TWI252897B - Fluid controller and heat treatment device - Google Patents

Fluid controller and heat treatment device Download PDF

Info

Publication number
TWI252897B
TWI252897B TW92101506A TW92101506A TWI252897B TW I252897 B TWI252897 B TW I252897B TW 92101506 A TW92101506 A TW 92101506A TW 92101506 A TW92101506 A TW 92101506A TW I252897 B TWI252897 B TW I252897B
Authority
TW
Taiwan
Prior art keywords
gas
line
fluid
supply line
flow controller
Prior art date
Application number
TW92101506A
Other languages
Chinese (zh)
Other versions
TW200413666A (en
Inventor
Tsuneyuki Okabe
Shigeyuki Okura
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of TW200413666A publication Critical patent/TW200413666A/en
Application granted granted Critical
Publication of TWI252897B publication Critical patent/TWI252897B/en

Links

Abstract

The object of the present invention is to provide a fluid controller and a heat treatment device, wherein a single gas line 13 is provided with a flow controller 13g, and in addition, a pressure control system area 14 is provided at the upstream side of the flow controller 13g of the gas line 13. An extension line 15 extends from upstream side of the gas line 13 in a direction normal to the gas line 13 and gas supply sources A, B, C of different treatment gases are connected to the extension line 15.

Description

1252897 (1) 玖、發明說明 【發明所屬之技術領域】 本發明是關於流體控制裝置及具備有該流體控制裝置 的熱處理裝置。 【先前技術】 半導體製程的沉積步驟,是採用使多種類的氣體組合 而在半導體晶圓上實施沉積。沉積步驟是具有:既使用常 時地轉換多種類的氣體(例如,H2、02、SiH4、N2等) 、或又常常將相同種類的氣體以不同的流量來使用。 第10圖係在半導體製造裝置的反應處理爐內供應多 種類的氣體的傳統氣體供應系統的系統圖。氣體供應系統 ,是由個別供應不同氣體的多數之處理氣體管線a〜d、 及供應沖洗氣體的沖洗氣體管線p所構成。 在各處理氣體管線a〜d是裝設有質量流量控制器等 的流量控制器1。在流量控制器1的上游側是裝設有轉換 閥2、過濾器3、壓力調整器4、壓力感應器5以及控制 閥2 a。另外,由沖洗氣體管線p所分歧的分歧管線p ’連 接在流量控制器1的一次側。 第1 〇圖所示之氣體供應系統,對於1種氣體裝設有 1條氣體管線,且在每1條氣體管線個別裝設有1個流量 控制器。亦即,因爲進行多種類的氣體的供應,所以採用 對應於氣體的種類數的個數之氣體管線及流量控制器。該 結果是與氣體供應系統的成本增加及佔地面積的增大等的 -6 - 1252897 (2) 問題有關連。 揭示在日本專利公報:日本特開2000-323464號,如 第1 1圖所示,在多數個氣體供應管線a、b、c共用1個 流量控制器1的氣體供應系統。第1 1圖所示之氣體供應 系統,是由個別供應不同的氣體之多數個處理氣體管線a 〜d、及供應沖洗氣體P的沖洗氣體管線p所構成。各氣 體管線a〜d是裝設有轉換閥7、過濾器8、壓力調整器 1 〇以及壓力感應器9。氣體管線a是在氣體管線a〜c裝 設有共用的質量流量控制器等的流量控制器6。氣體管線 d是裝設有專用的流量控制器6。由沖洗氣體管線p所分 歧的分歧管線P ’被連接在各流量控制器6的一次側。 依據第Η圖所示之構造,因爲在氣體管線a〜d共用 流量控制器6,所以僅能達成該當氣體供應系統的成本降 低及小型化。但是,第 U圖所示之氣體供應系統’是因 爲各氣體管線a〜c具備有轉換閥7、過濾器8、壓力調整 器1 〇以及壓力感應器9,所以是無法足夠地達成系統的 小型化。 【發明內容】 〔用以解決課題之手段〕 本發明之目的爲:謀求供應控制多種類的氣體之裝置 (亦即,流體控制裝置)的小型化及低成本化。還有’本 發明之目的爲··提供一種可以簡單地對應於氣體種類的增 減之流體控制裝置。本發明之另外的目的爲:提供一種具 -7- (3) 1252897 備有上述流體控制裝置的熱處理裝置。 爲了達成上述目的,本發明是提供一種流體控制裝置 ’該流體控制裝置具備有:氣體管線,該氣體管線配置有 流量控制手段的第1區域及位在上述第1區域的上游側, 同時配置有壓力調整手段與壓力監視手段之其中至少i種 的第2區域;以及多數個連接手段,該多數個連接手段被 裝設在上述氣體管線的上述第2區域的上游側,可以分別 地連接流體供應源。 正好上述氣體管線是具有:包含上述第i及第2區域 的第1部分、及由上述第1部分的上游端朝垂直相交於上 述第1部分的方向延伸之上述第2部分;上述多數個連接 手段是被裝設在上述第2部分。 另外’本發明是提供一種流體控制裝置,該流體控制 裝置具備有:多數個氣體管線,該多數個氣體管線至少在 第1平面上相互平行地朝第1方向延伸之多數個氣體管線 之中’使該等多數個氣體管線各自具有:配置有流量控制 手段的第1區域、及位在上述第1區域的上游側,同時配 置有壓力調整手段與壓力監視手段之其中至少1種的第2 區域;以及多數個連接手段,該多數個連接手段具備有: 被裝設在上述多數個氣體管線當中的至少1個氣體管線, 可以分別地連接流體供應源;上述至少1個氣體管線是具 有:包含上述第1區域與第2區域,同時在上述第1平面 上朝上述第1方向延伸的第1部分、及由上述第1部分的 上游端將與上述第1平面垂直相交的第2平面上朝與上述 -8- 12528971252897 (1) Field of the Invention The present invention relates to a fluid control device and a heat treatment device including the fluid control device. [Prior Art] The deposition process of a semiconductor process is performed by combining a plurality of types of gases to perform deposition on a semiconductor wafer. The deposition step has the principle of simultaneously converting a plurality of types of gases (e.g., H2, 02, SiH4, N2, etc.) or, often, the same kind of gas at different flow rates. Fig. 10 is a system diagram of a conventional gas supply system for supplying a plurality of kinds of gases in a reaction treatment furnace of a semiconductor manufacturing apparatus. The gas supply system is composed of a plurality of process gas lines a to d which individually supply different gases, and a flush gas line p which supplies a flushing gas. Each of the process gas lines a to d is a flow rate controller 1 equipped with a mass flow controller or the like. On the upstream side of the flow controller 1, a switching valve 2, a filter 3, a pressure regulator 4, a pressure sensor 5, and a control valve 2a are mounted. Further, the branch line p' which is branched by the flushing gas line p is connected to the primary side of the flow controller 1. In the gas supply system shown in Fig. 1, one gas line is installed for one type of gas, and one flow controller is separately installed for each gas line. That is, since a plurality of types of gas are supplied, a gas line and a flow rate controller corresponding to the number of types of gases are used. This result is related to the problem of the cost increase of the gas supply system and the increase in the floor space, etc. -6 - 1252897 (2). As disclosed in Japanese Laid-Open Patent Publication No. 2000-323464, as shown in FIG. 1, a gas supply system of one flow controller 1 is shared by a plurality of gas supply lines a, b, and c. The gas supply system shown in Fig. 1 is composed of a plurality of processing gas lines a to d which individually supply different gases, and a flushing gas line p which supplies the flushing gas P. Each of the gas lines a to d is provided with a switching valve 7, a filter 8, a pressure regulator 1 and a pressure sensor 9. The gas line a is a flow rate controller 6 in which a common mass flow controller or the like is installed in the gas lines a to c. The gas line d is equipped with a dedicated flow controller 6. A branch line P' which is distinguished by the flushing gas line p is connected to the primary side of each flow controller 6. According to the configuration shown in Fig. 1, since the flow controllers 6 are shared by the gas lines a to d, only the cost reduction and miniaturization of the gas supply system can be achieved. However, the gas supply system shown in Fig. U is because each of the gas lines a to c is provided with the switching valve 7, the filter 8, the pressure regulator 1 and the pressure sensor 9, so that the system cannot be sufficiently small. Chemical. [Means for Solving the Problem] An object of the present invention is to reduce the size and cost of a device (i.e., a fluid control device) that supplies and controls a plurality of types of gases. Further, the object of the present invention is to provide a fluid control device which can easily correspond to an increase or decrease in the type of gas. A further object of the present invention is to provide a heat treatment apparatus having the above-described fluid control device having -7-(3) 1252897. In order to achieve the above object, the present invention provides a fluid control device including: a gas line having a first region in which a flow rate control means is disposed and an upstream side of the first region; a second region of at least one of the pressure adjusting means and the pressure monitoring means; and a plurality of connecting means provided on the upstream side of the second region of the gas line, and the fluid supply can be separately connected source. Preferably, the gas line has a first portion including the i-th and second regions, and a second portion extending from a upstream end of the first portion in a direction perpendicularly intersecting the first portion; the plurality of connections The means is installed in the second part above. Further, the present invention provides a fluid control device including: a plurality of gas lines, wherein the plurality of gas lines are at least in a plurality of gas lines extending in the first direction in parallel with each other on the first plane' Each of the plurality of gas lines has a first region in which the flow rate control means is disposed, and a second region in which at least one of the pressure adjusting means and the pressure monitoring means is disposed, and is located on the upstream side of the first region. And a plurality of connection means, the plurality of connection means comprising: at least one gas line installed in the plurality of gas lines, wherein the fluid supply source can be separately connected; the at least one gas line has: The first region and the second region simultaneously face the first portion extending in the first direction on the first plane and the second plane perpendicularly intersecting the first plane from the upstream end of the first portion With the above-8- 1252897

第1方向垂直相交的第2方向延伸的第2部分;上述多數 個連接手段是被裝設在上述第2部分。 正好’上述連接手段是由被裝設在上述氣體管線之多 數個三向閥所構成。此時,上述各三向閥是個別具有:第 1、第2'以及第3出入口;上述各三向閥的第】出入口 ,是被連接在個別流體供應源;相互地接鄰的三向閥當中 的上游側之三向閥的第2出入口是被連接在下游側之三向 閥的第3出入口;在最下游側之三向閥的第3出入口是被 連接在上述氣體管線的第2區域;沖洗氣體可被供應至最 上游側之三向閥的第2出入口。 另外’本發明是提供一種熱處理裝置,具備有:擁有 上述之構成的流體控制裝置、及經由上述流體控制裝置而 供應流體的反應處理爐。 【實施方式】 〔發明之實施形態〕 根據圖面說明本發明之較佳的實施形態。 第1圖係依照本發明顯示具備有流體控制裝置的熱處 理裝置之一實施形態的系統圖。熱處理裝置是具備有:包 含流體控制裝置1 1的氣體供應系統、及反應處理爐3 2。 反應處理爐3 2是收納基板,進行對該基板氧化處理或 CVD等的熱處理,且可以採用皆知之適當的爐。 流體控制裝置1 1是用來供應氣體予反應處理爐3 2, 包含被配置成等間隔之多數個氣體管線12、13、23。各 -9- 1252897 (5) 氣體管線是在大槪朝鉛直方向延伸的第1鉛直平面內延伸 〇 在第1圖之左端的管線1 2,是用來供應%等的沖洗 氣體Ρ的沖洗氣體管線。沖洗氣體管線1 2是由上游側被 循序裝設有:氣體供應口 12a、手動閥12b、過濾器12c 、壓力調整器1 2 d、壓力感應器1 2 e、控制閥1 2 f、流量控 制器12g以及過濾器12h。 氣體管線1 3是用來供應多數種類的處理氣體(例如 ,H2、02、N2、SiH4等)的處理氣體管線。如第1〜5圖 所示之處理氣體管線1 3是具有:裝設有流量控制器1 3 g 的流量控制系統區域(第1區域)、及被裝設在該流量控 制器的上游側之壓力控制系統區域1 4 (第2區域)。壓 力控制系統區域1 4是裝設有:手動閥1 3 b、過濾器1 3 c、 壓力調整器1 3 d、壓力感應器1 3 e、控制閥1 3 f、過濾器 13h以及控制閥13i。 在氣體管線1 3的上游側端部連結有多數個氣體供應 源A、B、C。尤其是如第2圖所示,朝鉛直方向延伸的 氣體管線1 3,在其上游端的下端部,大槪改變90度方向 ,朝與上述第1鉛直平面垂直相交的方向延伸。以下,將 氣體管線1 3的水平方向延長部分稱作爲氣體管線1 3的延 長部1 5。而且,氣體管線1 3的鉛直方向延長部分及延長 部1 5,是與上述第1鉛直平面垂直相交,同時位於朝鉛 直方向延伸的第2鉛直平面內。 氣體管線1 3的延長部1 5上,被串聯地設置有附有致 -10- 1252897 (6)The second portion extending in the second direction perpendicularly intersecting the first direction; the plurality of connecting means being disposed in the second portion. The above-mentioned connecting means is constituted by a plurality of three-way valves installed in the gas line. In this case, each of the three-way valves has a first, a second, and a third inlet; the first inlet and outlet of each of the three-way valves are connected to an individual fluid supply source; and a three-way valve adjacent to each other The second inlet and outlet of the upstream three-way valve is the third inlet and outlet of the three-way valve connected to the downstream side; the third inlet and outlet of the three-way valve on the most downstream side is connected to the second region of the gas line The flushing gas can be supplied to the second inlet and outlet of the three-way valve on the most upstream side. Further, the present invention provides a heat treatment apparatus comprising: a fluid control device having the above configuration; and a reaction treatment furnace that supplies a fluid through the fluid control device. [Embodiment] [Embodiment of the Invention] A preferred embodiment of the present invention will be described with reference to the drawings. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a system diagram showing an embodiment of a heat treatment apparatus having a fluid control device in accordance with the present invention. The heat treatment apparatus is provided with a gas supply system including a fluid control device 1 and a reaction treatment furnace 32. The reaction processing furnace 32 is a storage substrate, and is subjected to heat treatment such as oxidation treatment of the substrate or CVD, and a well-known furnace can be used. The fluid control device 1 1 is for supplying a gas to the reaction treatment furnace 32, and includes a plurality of gas lines 12, 13, 23 arranged at equal intervals. Each of the-9- 1252897 (5) gas lines is a first-stage vertical plane extending in the vertical direction of the Daban, and the line 12 at the left end of the first figure is a flushing gas for supplying a flushing gas such as %. Pipeline. The flushing gas line 12 is sequentially installed from the upstream side: a gas supply port 12a, a manual valve 12b, a filter 12c, a pressure regulator 1 2 d, a pressure sensor 1 2 e, a control valve 1 2 f, a flow control The device 12g and the filter 12h. Gas line 13 is a process gas line for supplying a wide variety of process gases (e.g., H2, 02, N2, SiH4, etc.). The process gas line 13 shown in FIGS. 1 to 5 has a flow control system region (first region) in which the flow controller 1 3 g is installed, and is installed on the upstream side of the flow controller. Pressure control system area 1 4 (2nd area). The pressure control system area 14 is equipped with: a manual valve 1 3 b, a filter 1 3 c, a pressure regulator 1 3 d, a pressure sensor 13 3 e, a control valve 13 f, a filter 13 h, and a control valve 13i . A plurality of gas supply sources A, B, and C are connected to the upstream end of the gas line 13 . In particular, as shown in Fig. 2, the gas line 13 extending in the vertical direction extends at a lower end portion of the upstream end thereof in a direction of 90 degrees, and extends in a direction perpendicular to the first vertical plane. Hereinafter, the horizontal extension portion of the gas line 13 is referred to as the extension portion 15 of the gas line 13 . Further, the vertical extension portion and the extension portion 15 of the gas line 13 are perpendicular to the first vertical plane and are located in the second vertical plane extending in the vertical direction. The extension portion 15 of the gas line 13 is provided in series with the attachment -10- 1252897 (6)

動器的三向閥1 7、1 8、1 9。三向閥1 7、1 8、1 9的第1出 入口 17a、18a、19a是分別連接在被氣體供應源A、B、C 所分別連接的氣體供應管ba、16b、16c ◦三向閥18的 第2及第3出入口 18b、18c是分別被連接在三向閥17的 第3出入口 17c及三向閥19的第2出入口 19b。三向閥 1 7的第2出入口 1 7b是被連接在介隔於附有致動器的二 向閥20及單向閥2 1供應沖洗氣體P的管線22。三向閥 1 9的第3出入口 1 9 c是通到氣體管線1 3的鉛直方向延伸 部分。 三向閥17、18、19的第2及第3出入口 17b、17c、 18b、18c、19b、19c是隨時連通著。各二向閥 17、18、 1 9的致動器是移動被內藏在該三向閥的膜片形態的閥體 ,第1出入口轉換與第2及第3出入口所連通的狀態以及 讓該連通遮斷的狀態。 再度參照第1圖,氣體管線23被配置接鄰在氣體管 線1 3。氣體管線23是由氣體供應源D供應氣體。氣體供 應管線23也與氣體管線1 3同樣地裝設有:氣體供應口 23a、手動閥23b、過濾器23c、壓力調整器23d、壓力感 應器23e、控制閥23f以及流量控制器23g。 如第1圖及第4圖所示,從沖洗氣體管線12讓上述 管線22分歧,且該管線22是經由二向閥20被連接在三 向閥17的第2出入口 17b。 從沖洗氣體管線1 2,另外,讓分歧管線2 5分歧。分 歧管線2 5是被連接在氣體管線1 3的流量控制器1 3 g之一 -11 - 1252897 (7) 次側,換言之在壓力控制系統區域1 4的下游側。分歧管 線2 5是裝設有控制閥2 5 a及單向閥2 5 b。若不需要沖洗 從氣體管線1 3多數次供應同種類的氣體於反應處理爐3 2 內時等的壓力控制系統區域1 4時,在關閉控制閥1 3 f的 狀態下從分歧管線2 5將沖洗氣體送進氣體管線1 3,由氣 體管線1 3的壓力控制系統區域1 4僅可以沖洗下游側。而 且,分歧管線25是在途中另外分歧,被連接在氣體管線 23之流量控制器23g的一次側。 上述的流體控制裝置1 1是作爲單一的綜合式構造單 元26所構成。綜合式構造單元26是具有:沿著上述第1 鉛直平面延伸的底板27、及沿著上述第2鉛直平面延伸 的底板2 8。底板2 8的寬度是與氣體管線1 3的寬度相等 。在底板27、28上安裝有多數個連接塊26a。流量控制 器 12g、13g、23g;手動閥 12d、13d、23d;三向閥 17、 1 8、1 9以及二向閥20等的功能構件是被裝載在塊體(例 如閥塊26b)。這些功能構件用的塊體是經由連接塊26a 被相互氣密地連接。 接著就作用說明之。 供應處理氣體B於反應處理爐3 2時,在關閉二向閥 2 0的狀態下開放三向閥1 8。處理氣體B是由延長部1 5被 導入於氣體管線1 3,在通過氣體管線1 3的壓力控制系統 區域1 4之際被控制在預定的壓力,另外,利用流量控制 器1 3 g被控制在預定的流量’最後被導入於處理反應爐 32內(參照第3圖及第4圖)。 -12- 1252897 (8) 接著,處理氣體B爲不同的處理氣體,例如 氣體A於處理反應爐32內時,而且首先,藉由 沖洗氣體管線1 3及其延長部1 5內。此時,關 1 7、1 8、1 9與開放二向閥20,沖洗氣體P被供 管線1 3及其延長部1 5,利用此方法沖洗全體的 1 3及其延長部1 5。此時,沒有不供應沖洗氣體 區域(殘存停滯先前所使用的處理氣體B的區域 有殘留處理氣體B在氣體管線1 3及其延長部1 5 4圖及第5圖)。沖洗結束的話,關閉二向閥20 三向閥1 7。利用此方法處理氣體A被供應於反 32 ° 如以上所說明,在上述的實施形態之中,是 1系統的)氣體管線裝設流量控制區域與壓力控 域,爲了供應多種的氣體所以共用該1個氣體供 爲此,可達成流體控制裝置的成本大幅的降低。 另外、利用管線數量的削減也可以謀求流體 的小而簡潔化。具體而言與第1 〇圖及第1 1圖所 裝置比較,僅第1圖所示之寬度可以將流體控制 化。另外,氣體種類的增設也可非常容易地執行 在氣體管線的共用化是必須要有以下的條件:( 混合氣體彼此在氣體管線內是不反應;(2 )氣 被同時地供應於反應處理爐;(3 )各氣體的流 近。例如,處理氣體A、B、C的組合是可以進f 體、Si2H2Cl氣體、Si2Cl6氣體的組合;或者是 供應處理 沖洗氣體 閉三向閥 應於氣體 氣體管線 P的停滯 ),且沒 (參照第 ,而開放 應處理爐 在1個( 制系統區 應管線。 控制裝置 示之傳統 裝置小型 。而且, :1 )即使 體是沒有 量範圍接 ί s i H4 氣 NH3氣體 -13- 1252897 (9) 、N2H4氣體、NXHY氣體的組合。 而且,在上述實施形態之中,雖然只在1個氣體管線 1 3連接多數種的氣體供應源,但是可以在多數個氣體管 線分別連接多數種的氣體供應源。此時,例如,在第1氣 體管線13連接SiH4氣體供應源、Si2H2Cl氣體供應源以 及Sh Cl6氣體供應源,而在與第1氣體管線13具有同樣 構成的第2氣體管線可以連接NH3氣體供應源、N2h4氣 體供應源以及NXHY氣體供應源。而且,第2氣體管線是 與第1氣體管線同樣地連接沖洗氣體管線22。 另外’在上述實施形態之中’壓力控制系統區域雖然 裝設有當作壓力調整手段的壓力調整器13d及當作壓力監 視手段的壓力感應器1 3 e的兩方,但是不被限定於此。例 如,處理氣體爲低蒸氣壓時,有時並不積極地執行壓力調 整,在這種情況不裝設壓力調整器1 3 d也可以。 在上述實施形態時,雖然採用質量流量控制器作爲流 量控制器1 2 g、1 3 g、2 3 g,但是不被限定於此,採用壓力 式流量控制器也可以。 另外,採用數位質量流量控制器作爲流量控制器1 2 g 、1 3 g、2 3 g較佳,如此的話,雖然於各氣體所要求的供 應流量即使有差異,但是儘管那樣也可以對應。數位 MFC只收納對應於基準氣體及基準流量的流量控制特性 曲線。將不同的氣體控制在不同的流量時’事前就實驗地 要求對於一種類的基準氣體及該基準流量的變換係數準備 好。然後,將不同的氣體控制在不同的流量時’由實際氣 -14- 1252897 do) 體流量的測定値與上述變換係數推算近似的補償値,根據 該補償値修正流量控制特性曲線,而執行氣體的流量控制 。利用此方法,可以對應多數個不同氣體及較寬的流量範 圍。當然,將相同氣體控制在不同的流量時,也可以同樣 的控制。 第6〜9圖係顯示流體控制裝置的其他實施形態。在 這些圖之中,於第1〜5圖所記載的構件與同一的構件, 附同一符號而省略重複說明。在第6〜9圖所示之實施形 態之中’在1個氣體管線1 3裝設質量流量控制器等的流 量控制器1 3 g (未在第6〜9圖所圖示),在流量控制器 1 3 g的上游側裝設壓力控制系統區域1 4方面是相同的。 第6〜9圖所示之實施形態,延伸上述第1鉛直平面上的 氣體管線1 3是在當作其上游端部的下端部時,雖然大槪 改變9 0度方向,但是接著上述第1錯直平面上朝橫方向 延伸。以下,將氣體管線1 3的水平方向延長部分稱作爲 延長部3 0。 在延長部3 0是連接在被處理氣體供應源A、B、C所 分別連接的氣體供應管2 9 a、2 9 b、2 9 c。在延長部3 0的 最上游側是連接在被沖洗氣體供應源P所連接的沖洗氣體 供應管3 1。在各氣體供應管2 9 a、2 9 b、2 9 c,在沖洗氣體 供應管3 1分別裝設有二向閥3 2 (開關閥)。 第6〜9圖所示之實施形態,爲了產生在氣體供應管 2 9a、2 9b、2 9c的二向閥的下游側與氣體管線的延長部30 之間的停滯區域V (氣體殘存而停滯的區域),所以氣體 -15- 1252897 (11) 殘留(參照第6圖及第7圖)。此時,如第8圖及第9圖 所示,如果供應沖洗氣體的話,殘留在停滯區域V的氣 體是不會沖洗。 第6〜9圖所示之實施形態之中,也因爲可以用1個 (一系統的)氣體管線供應不同種類的氣體,所以與第1 〜5圖所示之實施形態同樣地可以謀求流體控制裝置的低 成本化。但是,第6〜9圖所示之實施形態是因爲氣體管 線的延長部3 0朝橫方向延伸,所以雖然有管線數量的削 減效果,但是依照管線數的削減而流體控制裝置的小型化 的效果是比第1〜5圖所示之實施形態不如。另外,在停 滯區域V不可避免地發生了的方面,第6〜9圖所示之實 施形態也是比第1〜5圖所示之實施形態不如。 【圖式簡單說明】 第1圖係依照本發明顯示流體控制裝置的一實施形態 之系統圖。 弟2圖係藏不於弟1圖所不之流體控制裝置中,被多 數個氣體供應源所連接之氣體管線的構成之剖面圖,且顯 不處理氣體通過氣體管線的狀態圖。 第3圖係由第2圖所示之氣體管線的箭號m方向所見 之正視圖。 第4圖係同第2圖的剖面圖,且顯示沖洗氣體通過氣 體管線的狀態圖。 第5圖係由第4圖所示之氣體管線的箭號v方向所見 -16- (12) 1252897 之正視圖。 第6圖係顯不於第2圖所示之氣體管線的其他形態圖 ,且顯示處理氣體通過氣體管線的狀態圖。 第7圖係顯示第6圖的νπ 一 νπ剖面圖。 第8圖係同第6圖的剖面圖,且顯示沖洗氣體通過氣 體管線的狀態圖。 第9圖係顯示第6圖的]X 一][X剖面圖。 第1 0圖係顯示傳統的氣體供應系統之槪略系統圖。 第1 1圖係顯示其他傳統的氣體供應系統之槪略系統 圖。 〔圖號說明〕 1 流 量 控 制 器 2 轉 換 閥 2a 控 制 閥 3 過 濾 器 4 壓 力 調 整 器 5 壓 力 感 應 器 6 流 量 控 制 器 7 轉 換 閥 8 過 濾 器 9 壓 力 感 應 器 10 壓 力 調 整 器 11 流 體 控 制 裝置 -17- (13)1252897 12 氣體管線 12a 氣體供應口 12b 手動閥 12c 過濾器 1 2d 壓力調整器 1 2e 壓力感應器 1 2f 控制閥 12g 流量控制器 1 2h 過濾器 13 氣體管線 13b 手動閥 13c 過濾器 13d 壓力調整器 1 3e 壓力感應器 1 3f 控制閥 13g 流量控制器 1 3h 過濾器 1 3i 控制閥 14 壓力控制系統區域 15 延長部 16a 氣體供應管 16b 氣體供應管 16c 氣體供應管 17 三向閥 -18 (14)1252897 17a 第 1 出 入 □ 17b 第 2 出 入 □ 17c 第 3 出 入 π 18 二 向 閥 18a 第 1 出 入 □ 18b 第 2 出 入 □ 18c 第 3 出 入 □ 19 二 向 閥 19a 第 1 出 入 □ 19b 第 2 出 入 □ 19c 第 3 出 入 □ 20 二 向 閥 2 1 單 向 閥 22 沖 洗 氣 體 管線 23 氣 體 管 線 23a 氣 體 供 應 □ 23b 手 動 閥 23c m 濾 器 23d 壓 力 調 整 器 23e 壓 力 感 m 器 23f 控 制 閥 23g 流 量 控 制 器 25 分 歧 管 線 25a 控 制 閥 -19 (15)1252897 25b 單 向 閥 26 綜 合 式 構 造 單 元 26a 連 接 塊 26b 閥 塊 27 底 板 28 底 板 29a 氣 體 供 應 管 29b 氣 體 供 應 管 29c 氣 體 供 應 管 30 延 長 部 3 1 沖 洗 氣 體 供 應 管 32 反 應 處 理 爐 A 處 理 氣 體 B 處 理 氣 體 C 處 理 氣 體 P 沖 洗 氣 體 P, 分 歧 管 線 a 氣 體 管 線 b 氣 體 管 線 c 氣 體 Π.ΛΛ. 管 線 d 氣 體 管 線 P 沖 洗 氣 體 管 線 -20The three-way valve of the actuator is 1, 7 , 18 , 19 . The first inlets and outlets 17a, 18a, 19a of the three-way valves 1 7, 18, and 19 are respectively connected to the gas supply pipes ba, 16b, and 16c which are respectively connected by the gas supply sources A, B, and C. The second and third inlets and outlets 18b and 18c are connected to the third inlet and outlet port 17c of the three-way valve 17 and the second inlet and outlet port 19b of the three-way valve 19, respectively. The second port 1 7b of the three-way valve 17 is a line 22 that is connected to the two-way valve 20 and the check valve 21 that are supplied with the actuator to supply the flushing gas P. The third inlet and outlet 1 9 c of the three-way valve 19 is a vertically extending portion leading to the gas line 13 . The second and third inlets and outlets 17b, 17c, 18b, 18c, 19b, and 19c of the three-way valves 17, 18, 19 are connected at any time. The actuator of each of the two-way valves 17, 18, and 19 is a valve body that is moved in a diaphragm form of the three-way valve, and the first inlet and outlet are connected to the second and third inlets and outlets, and the state is The state of the connected occlusion. Referring again to Fig. 1, the gas line 23 is disposed adjacent to the gas line 13 . The gas line 23 is supplied with gas from a gas supply source D. Similarly to the gas line 13, the gas supply line 23 is provided with a gas supply port 23a, a manual valve 23b, a filter 23c, a pressure regulator 23d, a pressure sensor 23e, a control valve 23f, and a flow rate controller 23g. As shown in Figs. 1 and 4, the above-mentioned line 22 is branched from the flushing gas line 12, and the line 22 is connected to the second port 17b of the three-way valve 17 via the two-way valve 20. From the flushing gas line 12, in addition, the branch line 2 5 is diverged. The manifold line 25 is connected to one of the flow controllers 1 3 g -11 - 1252897 (7) of the gas line 13 , in other words, on the downstream side of the pressure control system region 14 . The branch line 2 5 is provided with a control valve 25 a and a check valve 2 5 b. If it is not necessary to flush the pressure control system region 14 when the same type of gas is supplied from the gas line 13 to the reaction treatment furnace 3 2, the control line 1 3 f is closed from the branch line 2 5 The flushing gas is fed into the gas line 13 and only the downstream side can be flushed by the pressure control system region 14 of the gas line 13. Further, the branch line 25 is further divided on the way and is connected to the primary side of the flow controller 23g of the gas line 23. The fluid control device 1 1 described above is constructed as a single integrated structural unit 26. The integrated structure unit 26 has a bottom plate 27 extending along the first vertical plane and a bottom plate 28 extending along the second vertical plane. The width of the bottom plate 28 is equal to the width of the gas line 13. A plurality of connection blocks 26a are mounted on the bottom plates 27, 28. The flow controllers 12g, 13g, 23g; the manual valves 12d, 13d, 23d; the functional components of the three-way valves 17, 18, 19 and the two-way valve 20 are loaded on the block (e.g., the valve block 26b). The blocks for these functional members are airtightly connected to each other via the connection block 26a. Then the role is explained. When the process gas B is supplied to the reaction treatment furnace 32, the three-way valve 18 is opened in a state where the two-way valve 20 is closed. The process gas B is introduced into the gas line 13 by the extension portion 15 and is controlled to a predetermined pressure while passing through the pressure control system region 14 of the gas line 13 and is controlled by the flow controller 1 3 g. The predetermined flow rate is finally introduced into the processing reactor 32 (see FIGS. 3 and 4). -12- 1252897 (8) Next, the process gas B is a different process gas, for example, gas A in the process reactor 32, and first, by flushing the gas line 13 and its extension 15 . At this time, the closing of the 1, 7, 18, and 19 and the open two-way valve 20, the flushing gas P is supplied to the line 13 and its extension portion 15, and the entire portion 13 and its extension portion 15 are flushed by this method. At this time, there is no region where the flushing gas is not supplied (the region where the processing gas B used previously is stagnated remains in the gas line 13 and its extension portion 154 and Fig. 5). When the flushing is completed, the two-way valve 20 three-way valve 17 is closed. According to this method, the gas A is supplied to the reverse 32°. As described above, in the above-described embodiment, the gas line is provided with a flow control region and a pressure control region, and the gas is supplied in order to supply a plurality of gases. For this purpose, a gas can be used to achieve a significant reduction in the cost of the fluid control device. In addition, the use of the number of pipelines can also reduce the size and simplification of the fluid. Specifically, compared with the apparatus of Fig. 1 and Fig. 1, only the width shown in Fig. 1 can control the fluid. In addition, the addition of gas species can also be performed very easily. The sharing of gas lines must have the following conditions: (mixed gases do not react with each other in the gas line; (2) gas is simultaneously supplied to the reaction furnace (3) the flow of each gas. For example, the combination of process gases A, B, and C may be a combination of a gas, a Si2H2Cl gas, or a Si2Cl6 gas; or a supply process flush gas closed three-way valve in a gas gas pipeline. P stagnation), and not (refer to the first, and the opening should be treated in one furnace (the system area should be pipelined. The control device shows that the conventional device is small. Moreover, :1) even if the body is not in the range of the range ί si H4 gas Combination of NH3 gas-13-1252897 (9), N2H4 gas, and NXHY gas. Further, in the above embodiment, a plurality of gas supply sources are connected to only one gas line 13, but a plurality of gases may be used. The pipeline is connected to a plurality of gas supply sources respectively. At this time, for example, the SiH4 gas supply source, the Si2H2Cl gas supply source, and the ShCl6 gas supply source are connected to the first gas line 13, and The second gas line having the same configuration as that of the first gas line 13 can be connected to the NH 3 gas supply source, the N 2 h 4 gas supply source, and the NXHY gas supply source. Further, the second gas line is connected to the flush gas line 22 in the same manner as the first gas line. Further, in the above-described embodiment, the pressure control system region is provided with both the pressure regulator 13d as the pressure adjusting means and the pressure sensor 13e as the pressure monitoring means, but is not limited thereto. For example, when the processing gas is a low vapor pressure, the pressure adjustment may not be actively performed. In this case, the pressure regulator 1 3 d may not be provided. In the above embodiment, the mass flow controller is used. As the flow controller 1 2 g, 13 g, 2 3 g, but not limited to this, a pressure type flow controller may be used. In addition, a digital mass flow controller is used as the flow controller 1 2 g , 1 3 g and 2 3 g are preferable. In this case, although there is a difference in the supply flow rate required for each gas, it is possible to cope with it. The digital MFC only accommodates the corresponding base. Flow control characteristic curve of quasi-gas and reference flow. When different gases are controlled at different flow rates, it is experimentally required to prepare for one type of reference gas and the conversion coefficient of the reference flow. Then, different gas control is performed. At different flow rates, 'the actual gas is used, the flow rate is measured, and the flow rate is controlled by the above-mentioned conversion coefficient. The flow control characteristic curve is corrected based on the compensation ,, and the flow control of the gas is performed. With this method, it is possible to correspond to a large number of different gases and a wide flow range. Of course, the same control can be performed when the same gas is controlled at different flows. Figures 6 to 9 show other embodiments of the fluid control device. In the drawings, the members described in the first to fifth embodiments are denoted by the same reference numerals, and the description thereof will not be repeated. In the embodiment shown in Figs. 6 to 9, 'a flow controller such as a mass flow controller is installed in one gas line 13 (not shown in Figs. 6 to 9). The aspect of the pressure control system area 14 on the upstream side of the controller 1 3 g is the same. In the embodiment shown in FIGS. 6 to 9, when the gas line 13 extending on the first vertical plane is the lower end portion as the upstream end portion thereof, the large enthalpy changes the direction of 90 degrees, but then the first It extends in a horizontal direction on a straight plane. Hereinafter, the horizontal extension portion of the gas line 13 is referred to as an extension portion 30. The extension portion 30 is a gas supply pipe 2 9 a, 2 9 b, and 2 9 c connected to the to-be-processed gas supply sources A, B, and C, respectively. The most upstream side of the extension portion 30 is connected to the flushing gas supply pipe 31 connected to the flushed gas supply source P. In each of the gas supply pipes 2 9 a, 2 9 b, and 2 9 c, a two-way valve 3 2 (switching valve) is attached to the flushing gas supply pipe 31, respectively. In the embodiment shown in Figs. 6 to 9, in order to generate a stagnant region V between the downstream side of the two-way valve of the gas supply pipes 2 9a, 2 9b, and 2 9c and the extension portion 30 of the gas line (the gas remains stagnant) The area), so the gas-15-1252897 (11) remains (refer to Figure 6 and Figure 7). At this time, as shown in Figs. 8 and 9, if the flushing gas is supplied, the gas remaining in the stagnant region V is not washed. In the embodiment shown in FIGS. 6 to 9, since a different type of gas can be supplied by one (one system) gas line, fluid control can be performed in the same manner as in the first to fifth embodiments. The cost of the device is reduced. However, in the embodiment shown in FIGS. 6 to 9 , since the extension portion 30 of the gas line extends in the lateral direction, the effect of reducing the number of lines is reduced, and the fluid control device is downsized in accordance with the reduction in the number of lines. It is inferior to the embodiment shown in Figures 1 to 5. Further, in the case where the stagnation region V inevitably occurs, the embodiment shown in Figs. 6 to 9 is also inferior to the embodiment shown in Figs. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a system diagram showing an embodiment of a fluid control device in accordance with the present invention. Fig. 2 is a cross-sectional view showing the configuration of a gas line connected to a plurality of gas supply sources in a fluid control device not shown in Fig. 1, and showing a state diagram of gas passing through the gas line. Fig. 3 is a front elevational view taken from the direction of the arrow m of the gas line shown in Fig. 2. Fig. 4 is a cross-sectional view similar to Fig. 2 and showing a state diagram of the flushing gas passing through the gas line. Fig. 5 is a front view of -16-(12) 1252897 seen from the direction of the arrow v of the gas line shown in Fig. 4. Fig. 6 is a view showing another state of the gas line shown in Fig. 2, and showing a state diagram of the process gas passing through the gas line. Fig. 7 is a cross-sectional view showing the νπ-νπ of Fig. 6. Fig. 8 is a cross-sectional view similar to Fig. 6, and shows a state diagram of the flushing gas passing through the gas line. Fig. 9 is a cross-sectional view showing the X-[] of Fig. 6. Figure 10 shows a schematic system diagram of a conventional gas supply system. Figure 11 shows a schematic diagram of other traditional gas supply systems. [Description of the figure] 1 Flow controller 2 Switching valve 2a Control valve 3 Filter 4 Pressure regulator 5 Pressure sensor 6 Flow controller 7 Switching valve 8 Filter 9 Pressure sensor 10 Pressure regulator 11 Fluid control device -17 - (13) 1252897 12 gas line 12a gas supply port 12b manual valve 12c filter 1 2d pressure regulator 1 2e pressure sensor 1 2f control valve 12g flow controller 1 2h filter 13 gas line 13b manual valve 13c filter 13d Pressure regulator 1 3e Pressure sensor 1 3f Control valve 13g Flow controller 1 3h Filter 1 3i Control valve 14 Pressure control system area 15 Extension 16a Gas supply pipe 16b Gas supply pipe 16c Gas supply pipe 17 Three-way valve -18 (14) 1252897 17a 1st entry and exit □ 17b 2nd entry and exit □ 17c 3rd entry and exit π 18 Two-way valve 18a 1st access □ 18b 2nd entrance □ 18c 3rd entrance □ 19 Two-way valve 19a 1st entrance □ 19b 2nd Access □ 19c 3rd entry □ 20 two directions 2 1 check valve 22 flushing gas line 23 gas line 23a gas supply □ 23b manual valve 23c m filter 23d pressure regulator 23e pressure senser 23f control valve 23g flow controller 25 branch line 25a control valve -19 (15) 1252897 25b check valve 26 integrated construction unit 26a connection block 26b valve block 27 bottom plate 28 bottom plate 29a gas supply pipe 29b gas supply pipe 29c gas supply pipe 30 extension 3 1 flushing gas supply pipe 32 reaction furnace A process gas B process gas C Process gas P flush gas P, branch line a gas line b gas line c gas Π.ΛΛ. line d gas line P flush gas line -20

Claims (1)

1252897 ⑴ 拾、申請專利範圍 1 . 一種流體控制裝置,其特徵爲: 將一個系統的流體供給管線配置在 供給管線,設置:流量控制器、與位於 游側的壓力控制系統區域,在上述壓力 游側,是與流體供給管線在同軸上地連 上述流體供給管線朝前側延設成略L字 該延設管線設置有複數個三向閥,將各 連接口可開閉地連接於流體供給源,且 口彼此連通然後將其連接到上述流體供 管線的最前端開放,由延設管線的最前 〇 2. 如申請專利範圍第1項之流體 述流量控制器是質量流量控制器或壓力 3. 如申請專利範圍第1或2項之 中上述壓力控制系統區域,是由:切換 調整器、壓力感應器所構成。 4. 如申請專利範圍第1或2項之 中在一個系統的流體供給管線所設置的 壓力控制系統區域、及三向閥,是分別 〇 5 .如申請專利範圍第3項之流體 一個系統的流體供給管線所設置的上述 控制系統區域、及三向閥,是分別爲綜 同軸上,在該流體 該流量控制器的上 控制系統區域的上 接著:從正面觀察 型的延設管線,在 三向閥的其中一個 使其他的一對連接 給管線,將該延設 端來供給沖洗流體 控制裝置,其中上 式流量控制器。 流體控制裝置,其 閥、過濾器、壓力 流體控制裝置,其 上述流量控制器、 爲綜合式構造單元 控制裝置,其中在 流量控制器、壓力 合式構造單元。 -21 - 1252897 (2) 6. —種熱處理裝置,其特徵爲: 是具備有流體控制裝置, 該流體控制裝置, 是將在一個系統用來將不同種類的氣體供給到處理反 應爐內的氣體供給管線配置在同軸上,在該氣體供給管線 ,設置:流量控制器、與位於該流量控制器的上游側的壓 力控制系統區域,在上述壓力控制系統區域的上游側,是 與氣體供給管線在同軸上地連接著:從正面觀察上述氣體 供給管線朝前側延設成略L字型的延設管線,在該延設管 線設置有複數個三向閥,將各三向閥的其中一個連接口可 開閉地連接於氣體供給源,且使其他的一對連接口彼此連 通然後將其連接到上述氣體供給管線,將該延設管線的最 前端開放,由延設管線的最前端來供給沖洗流體。 7 . —種流體控制方法,其特徵爲: 將一個系統的流體供給管線配置在同軸上,在該流體 供給管線,設置:流量控制器、與位於該流量控制器的上 游側的壓力控制系統區域,在上述壓力控制系統區域的上 游側,是與流體供給管線在同軸上地連接著:從正面觀察 上述流體供給管線朝前側延設成略L字型的延設管線,在 該延設管線設置有複數個三向閥,將各三向閥的其中一個 連接口可開閉地連接於流體供給源,且使其他的一對連接 口彼此連通然後將其連接到上述流體供給管線,一邊從上 述各流體供給源來切換控制不同種類的流體,且一邊將供 給流體,從延設管線,從流體供給管線上的壓力控制區域 -22- 1252897 (3) ,供給到流量控制器,並且將該延設管線的最前端開放 由延設管線的最前端來供給沖洗流體。1252897 (1) Picking up, patent application scope 1. A fluid control device, characterized in that: a fluid supply line of a system is arranged in a supply line, and a flow controller is arranged, and a pressure control system area located on the side of the swimming side is in the above-mentioned pressure tour. a side of the fluid supply line is coaxially connected to the front side of the fluid supply line to be slightly L-shaped. The extension line is provided with a plurality of three-way valves, and the connection ports are openably and closably connected to the fluid supply source, and The ports are connected to each other and then connected to the front end of the fluid supply line for the opening of the pipeline. The fluid flow controller is the mass flow controller or pressure 3. In the first or second aspect of the patent range, the pressure control system region is composed of a switching regulator and a pressure sensor. 4. The pressure control system area and the three-way valve provided in the fluid supply line of one system in the first or second application of the patent scope are respectively 〇5. For the fluid system of the third item of the patent application scope The control system area and the three-way valve provided in the fluid supply line are respectively on the coaxial coaxial line, and the upper control system area of the flow controller is followed by the extension pipeline of the front view type, in the third One of the other valves is connected to the line to one of the valves, and the extended end is supplied to the flushing fluid control device, wherein the upper flow controller. The fluid control device, the valve, the filter, the pressure fluid control device, the flow controller, and the integrated structural unit control device, wherein the flow controller and the pressure-construction structural unit. -21 - 1252897 (2) 6. A heat treatment apparatus characterized by: having a fluid control device for supplying a gas of different kinds to a gas in a treatment reactor in one system The supply line is disposed coaxially, and in the gas supply line, a flow controller is provided, and a pressure control system region located on an upstream side of the flow controller, on the upstream side of the pressure control system region, is connected to the gas supply line Connected coaxially: from the front, the gas supply line is extended toward the front side to form a slightly L-shaped extension line, and a plurality of three-way valves are disposed in the extension line, and one of the three-way valves is connected The gas supply source is openably and closably connected, and the other pair of connection ports are connected to each other and then connected to the gas supply line, the front end of the extension line is opened, and the rinse fluid is supplied from the foremost end of the extension line. . 7. A fluid control method, characterized in that: a fluid supply line of a system is disposed coaxially, and in the fluid supply line, a flow controller is provided, and a pressure control system region located on an upstream side of the flow controller On the upstream side of the pressure control system region, the fluid supply line is coaxially connected: an extended line extending from the front side of the fluid supply line toward the front side is formed in a slightly L-shaped manner, and the extension line is disposed in the extension line. There is a plurality of three-way valves, one of the three-way valves is openably and closably connected to the fluid supply source, and the other pair of connection ports are connected to each other and then connected to the fluid supply line, from the above The fluid supply source switches to control different kinds of fluids, and supplies the fluid to the flow controller from the extension line, from the pressure control area -22- 1252897 (3) on the fluid supply line, and supplies the extension The front end of the pipeline is opened by the front end of the extension line to supply the flushing fluid.
TW92101506A 2001-08-30 2003-01-23 Fluid controller and heat treatment device TWI252897B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261047A JP3472282B2 (en) 2001-08-30 2001-08-30 Fluid control device, heat treatment device, and fluid control method

Publications (2)

Publication Number Publication Date
TW200413666A TW200413666A (en) 2004-08-01
TWI252897B true TWI252897B (en) 2006-04-11

Family

ID=19088150

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92101506A TWI252897B (en) 2001-08-30 2003-01-23 Fluid controller and heat treatment device

Country Status (2)

Country Link
JP (1) JP3472282B2 (en)
TW (1) TWI252897B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929713B1 (en) * 2003-02-07 2009-12-03 도쿄엘렉트론가부시키가이샤 Fluid control unit and heat treatment unit
DE10325629A1 (en) * 2003-03-21 2004-10-07 Forschungszentrum Jülich GmbH Process for the deposition of compounds on a substrate by means of organometallic gas phase deposition
TW200929357A (en) 2007-12-20 2009-07-01 Gudeng Prec Industral Co Ltd Gas filling apparatus
JP2011058019A (en) * 2009-09-07 2011-03-24 Furukawa Electric Co Ltd:The Cvd apparatus and operation method thereof
JP5562712B2 (en) * 2010-04-30 2014-07-30 東京エレクトロン株式会社 Gas supply equipment for semiconductor manufacturing equipment
JP5785813B2 (en) * 2011-08-10 2015-09-30 株式会社フジキン Fluid control device
KR20220020527A (en) * 2020-08-12 2022-02-21 주성엔지니어링(주) Apparatus and Method for Processing Substrate

Also Published As

Publication number Publication date
JP3472282B2 (en) 2003-12-02
JP2003074800A (en) 2003-03-12
TW200413666A (en) 2004-08-01

Similar Documents

Publication Publication Date Title
TWI437401B (en) Mixed gas supply device
US6648020B2 (en) Fluid control apparatus and gas treatment system comprising same
US6374859B1 (en) Manifold system for enabling a distribution of fluids
KR102129136B1 (en) Point of use valve manifold for atomic layer deposition and chemical vapor deposition reactors
US6394138B1 (en) Manifold system of removable components for distribution of fluids
TWI451220B (en) Method and apparatus for pressure and mix ratio control
TW524945B (en) A fluid control device
US20060272721A1 (en) Gas-panel assembly
TWI252897B (en) Fluid controller and heat treatment device
TW202336875A (en) Methods and assemblies for gas flow ratio control
JPH1011147A (en) Breaking and opening unit and fluid controller equipped with the same
TW201921550A (en) Treatment device for substrates and method for operating a treatment device for substrates of this kind
WO2004070801A1 (en) Fluid control device and heat treatment device
KR20050033841A (en) Apparatus for manufacturing semiconductor and method for manufacturing semiconductor
US6261374B1 (en) Clog resistant gas delivery system
WO2005013026A1 (en) Device for feeding gas to chamber and method for controlling chamber inner pressure using the device
US20210132638A1 (en) Fluid control device and semiconductor manufacturing apparatus
JP2806315B2 (en) Semiconductor manufacturing equipment
CN111826638A (en) Gas distribution device and method, atomic layer deposition equipment
TWI358508B (en)
JP2003086579A (en) Gas supply integration unit
CN2674647Y (en) Fluid controller and heat treater
JP2008545936A (en) Gas panel assembly
JP3858155B2 (en) Fluid control device
JP7257025B2 (en) Fluid supply system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees