TWI238913B - Transflective liquid crystal display device - Google Patents

Transflective liquid crystal display device Download PDF

Info

Publication number
TWI238913B
TWI238913B TW092121964A TW92121964A TWI238913B TW I238913 B TWI238913 B TW I238913B TW 092121964 A TW092121964 A TW 092121964A TW 92121964 A TW92121964 A TW 92121964A TW I238913 B TWI238913 B TW I238913B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
film
nematic
polymer
substrate
Prior art date
Application number
TW092121964A
Other languages
Chinese (zh)
Other versions
TW200405095A (en
Inventor
Tetsuya Uesaka
Eiji Yoda
Toyokazu Ogasawara
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Publication of TW200405095A publication Critical patent/TW200405095A/en
Application granted granted Critical
Publication of TWI238913B publication Critical patent/TWI238913B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/04Number of plates greater than or equal to 4
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/10Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with refractive index ellipsoid inclined, or tilted, relative to the LC-layer surface O plate
    • G02F2413/105Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with refractive index ellipsoid inclined, or tilted, relative to the LC-layer surface O plate with varying inclination in thickness direction, e.g. hybrid oriented discotic LC

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

A transflective liquid crystal display device is provided which is bright in the transmission mode, high in contrast, designable to be thin, and less dependence on the viewing angle. The transflective liquid crystal display comprises a first substrate having a transparent substrate, a second substrate having a transflective electrode, a nematic liquid crystal layer sandwiched therebetween, a first optical anisotropic element disposed on the first substrate, a polarizer disposed on the first optical anisotropic element, a second optical anisotropic element disposed on the first substrate, and a polarizer disposed on the second optical anisotropic element wherein the first optical anisotropic element comprises a phase difference film fulfilling the specific requirements and the second optical anisotropic element is formed with a liquid crystalline polymeric substance exhibiting positive uniaxial properties.

Description

1238913 玖、發明說明: 【發明所屬之技術領域】 本發明係關於文字處理機或個人電腦等0A機器、電子 手冊、行動電話等行動資訊機器、或具備液晶顯示器之照 相機體型VTR等方面所採用,兼具反射型或透過型的液晶 顯示元件。 【先前技術】 近年,液晶顯示元件在大幅活用其薄型輕量特徵之情況 下,已逐漸提高當作行動型資訊終端機器顯示器用的市場 需求擴大期待。因為行動式資訊終端機器通常屬於電池驅 動,抑制消耗電力便成為重要的課題。因此,行動式用途 的液晶顯示元件等,便特別著眼於未使用電力消耗較大的 背光源,或未經常使用,且可達低消耗電力化、薄型化、 輕量化的反射型液晶顯示元件。 反射型液晶顯示元件係利用一對偏光板挾置液晶單 元,再於外側配置反射板的偏光板二片式反射型液晶顯示 元件,廣泛使用於黑白顯示用。此外,最近利用偏光板與 反射板挾置液晶層的偏光板一片式反射型液晶顯示元件, 因為較諸於偏光板二片式之下,在原理上較為明亮,亦較 容易彩色化,因此已正實用化。偏光板一片式反射型液晶 顯示元件,為使偏光板與液晶單元之間所配置的相位差板 擁有略圓偏光板機能,因此使用1 / 4波長板,更藉由將液 晶單元内的液晶層厚度形成大致1 / 4波長程度的厚度,俾 可實現正常白型反射型液晶顯示元件(譬如參照日本專利 6 312/發明說明書(補件)/92-10/92121964 1238913 特開6 - 1 1 7 1 1號公報、國際公開第9 8 / 4 3 2 0號小冊等)。 在相位差板方面,使用1 / 4波長板可賦予良好的圓偏光 板特性,因此便有提案使用至少由:在5 5 Ο n m單色光的複折 射光相位差為大致1 / 4波長的1 / 4波長板,及在5 5 0 nm單 色光的複折射光相位差為大致1 / 2波長的1 / 2波長板所構 成的二片以上相位差薄膜(譬如參照日本專利特開平 1/ 1 0 - 6 8 8 1 6 號公報)。 但是,該等反射型液晶顯示元件,通常乃因為利用外界 光而執行顯示,因此當在較昏暗環境下使用的情況時,便 具有較不易觀看到顯示的缺點。解決此問題的技術,有提 案在偏光板一片式反射型液晶顯示元件中,取代反射板, 而改為採用具有透過部分入射光之性質的半透過反射板, 且具備背光源的半透過反射型液晶顯示元件(譬如參照曰 L本專利特開平1 0 - 2 0 6 8 4 6號公報)。此情況下,在背光源非 '一·— ...—.—·**·"" 點亮的狀態下,可使用為利用外界光的反射型(反射模 式),而在較昏暗的環境下,則可使用為點亮背光源的透過 型(透過模式)。 此偏光板一片式半透過反射型液晶顯示元i牛,在透過模 ..... . -- 式中,必須通過半透過反射層並將略圓偏光射入於液晶單 元中,因此在一片或複數片之以聚碳酸酯為代表的高分子 延伸薄膜、與由偏光板所構成圓偏光板,便必須配置於半 透過反射層與背光源之間。但是,在透過模式的液晶顯示 元件中,因為液晶分子所擁有的折射率各向異性,因此當 從斜向觀看時,便本質上無法避免顯示色變化、或顯示對 7 312/發明說明書(補件)/92-10/92121964 1238913 比降低的視野角問題,在採用高分子延伸薄膜的圓偏光 板,本質上頗難擴大視野角度。 再者,在行動式資訊終端機器方面,近年對薄型化、輕 量化的需求逐漸提高,行動式資訊終端機器的顯示器中所 使用的組件,亦強烈要求薄型化、輕量化,但是高分子延 伸薄膜不僅在製造面問題,且在薄型化方面亦有極限。 有鑑於斯,本發明之目的在於提供一種透過模式下的顯 示明亮且高對比,並可設計呈較薄厚度,視野角依存性較 少的半透過反射型液晶顯示元件。 【發明内容】 本發明之第1發明乃關於半透過反射型液晶顯示元件, 係具備有:具透明電極的第1基板;含有由具反射機能區域 與具透過機能區域所形成半透過反射性電極的第2基板; 挾置於該第1基板與該第2基板間的向列液晶層;設置在 鄰接該第1基板液晶層之面的背面上之第1光學各向異性 (anisotropic)元件與1片偏光板;以及設置在鄰接該第2 基板液晶層之面的背面上之第2光學各向異性元件與1片 偏光板;其特徵在於: 上述第1光學各向異性元件係由1片高分子配向膜所構 成的相位差薄膜,當將在波長(λ )450nm、550nm、及650nm 中的延遲值,分別設定為Re(450)、Re(550)及Re(650)之 時,由滿足下述式(I )與(Π )的相位差薄膜所構成,1238913 发明 Description of the invention: [Technical field to which the invention belongs] The present invention is applied to 0A devices such as word processors or personal computers, mobile information devices such as electronic manuals, mobile phones, and camera-type VTRs equipped with liquid crystal displays. Both reflective and transmissive liquid crystal display elements. [Prior art] In recent years, liquid crystal display devices have gradually increased their market demand for displays for mobile information terminal devices, while making the most of their thin and lightweight features. Because mobile information terminals are usually battery-driven, reducing power consumption has become an important issue. Therefore, liquid crystal display elements such as mobile applications are particularly focused on reflective liquid crystal display elements that do not use a backlight that consumes a large amount of power, or that are not frequently used, and can achieve low power consumption, thinness, and light weight. A reflective liquid crystal display element is a two-plate reflective liquid crystal display element that uses a pair of polarizing plates to set up a liquid crystal cell, and a reflective plate on the outside. It is widely used for black and white displays. In addition, recently, a polarizing plate one-piece reflective liquid crystal display element using a polarizing plate and a reflecting plate in which a liquid crystal layer is disposed, is brighter in principle and easier to colorize than the polarizing plate two-piece type. It is practical. A polarizing plate is a one-piece reflective liquid crystal display element. In order to make the retardation plate disposed between the polarizing plate and the liquid crystal cell have a slightly circular polarizing plate function, a 1/4 wavelength plate is used, and the liquid crystal layer in the liquid crystal cell is further used. The thickness is approximately 1/4 wavelength, and a normal white reflective liquid crystal display element can be realized (for example, refer to Japanese Patent 6 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913 JP 6-1 1 7 1 Bulletin No. 1, International Publication No. 9/8/320, etc.). In terms of retardation plates, the use of a 1/4 wavelength plate can impart good circular polarizing plate characteristics, so it has been proposed to use at least: the phase difference of the birefringent light of monochromatic light at 5 5 0 nm is approximately 1/4 wavelength Two or more retardation films composed of a 1/4 wave plate and a 1 / 2-wave plate with a birefringent light phase difference of approximately 1/2 wavelength at 550 nm for monochromatic light (for example, refer to Japanese Patent Laid-Open No. 1) / 1 0-6 8 8 16). However, such reflective liquid crystal display elements usually perform display by using external light. Therefore, when used in a relatively dim environment, they have the disadvantage that the display is not easy to see. As a technique for solving this problem, there is a proposal to replace a reflective plate in a polarizing plate one-piece reflective liquid crystal display element with a transflective reflective plate having a property of transmitting a part of incident light and a transflective reflective type having a backlight source. A liquid crystal display element (for example, refer to Japanese Patent Laid-Open No. Hei 10-2 0 6 8 4 6). In this case, in a state where the backlight source is not “—... —. — **” " " " " " " " " In the environment, you can use the transmission type (transmission mode) to light the backlight. This polarizing plate is a one-piece semi-transmissive reflective LCD display element i. In the transmission mode .....-In the formula, the semi-transmissive reflective layer must be used to pass slightly circular polarized light into the liquid crystal cell. Or a plurality of polymer stretched films typified by polycarbonate, and a circular polarizing plate composed of a polarizing plate, must be disposed between the semi-transmissive reflective layer and the backlight. However, in a transmission mode liquid crystal display element, because the refractive index anisotropy possessed by the liquid crystal molecules, when viewed from an oblique direction, it is essentially impossible to avoid a change in display color or display. Pieces) / 92-10 / 92121964 1238913 The problem of reduced viewing angle, in the circular polarizer using polymer stretched film, it is essentially difficult to expand the viewing angle. In addition, in terms of mobile information terminal equipment, the demand for thinness and lightening has been increasing in recent years. The components used in the display of mobile information terminal equipment have also strongly demanded to be thin and lightweight, but the polymer stretch film There are limits not only to manufacturing aspects, but also to thinness. In view of the foregoing, an object of the present invention is to provide a transflective reflective liquid crystal display element which has a bright and high-contrast display in a transmission mode and can be designed to have a thin thickness and a small viewing angle dependency. [Summary of the Invention] The first invention of the present invention relates to a transflective liquid crystal display element, comprising: a first substrate having a transparent electrode; and a transflective reflective electrode formed by a region having a reflective function and a region having a transmissive function A second substrate; a nematic liquid crystal layer interposed between the first substrate and the second substrate; a first optically anisotropic element disposed on a back surface of a surface adjacent to the liquid crystal layer of the first substrate and One polarizing plate; and a second optical anisotropic element and one polarizing plate provided on the back surface of the surface adjacent to the liquid crystal layer of the second substrate; the first optical anisotropic element is composed of one When a retardation film composed of a polymer alignment film has retardation values at wavelengths (λ) of 450 nm, 550 nm, and 650 nm as Re (450), Re (550), and Re (650), respectively, A retardation film composed of the following formulae (I) and (Π),

Re( 4 5 0 ) < Re( 5 5 0 ) < Re( 6 5 0 ) ( I ) 0. 2 ^ Re( λ )/ λ ^0.3 (Π ) 8 312/發明說明書(補件)/92-10/92121964 1238913 上述第2光學各向異性元件係由至少1片顯示光學正單 軸性之液晶性.高分子物質所實質形成,且該液晶性高分子 物質係含有將在液晶狀態下所形成向列混合配向予以固定 化的液晶薄膜(A)。 再者,本發明第2發明乃上述半透過反射型液晶顯示元 件,其中,上述第2光學各向異性元件係由下述所構成: 由至少1片顯示光學正單軸性之液晶性高分子、物i所實+質 形成,且該液晶性高分子物質係含有將在液晶狀態下所形 成向列混合配向予以固定化的液晶薄膜(A );以及至少1 片高分子延伸薄膜。 再者,本發明第3發明乃上述半透過反射型液晶顯示元 件,其中,上述第2光學各向異性元件係由下述所構成: 由至少1片顯示光學正單軸性之液晶性高分子物質所實質 形成,且該液晶性高分子物質係含有將在液晶狀態下所形 成向列混合配向予以固定化的液晶薄膜(A );以及由至少1 片顯示光學正單軸性之液晶性高分子物質所實質形成,且 該液晶性高分子物質係含有將在液晶狀態下所形成向列配 向予以固定化的液晶薄膜(B)。 再者,本發明第4發明乃上述半透過反射型液晶顯示元 件,其中,上述液晶薄膜(A)係使液晶材料在液晶狀態下進 行向列混合配向,再從此狀態進行冷卻,俾將向列混合偏 向予以玻璃固定化的液晶薄膜。 再者,本發明第5發明乃上述半透過反射型液晶顯示元 件,其中,上述液晶薄膜(A )係使液晶材料在液晶狀態下進 9 312/發明說明書(補件)/92-10/92121964 1238913 行向列混合配向,再利用交聯反應將向列混合偏向予以固 定化的液晶薄膜。 再者,本發明第6發明乃上述半透過反射型液晶顯示元 件,其中,上述具反射機能區域與具透過機能區域的液晶 層厚係不同,具反射機能區域的液晶層厚度較薄於具透過 機能區域的液晶層厚。 再者,本發明第7發明乃上述半透過反射型液晶顯示元 件,係採用電控雙折射(Electrically Controlled Birefringence , ECB)方式 。 再者,本發明第8發明乃上述半透過反射型液晶顯示元 件,係採用扭轉向列(Twisted Nematic,TN)方式。 再者,本發明第9發明乃上述半透過反射型液晶顯示元 件,係採用混合配向向列(H y b r i d A 1 i g n e d N e m a t i c,H A N ) 方式。 【實施方式】 以下,詳細說明本發明。 本發明的半透過反射型液晶顯示元件,由觀看者端觀 之,係由偏光板、第1光學各向異性元件、液晶單元、第 2光學各向異性元件、偏光板、背光源所構成,配合需要 可再追加光擴散層、光控制薄膜、導光板、稜鏡薄片(pr i sm s h e e t )等。此形式的液晶顯示元件乃藉由在後方設置背光 源,便可使用反射模式與透過模式的二種模式。 其次,針對本發明中所使用的液晶單元進行說明。 本發明中所使用的液晶單元係由下述組件所構成:具透 10 31W發明說明書(補件)/92-10/92121964 1238913 明電極的第1基板;含有由具反射機能區域與具透過機能 區域所形成半透過反射性電極的第2基板;以及挾置於該 第1基板與該第2基板間的向列液晶層。 該液晶單元乃含有由具反射機能區域與具透過機能區 域所形成半透過反射層,而具反射機能區域將成為執行反 射顯示的反射顯示部,具透過機能區域將成為執行透過顯 示的透過顯示部。 該液晶單元的反射顯示部之液晶層厚,最好較薄於透過 顯示部。理由說明如下。 首先,針對當將液晶層厚設定為適於反射顯示之層厚 時,透過顯示部的透過顯示進行說明。當執行適於反射顯 不的液晶層設定之情況時,隨液晶層電場等外場所產生配 向變化衍生出的偏光狀態變化量,乃為從觀察者端通過液 晶層而所射入光將在反射層被反射之後,再度通過液晶層 之後,再從觀察者端射出,藉此可往返液晶層而獲得充分 對比的程度。但是,在此設定中,於透過顯示部,通過液 晶層的光,在偏光狀態下的變化量將嫌不足。因此,即便 在使用於反射顯示之液晶單元的觀察者端追加設置偏光 板,從觀察者端觀看僅使用於透過顯示的偏光板,呈設置 於液晶單元背面狀態,但是在透過顯示部仍無法獲得充分 的顯示。即,當將液晶配向條件設定為適於反射顯示部的 液晶層配向條件之情況時,在透過顯示部將呈現亮度不足 現象,或即便亮度足夠,但是較暗顯示的透過率並未降低, 使顯示無法獲得充分地對比。 312/發明說明書(補件)/92-10/92121964 11 1238913 再者,若詳細說明的話,當執行反射顯示的情況時,便 依對僅單次通過液晶層的光賦予大概1 / 4波長的相位差之 方式,利用所施加的電壓控制著上述液晶層内的液晶配向 狀態。如此若適於反射顯示的液晶層厚,即施行賦予1 / 4 波長相位調變的電壓調變(m 〇 d u 1 a t i ο η )並施行透過顯示的 話,於使透過顯示部在暗顯示時的透過率充分降低之情況 下,透過顯示部在亮顯示時,光射出端的偏光板將吸收約 一半光度的光,而無法獲得充分的亮顯示。此外,若透過 顯示部為增加亮顯示時的明亮度,而施行偏光板、相位差 補償板等光學元件的的配置的話,透過顯示部在較暗顯示 時的明亮度,將為較亮顯示時之明亮度的約1 / 2明亮度, 顯示的對比將呈不足現象。 反之,在將液晶層厚度設定為適於透過顯示之條件方 面,必須依對透過於液晶層的光賦予1 / 2波長相位差之方 式,對上述液晶層施行電壓調變。所以,在利用於反射光 與透過光均為高解析度且辨識性優越之顯示方面,反射顯 示部的液晶層厚度,便必須較小於透過顯示部的液晶層厚 度。較理想的話,反射顯示部的液晶層厚度最好為透過顯 示部液晶層厚度的約1 / 2。 上述液晶單元的方式,可舉例如:扭轉向列(T w i s t e d Nematic, TN)方式、超扭轉向列型(Super Twisted Nematic,STN)方式、電控雙折射(Electrically Controlled Birefringence, ECB)方式、橫向電場切換 (In-Plane Switching, IPS)方式、垂直配向(Vertical 12 312/發明說明書(補件)/92-10/92121964 1238913Re (4 5 0) < Re (5 5 0) < Re (6 5 0) (I) 0. 2 ^ Re (λ) / λ ^ 0.3 (Π) 8 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913 The second optical anisotropic element is composed of at least one liquid crystal exhibiting optical positive uniaxiality. The polymer substance is substantially formed, and the liquid crystal polymer substance contains a liquid crystal state. The resulting nematic liquid crystal film (A) was immobilized. Furthermore, the second invention of the present invention is the above-mentioned transflective liquid crystal display element, wherein the second optically anisotropic element is composed of: at least one liquid crystalline polymer exhibiting optical positive uniaxiality The substance i is formed by a substance + substance, and the liquid crystalline polymer substance contains a liquid crystal film (A) in which a nematic mixed alignment formed in a liquid crystal state is immobilized; and at least one polymer stretched film. Furthermore, the third invention of the present invention is the transflective liquid crystal display device described above, wherein the second optically anisotropic element is composed of: at least one liquid crystalline polymer exhibiting optical positive uniaxiality Substance is formed substantially, and the liquid crystalline polymer substance contains a liquid crystal film (A) in which a nematic hybrid alignment formed in a liquid crystal state is immobilized; and at least one piece has high liquid crystallinity showing optical uniaxiality The molecular substance is formed substantially, and the liquid crystalline polymer substance contains a liquid crystal film (B) in which a nematic alignment formed in a liquid crystal state is fixed. Furthermore, the fourth invention of the present invention is the transflective liquid crystal display device described above, wherein the liquid crystal film (A) is a liquid crystal material that is nematically mixed and aligned in a liquid crystal state, and then cooled from this state, and the nematic The liquid crystal film to which glass is fixed is mixed and mixed. In addition, the fifth invention of the present invention is the transflective liquid crystal display device described above, wherein the liquid crystal film (A) is a liquid crystal material that advances in a liquid crystal state 9 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913 Row nematic hybrid alignment, and then use the cross-linking reaction to offset the nematic hybrid liquid crystal film to be fixed. In addition, the sixth invention of the present invention is the transflective liquid crystal display element described above, wherein the thickness of the liquid crystal layer between the reflective function region and the transmissive function region is different, and the thickness of the liquid crystal layer with the reflective function region is thinner than that of the transmissive liquid crystal layer. The liquid crystal layer in the functional region is thick. Furthermore, the seventh invention of the present invention is the above-mentioned transflective liquid crystal display element, which adopts an electrically controlled birefringence (Electrically Controlled Birefringence, ECB) method. Furthermore, the eighth invention of the present invention is the transflective liquid crystal display device described above, and adopts a twisted nematic (TN) method. Furthermore, the ninth invention of the present invention is the above-mentioned semi-transmissive reflective liquid crystal display element, which adopts a hybrid alignment nematic (H y b r d A 1 i g n e d N e m a t i c, H A N) method. [Embodiment] Hereinafter, the present invention will be described in detail. The transflective liquid crystal display element of the present invention is composed of a polarizing plate, a first optically anisotropic element, a liquid crystal cell, a second optically anisotropic element, a polarizing plate, and a backlight. If necessary, a light diffusion layer, a light control film, a light guide plate, and a pr i sm sheet may be further added. This type of liquid crystal display element can be used in two modes of reflection mode and transmission mode by providing a backlight in the rear. Next, a liquid crystal cell used in the present invention will be described. The liquid crystal cell used in the present invention is composed of the following components: a first substrate having a transparent electrode and a transparent electrode 1031W invention specification (supplement) / 92-10 / 92121964 1238913; A second substrate having a semi-transmissive reflective electrode formed in the region; and a nematic liquid crystal layer interposed between the first substrate and the second substrate. The liquid crystal cell includes a semi-transmissive reflective layer formed by a reflective function region and a transmissive function region, and the reflective function region will become a reflective display section that performs reflective display, and the transmissive function region will become a transmissive display section that performs transmissive display. . The liquid crystal layer of the reflective display portion of the liquid crystal cell is preferably thicker than the transmissive display portion. The reason is explained below. First, when the liquid crystal layer thickness is set to a layer thickness suitable for reflective display, the transmission display of the transmission display section will be described. When the setting of the liquid crystal layer suitable for reflective display is performed, the amount of change in the polarization state derived from the alignment change in the external field such as the electric field of the liquid crystal layer is for the incident light to pass through the liquid crystal layer from the observer's end. After the layer is reflected, after passing through the liquid crystal layer again, it is emitted from the viewer's end, so that it can go back and forth to the liquid crystal layer to obtain a sufficient degree of contrast. However, in this setting, the amount of change in the polarization state of the light transmitted through the liquid crystal layer through the display portion is insufficient. Therefore, even if a polarizing plate is additionally provided on the observer side of the liquid crystal cell used for reflective display, and the polarizing plate used only for the transmissive display is viewed from the observer side, it is arranged on the back of the liquid crystal cell, but it is still not available on the transmissive display portion. Full display. That is, when the liquid crystal alignment conditions are set to the liquid crystal layer alignment conditions suitable for the reflective display section, the transmission display section will show insufficient brightness, or even if the brightness is sufficient, the transmittance of the dark display is not reduced, so that The display cannot be fully contrasted. 312 / Invention Specification (Supplement) / 92-10 / 92121964 11 1238913 Furthermore, if it is explained in detail, when the reflection display is performed, the light having passed through the liquid crystal layer only about a quarter of a wavelength will be given. In the phase difference method, the liquid crystal alignment state in the liquid crystal layer is controlled by the applied voltage. In this way, if the thickness of the liquid crystal layer suitable for reflective display is to perform voltage modulation (m 0du 1 ati ο η) that imparts phase modulation of 1/4 wavelength and perform transmissive display, the transmissive display portion is used for dark display. When the transmittance is sufficiently reduced, the polarizing plate at the light emitting end will absorb about half of the light when the transparent display portion is in bright display, and a sufficient bright display cannot be obtained. In addition, if the transmission display section is configured to increase the brightness during bright display, and the arrangement of optical elements such as a polarizing plate and phase difference compensation plate is performed, the brightness of the transmission display section during dark display will be brighter. The brightness is about 1/2 of the brightness, and the contrast of the display will be insufficient. Conversely, in order to set the thickness of the liquid crystal layer to a condition suitable for transmission display, it is necessary to perform voltage modulation on the liquid crystal layer in such a manner that a phase difference of 1/2 wavelength is given to the light transmitted through the liquid crystal layer. Therefore, the thickness of the liquid crystal layer in the reflective display portion must be smaller than the thickness of the liquid crystal layer in the transmissive display portion in a display with high resolution and excellent visibility both in reflected light and transmitted light. Preferably, the thickness of the liquid crystal layer in the reflective display portion is preferably about 1/2 of the thickness of the liquid crystal layer in the transmissive display portion. Examples of the liquid crystal cell method include a twisted nematic (TN) method, a super twisted nematic (STN) method, an electrically controlled birefringence (ECB) method, and a horizontal direction. In-Plane Switching (IPS) method, vertical alignment (Vertical 12 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913

Alignment,VA)方式、光學互補雙折射(Optically Compensated Birefringence, 0CB)方式、混合配向向列 (Hybrid Aligned Nematic,HAN)方式、軸對稱對齊(Axially Symmetric Aligned Microcell, ASM)、中間調灰階 (halftone grayscale)方式、分割西己向法(domain divided) 方式、或利用強介電性液晶、反強介電性液晶的顯示方式 等各種方式。 當TN方式之情況時,液晶層的扭轉方向可為左旋亦可 為右旋。扭轉角度最好在9 0度以下,尤以7 0度以下為佳。 當大於9 0度的情況時,恐將發生液晶顯示元件附著不需要 顏色的不良現象。 再者,液晶單元的驅動方式亦無特別的限制,可為 如:STN-LCD等之中所採用的被動矩陣方式、及TFT(Thin Film Transistor)電極、TFD(Thin Film Doide)電極等採 用主動電極(active electrode)的主動矩陣方式、電漿定 址方式等任何驅動方式。 構成液晶單元的透明電極係僅要漿顯示構成液晶層之 液晶性的材料,配向呈特定配向方向的話便可,並無特別 的限制。具體而言,具使液晶配向之性質的透明基板,雖 基板本身雖欠缺配向能力,但是可採用將具有使液晶配向 性質的配向膜等,設置於其上的透明電極等任何者。此外, 液晶單元的電極亦可使用如I T 0等週知者。電極通常可設 置於鄰接液晶層的透明基板面上,當使用具配向膜之基板 的情況時,可設置於基板與配向膜之間。 13 312/發明說明書(補件)/92-10/92121964 1238913 顯不出形成液晶層之液晶性的材料’並無特別的限制’ 可舉例如:可構成各種液晶單元之普通各種低分子液晶物 質、高分子液晶物質、及該等混合物。此外,在該等不損 及液晶性的範圍下,亦可添加色素、對掌劑(c h i r a 1 agent)、非液晶性物質等。 半透過反射性電極中所含具反射機能的區域(以下稱 「反射層」),並無特別限制,可例示如:铭、銀、金、鉻、 鉑等金屬、含該等的合金、氧化鎂等氧化物、介電質多層 膜、顯示出選擇反射的液晶、或該等組合等。該等反射層 可為平面,亦可為曲面。另外,反射層可為施行加工為凹 凸形狀等表面形狀俾使具擴散反射性者、兼具液晶單元之 觀察者端與背面端之該電極基板上的電極者、或該等組合。 本發明中所採用的偏光板,僅要可達成本發明目的者的 話便可,並無特別的限制,可適當使用液晶顯示元件中所 採用的普通者。具體而言,可在如聚乙烯醇(PVA)或部分縮 醛化P V A之類P V A系、或乙烯-醋酸乙烯共聚物之部分皂化 物等所構成親水性高分子薄膜中,使用由吸附著碘及/或雙 色性色素並延伸的偏光膜、如P V A脫水處理物或氣乙稀脫 鹽酸處理物之類聚烯烴配向薄膜等所構成偏光膜。此外, 亦可使用反射型偏光膜。 該偏光板可單獨使用偏光膜,在提昇強度、提昇耐濕 性、提昇耐熱性等目的之下,亦可在偏光膜的單面或雙面 上設置透明保護層等。透明保護層可舉例如:將聚酯、三乙 醯纖維素等透明塑膠薄膜,直接或透過黏著層層積者、透 14 312/發明說明書(補件)/92-10/92121964 1238913 明樹脂塗佈層、丙烯酸系或環氧系等光硬化型樹脂層等。 當將該等透明保護層披覆於偏光膜雙面上的情況時,亦可 二側設置不同的保護層。 本發明中所採用的第1光學各向異性元件係由當將在波 長(又)450nm、550nm、及650nm中的延遲值,分別設定為 Re(450)、Re(550)及Re(650)之時,由滿足下述式(I)與(Π) 的1片高分子配向膜所構成相位差薄膜。Alignment (VA) method, Optically Compensated Birefringence (0CB) method, Hybrid Aligned Nematic (HAN) method, Axially Symmetric Aligned Microcell (ASM), halftone grayscale (halftone) grayscale) method, domain divided method, or a display method using a ferroelectric liquid crystal or an anti-ferroelectric liquid crystal. In the case of the TN method, the twist direction of the liquid crystal layer may be left-handed or right-handed. The twisting angle is preferably below 90 degrees, especially below 70 degrees. When it is more than 90 degrees, there is a fear that an undesirable phenomenon in which the liquid crystal display element is attached with an unnecessary color may occur. In addition, the driving method of the liquid crystal cell is not particularly limited, and may be, for example, a passive matrix method used in STN-LCD, etc., and a TFT (Thin Film Transistor) electrode, TFD (Thin Film Doide) electrode, etc. Any driving method, such as active matrix method and plasma addressing method. The transparent electrode system constituting the liquid crystal cell is only required to display the liquid crystal material constituting the liquid crystal layer, and the orientation is not particularly limited as long as the orientation is in a specific orientation direction. Specifically, a transparent substrate having the property of aligning liquid crystals, although the substrate itself lacks the ability to align, can be any transparent electrode provided with an alignment film or the like having the property of aligning liquid crystals. In addition, the electrode of the liquid crystal cell may be a known one such as I T 0. The electrode can usually be placed on the surface of the transparent substrate adjacent to the liquid crystal layer. When a substrate with an alignment film is used, it can be placed between the substrate and the alignment film. 13 312 / Instruction of the Invention (Supplement) / 92-10 / 92121964 1238913 The material that does not show the liquid crystal properties of the liquid crystal layer is not particularly limited. For example, ordinary low-molecular liquid crystal materials that can constitute various liquid crystal cells , Polymer liquid crystal substances, and these mixtures. In addition, as long as the liquid crystallinity is not impaired, a pigment, a c h i r a 1 agent, a non-liquid crystal substance, or the like may be added. There are no particular restrictions on the area of the transflective reflective electrode that has a reflective function (hereinafter referred to as the "reflective layer"). Examples include metals such as Ming, silver, gold, chromium, platinum, alloys containing them, and oxidation. An oxide such as magnesium, a dielectric multilayer film, a liquid crystal exhibiting selective reflection, or a combination thereof. The reflective layers may be flat or curved. In addition, the reflective layer may be processed into a surface shape such as a concave-convex shape so as to have a diffuse reflectance, an electrode on the electrode substrate that has both an observer end and a back end of the liquid crystal cell, or a combination thereof. The polarizing plate used in the present invention is not limited as long as it can reach the purpose of the present invention, and ordinary ones used in liquid crystal display elements can be appropriately used. Specifically, a hydrophilic polymer film composed of a PVA system such as polyvinyl alcohol (PVA) or a partially acetalized PVA, or a saponified product of an ethylene-vinyl acetate copolymer, etc., can be used by adsorbing iodine. And / or a polarizing film in which a dichroic pigment is stretched, and a polarizing film made of a polyolefin alignment film such as a PVA dehydrated product or a gaseous dehydrochlorinated product. Alternatively, a reflective polarizing film may be used. This polarizing plate can use a polarizing film alone, and for the purpose of improving the strength, improving the moisture resistance, and the heat resistance, a transparent protective layer or the like can be provided on one or both sides of the polarizing film. The transparent protective layer may be, for example, a transparent plastic film such as polyester or triethyl cellulose, laminated directly or through an adhesive layer, 14 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913 Fabric layer, light-curable resin layer such as acrylic or epoxy. When these transparent protective layers are coated on both sides of the polarizing film, different protective layers may be provided on both sides. The first optically anisotropic element used in the present invention is configured by setting retardation values at wavelengths (again) of 450 nm, 550 nm, and 650 nm to Re (450), Re (550), and Re (650), respectively. At this time, a retardation film is composed of one polymer alignment film satisfying the following formulae (I) and (Π).

Re( 4 5 0 ) < Re( 5 5 0 ) < Re( 6 5 0 )(I) 0.2^Re(A)/A^0.3(n) 滿足上述式(I ),即由波長越短延遲值越小的1片高分 子配向膜所構成相位差薄膜,可利用滿足下述(A)或(B )之 條件的高分子配向膜而獲得。 (A) 具有下述(1)〜(3)配向膜,(1)由含有:形成具正折射 率各向異性之高分子化合物的單體單位(以下稱「第1單體 單位」)、與形成具負折射率各向異性之高分子化合物的單 體單位(以下稱「第2單體單位」)的高分子化合物所構成 的薄膜;(2)基於該第1單體單位而成的高分子化合物之 Re(450)/Re(550),較小於基於該第2單體單位而成的高分 子化合物之Re(450)/Re(550);且(3)具正折射率各向異 性。 (B) 具有下述(1)〜(3)配向膜,(1)由含有:形成具正折射 率各向異性之高分子化合物的單體單位(以下稱「第1單體 單位」)、與形成具負折射率各向異性之高分子化合物的單 體單位(以下稱「第2單體單位」)的高分子化合物所構成 312/發明說明書(補件)/92-10/92121964 15 1238913 的薄膜;(2 )基於該第1單體單位而成的高分子化合物之 Re(450)/Re(550),較大於基於該第2單體單位而成的高分 子化合物之Re(450)/Re(550);且(3)具負折射率各向異 性。 滿足上述(A )、( B )條件之態樣的例子,有如滿足下述條 件(C )、( D )者。 (C) 具有下述(1)〜(3)配向膜,(1)由具正折射率各向異 性之高分子化合物、與具負折射率各向異性之高分子化合 物所構成高分子化合物的摻合聚合物、及/或由形成具正折 射率各向異性之高分子化合物的單體單位、與形成具負折 射率各向異性之高分子化合物的單體單位所構成共聚物所 構成的薄膜;(2 )該具正折射率各向異性之高分子化合物的 R e ( 4 5 0 ) / R e ( 5 5 0 ),較小於該具負折射率各向異性之高分子 化合物的R e ( 4 5 0 ) / R e ( 5 5 0 );且(3 )具正折射率各向異性。 (D) 具有下述(1)〜(3)配向膜,(1)由具正折射率各向異 性之高分子化合物、與具負折射率各向異性之高分子化合 物所構成高分子化合物的摻合聚合物、及/或由形成具正折 射率各向異性之高分子化合物的單體單位、與形成具負折 射率各向異性之高分子化合物的單體單位所構成共聚物所 構成的薄膜;(2 )該具正折射率各向異性之高分子化合物的 R e ( 4 5 0 ) / R e ( 5 5 0 ),較大於該具負折射率各向異性之高分子 化合物的R e ( 4 5 0 ) / R e ( 5 5 0 );且(3 )具正折射率各向異性。 此處所謂「具正或負折射率各向異性之高分子化合 物」,係指賦予具正或負折射率各向異性之配向膜的高分子 16 312/發明說明截補件)/92-10/92121964 1238913 化合物。 在本發明中,第1光學各向異性元件所採用的高分子配 向膜係如上述,可為摻合聚合物所構成者,亦可採用由共 聚物所構成者。 構成高分子配向膜的高分子材料,僅要屬於滿足上述條 件的摻合聚合物或共聚物的話便可,可為耐熱性優越、光 學性能佳,且可溶液製膜的熱可塑性聚合物。譬如可從聚 丙烯酸酯系、聚酯系、聚碳酸酯系、聚烯烴系、聚醚系、 聚硫系、聚石虱系、聚醚石JiL系等聚合物之中,適當選擇1種 或2種以上。其中,因為配向膜之吸水率若非低於1重量% 以下的話,當作相位差薄膜用時,在實用上將發生問題, 因此薄膜材料最好依滿足薄膜吸水率在1重量%以下(尤以 0. 5重量%以下)條件之方式進行選擇,此乃重要的一環。 若屬於摻合聚合物的話,就從需要光學性透明的觀點而 言,最好為相溶摻合物、或各個高分子化合物的折射率略 等。摻合聚合物之具體組合可舉例如.·具負光學各向異性之 高分子化合物的聚曱基丙烯酸曱酯、與具正光學各向異性 之高分子化合物的聚偏二氟乙烯、聚環氧乙烷、或偏二氣 乙烯-三氟乙烯共聚物的組合;具正光學各向異性之高分子 化合物的聚苯醚、與具負光學各向異性之高分子化合物的 聚苯乙烯、苯乙烯-月桂醯馬來醯亞胺共聚物、苯乙烯-環 己基順丁烯二醯亞胺共聚物、或苯乙烯-苯基順丁烯二醯亞 胺共聚物的組合;具負光學各向異性的苯乙烯-順丁烯二酸 酐共聚物、與具正光學各向異性的聚碳酸酯;或具正光學 17 312/發明說明書(補件)/92-10/92121964 1238913 各向異性的丙烯腈-丁二烯共聚物、與具負光學各向異性的 丙烯腈-苯乙烯共聚物等,惟並不僅限定於該等。特別就透 明性的觀點而言,最好為聚苯乙烯、與聚(2,6 -二曱基-1,4 -苯醚)等聚苯醚的組合。當此種組合的情況時,該聚苯乙烯 的比率最好佔總體的6 7重量%以上、且7 5重量%以下。 再者,共聚物可採用如:丁二烯-苯乙烯共聚物、乙烯-苯乙烯共聚物、丙烯腈-丁二烯共聚物、丙烯腈-丁二烯-苯乙稀共聚物、聚碳酸酯共聚物、聚酯共聚物、聚酯碳酸 酯共聚物、聚丙婦酸酯共聚物等。特別係為使具有芴骨架 的片段變為負光學各向異性,最好採用具芴骨架的聚碳酸 酯共聚物、聚酯共聚物、聚酯碳酸酯共聚物、聚丙烯酸酯 共聚物等。 使雙酚類、與光氣(P h 〇 s g e n e )或碳酸二苯等碳酸醋形成 性化合物進行反應而所製得聚碳酸酯共聚物,透明性、耐 熱性、生產性優越,特別適於使用。聚碳酸酯共聚物最好 含有具芴骨架之構造的共聚物。 本發明之配向膜材料較佳者有如:由下述式(1 )所示重 複單位、與下述式(2 )所示重複單位所構成聚碳酸酯的配向 膜所形成,且式(1 )所示重複單位係佔聚碳酸酯總體之 3 0〜9 0莫耳%,式(2 )所示重複單位係佔聚碳酸酯總體之 7 0〜1 0莫耳%的材料。Re (4 5 0) < Re (5 5 0) < Re (6 5 0) (I) 0.2 ^ Re (A) /A^0.3 (n) satisfies the above formula (I), that is, the shorter the wavelength A retardation film composed of one polymer alignment film having a smaller retardation value can be obtained by using a polymer alignment film that satisfies the following conditions (A) or (B). (A) having the following (1) to (3) alignment films, (1) a monomer unit (hereinafter referred to as a "first monomer unit") containing: a monomer compound forming a polymer compound having positive refractive index anisotropy; A thin film composed of a polymer compound that forms a polymer compound having a negative refractive index anisotropy polymer compound (hereinafter referred to as a "second monomer unit"); (2) a film based on the first monomer unit The Re (450) / Re (550) of the polymer compound is smaller than the Re (450) / Re (550) of the polymer compound based on the second monomer unit; and (3) each has a positive refractive index Anisotropy. (B) the following (1) to (3) an alignment film, (1) a monomer unit (hereinafter referred to as a "first monomer unit") comprising: a polymer compound having a positive refractive index anisotropy; 312 / Invention Specification (Supplement) / 92-10 / 92121964 15 1238913 and polymer unit that forms a monomer unit (hereinafter referred to as "second monomer unit") that forms a polymer compound with negative refractive index anisotropy Film; (2) Re (450) / Re (550) of the polymer compound based on the first monomer unit is larger than Re (450) of the polymer compound based on the second monomer unit / Re (550); and (3) has negative refractive index anisotropy. An example of a condition that satisfies the conditions (A) and (B) above is the one that satisfies the following conditions (C) and (D). (C) It has the following (1) to (3) alignment films, (1) a polymer compound composed of a polymer compound having a positive refractive index anisotropy and a polymer compound having a negative refractive index anisotropy A polymer and / or a copolymer composed of a monomer unit forming a polymer compound having positive refractive index anisotropy and a monomer unit forming a polymer compound having negative refractive index anisotropy Thin film; (2) Re (4 50) / Re (550) of the polymer compound having positive refractive index anisotropy is smaller than that of polymer compound having negative refractive index anisotropy R e (4 5 0) / R e (5 5 0); and (3) has positive refractive index anisotropy. (D) having the following (1) to (3) alignment films, (1) a polymer compound composed of a polymer compound having a positive refractive index anisotropy and a polymer compound having a negative refractive index anisotropy A polymer and / or a copolymer composed of a monomer unit forming a polymer compound having positive refractive index anisotropy and a monomer unit forming a polymer compound having negative refractive index anisotropy Thin film; (2) R e (4 5 0) / Re (55 0) of the polymer compound having positive refractive index anisotropy, which is larger than R of the polymer compound having negative refractive index anisotropy e (4 5 0) / R e (5 5 0); and (3) has positive refractive index anisotropy. The so-called "polymeric compound with positive or negative refractive index anisotropy" here refers to the polymer 16 312 / Invention Clipper) that imparts an alignment film with positive or negative refractive index anisotropy) / 92-10 / 92121964 1238913 compounds. In the present invention, as described above, the polymer alignment film used in the first optically anisotropic element may be composed of a polymer blend or a copolymer. The polymer material constituting the polymer alignment film need only belong to a blended polymer or copolymer satisfying the above-mentioned conditions. The polymer material can be a thermoplastic polymer having excellent heat resistance, excellent optical properties, and solution-forming films. For example, one can be appropriately selected from polymers such as polyacrylate-based, polyester-based, polycarbonate-based, polyolefin-based, polyether-based, polysulfide-based, polylithic, and polyetherstone JiL-based polymers. 2 or more. Among them, if the water absorption of the alignment film is not less than 1% by weight, it will cause practical problems when used as a retardation film. Therefore, it is best for the film material to meet the water absorption of the film below 1% by weight (especially 0.5% by weight or less) is an important aspect. If it is a blended polymer, from the viewpoint of requiring optical transparency, it is preferably a miscible blend or a refractive index of each polymer compound. The specific combination of the blended polymer may include, for example, a polyfluorenyl acrylate of a polymer compound having negative optical anisotropy, a polyvinylidene fluoride, a polycyclic ring, and a polymer compound having positive optical anisotropy. Ethylene oxide, or combination of vinylidene oxide-trifluoroethylene copolymers; polyphenylene ethers with polymer compounds with positive optical anisotropy, polystyrenes with polymer compounds with negative optical anisotropy, benzene Ethylene-lauric acid maleimide copolymer, styrene-cyclohexyl maleimide diimide copolymer, or styrene-phenyl maleimide diimide copolymer; with negative optical isotropy Anisotropic styrene-maleic anhydride copolymer, and polycarbonate with positive optical anisotropy; or positive optical 17 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913 anisotropic propylene The nitrile-butadiene copolymer and the acrylonitrile-styrene copolymer having negative optical anisotropy are not limited to these. In particular, in terms of transparency, a combination of polystyrene and polyphenylene ether such as poly (2,6-difluorenyl-1,4-phenylene ether) is preferred. In the case of such a combination, the proportion of the polystyrene is preferably 67% by weight or more and 75% by weight or less. In addition, the copolymer may be, for example, butadiene-styrene copolymer, ethylene-styrene copolymer, acrylonitrile-butadiene copolymer, acrylonitrile-butadiene-styrene copolymer, polycarbonate Copolymers, polyester copolymers, polyester carbonate copolymers, polypropylene resins and the like. In particular, in order to make a segment having a fluorene skeleton into negative optical anisotropy, it is preferable to use a polycarbonate copolymer, polyester copolymer, polyester carbonate copolymer, polyacrylate copolymer, or the like having a fluorene skeleton. Polycarbonate copolymers prepared by reacting bisphenols with carbonate-forming compounds such as phosgene (Ph osgene) or diphenyl carbonate, which are excellent in transparency, heat resistance, and productivity, and are particularly suitable for use . The polycarbonate copolymer preferably contains a copolymer having a fluorene skeleton structure. The alignment film material of the present invention is preferably formed by an alignment film of a polycarbonate composed of a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2), and the formula (1) The repeating unit shown represents 30 to 90 mole% of the entire polycarbonate, and the repeating unit represented by formula (2) is a material of 70 to 10 mole% of the overall polycarbonate.

312/發明說明書(補件)/92-10/92121964 18 1238913312 / Invention Specification (Supplement) / 92-10 / 92121964 18 1238913

在上述式(4 )中,R ! 7〜R i 9、R 2 !及R 2 2係指從分別獨立的氫 原子、i原子、及碳數1〜2 2之碳化氫基中所選擇的基;R 2 〇 及R 2 3係指從分別獨立的碳數1〜2 0之碳化氫基中所選擇的 基;A r係碳數6〜1 0芳基。 312/發明說明書(補件)/92-10/92121964 19 1238913 此材料係由上述式(1 )所示具芴骨架之重複單位、與上 述式(2 )所示重複單位所構成聚碳酸酯共聚物,以及由上述 式(1 )所示具芴骨架之重複單位所構成聚碳酸酯、與上述式 (2 )所示重複單位所構成聚碳酸酯共聚物的摻合聚合物。當 屬於共聚物的情況時,上述式(1 )與(2 )所示重複單位可分 別組合2種以上,當屬於組成物的情況時,上述重複單位 亦可分別組合2種以上。 在上述式(1 )中,R!〜R 8係指從分別獨立的氫原子、鹵原 子、及碳數1〜6之碳化氫基中所選擇的基。此碳數1〜6之 碳化氫基可舉例如:甲基、乙基、異丙基、環己基等烷基、 苯基等芳基。其中,最好為氫原子甲基。 在上述式(2 )中,R 9〜R 1 6係指從分別獨立的氫原子、鹵原 子、及碳數1〜2 2之碳化氫基中所選擇的基。此碳數1〜2 2 之碳化氫基可舉例如:甲基、乙基、異丙基、環己基等碳數 1〜9之烷基;苯基、聯苯基、三聯苯基等芳基。其中,最 好為氫原子、甲基。 在上述式(4 )中,R 1 7〜R 1 9、R 2 1及R 2 2係指從分別獨立的氫 原子、_原子、及碳數1〜2 2之碳化氫基中所選擇的基。此 碳數1〜2 2之碳化氫基可舉例如:甲基、乙基、異丙基、環 己基等碳數1〜9之烷基;苯基、聯苯基、三聯苯基等芳基。 其中,最好為氫原子、甲基。R2。及R23係指從分別獨立的 碳數1〜2 0之碳化氫基中所選擇的基,且A r係如苯基、$ 基等碳數6〜1 0芳基。 上述式(1 )含有率(即,共聚物之情況時為共聚物組成、 20 312/發明說明書(補件)/92-10/92121964 1238913 組成物之情況時為摻合組成比),係聚碳酸酯整體的3 0〜9 Ο 莫耳%。當在偏離此範圍之外的情況時,則在測量波長 4 0 0〜7 Ο Ο n m中,相位差絕對值並非波長越短越小。上述式 (1 )含有率,最好為聚碳酸酯總體的3 5〜8 5莫耳%,尤以 4 0〜8 0莫耳%為佳。其中,上述莫耳比係無關共聚物、摻合 聚合物,可在構成配向膜的聚碳酸酯整體總體中,利用如 核磁共振(NMR)元件而求得。 此材料的聚碳酸酯最好為由下述式(5 )所示重複單位、 與下述式(6 )所示重複單位所構成的聚碳酸酯共聚物及/或 聚碳酸酯組成物(摻合聚合物)。In the above formula (4), R! 7 ~ Ri9, R2 !, and R22 are each selected from a hydrogen atom, an i atom, and a hydrocarbon group having a carbon number of 1 to 22, respectively. R 2 0 and R 2 3 refer to a group selected from independent hydrocarbon groups having 1 to 20 carbon atoms; and A r is an aryl group having 6 to 10 carbon atoms. 312 / Explanation for invention (Supplement) / 92-10 / 92121964 19 1238913 This material is copolymerized with a repeating unit with a fluorene skeleton represented by the above formula (1) and a polycarbonate formed by the repeating unit represented by the above formula (2) And a blend polymer of a polycarbonate composed of a repeating unit having a fluorene skeleton represented by the above formula (1) and a polycarbonate copolymer composed of a repeating unit represented by the above formula (2). In the case of a copolymer, two or more kinds of repeating units represented by the formulae (1) and (2) may be combined, and in the case of a composition, the two or more kinds of repeating units may be combined respectively. In the above formula (1), R! To R 8 are groups selected from a hydrogen atom, a halogen atom, and a hydrocarbon group having 1 to 6 carbon atoms, which are independent of each other. Examples of the hydrocarbon group having 1 to 6 carbon atoms include alkyl groups such as methyl, ethyl, isopropyl, and cyclohexyl, and aryl groups such as phenyl. Among them, a hydrogen atom methyl group is preferred. In the above formula (2), R 9 to R 1 6 are each a group selected from a hydrogen atom, a halogen atom, and a hydrocarbon group having 1 to 22 carbon atoms, which are independent of each other. Examples of the hydrocarbon group having 1 to 2 carbon atoms include alkyl groups having 1 to 9 carbon atoms such as methyl, ethyl, isopropyl, and cyclohexyl; aryl groups such as phenyl, biphenyl, and terphenyl . Among these, a hydrogen atom and a methyl group are preferred. In the above formula (4), R 1 7 to R 1 9, R 2 1, and R 2 2 are selected from hydrogen atoms, _ atoms, and hydrocarbon groups having 1 to 2 2 carbon atoms, which are independent of each other. base. Examples of the hydrocarbon group having 1 to 2 carbon atoms include alkyl groups having 1 to 9 carbon atoms such as methyl, ethyl, isopropyl, and cyclohexyl; aryl groups such as phenyl, biphenyl, and terphenyl . Among these, a hydrogen atom and a methyl group are preferred. R2. And R23 refer to a group selected from independent hydrocarbon groups having 1 to 20 carbon atoms, and A r is an aryl group having 6 to 10 carbon atoms such as a phenyl group and a $ group. The content ratio of the above formula (1) (that is, the composition of the copolymer in the case of a copolymer, and the blending composition ratio in the case of a composition of 20 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913) 3 to 9 mol% of carbonate as a whole. When it is out of this range, the absolute value of the phase difference is not shorter and shorter at the measurement wavelength of 4 0 to 7 〇 n m. The content ratio of the formula (1) is preferably 35 to 85 mol% of the entire polycarbonate, and more preferably 40 to 80 mol%. Among them, the above-mentioned molar ratio-independent copolymers and blended polymers can be obtained by, for example, a nuclear magnetic resonance (NMR) device in the entire polycarbonate as a whole constituting the alignment film. The polycarbonate of this material is preferably a polycarbonate copolymer and / or a polycarbonate composition (doped with a repeating unit represented by the following formula (5) and a repeating unit represented by the following formula (6) Polymer).

在上述式(5 )中,R 2 4及R 2 5係指從分別獨立的氫原子或甲 基中所選擇的基;在上述式(6 )中,R 2 6及R 2 7係指從分別獨 立的氫原子或甲基中所選擇的基;Z係指從式(7 )所示基中 所選擇的基。In the above formula (5), R 2 4 and R 2 5 are groups selected from the independent hydrogen atom or methyl group; in the above formula (6), R 2 6 and R 2 7 are groups A group independently selected from a hydrogen atom or a methyl group; Z refers to a group selected from the group represented by formula (7).

312/發明說明書(補件)/92-10/92121964 21 1238913 再者,在下述式(8 )〜(1 2 )所示重複單位所構成的共聚物 中,重複單位(1 2 )的比率最好為4 0〜7 5莫耳%;在下述式(9 ) 與(1 2 )所示重複單位所構成的共聚物中,(1 2 )的比率最好 為3 0〜7 0莫耳% ;在下述式(1 0 )與(1 2 )所示重複單位所構成 的共聚物中,(1 2 )的比率最好為3 0〜7 0莫耳%;在下述式(8 ) 與(1 1 )所示重複單位所構成的共聚物中,(1 1 )的比率最好 為4 0〜7 5莫耳%。312 / Description of the Invention (Supplement) / 92-10 / 92121964 21 1238913 Furthermore, among the copolymers composed of the repeating units represented by the following formulae (8) to (1 2), the ratio of the repeating units (1 2) is the most It is preferably 40 to 75 mole%. In a copolymer composed of repeating units represented by the following formulae (9) and (12), the ratio of (1 2) is preferably 30 to 70 mole%. In a copolymer composed of repeating units represented by the following formulae (1 0) and (1 2), the ratio of (1 2) is preferably 30 to 70 mole%; in the following formulae (8) and ( In the copolymer composed of the repeating unit shown in 1 1), the ratio of (1 1) is preferably 40 to 75 mol%.

(8) (9) (10) (11) (12) 最好的材料係含雙酚A [ B P A、對應上述式(8 )]與雙甲酚 芴[B C F、對應上述式(1 2 )]的共聚物或高分子摻合物、或者 312/發明說明書(補件)/92-10/92121964 22 1238913 該等的混合物,該等成分的調配比係B C F含有率5 5〜7 5莫 耳%,最好為5 5〜7 0莫耳%。該等材料可獲得更接近理想的 λ/4板或λ/2板。 上述共聚物及/或摻合聚合物係可利用週知方法進行製 得。聚碳酸酯可適當的採用如:二羥基化合物與光氣進行縮 聚合的方法、熔融縮聚合法等。當摻合的情況時,最好為 相溶性摻合物,即便未完全相溶,若配合成分間之折射率 的話,便可抑制成分間的光散亂現象,可提升透明性。 本發明之高分子配向膜的材料高分子化合物極限黏 度,最好為0 . 3〜2 . 0 d 1 / g。若黏度低於此的話,將變脆弱 造成無法保有機械強度的問題;反之,若黏度高於此的話, 因為溶液黏度將過度提昇,造成在溶液製膜中,產生模線 (d i e 1 i n e )等問題,且聚合結束時的精製亦將趨於困難的 問題。 本發明的高分子配向膜最好為透明,濁度值(hazevalue) 最好在3 %以下,總光線透過率最好在8 5 %以上。此外,上 述高分子配向膜材料的玻璃轉移溫度最好在1 0 0 °C以上, 尤以在1 2 0 °C以上為佳。此外,亦可添加如:苯基水揚酸、 2 -羥基二苯曱酮、三聯苯基磷酸酯等紫外線吸收劑,或供 改變顏色的藍色油墨劑(b 1 u i n g a g e n t ),抗氧化劑等。 本發明的高分子配向膜係採用將上述碳酸酯等薄膜,利 用延伸等而配向的薄膜。此薄膜之製造方法,可採用如周 知的溶融擠出法、溶液澆注法等,但就從膜厚不均、外觀 等觀點而言,最好採用溶液澆注法。溶液澆注法中的溶劑, 312/發明說明書(補件)/92-10/92121964 23 1238913 可適當的採用如:二氯曱烷、二氧戊環等。 再者,延伸方法雖亦可使用週知的延伸方法,但是最 採用縱向單軸延伸。在提昇薄膜中的延伸性之目的下, 可含有周知可塑劑的鄰苯二甲酸二曱酯、鄰苯二甲酸二 酯、鄰苯二甲酸二丁酯等鄰苯二曱酸酯;三丁基磷酸酯 磷酸酯;脂肪族二鹼基酯、甘油衍生物、二醇衍生物等 在延伸時,亦可使上述薄膜製膜時所採用的有機溶劑, 留於薄膜中並施行延伸。此有機溶劑的量,最好為聚合 固形份的1〜2 0質量%。 再者,上述可塑劑或液晶等添加劑可使高分子配向膜 相位差波長分散產生變化,而添加量最好為聚合物固形 的1 0質量%以下,尤以在3質量%以下為佳。 高分子配向膜的膜厚並無特別的限制,最好為1 μηι至 4 Ο μ m 〇 在為使高分子配向膜的相位差成為波長越短越小,必 以具特定化學構造為必要條件,相位差波長分散大部分 由此化學構造所決定,但是亦應注意將隨延伸條件、摻 狀態等而有所變動。 高分子配向膜特別因為可構成擁有1片配向膜且波長 存性較少的優越之4分之1波長板(λ / 4板),因此滿足 述式(Π )。 0.2^Re(A)/A^0.3(n) 本發明中所採用的第2光學各向異性元件係由顯示光 性正單軸性之液晶性高分子物質(具體而言,顯示光學性 312/發明說明書(補件)/92-10/92121964 好 亦 乙 等 〇 殘 物 的 份 須 係 合 依 下 學 正 24 1238913 單軸性之液晶性高分子化合物、或至少含1種該液晶性高 分子化合物之顯示光學性正單軸性液晶性高分子組成物) 所構成,且至少含有將該液晶性高分子化合物或該液晶性 高分子組成物,在液晶狀態下所形成的平均傾斜角為5 ° 〜3 5 °的向列混合配向構造,予以固定化的液晶薄膜(A ), 在可見光區域中具有略4分之1波長的相位差之元件。 此處所謂「向列混合配向」係指液晶分子為向列配向, 此時的液晶分子之指向方向與薄膜平面間的夾角,在薄膜 上面與下面呈不同配向形態。所以,可謂因為在上面界面 附近與下面界面附近,該指向方向與薄膜平面間的夾角角 度不同,因此在該薄膜的上面與下面之間,該角度將連續 變化。 再者,將向列混合配向狀態固定化的薄膜,係液晶分子 指向方向在薄膜厚度方向所有處所均朝不同角度。所以, 該薄膜係當以薄膜的構造體觀之的情況時,還是未存在光 轴〇 再者,本發明中所謂「平均傾斜角」,係指在液晶薄膜 厚度方向中,液晶分子的指向方向與薄膜平面所構成夾角 的平均值。本發明所提供的液晶薄膜係在薄膜其中一界面 附近處,指向方向與薄膜平面所形成夾角的絕對值,通常 為2 0 °〜9 0 ° ,最好為3 0 °〜7 0 °的角度,而在該面的背面 處,則絕對值通常為0 °〜2 0 ° ,最好為0 °〜1 0 °的角度, 平均傾斜角的絕對值,通常為5。〜4 5。,最好為7 °〜4 0 ° , 尤以1 0 °〜3 8 °的角度為佳,更以1 5 °〜3 5 °的角度為佳。 312/發明說明書(補件)/92-10/92121964 25 1238913 當平均傾斜角偏離上述範圍的情況時,恐將發生對比降低 等不良現象,因此最好不要。另外,平均傾斜角係可利用 晶體旋轉法(crystal rotation method)求得。 構成本發明中所採用第2光學各向異性元件的液晶薄膜 (A ),係僅要由顯示光學正單軸性的液晶性高分子物質所實 質形成的,且將該液晶性高分子物質在液晶狀態下,所形 成的向列混合配向狀態予以固定化便可,其製造方法並無 特別的限制。譬如,可採用將低分子液晶在液晶狀態中形 成向列混合配向之後,再利用光交聯或熱交聯而固定化所 獲得的液晶薄膜,或者採用將高分子液晶在液晶狀態下形 成向列混合配向之後,再經冷卻而將該配向固定化而所獲 得的液晶薄膜。另外,本發明中所謂「液晶薄膜」係指無 、 ..… —— —--,-.... 關薄膜本身是否呈液晶性,將低分子液晶、〜 、液晶物質予以薄膜化而所獲侵_者。 再者,液晶薄膜(a )在為能顯現出對半透過反射型液晶 顯示元件更佳視野角度改良效果,該薄膜厚度雖因為依存 於對象液晶顯示元件的形式、或各種光學參數,因而不能 一概而論,但是通常為0 . 2 μ m〜1 0 μ m的範圍,最好為 0.3μπι〜5μιη的範圍,尤以0.5μπι〜2μπι的範圍為佳。當膜厚 低於0 . 2 μπι之時,恐將無法獲得充分的補償效果。反之, 若膜厚超過1 0 μηι的話,顯示器的顯示恐將出現不必要顏 色附著的現象。 其次,採用圖1至圖3,分別將由液晶薄膜(A)所構成的 光學各向異性元件的上下、該光學各向異性元件的傾斜方 26 312/發明說明書(補件)/92-10/92121964 1238913 向、及液晶單元層的預傾斜方向,分別定義如下。 首先,在圖1與圖2所示中,將由液晶薄膜(A)所構成 的光學各向異性元件的上下,若利用構成該光學各向異性 元件的液晶薄膜(A )之薄膜界面附近,由液晶分子指向方向 與薄膜平面所呈夾角而分別定義的話,將液晶分子之指向 方向與薄膜平面所成夾角為銳角端且形成2 0〜9 0度角度的 面設定為b面,將該角度為銳角端且形成0〜20度角度的面 設定為 c面。 當從此光學各向異性元件的b面通過液晶薄膜層而看到 c面的情況時,便將液晶分子指向方向、與朝指向方向的c 面的投影成分間所構成角度,成為銳角的方向,且平行於 投影成分的方向定義為光學各向異性元件的傾斜方向。 其次,在圖3中,通常在液晶單元層的單元界面中,驅 動用低分子液晶對單元界面非呈平行狀態而是具有某種角 度的傾斜狀態,一般將此角度稱為預傾斜角;將單元界面 的液晶分子指向方向、與對指向方向界面的投影成分所形 成的角度為銳角的方向,且平行於指向方向投影成分的方 向,定義為液晶單元層的預傾斜方向。 再者,第2光學各向異性元件係可採用組合搭配其他高 分子延伸薄膜或向列配向固定化的液晶薄膜(B )。 高分子延伸薄膜係顯示單軸性或雙軸性的物質,可採用 如:聚碳酸酯(P C )、聚甲基丙烯酸酯(Ρ Μ Μ A )、聚乙烯醇 (PVA)、日本合成橡膠(股)製ARTON(商品名)薄膜等延伸薄 膜。此情況下,若顧慮成本提高問題的話,1片液晶薄膜 27 312/發明說明書(補件)/92-10/92121964 1238913 與1片高分子延伸薄膜的組合在實用上最為恰當。 液晶薄膜(B)係僅要向列配向狀態呈固定化狀態者的話 便可,可由任何形式液晶所形成。譬如可採用將低分子液 晶在液晶狀態中形成向列配向之後,再利用光交聯或熱交 聯而固定化所獲得的液晶薄膜,或者採用將高分子液晶在 液晶狀態下形成向列配向之後,再經冷卻而將該配向固定 化而所獲得的液晶薄膜。另外,本發明中所謂「液晶薄膜 (B )」,乃如同液晶薄膜(A ),係指無關薄膜本身是否呈液晶 性,將低分子液晶、高分子液晶等液晶物質予以薄膜化而 所獲得者。 再者,第2光學各向異性元件中所含液晶薄膜亦可使用 為液晶薄膜單體,亦可設計呈支撐基板的透明塑膠薄膜使 用。當使用為液晶薄膜單體的情況時,在製作該偏光板時 所採用的聚酯或三乙醯纖維素等透明塑膠薄膜上,層積液 晶薄膜之後,再經與偏光板呈一體化之後便可製得。 針對本發明之第2光學各向異性元件的延遲值(複折射 △ η與膜厚d的乘積),進行說明。 從液晶薄膜(A )法線方向進行觀看時的面内表觀延遲 值,在向列混合配向的薄膜中,與指向方向平行方向的折 射率(以下稱「n e」)與垂直方向的折射率(以下稱「η 〇」) 係不同,當將從n e陰以η 〇的赶唤值設定為表觀上複折射 率的情況時,表觀上的延遲值便為表觀上複折射率與絕對 膜厚的乘積。此表觀上的延遲值乃利用橢圓儀 (e 1 1 i p s 〇 m e t r y )等偏光光學測定便可輕易求得。 312/發明說明書(補件)/92-10/92121964 28 1238913 將上述第2光學各向異性元件,區分為僅由將向列混合 偏向固定化的液晶薄膜(A )所構成的情況,及液晶薄膜(A ) 與將高分子延伸薄膜或向列配向固定化的液晶薄膜(B)所 組合的情況,並針對此二情況進行說明。 當僅由將向列混合偏向的液晶薄膜(A )所構成之情況 時,液晶薄膜(A )之表觀上延遲值,藉由相對於5 5 0 n m的單 色光,通常設定為70nm〜180nm(最好為90nm〜160nm,尤以 在1 2 0 n m〜1 5 0 n m為佳)範圍内,便可獲得優越的圓偏光特 性。當表觀延遲值低於7 0 n m、或大於1 8 0 n m之時,液晶顯 示元件上恐將發生不需要顏色附著的現象。 當組合液晶薄膜(A )與高分子延伸薄膜或液晶薄膜(B) 的情況時,如曰本專利特開平1 0 - 0 6 8 8 1 6號公報中所記 載,在5 5 0 n m單色光的複折射光相位差為大致1 / 4波長的 1 / 4波長板,與在5 5 0 n m單色光的複折射光相位差為大致 1 / 2波長的1 / 2波長板,在該等延遲相軸交叉的狀態下進 行貼合,便可獲得良好的圓偏光特性。1 / 4波長板的延遲 值通常為70nm〜180nm之範圍,最好為90nm〜160nm,尤以 1 2 0 n m〜1 5 0 n m範圍為佳。1 / 2波長板的延遲值通常為 180nm〜320nm之範圍,最好為200nm〜300nm,尤以 2 2 0 nm〜2 8 0 nm範圍為佳。若1 / 4波長板與1 / 2波長板的延 遲範圍偏離上述範圍的情況時,液晶顯示元件上恐將發生 附著不需要顏色的現象。 1 / 4波長板之延遲相軸與1 / 2波長板之延遲相軸所形成 夾角角度,通常在銳角端為40度〜90度,最好為50度〜80 29 312/發明說明書(補件)/92-10/92121964 1238913 度,尤以5 5度〜7 5度範圍内者為佳。 一一^*· ---------------一一~……—.—— 將向列混合配向固定化的液晶薄膜(A )可使用於1 / 4波 長板,亦可使用於1 / 2波長板。 當將液晶薄膜(A )使用於1 / 4波長板的情況時,僅要1 / 2 波長板使用高分子延伸薄膜或液晶薄膜(B )的話便可,而當 將液晶薄膜(A )使用於1 / 2波長板的情況時,僅要1 / 4波長 板使用高分子延伸薄膜或液晶薄膜(B)的話便可。 針對第2光學各向異性元件為僅將1片液晶薄膜(A)使 用於半透過反射型液晶顯示元件的情況,進行說明。液晶 薄膜(A)最好配置於液晶單元的第2基板與偏光板之間。在 此針對液晶薄膜(A )的配置條件,採用圖6進行說明。 在圖6之液晶單元1 5中,分別假設重疊於上方基板預 傾斜方向的直線、及重疊於下方基板預傾斜方向的直線。 將此二直線投影於同一平面上,此時以直線交叉點為中心 所形成的4個角度中,分別拉出銳角端的2個角度形成左 右對稱角度的直線。將此直線在本發明中定義為二等份 線。另外,當重疊於上方基板預傾斜方向之直線、與重疊 於下方基板預傾斜方向之直線,相互重疊的情況時(即,而 直線呈平行狀態),此重疊的直線將成為本發明中所謂的二 等份線。 此二等份線、與以液晶薄膜(A )之傾斜方向為基準的直 線成分間所形成的夾角,通常最好配置呈絕對值〇度〜3 0 度(最好為0度〜20度,尤以0度〜10度為佳,更以略呈0 度為佳)。當二者的夾角大於3 0度的情況時,恐將無法獲 30 312/發明說明書(補件)/92-10/92121964 1238913 得充分的視野角補償效果。 其次,針對第2光學各向異性元件為組合1片液晶薄膜 (A )與1片高分子延伸薄膜或1片液晶薄膜,並使用於半透 過反射型液晶顯示元件的情況,進行說明。 液晶薄膜(A)的配置最好如同上述僅採用1片之情況時 相同的配置方式。換句話說,最好液晶薄膜中的液晶性高 分子傾斜方向與上述二等份線的方向,大略呈一致狀態。 傾斜方向與預傾斜方向所成角度最好在0度至3 0度範圍, 尤以0度至2 0度範圍為佳,更以0度至1 0度範圍為佳。 本發明的半透過反射型液晶顯示元件中,光擴散層、背 光源、光控制膜、導光板、稜鏡片並無特別的限制,可使 用周知者。 本發明的半透過反射型液晶顯示元件,除上述構成組件 之外,亦可附設其他構成組件。譬如:藉由將彩色濾光片附 設於本發明的液晶顯示元件中,便可製作能執行色純度較 高的多色或全彩顯示之彩色液晶顯示元件。 (產業上可利用性) 本發明的半透過反射型液晶顯示元件係透過模式下的 顯示明亮且高對比,可設計成較薄狀態,並具有視野依存 性較少的特徵。 (較佳實施形態) 以下,利用實施例與比較例更詳盡的說明本發明,惟本 發明並不僅限於該等。另外,在本實施例的延遲And,在 無特另限制白勺前提下,設定為波長、5 5 0 n m的值。 31 312/發明說明書(補件)/92-10/92121964 1238913 (實施例1 ) 針對本發明的半透過反射型液晶顯示元件的概略,採用 圖4進行說明。相關實施例1構造則採用圖5進行說明。 在第2基板8上設計著由A 1等反射率較高之材料所形 成的反射電極6,與由I T 0等穿透率較高材料所形成的透 明電極7。在第1基板3上設置對向電極4。在反射電極6 及透明電極7、與對向電極4之間夾置著由顯示正介電率 各向異性之液晶材料所構成的液晶層5。在形成第1基板3 之對向電極4側的背面,設置著第1光學各向異性元件2 與偏光板1,在形成第2基板8之反射電極6與透明電極7 之面的背側,設計著第2光學各向異性元件9與偏光板 1 0。在偏光板1 0背面設置著背光源1 1。 製作膜厚方向平均傾斜角為2 8度的向列混合配向,經 固定化的膜厚0 . 7 7 μ m液晶薄膜1 3,利用如圖5所示配置 製作下述T N型半透過反射型液晶顯示元件。 所使用的液晶單元1 5係液晶材料採用Z L I - 1 6 9 5 ( M e r c k 公司製),液晶層厚在反射電極區域6 (反射顯示部)為 3.5μιη,在透明電極區域7(透過顯示部)為4. Ομπι。液晶層 之基板雙界面的預傾斜角為2度,液晶單元的扭轉角為左 旋7 0度,液晶單元的△ n d在反射顯示部大致為2 3 0 n m,在 透過顯示部大致為2 6 2 n m。 在液晶單元1 5之觀察者端(圖上方)配置著偏光板1 (厚 度約180μπι ;住友化學工業(股)製SQW- 8 6 2 ),在偏光板1 與液晶單元1 5之間,配置著第1光學各向異性元件2,該 32 312/發明說明書(補件)/92-10/92121964 1238913 第1光學各向異性元件2係滿足本發明要件式(I )與式(Π ) 之帝人(股)製單軸延伸高分子延伸薄膜(產品名:畢亞艾 斯)2。高分子延伸薄膜2的△ n d大約為1 2 0 n m。 再者,第2光學各向異性元件9係在從觀察者所觀看液 晶單元1 5的後方,配置著液晶薄膜1 3及由單軸延伸的聚 碳酸酯薄膜所構成高分子延伸薄膜1 4,更於背面配置著偏 光板1 0。將混合向列偏向構造固定化的液晶薄膜1 3之△ nd為135nm,高分子延伸薄膜14之And為275nm。 偏光板1與1 0之吸收軸、第1光學各向異性物2與高 分子延伸薄膜1 4的延遲相軸、液晶單元1 5二界面的預傾 斜方向、及液晶薄膜1 3的傾斜方向,係依圖6所示條件進 行配置。 圖7所不係在背光源點骨時(透過模式將白顯不Ο V、 黑顯示6 V的透過率比(白顯示)/(黑顯示)設定為對比,而 全方位的對比圖。 圖8所示係在背光源點亮時(透過模式),從白顯示Ο V 至黑顯示6 V,依6色階顯示時的左右方向下之透過率視野 角特性。 圖9所示係在背光源點亮時(透過模式),從白顯示Ο V 至黑顯示6 V,依6色階顯示時的上下方向下之透過率視野 角特性。 圖7〜9得知,特別在透過模式中具有優越的視野角特性。 (實施例2 ) 製作膜厚方向平均傾斜角為2 8度的向列混合偏向,經 33 312/發明說明書(補件)/92-10/92121964 1238913 固定化的膜厚Ο . 6 Ο μ m液晶薄膜1 3,利用如圖5所示配置 製作下述ECB型半透過反射型液晶顯示元件。 所使用的液晶單元1 6係液晶材料採用Z L I - 1 6 9 5 ( M e r c k 公司製),液晶層厚在反射電極區域6 (反射顯示部)為 2 . 1 μ m,在透明電極區域7 (透過顯示部)為4 . 9 μ m。液晶層 之基板雙界面的預傾斜角為2度,液晶單元的△ nd在反射 顯示部大致為1 3 8 n m,在透過顯示部大致為3 2 1 n m的均質 配向。 在液晶單元1 6之觀察者端(圖上方)配置著偏光板1 (厚 度約180μπι ;住友化學工業(股)製SQW- 8 6 2 ),在偏光板1 與液晶單元1 6之間,配置著第1光學各向異性元件2,該 第1光學各向異性元件2係滿足本發明要件式(I )與式(Π ) 之帝人(股)製單軸延伸高分子延伸薄膜(產品名:畢亞艾 斯)2。高分子延伸薄膜2的△ n d大約為1 1 5 n m。 再者,第2光學各向異性元件9乃將所配置混合向列偏 向構造固定化的液晶薄膜1 3之△ n d為1 0 5 n m,高分子延伸 薄膜14之And為270nm。 偏光板1與1 0之吸收軸、第1光學各向異性物2與高 分子延伸薄膜1 4的延遲相軸、液晶單元1 6二界面的預傾 斜方向、及液晶薄膜1 3的傾斜方向,係依圖1 0所示條件 進行配置。 圖1 1所示係在背光源點亮時(透過模式),將白顯示0 V、 黑顯示6 V的透過率比(白顯示)/(黑顯示)設定為對比,而 全方位的對比圖。 34 312/發明說明書(補件)/92-10/92121964 1238913 圖1 2所示係在背光源點亮時(透過模式),從t 至黑顯示6 V,依6色階顯示時的左右方向下之透 角特性。 圖1 3示係在背光源點亮時(透過模式),從白! 黑顯示6 V,依6色階顯示時的上下方向下之透過 特性。 圖1 1〜1 3得知,E C B型亦如同T N型,特別在透 具有優越的視野角特性。 (比較例1 ) 如圖1 4之配置圖,除取代液晶薄膜1 3而採用 1 7 ( △ n d大致1 3 0 n in ),將聚碳酸酯1 4的△ n d設i 配置於液晶單元1 5背面側的偏光板1 0吸收軸、 伸薄膜1 4與1 7的延遲相軸,依圖1 5所示條件進 外,其餘均如同實施例1般的製造液晶顯示元件 圖1 6所示係在背光源點亮時(透過模式),將白 黑顯示6 V的透過率比(白顯示)/(黑顯示)設定為 全方位的對比圖。 圖1 7所示係在背光源點亮時(透過模式),從έ 至黑顯示6 V,依.6色階顯示時的左右方向下之透 角特性。 圖1 8所示係在背光源點亮時(透過模式),從έ 至黑顯示6 V,依6色階顯示時的上下方向之透過 特性。 相關視野角特性,將實施例1與比較例1進行 312/發明說明書(補件)/92-10/92121964 ?顯示0 V 過率視野 !示0V至 率視野角 過模式中 聚碳酸酯 )2 6 Ο n m ? 高分子延 行配置之 〇 顯示0 V、 對比,而 f顯示0 V 過率視野 t顯示OV 率視野角 比較。 35 1238913 若就全方位的等對比曲線,依圖7與圖1 6進; 話,得知藉由採用具混合向列構造的液晶薄膜1 得較廣的視野角特性。 此外,就構成透過模式之缺點的左右、上下方 性,將圖8,9與圖1 7,1 8進行比較的話,得知藉 混合向列構造的液晶薄膜,便可大幅改善反轉特 (比較例2 ) 如圖1 4之配置圖,除取代液晶薄膜1 3而採用 1 7 ( △ n d大致1 1 0 n m ),將聚碳酸酯1 4的△ n d設J 配置於液晶單元1 6背面側的偏光板1 0吸收軸、 伸薄膜1 4與1 7的延遲相軸,依圖1 9所示條件進 外,其餘均如同實施例2般的製造液晶顯示元件 圖2 0所示係在背光源點亮時(透過模式),將白 黑顯示6 V的透過率比(白顯示)/(黑顯示)設定為 全方位的對比圖。 圖2 1所示係在背光源點亮時(透過模式),從白 至黑顯示6 V,依6色階顯示時的左右方向下之透 角特性。 圖2 2所示係在背光源點亮時(透過模式),從白 至黑顯示6 V,依6色階顯示時的上下方向之透過 特性。 相關視野角特性,將實施例2與比較例2進行 若就全方位的等對比曲線,依圖1 1與圖2 0進-話,得知藉由採用具混合向列構造的液晶薄膜1 3 312/發明說明書(補件)/92-10/92121964 ί*比較的 I,便可獲 向色階特 由採用具 性。 聚碳酸酯 》2 7 0 nm, 高分子延 行配置之 〇 顯示0 V、 對比,而 顯示0 V 過率視野 顯示OV 率視野角 比較。 行比較的 ,便可獲 36 1238913 得較廣的視野角特性。 此外,就構成透過模式之缺點的左右、上下方向色階特 性,將圖1 2,1 3與圖2 1,2 2進行比較的話,得知藉由採用 具混合向列構造的液晶薄膜,便可大幅改善反轉特性。 在本實施例中,雖依無彩色濾光片的型態施行實驗,但 是若在液晶單元中設置彩色濾光片的話,當然亦可進行良 好的多色或全彩顯示。 【圖式簡單說明】 圖1為說明液晶分子之傾斜角與扭轉角的概念圖。 圖2為構成第1光學各向異性元件之液晶薄膜配向構造 的概念圖。 圖3為說明液晶單元之預傾斜方向的概念圖。 圖4為本發明之半透過反射型液晶顯示元件的示意剖視 圖。 圖5為實施例1與實施例2之半透過反射型液晶顯示元 件的示意剖視圖。 圖6為實施例1中,偏光板之吸收軸、液晶單元之預傾 斜方向、高分子延伸薄膜之延遲相軸、及液晶薄膜之傾斜 方向的角度關係平面圖。 圖7為從全方位觀看實施例1之半透過反射型液晶顯示 元件時的對比度圖。 圖8為將實施例1之半透過反射型液晶顯示元件,從0V 至6V依7色階顯示時的左右方位透過率視野角特性圖。(8) (9) (10) (11) (12) The best materials are bisphenol A [BPA, corresponding to the above formula (8)] and biscresol hydrazone [BCF, corresponding to the above formula (1 2)] Copolymer or polymer blend, or 312 / Instruction Manual (Supplement) / 92-10 / 92121964 22 1238913, and the blending ratio of these components is the BCF content rate of 5 5 ~ 75 5 mol% It is preferably 55 to 70 mole%. These materials can get closer to the ideal λ / 4 plate or λ / 2 plate. The above-mentioned copolymer and / or blended polymer can be produced by a known method. As the polycarbonate, for example, a method of polycondensation polymerization of a dihydroxy compound and phosgene, a melt polycondensation method, or the like can be suitably used. In the case of blending, a miscible blend is preferred. Even if they are not completely miscible, if the refractive index between the components is blended, the phenomenon of light scattering between the components can be suppressed and the transparency can be improved. The limiting viscosity of the polymer compound of the polymer alignment film of the present invention is preferably 0.3 to 2.0 d 1 / g. If the viscosity is lower than this, it will become fragile and cannot maintain the mechanical strength. On the other hand, if the viscosity is higher than this, the solution viscosity will be excessively increased, which will cause die 1 ine in the solution filming, etc. Problems, and the refining at the end of polymerization will also tend to be a difficult problem. The polymer alignment film of the present invention is preferably transparent, the haze value is preferably less than 3%, and the total light transmittance is preferably more than 85%. In addition, the glass transition temperature of the polymer alignment film material is preferably 100 ° C or more, and more preferably 120 ° C or more. In addition, UV absorbers such as phenylsalicylic acid, 2-hydroxybenzophenone, and terphenyl phosphate, or blue inks (b 1 u i n g a g e n t) for changing colors, antioxidants, etc. may be added. The polymer alignment film of the present invention is a film in which the above-mentioned thin films such as carbonates are aligned by stretching or the like. As a method for manufacturing the film, a known melt extrusion method, a solution casting method, or the like can be used, but from the viewpoint of uneven film thickness and appearance, the solution casting method is preferably used. The solvent in the solution casting method, 312 / Invention Specification (Supplement) / 92-10 / 92121964 23 1238913 can be suitably used, such as dichloromethane, dioxolane, and the like. In addition, although a well-known stretching method can also be used as the stretching method, the longitudinal uniaxial stretching is most preferably used. For the purpose of improving the elongation in the film, phthalic acid diphthalate, phthalic acid diester, dibutyl phthalate and the like may be contained in known plasticizers; tributyl Phosphate ester phosphate esters; aliphatic dibasic esters, glycerol derivatives, diol derivatives, and the like can also be used to stretch the organic solvent used in the film formation of the film during stretching. The amount of the organic solvent is preferably from 1 to 20% by mass based on the polymer solid content. In addition, the plasticizer, liquid crystal, and other additives can change the retardation wavelength dispersion of the polymer alignment film. The addition amount is preferably 10% by mass or less, and more preferably 3% by mass or less. The film thickness of the polymer alignment film is not particularly limited, but it is preferably 1 μm to 4 0 μm. In order to make the retardation of the polymer alignment film shorter and shorter, it is necessary to have a specific chemical structure. Most of the phase difference wavelength dispersion is determined by the chemical structure, but it should also be noted that it will vary depending on the extension conditions and doped state. The polymer alignment film satisfies the expression (Π) in particular because it can constitute a superior one-quarter wavelength plate (λ / 4 plate) having one alignment film and less wavelength memory. 0.2 ^ Re (A) /A^0.3 (n) The second optical anisotropic element used in the present invention is a liquid crystalline polymer substance (specifically, display optical properties 312) that exhibits optical positive uniaxiality. / Invention Manual (Supplements) / 92-10 / 92121964 Haoyi B, etc. The residues must be combined according to the following scholasticism 24 1238913 Uniaxial liquid crystal polymer compounds, or at least one kind of high liquid crystal The molecular compound exhibits an optically positive uniaxial liquid crystal polymer composition), and contains at least the liquid crystal polymer compound or the liquid crystal polymer composition. The average tilt angle formed in the liquid crystal state is A liquid crystal film (A) having a nematic hybrid alignment structure at 5 ° to 3 ° and an immobilized liquid crystal film (A) has a phase difference of a quarter of a wavelength in the visible light region. The so-called "nematic hybrid alignment" herein means that the liquid crystal molecules are nematically aligned. At this time, the angle between the orientation direction of the liquid crystal molecules and the plane of the film is different from that of the film. Therefore, it can be said that the angle between the pointing direction and the plane of the film is different near the upper interface and near the lower interface, so the angle will continuously change between the upper and lower sides of the film. In addition, the film in which the nematic mixed alignment state is fixed is such that the liquid crystal molecules are directed in different directions in all directions in the film thickness direction. Therefore, when the film is viewed from the structure of the film, the optical axis does not exist. Furthermore, the "average tilt angle" in the present invention refers to the direction in which the liquid crystal molecules point in the thickness direction of the liquid crystal film. The average value of the angle formed with the film plane. The liquid crystal film provided by the present invention is an absolute value of the angle formed between the pointing direction and the plane of the film near one of the interfaces of the film, usually an angle of 20 ° ~ 90 °, preferably an angle of 30 ° ~ 70 ° At the back of the face, the absolute value is usually 0 ° ~ 20 °, preferably 0 ° ~ 10 °, and the absolute value of the average tilt angle is usually 5. ~ 4 5. It is preferably 7 ° ~ 40 °, especially 10 ° ~ 38 °, and more preferably 15 ° ~ 35 °. 312 / Instruction of the Invention (Supplement) / 92-10 / 92121964 25 1238913 When the average tilt angle deviates from the above range, there may be undesirable phenomena such as contrast reduction, so it is best not to. The average tilt angle can be obtained by a crystal rotation method. The liquid crystal film (A) constituting the second optically anisotropic element used in the present invention is only formed substantially from a liquid crystal polymer substance exhibiting optical positive uniaxiality, and the liquid crystal polymer substance is In the liquid crystal state, the formed nematic mixed alignment state may be fixed, and the manufacturing method is not particularly limited. For example, the low-molecular-weight liquid crystal can be formed into a nematic hybrid alignment in a liquid crystal state, and then the obtained liquid crystal film can be fixed by photo-crosslinking or thermal cross-linking, or a polymer liquid crystal can be formed into a nematic state After the alignment is mixed, the liquid crystal film obtained by fixing the alignment is cooled again. In addition, the so-called "liquid crystal film" in the present invention refers to whether or not the film itself is liquid crystalline, and the low-molecular liquid crystal, ~, and liquid crystal substance are formed into a thin film. Invaded. In addition, the liquid crystal film (a) can improve the viewing angle of the transflective liquid crystal display element. Although the thickness of the film depends on the form of the target liquid crystal display element or various optical parameters, it cannot be generalized. However, it is usually in a range of 0.2 μm to 10 μm, preferably in a range of 0.3 μm to 5 μm, and more preferably in a range of 0.5 μm to 2 μm. When the film thickness is less than 0.2 μm, it may not be able to obtain a sufficient compensation effect. Conversely, if the film thickness exceeds 10 μm, the display may have an unnecessary color adhesion phenomenon. Next, using FIG. 1 to FIG. 3, the optical anisotropic element composed of the liquid crystal film (A) is placed above and below, and the inclined side of the optical anisotropic element 26 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913 direction and the pre-tilt direction of the liquid crystal cell layer are defined as follows. First, as shown in FIG. 1 and FIG. 2, when an optical anisotropic element composed of a liquid crystal film (A) is used above and below the vicinity of a film interface of the liquid crystal film (A) constituting the optical anisotropic element, If the angle between the orientation direction of the liquid crystal molecules and the plane of the film is defined separately, set the angle formed by the orientation direction of the liquid crystal molecules and the plane of the film to be an acute angle end and form an angle of 20 to 90 degrees as the b-plane. The surface at an acute angle end and forming an angle of 0 to 20 degrees is set as the c-plane. When the c-plane is seen from the b-plane of the optically anisotropic element through the liquid crystal film layer, the angle formed between the liquid crystal molecules pointing direction and the projection component of the c-plane toward the pointing direction becomes an acute angle direction. And the direction parallel to the projection component is defined as the oblique direction of the optically anisotropic element. Secondly, in FIG. 3, usually in the unit interface of the liquid crystal cell layer, the driving low-molecular liquid crystal does not have a parallel state to the unit interface but an inclined state with a certain angle. This angle is generally referred to as a pre-tilt angle; The direction formed by the liquid crystal molecules of the cell interface and the angle formed by the projection component on the interface of the pointing direction is an acute angle direction, and the direction of the projection component parallel to the pointing direction is defined as the pre-tilt direction of the liquid crystal cell layer. In addition, the second optical anisotropic element may be a liquid crystal film (B) that is fixed in combination with other polymer stretched films or nematically aligned. The polymer stretched film is a substance exhibiting uniaxiality or biaxiality. For example, polycarbonate (PC), polymethacrylate (PMA), polyvinyl alcohol (PVA), and Japanese synthetic rubber ( Stretched film such as ARTON (trade name) film. In this case, a combination of a single liquid crystal film 27 312 / Invention (Supplement) / 92-10 / 92121964 1238913 and a polymer stretched film is most practically practical if the cost increase is a concern. The liquid crystal film (B) is only required to be in a state where the nematic alignment state is fixed, and may be formed of any type of liquid crystal. For example, after the low-molecular liquid crystal is formed into a nematic alignment in a liquid crystal state, the obtained liquid crystal film may be fixed by photo-crosslinking or thermal cross-linking, or after the polymer liquid crystal is formed into a nematic alignment in a liquid crystal state. And the liquid crystal film obtained by fixing the alignment after cooling. In addition, the so-called "liquid crystal film (B)" in the present invention is the same as the liquid crystal film (A), which refers to those obtained by thinning liquid crystal materials such as low-molecular liquid crystal and high-molecular liquid crystal, regardless of whether the film itself is liquid crystal . Furthermore, the liquid crystal film contained in the second optical anisotropic element may be used as a liquid crystal film alone, or a transparent plastic film that is designed to support a substrate may be used. When the liquid crystal film is used alone, after the liquid crystal film is laminated on the transparent plastic film such as polyester or triethyl cellulose used in the production of the polarizing plate, it is integrated with the polarizing plate. Can be made. The retardation value (product of the birefringence Δη and the film thickness d) of the second optically anisotropic element of the present invention will be described. The in-plane apparent retardation value when viewed from the normal direction of the liquid crystal film (A). In a film with nematic hybrid alignment, the refractive index parallel to the direction of orientation (hereinafter referred to as "ne") and the refractive index in the vertical direction. (Hereinafter referred to as "η 〇") is different. When the summation value of η 〇 from ne is set as the apparent complex refractive index, the apparent retardation value is the apparent complex refractive index and Product of absolute film thickness. This apparent retardation value can be easily obtained by using polarized optical measurement such as an ellipsometry (e 1 1 i p s 0 m e t r y). 312 / Invention Note (Supplement) / 92-10 / 92121964 28 1238913 The second optical anisotropic element described above is divided into a case where the liquid crystal film (A) is composed only of a liquid crystal film (A) that has a nematic mixing and deflection fixed, and a liquid crystal. A case where the film (A) is combined with a polymer stretched film or a nematic liquid crystal film (B), and the two cases will be described. When the liquid crystal film (A) is only composed of a nematic-mixed liquid crystal, the apparent retardation value of the liquid crystal film (A) is usually set to 70 nm by monochromatic light with respect to 5 50 nm. In the range of 180nm (preferably 90nm ~ 160nm, especially in the range of 120nm ~ 150nm), superior circular polarization characteristics can be obtained. When the apparent retardation value is lower than 70 nm or greater than 180 nm, the phenomenon that color does not need to be attached to the liquid crystal display element may occur. When a liquid crystal film (A) is combined with a polymer stretched film or a liquid crystal film (B), as described in Japanese Patent Application Laid-Open No. 1 0-0 6 8 8 16, it is monochromatic at 5 50 nm. The retardation of the birefringent light of the light is a quarter wave plate of approximately 1/4 wavelength, and the retardation of the birefringent light of a monochromatic light at 5 50 nm is a retardation of a half wave plate of approximately 1/2 wavelength. Bonding can be performed with the retardation axes crossing, and good circular polarization characteristics can be obtained. The retardation value of the 1/4 wavelength plate is usually in the range of 70nm to 180nm, preferably 90nm to 160nm, and more preferably in the range of 120nm to 150nm. The retardation value of the 1/2 wavelength plate is usually in the range of 180nm ~ 320nm, preferably 200nm ~ 300nm, especially in the range of 220nm ~ 280nm. If the retardation range of the 1/4 wave plate and the 1/2 wave plate deviates from the above range, the liquid crystal display element may adhere to an unwanted color. The angle formed by the retardation axis of the 1/4 wave plate and the retardation axis of the 1/2 wave plate is usually 40 ° ~ 90 ° at the acute angle end, preferably 50 ° ~ 80 29 312 / Invention Specification (Supplementary Document) ) / 92-10 / 92121964 1238913 degrees, especially in the range of 55 to 75 degrees. One by one ^ * · --------------- One by one ~ …… —.—— Liquid crystal film (A) immobilized with nematic hybrid alignment can be used for 1/4 wavelength plate , Can also be used in 1/2 wave plate. When the liquid crystal film (A) is used in the case of a 1/4 wave plate, it is only necessary to use a polymer stretch film or a liquid crystal film (B) in the 1/2 wave plate, and when the liquid crystal film (A) is used in In the case of a 1/2 wavelength plate, it is only necessary to use a polymer stretch film or a liquid crystal film (B) for the 1/4 wavelength plate. A case where the second optically anisotropic element uses only one liquid crystal film (A) for a transflective liquid crystal display element will be described. The liquid crystal film (A) is preferably disposed between the second substrate of the liquid crystal cell and the polarizing plate. Here, the arrangement conditions of the liquid crystal film (A) will be described with reference to Fig. 6. In the liquid crystal cell 15 of Fig. 6, a straight line overlapping the pre-tilt direction of the upper substrate and a straight line overlapping the pre-tilt direction of the lower substrate are assumed. The two straight lines are projected on the same plane. At this time, of the four angles formed by the intersection of the straight lines as the center, the two angles at the acute angle ends are respectively drawn to form a straight line with a left-right symmetrical angle. This straight line is defined as a bisector in the present invention. In addition, when a line overlapping the pre-tilt direction of the upper substrate and a line overlapping the pre-tilt direction of the lower substrate overlap each other (that is, the straight lines are in a parallel state), this overlapping straight line will become the so-called in the present invention. Second line. The angle formed between the bisector and the straight line component based on the tilt direction of the liquid crystal film (A) is usually preferably set to an absolute value of 0 degrees to 30 degrees (preferably 0 degrees to 20 degrees, 0 degrees to 10 degrees is preferred, and slightly 0 degrees is preferred). When the angle between the two is greater than 30 degrees, it may be impossible to obtain a sufficient viewing angle compensation effect of 30 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913. Next, a case where the second optical anisotropic element is a combination of one liquid crystal film (A) and one polymer stretched film or one liquid crystal film and is used for a transflective liquid crystal display element will be described. The liquid crystal film (A) is preferably arranged in the same manner as in the case where only one sheet is used. In other words, it is preferable that the tilt direction of the liquid crystalline polymer in the liquid crystal film and the direction of the above-mentioned bisector are approximately consistent. The angle between the tilt direction and the pre-tilt direction is preferably in the range of 0 degrees to 30 degrees, more preferably in the range of 0 degrees to 20 degrees, and even more preferably in the range of 0 degrees to 10 degrees. In the transflective liquid crystal display element of the present invention, the light diffusion layer, the back light source, the light control film, the light guide plate, and the cymbal are not particularly limited, and a well-known person can be used. The transflective liquid crystal display element of the present invention may be provided with other constituent elements in addition to the aforementioned constituent elements. For example, by attaching a color filter to the liquid crystal display element of the present invention, a color liquid crystal display element capable of performing multi-color or full-color display with high color purity can be manufactured. (Industrial Applicability) The transflective liquid crystal display element of the present invention has a bright and high-contrast display in a transmission mode, can be designed in a thin state, and has a feature of less dependence on field of view. (Preferred Embodiment) Hereinafter, the present invention will be described in more detail using examples and comparative examples, but the present invention is not limited to these. In addition, the delay And of this embodiment is set to a wavelength and a value of 5 50 n m without any further restrictions. 31 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913 (Example 1) The outline of the transflective liquid crystal display element of the present invention will be described with reference to Fig. 4. The structure of the related embodiment 1 is described with reference to FIG. 5. On the second substrate 8, a reflective electrode 6 formed of a material having a high reflectance such as A 1 and a transparent electrode 7 formed of a material having a high transmittance such as I T 0 are designed. A counter electrode 4 is provided on the first substrate 3. A liquid crystal layer 5 made of a liquid crystal material showing a positive dielectric anisotropy is interposed between the reflective electrode 6 and the transparent electrode 7, and the counter electrode 4. A first optically anisotropic element 2 and a polarizing plate 1 are provided on the back surface on the side of the counter electrode 4 on which the first substrate 3 is formed, and on the back side of the surface on which the reflective electrode 6 and the transparent electrode 7 of the second substrate 8 are formed, A second optical anisotropic element 9 and a polarizing plate 10 are designed. A backlight 11 is provided on the back of the polarizing plate 10. A nematic hybrid alignment with an average inclination angle of 28 degrees in the film thickness direction was produced, and the fixed film thickness was 0.77 μm liquid crystal film 1 3, and the following TN-type transflective reflection type was produced using the arrangement shown in FIG. 5. Liquid crystal display element. The 15-series liquid crystal material used is ZLI-1 6 9 5 (Merck). The thickness of the liquid crystal layer is 3.5 μm in the reflective electrode region 6 (reflective display), and in the transparent electrode region 7 (transmissive display). ) Is 4. Ομπι. The pre-tilt angle of the double interface of the substrate of the liquid crystal layer is 2 degrees, the twist angle of the liquid crystal cell is 70 degrees left-handed, and the Δ nd of the liquid crystal cell is approximately 230 nm in the reflective display portion and approximately 2 6 2 in the transmission display portion. nm. A polarizing plate 1 (thickness of about 180 μm; SQW- 8 6 2 manufactured by Sumitomo Chemical Industries, Ltd.) is disposed on the observer end (above the figure) of the liquid crystal cell 15, and is disposed between the polarizing plate 1 and the liquid crystal cell 15. With the first optical anisotropic element 2, the 32 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913 The first optical anisotropic element 2 satisfies the requirements (I) and (Π) of the present invention. Teijin (Strand) uniaxially stretched polymer stretch film (product name: Bias) 2. The Δ n d of the polymer stretched film 2 is approximately 12 0 n m. In addition, the second optical anisotropic element 9 is arranged behind the liquid crystal cell 15 as viewed from an observer, and a liquid crystal film 13 and a polymer stretched film 14 composed of a uniaxially stretched polycarbonate film are arranged. Further, a polarizing plate 10 is arranged on the back. The Δnd of the liquid crystal film 13 with the mixed nematic bias structure fixed was 135 nm, and the And of the polymer stretched film 14 was 275 nm. The absorption axes of the polarizing plates 1 and 10, the retardation axis of the first optical anisotropy 2 and the polymer stretched film 14, the pretilt direction of the interface of the liquid crystal cell 15 and the tilt direction of the liquid crystal film 13 It is configured according to the conditions shown in FIG. 6. Figure 7 does not show the contrast ratio of the transmissivity ratio (white display) / (black display) of the white display when the display is white and the black display is 6 V in the transmission mode. Figure 8 shows the transmittance viewing angle characteristics when the backlight is on (transmission mode), from white display 0 V to black display 6 V, according to the left and right direction when displaying in 6 color levels. Figure 9 shows the backlight When the source is on (transmission mode), the transmittance viewing angle characteristics in the up and down direction from 6 to black display 0 V to black display 6 gradation display. Figures 7 to 9 show that, especially in the transmission mode, (Excellent viewing angle characteristics.) (Example 2) A nematic hybrid deflection with an average inclination angle of 28 degrees in the film thickness direction was produced, and the film thickness was fixed by 33 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913 〇. 6 〇 μ m liquid crystal film 1 3, using the configuration shown in Figure 5 to produce the following ECB-type transflective reflective liquid crystal display elements. The liquid crystal cell 1 6 series liquid crystal material used ZLI-1 6 9 5 (M erck company), the thickness of the liquid crystal layer in the reflective electrode region 6 (reflective display portion) is 2.1 μm, The transparent electrode region 7 (transmissive display portion) is 4.9 μm. The pretilt angle of the double interface of the substrate of the liquid crystal layer is 2 degrees, and the Δ nd of the liquid crystal cell is approximately 1 3 8 nm in the reflective display portion and in the transmissive display portion. A homogeneous alignment of approximately 3 2 1 nm. A polarizing plate 1 (thickness of about 180 μm; SQW- 8 6 2 manufactured by Sumitomo Chemical Industries, Ltd.) is arranged on the observer end (above the figure) of the liquid crystal cell 16, and the polarizing plate is Between the liquid crystal cell 1 and the liquid crystal cell 16, a first optical anisotropic element 2 is arranged, and the first optical anisotropic element 2 is a Teijin (stock) manufacturing sheet that satisfies the requirements of the formula (I) and formula (Π) of the present invention. Axially stretched polymer stretched film (product name: Bias) 2. The Δnd of polymer stretched film 2 is approximately 1 15 nm. Furthermore, the second optical anisotropic element 9 is a mixed nematic device. The Δnd of the liquid crystal film 13 fixed to the polarizing structure 13 is 105 nm, and the And of the polymer stretched film 14 is 270 nm. The absorption axes of the polarizing plates 1 and 10, the first optical anisotropy 2 and the polymer stretch The retardation phase of the thin film 14, the pretilt direction of the liquid crystal cell 16 interface, and the thin liquid crystal The tilt direction of the film 13 is configured according to the conditions shown in Fig. 10. As shown in Fig. 11 when the backlight is on (transmission mode), the transmittance ratio of 0 V in white and 6 V in black ( White display) / (black display) is set to contrast, and a comprehensive comparison chart. 34 312 / Instruction Manual (Supplements) / 92-10 / 92121964 1238913 Figure 1 2 shows when the backlight is on (transmission mode) ), 6 V is displayed from t to black, and the transmission angle characteristic in the left and right direction when displaying in 6 color levels. Figure 1 3 shows that when the backlight is on (transmission mode), it turns from white! 6 V is displayed in black, and the transmission characteristics in the up-down direction when displayed in 6 levels. It can be seen from Figs. 1 to 13 that the E C B type is also like the T N type, and has particularly excellent viewing angle characteristics in transmission. (Comparative Example 1) As shown in the layout diagram of FIG. 14, except that instead of the liquid crystal film 13, 17 (Δ nd is approximately 1 3 0 n in) is used, and Δ nd of the polycarbonate 14 is set to the liquid crystal cell 1 5 The polarizing plate 10 on the back side, the absorption axis of 10, the retardation phase of the stretched film, and the retardation phase of the film are in accordance with the conditions shown in FIG. 15, and the rest are the same as in Example 1. The liquid crystal display element is manufactured. When the backlight is turned on (transmission mode), the transmittance ratio (white display) / (black display) of 6 V for white and black display is set as a comprehensive comparison chart. Figure 17 shows the transmission angle characteristics when the backlight is turned on (transmission mode), displaying 6 V from 从 to black, and displaying left and right according to the .6 color gradation display. Figure 18 shows the transmission characteristics when the backlight is on (transmission mode), displaying 6 V from rud to black, and up and down in 6-level display. For viewing angle characteristics, perform Example 1 and Comparative Example 1 312 / Invention Specification (Supplement) / 92-10 / 92121964? Display 0 V over-rate field of view! Shows 0 V to polycarbonate in angle-of-view mode) 2 6 〇 nm? Polymer extended configuration 0 shows 0 V, contrast, while f shows 0 V over-rate field of view t shows OV rate field of view angle comparison. 35 1238913 If the iso-contrast curves in all directions are followed according to FIG. 7 and FIG. 16, then it is known that a wide viewing angle characteristic is obtained by using the liquid crystal film 1 with a mixed nematic structure. In addition, regarding the left, right, up, and down characteristics of the shortcomings of the transmission mode, comparing Figs. 8 and 9 with Figs. 17 and 18 shows that the liquid crystal film with a mixed nematic structure can greatly improve the inversion characteristics ( Comparative Example 2) As shown in the layout diagram of FIG. 14, except that instead of the liquid crystal film 13, 17 (Δ nd is approximately 110 nm) is used, and Δ nd of the polycarbonate 14 is set on the back of the liquid crystal cell 16 The polarizing plates 10 on the side, the absorption axis of the polarizing film, and the retardation phase axes of the stretched films 14 and 17 are in accordance with the conditions shown in FIG. 19, and the rest are manufactured in the same manner as in Example 2. The liquid crystal display element is shown in FIG. When the backlight is turned on (transmission mode), the transmittance ratio (white display) / (black display) of 6 V for white and black display is set as a comprehensive comparison chart. Figure 21 shows the transmission angle characteristics when the backlight is turned on (transmission mode), displaying 6 V from white to black, and the left and right directions when displaying in 6 color steps. Figure 2 shows the transmission characteristics when the backlight is on (transmission mode), displaying 6 V from white to black, and up and down in 6 color steps. With respect to the viewing angle characteristics, Example 2 and Comparative Example 2 are compared in all directions. If the curves are compared according to FIG. 11 and FIG. 20, it is known that by using a liquid crystal film with a mixed nematic structure 1 3 312 / Invention Specification (Supplement) / 92-10 / 92121964 ί * Comparison of I, you can get the specific characteristics of the color scale. Polycarbonate》 270 nm, polymer extended configuration 〇 Show 0 V, contrast, and show 0 V over-rate field of view Show OV-rate field of view angle comparison. By comparison, you can get a wide viewing angle characteristic of 36 1238913. In addition, regarding the gradation characteristics of the left and right and up and down directions that constitute the shortcomings of the transmission mode, comparing Figs. 12 and 13 with Figs. 2 and 2 2 shows that by using a liquid crystal film with a mixed nematic structure, Significantly improves reverse characteristics. In this embodiment, although the experiment is performed in the form of a colorless filter, if a color filter is provided in the liquid crystal cell, it is of course possible to perform good multi-color or full-color display. [Brief description of the drawings] FIG. 1 is a conceptual diagram illustrating the tilt angle and twist angle of liquid crystal molecules. Fig. 2 is a conceptual diagram of an alignment structure of a liquid crystal film constituting a first optically anisotropic element. FIG. 3 is a conceptual diagram illustrating a pre-tilt direction of a liquid crystal cell. Fig. 4 is a schematic cross-sectional view of a transflective liquid crystal display element of the present invention. Fig. 5 is a schematic cross-sectional view of a transflective liquid crystal display element of Examples 1 and 2. Fig. 6 is a plan view showing the angular relationship between the absorption axis of the polarizer, the pretilt direction of the liquid crystal cell, the retardation axis of the polymer stretched film, and the tilt direction of the liquid crystal film in Example 1. Fig. 7 is a contrast diagram when the transflective liquid crystal display element of Example 1 is viewed from all directions. FIG. 8 is a diagram showing the viewing angle characteristics of the transmittance of left and right directions when the semi-transmissive reflective liquid crystal display element of Example 1 is displayed in 7 color steps from 0V to 6V.

圖9為將實施例1之半透過反射型液晶顯示元件,從〇V 37 312/發明說明書(補件)/92-10/92121964 1238913 至6V依7色階顯示時的上下方位透過率視野角特性圖。 圖1 0為實施例2中,偏光板之吸收軸、液晶單元之預 傾斜方向、高分子延伸薄膜之延遲相軸、及液晶薄膜之傾 斜方向的角度關係平面圖。 圖1 1為從全方位觀看實施例2之半透過反射型液晶顯 示元件時的對比度圖。 圖1 2為將實施例2之半透過反射型液晶顯.示元件,從 Ο V至6 V依7色階顯示時的左右方位透過率視野角特性圖。 圖1 3為將實施例2之半透過反射型液晶顯示元件,從 0V至6V依7色階顯示時的上下方位透過率視野角特性圖。 圖1 4為比較例1與比較例2之半透過反射型液晶顯示 元件的示意剖視圖。 圖1 5為比較例1中,偏光板之吸收軸、液晶單元之預 傾斜方向、及高分子延伸薄膜之延遲相軸的角度關係平面 圖。 圖1 6為從全方位觀看比較例1之半透過反射型液晶顯 示元件時的對比度圖。 圖1 7為將比較例1之半透過反射型液晶顯示元件,從 0V至6V依7色階顯示時的左右方位透過率視野角特性圖。 圖1 8為將比較例1之半透過反射型液晶顯示元件,從 Ο V至6 V依7色階顯示時的上下方位透過率視野角特性圖。 圖1 9為比較例2中,偏光板之吸收軸、液晶單元之預 傾斜方向、及高分子延伸薄膜之延遲相軸的角度關係平面 圖0 38 312/發明說明書(補件)/92-10/92121964 1238913 圖2 0為從全方位觀看比較例2之半透過反射型液晶顯 示元件時的對比度圖。 圖2 1為將比較例2之半透過反射型液晶顯示元件,從 Ο V至6 V依7色階顯示時的左右方位透過率視野角特性圖。 圖2 2為將比較例2之半透過反射型液晶顯示元件,從 0V至 6V 依 7色 階 _顯 :示 時 的 上 下 方 位透過率視野角特性圖。 (元件 符 號 說明 ) 1,10 偏 光 板 2 第 1 光 學 各 向 異 性 元 件 2, 14, 17 分 子 延 伸 薄 膜 3 第 1 基 板 4 對 向 電 極 5 液 晶 層 6 反 射 電 極 6 反 射 電 極 區 域 7 透 明 電 極 7 透 明 電 極 區 域 8 第 2 基 板 9 第 2 光 學 各 向 異 性 元 件 11 背 光 源 12,15 ,1 6 液 晶 單 元 13 液 晶 薄 膜 39 312/發明說明書(補件)/92-10/92121964FIG. 9 shows the vertical and horizontal azimuth transmittance viewing angles when the transflective liquid crystal display element of Example 1 is displayed from 0V 37 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913 to 6V in 7 color steps. Characteristic diagram. Fig. 10 is a plan view showing the angular relationship between the absorption axis of the polarizing plate, the pretilt direction of the liquid crystal cell, the retardation phase axis of the polymer stretched film, and the tilt direction of the liquid crystal film in Example 2. Fig. 11 is a contrast diagram when the transflective liquid crystal display element of Example 2 is viewed from all directions. FIG. 12 is a graph showing the viewing angle characteristics of the transmittance of left and right azimuth when the semi-transmissive reflective liquid crystal display device of Example 2 is displayed from 0 V to 6 V in 7 color steps. FIG. 13 is a view showing the viewing angle characteristics of the transmissive and transmissive liquid crystal display element of Example 2 in the vertical direction when the display is from 0V to 6V in 7 color steps. 14 is a schematic cross-sectional view of a transflective liquid crystal display element of Comparative Examples 1 and 2. Fig. 15 is a plan view showing the angular relationship between the absorption axis of the polarizing plate, the pretilt direction of the liquid crystal cell, and the retardation axis of the polymer stretched film in Comparative Example 1. FIG. 16 is a contrast diagram when the transflective liquid crystal display element of Comparative Example 1 is viewed from all directions. FIG. 17 is a graph showing the viewing angle characteristics of the transmittance of left and right azimuths when the transflective liquid crystal display element of Comparative Example 1 is displayed in 7 color steps from 0V to 6V. FIG. 18 is a graph showing the viewing angle characteristics of the transmissivity of the transflective liquid crystal display element of Comparative Example 1 from 0 V to 6 V in 7 gradations. FIG. 19 is a plan view of the angular relationship between the absorption axis of the polarizing plate, the pretilt direction of the liquid crystal cell, and the retardation phase axis of the polymer stretched film in Comparative Example 2. 0 38 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913 FIG. 20 is a contrast diagram when the transflective liquid crystal display element of Comparative Example 2 is viewed from all directions. FIG. 21 is a graph showing the transmissive viewing angle characteristics of the transmissive reflective liquid crystal display element of Comparative Example 2 from 0 V to 6 V in 7 color steps. FIG. 22 is a transmission angle viewing angle characteristic diagram of the transflective liquid crystal display element of Comparative Example 2 in the upper and lower positions when displaying from 0V to 6V in 7 color steps. (Description of element symbols) 1,10 Polarizing plate 2 First optical anisotropic element 2, 14, 17 Molecularly stretched film 3 First substrate 4 Counter electrode 5 Liquid crystal layer 6 Reflective electrode 6 Reflective electrode area 7 Transparent electrode 7 Transparent electrode Area 8 2nd substrate 9 2nd optical anisotropic element 11 backlight 12, 15, 1 6 liquid crystal cell 13 liquid crystal film 39 312 / Invention Manual (Supplement) / 92-10 / 92121964

Claims (1)

1238913 拾、申請專利範圍: /1. 一種半透過反射型液晶顯示元件,係具備有:具透明 電極的第1基板;含有由具反射機能區域與具透過機能區 域所形成半透過反射性電極的第2基板;挾置於該第1基 板與該第2基板間的向列液晶層;設置在鄰接該第1基板 液晶層之面的背面上的第1光學各向異性元件與1片偏光 板;以及設置在鄰接該第2基板液晶層之面的背面上的第 2光學各向異性元件與1片偏光板;其特徵在於: 上述第1光學各向異性元件,係由1片高分子配向膜所 構成相位差薄膜,當將在波長(λ)450ϋΐη、550ηιη、及650nm 中的延遲值,分別設定為Re(450)、Re(550)及Re(650)之 時,由滿足下述式(I )與(Π )的相位差薄膜所構成, Re( 4 5 0 ) < Re( 5 5 0 )< Re( 6 5 0 )(I) 0.2^Re(A)/A^0.3(n) 上述第2光學各向異性元件,係實質由至少1片顯示光 學正單軸性之液晶性高分子物質所形成,且該液晶性高分 子物質係含有將在液晶狀態下所形成向列混合配向予以固 定化的液晶薄膜(A)。 2.如申請專利範圍第1項之半透過反射型液晶顯示元 件,其中,上述第2光學各向異性元件係由下述所構成: 實質由至少1片顯示光學正單軸性之液晶性高分子物質所 形成,且該液晶性高分子物質係含有將在液晶狀態下所形 成向列混合配向予以固定化的液晶薄膜(A );以及至少1 片高分子延伸薄膜。 40 312/發明說明書(補件)/92-10/92121964 1238913 3 .如申請專利範圍第1項之半透過反射型液晶顯示元 件,其中,上述第2光學各向異性元件係由下述所構成: 實質由至少1片顯示光學正單軸性之液晶性高分子物質所 形成,且該液晶性高分子物質係含有將在液晶狀態下所形 成向列混合配向予以固定化的液晶薄膜(A );以及由至少1 片顯示光學正單軸性之液晶性高分子物質所實質形成,且 該液晶性高分子物質係含有將在液晶狀態下所形成向列配 向予以固定化的液晶薄膜(B )。 4.如申請專利範圍第1至3項中任一項之半透過反射型 液晶顯不元件’其中’上述液晶薄膜(A )係使液晶材料在液 晶狀態下進行向列混合配向,再從此狀態進行冷卻,俾將 向列混合偏向予以玻璃固定化的液晶薄膜。 5 .如申請專利範圍第1〜3項中任一項之半透過反射型液 晶顯不元件’其中’上述液晶薄膜(A )係使液晶材料在液晶 狀態下進行向列混合配向,再利用交聯反應將向列混合偏 向予以固定化的液晶薄膜。 6 .如申請專利範圍第1項之半透過反射型液晶顯示元 件,其中,上述具反射機能區域與具透過機能區域的液晶 層厚度係不同,上述具反射機能區域的液晶層厚度較薄於 上述具透過機能區域的液晶層厚度。 7 .如申請專利範圍第1項之半透過反射型液晶顯示元 件,係採用電控雙折射(Electrically Controlled Birefringence, ECB)方式 。 8 .如申請專利範圍第1項之半透過反射型液晶顯示元 41 312/發明說明書(補件)/92-10/92121964 1238913 顯不元 ,HAN) 件,係採用扭轉向列(T w i s t e d N e m a t i c,Τ N )方式 9 .如申請專利範圍第 1項之半透過反射型液晶 件,係採用混合配向向列(H y b r i d A 1 i g n e d N e m a t i< 方式。 42 312/發明說明書(補件)/92-10/921219641238913 Patent application scope: / 1. A transflective reflective liquid crystal display device, comprising: a first substrate with a transparent electrode; and a transflective reflective electrode formed by a reflective functional area and a transmissive functional area A second substrate; a nematic liquid crystal layer interposed between the first substrate and the second substrate; a first optical anisotropic element and a polarizing plate provided on a back surface of a surface adjacent to the liquid crystal layer of the first substrate; And a second optical anisotropic element and a polarizing plate provided on the back surface adjacent to the surface of the liquid crystal layer of the second substrate; the first optical anisotropic element is aligned by one polymer; When the retardation film composed of the film is set to Re (450), Re (550), and Re (650) at the wavelengths (λ) of 450ϋΐη, 550ηι, and 650nm, respectively, the following formula is satisfied: (I) and (Π) composed of a retardation film, Re (4 5 0) < Re (5 5 0) < Re (6 5 0) (I) 0.2 ^ Re (A) /A^0.3 ( n) The above-mentioned second optical anisotropic element is a liquid crystalline polymer substance that exhibits optically positive uniaxiality in at least one sheet. It is formed, and the liquid crystal containing high-molecular substance The liquid crystal-based film (A) mixing a nematic alignment formed to be immobilized in a liquid crystal state. 2. The semi-transmissive reflective liquid crystal display element according to item 1 of the patent application range, wherein the second optically anisotropic element is composed of the following: substantially at least one sheet exhibits high optical liquid crystal with positive uniaxiality The liquid crystal polymer material is formed of a molecular substance, and the liquid crystal polymer material contains a liquid crystal film (A) in which a nematic mixed alignment formed in a liquid crystal state is immobilized; and at least one polymer stretched film. 40 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913 3. For the semi-transmissive reflective liquid crystal display element under the scope of patent application, the second optical anisotropic element is composed of the following : It is substantially formed of at least one liquid crystal polymer substance exhibiting optical positive uniaxiality, and the liquid crystal polymer substance contains a liquid crystal film (A) in which a nematic mixed alignment formed in a liquid crystal state is fixed. And formed of at least one liquid crystalline polymer substance exhibiting optical positive uniaxiality, and the liquid crystalline polymer substance contains a liquid crystal film (B) which fixes the nematic alignment formed in the liquid crystal state. . 4. The semi-transmissive reflective liquid crystal display element according to any of items 1 to 3 of the scope of the patent application, wherein the above-mentioned liquid crystal film (A) is a liquid crystal material that is nematically aligned in a liquid crystal state, and then from this state. After cooling, the nematic mixture is biased toward the glass-immobilized liquid crystal film. 5. The semi-transmissive reflective liquid crystal display element according to any of items 1 to 3 of the scope of the patent application, wherein the above-mentioned liquid crystal film (A) is used for nematic mixing and alignment of the liquid crystal material in a liquid crystal state, and then using The side reaction mixes the nematic mixture to the liquid crystal film to be immobilized. 6. If the transflective liquid crystal display element of item 1 of the patent application range, wherein the thickness of the liquid crystal layer with the reflection function region and the transmission function region are different, the thickness of the liquid crystal layer with the reflection function region is thinner than the above. The thickness of the liquid crystal layer with a transmission function region. 7. For the semi-transmissive reflective liquid crystal display element under the scope of the patent application, the electronically controlled birefringence (ECB) method is adopted. 8. As for the semi-transmissive reflective liquid crystal display element 41 in the scope of the patent application, 41 312 / Invention Specification (Supplement) / 92-10 / 92121964 1238913 Display element, HAN), the use of twisted nematic (T wisted N ematic, T N) Method 9. If the semi-transmissive reflection type liquid crystal device of the first patent application scope is a hybrid alignment nematic (Hybrid A 1 igned N emat i < method). 42 312 / Invention Specification (Supplement) / 92-10 / 92121964
TW092121964A 2002-09-30 2003-08-11 Transflective liquid crystal display device TWI238913B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285458A JP2004125830A (en) 2002-09-30 2002-09-30 Transflective liquid crystal display element

Publications (2)

Publication Number Publication Date
TW200405095A TW200405095A (en) 2004-04-01
TWI238913B true TWI238913B (en) 2005-09-01

Family

ID=32063559

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092121964A TWI238913B (en) 2002-09-30 2003-08-11 Transflective liquid crystal display device

Country Status (4)

Country Link
JP (1) JP2004125830A (en)
AU (1) AU2003252650A1 (en)
TW (1) TWI238913B (en)
WO (1) WO2004031846A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013964B2 (en) 2008-12-11 2011-09-06 Au Optronics Corp. Liquid crystal display device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006146012A (en) * 2004-11-24 2006-06-08 Mitsubishi Electric Corp Liquid crystal display panel
EP1825320B1 (en) * 2004-12-18 2015-07-01 Merck Patent GmbH Transflective liquid crystal display
JP2007072213A (en) * 2005-09-07 2007-03-22 Nippon Oil Corp Viewing angle compensation plate for homeotropically oriented liquid crystal display device and homeotropically oriented liquid crystal display device using same
JP2007219260A (en) * 2006-02-17 2007-08-30 Nippon Oil Corp Optical laminate, elliptically polarizing plate and liquid crystal display device
JP2007241071A (en) * 2006-03-10 2007-09-20 Fujifilm Corp Transflective liquid crystal display device
JP4899153B2 (en) * 2006-09-05 2012-03-21 Nltテクノロジー株式会社 Liquid crystal display
JP4975415B2 (en) * 2006-11-17 2012-07-11 Jx日鉱日石エネルギー株式会社 Transmission type liquid crystal display device
JP5072520B2 (en) 2006-12-19 2012-11-14 株式会社ジャパンディスプレイセントラル Liquid crystal display
WO2008126421A1 (en) * 2007-04-11 2008-10-23 Fujifilm Corporation Optical anisotropic film and liquid crystal display device
JP2008309957A (en) 2007-06-13 2008-12-25 Nippon Oil Corp Transmission type liquid crystal display device
JP5072480B2 (en) * 2007-08-10 2012-11-14 株式会社ジャパンディスプレイセントラル Liquid crystal display
JP5072481B2 (en) * 2007-08-10 2012-11-14 株式会社ジャパンディスプレイセントラル Liquid crystal display
EP2357499B1 (en) 2008-12-09 2017-04-19 Sekisui Chemical Co., Ltd. Retardation element
WO2010074048A1 (en) 2008-12-22 2010-07-01 積水化学工業株式会社 Laminate for laminated glass
WO2013146633A1 (en) * 2012-03-30 2013-10-03 日本ゼオン株式会社 Phase difference film laminated body, method for manufacturing same, and liquid crystal display device
JP5387725B2 (en) * 2012-05-18 2014-01-15 三菱化学株式会社 Retardation film
CN102914906B (en) * 2012-10-19 2015-02-25 京东方科技集团股份有限公司 Liquid crystal display panel and display device
CN105676318B (en) 2014-12-08 2018-06-05 三星电子株式会社 Anti-reflective film and the organic luminescent device for including it
KR101623086B1 (en) 2014-12-08 2016-05-20 삼성전자 주식회사 Antireflection film and organic light emitting device provided with the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332933A (en) * 1997-05-30 1998-12-18 Nippon Oil Co Ltd Optical anisotropic element
JP3406242B2 (en) * 1998-10-15 2003-05-12 シャープ株式会社 Liquid crystal display
JP2001042320A (en) * 1999-07-30 2001-02-16 Seiko Epson Corp Liquid crystal device and electronic appliance using the same
JP2001337222A (en) * 2000-05-25 2001-12-07 Fuji Photo Film Co Ltd Optical retardation plate
JP2002031717A (en) * 2000-07-14 2002-01-31 Nippon Mitsubishi Oil Corp Circularly polarizing plate and liquid crystal display device
JP2002196114A (en) * 2000-12-26 2002-07-10 Sumitomo Chem Co Ltd Forward scattering sheet, laminated sheet containing the same and liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013964B2 (en) 2008-12-11 2011-09-06 Au Optronics Corp. Liquid crystal display device

Also Published As

Publication number Publication date
TW200405095A (en) 2004-04-01
AU2003252650A1 (en) 2004-04-23
WO2004031846A1 (en) 2004-04-15
JP2004125830A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
TWI238913B (en) Transflective liquid crystal display device
TWI406043B (en) Liquid crystal display device
KR100849300B1 (en) Circular polarization plate and liquid crystal display device
JP5377252B2 (en) Image display device
JP4575978B2 (en) Liquid crystal display
KR100744909B1 (en) Circular polarization plate and liquid crystal display
TWI396009B (en) Transmissive liquid crystal display device
KR100947417B1 (en) Circular polarizing plate and liquid crystal display device
KR101337827B1 (en) Transmission type liquid crystal display device
JP4125876B2 (en) Transflective liquid crystal display device
WO2007135797A1 (en) Transmission liquid crystal display device
JP2005202101A (en) Transmissive liquid crystal display element
JP2003215341A (en) Circularly polarizing plate and liquid crystal display
JP2005189633A (en) Transmission type liquid crystal display element
WO2013015080A1 (en) Manufacturing method for optical compensation film
JP4166791B2 (en) Liquid crystal display
JP2005164957A (en) Circularly polarizing plate and liquid crystal display element
WO2008062624A1 (en) Multilayer optical film, liquid crystal panel employing multilayer optical film and liquid crystal display
JP2013029562A (en) Multilayer optical film, liquid crystal panel and liquid crystal display device using multilayer optical film
JP2007219260A (en) Optical laminate, elliptically polarizing plate and liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees