏈路容 量(例如多向近接蜂巢式系統)。資料可如上述使用一或多 個不同操作模式由基地台傳送至—或多個終端機。在單一 使用者ΜΙΝΟ模式’可用的下行鏈路資源可被分配至一單 一 ΜΙΜΟ終端機。在多重使用者ΜΙΜΟ模式(其也稱之為 Ν-SΙΜΟ模式),該下行鏈路資源可被分配至許多(Ν )不同之 SIMO終端機,其中各終端機解調變一單一資料流。而在 混合模式中,下行鏈路資源可被分配至SIMO與ΜΙΜΟ終端 機之組合,其中二型式之終端機同時由相同通道支援。 多重獨立資料流可以ΜΙΜΟ經由多重傳送天旅由基地台 傳送至一或多個經排程之終端機。如果傳播環境有足夠之 散射,ΜΙΜΟ接收器處理技術可被用於終端機以有效開發 ΜΙΜΟ通道之空間範圍以增加傳輸容量。依終端機之觀 點,相同接收器處理技術可被用以處理預期用於終端機之 Ντ不同的信號(例如一單一 ΜΙΜΟ終端機)或只在Ντ信號 (即siM〇終端機)中之一。 如圖1中所示,終端機可被隨機分佈於細胞内或可共 位。對於一無線通仏系統,由於許多因子例如衰退與多重 路徑,其鏈路特徵通常隨時間改變。在一特定瞬間,介於 一基地台之NT傳送天線陣列與單一終端機通道之Nr接收 天線間之通道反應可被特徵化成通道反應矩陣氐,其元件 構成獨立高斯(Gaussian)隨機變數,如下列: -112 - 1269549 (108)The present invention-features provide techniques to minimize the downlink capacity of a system (e.g., a multi-directional proximity cellular system). The data may be transmitted by the base station to - or a plurality of terminals using one or more different modes of operation as described above. The available downlink resources in the single user mode can be assigned to a single terminal. In a multiple user mode (also referred to as a Ν-SΙΜΟ mode), the downlink resources can be allocated to a number of different SIMO terminals, where each terminal demodulates into a single data stream. In the hybrid mode, the downlink resources can be assigned to the combination of SIMO and the terminal, where the two types of terminals are simultaneously supported by the same channel. Multiple independent data streams can be transmitted from the base station to one or more scheduled terminals via multiple transmission days. If the propagation environment has sufficient scatter, ΜΙΜΟ receiver processing techniques can be used in the terminal to effectively develop the spatial extent of the ΜΙΜΟ channel to increase transmission capacity. Depending on the terminal, the same receiver processing technique can be used to process signals that are expected to be different for the terminal (e.g., a single terminal) or only one of the Ντ signals (i.e., siM〇 terminals). As shown in Figure 1, the terminals can be randomly distributed within the cells or can be co-located. For a wireless overnight system, its link characteristics typically change over time due to many factors such as fading and multiple paths. At a particular instant, the channel response between the NT transmit antenna array between a base station and the Nr receive antenna of a single terminal channel can be characterized as a channel response matrix, the components of which form independent Gaussian random variables, such as : -112 - 1269549 (108)

ϋ — [Ml Il2 &NT] = Κλ Κ,2 八 At.NT 厶 2,2 Λ 六 2,ΝΤ Μ Μ Μ 八 ^nr.n 方程式(68) ^ *v 其中hu係耦合於基地台之第j傳送天線與終端機之第i接 收天線間(即(i,j)傳送-接收天線對)。為求簡化,方程式(68) 依據一平衰退通道模式描述一通道之特徵(即用於整個系 統頻寬的複數個值)。在一實際操作環境,該通道可為具 頻率選擇性,而且可使用一較詳細之通道特徵(例如矩陣 iL之各元件可包括一組用於不同頻率子通道或時間延遲 之值)。 在ΜΙΜΟ系統中之現用終端機(即需求在一預定將傳輸 區間傳輸資料者)定期地預估各傳送-接收天線對之通道 反應與提報預估之通道反應CSI指示至基地台。由現用終 端機之集合接收之累積C S I可被用以(1)選擇最佳的一或 多個終端機組用於資料傳輸,(2)指定可用的傳送天線至 選定之終端機,及(3)選擇適當之編碼與調變方案用於各 傳送天線。以可用的C SI,各種排程方案可被設計以最大 化下行鏈路性能,係藉由針對任何系統限制與需要評估那 一個終端機與天線指定之特定組合可提供最佳系統性能 (例如最高通量)。藉由採用個別終端機之「空間簽署」(及 可行之頻率)簽署(即其通道預估),也可增加平均系統通 量 0 為求簡化,對於一 ΜΙΜΟ無OFDM之系統的各種下行鏈路 排程案將詳述於後,其中一獨立資料流可被基地台從各傳ϋ — [Ml Il2 & NT] = Κλ Κ, 2 八 At.NT 厶2,2 Λ 6 2, ΝΤ Μ Μ Μ 八^nr.n Equation (68) ^ *v where hu is coupled to the base station The jth transmitting antenna is connected to the ith receiving antenna of the terminal (i.e., (i, j) transmitting-receiving antenna pair). For simplicity, Equation (68) describes the characteristics of a channel (ie, a plurality of values for the entire system bandwidth) based on a flat decay channel pattern. In an actual operating environment, the channel can be frequency selective and a more detailed channel feature can be used (e.g., each element of the matrix iL can include a set of values for different frequency subchannels or time delays). The active terminal in the system (i.e., who is required to transmit data in a predetermined transmission interval) periodically predicts the channel response of each of the transmit-receive antenna pairs and reports the channel response CSI indication to the base station. The cumulative CSI received by the collection of active terminals can be used to (1) select the best one or more terminal units for data transmission, (2) designate available transmit antennas to selected terminals, and (3) Choose the appropriate coding and modulation scheme for each transmit antenna. With available C SI, various scheduling schemes can be designed to maximize downlink performance by providing the best system performance (eg, highest) by any combination of terminal and antenna assignments for any system limitations and needs to be evaluated. Flux). By using the "space signing" (and feasible frequency) of individual terminals (ie, the frequency of the channel), it is also possible to increase the average system throughput 0 for simplification, for various downlinks of a system without OFDM. The schedule will be detailed later, and one of the independent data streams can be transmitted from the base station.

-113 - 1269549-113 - 1269549

(109) 送天線傳送。在此情況下,(多達)Ντ獨立資料流可同時被 基地台從Ν τ傳送天線傳送至一或多數個各自配備有N R接 收天線之終端機(即Ντ X NR ΜΙΜΟ),其中NR 2 Ντ。 為求簡化,在下文大多數說明中係假設接收天線之數目 等於傳送天線之數目(即N r = Ν τ)。此並非必要條件,由 於所有分析均係應用於NR 2 ΝΤ之情況。(109) Send antenna transmission. In this case, the (up to) Ντ independent data stream can be simultaneously transmitted by the base station from the Ντ transmit antenna to one or more of the terminals (ie Ντ X NR ΜΙΜΟ) each equipped with the NR receive antenna, where NR 2 Ντ . For the sake of simplicity, in most of the description below it is assumed that the number of receiving antennas is equal to the number of transmitting antennas (i.e., N r = Ν τ). This is not a requirement, as all analyses are applied to NR 2 ΝΤ.

在ΜΙΜΟ系統下行鏈路之資料傳輸排程包含二部份:(1) 選定一或多個組終端機用於評估,及(2)指定可用之傳送 天線至選定之終端機。所有或一子集合之現用終端機可被 考慮排程,而這些終端機可被組合以形成將被評估的一或 多個組(即假說上)。對於各個假設,可用的傳送天線可依 據任何多數天線指定方案之一,被指定至假設中之終端 機。在最佳假設中之終端機於是可經排程在一預定將傳輸 區間傳輸資料。具有在選擇最佳終端機組用於資料傳輸與 指定傳送天線予經選定終端機二者的彈性,允許排程器使 多重使用者分集環境最佳化其性能。 為決定「最佳化」傳輸至一組終端機,SNR或某些其他 足夠之統計資料將提供用於各終端機與各空間子通道。如 果該統計值係SNR,則對於各組將被評估用於在一預定將 傳輸區間傳輸資料之終端機,用於此終端機組的一後處理 SNR假設矩陣Γ可表示為: Γ /丨“ ,t,2 Λ ,1·ΝΤ Ύιλ Yi.1 八 ^2,ΝΤ Μ Μ Μ ’Νγ,1 ^Ντ>2 Λ ^ΝΤ,ΝΤ- 方程式(69) -114- 1269549The data transmission schedule on the downlink of the system consists of two parts: (1) selecting one or more group terminals for evaluation, and (2) designating the available transmission antennas to the selected terminal. All or a subset of active terminals can be considered for scheduling, and these terminals can be combined to form one or more groups to be evaluated (i.e., hypothetical). For each hypothesis, the available transmit antennas can be assigned to the terminal in the hypothesis according to any of the many antenna assignment schemes. In the best assumption, the terminal can then schedule the transmission of data in a predetermined transmission interval. The flexibility to select the best end unit for data transmission and the designated transmit antenna to the selected terminal allows the scheduler to optimize the performance of the multi-user diversity environment. To determine the "optimization" to a group of terminals, SNR or some other sufficient statistic will be provided for each terminal and each spatial subchannel. If the statistical value is SNR, then for each group to be evaluated for a terminal that transmits data in a predetermined transmission interval, a post-processing SNR hypothesis matrix for the terminal unit can be expressed as: Γ /丨", t,2 Λ ,1·ΝΤ Ύιλ Yi.1 八^2,ΝΤ Μ Μ Μ 'Νγ,1 ^Ντ>2 Λ ^ΝΤ,ΝΤ- Equation (69) -114- 1269549

(110) 其中係用於一由第j傳送天線至第i終端機的傳送資料 流之後處理SNR (假設地)。(110) wherein the SNR (hypothetically) is processed after a data stream is transmitted from the jth transmitting antenna to the ith terminal.

在多重使用者ΜΙΜΟ模式,對於Ν τ不同的終端機,矩陣Γ 之對應於SNR之Ντ向量。在此模式中,假設矩陣Γ中 之各列代表用於一終端機之各傳送資料流的SNR。而在混 合-模式中,對於一設計以接收二個以上資料流之特定 ΜΙΜΟ終端機,該終端機之SNR向量可被複製以使得該向 量出現在如將被由該終端機傳送之資料流數目的各列中 (即每一資料流一列)。另一選擇是,假設矩陣Γ内的一列 可被用於各SIMO或ΜΙΜΟ終端機,而排程器可被據以設計 以便註記與評估這些不同型式的終端機。In the multiple user mode, for a different terminal of τ, the matrix 对应 corresponds to the Ντ vector of SNR. In this mode, it is assumed that the columns in the matrix 代表 represent the SNR of each transport stream for a terminal. In hybrid mode, for a particular terminal that is designed to receive more than two streams, the SNR vector of the terminal can be copied such that the vector appears in the number of streams as will be transmitted by the terminal. In each column (ie one column for each data stream). Alternatively, it is assumed that a column within the matrix 可 can be used for each SIMO or ΜΙΜΟ terminal, and the scheduler can be designed to note and evaluate these different types of terminals.

對於各組内將被評估之終端機,Ντ (假設地)傳送資料流 係由終端機之NR接收天線所接收,而>^接收信號可如上 述經空間或空間時間處理以隔開Ντ傳送資料流。一後處 理資料流之SNR (即在空間/空間時間處理後)可被預估與 包含用於資料流之後處理SNR。對於各終端機,一組Ντ 後處理SNR可被提供至可被終端機接收之Ντ資料流。 如果持續消除接收器處理技術係用於一終端機以處理 該接收信號,則用於各傳送資料流之後處理SNR到達該終 端機取決於傳送資料流被偵測(即解調變與解碼)之順 序,以便如上述回復該傳送資料。在此情況下,許多組 S N R可以多種可能之偵測順序被提供用於各終端機。多重 假設矩陣於是可形成與經評估以決定那一個特定組合之 終端機與偵測順序可提供最佳系統性能。 -115 - 1269549 _ (111) 發卿· 在任何情況下,各假設矩陣Γ包括用於一或多個組將被 評估之特定終端機(即假設)的後處理s N R。這些後處理 SNR代表可由終端機達到之SNR與將用以評估該假設。For the terminals to be evaluated in each group, Ντ (assumed) transmission data stream is received by the NR receiving antenna of the terminal, and the > receiving signal can be processed by spatial or spatial time to be separated by Ντ as described above. Data stream. The SNR of the data stream (i.e., after spatial/spatial time processing) can be estimated and included for processing the SNR. For each terminal, a set of τ post-processing SNRs can be provided to the Ντ data stream that can be received by the terminal. If the continuous cancellation receiver processing technique is used for a terminal to process the received signal, then processing the SNR for each transmitted data stream to reach the terminal depends on the transmitted data stream being detected (ie, demodulated and decoded). The order is to reply to the transmission of the data as described above. In this case, a number of sets of S N R can be provided for each terminal in a variety of possible detection sequences. Multiple hypothesis matrices can then be formed and evaluated to determine which particular combination of terminals and detection sequences provide optimal system performance. -115 - 1269549 _ (111) In all cases, each hypothesis matrix Γ includes post-processing s N R for a particular terminal (ie, hypothesis) to be evaluated by one or more groups. These post-processing SNRs represent the SNR that can be achieved by the terminal and will be used to evaluate this assumption.

圖9 Α係排程終端機用於在一 ΜΙΜΟ系統之下行鏈路傳輸 資料之程序9 0 0的具體實施例之流程圖。一開始在步驟 9 1 2,被用以選擇用於資料傳輸之最佳終端機組的度量先 經初始化。各種性能度量均可被用以評估終端機組而其部 份將進一步詳述於後。例如,可使用最大化系統通量的一 性能度量。Figure 9 is a flow diagram of a particular embodiment of a program for transmitting data over a downlink system in a system. Initially in step 9 1 2, the metrics used to select the best end unit for data transmission are initialized first. Various performance metrics can be used to evaluate the terminal unit and its components will be further detailed below. For example, a performance metric that maximizes system throughput can be used.

在步騾9 1 4,數量為一或多數個的一組(新)現用終端機 接著由所有被考慮用於排程之現用終端機加以選定,此組 終端機形成一將被評估之假設。各種技術可被用以限制被 考慮用於排程的現用終端機之數目,其將減低將被評估之 假設中的數目,詳述於後。對於假設中之各終端機,SNR 向量(例如li = [YU,Yi,2,係在步驟9 1 6中被擷取。在 假設中對於所有終端機之SNR向量形成方程式(69)中所 示之假設矩陣Γ。 對於Ντ傳送天線與Ντ終端機之假設矩陣Γ,可有Ντ階乘 個可能之傳送天線至終端機之指定的組合(即Ν τ !子假 設)。因此在步騾9 1 8中,一特定(新)的天線/終端機指定組 合經選定用於評估。此特定組合之天線/終端機指定形成 一將被評估之子假設。 該子假設於是可在步驟9 2 0評估,而對應於此子假設之 俾能度量(例如系統通量)將被決定(例如依據用於子假設 -116 - 1269549In step 9 1 4, a set of (new) active terminals of one or more numbers are then selected by all active terminals considered for scheduling, and the set of terminals form an assumption to be evaluated. Various techniques can be used to limit the number of active terminals that are considered for scheduling, which will reduce the number of hypotheses to be evaluated, as detailed below. For each terminal in the hypothesis, the SNR vector (eg, li = [YU, Yi, 2, is captured in step 916. In the hypothesis, the SNR vector for all terminals is formed in equation (69)). The hypothesis matrix Γ. For the Γτ transmit antenna and the Ντ terminal machine hypothesis matrix Γ, there may be a combination of τ τ multiplied by the possible transmit antenna to the terminal (ie Ν τ ! sub hypothesis). Therefore, in step 9 1 8. A specific (new) antenna/terminal designation combination is selected for evaluation. The antenna/terminal designation of this particular combination forms a sub-hypothesis to be evaluated. This sub-hypothesis can then be evaluated at step 902. The metrics (such as system flux) corresponding to this sub-hypothesis will be determined (for example, based on sub-hypothesis -116 - 1269549)

(112) 之SNR)。此性能度量於是將在步驟922中用以更新對應於 現行最佳子假設之性能度量。明確言之,如果用於此子假 設之性能度量較佳於現行最隹子假設,則此子假設將成為 最新之最佳子假設,而該性能度量與其他對應於此子假設 之終端機度量將被儲存。該性能與終端機度量詳述於後。(112) SNR). This performance metric will then be used in step 922 to update the performance metric corresponding to the current best sub-hypothesis. Specifically, if the performance metric used for this sub-hypothesis is better than the current best-of-life hypothesis, then this sub-hypothesis will be the most recent best sub-hypothesis, and this performance metric and other terminal metrics corresponding to this sub-hypothesis Will be stored. This performance and terminal metrics are detailed later.

在步騾9 2 4所作之決定,將不論所有用於現行子假設之 所有子假設是否已被評估。如果並非所有子假設均被評 估,則程序回至步驟9 1 8,而一不同且未被評估之天線/ 終端機的指定組合將被選定用於評估。步騾9 1 8至924將重 複用於將被評估之各子假設。 如果所有用於一特定假設的子假設均在步驟9 2 4中被評 估,在步騾926中所作之決定將不論所有假設均已被考 慮。如果並非所有假設均已考慮,則程序回至步驟9 1 4, 而一不同且未被評估之終端機組將被選定用於評估。步騾 9 14至926將重複用於將被考慮之各假設。The decision made in step 9.2 will be evaluated regardless of whether all sub-hypotheses used in the current sub-hypothesis have been evaluated. If not all sub-hypotheses are evaluated, the procedure returns to step 9 1 8 and a specified combination of different and unevaluated antennas/terminals will be selected for evaluation. Steps 9 1 8 to 924 will be repeated for each sub-hypothesis to be evaluated. If all of the sub-hypotheses used for a particular hypothesis are evaluated in step 924, the decision made in step 926 will be considered regardless of all hypotheses. If not all assumptions have been considered, the procedure returns to step 9 1 4 and a different and unevaluated terminal unit will be selected for evaluation. Steps 9 14 to 926 will be repeated for each hypothesis to be considered.

如果在步驟9 2 6中所有假設均獲考慮,則經排程在該預 定將傳輸區間用於資料傳輸之特定終端機組與其指定之 傳送天線將得知。對應於此組終端機之後處理SNR與其天 線指定可被用以選擇適當之編碼與調變方案用於將被傳 送終端機之資料流。該排程、天線指定、編碼與調變方案、 其他資訊,或任何前述之組合因而可在步騾928被傳送至 經排程之終端機(例如經由一控制通道)。另一選擇是,該 終端機可實施”無目的地”偵測且預期偵測所有傳送資料 流,以決定那一(如有)資料流將被使用。 -117- 1269549If all the assumptions are taken into account in step 926, then the specific end-units that are scheduled to use the transmission interval for data transmission and their designated transmitting antennas will be known. The processing SNR and its antenna designation corresponding to this set of terminals can be used to select the appropriate encoding and modulation scheme for the data stream to be transmitted to the terminal. The schedule, antenna designation, coding and modulation scheme, other information, or any combination of the foregoing may thus be transmitted to the scheduled terminal (e.g., via a control channel) at step 928. Alternatively, the terminal can implement "no destination" detection and expects to detect all transmitted data streams to determine which (if any) data stream will be used. -117- 1269549

(113) 如果該排程方案需求維持其他系統與終端機之度量(例 如橫跨過去K個傳輸區間之平均資料傳輸率、用於資料傳 輸之潛在因素等等),則這些度量將在步驟93 0。該終端機 度量可被用以評估個別終端機之性能,且將詳述於後。該 排程通常實施於各傳輸區間。(113) If the scheduling plan needs to maintain measurements of other systems and terminals (eg, average data transmission rates across the past K transmission intervals, potential factors for data transmission, etc.), then these metrics will be in step 93. 0. This terminal metric can be used to evaluate the performance of individual terminals and will be detailed later. This schedule is usually implemented in each transmission interval.

對於一給定之假設矩陣Γ,排程器評估各種傳送天線與 終端機對之組合(即子假設),以決定用於該假設之最佳指 定。各種指定方案可被用以指定傳送天線至終端機以達成 各種系統目標,例如公平性、性能等等。 在一天線指定方案中,所有可能之子假設係依據一特定 性能度量加以評估,而具有最佳性能度量之子假設將被選 定。對於各假設矩陣Γ,將有Ντ因子階乘(即Ντ!)可能之子 假設可被評估。各子假設係對應於各傳送天線至特定終端 機的一特定指定。各子假設因此以一後處理SNR向量表 示,其表示為: 丄 sub-hyp :a%l>Ybt27…r,NT]For a given hypothesis matrix, the scheduler evaluates the various combinations of transmit antennas and terminal pairs (ie, sub-hypotheses) to determine the best assignment for this hypothesis. Various designation schemes can be used to specify the transmit antenna to the terminal to achieve various system goals, such as fairness, performance, and the like. In an antenna designation, all possible sub-hypotheses are evaluated against a specific performance metric, and sub-hypotheses with the best performance metrics are selected. For each hypothesis matrix Γ, there will be a Ντ factor factorial (ie Ντ!) possible sub-hypothesis that can be evaluated. Each sub-hypothesis corresponds to a specific designation of each transmit antenna to a particular terminal. Each sub-hypothesis is thus represented by a post-processing SNR vector, which is expressed as: 丄 sub-hyp :a%l>Ybt27...r,NT]

其中YU係第j傳送天線至第i終端機後處理SNR,而下標{a, b,...與r}指明用於子假設中傳送天線/終端機對之特定終 端機。 各子假設將可進一步結合一性能度量Rsub_hyp,其可為各 種因子的一函數。例如,依據後處理S N R的一性能度量可 表為: ^•sub-hyp 其中f(·)係括弧中之引數值(S)的一正實數函數。 -118- 1269549Where YU is the jth transmit antenna to the ith terminal, the SNR is processed, and the subscripts {a, b, ... and r} indicate the specific terminal used for the transmit antenna/terminal pair in the hypothesis. Each sub-hypothesis will be further combined with a performance metric Rsub_hyp, which can be a function of various factors. For example, a performance metric based on post-processing S N R can be expressed as: ^•sub-hyp where f(·) is a positive real function of the index value (S) in parentheses. -118- 1269549

(114) 各種函數均可被用於公式化該性能度量。在一具體實施 例,可使用關於該子假設所有Ν τ傳送天線之可達成通量 的一函數,其可表為:(114) Various functions can be used to formulate this performance metric. In a specific embodiment, a function of the achievable flux of all Ντ transmit antennas for the sub-hypothesis can be used, which can be expressed as:

Db) 方程式(7〇) Μ 其中係關聯至子假設中第j傳送天線之通量,其可表為: rj^Cj^log^l + Yj) 方程式(71) 其中Cj係一正常數,其可反映由經選定用於在第j傳送天 線傳送資料流的編碼與調變方案所達成之理論容量的一 片段,而γ」係用於第j資料流之後處理SNR。Db) Equation (7〇) Μ where is the flux associated with the jth transmit antenna in the hypothesis, which can be expressed as: rj^Cj^log^l + Yj) Equation (71) where Cj is a normal number, A segment of the theoretical capacity achieved by the coding and modulation scheme selected for transmission of the data stream at the jth transmit antenna may be reflected, and γ" is used to process the SNR after the jth data stream.

圖9 A中所示與如上述之第一天線指定方案,代表評估 所有可能之傳送天線至終端機組合的指定之特定方案。各 假設將被排程器評估的可能子假設之總數係Ντ !。由於將 有大量之假設需要評估,其將為一大考量。第一排程方案 實施一無遺漏地搜尋以決定提供「最佳」系統性能之子假 設,藉由用以選擇最佳子假設之性能度量加以量化。 許多技術可用於減低指定傳送天線之處理的複雜度。這 些技術之一將詳述於後,而其他技術也可實施且係落入本 發明之範圍。這些技術也提供高系統性能,而能減低需要 用以指定傳送天線至終端機之處理的量。 在一第二天線指定方案中,一最大對最大(「max-max」) 之標準係用以在將被評估之假設中指定傳送天線至終端 機。使用此最大對最大之標準,各傳送天線被指定一可達 到用於該傳送天線之最佳S N R的特定終端機。該天線之指 -119 -The first antenna designation scheme as shown in Figure 9A, as described above, represents a specific scheme for evaluating all possible transmit antenna to terminal combinations. The total number of possible sub-hypotheses that each hypothesis will be evaluated by the scheduler is Ντ !. Since there will be a large number of assumptions that need to be evaluated, it will be a big consideration. The first scheduling scheme implements an exhaustive search to determine the sub-hypothesis that provides the "best" system performance, quantified by the performance metrics used to select the best sub-hypothesis. Many techniques can be used to reduce the complexity of the processing of a given transmit antenna. One of these techniques will be described in detail later, and other techniques may be implemented and fall within the scope of the present invention. These techniques also provide high system performance while reducing the amount of processing required to specify the transmit antenna to the terminal. In a second antenna designation, a maximum-to-maximum ("max-max") criterion is used to specify the transmit antenna to the terminal in the hypothesis to be evaluated. Using this maximum to maximum standard, each transmit antenna is assigned a specific terminal that can reach the optimum S N R for that transmit antenna. The antenna finger -119 -

1269549 (115) 定係在同j間實施於一傳送天線。, 圖9B係使用最大對最大標準以指疋傳送天線至終端機— 之2序940的具體實施例之流程圖。圖^中所示之處理對、 於一特定假設實施,其對應至〆特疋組戈—或多數個終端‘ 機。一開始在步驟942,在假設雉陣Γ θ之最大後處理SNR 先被決定,此最大S N R對應於’特定之傳送天線/終端機 對,而該傳送天線係在步騾944指足予此終端機。此傳送 天線與終端機於是由矩陣r中移走’而後矩陣減低至(Ντ -1) φ X (Ντ -1)之規模,係藉由在步騾946移走對應於傳送天線之 行與對應於剛被指定之終端機的列 在步騾948中所作之決定,將不管假設中所有傳送天線 是否已被指定。如果所有傳送天線址被指定,則該天線指 定將在步驟9 5 0中被提供,而後該程序將終止。否則’該 程序回至步騾9 4 2而另一傳送天線將以類似方式加以指 定。 一旦完成已知假設矩陣Γ之天線指定’對應於此假設之 鲁 性能度量(例如系統通量)將可被決定(例如依據對應於天 線指定之SNR),如方程式(70)與(71)中所示。此性能度量 將針對各假設加以更新。當所有假設均被評估過,終端機 與天線指定之最佳組合將被選定在預定將傳輸區間内用 ·· 於傳輪資料。 - 表5顯示由一 4x4 ΜΙΜΟ系統内終端機推導出後處理SNR 〈矩陣Γ的一範例,其中該基地台包括4傳送天線而各終 %機包括4接收天線。對於依據最大對最大標準之天線指 -120 - 1269549 發嘱β (116) 定方案,在原始矩陣中最佳SN R ( 1 6分貝)係由傳送天線3 且指定予終端機1而達成,如表中第3列與第4欄之陰影欄 所示。傳送天線3與終端機1於是由矩陣中移除。在縮減之 3x3矩陣中最佳SNR (14分貝)係由二傳送天線1與4達成, 其被分別指定至終端機3與2。剩餘傳送天線2於是被指定 予終端機4。 表51269549 (115) The system is implemented in a transmitting antenna between the same j. Figure 9B is a flow diagram of a particular embodiment of the sequence 940 of transmitting the antenna to the terminal using the maximum to maximum standard. The processing shown in Figure 2 is implemented in a specific hypothesis, which corresponds to the 〆 疋 group - or a plurality of terminals ‘ 机. Initially, in step 942, the maximum post-processing SNR is first determined after assuming that the maximum SNR corresponds to the 'specific transmit antenna/terminal pair, and the transmit antenna is at step 944. machine. The transmitting antenna and the terminal are then removed from the matrix r and the matrix is reduced to the scale of (Ντ -1) φ X (Ντ -1) by removing the row corresponding to the transmitting antenna and correspondingly at step 946. The decision made in step 948 of the terminal just designated will be regardless of whether all of the transmit antennas in the hypothesis have been designated. If all transmit antenna addresses are specified, the antenna designation will be provided in step 950 and the program will terminate. Otherwise, the procedure returns to step 924 and the other transmit antenna will be specified in a similar manner. Once the antenna of the known hypothesis matrix is completed, the performance metric corresponding to this hypothesis (eg, system flux) will be determined (eg, according to the SNR corresponding to the antenna designation), as in equations (70) and (71). Shown. This performance metric will be updated for each hypothesis. When all assumptions have been evaluated, the best combination of terminal and antenna designation will be selected to be used in the transmission interval. - Table 5 shows an example of post-processing SNR <matrix 推 derived from a 4x4 ΜΙΜΟ system terminal, where the base station includes 4 transmit antennas and each terminal includes 4 receive antennas. For the antenna finger-120 - 1269549 according to the maximum-to-maximum standard, the optimal SN R (16 dB) is obtained by transmitting the antenna 3 and assigning it to the terminal 1. The shaded columns in columns 3 and 4 of the table are shown. The transmitting antenna 3 and the terminal 1 are then removed from the matrix. The best SNR (14 dB) in the reduced 3x3 matrix is achieved by the two transmit antennas 1 and 4, which are assigned to terminals 3 and 2, respectively. The remaining transmitting antenna 2 is then assigned to the terminal 4. table 5

SNR(分貝) 傳送天線 終端機 1 2 3 4 1 7 9 鐵丨靈 liliiilll 1鋈削 2 8 10 12 丨翻爨圓圓 3 1關關丨曜圈 兹驗 綴綴 兹驗 i猫_驗驗 兹綴 綴驗 7 6 9 4 12 Sfi! SfifiQSfifi 7 5 _ίΙ自 圓PSNR (decibels) transmitting antenna terminal 1 2 3 4 1 7 9 iron li l liliiilll 1 boring 2 8 10 12 丨 爨 爨 round 3 1 off 丨曜 兹 兹 验 验 兹 验 验 验 验 验 验 _ _ _ _ _ Test 7 6 9 4 12 Sfi! SfifiQSfifi 7 5 _ίΙ自圆P

圖9A與9B中描述之排程方案代表一特定方案,其評估 對應於各種需求在預定將傳輸區間傳輸資料之現用終端 機的可能組合之各種假設。將由排程器評估之假設總數可 能十分龐大,即使現用終端機數目較小。事實上,假設之 總數Nhyp可表為:The scheduling scheme depicted in Figures 9A and 9B represents a particular scheme that evaluates various assumptions corresponding to various combinations of possible combinations of active terminals that are scheduled to transmit data over a transmission interval. The total number of assumptions to be evaluated by the scheduler can be quite large, even if the number of active terminals is small. In fact, the assumed total number of Nhyp can be expressed as:

N 卜)_ Nu! 丁广(比 - Ντ)!Ντ! 方程式(72) 其中N u係將被考慮用於排程之現用終端機數目。例如, 如果Nu = 8而NT = 4,則Nhyp = 70。一無遣漏之搜尋可用以 決定提供最佳化系統性能之該特定假設(及該特定天線指 定),藉由用以選擇最佳假設與天線指定之性能度量加以 量化。 -121 - 1269549 (117) 其他具有 發明之範圍 南系統性能 之處理的量 在另一其 順序被排孝呈 據一或多個 潛在需求)、 預定將進行* 終端機需求 化(例如至戈 加以更新。 移出。 對於各訊 排程。可依: 實施例,只 在另一其他 機將被考慮、 圖9 C係用 一具體實施 機將被考慮 檢查清單中 南優先順序 排程。針對 減低複雜度士 &amp; '^排程方案也可實施且係落入本 。此排程方鸯、 &lt;一詳述於後。這些方案也提供 ’而能減低需I '、 而要用以排程終端機用於資料傳輸 〇 他排程方案φ T ’現用終端機係依據終端機優 於資料傳輪。久μ 碼货先 , 各終端機之優先順序可如上述依 度量(例如平私 量)、系統限制與需求(例如 其他因子或甘 、· _ 、、'且合而推導出。所有需求在一 之資料傳輪的 4的現用終端機清單將被維持。冬— 資料傳輸時,何田一 匕”清單 ,、將被加入清單而其度量將初始 ^旧早各終端機之度量隨後將針對各傳蛤 一旦終端機不雨也丄 ^ 再需求資料傳輸,其將由清單中 框’ π早_戶斤彳終端冑或其丨集可孝皮考慮用於 據各種因子考慮特定數目之終端機。在一具體 有ΝΤ最高優先終端機被選定用於資料傳輸。 具體實施例中,清單中最高Ν χ優先順序終端 用於排程,其中Νχ &gt; Ντ。 於一優先順序為基礎之排程方案程序96〇的 例之流程圖,其中一組Ν τ最高優先順序終端 於排程。在步驟962,排程器在各傳輸區間中 所有現用終端機之優先順序與選擇該組Ντ最 終端機。清單中剩餘之終端機將不被考慮用於 各個被選定終端機之通道預估則在步驟964中 -122- 1269549N 卜)_ Nu! Ding Guang (比 - Ντ)!Ντ! Equation (72) where Nu is the number of active terminals that will be considered for scheduling. For example, if Nu = 8 and NT = 4, then Nhyp = 70. A non-missing search can be used to determine the particular hypothesis (and the particular antenna designation) that provides the optimal system performance, quantified by selecting the best hypothesis and the antenna-specified performance metric. -121 - 1269549 (117) Other quantities of processing with the performance of the South System of the scope of the invention are in the order of another one or more potential requirements), which are scheduled to be carried out * Terminal demanding (eg to Go) Update. For each schedule, it can be based on: In the embodiment, only another machine will be considered, and Figure 9C will use a specific implementation machine to be considered in the checklist. The '&amp;&gt; '^ scheduling scheme can also be implemented and is included in the book. This scheduling method, &lt; one is detailed later. These schemes also provide 'can reduce the need for I', but to be used for scheduling terminals In the data transmission, his scheduling scheme φ T 'the current terminal system is superior to the data transmission wheel according to the terminal machine. The long-term μ code goods first, the priority order of each terminal can be as measured above (such as flat and private quantity), system limitation It is derived from the demand (such as other factors or Gan, · _, , ' and is combined. All the demand for the current terminal list of 4 in the data transmission will be maintained. Winter - data transmission, He Tianyi" List, It is added to the list and its metrics will be initialized. The metrics of each terminal will be used for each transmission. Once the terminal is not raining, the data will be transmitted again, which will be in the list box π 早 _ 彳 彳 胄 or The collection may be considered for considering a specific number of terminals according to various factors. A specific highest priority terminal is selected for data transmission. In the specific embodiment, the highest priority order in the list is used for the terminal. Scheduling, where Νχ &gt; Ντ. A flowchart of an example of a prioritization-based scheduling scheme program 96, wherein a set of Ν τ highest priority terminals are scheduled. In step 962, the scheduler is in each The priority order of all active terminals in the transmission interval and the selection of the group Ντ terminal. The remaining terminals in the list will not be considered for the channel estimation of each selected terminal. In step 964 -122- 1269549

(118) 顯取。例如,針對經選定終端機之後處理S N R可被擴取且 用以形成假設矩陣Γ。 該Ντ傳送天線於是在步驟966依據通道預估與使用任 何多數天線指定方案之一被指定予經選定之終端機。例如 該天線指定可如上述依據一無遺漏之搜尋或最大對最大 標準。在另一天線指定方案中,該終端機度量被更新後,(118) Obtained. For example, processing S N R for a selected terminal can be expanded and used to form a hypothesis matrix Γ. The Ντ transmit antenna is then assigned to the selected terminal in step 966 based on channel estimation and using any of the plurality of antenna designations. For example, the antenna designation can be based on an exhaustive search or maximum to maximum standard as described above. In another antenna designation, after the terminal metric is updated,

傳送天線將被指定予終端機使終端機優先順序係經常態 化而儘可能地接近。 終端機之資料傳輸率以及編碼與調變方案接著在步驟 968中依據該天線指定加以決定。排程與資料傳輸率可被 提報^經#程之終端機。清單中經排程(與未排幻終端機 之度量被更新,以反映經排程之資料傳輸(與未傳輸),而 後在步騾970中系統度量也被更新。 ΜΙΜΟ系統 下行鏈路排程經進一步詳述於2〇〇1年5月 曰 多 申請之美國專利申請案序號 重輸入多重輪出(ΜΙΜΟ)通信 〇9/859,345中,其標題為「在 系統中分配下行鏈路資源 之方法與裝置」’其讓渡予本發明受讓人且在此以引用方 式併入0The transmit antenna will be assigned to the terminal to keep the terminal priorities as close as possible. The data rate of the terminal and the encoding and modulation scheme are then determined in step 968 based on the antenna designation. The schedule and data transfer rate can be reported to the terminal of the #程. The schedule in the list (the metrics with the unplanned terminal are updated to reflect the scheduled data transmission (without transmission), and then the system metrics are also updated in step 970. ΜΙΜΟ System downlink scheduling The method of assigning downlink resources in a system is described in more detail in U.S. Patent Application Serial No. Re-input Multiple Turn-Out (ΜΙΜΟ) Communication 〇 9/859,345, filed May 2, 2011. And the device "to the assignee of the present invention and incorporated herein by reference.

4. 之上行鏈路 本發明-特點提供增加MIM〇系統上行鍵路容量之技 術。.提供排程方案以排程由SIM〇終端機之上行鏈路資料 傳輸’其利用單—天線及/或利用多重天線之ΜΙΜΟ終端 機。二種型式之終端機可同時在相同通道上獲得支援。 圆〇接收器處理技術可用以處理由SIMmm細終端機 -123 - 1269549 (119) 之任何組合傳送的信號。從基地台之觀點,由單一 MIM0 終端機處理N個不同信號與由各個不同s I Μ 0終端機處理 單一信號之間,並沒有明顯之差異。 為求簡化,假設細胞内各終端機均配備一單一天線。在 一特定瞬間,介於各終端機之天線與基地台之NR接收天 線陣列間之通道反應經特徵化為一向量kj,其元件構成獨 立高斯隨機變數如下列:4. Uplinks The present invention - features provide techniques for increasing the uplink key capacity of the MIM system. A scheduling scheme is provided for scheduling transmissions from the uplink data of the SIM(R) terminal, which utilizes a single antenna and/or a multi-antenna terminal. Two types of terminals can be supported on the same channel at the same time. The circle receiver processing technique can be used to process signals transmitted by any combination of SIMmm fine terminals -123 - 1269549 (119). From the point of view of the base station, there is no significant difference between the processing of N different signals by a single MIM0 terminal and the processing of a single signal by each different s I Μ 0 terminal. For simplicity, it is assumed that each terminal in the cell is equipped with a single antenna. At a particular instant, the channel response between the antenna of each terminal and the NR receiving antenna array of the base station is characterized as a vector kj whose components constitute independent Gaussian random variables such as the following:

h- M 式(73) 其中hi,』係由第j終端機至基地台第i接收天線之通道反應 預估。H- M (73) where hi, is the channel response estimate from the jth terminal to the i-th receiving antenna of the base station.

同樣為求簡化,假設來自各終端機之平均接收功率係在 基地台處信號處理後經常態化以達成一共同設定點 ysp。該共同設定點可被達成,係藉由調整各傳送終端機 傳送功率的一封閉迴路功率控制機制(例如依據來自基地 台之功率控制命令)。另一選擇是,一獨一設定點也可用 於各終端機而在此描述之技術可被通用化以涵蓋此操作 模式。同時假設來自不同的終端機之傳輸皆同步化,以致 該傳輸在一指定時間窗口内到達基地台。 基地台定期預估現用終端機之通道反應。依據該可用通 道預估,可設計各種排程方案以最大化上行鏈路通量,係 藉由排程與指定終端機予可用的傳輸通道使其允許同時 傳送。排程器評估那一種特定終端機組合可提供相對任何 -124- 1269549Also for simplification, it is assumed that the average received power from each terminal is constantly normalized after signal processing at the base station to achieve a common set point ysp. The common set point can be achieved by adjusting a closed loop power control mechanism for each transmit terminal (e.g., based on power control commands from the base station). Alternatively, a unique set point can be used for each terminal and the techniques described herein can be generalized to cover this mode of operation. It is also assumed that the transmissions from different terminals are synchronized so that the transmission arrives at the base station within a specified time window. The base station regularly estimates the channel response of the current terminal. Based on this available channel estimate, various scheduling schemes can be devised to maximize the uplink throughput, allowing scheduling to be simultaneously transmitted by scheduling and assigning available terminals to the available transmission channels. The scheduler evaluates which particular combination of terminals can provide relative to any -124-1269549

(120) 系統限制與需求之最佳系統性能(例如最高通量)。藉由採 用個別終端機之空間(及可行之頻率)簽署,平均系統通量 相對於以單一終端機所達成將可增加。再者,藉由採用多 重使用者分集,排程器可以找到”相容”終端機之組合而可 被允許在同一時間於相同通道上傳送,相較於單一使用者 排程或用於多重使用者之隨機排程,可有效加強系統容 量 °(120) Optimal system performance (eg, maximum throughput) for system constraints and requirements. By signing the space (and the viable frequency) of the individual terminals, the average system throughput will increase relative to that achieved with a single terminal. Furthermore, by employing multiple user diversity, the scheduler can find a combination of "compatible" terminals and can be allowed to transmit on the same channel at the same time, compared to a single user schedule or for multiple uses. Random scheduling, which can effectively enhance system capacity

上行鏈路排程方案係設計以選擇終端機之最佳組合,用 於在可用的傳輸通道上同時傳輸,以使系統性能達最大化 而仍符合系統限制與需求。如果Ντ終端機經選定用於傳 輸而各個終端機均利用一天線,則對應於經選定之終端機 組{ϋ = {ua,ub,…,U%} }之通道反應矩陣ϋ可表為: H = [fei …1ιντ ]= Κι 八 V Kr Λ \ντ Μ Μ Μ ^Nr-2 Λ 方程式(74)The uplink scheduling scheme is designed to select the best combination of terminals for simultaneous transmission over the available transmission channels to maximize system performance while still meeting system constraints and requirements. If the Ντ terminal is selected for transmission and each terminal utilizes an antenna, the channel response matrix corresponding to the selected terminal unit {ϋ = {ua,ub,...,U%} } can be expressed as: = [fei ...1ιντ ]= Κι 八V Kr Λ \ντ Μ Μ Μ ^Nr-2 Λ Equation (74)

在一具體實施例中,持續消除接收器處理技術可用於基 地台以接收與處理來自終端機之傳輸。當使用此接收器處 理技術以處理接收信號時,關聯至各傳送終端機之SNR係 終端機在基地台内處理之特定順序的一函數。上行鏈路排 程方案在選擇用於資料傳輸之終端機組時,將此列入考 量 。 圖10Α係排程終端機用於在上行鏈路上傳輸之程序1000 的一具體實施例之流程圖。一開始,在步驟1012,用以選 擇用於資料傳輸之最佳終端機組的度量先經初始化。如上 -125 - 1269549 (121)In a specific embodiment, the continuous cancellation receiver processing technique can be used in a base station to receive and process transmissions from the terminal. When this receiver processing technique is used to process the received signal, the SNR system associated with each transmitting terminal is a function of the particular order of processing within the base station. The uplink scheduling scheme takes this into account when selecting the terminal unit for data transmission. Figure 10 is a flow diagram of a particular embodiment of a process 1000 for scheduling a terminal to transmit on the uplink. Initially, at step 1012, the metrics used to select the best end unit for data transfer are initialized first. As above -125 - 1269549 (121)

聲嗎戴瞵續頁I 述,可使用各種性能度量以評估終端機之選擇。 在步驟1014,數量為一或多個的一組(新)現用終端機接 著由所有現用終端機選定,以在預定將進行之傳輸中傳送 資料。各種技術可用以限制被考慮用於排程的現用終端機 數目,如上述。經選定之特定終端機組(例如u = {ua,ub,..·,ιι〜}) 形成將被評估的一假設。對於在該組中各個被選定之終端 機h,通道預估向量 ^係在步騾1016中被擷取。A variety of performance metrics can be used to evaluate the choice of terminal. In step 1014, a set of one or more (new) active terminals are selected by all active terminals to transmit the data in the transmissions scheduled to be made. Various techniques can be used to limit the number of active terminals that are considered for scheduling, as described above. The selected specific terminal group (eg u = {ua, ub, .., ιι~}) forms an assumption to be evaluated. For each selected terminal h in the group, the channel estimate vector ^ is retrieved in step 1016.

當使用持續消除接收器處理技術於基地台時,終端機被 處理之順序直接衝擊其性能。因此在步騾1018中,一特定 (新)順序被選定以處理在該組内之終端機。此特定順序形 成將被評估的一子假設。When using continuous cancellation receiver processing techniques on the base station, the order in which the terminals are processed directly impacts their performance. Thus in step 1018, a particular (new) order is selected to process the terminals within the group. This particular sequence forms a sub-hypothesis that will be evaluated.

該子假設接著可在步騾1020被評估而該子假設之終端 機度量將被提供。該終端機度量可為來自該組内之終端機 而用於信號假設傳輸之後處理SNR。步騾1020可依據上述 之持續消除接收器處理技術而達成。在步驟1022,對應於 此子假設之性能度量(例如系統通量)接著被決定(例如依 據該終端機之後處理SNR)。此性能度量於是也在步騾 1022被用以更新對應於現行最佳子假設之性能度量。明確 言之,如果用於此子假設之性能度量係較佳於現行最佳子 假設,則此子假設將成為最新之最佳子假設,而對應於此 子假設之性能與終端機度量將被儲存。 在步騾1024所作之決定,將不論所有用於現行假設之所 有子假設是否已被評估。如果並非所有子假設均被評估, 則程序回至步驟1018,而該組終端機内一個不同且未被評 -126 - (122) 1269549 估之順序的將被選定供評估。步驟1〇18至1〇24將重複於將 被評估之各子假設。 如果所有關於一特定假設的子假設均在步驟1〇24中被 評估’在步騾1026中所作之決定將不論所有假設是否均被 考慮。如果並非所有假設均已考慮’則程序回至步騾 1014,而一不同且未被評估之終端機組將被選定供評估。 步騾1014至1026將重複用於將被考慮之各假設。 如果在步驟1026中所有關於現用終端機之假設均獲考 慮’則關於最佳子假設之結果將被錯存,最佳子假設内關 於,、场機之貝料傳輸率將被決定(例如依據其SNR),而後 排程與資料傳輸阜辦^ A丰 号W丰將在步騾1028於排定之傳輸前傳訊予 、、、场機如果邊排程万案需求維持其他系統與終端機之度 量(例如横跨過^次傳輸之平均資料傳輸率、關於資料 傳輸之潛在因去鋈竺、 t 、 、寺)’則這些度量將在步騾1030予以更 新。終端機庶香I m . 量了用以評估個別終端機之性能。 在步驟1020中早你r Μ、、 又?又 &lt; 評估將依據圖5中描述之持續消 除接收器處理技併無、Α ^灵她,如果此技術係用於基地台。對於 此接收器處理枯淋 、、,、 ^ ’處理傳送信號之特定順序將影響結 果。因此使闱山a 收器處理技術,對於將被評估之Ντ終 场機的各假設, 如I M 將有Ντ因子階乘之可能順序(例如Ντ! = 24 如果Ντ = 4 }對雇、人 假設對應於一 :iNT因子階乘之子假設用於該假設。各子 該持續消除接收器::〈終騎機組11 ={Ua,Ub,…,V ’而 機(即終端機u第—於是將以指定之順序處理該終端 a ,隨後為終端機ub,等等)。 -127- 1269549 發嗔戴明績買 (123) 對於各子假設,持續消除接收器處理提供一組S N R用於 用於該終端機之後處理信號,其可表為: 其中γ」係當接收器處理子假設中關於第j終端機後之SNR。 各子假設將進一步結合一性能度量Rhyp^rdu,其可為各 種因子的一函數。例如,依據終端機之S N R的一性能度量 可表為:This sub-hypothesis can then be evaluated at step 1020 and the terminal metrics for that sub-hypothesis will be provided. The terminal metric can be used to process SNR after signal hypothesis transmission from terminals in the group. Step 1020 can be accomplished in accordance with the above-described continuous elimination receiver processing technique. At step 1022, a performance metric (e.g., system throughput) corresponding to this sub-hypothesis is then determined (e.g., based on the terminal to process the SNR). This performance metric is then also used in step 1022 to update the performance metric corresponding to the current best sub-hypothesis. Specifically, if the performance metric used for this sub-hypothesis is better than the current best sub-hypothesis, then this sub-hypothesis will be the latest best sub-hypothesis, and the performance and terminal metrics corresponding to this sub-hypothesis will be Store. The decision made at step 1024 will be regardless of whether all sub-hypotheses used in the current hypothesis have been evaluated. If not all sub-hypotheses are evaluated, the process returns to step 1018, and a different order within the set of terminals that has not been evaluated -126 - (122) 1269549 will be selected for evaluation. Steps 1〇18 to 1〇24 will be repeated for each sub-hypothesis to be evaluated. If all sub-hypotheses about a particular hypothesis are evaluated in step 1〇24, the decision made in step 1026 will be considered regardless of whether all hypotheses are considered. If not all assumptions have been considered, then the procedure returns to step 1014 and a different and unevaluated terminal unit will be selected for evaluation. Steps 1014 through 1026 will be repeated for each hypothesis to be considered. If all the assumptions about the active terminal are taken into account in step 1026, then the result of the best sub-hypothesis will be mis-stored, and within the best sub-hypothesis, the transmission rate of the field machine will be determined (for example, Its SNR), and the subsequent scheduling and data transmission ^ ^ ^ A Feng W Feng will be in the step 1028 before the scheduled transmission of the message to,,,,,,,,,,,,,,,,,,,, The metrics (eg, the average data transfer rate across the transmissions, the potential cause of the data transfer, t, , and temple) are then updated at step 1030. The terminal musk I m . is used to evaluate the performance of individual terminals. In step 1020, you r Μ,, and again? Also &lt; The evaluation will be based on the continuous cancellation receiver processing technique described in Figure 5, if it is used in a base station. The specific order in which the receiver processes the dead, , , , ^ ' processing signals will affect the outcome. Therefore, the 闱山a receiver processing technique, for each hypothesis of the 终τ final field machine to be evaluated, such as IM, will have a possible order of Ντ factor multiplication (eg Ντ! = 24 if Ντ = 4 } Corresponding to one: the sub-hypothesis of the iNT factor factorial is used for this hypothesis. Each sub-continuation eliminates the receiver:: <final rider unit 11 = {Ua, Ub, ..., V ' and the machine (ie terminal u--then will The terminal a is processed in the specified order, followed by the terminal ub, etc.) - 127 - 1269549 嗔 嗔 戴 戴 (123) For each sub-hypothesis, the continuous cancellation receiver processing provides a set of SNRs for the The terminal then processes the signal, which can be expressed as: where γ" is the SNR of the receiver after processing the hypothesis about the jth terminal. Each sub-hypothesis will be further combined with a performance metric Rhyp^rdu, which can be various factors A function. For example, a performance metric based on the SNR of the terminal can be expressed as:

khyp,order 一 f^lkyp.ordj 其中f(·)係括弧中之引數的一正實數函數。 各種函數均可被用於公式化該性能度量。在一具體實施 例,可使用關於該子假設所有Ντ傳送天線之可達成通量 的一函數,其可示如方程式(70)與(71)中所示。Khyp,order a f^lkyp.ordj where f(·) is a positive real number function of the arguments in parentheses. Various functions can be used to formulate this performance metric. In a specific embodiment, a function of the achievable flux of all ττ transmitting antennas for the sub-hypothesis can be used, which can be shown as shown in equations (70) and (71).

對於將被評估之各子假設,該組由持績消除接收器處理 提供之SNR可用以推導關於該子假設之性能度量,例如方 程式(7 0)與(7 1)中所示。關於各子假設所計算出之性能度 量將與現行最佳子假設比較。如果用於一現行子假設之性 能度量係較佳,則該子假設與相關之性能度量與SNR將儲 存作為關於最新最佳子假設之度量。 一旦所有子假設均已被評估,最佳子假設將被選定而子 假設内之終端機將被排程用於在一預定程序中傳輸。最佳 子假設將關聯至一特定終端機組。如果持續消除接收器處 理係用於基地台處,最佳子假設將進一步與在基地台處的 一特定接收器處理順序產生關聯。在任何情況下,該子假 設將進一步與該終端機可達到之SNR關聯,其可依據經選 -128 - 1269549 說痛買· (124) 定之處理順序加以決定。 關於該終端機之資料傳輸率於是可依據其達成之s N R · 加以計算,如方程式(7 1)中所示。部份c S I (其可包含資料 、 傳輸率或該s N R)可被提報至經排程之終端機,其接著使 用該部份C S I據以調整(即改寫)其資料處理以達成需求之 性能位準。For each sub-hypothesis to be evaluated, the SNR provided by the performance elimination receiver process can be used to derive performance metrics for the sub-hypothesis, as shown in equations (70) and (7 1). The performance metrics calculated for each sub-hypothesis will be compared to the current best sub-hypothesis. If the performance metric for a current sub-hypothesis is better, then the sub-hypothesis and associated performance metrics and SNR will be stored as a measure of the most recent best hypothesis. Once all sub-hypotheses have been evaluated, the best sub-hypothesis will be selected and the terminals within the sub-hypothesis will be scheduled for transmission in a predetermined procedure. The best sub-hypothesis will be associated with a specific end unit. If the receiver processor is continuously eliminated for use at the base station, the best sub-hypothesis will be further associated with a particular receiver processing sequence at the base station. In any case, the sub-prediction will be further related to the SNR that the terminal can achieve, which can be determined in accordance with the processing order selected in the selection -128 - 1269549. The data transfer rate for the terminal can then be calculated from the s N R · achieved by it, as shown in equation (71). A portion of the cSI (which may include data, transmission rate or the s NR) may be reported to the scheduled terminal, which in turn uses the portion of the CSI to adjust (ie, rewrite) its data processing to achieve the desired Performance level.

圖10A中描述之上行鏈路排程方案代表一特定方案,其 可評估需求在預定將進行之傳輸中傳送資料之各可能的 現用終端機組之所有可能順序。將由排程器許估之可能的 假設總數可能會十分龐大,即使現用終端機數目較小。實 際上,子假設之總數可表示為:The uplink scheduling scheme depicted in Figure 10A represents a particular scheme that evaluates all possible sequences of possible active end units that are required to transmit data in a transmission that is scheduled to proceed. The total number of possible assumptions that will be estimated by the scheduler can be quite large, even if the number of active terminals is small. In fact, the total number of sub-hypotheses can be expressed as:

NTJ—(Νυ-Ντ)! 方程式(75)NTJ—(Νυ-Ντ)! Equation (75)

其中Νυ係將被考慮用於排程之現用終端機數目。例如, 如果Nu = 8而ΝΤ = 4,則Nsub-hyp = 1680。一無遺漏之搜尋可 用以決定提供最佳化系統性能之該子假設,藉由用以選擇 最佳子假設之性能度量加以量化。 各種具有在處理排程終端機時減少複雜度之其他上行 鏈路排程方案也可使用。在此上行鏈路排程方案中,包括 於各假設之終端機將以依據特別定義規則而決定的一特 定順序加以處理。在一具體實施例中,對於每一次疊代, 持續消除接收器處理技術回復在同等化後具有最佳SNR 之傳送信號。在此情況下,該順序將依據假設中之終端機 -129 - 1269549 (125) g嗎說明绩買 的後處理SNR加以決定。在另一具體實施例中’各假設中 之終端機係依據一特定之順序加以處理。該處理順序可依 據假設中之終端機的優先順序(例如最低優先順序之終端 機首先處理,次低優先順序之終端機接著處理等等’而最 高優先順序之終端機最後處理)、使用者酬載、潛在需求、 緊急服務優先順序等等。The number of active terminals that will be considered for scheduling will be considered. For example, if Nu = 8 and ΝΤ = 4, then Nsub-hyp = 1680. An exhaustive search can be used to determine this sub-hypothesis that provides optimized system performance, quantified by performance metrics used to select the best sub-hypothesis. Various other uplink scheduling schemes with reduced complexity in processing scheduled terminals are also available. In this uplink scheduling scheme, the terminals included in each hypothesis will be processed in a specific order determined according to the special definition rules. In one embodiment, for each iteration, the receiver processing technique continually cancels the transmitted signal with the best SNR after equalization. In this case, the order will be determined based on the post-processing SNR of the hypothetical terminal -129 - 1269549 (125) g. In another embodiment, the terminals in each of the hypotheses are processed in a particular order. The processing sequence may be based on the priority order of the terminal in the hypothesis (for example, the terminal of the lowest priority order is processed first, the terminal of the next low priority order is processed, etc.) and the terminal of the highest priority is finally processed), the user is paid. Load, potential demand, priority of emergency services, etc.

在另一上行鏈路排程方案中,終端機之排程係依據終端 機優先順序。對於各訊框,清單上一特定數目之終端機可 被考慮用於排程。在一具體實施例中,只有該Ν τ最高優 先順序之終端機經選定在Ντ可用傳輸通道上傳送。在另 一具體實施例中,清單上該Nx最高優先順序之終端機將 被考慮用於排程’其中Νυ〉Νχ &gt; Ντ。In another uplink scheduling scheme, the scheduling of the terminals is based on the priority order of the terminals. For each frame, a specific number of terminals on the list can be considered for scheduling. In a specific embodiment, only the terminal with the highest priority of the Ντ is selected for transmission on the Ντ available transmission channel. In another embodiment, the Nx highest priority terminal on the list will be considered for scheduling 'where Νχ> Νχ &gt; Ντ.

圖1 OB係關於一優先順序為基礎之排程方案程序1040的 一具體實施例之流程圖,其中NT最高優先順序之終端機 係經排程於上行鏈路上傳輸。對於各傳輸區間,排程器在 步騾1042檢查清單上所有現用終端機之優先順序且選擇 Ντ最高優先順序之終端機。在此具體實施例中,清單上 剩餘之(Nu - Ντ)終端機將不考慮用於排程。關於各經選定 終端機之通道預估 係在步騾1044 中擷取。由Nτ經選定 終端機形成之該假設的各子假設將被評估,而關於各子假 設的後處理SNR之對應向量hypider,係在步驟1046推導 出。最佳子假設經選定,且對應於最佳子假設S N R之資料 傳輸率將在步騾1048中決定。再次,該排程與資料傳輸率 可被提報至假設中之終端機。清單中終端機之度量與系統 -130- 1269549 發碼锟-續頁 (126) 度量於是在步驟1050中更新。在一具體實施例中’最佳子 假設可對應於在其度量被更新後最接近該終端機之常態 化優先順序者。Figure 1 OB is a flow diagram of a particular embodiment of a prioritization-based scheduling scheme program 1040 in which NT highest priority terminals are scheduled to be transmitted on the uplink. For each transmission interval, the scheduler checks the priority order of all active terminals on the list at step 1042 and selects the terminal with the highest priority of Ντ. In this particular embodiment, the remaining (Nu - Ντ) terminals on the list will not be considered for scheduling. The channel estimates for each selected terminal are retrieved in step 1044. The hypotheses of this hypothesis formed by Nτ via the selected terminal will be evaluated, and the corresponding vector hypid of the post-processing SNR for each sub-prediction is derived at step 1046. The best sub-hypothesis is selected and the data transmission rate corresponding to the best hypothesis S N R will be determined in step 1048. Again, the schedule and data transfer rate can be reported to the terminal in the hypothesis. Metrics and Systems for Terminals in the List -130 - 1269549 Code Transfer - Continued (126) The metric is then updated in step 1050. In a particular embodiment, the 'best sub-hypothesis may correspond to the normalized priority order that is closest to the terminal after its metric is updated.

ΜΙΜΟ系統之上行鏈路排程經進一步詳述於2001年5月 16曰申請之美國專利申請案序號09/859,346中,其標題為 「在多重輸入多重輸出(ΜΙΜΟ)通信系統中分配上行鏈路 資源之方法與裝置」,其讓渡予本發明受讓人且在此以引 用方式併入。The uplink schedule of the system is further detailed in U.S. Patent Application Serial No. 09/859,346, the entire disclosure of which is incorporated herein by reference. Methods and Apparatus for Resources, which are assigned to the assignee of the present invention and incorporated herein by reference.

對於其中終端機係依據終端機優先順序選定與經排程 用於傳輸(下行鏈路或上行鏈路)的一排程方案,可能偶爾 會發生不良終端機群集。一「不良」終端機組係指其在該 假設通道反應矩陣Η中導致強烈線性相依,於是導致該組 内各終端機之較低整體通量。當其發生時,在數個訊框中 此終端機實質上可不改變。在此方式中,排程器可能無法 擺脫此特定終端機,直到終端機優先順序之改變足夠改變 在該組中之資格。 為避免上述「群集」效應,排程器可設計以在指定終端 機予可用傳輸通道前確認此條件,及/或萬一其發生時偵 測其條件。許多不同的技術可用以決定在假設矩陣iL線性 相依之程度。這些技術包括解出ii之特徵值、解出後處理 信號之SNR,係使用持續消除接收器處理技術或線性空間 同等化技術及其他。偵測此群集條件通常易於實施。在群 集條件經偵測之情況下,排程器可重新排程終端機之順序 (例如以隨機方式)在嘗試減低矩陣ϋ内之線性相依度。一 -131 - (127) 1269549For a scheduling scenario in which the terminal is selected according to the priority of the terminal and scheduled for transmission (downlink or uplink), a bad terminal cluster may occasionally occur. A "bad" terminal unit means that it causes a strong linear dependence in the assumed channel response matrix, resulting in a lower overall throughput for each terminal in the group. When it happens, the terminal can be substantially unchanged in several frames. In this mode, the scheduler may not be able to get rid of this particular terminal until the change in the priority of the terminal is sufficient to change the eligibility in that group. To avoid the above-mentioned "clustering" effect, the scheduler can be designed to confirm this condition before the designated terminal is available to the available transmission channel, and/or to detect its condition in the event of its occurrence. Many different techniques can be used to determine the degree to which the matrix iL is linearly dependent. These techniques include solving the eigenvalues of ii, and solving the SNR of the post-processing signal, using continuous cancellation receiver processing techniques or linear space equalization techniques and others. Detecting this cluster condition is usually easy to implement. In the event that the cluster condition is detected, the scheduler can rearrange the order of the terminals (e.g., in a random manner) in an attempt to reduce the linear dependence within the matrix. One -131 - (127) 1269549

曳步万案也被設計以強制排程器選擇導致「優良」假設矩 陣EL (即一具有最小程度之線性相依)之終端機組。 VI. 性能The Walker case was also designed to force the scheduler to select the end unit that caused the "good" hypothetical matrix EL (i.e., with minimal linear dependence). VI. Performance

」吏:在此描述之技術可提供經改進之系統性能(例如較 高通^)。已實施模擬以量化可能因部份這類技術而在系 統通量上之改進。在模擬中,耦合傳送天線之陣列與接收 天線之通遒反應矩陣氐係假設由相等_變異量、零·平均高 斯隨機變數(即「獨立複合高斯假設」)所構成。用於隨機 選擇NT (1 x Nr)通道之平均通量係經評量。請注意通量係 足為通道i量之5〇%,如由shann〇n理論容量限度所決定。吏: The techniques described herein provide improved system performance (e.g., higher pass). Simulations have been implemented to quantify improvements in system throughput that may be due to some of these technologies. In the simulation, the wanted-reaction matrix of the array of coupled transmit antennas and the receive antenna is assumed to consist of an equal-variation, zero-mean Gaussian random variable (ie, "independent composite Gaussian hypothesis"). The average flux used to randomly select NT (1 x Nr) channels is evaluated. Please note that the flux is 5〇% of the channel i, as determined by the theoretical capacity limit of shann〇n.

圖11A顯示平均下行鏈路通量,係關於一 mim〇系統每一 終端機具有4傳送天線(即Ντ = 4)與4接收天線(即心=4)用 於單一使用者ΜΙΜΟ模式與多重使用者MIM〇模式(即 N-SIMO模式)。關聯至各操作模式之模擬通量係具有以平 均後處理SNR的一函數。單一使用者MIM〇模式之平均通 量係顯不於圖形1110,而多重使用者ΜΙΜΟ模式之平均通 量係顯示於圖形1112。 如圖1 1 Α中所示,關聯至使用最大-最大標準天線指定之 多重使用者ΜΙΜΟ模式的模擬通量,顯示出比單一使用者 ΜΙΜΟ模式之達成更佳的性能。在單一使用者ΜΙΜΟ模式 中,ΜΙΜΟ終端機受益於使用持續消除接收器處理以達成 較高之後處理SNR。在多重使用者ΜΙΜΟ模式中,排程方 案能夠採用多重使用者選擇分集以達成改進之性能(即較 高通量),即使各終端機使用線性空間(例如MMSE)處理技 -132 - 1269549Figure 11A shows the average downlink throughput for a terminal of a mim〇 system with 4 transmit antennas (ie Ντ = 4) and 4 receive antennas (ie heart = 4) for single-user mode and multiple uses. MIM〇 mode (ie N-SIMO mode). The analog flux associated with each mode of operation has a function to average the post-process SNR. The average throughput of the single user MIM mode is not shown in Figure 1110, and the average throughput of the multiple user mode is shown in Figure 1112. As shown in Figure 1 Α, the analog flux associated with the multi-user ΜΙΜΟ mode specified using the maximum-maximum standard antenna shows better performance than the single-user ΜΙΜΟ mode. In single user mode, the terminal advantageously benefits from the use of continuous cancellation receiver processing to achieve higher post processing SNR. In the multi-user mode, the scheduling scheme can use multiple user-selective diversity to achieve improved performance (ie, higher throughput), even if each terminal uses linear space (eg, MMSE) processing techniques -132 - 1269549

(128) 術。事實上,多重使用者ΜΙΜΟ模式中之多重使用者分集 導致的一平均下行鏈路通量,超過由劃分一傳輸區間成為 , 4個相等部份子槽且指定各ΜΙΜΟ終端機至各自的子槽所 , 達成之通量。 在模擬關於單一使用者與多重使用者ΜΙΜΟ模式所使用 之排程方案,並未設計以提供相適的公平性,而某些終端 機將可觀察到比其他終端機較高之平均通量。當採用一公 平性標準,關於二操作模式之通量差異可能會縮減。然 而,調和單一使用者與多重使用者ΜΙΜΟ模式二者之能 力,提供在無線資料服務上附加的彈性。 圖1 1 Β顯示平均上行鍵路通量關聯至4接收天線(即N r = 4)與各種數目之單一天線終端機(即NT = 1、2與4)關於一 獨立複合高斯假設在一干擾-限制環境(即干擾功率係遠 大於熱雜訊功率)。4傳送天線(即Ντ = 4)之情況比1傳送天 線(即Ντ = 〇之情況具有較大容量,增益隨著SNR增加。 在SNR極高時,Ντ == 4情況之容量將近四倍於Ντ = 1之情況 。在SNR極低時,這二情況間之增益減低且成為可忽略。 在較低或無干擾之環境中(例如熱雜訊-限制),Ντ = 4情 況之通量甚至更大於圖11Β中所示。在熱雜訊·限制環境 中,干擾功率係較低(例如接近零)而達成之SNR係6分 貝,實質上大於圖1 1Β中關於Ντ = 4之情況。如一範例中, 當一單一終端機在SNR為10分貝接收時,此終端機達成之 平均通量係2,58 bps/Hz。當允許4終端機同時傳送時,整體 達成之通量等於Ντ = 4曲線中之SNR = 1〇分貝+ 10.1og10(4)=(128) surgery. In fact, the average downlink throughput caused by multiple user diversity in the multiple user mode exceeds the division by one transmission interval, four equal partial sub-slots, and each terminal is assigned to its own sub-slot. The balance achieved. The scheduling scheme used in simulating the single-user and multi-user authentication modes is not designed to provide appropriate fairness, and some terminals will observe higher average throughput than other terminals. When a fairness criterion is adopted, the flux difference for the second mode of operation may be reduced. However, the ability to reconcile both single-user and multi-user modes provides additional flexibility in wireless data services. Figure 1 1 shows the average uplink pass flux associated with 4 receive antennas (ie N r = 4) with various numbers of single antenna terminals (ie NT = 1, 2 and 4) with respect to an independent composite Gaussian assumption - Limit the environment (ie the interference power system is much larger than the thermal noise power). 4 The transmission antenna (ie Ντ = 4) is much larger than the 1 transmission antenna (ie Ντ = ,, the gain increases with SNR. When the SNR is extremely high, the capacity of Ντ == 4 is nearly four times Ντ = 1. In the case of very low SNR, the gain between these two cases is reduced and negligible. In low or no interference environments (eg thermal noise - limiting), the flux of τ = 4 cases is even It is more than shown in Fig. 11A. In the thermal noise/restricted environment, the interference power system is lower (for example, close to zero) and the SNR is 6 decibels, which is substantially larger than the case of Ντ = 4 in Fig. 1 . In the example, when a single terminal receives at SNR of 10 dB, the average throughput achieved by the terminal is 2,58 bps/Hz. When the 4 terminals are allowed to transmit simultaneously, the overall flux is equal to Ντ = 4 SNR = 1〇 decibel in the curve + 10.1og10(4)=

• 133 - 1269549 纖 (129) 16刀貝。因此,在熱雜訊·限制環境中,關於4終端機之整 體通量係8,68 bps/Hz或接近3.4倍於單一終端機傳送。• 133 - 1269549 fiber (129) 16 knives. Therefore, in the thermal noise/restricted environment, the overall throughput of the 4-terminal is transmitted at 8,68 bps/Hz or nearly 3.4 times that of a single terminal.

在干擾-限制系統(例如一蜂巢式網路)中,具有多重 S IΜ 0傳輸結合基地台處之持續消除接收器處理的每一細 胞提供之通量,係經選定用於終端機設定點的一函數。例 如在10分貝之SNR,當四個1x4 SIMO終端機允許同時傳送 時’該容量將是二倍以上。在20分貝之SNR,容量比單一 1x4終端機所達成要增加2 6倍之因子。然而,較高之操作 設定點通常意味著一較大頻率之再使用因子。那即是,同 時使用相同頻率通道之細胞的片段可能需要減低以達成 對應於較高操作設定點之需求S N R,其於是可能降低整體 之頻譜效率(以bp s/Hz/細胞加以度量)。在最大化此方案之 網路容量時,因此將有在選擇特定操作設定點與需求頻率 再使用因子之間二者選其一之衡量。In an interference-limiting system (e.g., a cellular network), the throughput provided by each cell with multiple S I Μ 0 transmissions in conjunction with the continuous cancellation receiver processing at the base station is selected for the terminal set point. a function. For example, at an SNR of 10 dB, when four 1x4 SIMO terminals allow simultaneous transmission, the capacity will be more than twice. At a 20 dB SNR, the capacity is increased by a factor of 26 compared to a single 1x4 terminal. However, a higher operating set point usually means a reuse factor for a larger frequency. That is, fragments of cells that use the same frequency channel at the same time may need to be reduced to achieve the demand S N R corresponding to a higher operational set point, which may then reduce the overall spectral efficiency (measured in bp s/Hz/cell). In maximizing the network capacity of this solution, there will therefore be a measure of the choice between the particular operational set point and the demand frequency reuse factor.

圖1 1 c顯示有關一細胞之模擬網路的細胞通量,其他Ντ =1、2與4個同時存在之終端機。各細胞利用Nr = 4接收天 線。所有終端機係功率控制以達到一給定之設定點。檢測 顯示存在一定範圍之SNR設定點,其中關於Ντ = 4終端機 之細胞通量係二倍於只有一單一終端機允許進行傳送。 發射器與接收器單元之元件可被實施附有一或多個數 位信號處理器(DSP)、專用積體電路(ASIC)、處理器。微 處理器、控制器、微控制器、場可程式閘陣列(FPGA)、可 程式邏輯裝置 '其他電子單元或其任何之組合。此處所述 的某些功能及處理亦可利用在一處理器上實施的軟體來 -134- 1269549 (130) 參瑪說锻續買 實施。Figure 1 1 c shows the cell flux for a simulated network of one cell, with other Ντ = 1, 2 and 4 simultaneous terminals. Each cell receives the antenna using Nr = 4. All terminal systems are power controlled to achieve a given set point. The test shows that there is a range of SNR setpoints, where the cell flux for the Ντ = 4 terminal is twice as large as that allowed for only one single terminal. The components of the transmitter and receiver unit can be implemented with one or more digital signal processors (DSPs), dedicated integrated circuits (ASICs), processors. Microprocessor, controller, microcontroller, field programmable gate array (FPGA), programmable logic device 'other electronic units, or any combination thereof. Some of the functions and processes described herein can also be implemented using software implemented on a processor -134-1269549 (130).

本發明某些特點亦可利用一軟體及硬體的組合來實 施。例如空間處理、空間時間處理、持續消除接收器處理、 完整- CSI處理、CSI之推導(例如通道SNR)、排程等可依 據在處理器(在圖2A與2B中之控制器230及/或270)執行之 程式碼而加以實施。軟體程式碼可被儲存在記憶體單元 (例如,記憶體2 3 2或2 7 2 )内並由處理器實施(例如,功率 控制處理器23 0或270)。記憶體單元可實施在處理器内部 或處理器外部,在此情況下,記憶體單元可經由技術中熟 知的各種裝置以通信方式耦合至處理器。 此處所包含用於參考的標題係用來輔助定位某些段 落。這些標題並不是要限制此處所述之觀念的範圍,而這 些觀念可以應用到整個說明文件的其它段落。Certain features of the invention may also be practiced using a combination of software and hardware. For example, spatial processing, spatial time processing, continuous cancellation receiver processing, full-CSI processing, CSI derivation (eg, channel SNR), scheduling, etc. may be based on the processor (controller 230 and/or in FIGS. 2A and 2B) 270) The code is executed and implemented. The software code can be stored in a memory unit (e.g., memory 2 3 2 or 2 7 2 ) and implemented by the processor (e.g., power control processor 230 or 270). The memory unit can be implemented within the processor or external to the processor, in which case the memory unit can be communicatively coupled to the processor via various means known in the art. The headings included here for reference are used to assist in locating certain segments. These headings are not intended to limit the scope of the concepts described herein, and these concepts can be applied to other paragraphs throughout the document.

本發明揭示之具體實施例的前述說明係提供以使任何 熟習本技術者製成或使用本發明。這些具體實施例的各種 修改對熟習本技術者更易於明瞭,而在此界定之通用原理 可被應用至其他具體實施例,而不脫離本發明之精神或範 圍。因此,本發明並不受限於本文所示的具體實施例中, 而是涵蓋與本文所揭露之原理及新穎特點相符的最廣範 圖式代表符號說明 100 通信系統 102a 覆蓋區 102b 覆蓋區 -135 - 1269549 (131) 102c 覆蓋區 102d 覆蓋區 102e 覆蓋區 102f 覆蓋區 l〇2g 覆蓋區 104a 基地台 104b 基地台 106a 基地台 106 終端機 106b 終端機 106c 終端機 106d 終端機 106e 終端機 106f 終端機 106g 終端機 132 記憶體 208 資料來源 210 資料處理器 210d 資料處理器 2 lOx 資料處理器 220 ΤΧ ΜΙΜΟ處理器 220a ΤΧ ΜΙΜΟ處理器 220d ΤΧ ΜΙΜΟ處理器 222 調變器 發瑪識顿續買The previous description of the specific embodiments of the present invention is provided to enable any person skilled in the art to make or use the invention. The various modifications of the specific embodiments are apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention is not limited to the specific embodiments shown herein, but rather the broadest exemplary representation of the present invention and the novel features. The communication system 102a coverage area 102b coverage area - 135 - 1269549 (131) 102c Coverage area 102d Coverage area 102e Coverage area 102f Coverage area l〇2g Coverage area 104a Base station 104b Base station 106a Base station 106 Terminal 106b Terminal 106c Terminal 106d Terminal 106e Terminal 106f Terminal 106g Terminal 132 Memory 208 Data Source 210 Data Processor 210d Data Processor 2 lOx Data Processor 220 ΤΧ ΜΙΜΟ Processor 220a ΤΧ ΜΙΜΟ Processor 220d ΤΧ ΜΙΜΟ Processor 222 Modulators

-136 - 1269549 (132) 224 天線 230 控制器 234 排程器 252 天線 254 解調器 260 RX ΜΙΜΟ資料處理器 260e RX ΜΙΜΟ資料處理器 270 控制器1 272 記憶體 278 資料來源 280 ΤΧ處理器 282 ΤΧ資料處理器 300 發射器 300a 發射器 300b 發射器 300c 發射器 300d 發射器 300e 發射器 312 編碼器 314 交錯器 316 映射單元 318 加權元件 322 通道ΜΙΜΟ處理器 324 解多工器-136 - 1269549 (132) 224 Antenna 230 Controller 234 Scheduler 252 Antenna 254 Demodulator 260 RX ΜΙΜΟ Data Processor 260e RX ΜΙΜΟ Data Processor 270 Controller 1 272 Memory 278 Source 280 ΤΧ Processor 282 ΤΧ Data processor 300 transmitter 300a transmitter 300b transmitter 300c transmitter 300d transmitter 300e transmitter 312 encoder 314 interleaver 316 mapping unit 318 weighting element 322 channel ΜΙΜΟ processor 324 demultiplexer

-137- 1269549 绔嗎說_續頁 (133) 326 組合器 330 資料處理器 340 反向快速傅立葉轉換器 342 循環字首產生器 344 上轉換器 410 空間/空間時間處理器 410c 空間/空間時間處理器 410e 空間/空間時間處理器 412 過濾器 414 乘算器 416 組合器 420 矩陣處理器 422 乘算器 424 乘算器 428 適應性處理器 432 正向接收處理器 434 加總器 436 組合器 438 通道資料處理器 440 回授處理器 448 CSI處理器 450 接收處理階段 450 第一階段 450η 最後階段 -138- 1269549-137- 1269549 绔说说_Continued (133) 326 Combiner 330 Data Processor 340 Inverse Fast Fourier Transformer 342 Cyclic Header Generator 344 Upconverter 410 Space/Space Time Processor 410c Space/Space Time Processing 410e spatial/spatial time processor 412 filter 414 multiplier 416 combiner 420 matrix processor 422 multiplier 424 multiplier 428 adaptive processor 432 forward receive processor 434 adder 436 combiner 438 channel Data processor 440 feedback processor 448 CSI processor 450 receive processing stage 450 first stage 450η final stage -138-1269549

(134) 460 通道ΜΙΜΟ資料處理 460a 通道ΜΙΜΟ資料處理 470 干擾消除器 470a 干擾消除器 472 通道模擬器 480 RX處理器 484 解調元件 486 解交錯器 488 解碼器 730 資料庫 器 器(134) 460 Channel Data Processing 460a Channel Data Processing 470 Interference Canceller 470a Interference Canceller 472 Channel Simulator 480 RX Processor 484 Demodulation Element 486 Deinterleaver 488 Decoder 730 Library

-139-139

Claims (1)

或多個所選 ;及 調變 2. 1269549 拾、申請專利範圍 K —種用於在一多向近接乡重^多重輸出 系統中傳送資料之方法,其包含: 選擇用於資料傳輸的一或多個終端機; 接收該等-或多個所選定终端機之通道 狀態資訊(CSI)指示; 依據該接收CSI處理該等〜 貪料,以提供複數個調變信號 經由複數個傳送天線將該等複數個 遠等一或多個所選定終端機。 如申請專利範圍第1項之方法’其中該系統 經由複數個操作模式傳送資料。 3.如申請專利範圍第2項之方法,其中該等複 式包括一單一使用者ΜΙΜΟ模式,其特徵為 數個傳送天線用於資料傳輸至一具有複數 的單一終端機。 4. 如申請專利範圍第3項之方法,其中該以 ΜΙΜΟ模式資料傳輸至該單一終端機包含 個調變信號上傳送的複數個資料流。 5. 如申請專利範圍第2項之方法,其中該等複 式包括一多重使用者ΜΙΜΟ模式,其特徵為 數個傳送天線用於資料傳輸至共同具有複 線的複數個終端機。 6. 如申請專利範圍第5項之方法,其中一調變 (ΜΙΜΟ)通信 條件的通道 定終端機的 信號傳送至 可被組態以 數個操作模 使用該等複 個接收天線 單一使用者 在該等複數 數個操作模 使用該等複 數個接收天 信號係設計 1269549Or a plurality of selected; and modulation 2. 1269549 pick, patent scope K - a method for transmitting data in a multi-directional proximity multi-output system, comprising: selecting one or more for data transmission Terminals; receiving channel state information (CSI) indications of the selected one or more selected terminals; processing the ~ greedy according to the receiving CSI to provide a plurality of modulated signals via a plurality of transmitting antennas One or more selected terminals. For example, the method of claim 1 wherein the system transmits data via a plurality of modes of operation. 3. The method of claim 2, wherein the duplex comprises a single user mode, characterized in that the plurality of transmit antennas are used for data transfer to a single terminal having a plurality of bits. 4. The method of claim 3, wherein the transmitting in the ΜΙΜΟ mode data to the single terminal comprises a plurality of data streams transmitted on the modulated signal. 5. The method of claim 2, wherein the duplex comprises a multi-user mode, characterized in that a plurality of transmit antennas are used for data transfer to a plurality of terminals having a common complex. 6. The method of claim 5, wherein the signal of the channel terminal of a modulation (ΜΙΜΟ) communication condition is transmitted to a single user that can be configured to use the plurality of receiving antennas in a plurality of operating modes The plurality of operational modes use the plurality of receiving day signal systems design 1269549 用於該多重使用者ΜΙΜΟ模式之該等複數個終端機之 每個終端機。 7. 如申請專利範圍第2項之方法,其中該等複數個操作模 式包括一混合模式,其特徵為使用該等複數個傳送天 線用於資料傳輸至一 SIMO與ΜΙΜΟ終端機之一組合,其 中一調變信號係設計成用於各S IΜ Ο終端機,而多重調 變信號係設計成用於各ΜΙΜΟ終端機。 8. 如申請專利範圍第2項之方法,其中該等複數個操作模 式包括一分集模式,其特徵為使用該等複數個傳送天 線用於可靠地傳輸一單一資料流至一具有複數個接收 天線之單一終端機。 9·如申請專利範圍第2項之方法,其中該等複數個操作模 式包括一傳适分集模式,其特徵為使用該等複數個傳 送天線用於資料傳輸至一具有一單一接收天線之單一 終端機。 10·如申請專利範圍第1項之方法,其中依據該等複數個傳 送天線達成之預估訊雜干擾比(SNR)來選定用於資料 傳輸之終端機。 11·如申請專利範圍第1〇項之方法,其中該SNR係在該等終 端機處依據包含於該等複數個調變信號中之前導碼所 推導出。 12·如申請專利範圍第i項之方法,其中會依據一由該等終 端機之複數個傳送天線與複數個接收天線所構成之 ΜΙΜΟ通道的射頻特徵來選定用於資料傳輸的終端機。 1269549 _ 申諸多利轉寧續頁 13. 如申請專利範圍第1 2項之方法’其中該射頻特徵係在 該等終端機處依據包含於該等複數個調變信號中之前 導信號所推導出。 14. 如申請專利範圍第1項之方法,進一步包括: 依據該接收C S I將複數個傳送天線指派給該等一或 多個所選定終端機。 15. 如申請專利範圍第1項之方法,進一步包括: 將各選定之終端機指派給該等一或多個傳送天線。 16. 如申請專利範圍第1項之方法,其中會依據一或多個度 量來選定用於資料傳輸的終端機。 17. 如申請專利範圍第1 6項之方法,其中該等一或多個度 量之一係該等選定終端機可達到之通量的指示。 18. 如申請專利範圍第1 6項之方法,其中該等一或多個度 量之一係一以該等選定終端機達到之SNR為基礎的函 數。 19. 如申請專利範圍第1項之方法,其中會依據終端機優先 順序來選定用於資料傳輸的終端機。 20. 如申請專利範圍第1 9項之方法,其中一特定終端機之 優先順序係依據該終端機的一平均通量而決定。 21. 如申請專利範圍第1項之方法,其中該處理包括: 依據該接收C S I來編碼與調變該等一或多個所選定 終端機的資料。 22. 如申請專利範圍第1 0項之方法,進一步包括: 在該終端機處依據該調變信號之一預估的S NR來編 1269549 _ Ipl專利旅戶續頁 碼與調變各調變信號的資料。 23. 如申請專利範圍第1 2項之方法,進一步包括: 依據一由該等一或多個所選定終端機的該射頻特徵 構成之特徵向量矩陣來預調節調變符號。 24. 如申請專利範圍第1項之方法,其中該處理包括: 依據該接收C S I調整該等一或多個所選定終端機的 資料傳輸率。Each of the plurality of terminals of the multiple user mode is used. 7. The method of claim 2, wherein the plurality of modes of operation comprise a hybrid mode characterized by using the plurality of transmit antennas for data transfer to a combination of a SIMO and a terminal, wherein A modulation signal system is designed for each S I Μ terminal, and the multi-modulation signal system is designed for use in each terminal. 8. The method of claim 2, wherein the plurality of modes of operation comprise a diversity mode, characterized by using the plurality of transmit antennas for reliably transmitting a single data stream to a plurality of receive antennas A single terminal. 9. The method of claim 2, wherein the plurality of modes of operation comprise a pass diversity mode, characterized in that the plurality of transmit antennas are used for data transmission to a single terminal having a single receive antenna machine. 10. The method of claim 1, wherein the terminal for data transmission is selected based on an estimated interference-to-interference ratio (SNR) achieved by the plurality of transmitting antennas. 11. The method of claim 1, wherein the SNR is derived at the terminal based on a preamble included in the plurality of modulated signals. 12. The method of claim i, wherein the terminal for data transmission is selected based on a radio frequency characteristic of a channel formed by a plurality of transmit antennas and a plurality of receive antennas of the terminal. 1269549 _ 申利利转宁 Continued page 13. The method of claim 12, wherein the radio frequency characteristic is derived at the terminals based on the preamble signals contained in the plurality of modulated signals . 14. The method of claim 1, further comprising: assigning a plurality of transmit antennas to the one or more selected terminals in accordance with the receive Cs. 15. The method of claim 1, further comprising: assigning each selected terminal to the one or more transmit antennas. 16. The method of claim 1, wherein the terminal for data transmission is selected based on one or more metrics. 17. The method of claim 16, wherein one of the one or more metrics is indicative of a throughput achievable by the selected terminal. 18. The method of claim 16, wherein one of the one or more metrics is a function based on the SNR achieved by the selected terminal. 19. The method of claim 1, wherein the terminal for data transmission is selected according to the order of priority of the terminal. 20. The method of claim 19, wherein the priority of a particular terminal is determined by an average throughput of the terminal. 21. The method of claim 1, wherein the processing comprises: encoding and modulating data of the one or more selected terminals in accordance with the receiving C S I . 22. The method of claim 10, further comprising: at the terminal, based on the S NR estimated by one of the modulated signals, compiling 1269549 _ Ipl patent traveler continuation page and modulating each modulated signal data of. 23. The method of claim 12, further comprising: pre-adjusting the modulation symbol based on a matrix of eigenvectors comprised of the radio frequency features of the one or more selected terminals. 24. The method of claim 1, wherein the processing comprises: adjusting a data transmission rate of the one or more selected terminals in accordance with the receiving C S I . 25. 如申請專利範圍第1項之方法,進一步包括: 接收來自於該等一或多個所選定終端機之回授;及 依據該接收回授來調整該等調變信號之至少一特 徵。 26. 如申請專利範圍第25項之方法,其中該等調1信號之 傳送功率係依據該接收回授加以調整。 27. 如申請專利範圍第2 5項之方法,其中該等調變信號之 資料傳輸率係依據該接收回授加以調整。25. The method of claim 1, further comprising: receiving feedback from the one or more selected terminals; and adjusting at least one characteristic of the modulated signals based on the received feedback. 26. The method of claim 25, wherein the transmit power of the modulated signal is adjusted in accordance with the receive feedback. 27. The method of claim 25, wherein the data transmission rate of the modulated signals is adjusted in accordance with the received feedback. 28. 如申請專利範圍第2 5項之方法,其中該等調變信號之 該資料編碼與調變係依據該接收回授加以調整。 29. 如申請專利範圍第1項之方法,其中該等複數個調變信 號係以部份藉由最大允許功率位準之一或多個功率退 讓因子所決定之功率位準傳送。 30. 如申請專利範圍第2 9項之方法,其中該等一或多個功 率退讓因子係選定以減低對鄭近細胞之干擾。 31. 如申請專利範圍第2 9項之方法,其中該等一或多個功 率退讓因子係依據系統負載而選定。28. The method of claim 25, wherein the data encoding and modulation of the modulated signals are adjusted in accordance with the received feedback. 29. The method of claim 1, wherein the plurality of modulated signals are transmitted at a power level determined in part by one of a maximum allowable power level or a plurality of power backoff factors. 30. The method of claim 29, wherein the one or more power concession factors are selected to reduce interference with Zheng near cells. 31. The method of claim 29, wherein the one or more power backoff factors are selected based on system load. 1269549 32如申請專利範圍第2 9項之方法,其中該等一或多個功 率退讓因子係依據系統内終端機可達到之性能而選 定。 33. 如申請專利範圍第1項之方法’其中該C S 1包含預估之 訊雜干擾比(SNR)用於複數個用於資料傳輸之傳輸通 道。 34. 如申請專利範圍第1項之方法,其中該C S I包含用於資 料傳輸之複數個傳輸通道所支援之資料傳輸率的指 示。 35. 如申請專利範圍第3 3項之方法,其中該SNR係在該等終 端機處依據空間處理所推導出。 36. 如申請專利範圍第3 5項之方法,其中在一終端機處之 該空間處理包含一通道關聯矩陣反轉(CCMI)技術或一 最小均方誤差(MMSE)技術。 37. 如申請專利範圍第3 3項之方法,其中該SNR係在該等終 端機處依據空間時間處理所推導出。 38·如申請專利範圍第3 7項之方法,其中該空間時間處理 包含一 MMSE線性等化器(MMSE-LE)技術或一決策回授 等化器(DFE)技術。 39.如申請專利範圍第3 3項之方法,其中該SNR係在該等終 端機處依據持續消除接收器處理所推導出。 4〇.如申請專利範圍第1項之方法,其中該系統實施正交分 頻多工(OFDM)。 41·如申請專利範圍第1項之方法,其中該系統實施分碼多 12695491269549 32. The method of claim 29, wherein the one or more power backoff factors are selected based on performance achievable by the terminal in the system. 33. The method of claim 1 wherein the C S 1 includes an estimated interference to interference ratio (SNR) for a plurality of transmission channels for data transmission. 34. The method of claim 1, wherein the C S I includes an indication of a data transmission rate supported by a plurality of transmission channels for data transmission. 35. The method of claim 3, wherein the SNR is derived at the terminal machine in accordance with spatial processing. 36. The method of claim 35, wherein the spatial processing at a terminal comprises a channel correlation matrix inversion (CCMI) technique or a minimum mean square error (MMSE) technique. 37. The method of claim 3, wherein the SNR is derived at the terminal according to spatial time processing. 38. The method of claim 3, wherein the spatial time processing comprises an MMSE linear equalizer (MMSE-LE) technique or a decision feedback equalizer (DFE) technique. 39. The method of claim 3, wherein the SNR is derived at the terminal based on continuous cancellation receiver processing. 4. The method of claim 1, wherein the system implements orthogonal frequency division multiplexing (OFDM). 41. The method of claim 1, wherein the system implements a code division 1269549 向近接(CDMA)。 42. —種用於在一多向近接多重輸入多重輸出(mim〇)通信 系統中之一下行鏈路上傳送資料之方法,其包含: 在複數個終端機處接收複數個傳送天線所達成的預 估訊雜干擾比(SNR); 依據該預估SNR選定用於資料傳輸的一或多個終端 機; 依據該預估SNR處理該等一或多個所選定終端機的 資料,以提供複數個調變信號;及 經由複數個傳送天線將該等複數個調變信號傳送至 該等一或多個所選定終端機,及 其中該系統可被組態以經由複數個操作模式傳送資 料,該模式包含一單一使用者ΜΙΜΟ模式、一多重使用 者ΜΙΜΟ模式與一混合模式。 43· —種用於在一多向近接多重輸入多重輸出(μιμ〇)通信 系統中傳送資料之方法,其包含: 接收複數個終端機之通道條件的通道狀態資訊(csI) 指不, 選擇用於上行鏈路資料傳輸的一或多個終端機· 將至少一傳輸參數之資訊指示發送至該等一或多個 所選定終端機; 經由複數個接收天線接收來自該等一或多個所選定 終端機的複數個調變信號;及 處理複數個接收信號以回復該等一或多個所選定終 1269549 申繚專利範議續頁’ 端機所傳送的資料。 44. 如申請專利範圍第4 3項之方法,其中會依據複數個可 用傳送通道的預估訊雜干擾比(SNR)來選定用於資料 傳輸的終端機。 45. 如申請專利範圍第4 3項之方法,其中會依據一由該等 終端機之複數個傳送天線與複數個接收天線所構成之 ΜΙΜΟ通道的射頻特徵來選定用於資料傳輸的終端機。Proximity (CDMA). 42. A method for transmitting data on a downlink in a multi-directional proximity multiple input multiple output (mim〇) communication system, comprising: receiving a plurality of transmit antennas at a plurality of terminals Estimating a noise to interference ratio (SNR); selecting one or more terminals for data transmission based on the estimated SNR; processing data of the one or more selected terminals based on the estimated SNR to provide a plurality of tones Transmitting the plurality of modulated signals to the one or more selected terminals via a plurality of transmit antennas, and wherein the system is configurable to transmit data via a plurality of modes of operation, the mode comprising Single user mode, one multi-user mode and one hybrid mode. 43. A method for transmitting data in a multi-directional proximity multiple input multiple output (μιμ〇) communication system, comprising: channel state information (csI) for receiving channel conditions of a plurality of terminals; Transmitting one or more terminals of the uplink data transmission to the one or more selected terminals of the one or more selected terminals; receiving the one or more selected terminals from the plurality of receiving antennas And a plurality of modulated signals; and processing the plurality of received signals to recover the data transmitted by the terminal device of the one or more selected terminals. 44. The method of claim 4, wherein the terminal for data transmission is selected based on the estimated interference-to-interference ratio (SNR) of the plurality of available transmission channels. 45. The method of claim 4, wherein the terminal for data transmission is selected based on a radio frequency characteristic of a channel formed by a plurality of transmitting antennas and a plurality of receiving antennas of the terminals. 46. 如申請專利範圍第4 3項之方法,其中會部份依據最大 允許功率位準之一或多個功率退讓因子來選定用於資 料傳輸的終端機。 47. 如申請專利範圍第44項之方法,其中該SNR係依據空間 處理而推導出。 48. 如申請專利範圍第44項之方法,其中該SNR係依據空間 時間處理而推導出。46. The method of claim 4, wherein the terminal for data transmission is selected in part based on one of the maximum allowable power levels or a plurality of power backoff factors. 47. The method of claim 44, wherein the SNR is derived from spatial processing. 48. The method of claim 44, wherein the SNR is derived from spatial time processing. 49. 如申請專利範圍第44項之方法,其中該SNR係依據持續 消除接收器處理而推導出。 50. 一種在一多向近接多重輸入多重輸出(ΜΙΜΟ)通信系統 中之基地台,其包含: 一排程器,其運作以選擇用於資料傳輸的一或多個 終端機; 一控制器,其運作以接收該等一或多個所選定終端 機之通道條件的通道狀態資訊(CSI)指示,及依據該接 收CSI提供一或多個控制項; 一 ΤΧ資料處理器,其運作以依據該等一或多個控制 1269549 _ 申_專利範菌續頁 項來處理該等一或多個所選定終端機的資料,以提供 複數個調變符號流; 一調變器,其運作成可產生複數個用於該等複數個 調變信號流之調變信號;及 複數個傳送天線,其設置成用以傳送該等調變信號 至該等一或多個所選定終端機。 51. —種在一多向近接多重輸入多重輸出(ΜΙΜΟ)通信系統 中之基地台,其包含: 選擇用於資料傳輸的一或多個終端機之構件; 接收通道狀態資訊(CSI)之構件,用於接收該等一或 多個所選定終端機之通道條件的通道狀態資訊(CSI)指 示,及依據該接收CSI提供一或多個控制項; 處理資料之構件,用於依據該等一或多個控制項來 處理該等一或多個所選定終端機的資料,以提供複數 個調變符號流; 產生該等複數個調變符號流之複數個調變信號之構 件;及 傳送該等調變信號至該等一或多個所選定終端機之 構件。 52. —種在一多向近接多重輸入多重輸出(ΜΙΜΟ)通信系統 中之終端機,其包含: 至少一前端處理器,其運作以接收與處理至少一接 收信號,以提供所接收調變符號; 一 RX ΜΙΜΟ/資料處理器,其運作成用以依據一接收 126954949. The method of claim 44, wherein the SNR is derived from continuous cancellation receiver processing. 50. A base station in a multi-directional proximity multiple input multiple output (ΜΙΜΟ) communication system, comprising: a scheduler operative to select one or more terminals for data transmission; a controller, Operating in a channel status information (CSI) indication for receiving channel conditions of the one or more selected terminals, and providing one or more control items in accordance with the receiving CSI; a data processor operating in accordance with the One or more controls 1269549 _ _ _ patent continuation page items to process the data of the one or more selected terminals to provide a plurality of modulated symbol streams; a modulator that operates to generate a plurality of And a plurality of transmit antennas configured to transmit the modulated signals to the one or more selected terminals. 51. A base station in a multi-directional proximity multiple input multiple output (ΜΙΜΟ) communication system, comprising: a component for selecting one or more terminals for data transmission; a component for receiving channel status information (CSI) a channel status information (CSI) indication for receiving channel conditions of the one or more selected terminals, and providing one or more control items according to the receiving CSI; means for processing data for use in accordance with the one or And a plurality of control items to process data of the one or more selected terminals to provide a plurality of modulated symbol streams; generating a plurality of components of the plurality of modulated symbol streams; and transmitting the same Signaling to components of the one or more selected terminals. 52. A terminal in a multi-directional proximity multiple input multiple output (MIMO) communication system, comprising: at least one front end processor operative to receive and process at least one received signal to provide a received modulated symbol ; an RX ΜΙΜΟ / data processor, which operates to receive 1269549 器處理技術來接收與處理該等接收調變符號,以在該 等傳送信號中提供預估之調變符號,其中該RX ΜΙΜΟ/ 資料處理器係進一步運作以提供該等複數個傳送信號 之通道條件的通道狀態資訊(CSI)指示;及 一 ΤΧ資料處理器,其被組態成用以接收與處理用於 從該終端機之傳輸的該C SI。 53. —種在一多向近接多重輸入多重輸出(ΜΙΜΟ)通信系統 中之終端機,其包含: 處理至少一已接收的信號以提供已接收的調變符號 之構件; 處理該等接收到的調變符號之構件,其係依據一接 收器處理技術以在該等傳送信號中提供預估之調變符 號; 推導該等複數個傳送信號之通道條件之通道狀態資 訊(CSI)指示之構件;及 處理用於從該終端機之傳輸之該CSI之構件。Processor processing techniques for receiving and processing the received modulation symbols to provide estimated modulation symbols in the transmitted signals, wherein the RX/data processor is further operative to provide channels for the plurality of transmitted signals Conditional Channel Status Information (CSI) indication; and a data processor configured to receive and process the C SI for transmission from the terminal. 53. A terminal in a multi-directional proximity multiple input multiple output (ΜΙΜΟ) communication system, comprising: means for processing at least one received signal to provide received modulated symbols; processing the received A component of a modulation symbol that is based on a receiver processing technique to provide an estimated modulation symbol in the transmitted signals; a component that derives channel state information (CSI) indications of the channel conditions of the plurality of transmitted signals; And processing the components of the CSI for transmission from the terminal.
TW091132665A 2001-11-06 2002-11-06 Method, base station and terminal in a multiple-access multiple-input multiple-output communication system TWI269549B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/993,087 US20030125040A1 (en) 2001-11-06 2001-11-06 Multiple-access multiple-input multiple-output (MIMO) communication system

Publications (2)

Publication Number Publication Date
TW200302642A TW200302642A (en) 2003-08-01
TWI269549B true TWI269549B (en) 2006-12-21

Family

ID=25539079

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091132665A TWI269549B (en) 2001-11-06 2002-11-06 Method, base station and terminal in a multiple-access multiple-input multiple-output communication system

Country Status (8)

Country Link
US (2) US20030125040A1 (en)
EP (1) EP1442538A1 (en)
JP (1) JP2005509360A (en)
KR (1) KR20050043783A (en)
CN (1) CN1613201B (en)
BR (1) BR0213913A (en)
TW (1) TWI269549B (en)
WO (1) WO2003041300A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8098569B2 (en) 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8139673B2 (en) 2008-04-09 2012-03-20 Industrial Technology Research Institute Transmission method of wireless signal and transmitter using the same
US8504119B2 (en) 2007-01-09 2013-08-06 Qualcomm Incorporated Method for efficient assessment of communication service levels in a mobile station having multiple communication interfaces
US8532699B2 (en) 2006-09-19 2013-09-10 Qualcomm Incorporated Method for power efficient activation of an inactive communication interface in a mobile station having multiple communication interfaces
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
TWI418167B (en) * 2008-10-24 2013-12-01 Qualcomm Inc Method and apparatus for interference reporting in a n-mimo communication system
US8718030B2 (en) 2007-03-26 2014-05-06 Qualcomm Incorporated Methods and apparatus for performing channel tree operations
US8787344B2 (en) 2006-08-30 2014-07-22 Qualcomm Incorporated Method and apparatus for ACKCH with repetition in orthogonal systems
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US10194463B2 (en) 2004-07-21 2019-01-29 Qualcomm Incorporated Efficient signaling over access channel

Families Citing this family (684)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804211B1 (en) 1999-08-03 2004-10-12 Wi-Lan Inc. Frame structure for an adaptive modulation wireless communication system
US6952454B1 (en) 2000-03-22 2005-10-04 Qualcomm, Incorporated Multiplexing of real time services and non-real time services for OFDM systems
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
WO2002041520A2 (en) * 2000-11-15 2002-05-23 Ensemble Communications, Inc. Improved frame structure for a communication system using adaptive modulation
US6760772B2 (en) 2000-12-15 2004-07-06 Qualcomm, Inc. Generating and implementing a communication protocol and interface for high data rate signal transfer
US6662024B2 (en) * 2001-05-16 2003-12-09 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
EP1402673B1 (en) * 2001-06-21 2008-01-16 Koninklijke Philips Electronics N.V. Transmission method and apparatus in a radio communications network
US8812706B1 (en) 2001-09-06 2014-08-19 Qualcomm Incorporated Method and apparatus for compensating for mismatched delays in signals of a mobile display interface (MDDI) system
US7327798B2 (en) 2001-10-19 2008-02-05 Lg Electronics Inc. Method and apparatus for transmitting/receiving signals in multiple-input multiple-output communication system provided with plurality of antenna elements
US7573942B2 (en) * 2001-11-16 2009-08-11 Alcatel-Lucent Usa Inc. Method for encoding and decoding control information in a wireless communications system
US7012883B2 (en) 2001-11-21 2006-03-14 Qualcomm Incorporated Rate selection for an OFDM system
US20030104786A1 (en) * 2001-11-26 2003-06-05 Jung Stefan Wilhelm System and method for allocation of substreams in circuit switched connections
US6798849B2 (en) * 2001-12-10 2004-09-28 Ibiquity Digital Corporation AM digital audio broadcasting with analog signal pre-compensation
JP3876707B2 (en) * 2001-12-20 2007-02-07 日本電気株式会社 Transmission power control method and base station apparatus
JP2003198443A (en) * 2001-12-26 2003-07-11 Matsushita Electric Ind Co Ltd Base station device, communication terminal device, and radio communication method
KR100463526B1 (en) * 2002-01-04 2004-12-29 엘지전자 주식회사 Method for allocating power in multiple input multiple output system
US7020110B2 (en) * 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US7020482B2 (en) 2002-01-23 2006-03-28 Qualcomm Incorporated Reallocation of excess power for full channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
FR2835984B1 (en) * 2002-02-11 2006-06-23 Evolium Sas METHOD FOR IMPROVING THE PERFORMANCE OF A MOBILE RADIOCOMMUNICATION SYSTEM
US7076263B2 (en) 2002-02-19 2006-07-11 Qualcomm, Incorporated Power control for partial channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
JP3939165B2 (en) * 2002-02-20 2007-07-04 三洋電機株式会社 Wireless device, wireless communication system, space path control method, and space path control program
US7986672B2 (en) * 2002-02-25 2011-07-26 Qualcomm Incorporated Method and apparatus for channel quality feedback in a wireless communication
US6862271B2 (en) * 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US7103098B2 (en) * 2002-03-15 2006-09-05 Intel Corporation Adaptive receiver for multiplex/multi-access communications
JP4166026B2 (en) * 2002-03-22 2008-10-15 三洋電機株式会社 Wireless device, space path control method, and space path control program
US6768715B2 (en) * 2002-06-07 2004-07-27 Nokia Corporation Apparatus, and associated method, for performing reverse-link traffic measurements in a radio communication system
KR100548312B1 (en) * 2002-06-20 2006-02-02 엘지전자 주식회사 Signal Processing Method of Multi Input, Multi Output Mobile Communication System
US7613248B2 (en) * 2002-06-24 2009-11-03 Qualcomm Incorporated Signal processing with channel eigenmode decomposition and channel inversion for MIMO systems
US20040004951A1 (en) * 2002-07-05 2004-01-08 Interdigital Technology Corporation Method for performing wireless switching
AU2003252639A1 (en) * 2002-07-16 2004-02-02 Matsushita Electric Industrial Co., Ltd. Communicating method, transmitting device using the same, and receiving device using the same
US6928104B2 (en) * 2002-07-18 2005-08-09 Interdigital Technology Corporation Scaling using gain factors for use in data detection for wireless code division multiple access communication systems
EP1540830B9 (en) * 2002-07-30 2009-09-16 IPR Licensing Inc. System and method for multiple-input multiple-output (mimo) radio communication
US20040028124A1 (en) * 2002-07-30 2004-02-12 Jukka Nuutinen Method of operating a communications system and a communications system
US7092737B2 (en) * 2002-07-31 2006-08-15 Mitsubishi Electric Research Laboratories, Inc. MIMO systems with rate feedback and space time transmit diversity
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US7260153B2 (en) * 2002-09-09 2007-08-21 Mimopro Ltd. Multi input multi output wireless communication method and apparatus providing extended range and extended rate across imperfectly estimated channels
US8504054B2 (en) * 2002-09-10 2013-08-06 Qualcomm Incorporated System and method for multilevel scheduling
US7630321B2 (en) * 2002-09-10 2009-12-08 Qualcomm Incorporated System and method for rate assignment
US7349438B2 (en) * 2002-09-17 2008-03-25 Lucent Technologies Inc. Formatter, method of formatting encoded symbols and wireless communication system employing the same
DE60208200T2 (en) * 2002-09-27 2006-06-29 Alcatel Radio communication system with transmit diversity and multi-user diversity
GB0222555D0 (en) * 2002-09-28 2002-11-06 Koninkl Philips Electronics Nv Packet data transmission system
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7151809B2 (en) * 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
DE10250956B4 (en) * 2002-10-27 2004-11-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Signal processing method for reconstruction of transmit data streams in a MIMO system
US7206606B2 (en) * 2002-11-26 2007-04-17 Matsushita Electric Industrial Co., Ltd. Wireless communication including diversity transmission and reception
US7158804B2 (en) * 2002-11-27 2007-01-02 Lucent Technologies Inc. Uplink scheduling for wireless networks
US6914876B2 (en) * 2002-12-16 2005-07-05 Motorola, Inc. Method for dynamic frequency selection
CN1203637C (en) * 2003-01-07 2005-05-25 大唐移动通信设备有限公司 Time gap CDMA system noise space concerned characteristics estimating method
US8165148B2 (en) * 2003-01-13 2012-04-24 Qualcomm Incorporated System and method for rate assignment
US8422434B2 (en) 2003-02-18 2013-04-16 Qualcomm Incorporated Peak-to-average power ratio management for multi-carrier modulation in wireless communication systems
US7042967B2 (en) * 2003-03-03 2006-05-09 Interdigital Technology Corporation Reduced complexity sliding window based equalizer
JP4448847B2 (en) * 2003-03-03 2010-04-14 インターデイジタル テクノロジー コーポレーション Sliding window equalizer with reduced complexity
US7885228B2 (en) * 2003-03-20 2011-02-08 Qualcomm Incorporated Transmission mode selection for data transmission in a multi-channel communication system
US7130580B2 (en) * 2003-03-20 2006-10-31 Lucent Technologies Inc. Method of compensating for correlation between multiple antennas
US7099678B2 (en) * 2003-04-10 2006-08-29 Ipr Licensing, Inc. System and method for transmit weight computation for vector beamforming radio communication
JP4077355B2 (en) * 2003-04-16 2008-04-16 三菱電機株式会社 Communication apparatus and communication method
US7668110B2 (en) 2003-05-12 2010-02-23 Lg Electronics Inc. Method of determining reverse data rate in mobile communication system
KR100964670B1 (en) * 2003-05-12 2010-06-22 엘지전자 주식회사 Method of generating data rate control bit in a mobile communication system
US8064528B2 (en) 2003-05-21 2011-11-22 Regents Of The University Of Minnesota Estimating frequency-offsets and multi-antenna channels in MIMO OFDM systems
US8705579B2 (en) 2003-06-02 2014-04-22 Qualcomm Incorporated Generating and implementing a signal protocol and interface for higher data rates
WO2004114561A1 (en) * 2003-06-18 2004-12-29 Nippon Telegraph And Telephone Corporation Radio packet communication method and radio packet communication apparatus
US7457973B2 (en) * 2003-06-20 2008-11-25 Texas Instruments Incorporated System and method for prioritizing data transmission and transmitting scheduled wake-up times to network stations based on downlink transmission duration
CN1809980B (en) * 2003-06-30 2010-12-15 松下电器产业株式会社 Transmission method, transmission apparatus and communication system
JP4536435B2 (en) 2003-06-30 2010-09-01 パナソニック株式会社 Transmission method and transmission apparatus
US7565114B2 (en) * 2003-07-16 2009-07-21 Nec Corporation Transmitter apparatus, receiver apparatus, and radio communication system
JP2005057497A (en) * 2003-08-04 2005-03-03 Science Univ Of Tokyo Radio transmission control method, radio receiving device and radio transmitting device
KR100575993B1 (en) * 2003-08-07 2006-05-02 삼성전자주식회사 Method and apparatus for scheduling multi-user in wireless communication system using multiple transmit/receive antenna
EP2363989B1 (en) 2003-08-13 2018-09-19 Qualcomm Incorporated A signal interface for higher data rates
US7065144B2 (en) * 2003-08-27 2006-06-20 Qualcomm Incorporated Frequency-independent spatial processing for wideband MISO and MIMO systems
US7668125B2 (en) * 2003-09-09 2010-02-23 Qualcomm Incorporated Incremental redundancy transmission for multiple parallel channels in a MIMO communication system
US8908496B2 (en) * 2003-09-09 2014-12-09 Qualcomm Incorporated Incremental redundancy transmission in a MIMO communication system
US8719334B2 (en) 2003-09-10 2014-05-06 Qualcomm Incorporated High data rate interface
US7440510B2 (en) * 2003-09-15 2008-10-21 Intel Corporation Multicarrier transmitter, multicarrier receiver, and methods for communicating multiple spatial signal streams
AU2007202983B2 (en) * 2003-09-23 2010-04-29 Qualcomm Incorporated Successive interference cancellation receiver processing with selection diversity
US6917821B2 (en) 2003-09-23 2005-07-12 Qualcomm, Incorporated Successive interference cancellation receiver processing with selection diversity
US7724838B2 (en) * 2003-09-25 2010-05-25 Qualcomm Incorporated Hierarchical coding with multiple antennas in a wireless communication system
US7742546B2 (en) 2003-10-08 2010-06-22 Qualcomm Incorporated Receiver spatial processing for eigenmode transmission in a MIMO system
KR100580840B1 (en) * 2003-10-09 2006-05-16 한국전자통신연구원 Data communication method of multi input multi output system
US8233462B2 (en) * 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
US8284752B2 (en) 2003-10-15 2012-10-09 Qualcomm Incorporated Method, apparatus, and system for medium access control
US8483105B2 (en) 2003-10-15 2013-07-09 Qualcomm Incorporated High speed media access control
CN102801615A (en) 2003-10-15 2012-11-28 高通股份有限公司 High data rate interface
US8842657B2 (en) 2003-10-15 2014-09-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
US9226308B2 (en) 2003-10-15 2015-12-29 Qualcomm Incorporated Method, apparatus, and system for medium access control
US8472473B2 (en) 2003-10-15 2013-06-25 Qualcomm Incorporated Wireless LAN protocol stack
US8462817B2 (en) 2003-10-15 2013-06-11 Qualcomm Incorporated Method, apparatus, and system for multiplexing protocol data units
US7508748B2 (en) * 2003-10-24 2009-03-24 Qualcomm Incorporated Rate selection for a multi-carrier MIMO system
WO2005043862A1 (en) 2003-10-29 2005-05-12 Qualcomm Incorporated High data rate interface
US9585023B2 (en) 2003-10-30 2017-02-28 Qualcomm Incorporated Layered reuse for a wireless communication system
US8526963B2 (en) * 2003-10-30 2013-09-03 Qualcomm Incorporated Restrictive reuse for a wireless communication system
US7616698B2 (en) 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
US7206608B1 (en) * 2003-11-06 2007-04-17 Nortel Networks Limited System and method for scheduling transmission from multiple-beam transmitters
JP4420329B2 (en) * 2003-11-11 2010-02-24 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 Mobile communication terminal and transmission power control method
CA2545817C (en) 2003-11-12 2011-11-29 Qualcomm Incorporated High data rate interface with improved link control
KR100981554B1 (en) * 2003-11-13 2010-09-10 한국과학기술원 APPARATUS AND METHOD FOR GROUPING ANTENNAS OF Tx IN MIMO SYSTEM WHICH CONSIDERS A SPATIAL MULTIPLEXING AND BEAMFORMING
US20050111419A1 (en) * 2003-11-20 2005-05-26 Samsung Electronics Co., Ltd. Method of performing communication over wireless network including multiple input/multiple output stations
US7298805B2 (en) * 2003-11-21 2007-11-20 Qualcomm Incorporated Multi-antenna transmission for spatial division multiple access
MXPA06006012A (en) 2003-11-25 2006-08-23 Qualcomm Inc High data rate interface with improved link synchronization.
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
EP1690360A1 (en) * 2003-12-03 2006-08-16 Nokia Corporation Exploiting selection diversity in communications systems with non-orthonormal matrix and vector modulation
US7450532B2 (en) * 2003-12-05 2008-11-11 Samsung Electronics Co., Ltd Apparatus and method for transmitting data by selected eigenvector in closed loop MIMO mobile communication system
US7145940B2 (en) * 2003-12-05 2006-12-05 Qualcomm Incorporated Pilot transmission schemes for a multi-antenna system
EP2247071B1 (en) 2003-12-08 2013-09-25 QUALCOMM Incorporated High data rate interface with improved link synchronization
US7453949B2 (en) 2003-12-09 2008-11-18 Agere Systems Inc. MIMO receivers having one or more additional receive paths
US7443818B2 (en) * 2003-12-15 2008-10-28 Intel Corporation Method, apparatus and system of multiple-input-multiple-output wireless communication
US8204149B2 (en) 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US9026070B2 (en) * 2003-12-18 2015-05-05 Qualcomm Incorporated Low-power wireless diversity receiver with multiple receive paths
KR100587417B1 (en) * 2003-12-22 2006-06-08 한국전자통신연구원 Apparatus for adatively transmitting and receiving in wireless communication system using frequency division multiplexing
US7649833B2 (en) 2003-12-29 2010-01-19 Intel Corporation Multichannel orthogonal frequency division multiplexed receivers with antenna selection and maximum-ratio combining and associated methods
US7450489B2 (en) * 2003-12-30 2008-11-11 Intel Corporation Multiple-antenna communication systems and methods for communicating in wireless local area networks that include single-antenna communication devices
US7308047B2 (en) * 2003-12-31 2007-12-11 Intel Corporation Symbol de-mapping methods in multiple-input multiple-output systems
US7570953B2 (en) * 2004-01-12 2009-08-04 Intel Corporation Multicarrier communication system and methods for link adaptation using uniform bit loading and subcarrier puncturing
WO2005070031A2 (en) * 2004-01-22 2005-08-04 The Regents Of The University Of California Systems and methods for resource allocation of multiple antenna arrays
US8903440B2 (en) 2004-01-29 2014-12-02 Qualcomm Incorporated Distributed hierarchical scheduling in an ad hoc network
US7818018B2 (en) * 2004-01-29 2010-10-19 Qualcomm Incorporated Distributed hierarchical scheduling in an AD hoc network
WO2005081439A1 (en) 2004-02-13 2005-09-01 Neocific, Inc. Methods and apparatus for multi-carrier communication systems with adaptive transmission and feedback
US11152971B2 (en) * 2004-02-02 2021-10-19 Charles Abraham Frequency modulated OFDM over various communication media
CN102594501B (en) 2004-02-07 2014-11-26 桥扬科技有限公司 Methods for multi-carrier communication systems with automatic repeat request (ARQ)
DE102004006584B4 (en) * 2004-02-10 2006-07-06 T-Mobile Deutschland Gmbh Method and apparatus for operating MIMO air interfaces in mobile communications systems
US7444166B2 (en) 2004-02-12 2008-10-28 Qualcomm Incorporated Wireless diversity receiver with shared receive path
KR100626214B1 (en) * 2004-02-12 2006-09-20 재단법인서울대학교산학협력재단 Wireless transmission method and apparatus for multi-user diversity and multiplexing using multiple random beams and multiple antennas
WO2005078955A1 (en) * 2004-02-13 2005-08-25 Nec Corporation Radio communication system, reception device, demodulation method used for them, and program thereof
EP1710929B1 (en) * 2004-02-13 2008-12-03 Panasonic Corporation MIMO system with eigenvalues feedback information
KR20050081528A (en) * 2004-02-14 2005-08-19 삼성전자주식회사 Channel state information feedback method for multi-carrier communication system
EP1564906B1 (en) 2004-02-17 2016-05-25 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving data in a multiuser mimo system
US20050180312A1 (en) * 2004-02-18 2005-08-18 Walton J. R. Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US8169889B2 (en) 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
WO2005081411A1 (en) * 2004-02-25 2005-09-01 Mitsubishi Denki Kabushiki Kaisha Receiver apparatus
JPWO2005083907A1 (en) * 2004-02-26 2007-11-29 松下電器産業株式会社 Mobile station apparatus and transmission antenna selection method in mobile station apparatus
US8669988B2 (en) 2004-03-10 2014-03-11 Qualcomm Incorporated High data rate interface apparatus and method
JPWO2005089006A1 (en) * 2004-03-12 2007-08-09 松下電器産業株式会社 Scheduling method and base station apparatus
JP4519903B2 (en) 2004-03-17 2010-08-04 クゥアルコム・インコーポレイテッド High speed data rate interface apparatus and method
WO2005096594A1 (en) 2004-03-24 2005-10-13 Qualcomm Incorporated High data rate interface apparatus and method
US8315271B2 (en) 2004-03-26 2012-11-20 Qualcomm Incorporated Method and apparatus for an ad-hoc wireless communications system
US8958493B2 (en) * 2004-03-31 2015-02-17 Infineon Technologies Ag Operation for backward-compatible transmission
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US9826537B2 (en) * 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US8170081B2 (en) * 2004-04-02 2012-05-01 Rearden, LLC. System and method for adjusting DIDO interference cancellation based on signal strength measurements
US10187133B2 (en) * 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US7885354B2 (en) * 2004-04-02 2011-02-08 Rearden, Llc System and method for enhancing near vertical incidence skywave (“NVIS”) communication using space-time coding
US8542763B2 (en) 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US7418053B2 (en) 2004-07-30 2008-08-26 Rearden, Llc System and method for distributed input-distributed output wireless communications
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
US7711030B2 (en) * 2004-07-30 2010-05-04 Rearden, Llc System and method for spatial-multiplexed tropospheric scatter communications
US8160121B2 (en) * 2007-08-20 2012-04-17 Rearden, Llc System and method for distributed input-distributed output wireless communications
US7633994B2 (en) * 2004-07-30 2009-12-15 Rearden, LLC. System and method for distributed input-distributed output wireless communications
US9819403B2 (en) * 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US10886979B2 (en) * 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US10200094B2 (en) * 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US8571086B2 (en) * 2004-04-02 2013-10-29 Rearden, Llc System and method for DIDO precoding interpolation in multicarrier systems
US7636381B2 (en) * 2004-07-30 2009-12-22 Rearden, Llc System and method for distributed input-distributed output wireless communications
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US7599420B2 (en) * 2004-07-30 2009-10-06 Rearden, Llc System and method for distributed input distributed output wireless communications
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US7228113B1 (en) * 2004-04-05 2007-06-05 National Semiconductor Corporation SIMO/MISO transceiver for providing packet data communication with SISO transceiver
US7545874B1 (en) 2004-04-05 2009-06-09 National Semiconductor Corporation Apparatus for pre-scaling data packets with multiple signal gain coefficients in a SIMO/MISO transceiver for communication with a SISO transceiver
EP1585232B1 (en) * 2004-04-08 2006-07-19 Mitsubishi Electric Information Technology Centre Europe B.V. Method for transmitting optimally diversified information in a MIMO telecomminication system
US8213553B2 (en) * 2004-04-12 2012-07-03 The Directv Group, Inc. Method and apparatus for identifying co-channel interference
US7161988B2 (en) * 2004-04-12 2007-01-09 The Directv Group, Inc. Method and apparatus for minimizing co-channel interference
JP2007533263A (en) 2004-04-12 2007-11-15 ザ・ディレクティービー・グループ・インコーポレイテッド Shift channel characteristics to mitigate co-channel interference
US7672285B2 (en) * 2004-06-28 2010-03-02 Dtvg Licensing, Inc. Method and apparatus for minimizing co-channel interference by scrambling
US7346115B2 (en) * 2004-04-22 2008-03-18 Qualcomm Incorporated Iterative eigenvector computation for a MIMO communication system
CN1906881A (en) * 2004-05-07 2007-01-31 松下电器产业株式会社 Channel-estimating apparatus and mimo communication system
US8923785B2 (en) 2004-05-07 2014-12-30 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
US7564814B2 (en) 2004-05-07 2009-07-21 Qualcomm, Incorporated Transmission mode and rate selection for a wireless communication system
US20050250510A1 (en) * 2004-05-07 2005-11-10 Jorma Kaikkonen Reduced performance mode of operation for use as needed by a wireless communication terminal
US8233555B2 (en) 2004-05-17 2012-07-31 Qualcomm Incorporated Time varying delay diversity of OFDM
US20050265467A1 (en) * 2004-05-25 2005-12-01 Texas Instruments Incorporated Intercarrier interference cancellation algorithm
US8401018B2 (en) 2004-06-02 2013-03-19 Qualcomm Incorporated Method and apparatus for scheduling in a wireless network
US8650304B2 (en) 2004-06-04 2014-02-11 Qualcomm Incorporated Determining a pre skew and post skew calibration data rate in a mobile display digital interface (MDDI) communication system
WO2005120109A1 (en) 2004-06-04 2005-12-15 Nortel Networks Limited Method and system for soft handoff in mobile broadband systems
EP1753164A4 (en) * 2004-06-04 2015-04-29 Panasonic Ip Man Co Ltd Radio communication device
US8630305B2 (en) 2004-06-04 2014-01-14 Qualcomm Incorporated High data rate interface apparatus and method
US8014781B2 (en) * 2004-06-08 2011-09-06 Qualcomm Incorporated Intra-cell common reuse for a wireless communications system
US8059589B2 (en) * 2004-06-09 2011-11-15 Qualcomm Incorporated Dynamic restrictive reuse scheduler
JP4099592B2 (en) * 2004-06-10 2008-06-11 ソニー株式会社 COMMUNICATION SYSTEM, TRANSMISSION DEVICE, AND RECEPTION DEVICE
CN1969473B (en) * 2004-06-14 2011-02-09 三星电子株式会社 Device and method for controlling transfer mode in multi-input and multi-output mobile communication system
DE102004028703A1 (en) * 2004-06-14 2005-12-29 Siemens Ag Method for allocating transmission capacities in a signal transmission, base station and mobile terminal
US20050288062A1 (en) * 2004-06-23 2005-12-29 Hammerschmidt Joachim S Method and apparatus for selecting a transmission mode based upon packet size in a multiple antenna communication system
GB0414889D0 (en) * 2004-07-02 2004-08-04 Qinetiq Ltd Multiple-input multiple-output communications system
US7706324B2 (en) * 2004-07-19 2010-04-27 Qualcomm Incorporated On-demand reverse-link pilot transmission
US7684753B2 (en) * 2004-07-21 2010-03-23 Nokia Corporation Method and device for transmission parameter selection in mobile communications
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US8032145B2 (en) * 2004-07-23 2011-10-04 Qualcomm Incorporated Restrictive reuse set management algorithm for equal grade of service on FL transmission
US7876848B2 (en) * 2004-07-27 2011-01-25 Samsung Electronics Co., Ltd. Apparatus and method for transmitting a data stream in a wireless communication system with multiple antennas
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
KR100585152B1 (en) * 2004-08-02 2006-05-30 삼성전자주식회사 Wireless OFDM-based modem using TX time-domain equalizer and data transmission method thereof
US7864659B2 (en) * 2004-08-02 2011-01-04 Interdigital Technology Corporation Quality control scheme for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems
US7907910B2 (en) * 2004-08-02 2011-03-15 Intel Corporation Method and apparatus to vary power level of training signal
TWI256219B (en) * 2004-08-09 2006-06-01 Realtek Semiconductor Corp Interference alleviation equalizer of multi-carrier communication system and method thereof
US7499393B2 (en) * 2004-08-11 2009-03-03 Interdigital Technology Corporation Per stream rate control (PSRC) for improving system efficiency in OFDM-MIMO communication systems
US7299070B2 (en) * 2004-08-13 2007-11-20 Broadcom Corporation Dynamic MIMO resource allocation during a single communication
US7440777B2 (en) * 2004-08-13 2008-10-21 Broadcom Corporation Multi-transceiver system with MIMO and beam-forming capability
US7711374B2 (en) * 2004-08-13 2010-05-04 Broadcom Corporation Dynamic reconfiguration of communication resources in a multi-transceiver configuration
US7937738B1 (en) * 2004-08-23 2011-05-03 Entropic Communications, Inc. Variable modulation unicast system
US20060045169A1 (en) * 2004-08-27 2006-03-02 Qualcomm Incorporated Coded-bit scrambling for multi-stream communication in a mimo channel
US7903753B2 (en) * 2004-09-03 2011-03-08 Electronics And Telecommunications Research Institute Structured space-time code achieving the full diversity and full rate and generating method thereof, and multi-input multi-output system
US7362822B2 (en) * 2004-09-08 2008-04-22 Intel Corporation Recursive reduction of channel state feedback
US7539253B2 (en) 2004-09-10 2009-05-26 Intel Corporation Interpolation in channel state feedback
US7492829B2 (en) * 2004-09-10 2009-02-17 Intel Corporation Closed loop feedback in MIMO systems
JP2006093813A (en) * 2004-09-21 2006-04-06 Sharp Corp Communication equipment
US7683834B2 (en) * 2004-09-23 2010-03-23 Interdigital Technology Corporation Undulating transmit patterns for multiple simultaneous transmitters to support signal separation at a receiver
US7362269B2 (en) * 2004-09-23 2008-04-22 Interdigital Technology Corporation Undulating transmit patterns to support signal separation at a receiver
US7265714B2 (en) * 2004-09-23 2007-09-04 Interdigital Technology Corporation Pattern diversity to support a MIMO communications system and associated methods
US8019303B2 (en) * 2004-09-28 2011-09-13 Intel Corporation Multi-antenna multicarrier receiver and methods for adaptively adjusting a receive data rate based on channel utilization
US7236748B2 (en) * 2004-09-30 2007-06-26 Intel Corporation Closed loop feedback in MIMO systems
US7609780B2 (en) * 2004-09-30 2009-10-27 Intel Corporation Method and apparatus for performing sequential closed loop multiple input multiple output (MIMO)
US7882412B2 (en) * 2004-10-05 2011-02-01 Sanjiv Nanda Enhanced block acknowledgement
US7412254B2 (en) * 2004-10-05 2008-08-12 Nortel Networks Limited Power management and distributed scheduling for uplink transmissions in wireless systems
US8885452B2 (en) * 2004-10-11 2014-11-11 Telefonaktiebolaget Lm Ericsson (Publ) Method and system of communication over channels of diverse channel characteristics
US7283499B2 (en) * 2004-10-15 2007-10-16 Nokia Corporation Simplified practical rank and mechanism, and associated method, to adapt MIMO modulation in a multi-carrier system with feedback
US8031642B2 (en) 2004-10-20 2011-10-04 Zte (Usa) Inc. Subcarrier cluster-based power control in wireless communications
US7593472B2 (en) * 2004-10-22 2009-09-22 Integrated System Solution Corp. Methods and apparatus for circulation transmissions for OFDM-based MIMO systems
US20060092873A1 (en) * 2004-10-29 2006-05-04 Telefonaktiebolaget Lm Ericsson ( Publ) Method for adaptive interleaving in a wireless communication system with feedback
US7239659B2 (en) * 2004-11-04 2007-07-03 Motorola, Inc. Method and apparatus for channel feedback
US8130855B2 (en) * 2004-11-12 2012-03-06 Interdigital Technology Corporation Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system
US8667363B2 (en) 2004-11-24 2014-03-04 Qualcomm Incorporated Systems and methods for implementing cyclic redundancy checks
US8539119B2 (en) 2004-11-24 2013-09-17 Qualcomm Incorporated Methods and apparatus for exchanging messages having a digital data interface device message format
US8699330B2 (en) 2004-11-24 2014-04-15 Qualcomm Incorporated Systems and methods for digital data transmission rate control
US8692838B2 (en) 2004-11-24 2014-04-08 Qualcomm Incorporated Methods and systems for updating a buffer
US8723705B2 (en) 2004-11-24 2014-05-13 Qualcomm Incorporated Low output skew double data rate serial encoder
US8873584B2 (en) 2004-11-24 2014-10-28 Qualcomm Incorporated Digital data interface device
US7428268B2 (en) * 2004-12-07 2008-09-23 Adaptix, Inc. Cooperative MIMO in multicell wireless networks
US8396153B1 (en) 2004-12-07 2013-03-12 Adaptix, Inc. Cooperative MIMO in multicell wireless networks
FR2879387B1 (en) * 2004-12-15 2007-04-27 Tdf Sa METHOD FOR TRANSMITTING A VARIABLE BINARY RATE THROUGH A TRANSMISSION CHANNEL.
US7852822B2 (en) * 2004-12-22 2010-12-14 Qualcomm Incorporated Wide area and local network ID transmission for communication systems
US7623490B2 (en) * 2004-12-22 2009-11-24 Qualcomm Incorporated Systems and methods that utilize a capacity-based signal-to-noise ratio to predict and improve mobile communication
US7548752B2 (en) * 2004-12-22 2009-06-16 Qualcomm Incorporated Feedback to support restrictive reuse
JP4746420B2 (en) * 2004-12-27 2011-08-10 株式会社東芝 Wireless communication apparatus and method
US7499452B2 (en) * 2004-12-28 2009-03-03 International Business Machines Corporation Self-healing link sequence counts within a circular buffer
US20080095281A1 (en) * 2004-12-30 2008-04-24 Srinath Hosur MIMO decoding
US20070041322A1 (en) * 2005-01-12 2007-02-22 Won-Joon Choi Rate adaptation using semi-open loop technique
JP4541165B2 (en) * 2005-01-13 2010-09-08 富士通株式会社 Wireless communication system and transmitter
KR100973634B1 (en) * 2005-01-14 2010-08-02 파이핑 핫 네트웍스 리미티드 Dual payload and adaptive modulati0n
US7525988B2 (en) 2005-01-17 2009-04-28 Broadcom Corporation Method and system for rate selection algorithm to maximize throughput in closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
CA2886341C (en) * 2005-02-04 2015-12-22 Kabushiki Kaisha Toshiba Optimal channel assignment for multi-class, multi-channel wireless lans and the like
BRPI0520024B1 (en) 2005-02-07 2018-11-21 Telefonaktiebolaget Lm Ericsson (Publ) methods and apparatus for supporting radio cell selection for a radio terminal surrounded by multiple radio cells and for supporting handover for a radio terminal surrounded by multiple radio cells
US7839819B2 (en) * 2005-02-07 2010-11-23 Broadcom Corporation Method and system for adaptive modulations and signal field for closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
US8077669B2 (en) * 2005-02-07 2011-12-13 Broadcom Corporation Method and system for adaptive modulations and signal field for closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
US7924943B2 (en) * 2005-02-07 2011-04-12 Broadcom Corporation Method and system for optional closed loop mechanism with adaptive modulations for multiple input multiple output (MIMO) wireless local area network (WLAN) system
US8588701B2 (en) * 2005-02-09 2013-11-19 Nokia Corporation Noise level communication for high speed uplink packet access
US20060182207A1 (en) * 2005-02-11 2006-08-17 In-Kyu Lee Hybrid STBC receiver
US8279985B2 (en) * 2005-02-22 2012-10-02 Adaptix, Inc. Intelligent demodulation systems and methods in an OFDMA multicell network
CN101129008B (en) 2005-02-25 2011-09-07 京瓷株式会社 Method of subcarrier distribution, data sending method, communication system and transmitter terminal
CN101129009B (en) * 2005-02-25 2011-05-18 京瓷株式会社 Communication system
IL167180A (en) * 2005-03-01 2011-02-28 Eci Telecom Ltd Method and device for providing multicast services to multiple customers
KR100950644B1 (en) * 2005-03-04 2010-04-01 삼성전자주식회사 Feedback method for mimo communication system
KR20060096365A (en) * 2005-03-04 2006-09-11 삼성전자주식회사 User scheduling method for multiuser mimo communication system
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
CN1832392A (en) * 2005-03-11 2006-09-13 松下电器产业株式会社 Data retransmit method and equipment in multi-input, multi-output system
KR100922958B1 (en) * 2005-03-14 2009-10-22 삼성전자주식회사 Apparatus and method for user assigning in a mimo wireless system serving multi-user diversity
US7742444B2 (en) 2005-03-15 2010-06-22 Qualcomm Incorporated Multiple other sector information combining for power control in a wireless communication system
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US7562435B2 (en) * 2005-03-24 2009-07-21 Sae Magnetics (H.K.) Ltd. Method to improve crown sigma control of the slider in a hard disk drive
KR100922959B1 (en) * 2005-03-29 2009-10-22 삼성전자주식회사 Apparatus and method for scheduling resource in a multi antena system
US7640019B2 (en) * 2005-03-31 2009-12-29 Adc Telecommunications, Inc. Dynamic reallocation of bandwidth and modulation protocols
US20060223514A1 (en) * 2005-03-31 2006-10-05 Adc Telecommunications, Inc. Signal enhancement through diversity
US7593450B2 (en) * 2005-03-31 2009-09-22 Adc Telecommunications, Inc. Dynamic frequency hopping
US20060227805A1 (en) * 2005-03-31 2006-10-12 Adc Telecommunications, Inc. Buffers handling multiple protocols
US20060222020A1 (en) * 2005-03-31 2006-10-05 Adc Telecommunications, Inc. Time start in the forward path
US7583735B2 (en) * 2005-03-31 2009-09-01 Adc Telecommunications, Inc. Methods and systems for handling underflow and overflow in a software defined radio
US7423988B2 (en) * 2005-03-31 2008-09-09 Adc Telecommunications, Inc. Dynamic reconfiguration of resources through page headers
JP4884722B2 (en) * 2005-03-31 2012-02-29 株式会社エヌ・ティ・ティ・ドコモ Wireless communication apparatus and wireless communication method
US7398106B2 (en) * 2005-03-31 2008-07-08 Adc Telecommunications, Inc. Dynamic readjustment of power
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
JP2007221178A (en) * 2005-04-01 2007-08-30 Ntt Docomo Inc Transmitting apparatus and method
JP2006287756A (en) * 2005-04-01 2006-10-19 Ntt Docomo Inc Transmitting apparatus, transmitting method, receiving apparatus, and receiving method
WO2006112030A1 (en) * 2005-04-14 2006-10-26 Matsushita Electric Industrial Co., Ltd. Wireless reception apparatus and wireless reception method
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US7634277B2 (en) * 2005-04-28 2009-12-15 Cisco Technology, Inc. Method for allocating channel resources for improving frequency utilization efficiency of wireless communication systems
US7356071B2 (en) * 2005-05-06 2008-04-08 Interdigital Technology Corporation Method and apparatus for estimating signal-to-noise ratio based on dedicated physical channel pilot symbols
JP5013743B2 (en) * 2005-05-10 2012-08-29 日本放送協会 MIMO receiver
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US7787897B2 (en) * 2005-05-23 2010-08-31 Cisco Technology, Inc. Method for up-link transmit power management in a wireless broadband terminal
US7684529B2 (en) * 2005-05-26 2010-03-23 Intel Corporation Interference rejection in wireless networks
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8842693B2 (en) * 2005-05-31 2014-09-23 Qualcomm Incorporated Rank step-down for MIMO SCW design employing HARQ
US7907688B2 (en) * 2005-05-31 2011-03-15 Intel Corporation Open loop MIMO receiver and method using hard decision feedback
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8730877B2 (en) * 2005-06-16 2014-05-20 Qualcomm Incorporated Pilot and data transmission in a quasi-orthogonal single-carrier frequency division multiple access system
US8064837B2 (en) * 2005-06-16 2011-11-22 Qualcomm Incorporated Method and apparatus for optimum selection of MIMO and interference cancellation
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US20060285531A1 (en) * 2005-06-16 2006-12-21 Howard Steven J Efficient filter weight computation for a MIMO system
US9055552B2 (en) 2005-06-16 2015-06-09 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US8750908B2 (en) 2005-06-16 2014-06-10 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
FR2887379B1 (en) * 2005-06-17 2007-08-31 Thales Sa METHOD FOR BLINDLY DEMODULATING UPPER ORDERS OF SEVERAL LINEAR WAVEFORM TRANSMITTERS
US7804805B2 (en) * 2005-06-27 2010-09-28 Samsung Electronics Co., Ltd Apparatus and method for scheduling transmission of data packets in a multichannel wireless communication system
US7548597B2 (en) * 2005-06-28 2009-06-16 Mediatek Inc. Cascadable diversity receiving system and method thereof
GB0519749D0 (en) * 2005-07-08 2005-11-09 Koninkl Philips Electronics Nv Transmission over a multiple input multiple output broadcast channel (MIMO-BC)
CN100377515C (en) * 2005-07-14 2008-03-26 北京邮电大学 Low-complicacy self-adaptive transmission method for MIMO-OFDM system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
EP1916792A1 (en) * 2005-08-18 2008-04-30 Mitsubishi Electric Corporation Receiver apparatus
JP4744525B2 (en) * 2005-08-22 2011-08-10 パナソニック株式会社 Base station apparatus and mobile station apparatus
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
KR101276797B1 (en) * 2005-08-24 2013-06-20 한국전자통신연구원 Base station tranmitter for mobile telecommunication system, method for that system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
WO2007025469A1 (en) * 2005-09-01 2007-03-08 Huawei Technologies Co., Ltd. Multi-mode network communication system
US8600336B2 (en) 2005-09-12 2013-12-03 Qualcomm Incorporated Scheduling with reverse direction grant in wireless communication systems
KR100895992B1 (en) 2005-09-16 2009-05-07 삼성전자주식회사 Apparatus and method for increasing the number of antennas in wireless communication system using multiple antennas
US7839842B2 (en) * 2005-09-21 2010-11-23 Broadcom Corporation Method and system for a range reduction scheme for user selection in a multiuser MIMO downlink transmission
CN1941661B (en) * 2005-09-30 2011-04-06 松下电器产业株式会社 Multiplexing diversity method in multi-antenna input and output system
US7835750B2 (en) * 2005-10-07 2010-11-16 Samsung Electronics Co., Ltd. Multi-carrier wireless network using flexible fractional frequency reuse
WO2007043459A1 (en) 2005-10-07 2007-04-19 Nec Corporation Mimo radio communication system and method using a plurality of base stations and mobile stations
JP4624901B2 (en) * 2005-10-12 2011-02-02 株式会社日立製作所 Wireless data communication system, wireless data communication method, and communication apparatus
US7720173B2 (en) * 2005-10-17 2010-05-18 Samsung Electronics Co., Ltd Apparatus and method for transmitting/receiving data in multi-user multi-antenna communication system
US9450665B2 (en) * 2005-10-19 2016-09-20 Qualcomm Incorporated Diversity receiver for wireless communication
US20090207790A1 (en) 2005-10-27 2009-08-20 Qualcomm Incorporated Method and apparatus for settingtuneawaystatus in an open state in wireless communication system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US9172453B2 (en) * 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
WO2007050829A1 (en) 2005-10-27 2007-05-03 Qualcomm Incorporated A method of maintaining activecarriers and reqcarriers at the access network
US9210651B2 (en) * 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
FR2893211A1 (en) * 2005-11-08 2007-05-11 Nec Technologies Uk Ltd METHOD FOR REMOVING INTERFERENCE FROM A HSDPA MOBILE TERMINAL
US7889703B2 (en) 2005-11-14 2011-02-15 Mediatek Inc. Adaptive modulation and coding method
US8692839B2 (en) 2005-11-23 2014-04-08 Qualcomm Incorporated Methods and systems for updating a buffer
US8730069B2 (en) 2005-11-23 2014-05-20 Qualcomm Incorporated Double data rate serial encoder
US8560018B2 (en) * 2005-12-09 2013-10-15 Samsung Electronics Co., Ltd. Flexible sectorization in wireless communication systems
US8412249B2 (en) * 2005-12-20 2013-04-02 Alcatel Lucent Resource allocation based on interference mitigation in a wireless communication system
US20070165576A1 (en) * 2005-12-29 2007-07-19 Telefonaktiebolaget Lm Ericsson (Publ) Mimo control channel with shared channelization codes
KR100800806B1 (en) * 2005-12-30 2008-02-01 삼성전자주식회사 Apparatus and method for transmitting/receiving signal in a wireless communication system
KR100871259B1 (en) * 2006-01-02 2008-11-28 삼성전자주식회사 Apparatus and method for receiving signal in a communication system
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
KR100860666B1 (en) * 2006-01-06 2008-09-26 삼성전자주식회사 Apparatus and method for receiving signal in a communication system
US7895503B2 (en) * 2006-01-11 2011-02-22 Qualcomm Incorporated Sphere detection and rate selection for a MIMO transmission
CN101606339B (en) * 2006-01-13 2013-10-16 Lg电子株式会社 A method and apparatus for achieving transmit diversity and spatial multiplexing using antenna selection based on feedback information
US7940640B2 (en) 2006-01-20 2011-05-10 Nortel Networks Limited Adaptive orthogonal scheduling for virtual MIMO system
KR100975701B1 (en) * 2006-01-26 2010-08-12 삼성전자주식회사 Apparatus and method for controlling dynamic range of weight vectors according to combining methods in a mobile station equipped with multiple antennas in high rate packet data system using code division multiple access scheme
KR100891818B1 (en) 2006-01-27 2009-04-07 삼성전자주식회사 Hybrid multiple access apparatus and method in a mobile communication system
CA2640577C (en) * 2006-02-02 2017-03-21 Fujitsu Limited Wireless transmission method, and wireless transmitter and wireless receiver
CN103152089B (en) * 2006-02-02 2016-06-01 富士通株式会社 Wireless transmission method, wireless transmitter and wireless receiving apparatus
US9258833B2 (en) 2006-02-09 2016-02-09 Altair Semiconductor Ltd. LTE/Wi-Fi coexistence
US8116267B2 (en) * 2006-02-09 2012-02-14 Samsung Electronics Co., Ltd. Method and system for scheduling users based on user-determined ranks in a MIMO system
CN101416416B (en) * 2006-02-14 2013-06-12 赛伊公司 Adaptive beam-steering methods to maximize wireless link budget and reduce delay-spread using multiple transmit and receive antennas
US7809395B2 (en) * 2006-02-15 2010-10-05 Broadcom Corporation Method and system for controlling transmit circuitry in a wide band CDMA network
US7907961B2 (en) 2006-06-07 2011-03-15 Broadcom Corporation Method and apparatus for improving noise power estimate in a WCDMA network
EP1994650B1 (en) 2006-02-28 2012-12-19 Rotani Inc. Methods and apparatus for overlapping mimo antenna physical sectors
CN101030833B (en) * 2006-03-01 2012-09-05 株式会社Ntt都科摩 Adaptable space-time coding and modulation method and transmitter
US20070214379A1 (en) * 2006-03-03 2007-09-13 Qualcomm Incorporated Transmission control for wireless communication networks
US20070211813A1 (en) * 2006-03-10 2007-09-13 Shilpa Talwar MIMO precoding in the presence of co-channel interference
KR101232578B1 (en) * 2006-03-14 2013-02-12 퀄컴 인코포레이티드 Apparatus and method of transmit diversity in wireless communication system having multiple antenna
US7627347B2 (en) * 2006-03-17 2009-12-01 Nokia Corporation Data transmission parameter optimization in MIMO communications system
JP4749464B2 (en) * 2006-03-20 2011-08-17 富士通株式会社 Base station, mobile station, radio communication system, and communication method
KR20070095138A (en) 2006-03-20 2007-09-28 삼성전자주식회사 Up link signal receiving apparatus and method of multiuser detection using successive interference cancellation in wireless ofdma system
JP4732935B2 (en) * 2006-03-20 2011-07-27 株式会社エヌ・ティ・ティ・ドコモ Base station, mobile station and method
CN103138910B (en) * 2006-03-20 2017-03-01 富士通株式会社 Communication means in communication means in base station, base station, movement station and movement station
US9088355B2 (en) 2006-03-24 2015-07-21 Arris Technology, Inc. Method and apparatus for determining the dynamic range of an optical link in an HFC network
EP2002581B1 (en) 2006-03-24 2014-03-12 General instrument Corporation Method and apparatus for configuring logical channels in a network
US7551988B1 (en) * 2006-04-05 2009-06-23 Rockwell Collins, Inc. Method of software defined radio (SDR) waveform/function management
CN1829138B (en) * 2006-04-07 2010-04-07 清华大学 Self-adaptive MIMO transmit-receive system and its method
EP1848132A1 (en) * 2006-04-18 2007-10-24 Mitsubishi Electric Information Technology Centre Europe B.V. Method for transferring information related to interference components and power information used by a telecommunication device for weighting at least one pilot signal
US8700042B2 (en) * 2006-04-21 2014-04-15 Alcatel Lucent Method to control the effects of out-of-cell interference in a wireless cellular system using backhaul transmission of decoded data and formats
US8543070B2 (en) 2006-04-24 2013-09-24 Qualcomm Incorporated Reduced complexity beam-steered MIMO OFDM system
JP4356756B2 (en) * 2006-04-27 2009-11-04 ソニー株式会社 Wireless communication system, wireless communication apparatus, and wireless communication method
JP4924106B2 (en) 2006-04-27 2012-04-25 ソニー株式会社 Wireless communication system, wireless communication apparatus, and wireless communication method
JP4924107B2 (en) 2006-04-27 2012-04-25 ソニー株式会社 Wireless communication system, wireless communication apparatus, and wireless communication method
JP4775288B2 (en) 2006-04-27 2011-09-21 ソニー株式会社 Wireless communication system, wireless communication apparatus, and wireless communication method
US8331342B2 (en) * 2006-04-28 2012-12-11 Samsung Electronics Co., Ltd. Apparatus and method for switching between single user and multi-user MIMO operation in a wireless network
US8743676B2 (en) * 2006-05-10 2014-06-03 Apple Inc. Methods and systems for scheduling OFDM frames
US20070286266A1 (en) * 2006-06-12 2007-12-13 Paist Kenneth W Sideways-fed transmitter
KR101274871B1 (en) * 2006-06-14 2013-06-17 삼성전자주식회사 Method and apparatus for transceiving data in a multi antenna system of closed loop scheme
CN101467363B (en) * 2006-06-14 2012-11-07 国立大学法人九州大学 Transmission system, transmission method, transmitter, receiver, and decoding method and device
US8233897B2 (en) * 2006-06-15 2012-07-31 The Mitre Corporation Assessment of idle portions of multidimensional radio spectrum access
US7856012B2 (en) * 2006-06-16 2010-12-21 Harris Corporation System and methods for generic data transparent rules to support quality of service
KR100833703B1 (en) * 2006-06-30 2008-05-29 노키아 코포레이션 Exploiting selection diversity in communications systems with non-orthonormal matrix and vector modulation
US8917673B2 (en) * 2006-07-14 2014-12-23 Qualcomm Incorporation Configurable downlink and uplink channels for improving transmission of data by switching duplex nominal frequency spacing according to conditions
TWI310641B (en) * 2006-07-18 2009-06-01 Ind Tech Res Inst Method and apparatus of dynamic channel assignment for a wireless network
US20080031191A1 (en) * 2006-08-01 2008-02-07 Nokia Corporation Shared control channel structure for multi-user MIMO resource allocation
JP5061189B2 (en) * 2006-08-07 2012-10-31 インターデイジタル テクノロジー コーポレーション Method, apparatus, and system for implementing multi-user virtual MIMO
US7804910B2 (en) * 2006-08-08 2010-09-28 Adaptix, Inc. Systems and methods for wireless communication system channel allocation using international delay distortion
US20080039133A1 (en) * 2006-08-08 2008-02-14 Nortel Networks Limited Method and system for wireless communication in multiple operating environments
KR100951381B1 (en) 2006-08-10 2010-04-08 삼성전자주식회사 Apparatus and method for low-complex scheduling in multiuser mimo system
KR101325434B1 (en) * 2006-08-17 2013-11-04 인텔 코포레이션 Method and apparatus for providing efficient precoding feedback in a mimo wireless communication system
US8050697B2 (en) * 2006-08-22 2011-11-01 Nortel Networks Limited Multi-antenna scheduling system and method
US8111782B2 (en) * 2006-08-31 2012-02-07 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving data in a multi-antenna system, and system using the same
EP2060137A1 (en) * 2006-09-06 2009-05-20 Telefonaktiebolaget LM Ericsson (PUBL) Scheduling and link adaptation in wireless telecommunications systems
US7961810B2 (en) 2006-09-07 2011-06-14 Texas Instruments Incorporated Antenna grouping and group-based enhancements for MIMO systems
WO2008032358A1 (en) * 2006-09-11 2008-03-20 Fujitsu Limited Radio communication apparatus and radio communication method
US8112038B2 (en) * 2006-09-15 2012-02-07 Futurewei Technologies, Inc. Beamforming with imperfect channel state information
US8374650B2 (en) * 2006-09-27 2013-02-12 Apple, Inc. Methods for optimal collaborative MIMO-SDMA
US8073486B2 (en) * 2006-09-27 2011-12-06 Apple Inc. Methods for opportunistic multi-user beamforming in collaborative MIMO-SDMA
CN101154974B (en) * 2006-09-28 2011-08-10 中兴通讯股份有限公司 Multi-antenna mode control method based on base station
US8626104B2 (en) 2006-09-28 2014-01-07 Apple Inc. Generalized codebook design method for limited feedback systems
CN101155012B (en) * 2006-09-28 2013-05-01 中兴通讯股份有限公司 Multi-antenna mode control method based on terminal
US7702029B2 (en) 2006-10-02 2010-04-20 Freescale Semiconductor, Inc. MIMO precoding enabling spatial multiplexing, power allocation and adaptive modulation and coding
US7911934B2 (en) * 2006-10-02 2011-03-22 Freescale Semiconductor, Inc. Resource allocation in multi data stream communication link
US20080080635A1 (en) * 2006-10-02 2008-04-03 Nokia Corporation Advanced feedback signaling for multi-antenna transmission systems
US8340070B2 (en) * 2006-10-03 2012-12-25 Qualcomm Incorporated Resource partitioning for wireless communication systems
KR101322385B1 (en) * 2006-10-09 2013-10-29 삼성전자주식회사 Method and apparatus for feedback information in multiple input multiple output system
RU2430489C2 (en) * 2006-10-24 2011-09-27 Квэлкомм Инкорпорейтед Enabling resource sharing for wireless communication system
WO2008051038A1 (en) * 2006-10-26 2008-05-02 Lg Electronics Inc. Method for reporting channel information in multiple antenna system
JP4594976B2 (en) * 2006-10-30 2010-12-08 株式会社エヌ・ティ・ティ・ドコモ Codebook generator, codebook, and method for obtaining update matrix used in precoding scheme using MIMO transmission
JP4709820B2 (en) * 2006-10-30 2011-06-29 株式会社エヌ・ティ・ティ・ドコモ Reception device, transmission device, and method for providing precoding information
KR101088191B1 (en) * 2006-10-31 2011-11-30 콸콤 인코포레이티드 Unified design and centralized scheduling for dynamic simo, su-mimo and mu-mimo operation for rl transmissions
KR101379208B1 (en) * 2006-11-01 2014-04-01 한국과학기술원 Apparatus and method for scheduling in mimo system
KR20080040105A (en) * 2006-11-02 2008-05-08 한국전자통신연구원 Efficient transmission apparatus and method based on beam
KR100965687B1 (en) * 2006-11-07 2010-06-24 삼성전자주식회사 Apparatus and method for beam forming in a communication system, and system thereof
US8537972B2 (en) 2006-12-07 2013-09-17 General Instrument Corporation Method and apparatus for determining micro-reflections in a network
US8314736B2 (en) 2008-03-31 2012-11-20 Golba Llc Determining the position of a mobile device using the characteristics of received signals and a reference database
US7855963B2 (en) * 2006-12-21 2010-12-21 Aruba Networks, Inc. Capacity estimation and proportional sharing of varying capacity channels
EP2127457B1 (en) 2006-12-27 2012-09-05 Telefonaktiebolaget LM Ericsson (publ) Link adaptation in a wireless telecommunications system
US8073069B2 (en) 2007-01-05 2011-12-06 Apple Inc. Multi-user MIMO-SDMA for finite rate feedback systems
US20080165866A1 (en) * 2007-01-08 2008-07-10 Koon Hoo Teo Cooperative Communication and Shared Handoff among Base, Relay, and Mobile Stations in OFDMA Cellular Networks
WO2008084318A2 (en) * 2007-01-08 2008-07-17 Nokia Corporation Removing gtp-u path management in ugan
US20080171551A1 (en) * 2007-01-11 2008-07-17 Fujitsu Limited Reuse pattern network scheduling using load levels
KR101300842B1 (en) 2007-02-02 2013-08-29 퍼듀 리서치 파운데이션 Multi-user data transmission system and method using the same
KR101299411B1 (en) * 2007-02-05 2013-08-23 삼성전자주식회사 Aparatus for determining data transmission mode and method for the same
US8577303B2 (en) * 2007-02-05 2013-11-05 Samsung Electronics Co., Ltd. Apparatus and method for transmitting channel sounding signal in wireless communication system
KR20080074004A (en) * 2007-02-07 2008-08-12 엘지전자 주식회사 Virtual antenna based multiplexing method using feedback information and mobile terminal supporting the same
RU2439826C2 (en) 2007-02-16 2012-01-10 Нек Корпорейшн Radio transmission system and method for compensating for cross-talk
KR100871227B1 (en) * 2007-02-16 2008-12-01 삼성전자주식회사 Cell throughput enhancement method and apparatus via optional signal combining for cellular systems using wireline relay stations
US9807803B2 (en) * 2007-03-01 2017-10-31 Qualcomm Incorporated Transmission control for wireless communication networks
US8005164B2 (en) * 2007-03-02 2011-08-23 Intel Corporation Link adaptation and antenna selection in cooperative multiple access systems
KR100951822B1 (en) * 2007-03-14 2010-04-12 삼성전자주식회사 Apparatus and method for downlink scheduling in multi antenna wireless communication system
US7961807B2 (en) * 2007-03-16 2011-06-14 Freescale Semiconductor, Inc. Reference signaling scheme using compressed feedforward codebooks for multi-user, multiple input, multiple output (MU-MIMO) systems
US8020075B2 (en) 2007-03-16 2011-09-13 Apple Inc. Channel quality index feedback reduction for broadband systems
US7809074B2 (en) * 2007-03-16 2010-10-05 Freescale Semiconductor, Inc. Generalized reference signaling scheme for multi-user, multiple input, multiple output (MU-MIMO) using arbitrarily precoded reference signals
KR101364567B1 (en) * 2007-03-23 2014-02-19 서강대학교산학협력단 Apparatus and method for opportunistic packet scheduling in wideband wireless access communication system based multi-hop relay
KR101364569B1 (en) * 2007-03-23 2014-02-19 서강대학교산학협력단 Apparatus and method for opportunistic packet scheduling with frequency reuse and quality of service guarantee in wideband wireless access communication system based multi-hop relay
TWI327016B (en) * 2007-04-02 2010-07-01 Ind Tech Res Inst Distributed channel allocation method and wireless mesh network therewith
WO2008129639A1 (en) 2007-04-12 2008-10-30 Fujitsu Limited Wireless terminal and wireless base station
US8797889B2 (en) * 2007-04-13 2014-08-05 Telefonaktiebolaget LML Ericsson (Publ) Multi-carrier CQI feedback method and apparatus
KR20080094190A (en) * 2007-04-19 2008-10-23 엘지전자 주식회사 Method for signal transmitting and apparatus for the same, method for signal receiving and apparatus for the same
US8547986B2 (en) 2007-04-30 2013-10-01 Apple Inc. System and method for resource block-specific control signaling
TWI362844B (en) * 2007-05-07 2012-04-21 Realtek Semiconductor Corp Wireless communication apparatus with built-in channel emulator/noise generator
KR100895576B1 (en) * 2007-05-11 2009-04-29 주식회사 팬택 Method of selecting antennas and transmitting data in multi-input multi-output wireless local area network environments
JP4924201B2 (en) 2007-05-23 2012-04-25 日本電気株式会社 Reception quality measuring apparatus and reception quality measuring method
JP4868065B2 (en) 2007-06-12 2012-02-01 富士通株式会社 Frequency division multiplex transmission equipment
NL1033982C2 (en) * 2007-06-13 2008-12-16 Nedap Nv System for recognizing animals.
JP5059492B2 (en) * 2007-06-13 2012-10-24 京セラ株式会社 Wireless communication method and wireless communication apparatus
US8149811B2 (en) 2007-07-18 2012-04-03 Marvell World Trade Ltd. Wireless network with simultaneous uplink transmission of independent data from multiple client stations
CN101755391B (en) * 2007-07-18 2013-08-07 马维尔国际贸易有限公司 Access point with simultaneous downlink transmission of independent data for multiple client stations
EP2017973A1 (en) * 2007-07-20 2009-01-21 Lucent Technologies Inc. Method and apparatuses for selecting a subchannels subset in wireless communications network using relays
CN101364832B (en) * 2007-08-08 2012-09-05 中兴通讯股份有限公司 Adaptive switching method between spatial division multiplexing and code division multiplexing
US7907677B2 (en) * 2007-08-10 2011-03-15 Intel Corporation Open loop MU-MIMO
CN101370240B (en) * 2007-08-15 2011-08-10 上海贝尔阿尔卡特股份有限公司 Scheduling method and apparatus based on user feedback in multi-user MIMO communication system
US8989155B2 (en) 2007-08-20 2015-03-24 Rearden, Llc Systems and methods for wireless backhaul in distributed-input distributed-output wireless systems
CN101378277B (en) * 2007-08-29 2016-04-06 上海贝尔股份有限公司 Multi-user pre-coding and dispatching method and realize the base station of the method
ATE497287T1 (en) * 2007-08-30 2011-02-15 Ericsson Telefon Ab L M ESTIMATION OF A SIGNAL TO INTERFERENCE RATIO FOR A RECEIVER OF A WIRELESS COMMUNICATIONS SYSTEM
KR100910178B1 (en) * 2007-09-05 2009-07-30 재단법인서울대학교산학협력재단 Multiple transmitting and receiving antennas apparatus in multi-user environments and method thereof
US8098755B2 (en) * 2007-09-07 2012-01-17 Broadcom Corporation Method and system for beamforming in a multiple user multiple input multiple output (MIMO) communication system using a codebook
US8155233B1 (en) * 2007-09-11 2012-04-10 Marvell International Ltd. MIMO decoding in the presence of various interfering sources
CN101388752B (en) * 2007-09-11 2011-08-17 电信科学技术研究院 Uplink transmission method, terminal and base station based on time division duplexing system
US7929625B2 (en) * 2007-09-20 2011-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Quality of service based antenna mapping for multiple-input multiple-output communication systems
EP2219398A4 (en) * 2007-12-04 2014-07-02 Fujitsu Ltd Scheduling metho, radio base station and radio terminal
EP2071786B1 (en) * 2007-12-14 2020-12-23 Vodafone Holding GmbH Method and transceiver for data communication
US9185601B2 (en) 2007-12-18 2015-11-10 At&T Mobility Ii Llc Optimal utilization of multiple transceivers in a wireless environment
US8228809B1 (en) 2007-12-21 2012-07-24 Adaptix, Inc. Intelligent mode switching in communication networks
US7782755B2 (en) * 2007-12-21 2010-08-24 Motorola, Inc. Method for uplink collaborative SDMA user pairing in WIMAX
US8385310B2 (en) * 2007-12-28 2013-02-26 Nokia Corporation Optimal user pairing for downlink multiuser MIMO
WO2009083782A2 (en) * 2007-12-28 2009-07-09 Nokia Corporation Optimal user pairing for multiuser mimo
US9001791B2 (en) 2008-01-31 2015-04-07 Telefonaktiebolaget L M Ericsson (Publ) Detection of time division duplex downlink/uplink configuration
US8996066B1 (en) * 2008-02-11 2015-03-31 Marvell International Ltd. Methods and apparatus for directing a beam towards a device in the presence of interference
CN101510813B (en) * 2008-02-15 2012-03-28 中国移动通信集团公司 Method for transmitting and processing data of communication system, communication system and communication equipment
JP5109707B2 (en) * 2008-02-19 2012-12-26 コニカミノルタビジネステクノロジーズ株式会社 Fixing apparatus and image forming apparatus
US20090213741A1 (en) * 2008-02-27 2009-08-27 The Hong Kong University Of Science And Technology Multi-user MIMO systems with Imperfect CSIT and ARQ
WO2009115912A2 (en) * 2008-03-21 2009-09-24 Nortel Networks Limited Multimedia broadcast multicast service (mbms) utilizing spatial multiplexing
US7978623B1 (en) * 2008-03-22 2011-07-12 Freescale Semiconductor, Inc. Channel rank updates in multiple-input multiple-output communication systems
KR101448639B1 (en) * 2008-03-24 2014-10-08 엘지전자 주식회사 A method for transmitting a data by collaborating of a plurality of base station in a multi-cell environments and a method for receiving using the same
US9829560B2 (en) 2008-03-31 2017-11-28 Golba Llc Determining the position of a mobile device using the characteristics of received signals and a reference database
US7800541B2 (en) 2008-03-31 2010-09-21 Golba Llc Methods and systems for determining the location of an electronic device
US20090262793A1 (en) * 2008-04-17 2009-10-22 Nokia Siemens Networks Oy Noise performance by grouping users according to signal strength or modulation and coding scheme (MCS)
JP4511621B2 (en) * 2008-04-22 2010-07-28 株式会社エヌ・ティ・ティ・ドコモ Mobile communication method, mobile station and radio base station
JP4511622B2 (en) * 2008-04-22 2010-07-28 株式会社エヌ・ティ・ティ・ドコモ Mobile communication method, mobile station and radio base station
US8583137B2 (en) 2008-05-16 2013-11-12 Qualcomm Incorporated Dynamic coverage adjustment in a multi-carrier communication system
US8675550B2 (en) * 2008-06-14 2014-03-18 Alcatel Lucent Method for backhaul interference management with access terminal router
US8229440B2 (en) 2008-07-14 2012-07-24 Qualcomm Incorporated Systems, methods and apparatus to facilitate identification and acquisition of access points
WO2010006469A1 (en) * 2008-07-18 2010-01-21 上海贝尔阿尔卡特股份有限公司 Methods and devices for making exchange processing for multiple sub channel signals in sc-fdma system
US8982889B2 (en) 2008-07-18 2015-03-17 Marvell World Trade Ltd. Preamble designs for sub-1GHz frequency bands
US20100029282A1 (en) * 2008-07-31 2010-02-04 Qualcomm Incorporated Resource partitioning in heterogeneous access point networks
EP2319218B1 (en) * 2008-08-05 2013-04-10 Huawei Technologies Co., Ltd. Method, apparatus and product of OFDM transmission
US9755705B2 (en) * 2008-08-07 2017-09-05 Qualcomm Incorporated Method and apparatus for supporting multi-user and single-user MIMO in a wireless communication system
US9294160B2 (en) * 2008-08-11 2016-03-22 Qualcomm Incorporated Method and apparatus for supporting distributed MIMO in a wireless communication system
US8532038B2 (en) * 2008-08-19 2013-09-10 Qualcomm Incorporated Methods and apparatus for frame exchange for SDMA uplink data
US8867565B2 (en) * 2008-08-21 2014-10-21 Qualcomm Incorporated MIMO and SDMA signaling for wireless very high throughput systems
EP2329043B1 (en) * 2008-08-26 2014-12-17 Becton Dickinson and Company Assay for chlamydia trachomatis by amplification and detection of chlamydia trachomatis cytotoxin gene
US8238488B1 (en) * 2008-09-02 2012-08-07 Marvell International Ltd. Multi-stream maximum-likelihood demodulation based on bitwise constellation partitioning
KR20100033909A (en) * 2008-09-22 2010-03-31 엘지전자 주식회사 Method for controlling transmit power and transmitting device thereof
KR101001015B1 (en) * 2008-09-25 2010-12-14 한국전자통신연구원 Multiple antenna wireless communication system for determining adaptably downlink transmission mode
JP5133831B2 (en) * 2008-09-25 2013-01-30 京セラ株式会社 Wireless communication system, transmission system, wireless terminal, and wireless communication method
CN101686214B (en) * 2008-09-26 2012-12-05 电信科学技术研究院 Method and device for performing channel quality indicator estimation
KR20110082157A (en) * 2008-09-30 2011-07-18 스파이더클라우드 와이어리스, 인크. Methods and apparatus for generating, reporting and/or using interference cancellation information
JP4670934B2 (en) * 2008-10-10 2011-04-13 ソニー株式会社 Wireless communication system, wireless communication device, wireless communication method, and computer program
KR101430981B1 (en) * 2008-10-13 2014-08-18 삼성전자주식회사 Apparatus and method for dynamic feeding back channel information in mimo system
CN107317612B (en) * 2008-10-29 2021-01-29 夏普株式会社 Transmission device, reception device, transmission method, reception method, and communication system
CN104219708B (en) 2008-12-26 2018-03-23 夏普株式会社 The terminal device and its method of execution, the method for base station equipment and its execution
US8693386B2 (en) * 2009-01-05 2014-04-08 Thomson Licensing Resource allocation for orthogonal decode-and forward-input multiple-output relay channels with finite rate feedback
KR101152813B1 (en) * 2009-01-23 2012-06-12 서울대학교산학협력단 Scheduling method for wireless communication system
US8423068B2 (en) * 2009-02-12 2013-04-16 Clearwire Ip Holdings Llc Quality of service based multi-antenna mode switching
US8320479B2 (en) * 2009-02-25 2012-11-27 Alcatel Lucent Ranking and grouping of transmissions in communication system
KR20170001719A (en) 2009-03-31 2017-01-04 마벨 월드 트레이드 리미티드 Sounding and steering protocols for wireless communications
US8964656B2 (en) * 2009-04-02 2015-02-24 Lg Electronics Inc. Method of transmitting channel state information in wireless communication system
US8477735B1 (en) * 2009-04-30 2013-07-02 Sprint Spectrum L.P. System and method for access terminal transition between a MIMO reverse-link mode and a non-MIMO reverse-link mode
JP5511312B2 (en) * 2009-05-21 2014-06-04 シャープ株式会社 Receiver, communication method, program
US20100296405A1 (en) * 2009-05-22 2010-11-25 Qualcomm Incorporated Systems, apparatus and methods for interference management on uplink channels in wireless communication systems
US8743762B2 (en) * 2009-06-03 2014-06-03 Intel Corporation Partial DMM reception to reduce standby power
US8223693B2 (en) * 2009-06-23 2012-07-17 Mediatek Inc. PTA method and apparatus utilizing the same
CN101931441A (en) * 2009-06-26 2010-12-29 华为技术有限公司 Multi-user multi-input multi-output user selection method and device
US8731087B2 (en) * 2009-06-30 2014-05-20 Microsoft Corporation Uplink MIMO transmission from mobile communications devices
ES2359200B8 (en) * 2009-06-30 2012-04-17 Vodafone España, S.A.U. METHOD AND SYSTEM FOR THE RE-ASSIGNMENT OF VOICE CALL RESOURCES IN THE DOUBLE CARRIER OF DESCENDING LINK.
EP2449851B1 (en) * 2009-07-01 2014-11-19 Telefonaktiebolaget L M Ericsson (PUBL) Scheduling different types of receivers in a radio base station
US8639270B2 (en) 2010-08-06 2014-01-28 Golba Llc Method and system for device positioning utilizing distributed transceivers with array processing
US9077594B2 (en) 2009-07-23 2015-07-07 Marvell International Ltd. Coexistence of a normal-rate physical layer and a low-rate physical layer in a wireless network
US8516532B2 (en) 2009-07-28 2013-08-20 Motorola Mobility Llc IP video delivery using flexible channel bonding
US8391429B2 (en) * 2009-08-26 2013-03-05 Qualcomm Incorporated Methods for determining reconstruction weights in a MIMO system with successive interference cancellation
US8335286B2 (en) 2009-08-26 2012-12-18 Qualcomm Incorporated Methods for determining decoding order in a MIMO system with successive interference cancellation
JP5404252B2 (en) * 2009-08-27 2014-01-29 京セラ株式会社 Base station and channel allocation method
US8526485B2 (en) 2009-09-23 2013-09-03 General Instrument Corporation Using equalization coefficients of end devices in a cable television network to determine and diagnose impairments in upstream channels
US8369793B2 (en) * 2009-10-02 2013-02-05 Telefonaktiebolaget L M Ericsson (Publ) Channel-dependent scheduling and link adaptation
US8687594B2 (en) * 2009-10-09 2014-04-01 Broadcom Corporation Method and apparatus for power and handover management in a multiple wireless technology communication device
US8761829B2 (en) * 2009-10-09 2014-06-24 Broadcom Corporation Method and apparatus for power and handover management in a multiple wireless technology communication device
WO2011046475A1 (en) * 2009-10-14 2011-04-21 Telefonaktiebolaget L M Ericsson (Publ) Wireless scheduling considering overhead cost estimate
JPWO2011048713A1 (en) * 2009-10-19 2013-03-07 パナソニック株式会社 Receiver and transmission / reception system
US8509705B2 (en) * 2009-11-02 2013-08-13 Motorola Mobility Llc Differential closed-loop transmission feedback in wireless communication systems
US10110288B2 (en) * 2009-11-04 2018-10-23 Atc Technologies, Llc Frequency division duplex (FDD) return link transmit diversity systems, methods and devices using forward link side information
US9474082B2 (en) * 2009-11-09 2016-10-18 Apple Inc. Method and apparatus for co-scheduling transmissions in a wireless network
WO2011068804A1 (en) * 2009-12-01 2011-06-09 Spidercloud Wireless, Inc. Method, system and device for configuring topology of a wireless network
KR20120125464A (en) * 2010-01-12 2012-11-15 주식회사 팬택 Base station, terminal and method in multi-user multiple-input multiple-output
US8983389B2 (en) * 2010-01-20 2015-03-17 Qualcomm Incorporated Method and apparatus for switching between single user detection and multi user detection
US9281920B2 (en) * 2010-01-27 2016-03-08 Kyocera Corporation Mobile station and control information decoding method
US8693530B2 (en) 2010-02-05 2014-04-08 Comcast Cable Communications, Llc Modulation analysis and distortion identification
US8971394B2 (en) 2010-02-05 2015-03-03 Comcast Cable Communications, Llc Inducing response signatures in a communication network
CN102158942B (en) * 2010-02-12 2013-11-06 华为技术有限公司 Power control method, network equipment and terminal
CN102804873A (en) * 2010-02-22 2012-11-28 高通股份有限公司 Controlling access point transmit power based on access terminal ranking
EP2540121A1 (en) 2010-02-22 2013-01-02 Qualcomm Incorporated Controlling access point transmit power based on event-triggered access terminal messaging
AU2011220004C1 (en) * 2010-02-25 2015-08-06 Sony Corporation Transmission apparatus and method for transmission of data in a multi-carrier broadcast system
US8976850B2 (en) * 2010-03-11 2015-03-10 Samsung Electronics Co., Ltd. Method and apparatus for sharing channel state information (CSI) in a multiple-user multiple-input multiple-output (MU-MIMO) environment
US9350475B2 (en) 2010-07-26 2016-05-24 Qualcomm Incorporated Physical layer signaling to user equipment in a wireless communication system
US8886250B2 (en) 2010-06-18 2014-11-11 Qualcomm Incorporated Channel quality reporting for different types of subframes
GB201006103D0 (en) 2010-04-13 2010-05-26 Icera Inc Decoding a signal
US9307431B2 (en) 2010-04-13 2016-04-05 Qualcomm Incorporated Reporting of channel properties in heterogeneous networks
US20110250919A1 (en) * 2010-04-13 2011-10-13 Qualcomm Incorporated Cqi estimation in a wireless communication network
US9515773B2 (en) 2010-04-13 2016-12-06 Qualcomm Incorporated Channel state information reporting in a wireless communication network
AU2014200316B2 (en) * 2010-04-13 2015-09-10 Qualcomm Incorporated Cqi estimation in a wireless communication network
US9190718B2 (en) * 2010-05-08 2015-11-17 Maxtena Efficient front end and antenna implementation
WO2012001692A2 (en) * 2010-06-29 2012-01-05 Go Net Systems Ltd. Methods circuits apparatus and systems for wireless data communication
US8521208B2 (en) 2010-07-13 2013-08-27 Qualcomm Incorporated Methods and apparatus of transmission power control in the presence of interference
US9136953B2 (en) 2010-08-03 2015-09-15 Qualcomm Incorporated Interference estimation for wireless communication
EP2439856B1 (en) * 2010-10-08 2014-01-15 Alcatel Lucent Setting uplink antenna transmission weights in soft handover
JP5536614B2 (en) * 2010-10-27 2014-07-02 京セラ株式会社 Communication apparatus and communication method
US9008220B2 (en) 2010-12-07 2015-04-14 Ceragon Networks Ltd. Frequency reuse in wireless point-to-point communication systems
US8654640B2 (en) 2010-12-08 2014-02-18 General Instrument Corporation System and method for IP video delivery using distributed flexible channel bonding
CN103404209B (en) * 2010-12-30 2018-07-03 爱立信无线网有限公司 Radio operation in very high-density environment
US10368318B2 (en) 2010-12-30 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Wireless operation in very high density environments
US8958703B2 (en) * 2011-03-04 2015-02-17 Alcatel Lucent Multipath channel for optical subcarrier modulation
US9369885B2 (en) * 2011-04-12 2016-06-14 Qualcomm Incorporated Method and apparatus for selecting reference signal tones for decoding a channel
JP5310774B2 (en) * 2011-04-18 2013-10-09 富士通株式会社 Base station, mobile station and communication method
US8855000B2 (en) 2011-04-28 2014-10-07 Qualcomm Incorporated Interference estimation using data traffic power and reference signal power
US9178669B2 (en) 2011-05-17 2015-11-03 Qualcomm Incorporated Non-adjacent carrier aggregation architecture
CN103597900B (en) * 2011-06-12 2017-04-12 阿尔戴尔半导体有限公司 Mitigation of interference between communication terminals in TD-LTE
US9252827B2 (en) 2011-06-27 2016-02-02 Qualcomm Incorporated Signal splitting carrier aggregation receiver architecture
US9154179B2 (en) 2011-06-29 2015-10-06 Qualcomm Incorporated Receiver with bypass mode for improved sensitivity
US9191962B2 (en) * 2011-07-28 2015-11-17 Nec Laboratories America, Inc. Multi-user scheduling in cellular uplinks
KR101809273B1 (en) * 2011-08-12 2018-01-18 아주대학교산학협력단 Terminal and control method thereof in a communication system
WO2013032584A1 (en) 2011-08-29 2013-03-07 Marvell World Trade Ltd. Coexistence of a normal-rate physical layer and a low-rate physical layer in a wireless network
US8937992B2 (en) 2011-08-30 2015-01-20 General Instrument Corporation Method and apparatus for updating equalization coefficients of adaptive pre-equalizers
US9585157B2 (en) * 2011-09-26 2017-02-28 Lg Electronics Inc. Method and apparatus for allocating minimum guaranteed resource amount to access point in wireless access system
US9037094B2 (en) 2011-10-17 2015-05-19 Golba Llc Method and system for high-throughput and low-power communication links in a distributed transceiver network
US8774334B2 (en) 2011-11-09 2014-07-08 Qualcomm Incorporated Dynamic receiver switching
GB2496458A (en) * 2011-11-14 2013-05-15 Renesas Mobile Corp Transmission of channel state information
JP2015502709A (en) * 2011-11-17 2015-01-22 株式会社Nttドコモ Method for performing scheduling and OFDM-based MU-MIMO transmission through interference alignment based on user multipath strength profile information
US8576705B2 (en) 2011-11-18 2013-11-05 General Instrument Corporation Upstream channel bonding partial service using spectrum management
EP2597797B1 (en) * 2011-11-25 2017-07-26 Sequans Communications Interference cancellation method with multiple data layer MIMO transmission
US9113181B2 (en) 2011-12-13 2015-08-18 Arris Technology, Inc. Dynamic channel bonding partial service triggering
US9362958B2 (en) 2012-03-02 2016-06-07 Qualcomm Incorporated Single chip signal splitting carrier aggregation receiver architecture
US9172402B2 (en) 2012-03-02 2015-10-27 Qualcomm Incorporated Multiple-input and multiple-output carrier aggregation receiver reuse architecture
US9118439B2 (en) 2012-04-06 2015-08-25 Qualcomm Incorporated Receiver for imbalanced carriers
KR101953244B1 (en) 2012-04-26 2019-02-28 삼성전자주식회사 Method and apparatus for user scheduling in the multi user mimo communication system
US8868736B2 (en) 2012-04-27 2014-10-21 Motorola Mobility Llc Estimating a severity level of a network fault
US9003460B2 (en) 2012-04-27 2015-04-07 Google Technology Holdings LLC Network monitoring with estimation of network path to network element location
US8837302B2 (en) 2012-04-27 2014-09-16 Motorola Mobility Llc Mapping a network fault
US8867371B2 (en) 2012-04-27 2014-10-21 Motorola Mobility Llc Estimating physical locations of network faults
US9065731B2 (en) 2012-05-01 2015-06-23 Arris Technology, Inc. Ensure upstream channel quality measurement stability in an upstream channel bonding system using T4 timeout multiplier
WO2013172684A1 (en) * 2012-05-17 2013-11-21 Samsung Electronics Co., Ltd. Channel estimation method and apparatus for cooperative communication in a cellular mobile communication system
US9055579B2 (en) * 2012-05-23 2015-06-09 Collision Communications, Inc. Systems and methods for creating non-orthogonal dimensionality between signals in electronic devices
US9154356B2 (en) 2012-05-25 2015-10-06 Qualcomm Incorporated Low noise amplifiers for carrier aggregation
US9867194B2 (en) 2012-06-12 2018-01-09 Qualcomm Incorporated Dynamic UE scheduling with shared antenna and carrier aggregation
US9564682B2 (en) 2012-07-11 2017-02-07 Digimarc Corporation Body-worn phased-array antenna
KR101972950B1 (en) * 2012-07-19 2019-04-26 삼성전자 주식회사 Apparatus and method of power control for multi-beam forming in wireless communication system
US9136943B2 (en) 2012-07-30 2015-09-15 Arris Technology, Inc. Method of characterizing impairments detected by equalization on a channel of a network
US9253587B2 (en) 2012-08-08 2016-02-02 Golba Llc Method and system for intelligently controlling propagation environments in distributed transceiver communications
US9300420B2 (en) 2012-09-11 2016-03-29 Qualcomm Incorporated Carrier aggregation receiver architecture
US9219631B2 (en) 2012-09-21 2015-12-22 Kratos Integral Holdings, Llc System and method for increasing spot beam satellite bandwidth
US9130624B2 (en) * 2012-09-21 2015-09-08 Kratos Integral Holdings, Llc Envelope feedback interference reduction and data throughput maximization
US9543903B2 (en) 2012-10-22 2017-01-10 Qualcomm Incorporated Amplifiers with noise splitting
US8937970B2 (en) * 2012-11-14 2015-01-20 Telefonaktiebolaget L M Ericsson (Publ) Resource allocation for minimum satisfaction guarantees in multi-service and multi-antenna networks
WO2014076606A1 (en) * 2012-11-15 2014-05-22 Novelsat Ltd. Echo cancellation in communication transceivers
US9137164B2 (en) 2012-11-15 2015-09-15 Arris Technology, Inc. Upstream receiver integrity assessment for modem registration
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US8737992B1 (en) * 2012-12-03 2014-05-27 Spreadtrum Communication USA Inc. Method and apparatus for signal scanning for multimode receiver
US9015786B2 (en) 2012-12-03 2015-04-21 Comcast Cable Communications, Llc Noise ingress detection
TWI487331B (en) * 2012-12-18 2015-06-01 Wistron Corp Method for managing transmission order in network and non-volatile computer-readable media thereof
US9203639B2 (en) 2012-12-27 2015-12-01 Arris Technology, Inc. Dynamic load balancing under partial service conditions
CN103944686B (en) * 2013-01-18 2018-03-20 上海诺基亚贝尔股份有限公司 The CSI feedback method and device of multi-user MIMO system
KR20140094711A (en) * 2013-01-21 2014-07-31 한국전자통신연구원 Communication apparatus and method using massive multiple input multiple output
US9380475B2 (en) 2013-03-05 2016-06-28 Comcast Cable Communications, Llc Network implementation of spectrum analysis
US9444719B2 (en) 2013-03-05 2016-09-13 Comcast Cable Communications, Llc Remote detection and measurement of data signal leakage
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9197886B2 (en) 2013-03-13 2015-11-24 Arris Enterprises, Inc. Detecting plant degradation using peer-comparison
US9160643B2 (en) * 2013-03-14 2015-10-13 Qualcomm Incorporated Systems and methods for statistically profiling channels in MIMO communications
US8995591B2 (en) 2013-03-14 2015-03-31 Qualcomm, Incorporated Reusing a single-chip carrier aggregation receiver to support non-cellular diversity
US10477199B2 (en) 2013-03-15 2019-11-12 Arris Enterprises Llc Method for identifying and prioritizing fault location in a cable plant
US9042236B2 (en) 2013-03-15 2015-05-26 Arris Technology, Inc. Method using equalization data to determine defects in a cable plant
US10547358B2 (en) 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US9025469B2 (en) 2013-03-15 2015-05-05 Arris Technology, Inc. Method for estimating cable plant topology
WO2014198032A1 (en) * 2013-06-13 2014-12-18 华为技术有限公司 Method and device for measuring channel state information
US9118362B2 (en) * 2013-07-12 2015-08-25 National Sun Yat-Sen University System for selecting transmission mode under multi-input multi-output based on scheduling number and method thereof
CN105745844B (en) * 2013-09-13 2019-03-01 慧与发展有限责任合伙企业 Method, wireless transmitter and the storage medium of power are redistributed between subcarrier
CN103532607B (en) * 2013-10-23 2016-09-28 东南大学 The selection antenna for base station of extensive mimo system and user terminal method
JP2017504264A (en) * 2014-01-07 2017-02-02 クインテル テクノロジー リミテッド Antenna system with excellent inter-sector interference mitigation
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US9319112B2 (en) * 2014-05-28 2016-04-19 Sony Corporation Method of controlling a signal transmission in a cellular MIMO system, base station, and cellular MIMO system
EP3192294B1 (en) * 2014-09-11 2021-03-17 Telefonaktiebolaget LM Ericsson (publ) Group based downlink transmission
US9942925B2 (en) * 2015-01-07 2018-04-10 Qualcomm, Incorporated Station contention behavior in uplink multiple user protocols
US9722730B1 (en) 2015-02-12 2017-08-01 Marvell International Ltd. Multi-stream demodulation schemes with progressive optimization
CN104869094B (en) * 2015-04-29 2018-04-20 清华大学 The uplink multi-address cut-in method of united orthogonal multiple access and non-orthogonal multiple
US9992044B2 (en) * 2015-05-28 2018-06-05 King Fahd University Of Petroleum And Minerals System and method for applying adaptive frequency-domain RLS DFE for uplink SC-FDMA
KR102310974B1 (en) * 2015-07-08 2021-10-12 삼성전자주식회사 Method and apparatus for self interference cancellation in full-duplex communication system
US9698877B2 (en) * 2015-08-02 2017-07-04 Intel Corporation Apparatus, system and method of single-user (SU) multi-in-multi-out (MIMO) communication
US10506466B2 (en) * 2015-08-17 2019-12-10 Huawei Technologies Co., Ltd. System and method for coordinating uplink transmissions based on backhaul conditions
KR102391724B1 (en) * 2015-12-18 2022-04-28 삼성전자주식회사 Apparatus and method for non orthogonal multiple access in a wireless communication system
US10177722B2 (en) 2016-01-12 2019-01-08 Qualcomm Incorporated Carrier aggregation low-noise amplifier with tunable integrated power splitter
US10257065B2 (en) 2016-02-01 2019-04-09 Huawei Technologies Co., Ltd. Method and system for communication network configuration using virtual link monitoring
WO2017156712A1 (en) * 2016-03-15 2017-09-21 华为技术有限公司 Code division multiple access demodulation method, modulation end, demodulation end and system
US9967021B2 (en) 2016-07-14 2018-05-08 Suntrust Bank Systems and methods for signal cancellation in satellite communication
CN107733533B (en) * 2016-08-12 2021-06-29 中兴通讯股份有限公司 Method and device for detecting complementary cumulative distribution function
US10171214B2 (en) 2016-09-29 2019-01-01 At&T Intellectual Property I, L.P. Channel state information framework design for 5G multiple input multiple output transmissions
US10602507B2 (en) 2016-09-29 2020-03-24 At&T Intellectual Property I, L.P. Facilitating uplink communication waveform selection
US10644924B2 (en) 2016-09-29 2020-05-05 At&T Intellectual Property I, L.P. Facilitating a two-stage downlink control channel in a wireless communication system
US10158555B2 (en) 2016-09-29 2018-12-18 At&T Intellectual Property I, L.P. Facilitation of route optimization for a 5G network or other next generation network
US10206232B2 (en) 2016-09-29 2019-02-12 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (IAB) wireless networks
JP6692738B2 (en) * 2016-12-06 2020-05-13 日本電信電話株式会社 Scheduling apparatus and method
US11184787B2 (en) * 2017-01-09 2021-11-23 Telefonaktiebolaget Lm Ericcson (Publ) Systems and methods for reliable dynamic indication for semi-persistent CSI-RS
US10355813B2 (en) 2017-02-14 2019-07-16 At&T Intellectual Property I, L.P. Link adaptation on downlink control channel in a wireless communications system
WO2018174798A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods for multi-antenna transmission in vehicular communications
MX2017004460A (en) * 2017-04-05 2018-11-09 Centro De Investigacion Y De Estudios Avanzados Del Instituto Politecnico Nac Multiple-input and multiple-output communications system for doubly-selective channels with virtual trajectory reception.
WO2018209596A1 (en) * 2017-05-17 2018-11-22 Qualcomm Incorporated Csi-rs configuration for partial band retuning
US10321332B2 (en) 2017-05-30 2019-06-11 Movandi Corporation Non-line-of-sight (NLOS) coverage for millimeter wave communication
US10484078B2 (en) 2017-07-11 2019-11-19 Movandi Corporation Reconfigurable and modular active repeater device
US10200071B1 (en) * 2017-08-07 2019-02-05 Kratos Integral Holdings, Llc System and method for interference reduction in radio communications
EP3462635B1 (en) * 2017-09-29 2023-06-07 NEOSAT GmbH Method for operating a communication system
US10348371B2 (en) 2017-12-07 2019-07-09 Movandi Corporation Optimized multi-beam antenna array network with an extended radio frequency range
US10090887B1 (en) 2017-12-08 2018-10-02 Movandi Corporation Controlled power transmission in radio frequency (RF) device network
US10862559B2 (en) 2017-12-08 2020-12-08 Movandi Corporation Signal cancellation in radio frequency (RF) device network
US10637159B2 (en) 2018-02-26 2020-04-28 Movandi Corporation Waveguide antenna element-based beam forming phased array antenna system for millimeter wave communication
US11088457B2 (en) 2018-02-26 2021-08-10 Silicon Valley Bank Waveguide antenna element based beam forming phased array antenna system for millimeter wave communication
US11706064B2 (en) * 2018-05-31 2023-07-18 Indian Institute Of Technology Hyderabad Method of receiving signal stream and a receiver
CN110149133B (en) * 2019-04-15 2020-10-27 浙江大学 Large-scale uplink transmission method based on beam space
JP2022065564A (en) * 2020-10-15 2022-04-27 トヨタ自動車株式会社 Base station and communication method

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274836A (en) * 1989-08-08 1993-12-28 Gde Systems, Inc. Multiple encoded carrier data link
US5265119A (en) * 1989-11-07 1993-11-23 Qualcomm Incorporated Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
US5056109A (en) * 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5274841A (en) * 1990-10-29 1993-12-28 International Business Machines Corporation Methods for polling mobile users in a multiple cell wireless network
DE19523327C2 (en) * 1995-06-27 2000-08-24 Siemens Ag Method for improved estimation of the impulse response of a transmission channel
US5799005A (en) * 1996-04-30 1998-08-25 Qualcomm Incorporated System and method for determining received pilot power and path loss in a CDMA communication system
US5903554A (en) * 1996-09-27 1999-05-11 Qualcomm Incorporation Method and apparatus for measuring link quality in a spread spectrum communication system
US6097972A (en) * 1997-08-29 2000-08-01 Qualcomm Incorporated Method and apparatus for processing power control signals in CDMA mobile telephone system
US6236646B1 (en) * 1997-09-09 2001-05-22 Telefonaktiebolaget Lm Ericsson (Publ) Packet data communications scheduling in a spread spectrum communications system
US6317466B1 (en) 1998-04-15 2001-11-13 Lucent Technologies Inc. Wireless communications system having a space-time architecture employing multi-element antennas at both the transmitter and receiver
US6141393A (en) * 1999-03-03 2000-10-31 Motorola, Inc. Method and device for channel estimation, equalization, and interference suppression
US6721333B1 (en) * 1999-03-25 2004-04-13 Motorola, Inc. Point to point protocol multiplexing/demultiplexing method and apparatus
US6501733B1 (en) * 1999-10-01 2002-12-31 Lucent Technologies Inc. Method for controlling data flow associated with a communications node
DE60035481T2 (en) * 2000-01-19 2008-03-20 Lucent Technologies Inc. Method for allocating radio resources
KR100770437B1 (en) 2000-02-09 2007-10-26 파커-한니핀 코포레이션 Receiver dryer with bottom inlet
US6473467B1 (en) * 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US20020154705A1 (en) * 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
US6493331B1 (en) * 2000-03-30 2002-12-10 Qualcomm Incorporated Method and apparatus for controlling transmissions of a communications systems
US6802035B2 (en) * 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
US6961388B2 (en) 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
US6478422B1 (en) 2001-03-19 2002-11-12 Richard A. Hansen Single bifocal custom shooters glasses
US6771706B2 (en) * 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8098568B2 (en) 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US10313069B2 (en) 2000-09-13 2019-06-04 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8098569B2 (en) 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US10194463B2 (en) 2004-07-21 2019-01-29 Qualcomm Incorporated Efficient signaling over access channel
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8787344B2 (en) 2006-08-30 2014-07-22 Qualcomm Incorporated Method and apparatus for ACKCH with repetition in orthogonal systems
US8532699B2 (en) 2006-09-19 2013-09-10 Qualcomm Incorporated Method for power efficient activation of an inactive communication interface in a mobile station having multiple communication interfaces
US8504119B2 (en) 2007-01-09 2013-08-06 Qualcomm Incorporated Method for efficient assessment of communication service levels in a mobile station having multiple communication interfaces
US8718030B2 (en) 2007-03-26 2014-05-06 Qualcomm Incorporated Methods and apparatus for performing channel tree operations
US8139673B2 (en) 2008-04-09 2012-03-20 Industrial Technology Research Institute Transmission method of wireless signal and transmitter using the same
TWI418167B (en) * 2008-10-24 2013-12-01 Qualcomm Inc Method and apparatus for interference reporting in a n-mimo communication system

Also Published As

Publication number Publication date
CN1613201A (en) 2005-05-04
KR20050043783A (en) 2005-05-11
US20030125040A1 (en) 2003-07-03
WO2003041300A1 (en) 2003-05-15
CN1613201B (en) 2010-12-01
BR0213913A (en) 2005-04-26
EP1442538A1 (en) 2004-08-04
TW200302642A (en) 2003-08-01
US20060121946A1 (en) 2006-06-08
US7636573B2 (en) 2009-12-22
JP2005509360A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
TWI269549B (en) Method, base station and terminal in a multiple-access multiple-input multiple-output communication system
Mohammadi et al. Full-duplex non-orthogonal multiple access for next generation wireless systems
EP1830509B1 (en) Method and apparatus for allocating resources in a multiple-input multiple-output (MIMO) communication system
CA2472574C (en) Resource allocation for mimo-ofdm communication systems
US20170279506A1 (en) Cooperative Wireless Networks
CA2736610C (en) Allocation of uplink resources in a multi-input multi-output (mimo) communication system
AU2002309974A1 (en) Method and apparatus for allocating resources in a multiple-input multiple-output (MIMO) communication system
AU2002303737A1 (en) Allocation of uplink resources in a multi-input multi-output (MIMO) communication system
CN101147334A (en) Mobile terminal, wireless communication device and wireless communication method
WO2008033086A2 (en) Arrangement and method for contention-based multi-access in a wireless communication system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees