TWI251265B - Method for removing photoresist in semiconductor manufacturing process - Google Patents
Method for removing photoresist in semiconductor manufacturing process Download PDFInfo
- Publication number
- TWI251265B TWI251265B TW93115506A TW93115506A TWI251265B TW I251265 B TWI251265 B TW I251265B TW 93115506 A TW93115506 A TW 93115506A TW 93115506 A TW93115506 A TW 93115506A TW I251265 B TWI251265 B TW I251265B
- Authority
- TW
- Taiwan
- Prior art keywords
- photoresist
- stage
- semiconductor
- ashing
- patent application
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 120
- 229920002120 photoresistant polymer Polymers 0.000 title claims abstract description 90
- 239000004065 semiconductor Substances 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title abstract description 10
- 238000004380 ashing Methods 0.000 claims abstract description 31
- 239000007789 gas Substances 0.000 claims abstract description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000001257 hydrogen Substances 0.000 claims abstract description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 16
- 238000002513 implantation Methods 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 8
- 238000005468 ion implantation Methods 0.000 claims description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 238000004528 spin coating Methods 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 238000000059 patterning Methods 0.000 claims 1
- 230000001629 suppression Effects 0.000 claims 1
- 239000000725 suspension Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 3
- 150000002431 hydrogen Chemical class 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000002019 doping agent Substances 0.000 abstract 1
- 229910052710 silicon Inorganic materials 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000009172 bursting Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- -1 hydrogen compound Chemical class 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
- G03F7/427—Stripping or agents therefor using plasma means only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31127—Etching organic layers
- H01L21/31133—Etching organic layers by chemical means
- H01L21/31138—Etching organic layers by chemical means by dry-etching
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Plasma & Fusion (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- High Energy & Nuclear Physics (AREA)
- Drying Of Semiconductors (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Abstract
Description
1251265 __案號 93115506 五、發明說明(1)1251265 __Case No. 93115506 V. Description of invention (1)
【發明所屬之技術領域】 j發=有關一種半導體製程中去除光阻的方 二二Τίΐ等it體形成含氫氣(u的混合氣體,進 4丁火化(Ashing)製私從而去除光阻。 【先前技術】 半導體製程之一的光餘微爭、、扣r . 製程是經由五個階段所構成,=去(b Ph0t0 LUhograPhy) 旋塗(spin coating)光i , 3二=段是在半導體基板上 段是以選擇性的曝露上述光_ =成光阻層的階段;第二階 段;第三階段是為了在半導二的曝光(Exposure)階 _ (Photoresist Pattern) ,:土板上幵,成光阻圖案 (Deve 1 op)的階段;第四,曝光的光阻層顯影 體基板部位進行蝕刻(E t =·又是對沒有被光阻覆蓋的半導 五階段是清除在蝕刻或植^ lng)或者植入雜質的階段;第 案的灰化製程。 雜質階段時用於遮罩的光阻圖 在上述該半導體製造 形成金屬配線層之製程,二中’灰化階段結束後,進入 線以及對晶片與外界之門^而形成連接晶片上的各元件配 屬薄膜。 曰起結合墊(Bond Pad)作用的金 其中灰化是待蝕刻製 去除無用光阻的製程, 或 於蝕刻光阻底部基板上’的屬於蝕刻製程的一種。光阻是用 離子時起遮罩作用的从新圖案’或者在 的物質. 該上述灰化製程中所 γ所使用的是等 離子植入製程結束後 的一種。光 基板外露部位植入 用以[Technical field to which the invention pertains] j-fabrication is related to the removal of a photoresist in a semiconductor process, such as a square gas, a gas mixture containing hydrogen (u, a gas mixture, and a smoldering (Ashing) process to remove the photoresist. Prior art] One of the semiconductor processes is a small amount of light, and the process is formed by five stages, = (b Ph0t0 LUhograPhy) spin coating light i, 3 = segment is on the semiconductor substrate The upper stage is a stage of selectively exposing the above-mentioned light _ = into a photoresist layer; the second stage; the third stage is for Exposure step _ (Photoresist Pattern), on the earth plate, The stage of the photoresist pattern (Deve 1 op); fourth, the exposed photoresist layer is etched on the substrate portion of the photoresist layer (E t =· is again a half-guided stage that is not covered by the photoresist is removed in etching or planting ^ Lng) or the stage of implanting impurities; the ashing process of the first case. The photoresist pattern used for the mask in the impurity stage is in the process of forming the metal wiring layer by the semiconductor manufacturing described above, and after the end of the 'ashing stage, the line enters the line. And the door to the wafer and the outside world The components on the bonded wafer are assigned to the film. The gold which acts as a bond pad is a process in which the ash is to be etched to remove the useless photoresist, or on the underlying substrate of the etched photoresist. A photoresist is a new pattern or a substance that acts as a mask when ions are used. In the above ashing process, γ is used after the end of the plasma implantation process. The exposed portion of the optical substrate is implanted.
籬手體,而反應氣體Handle body, and reaction gas
第5頁 1251265 _案號93115506_、年月 a 修正_ 五、發明說明(2) 是氧氣(0 2> 。因此,該光阻去除製程是讓光阻和氧氣起反 應的氧化過程,氧化是一種燒化過程,因此,可稱之為灰 化(Ash i ng)製程。如上所述,我們把灰化製程中所需的 設備叫作灰化器(Asher)。 近年來,隨著半導體製造技術要求設備集成度高、速 度快,晶片技術也趨於細致化。隨著晶片的細致技術,晶 片的主成分即矽,在經過多個製程時逐漸被消耗而形成了 問題。Page 5 1251265 _ Case No. 93115506_, Year a Correct _ V. Invention Description (2) is oxygen (0 2 > Therefore, the photoresist removal process is an oxidation process that allows photoresist and oxygen to react, oxidation is a kind The burning process, therefore, can be referred to as the Ashing process. As mentioned above, we refer to the equipment required in the ashing process as Asher. In recent years, with semiconductor manufacturing technology The device is required to be highly integrated and fast, and the wafer technology is also becoming more and more detailed. With the meticulous technology of the wafer, the main component of the wafer is entangled, which is gradually consumed when it passes through multiple processes, which poses a problem.
尤其在灰化製程中使用氧氣來形成等離子體時,晶片 的部分表面與上述技術中之氧氣起作用而形成氧化膜。如 上所述,當矽表面形成氧化膜層後,不僅需要製造作為日 後進行淺接面技術(S h a 1 1 〇 w j u n c t i ο η)的元件,而且起 電極作用的摻雜多晶石夕(d 〇 p e d ρ ο 1 y - s i 1 i c ο η)大量消耗 亦造成了問題。 目前的光阻灰化製程中,在晶片上植入高劑量離子 (High Dose Implantation)後容易發生爆裂現象,為了 減少上述爆裂現象發生,把製程溫度設為低溫,或者在結 束南劑S:離子植入(High Dose Implantation)製程後進 行加固(Pin-up),但仍無法徹底解決爆裂問題。Particularly when oxygen is used to form a plasma in the ashing process, part of the surface of the wafer acts with oxygen in the above technique to form an oxide film. As described above, when the oxide film layer is formed on the surface of the crucible, it is necessary to manufacture not only an element which is a shallow junction technique (S ha 1 1 〇wjuncti ο η) but also a doped polycrystal as an electrode (d 〇 Ped ρ ο 1 y - si 1 ic ο η) A lot of consumption also caused problems. In the current photoresist ashing process, a high-dose ion implantation (High Dose Implantation) is likely to occur after the wafer is implanted. In order to reduce the occurrence of the above-mentioned burst phenomenon, the process temperature is set to a low temperature, or at the end of the south agent S: ion After the High Dose Implantation process, the pin-up is performed, but the burst problem cannot be completely solved.
在高集成矽上,由於波長43 6nm的G線(G-1 ine)和波 長36 5nm的I線(1-1 ine)的波長過長,基板可限定的 ^ 過大亦成了問題。為了進一步精密作業,建議使用波長^ 2 4 8nm或1 93nm的植入了高劑量離子的DUV和X線。彳' 由於現有之I線(I - 1 i n e)光阻钱刻製程存在分子大 1251265 案號 93115506 _η 曰 修正 五、發明說明(3) 、黏度高的問題,在高集成矽上使用植入高劑量離子的DUV (Deep Ultra Violet)光阻,代替 I線(1-1 ine)光阻。 但上述的植入高劑量離子的DUV光阻餘刻技術,無法使利用 瑪有氧氣的灰化製程徹底清除殘留物質。 【發明内容】 本發明的主要目的係提供一種半導體製程中去除光阻 的方法,其利用等離子體形成含氫氣(Η 0的混合氣體,進 行灰化(Ashing)製程,從而去除光阻。 本發明的另一目的是提供一種半導體製程中去除光阻 的方法,以減少矽氧化膜的形成,降低耗矽量,避免爆裂 現象發生;徹底清除植入了高劑量離子的DUV光阻的殘餘物 質。 本發明的又一目的是提供一種半導體製程中除去光阻 的方法,從而提升灰化製程的功效。 為達成上述發明之目的,本發明係在去除半導體構件 上的光阻的灰化製程中採用等離子體,形成含氫氣(Η 2)的混 合氣體。本發明適用於所有光阻灰化製程,尤其對植入高 劑量離子(High Dose Ion Implantation)的石夕基板十分 有效。 茲為使 貴審查委員對本發明之結構、特徵及所達成 之功效更有進一步之瞭解與認識,謹佐以較佳之實施例圖 友配合詳細之說明,說明如後: 【實施方式】 本發明係作為半導體製程中去除光阻的方法,其特徵On the highly integrated germanium, since the wavelength of the G line (G-1 ine) having a wavelength of 43 6 nm and the I line (1-1 ine) having a wavelength of 36 5 nm is too long, the substrate can be too large to be defined. For further precision work, it is recommended to use DUV and X-rays with high doses of ions at wavelengths of 248 nm or 193 nm.彳' Due to the existing I-line (I - 1 ine) photoresist process, there is a large molecular number of 1251225. Case No. 93115506 _η 曰 Amendment 5, invention description (3), high viscosity, use high implantation on high-integration Dionic (Deep Ultra Violet) photoresist, instead of I-line (1-1 ine) photoresist. However, the above-mentioned DUV photoresist remnant technique implanted with high-dose ions cannot completely remove residual substances by using the ashing process with oxygen. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for removing photoresist in a semiconductor process, which uses a plasma to form a mixed gas containing hydrogen gas (Η 0, and performs an ashing process to remove photoresist). Another object is to provide a method for removing photoresist in a semiconductor process to reduce the formation of a tantalum oxide film, reduce the amount of ruthenium, avoid bursting, and completely remove residual materials of DUV photoresist implanted with high dose ions. It is still another object of the present invention to provide a method for removing photoresist in a semiconductor process, thereby improving the efficiency of the ashing process. To achieve the above object, the present invention is applied to an ashing process for removing photoresist on a semiconductor member. The plasma forms a mixed gas containing hydrogen (Η 2). The present invention is applicable to all photoresist ashing processes, especially for the high-dose Ion Implantation, which is very effective for reviewing the high-dose Ion Implantation. Members have further understanding and understanding of the structure, characteristics and effects of the present invention. The embodiment described in detail with FIG Friends, as described later: [Embodiment The present invention is a method of removing the photoresist as the semiconductor manufacturing process, characterized in
第7頁 1251265Page 7 1251265
是由五個階段所構成,即第一階段是在半導體基板上旋塗 先阻,形成光阻層的階段;第二階段是選擇性的曝露光阻 層的曝光(Exposure)階段;第三階段是為了形成光阻圖 案,讓曝露的光阻層顯影(Deve 1 op)的階段;第四階段是 對沒有被上述光阻覆蓋的半導體基板部位進行蝕刻 (E t ch i ng)或者植入雜質的階段;第五階段是清除在上述 蝕刻或植入雜質階段時用於遮罩的光阻圖案的灰化製程; 而上述灰化製程是利用等離子體形成含氫氣(Η 2>的混合氣 體,防止在高溫下發生爆裂現象,並在抑制微粒 (Part icle)產生狀態下清除光阻圖案,藉以解決上述課 題0 如上所述’在利用等離子體形成含氫氣的混合氣體時 ,最大限度地減少氧化膜生成、降低耗矽量。 本發明作為半導體製程中去除光阻的方法,其特徵是 根據咼劑量離子植入(High Dose ion Implantation)模 式製作上述半導體基板,從而解決上述課題。 本發明作為半導體製程中去除光阻的方法,其特徵是 上述光阻含有深紫外線(DUV: Deep Ultra Violet),從 而解決上述課題。 本發明作為半導體製程中去除光阻的方法,其特徵是 上述氫(Η 2)跟氮(N 2)或者氦(He)混合成另一種混合氣 體,從而解決上述課題。 ~ 本發明作為半導體製程中去除光阻的方法,其特徵是 上述氫氣(Η Ο占氣體總量的2 %〜1 〇 〇 % (體積百分比),你It consists of five stages, that is, the first stage is the stage of spin coating on the semiconductor substrate to form the photoresist layer; the second stage is the exposure phase of the selective exposure photoresist layer; the third stage In order to form a photoresist pattern, the exposed photoresist layer is developed (Deve 1 op); the fourth stage is to etch the semiconductor substrate portion not covered by the photoresist or implant impurities. The fifth stage is to remove the ashing process for the photoresist pattern used for the mask during the etching or implanting impurity stage; and the ashing process is to form a hydrogen-containing (Η 2 > mixed gas by using a plasma, Preventing the occurrence of cracking at high temperatures and removing the photoresist pattern in the state of suppressing the generation of particles, thereby solving the above problem. 0 As described above, when the mixed gas containing hydrogen is formed by plasma, the oxidation is minimized. Membrane generation and reduction of consumption. The present invention is a method for removing photoresist in a semiconductor process, which is characterized by a high dose ion implantation (High Dose ion Implantation) mode. The above-described problem is solved by the above-described semiconductor substrate. The present invention is a method for removing photoresist in a semiconductor process, characterized in that the photoresist contains deep ultraviolet rays (DUV) to solve the above problems. A method for removing photoresist, characterized in that the hydrogen (Η 2) is mixed with nitrogen (N 2 ) or helium (He) to form another mixed gas, thereby solving the above problems. ~ The present invention as a method for removing photoresist in a semiconductor process , which is characterized by the above hydrogen (Η Ο Ο 2% to 1 〇〇% (volume percentage) of the total amount of gas, you
第8頁 1251265 案號 93115506 Λ_ 曰 修正 五、發明說明(5) 而解決上述課題。 本發明作為去阻光阻的方法,其特徵是上述灰化製程 温度在1 0 0°C〜2 0 0°C,從而解決上述課題。 本發明的另一實施例是半導體製程中去除光阻的方法 其特徵是由五個階段構成,即第一階段是在半導體基板 上旋塗光阻,形成光阻層的階段;第二階段是選擇性的曝 露光阻層的曝光(Exposure)階段;第三階段是為了形成 光阻圖案,讓曝露的光阻層顯影(D e ve 1 οp)的階段;第四 階段是對沒有被上述光阻覆蓋的半導體基板部位進行蝕刻 :E t c h i n g)或者植入雜質的階段;第五階段是清除在上述 蝕刻或植入雜質階段時用於遮罩的光阻圖案的灰化製程; 而上述灰化製程是利用等離子體形成含氳(Η 〇的混合氣體 或者氮氣(NH a),防止在高溫下發生爆裂現象,並在抑制 微粒產生的狀態下清除光阻圖案,從而解決上述課題。 透過參見附圖以及相關實施例進行詳細說明。表1是對 整個實施例的總結表。 【表1】Page 8 1251265 Case No. 93115506 Λ _ 曰 Amendment V. Invention Note (5) to solve the above problems. The invention is a method for removing photoresist, characterized in that the ashing process temperature is in the range of 100 ° C to 200 ° C, thereby solving the above problems. Another embodiment of the present invention is a method for removing photoresist in a semiconductor process characterized by five stages, that is, a first stage is a step of spin coating a photoresist on a semiconductor substrate to form a photoresist layer; the second stage is Selective exposure to the exposure phase of the photoresist layer; the third phase is to form a photoresist pattern to develop the exposed photoresist layer (D e ve 1 οp); the fourth phase is to be not exposed to the above light Blocking the covered semiconductor substrate portion for etching: Etching) or implanting impurities; the fifth stage is to remove the ashing process for the photoresist pattern used for the mask during the etching or implanting impurity stage; The process is to use a plasma to form a mixed gas containing ruthenium or ruthenium (NH a) to prevent the occurrence of a burst at a high temperature, and to remove the photoresist pattern in a state where the generation of particles is suppressed, thereby solving the above problem. The drawings and related embodiments are described in detail. Table 1 is a summary table for the entire embodiment. [Table 1]
第9頁 1251265 案號 93115506 Λ_ 曰 修正 直、發明說明(6)Page 9 1251265 Case No. 93115506 Λ_ 修正 Correction Straight, invention description (6)
No. 02 n2 h2n2 製程 ( ( ( 溫度 seem seem seem re ) :)! i ) ) :製程時 氧化膜 間 濃度 :(秒) (A) TE Μ 照 00 70 80 2 75 7 ο 00 8 50 28 第2圖 有關上述表1的簡要說明如下:製程Α是在2 5 0°C的製程 溫度下,係為習用技術製程的灰化法中的7 〇 〇 〇 s c c m的氧氣 和8 0 0 seem的氮氣進行75秒灰化後,用穿透式電子顯微鏡 測量氧化膜厚度,其結果如第1圖所示為1 7 A。 製程B是本發明實施例,在2 5 0°C下對8 0 0 0 seem的H2N2 氣體進行2 8 5秒灰化後,用穿透式電子顯微鏡測量氧化膜厚No. 02 n2 h2n2 Process (( (temperature seem seem seem re ) :)! i ) ) : Oxidation film concentration during the process: (seconds) (A) TE Μ Photo 00 70 80 2 75 7 ο 00 8 50 28 2 The following is a brief description of Table 1 below: Process Α is at a process temperature of 250 ° C, which is 7 〇〇〇 sccm of oxygen and 80 seem of nitrogen in the ashing process of the conventional process. After the ashing was performed for 75 seconds, the thickness of the oxide film was measured by a transmission electron microscope, and the result was 1 7 A as shown in Fig. 1. Process B is an embodiment of the present invention, and the oxidized film thickness is measured by a transmission electron microscope after ashing the H2N2 gas of 800 seeming at 205 ° C for 285 seconds.
第10頁 1251265 93iiRFinfi 修正 曰 五、發明說明(?) - 度 ς、结果如第2圖所示,其厚度達到無法測量的程度。 -2 JB 在 | 述表1條° 1程室(process chamber)的可視窗觀察根據上 二坊件進行的製程,其結果是習用技術製程即製程A中Page 10 1251265 93iiRFinfi Correction 曰 V. Inventive Note (?) - Degree ς The result is as shown in Figure 2, and its thickness is unmeasurable. -2 JB in | Table 1 ° 1 process room (process chamber) window observation according to the process of the second square, the result is the conventional technology process that is process A
{jj J a、々女;衣現象,但在本發明實施例,即使用氫氣的製程ί ϊΐ出現爆裂現象。 ‘表2】 製程c 壓力 (Torr 〇2 h2n2 scan 程度°c 程間秒 ΠΟΟΟ I 1900 150 製裎D , 150 8000 Ϊ Ϊ表2是在使用DUV (植入高劑量離子)光阻的晶片 j f化.技術後,檢查的殘留物。 件如2 ^ C係為習用技術去除現有光阻的製程’上述製程條 ]cj/所示’壓力為2托耳,氧氣為1 7 0 0 0 Sccm,氮氣為 / = 7而製程溫度為2 5 0°C,製程時間為150秒。 2所示' If ^為本發明去除光阻的製程’上述製程條件如表 seem,而製程為 w2^ 氧氣為 8 0 0 0 sccm,Η A 為 8 0 0 0 依據上f度為15 0°c,製程時間為1 5 0秒。 多雜^,作Ϊ條件去除光阻’其結果為製程C結束後留有很 、換句;^程^敗底清除了所有殘留物質。 在本發明中在以氫氣為主的製程上,利用 1251265 _案號 93115506_年月日__ 五、發明說明(8) 除氫外的其他氣體,如上述表2所示的氮(N 0 、氦(He)混 合物去除光阻時,可以徹底清除光阻殘留物;或者利用氨 氫化合物去除光阻時,亦可以徹底清除殘留物。 另者,在本發明的製程中,把回應(製程)溫度設為 1 0 0〜2 0 0°C時,也可以達到徹底清除殘留物質的效果。 如上所述,在光阻灰化製程中使用本發明中的相關製{jj J a, prostitute; clothing phenomenon, but in the embodiment of the invention, that is, the process using hydrogen gas bursts. 'Table 2】 Process c Pressure (Torr 〇2 h2n2 scan degree °c Interval ΠΟΟΟ I 1900 150 裎 D , 150 8000 Ϊ Ϊ Table 2 is the use of DUV (implanted high dose ion) photoresist chip After the technology, check the residue. Parts such as 2 ^ C is the process of removing the existing photoresist from the conventional technology 'The above process bar' cj / shown 'pressure is 2 Torr, oxygen is 1 700 0.02 cm, nitrogen The process temperature is /50 and the process time is 150 seconds. 2 If 'If ^ is the process for removing photoresist in the present invention', the above process conditions are as shown, and the process is w2^ oxygen is 8 0 0 0 sccm, Η A is 8 0 0 0 According to the upper f-degree is 15 0 °c, the process time is 150 seconds. More than ^, as a condition to remove the photoresist', the result is left after the end of process C In other words, in the process of the hydrogen-based process, the use of 1,251,265 Other gases, such as the nitrogen (N 0 , 氦 (He) mixture shown in Table 2 above, can remove the photoresist residue completely when removing the photoresist; or use ammonia When the hydrogen compound is removed from the photoresist, the residue can be completely removed. In addition, in the process of the present invention, when the response (process temperature) is set to 1 0 0 to 2 0 ° C, the residual substance can be completely removed. The effect of the present invention is used in the photoresist ashing process as described above.
第12頁 1251265 _案號 93115506_年月日_修正 、_ 五、發明說明(9) 程,如實施例結果所示,將不會形成氧化膜,故無需製造 曰後需要進行淺接的元件,還能防止起電極作用的摻雜多 晶石夕(doped poly-silicon)大量損耗。 在植入高劑量離子(High Dose Ion Implantation) 後去除光阻的灰化製程上,使用本發明的方法,即使在 2 0 0°C以上的製程溫度下也不產生爆裂現象,且可達到抑制 微粒產生,可以提升半導體的製造生產能力。 在高集成矽必須使用的植入高劑量離子的DUV去除光阻 製程上,使用本發明中氫氣為主的化合物或者在低溫下使 用混合物時,可以徹底清除植入高劑量離子的D U V光刻膠殘Page 12 1251265 _ Case No. 93115506_年月日日_Amendment, _ V. Inventive Note (9) Process, as shown in the results of the examples, no oxide film will be formed, so there is no need to fabricate components that need to be shallow after fabrication. It also prevents a large amount of doped poly-silicon loss due to the action of the electrodes. On the ashing process for removing photoresist after implantation of high-dose Ion Implantation, the method of the present invention does not cause bursting even at a process temperature of above 200 ° C, and can be suppressed. The generation of particles can enhance the manufacturing capacity of semiconductors. The DUV photoresist implanted with high dose ions can be completely removed by using the hydrogen-based compound of the present invention or the mixture at a low temperature in a highly integrated DUV-removing photoresist process which must be used for high-input ions. Residual
以上所述者,僅為本發明一較佳實施例而已,並非用 來限定本發明實施之範圍,故舉凡依本發明申請專利範圍 所述之形狀、構造、特徵及精神所為之均等變化與修飾, 均應包括於本發明之申請專利範圍内。The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, so that the shapes, structures, features, and spirits described in the claims of the present invention are equally varied and modified. All should be included in the scope of the patent application of the present invention.
第13頁 1251265 案號 93115506 Λ_η 曰 修正 圖式簡單說明 第1圖係習用技術製程用穿透式電子顯微鏡所拍攝的照片 第2圖係本發明製程用穿透式電子顯微鏡所拍攝的照片。 _ i^· 第14頁Page 13 1251265 Case No. 93115506 Λ_η 曰 Correction Brief description of the drawing Fig. 1 is a photograph taken by a transmission electron microscope with a conventional technique. Fig. 2 is a photograph taken by a transmission electron microscope of the process of the present invention. _ i^· Page 14
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20030034960A KR100542031B1 (en) | 2003-05-30 | 2003-05-30 | Method for removing photo-resist in semiconductor manufacturing process |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200426917A TW200426917A (en) | 2004-12-01 |
TWI251265B true TWI251265B (en) | 2006-03-11 |
Family
ID=36383780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93115506A TWI251265B (en) | 2003-05-30 | 2004-05-31 | Method for removing photoresist in semiconductor manufacturing process |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2006513586A (en) |
KR (1) | KR100542031B1 (en) |
CN (1) | CN100343953C (en) |
TW (1) | TWI251265B (en) |
WO (1) | WO2004107418A1 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8193096B2 (en) | 2004-12-13 | 2012-06-05 | Novellus Systems, Inc. | High dose implantation strip (HDIS) in H2 base chemistry |
KR100679826B1 (en) * | 2004-12-22 | 2007-02-06 | 동부일렉트로닉스 주식회사 | Method for removing the polymer residue of MIM area |
US7288488B2 (en) * | 2005-05-10 | 2007-10-30 | Lam Research Corporation | Method for resist strip in presence of regular low k and/or porous low k dielectric materials |
KR100736126B1 (en) * | 2005-12-28 | 2007-07-06 | 동부일렉트로닉스 주식회사 | Method for manufacturing semiconductor device |
KR100727706B1 (en) * | 2006-05-15 | 2007-06-13 | 동부일렉트로닉스 주식회사 | Method for stabilizing atmosphere inside the asher chamber |
JP2009021577A (en) * | 2007-06-13 | 2009-01-29 | Shibaura Mechatronics Corp | Ashing method and ashing device |
CN101458463B (en) * | 2007-12-13 | 2011-08-17 | 中芯国际集成电路制造(上海)有限公司 | Ashing method |
US20120024314A1 (en) * | 2010-07-27 | 2012-02-02 | Axcelis Technologies, Inc. | Plasma mediated ashing processes |
CN102043355A (en) * | 2009-10-23 | 2011-05-04 | 联华电子股份有限公司 | Method for removing photoresist |
US20110143548A1 (en) | 2009-12-11 | 2011-06-16 | David Cheung | Ultra low silicon loss high dose implant strip |
US8802545B2 (en) * | 2011-03-14 | 2014-08-12 | Plasma-Therm Llc | Method and apparatus for plasma dicing a semi-conductor wafer |
CN102779748B (en) * | 2011-05-09 | 2016-03-30 | 中芯国际集成电路制造(上海)有限公司 | The manufacture method of semiconductor device |
US9613825B2 (en) | 2011-08-26 | 2017-04-04 | Novellus Systems, Inc. | Photoresist strip processes for improved device integrity |
CN103378007B (en) * | 2012-04-26 | 2017-07-28 | 联华电子股份有限公司 | The preparation method of semiconductor element |
CN103578971B (en) * | 2013-10-18 | 2016-08-17 | 上海华力微电子有限公司 | A kind of high energy ion inject after remove gluing method |
US9514954B2 (en) | 2014-06-10 | 2016-12-06 | Lam Research Corporation | Peroxide-vapor treatment for enhancing photoresist-strip performance and modifying organic films |
CN105223787B (en) * | 2014-07-01 | 2020-03-10 | 中芯国际集成电路制造(上海)有限公司 | Ashing method of photoresist pattern |
CN111308867A (en) * | 2020-02-25 | 2020-06-19 | 上海华力集成电路制造有限公司 | Photoresist stripping and removing method |
US20220102138A1 (en) * | 2020-09-30 | 2022-03-31 | Taiwan Semiconductor Manufacturing Co., Ltd. | Interconnect Structure for Semiconductor Devices |
CN114823297B (en) * | 2022-04-19 | 2023-01-31 | 度亘激光技术(苏州)有限公司 | Photoresist removing process and semiconductor manufacturing process |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03116737A (en) * | 1989-09-28 | 1991-05-17 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor device |
JPH10270424A (en) * | 1997-03-27 | 1998-10-09 | Hitachi Ltd | Method of forming semiconductor element pattern |
JP3170783B2 (en) * | 1998-07-09 | 2001-05-28 | 日本電気株式会社 | Semiconductor device wiring forming method and manufacturing apparatus |
JP2000114246A (en) * | 1998-08-07 | 2000-04-21 | Ulvac Seimaku Kk | Dry etching method and apparatus, photoresist mask and method of producing the same, and semiconductor circuit and method of producing the same |
US6235453B1 (en) * | 1999-07-07 | 2001-05-22 | Advanced Micro Devices, Inc. | Low-k photoresist removal process |
US6346489B1 (en) * | 1999-09-02 | 2002-02-12 | Applied Materials, Inc. | Precleaning process for metal plug that minimizes damage to low-κ dielectric |
JP2001313280A (en) * | 2000-04-02 | 2001-11-09 | Axcelis Technologies Inc | Postetched photoresist and method for removing residue |
JP2002158210A (en) * | 2000-11-20 | 2002-05-31 | Shibaura Mechatronics Corp | Resist removing method |
-
2003
- 2003-05-30 KR KR20030034960A patent/KR100542031B1/en not_active IP Right Cessation
-
2004
- 2004-05-29 WO PCT/KR2004/001279 patent/WO2004107418A1/en active Application Filing
- 2004-05-29 JP JP2005518198A patent/JP2006513586A/en active Pending
- 2004-05-29 CN CNB2004800008915A patent/CN100343953C/en not_active Expired - Fee Related
- 2004-05-31 TW TW93115506A patent/TWI251265B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200426917A (en) | 2004-12-01 |
CN100343953C (en) | 2007-10-17 |
CN1701414A (en) | 2005-11-23 |
JP2006513586A (en) | 2006-04-20 |
KR100542031B1 (en) | 2006-01-11 |
KR20040103073A (en) | 2004-12-08 |
WO2004107418A1 (en) | 2004-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI251265B (en) | Method for removing photoresist in semiconductor manufacturing process | |
US6834656B2 (en) | Plasma process for removing polymer and residues from substrates | |
TWI293496B (en) | Electronic device and method for fabricating the same | |
TW201030798A (en) | Front end of line plasma mediated ashing processes and apparatus | |
US6753129B2 (en) | Method and apparatus for modification of chemically amplified photoresist by electron beam exposure | |
TWI376721B (en) | System and method for removal of photoresist in transistor fabrication for integrated circuit manufacturing | |
TW201406932A (en) | Composition and process for stripping photoresist from a surface including titanium nitride | |
TW201224191A (en) | Radiation patternable CVD film | |
JPH10189554A (en) | Defluorinating process | |
TW201220389A (en) | Plasma mediated ashing processes | |
JP4786513B2 (en) | Composition for hard mask in lithography process | |
TW201030835A (en) | Conformal etch material and process | |
TW200305946A (en) | Method for ashing | |
TW200921297A (en) | Method and apparatus for manufacturing semiconductor device, and resist material | |
JP4994566B2 (en) | Manufacturing method of dual damascene wiring of microelectronic device using hybrid type low dielectric constant material and inorganic filler not containing carbon | |
US20010005635A1 (en) | Ashing method and method of producing wired device | |
TW200919547A (en) | Method of forming micropattern | |
JP3027967B2 (en) | Method of forming photoresist pattern | |
JP3076270B2 (en) | Method for removing resist film and method for manufacturing semiconductor device | |
US20080102553A1 (en) | Stabilizing an opened carbon hardmask | |
TWI262547B (en) | System and method of varying critical dimension (CD) of a resist pattern | |
JP2009105218A (en) | Pattern forming method | |
JP3293803B2 (en) | Method of forming fine pattern and method of manufacturing semiconductor device | |
JP2898725B2 (en) | Pattern formation method | |
US9685330B1 (en) | Manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |