WO2004031846A1 - Semitransmissive reflective liquid crystal display element - Google Patents

Semitransmissive reflective liquid crystal display element Download PDF

Info

Publication number
WO2004031846A1
WO2004031846A1 PCT/JP2003/008990 JP0308990W WO2004031846A1 WO 2004031846 A1 WO2004031846 A1 WO 2004031846A1 JP 0308990 W JP0308990 W JP 0308990W WO 2004031846 A1 WO2004031846 A1 WO 2004031846A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
crystal display
polymer
transflective
Prior art date
Application number
PCT/JP2003/008990
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Uesaka
Eiji Yoda
Toyokazu Ogasawara
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to AU2003252650A priority Critical patent/AU2003252650A1/en
Publication of WO2004031846A1 publication Critical patent/WO2004031846A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/04Number of plates greater than or equal to 4
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/10Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with refractive index ellipsoid inclined, or tilted, relative to the LC-layer surface O plate
    • G02F2413/105Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with refractive index ellipsoid inclined, or tilted, relative to the LC-layer surface O plate with varying inclination in thickness direction, e.g. hybrid oriented discotic LC

Definitions

  • the present invention has a combination of a reflective light type and a transmissive type used in OA equipment such as a word processor and a personal computer, portable information equipment such as an electronic organizer and a mobile phone, or a camera-integrated VTR equipped with a liquid crystal monitor. Liquid crystal display device.
  • liquid crystal display devices can make full use of their thin and lightweight features.
  • a reflection type liquid crystal display device As a reflection type liquid crystal display device, a two-type reflection type liquid crystal display device in which a liquid crystal cell is sandwiched between a pair of polarization plates and a reflection plate is further disposed outside is widely used for monochrome display. More recently, reflective LCDs with a single polarizer, in which the liquid crystal layer is sandwiched between a polarizer and a reflector, have been put to practical use because they are in principle brighter and easier to color than two-polarizers. . Polarizing plate In a single-panel reflective liquid crystal display device, a 1Z 4 wavelength plate is used as a retardation plate between the polarizing plate and the liquid crystal cell to have a substantially circular polarizing plate function.
  • the quarter-wave plate used for the phase difference plate has a phase difference of approximately 1/4 wavelength in birefringent light of 550 nm monochromatic light in order to give good circular polarization characteristics. It has been proposed to use at least two or more retardation films consisting of a wave plate and a half-wave plate whose phase difference between birefringent light of 550 nm monochromatic light is approximately 1 Z 2 wavelengths. Yes (example For example, see JP-A-10-68816. ).
  • a semi-transmissive reflector that has the property of transmitting part of the incident light is used instead of a reflector, and a backlight is used.
  • a transflective liquid crystal display device having the following (see, for example, Japanese Patent Application Laid-Open No. 10-246846). In this case, it can be used as a reflection type (reflection mode) using external light when the backlight is not lit, and as a transmission type (transmission mode) with a lit pack light in a dark environment.
  • An object of the present invention is to provide a transflective liquid crystal display element which has a bright display in a transmissive mode, has high contrast, can be designed to have a small thickness, and has a small viewing angle dependence. .
  • a first substrate having a transparent electrode, a second substrate having a transflective electrode in which a region having a reflective function and a region having a transmissive function are formed, A nematic liquid crystal layer sandwiched between the first substrate and the second substrate; A first optical anisotropic element provided on a surface opposite to a surface in contact with the liquid crystal layer, and one polarizing plate; and a first optical anisotropic element provided on a surface of the second substrate opposite to the surface in contact with the liquid crystal layer.
  • a transflective liquid crystal display device comprising a second optically anisotropic element and one polarizing plate provided, wherein the first optically anisotropic element is a retardation film comprising one polymer oriented film.
  • the retardation values at wavelengths ( ⁇ ) of 450 nm, 550 nm and 650 nm are Re (450), Re (550) and Re (650), respectively. ),
  • the second optically anisotropic element is substantially formed of at least one optically positive uniaxial liquid crystal polymer material, and the liquid crystal polymer material forms a nematic hybrid alignment formed in a liquid crystal state.
  • the present invention relates to a transflective liquid crystal display device comprising a fixed liquid crystal film ( ⁇ ).
  • the second optically anisotropic element is substantially more than at least one optically positive uniaxial liquid crystalline polymer material.
  • the liquid crystalline polymer material is composed of a liquid crystal film ( ⁇ ) in which the nematic hybrid alignment formed in a liquid crystal state is fixed, and at least one stretched polymer film.
  • the present invention relates to the transflective liquid crystal display device described above.
  • the second optically anisotropic element is substantially more than at least one optically positive uniaxial liquid crystalline polymer material.
  • a liquid crystal film ( ⁇ ) formed in a liquid crystal state, wherein the liquid crystal polymer substance is formed in a liquid crystal state, and at least one liquid crystal polymer substance having optically positive uniaxiality A transflective liquid crystal display element as described above, wherein the liquid crystal high molecular substance is formed substantially in a liquid crystal state, and the liquid crystal film is formed in a liquid crystal state and has a fixed nematic alignment.
  • a fourth aspect of the present invention is that the liquid crystal film ( ⁇ ) force S, the liquid crystal material is nematic hybrid aligned in a liquid crystal state, and is cooled from that state by nematic alignment.
  • the present invention relates to the transflective liquid crystal display element described above, which is a liquid crystal film having a hybrid alignment fixed to glass.
  • a fifth aspect of the present invention is the liquid crystal film, wherein the liquid crystal film (A) is a liquid crystal film in which a liquid crystal material is nematic hybrid aligned in a liquid crystal state, and a nematic hybrid orientation is fixed by a crosslinking reaction. And a transflective liquid crystal display device.
  • the liquid crystal layer thickness of the region having the reflection function is different from the liquid crystal layer thickness of the region having the transmission function.
  • a seventh aspect of the present invention relates to the above-mentioned transflective liquid crystal display device, characterized in that an ECB (Electrically Controlled Birefringence) system is used.
  • ECB Electro Mechanical Controlled Birefringence
  • An eighth aspect of the present invention relates to the above-mentioned transflective liquid crystal display device, characterized by using a TN (Twisted Nematic) system.
  • TN Transmission Nematic
  • a ninth aspect of the present invention relates to the transflective liquid crystal display device described above, wherein a H ANG (Hybrid Aligned Nematic) system is used.
  • H ANG Hybrid Aligned Nematic
  • the transflective liquid crystal display device of the present invention includes a polarizing plate, a first optically anisotropic device, a liquid crystal cell, a second optically anisotropic device, a polarizing plate, and a backlight, as viewed from the observer side.
  • members such as a light diffusion layer, a light control film, a light guide plate, and a prism sheet can be further added as necessary.
  • both the reflection mode and the transmission mode can be used by installing a pack light at the rear.
  • the liquid crystal cell used in the present invention includes: a first substrate having a transparent electrode; a second substrate having a transflective electrode in which a region having a reflective function and a region having a transmissive function are formed; It comprises a first substrate and a nematic liquid crystal layer sandwiched between the second substrates.
  • the liquid crystal cell has a half in which a region having a reflection function and a region having a transmission function are formed.
  • the area including the transmissive / reflective layer is provided, the area having the reflective function is a reflective display section for performing the reflective display, and the area having the transmissive function is the transmissive display section for performing the transmissive display.
  • the thickness of the liquid crystal layer of the reflective display portion of the liquid crystal cell is smaller than that of the transmissive display portion. The reason will be described below.
  • the transmissive display in the transmissive display unit when the liquid crystal layer thickness is set to a layer thickness suitable for reflective display will be described.
  • a liquid crystal layer suitable for reflective display the amount of change in the polarization state due to a change in the alignment due to an external field such as an electric field of the liquid crystal layer depends on the amount of light incident through the liquid crystal layer from the observer side. The light is reflected by the reflective layer and is emitted again to the viewer side through the liquid crystal layer, so that a sufficient contrast ratio can be obtained by reciprocating through the liquid crystal layer.
  • the amount of change in the polarization state of light passing through the liquid crystal layer is insufficient in the transmissive display section.
  • the transmissive display section Sufficient display cannot be obtained.
  • the transmissive display unit when the alignment condition of the liquid crystal layer is set to the alignment condition of the liquid crystal layer suitable for the reflective display unit, the transmissive display unit lacks brightness or transmits the dark display even if the brightness is sufficient. The ratio does not decrease, and a sufficient contrast ratio for display cannot be obtained.
  • the voltage applied to the liquid crystal layer is adjusted so that a phase difference of approximately 1/4 wavelength is imparted to light passing through the liquid crystal layer only once.
  • the alignment state of the liquid crystal inside is controlled.
  • the transmissive display section can sufficiently reduce the transmittance when dark display is performed. In this case, when the transmissive display section performs bright display, light of about half the luminous intensity is absorbed by the polarizing plate on the light emission side, and sufficient bright display cannot be obtained.
  • the brightness when the transmissive display unit is ⁇ display will be the brightness at the time of bright display. Of about 1 Z 2, resulting in an insufficient display contrast ratio.
  • the thickness of the liquid crystal layer is preferably about 12 times the thickness of the liquid crystal layer in the transmissive display section.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • ECB Electrode Controlled Birefringence
  • IPS In-Plane Switching
  • VA Vertical Alignment
  • OCB Optically Compensated Birefringence
  • HAN Hybrid Aligned Nematic
  • ASM Analy Symmetric Aligned Microcell
  • the twist direction of the liquid crystal layer may be left-handed or right-handed.
  • the twist angle is preferably 90 degrees or less, and more preferably 70 degrees or less. If the angle is larger than 90 degrees, unnecessary coloring may occur on the liquid crystal display device.
  • TFT Thin Film Transistor
  • TFD Thin Film Diode
  • the transparent substrate constituting the liquid crystal cell is not particularly limited as long as the material exhibiting liquid crystallinity constituting the liquid crystal layer is oriented in a specific orientation. Specifically, a transparent substrate in which the substrate itself has a property of aligning liquid crystal, and a transparent substrate in which an alignment film or the like having a property of aligning liquid crystal is provided thereon, although the substrate itself lacks alignment ability. Either can be used.
  • known electrodes such as ITO can be used for the electrodes of the liquid crystal cell. The electrode can be usually provided on the surface of the transparent substrate in contact with the liquid crystal layer. When a substrate having an alignment film is used, it can be provided between the substrate and the alignment film.
  • the material exhibiting liquid crystallinity for forming the liquid crystal layer is not particularly limited, and examples thereof include ordinary various low-molecular liquid crystal substances, high-molecular liquid crystal substances, and mixtures thereof that can form various liquid crystal cells.
  • a dye, a chiral agent, a non-liquid crystalline substance, and the like can be added to these as long as the liquid crystallinity is not impaired.
  • the region having a reflective function included in the semi-transmissive reflective electrode (hereinafter, also referred to as a reflective layer) is not particularly limited, and metals such as aluminum, silver, gold, chromium, and platinum, alloys containing them, and oxides An oxide such as magnesium, a dielectric multilayer film, a liquid crystal exhibiting selective reflection, a combination thereof, or the like can be given. These reflective layers may be flat or curved. In addition, the reflective layer is formed by processing the surface shape such as an uneven shape so as to have a diffuse reflection property, and also serving as an electrode on the electrode substrate on the side opposite to the viewer side of the liquid crystal cell. It may be a combination.
  • the polarizing plate used in the present invention is not particularly limited as long as the object of the present invention can be achieved, and a normal polarizing plate used in a liquid crystal display device can be appropriately used. More specifically, iodine and Z or 2 or 3 are added to a hydrophilic high molecular film composed of a partially saponified product of PVA-based ethylene monovinyl acetate copolymer such as polyvinyl alcohol (PVA) or partially acetalized PVA.
  • PVA polyvinyl alcohol
  • a polarizing film made of a polarizing film stretched by adsorbing a chromatic dye or a polyene-oriented film such as a dehydrated PVA product or a dehydrochlorinated polyvinyl chloride product can be used. Further, a reflective polarizing film can also be used.
  • the polarizing plate may be used alone as the polarizing film, or may be a polarizing film provided with a transparent protective layer or the like on one or both sides of the polarizing film for the purpose of improving strength, moisture resistance, heat resistance, etc. good.
  • the transparent protective layer include those obtained by laminating a transparent plastic film such as polyester or triacetylcellulose directly or via an adhesive layer, a transparent resin coating layer, and a photocurable resin layer such as an acryl-based or epoxy-based resin. It is possible. When these transparent protective layers are coated on both sides of the polarizing film, different protective layers may be provided on both sides.
  • the first optically anisotropic element used in the present invention has a retardation value at a wavelength of 450 nm, a wavelength of 550 nm, and a retardation value of 65 nm at Re (450) and Re, respectively.
  • (550) and Re (650) a retardation film composed of one polymer oriented film satisfying the following formulas (I) and ( ⁇ ).
  • a retardation film that satisfies the above formula (I), that is, one polymer oriented film having a smaller retardation value as the wavelength becomes shorter, is determined by a polymer oriented film that satisfies the following condition (A) or (B). Obtainable.
  • A (1) Forming a monomer unit that forms a polymer compound having a positive refractive index anisotropy (hereinafter referred to as a first monomer unit) and a polymer compound having a negative refractive index anisotropy (2) a high molecular compound based on the first monomer unit, R e (4 (50) / R e (550) is smaller than R e (450) / R e (550) of the polymer compound based on the second monomer unit, and (3) An oriented film having a positive refractive index anisotropy.
  • (B) Forming a monomer unit forming a polymer compound having a positive refractive index anisotropy (hereinafter referred to as a first monomer unit) and a polymer compound having a negative refractive index anisotropy (2) a high molecular compound based on the first monomer unit, R e (4 (50) / R e (550) is larger than R e (450) / R e (550) of the polymer compound based on the second monomer unit, and (3) An oriented film having negative refractive index anisotropy.
  • a monomer unit forming a polymer compound having a positive refractive index anisotropy (hereinafter referred to as a first monomer unit) and a polymer compound having a negative refractive index anisotropy
  • R e (4 (50) / R e (550) is larger than R e (450) / R e (550) of the polymer compound based on the second monomer unit
  • Examples of an embodiment that satisfies the above conditions (A) and (B) include those that satisfy the following conditions (C) and (D).
  • a blend polymer comprising a polymer compound having a positive refractive index anisotropy and a polymer compound having a negative refractive index anisotropy;
  • a film comprising a copolymer comprising a monomer unit forming a polymer compound having the same and a monomer unit forming a polymer compound having a negative refractive index anisotropy,
  • R e (450) / R e (550) of the polymer compound having the positive refractive index anisotropy is represented by R e ( (3) An oriented film having a refractive index anisotropy smaller than 450 / R e (550).
  • a blend polymer consisting of a polymer compound having a positive refractive index anisotropy and a polymer compound having a negative refractive index anisotropy and having a Z or a positive refractive index anisotropy.
  • Monomer unit forming a high molecular compound and a polymer compound having a negative refractive index anisotropy A film comprising a copolymer comprising a monomer unit forming a product,
  • R e (450) / R e (550) of the polymer having the positive refractive index anisotropy is represented by R e ( (3) An oriented film having a refractive index anisotropy greater than 450) / Re (550).
  • the polymer compound having a positive or negative refractive index anisotropy refers to a polymer compound which gives an oriented film having a positive or negative refractive index anisotropy.
  • the polymer oriented film used for the first optically anisotropic element may be composed of a blend polymer or copolymer as described above.
  • the polymer material constituting the polymer oriented film may be a blend polymer or a copolymer satisfying the above conditions, and is a thermoplastic polymer having excellent heat resistance, good optical performance, and capable of forming a solution.
  • one or more kinds of polymers such as polyarylate, polyester, polycarbonate, polyolefin, polyether, polysulfine, polysulfone, and polyethersulfone can be appropriately selected.
  • the film material has a water absorption of 1% by weight or less, preferably 0.5% by weight or less. It is important to choose to meet the requirements.
  • the compatible blend or the refractive index of each polymer compound is substantially equal.
  • Specific combinations of the blend polymers include, for example, polymethyl methacrylate as a polymer having negative optical anisotropy, and polyvinylidene fluoride and polyethylene oxalate as polymer having positive optical anisotropy.
  • a combination of bilidene-fluoride-do-trifluoroethylene copolymer, polyphenylene oxide as a polymer compound having a positive optical anisotropy, and polystyrene as a polymer compound having a negative optical anisotropy Combination of styrene-laurate ilmaleimide copolymer, styrene-cyclohexinolemaleimide copolymer, or styrene-phenylenoleimide copolymer, styrene-maleic anhydride having negative optical anisotropy
  • a polycarbonate having a positive optical anisotropy with the copolymer, Acrylonitrile-butadiene copolymer having a positive optical anisotropy and an optical anisotropic Preferable examples include, but are not limited to, a tarilonitrile styrene copolymer.
  • a combination of polystyrene and a polyphenylene oxide such as poly (2,6-dimethyl-11,4-phenylene oxide) is preferable.
  • the ratio of the polystyrene preferably accounts for 67% by weight or more and 75% by weight or less of the whole.
  • the copolymer examples include a butadiene-styrene copolymer, an ethylene-styrene copolymer, an acrylonitrile-butadiene copolymer, an Atari port-trilubutadiene-styrene copolymer, a polycarbonate copolymer, and a polyester copolymer.
  • Polymers, polyester carbonate copolymers, polyarylate copolymers and the like can be used.
  • a segment having a fluorene skeleton can have negative optical anisotropy
  • a polycarbonate copolymer, a polyester copolymer, a polyester carbonate copolymer, a polyarylate copolymer, etc. having a fluorene skeleton are more preferably used. .
  • a polycarbonate copolymer produced by reacting a bisphenol with a phosgene or a carbonate-forming compound such as diphenyl carbonate is excellent in transparency, heat resistance and productivity, and can be particularly preferably used.
  • the polycarbonate copolymer is preferably a copolymer containing a structure having a fluorene skeleton.
  • the component having a fluorene skeleton is preferably contained at 1 to 99 mol%.
  • a preferred material for the oriented film of the present invention is an oriented film of polycarbonate composed of a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2):
  • the repeating unit represented by the formula (1) occupies 30 to 90 mol% of the entire polycarbonate, and the repeating unit represented by the formula (2) is a material occupying 70 to 10 mol% of the whole. .
  • 1 ⁇ to 18 each independently represent a group selected from a hydrogen atom, a halogen atom and a hydrocarbon group having 1 to 6 carbon atoms
  • X is a group represented by the formula (3)
  • R 9 ⁇ ! ⁇ 6 independently represents a group selected from a hydrogen atom, a hydrogen atom, a halogen atom and a hydrocarbon group having 1 to 22 carbon atoms
  • Y represents a group selected from the group represented by the formula (4).
  • R 17 ⁇ R 19 , 1 21 and 1 22 are each independently hydrogen atom, a halogen atom and a group selected from a hydrocarbon group having 1 to 22 carbon atoms
  • R 20 and R 23 Each independently represents a group selected from hydrocarbon groups having 1 to 20 carbon atoms; and represents an aryl group having 6 to 10 carbon atoms.
  • This material is a polycarbonate copolymer comprising a repeating unit having a fluorene skeleton represented by the above formula (1) and a repeating unit represented by the above formula (2), And a blend polymer of a polycarbonate comprising a repeating unit having a fluorene skeleton represented by the above formula (1) and a polycarbonate comprising a repeating unit represented by the above formula (2).
  • a copolymer two or more kinds of the repeating units represented by the above formulas (1) and (2) may be used in combination.
  • two or more kinds of the above repeating units may be used in combination.
  • Ri Rs is independently selected from a hydrogen atom, a halogen atom and a hydrocarbon group having 1 to 6 carbon atoms.
  • the hydrocarbon group having 1 to 6 carbon atoms include an alkyl group such as a methyl group, an ethyl group, an isopropyl group and a cyclohexyl group, and an aryl group such as a phenyl group. Of these, a hydrogen atom and a methyl group are preferred.
  • R 9 to R 16 are each independently selected from a hydrogen atom, a halogen atom and a hydrocarbon group having 1 to 22 carbon atoms.
  • a hydrocarbon group having 1 to 22 carbon atoms include an alkyl group having 1 to 9 carbon atoms such as a methyl group, an ethyl group, an isopropyl group and a cyclohexyl group, a phenyl group, a biphenyl group and a terphenyl group. And other aryl groups. Of these, a hydrogen atom and a methyl group are preferred.
  • R 17 ⁇ R 19 , 1 21 and 1 22 are each independently hydrogen atom, selected from a halogen atom and a hydrocarbon group having 1 to 22 carbon atoms.
  • a hydrocarbon group having a carbon number of from 1 to 22 includes an alkyl group having 1 to 9 carbon atoms such as a methyl group, an ethyl group, an isopropyl group and a cyclohexyl group, a phenyl group, a biphenyl group and a terphenyl.
  • aryl groups such as a group. Of these, a hydrogen atom and a methyl group are preferred.
  • R 23 is independently selected from a hydrocarbon group having 1 to 20 carbon atoms
  • Ar is an aryl group having 6 to 10 carbon atoms such as a phenyl group and a naphthyl group.
  • the content of the above formula (1) that is, when copolymer composition of the copolymer, if blanking trend composition ratio of the composition is from 30 to 90 mole 0/0 of the total polycarbonate. Outside of this range, the absolute value of the phase difference does not decrease as the wavelength becomes shorter at the measurement wavelength of 400 to 700 nm.
  • the content of the above formula (1) is preferably 35-8 5 mol 0/0 of the total polycarbonate, and more preferably 40 to 80 mol%.
  • the above molar ratio is determined by, for example, a nuclear magnetic resonance (NMR) element for the entire polycarbonate pulp constituting the oriented film regardless of the copolymer or the blended polymer. be able to.
  • NMR nuclear magnetic resonance
  • polycarbonate in the CCC material a polycarbonate copolymer and / or a polycarbonate composition composed of a repeating unit represented by the following formula (5) and a repeating unit represented by the following formula (6): (Blended polymer) is preferred.
  • R 24 and R 25 each independently represent a group selected from a hydrogen atom or a methyl group
  • 1 26 and 1 27 are each independently a hydrogen atom ⁇ Pi methyl
  • Z represents a group selected from groups represented by the formula (7).
  • the most preferred material is a copolymer or polymer blend containing bisphanol A (BPA, corresponding to the above formula (8)) and biscresol fluorene (BCF, corresponding to the above formula (12)), or a mixture thereof. , blending ratio of these components the content of BCF 5 5 to 7 5 mole 0/0, more preferably 5 5-7 0 mole 0 /. It is. For these materials, we can get closer to ideal; Z 4 board and 1/2 board.
  • the above-mentioned copolymer and Z or the blend polymer can be produced by a known method.
  • the polycarbonate a method by polycondensation of a dihydroxy compound and phosgene, a melt polycondensation method and the like are suitably used.
  • a compatible blend is preferred, but even if they are not completely compatible, light scattering between the components can be suppressed and transparency can be improved by adjusting the refractive index between the components.
  • the limiting viscosity of the material polymer compound of the polymer oriented film in the present invention is 0.3 to 0.3. It is preferably 2.0 d 1 Z g. If the viscosity is lower than this, there is a problem that the material becomes brittle and the mechanical strength cannot be maintained.If the viscosity is higher than this, the solution viscosity becomes too high, which causes problems such as generation of die lines in solution film formation, and purification at the end of polymerization is difficult. There is a problem that it becomes.
  • the polymer oriented film in the invention is preferably transparent, has a haze value of 3% or less, and a total light transmittance of 85% or more.
  • the glass transition temperature of the polymer oriented film material is preferably 100 ° C. or higher, more preferably 120 ° C. or higher.
  • ultraviolet absorbers such as phenylsalicylic acid, 2-hydroxybenzophenone, and triphenyl phosphate, a bluing agent for changing color, and an antioxidant may be added.
  • the polymer oriented film in the present invention a film obtained by orienting a film of the above polycarbonate or the like by stretching or the like is used.
  • a method for producing such a film a known melt extrusion method, a solution casting method, or the like is used, and a solution casting method is more preferably used from the viewpoint of film thickness unevenness, appearance, and the like.
  • the solvent in the solution casting method methylene chloride, dioxolane or the like is preferably used.
  • a known stretching method can be used for the stretching method, but it is preferably longitudinal uniaxial stretching.
  • known plasticizers such as phthalate esters such as dimethyl phthalate, getyl phthalate and dibutyl phthalate, phosphate esters such as tributyl phosphate, and aliphatic dibasic esters, It may contain a glycerin derivative, a glycol derivative or the like.
  • the organic solvent used at the time of film formation described above may be allowed to remain in the film for stretching. The amount of the organic solvent is 1 to 20 mass relative to the polymer solid content. / 0 is preferred.
  • the above-mentioned additives such as plasticizer and liquid crystal can change the wavelength dispersion of retardation of the polymer oriented film, but the amount of addition is preferably 10% by mass or less, more preferably 3% by mass or less based on the polymer solid content. preferable.
  • the thickness of the polymer oriented film is not particularly limited, but is preferably from 1 im to 400 m.
  • the second optically anisotropic element used in the present invention is an optically positive uniaxial liquid crystal polymer material, specifically, an optically positive uniaxial liquid crystal polymer compound or a small amount thereof. And a liquid crystal polymer composition having optically positive uniaxiality containing at least one liquid crystal polymer compound, wherein the liquid crystal polymer compound or the liquid crystal polymer composition is formed in a liquid crystal state.
  • the nematic hybrid alignment refers to an alignment mode in which the liquid crystal molecules are in a nematic alignment, and the angle between the director of the liquid crystal molecules and the film plane is different between the upper surface and the lower surface of the film. Therefore, since the angle formed by the director and the film plane is different between the vicinity of the upper surface interface and the vicinity of the lower surface interface, the angle continuously changes between the upper surface and the lower surface of the film. It can be said that. In a film in which the nematic hybrid alignment state is fixed, directors of liquid crystal molecules are oriented at different angles everywhere in the film thickness direction. Thus, the film no longer has an optical axis when viewed as a film structure.
  • the average tilt angle in the present invention means the average value of the angle between the director of the liquid crystal molecule and the film plane in the thickness direction of the liquid crystal film.
  • the angle formed between the director and the film plane near one interface of the film is usually 20 ° to 90 °, preferably 30 ° to 70 ° as an absolute value.
  • the angle is usually 0 ° to 20 °, preferably 0 ° to 10 ° as an absolute value, and its average tilt is The angle is usually between 5 ° and 45 ° in absolute value, preferably between 7 ° and 40 °, more preferably between 10 ° and 38 °, most preferably between 15 ° and 35 °.
  • the average tilt angle can be obtained by applying the crystal rotation method.
  • the liquid crystal film (A) constituting the second optically anisotropic element used in the present invention is substantially formed of a liquid crystalline polymer material having optically positive uniaxiality. There is no particular limitation on the method of producing the substance as long as the substance has a fixed nematic hybrid alignment state formed in a liquid crystal state.
  • a low-molecular liquid crystal is formed in a nematic hybrid orientation in a liquid crystal state, and then a liquid crystal film obtained by immobilization by photo-crosslinking or thermal cross-linking, or a polymer liquid crystal is formed in a nematic hybrid orientation in a liquid-crystal state, and then cooled.
  • a liquid crystal film obtained by fixing the orientation can be used.
  • the liquid crystal film in the present invention does not matter whether the film itself exhibits liquid crystallinity, but means a film obtained by forming a liquid crystal material such as a low-molecular liquid crystal or a high-molecular liquid crystal into a film.
  • the film thickness of the liquid crystal film (A) for exhibiting a more favorable viewing angle improving effect on the transflective liquid crystal display element depends on the type of the target liquid crystal display element and various optical parameters. Although it cannot be said unconditionally because it depends, it is usually 0.2 ⁇ m to 10 ⁇ m, preferably 0.3 ⁇ ! To 5 ⁇ m, particularly preferably 0.5 m to 2 im. When the film thickness is less than 0.2 ⁇ , a sufficient compensation effect may not be obtained. If the film thickness exceeds 10 m, the display may be unnecessarily colored.
  • the upper and lower sides of the optically anisotropic element made of the liquid crystal film (A), the tilt direction of the optically anisotropic element, and the pretilt direction of the liquid crystal cell layer are defined below with reference to FIGS.
  • the liquid crystal molecule director and the film near the film interface of the liquid crystal film (A) constituting the optically anisotropic element are positioned above and below the optically anisotropic element composed of the liquid crystal film (A). If the angle between the director of the liquid crystal molecules and the plane of the film forms an angle of 20 to 90 degrees on the acute angle side with respect to the angle between the plane and the plane, it is defined as the b-plane. Make an angle of 0 to 20 degrees on the acute angle side The surface that is facing is the C surface.
  • the angle formed by the liquid crystal molecular director and the component projected onto the c-plane of the director becomes an acute angle and is parallel to the projected component. Is defined as the tilt direction of the optically anisotropic element.
  • the driving low-molecular liquid crystal is not parallel to the cell interface but is inclined at an angle, and this angle is generally called a pretilt angle.
  • the direction in which the angle between the director of the molecule and the component projected onto the interface of the director is an acute angle, and the direction parallel to the projected component of the director is defined as the pretilt direction of the liquid crystal cell layer.
  • the second optically anisotropic element can be used in combination with another polymer stretched film or a liquid crystal film (B) in which the nematic orientation is fixed.
  • a polymer stretched film a material exhibiting uniaxial or biaxial properties, for example, polycarbonate (PC), polymethacrylate (PMMA), polyvinyl alcohol (PVA), manufactured by Nippon Synthetic Rubber Co., Ltd.
  • a stretched film such as ARTON (trade name) film can be used. Also in this case, in view of the problem of cost increase, the combination of one liquid crystal film and one stretched polymer film is practically preferable.
  • the liquid crystal film (B) may be formed of any liquid crystal as long as the nematic alignment state is fixed.
  • a liquid crystal film obtained by fixing the orientation can be used.
  • the liquid crystal film (B) referred to in the present invention does not ask whether the film itself exhibits liquid crystallinity as in the case of the liquid crystal film (A), but refers to a liquid crystal substance such as a low molecular liquid crystal or a high molecular liquid crystal.
  • liquid crystal film included in the second optically anisotropic element a liquid crystal film alone can be used, and a transparent plastic film can be provided as a support substrate and used.
  • a transparent material such as polyester or triacetyl cellulose used for producing the polarizing plate may be used. It can be manufactured by laminating a liquid crystal film on a plastic film and then integrating it with a polarizing plate.
  • the retardation value (product of birefringence ⁇ n and film thickness d) of the second optically anisotropic element of the present invention will be described.
  • the apparent in-plane retardation value when viewed from the normal direction of the liquid crystal film (A) is the refractive index in the direction parallel to the director (hereafter referred to as ne) in a nematic hybrid oriented film.
  • the refractive index in the vertical direction (hereinafter referred to as no) is different, and when the value obtained by subtracting no from ne is the apparent birefringence, the apparent retardation value is the apparent birefringence.
  • the apparent retardation value can be easily obtained by a polarization optical measurement such as ellipsometry.
  • the second optically anisotropic element is composed of only the liquid crystal film (A) in which the nematic hybrid alignment is fixed, and the case where the liquid crystal film (A) and the polymer stretched film or the nematic alignment are fixed.
  • the explanation will be made separately for the case where it is combined with the liquid crystal film (B).
  • the apparent retardation value of the liquid crystal film (A) is usually 70 nm to 180 nm for a monochromatic light of 550 nm.
  • Good circular polarization characteristics can be obtained by setting the range to preferably 90 nm to 160 nm, particularly preferably 120 nm to 150 nm. If the apparent retardation value is less than 70 nm or greater than 180 nm, unnecessary coloration may occur on the liquid crystal display device.
  • the range is from 180 nm to 180 nm, preferably from 90 nm to 160 nm, and particularly preferably from 120 nm to 150 nm.
  • the retardation value of a half-wave plate is usually 1 80 ⁇ ! ⁇ 320 nm, good It is preferably in the range of 200 nm to 300 nm, particularly preferably in the range of 220 nm to 280 nm. If the retardation range of the 1/4 wavelength plate and the 1/2 wavelength plate deviates from the above range, unnecessary coloring may occur on the liquid crystal display device.
  • the angle between the slow axis of the 1/4 wavelength plate and the slow axis of the 12 wavelength plate is usually 40 to 90 degrees, preferably 50 to 80 degrees, particularly preferably 5 degrees on the acute angle side.
  • the range is 5 degrees to 75 degrees.
  • the liquid crystal film (A) in which the nematic hybrid alignment is fixed may be used for a 1/4 wavelength plate or a 1Z 2 wavelength plate.
  • a stretched polymer film or liquid crystal film (B) may be used for the 1Z4 wavelength plate.
  • liquid crystal film (A) is preferably disposed between the second substrate of the liquid crystal cell and the polarizing plate.
  • the conditions for disposing the liquid crystal film (A) will be described with reference to FIG. ⁇
  • a straight line overlapping in the pretilt direction of the upper substrate and a straight line overlapping in the pretilt direction of the lower substrate are assumed. These two straight lines are projected on the same plane, and the two angles on the acute side of the four angles formed around the point where the straight lines intersect become straight symmetrical angles. pull.
  • This straight line is defined as a bisector in the present invention.
  • the overlapping straight line is referred to in the present invention. It becomes a bisector.
  • the angle formed by the bisector and the linear component based on the tilt direction of the liquid crystal film (A) is usually 0 to 30 degrees, preferably 0 to 20 degrees, and more preferably an absolute value. Is desirably arranged so as to be 0 to 10 degrees, most preferably approximately 0 degrees. If the angle between the two is greater than 30 degrees, sufficient viewing angle compensation may not be obtained.
  • a liquid crystal film (A) and a polymer stretched film or a liquid crystal film (B) are combined as a second optically anisotropic element and used as a transflective liquid crystal display element will be described. I do.
  • the arrangement of the liquid crystal film (A) is the same as the above-described arrangement in which only one film is used. That is, it is preferable that the tilt direction of the liquid crystalline polymer in the liquid crystal film substantially coincides with the direction of the bisector.
  • the angle between the tilt direction and the pretilt direction is preferably in the range of 0 to 30 degrees, more preferably in the range of 0 to 20 degrees, and particularly preferably in the range of 0 to 10 degrees.
  • the light diffusion layer, the pack light, the light control film, the light guide plate, and the prism sheet are not particularly limited, and known materials can be used.
  • transflective liquid crystal display element of the present invention other constituent members can be additionally provided in addition to the constituent members described above.
  • a color liquid crystal display element capable of performing multicolor or full-color display with high color purity can be manufactured.
  • the transflective liquid crystal display element of the present invention is characterized in that the display in the transmission mode is bright, has high contrast, can be designed to be thin, and has little viewing angle dependence.
  • the retardation ⁇ nd in this embodiment is a value at a wavelength of 550 nm unless otherwise specified.
  • the second substrate 8 is provided with a reflective electrode 6 formed of a material having a high reflectance such as A1 and a transparent electrode 7 formed of a material having a high transmittance such as ITO.
  • a counter electrode 4 is provided, and a liquid crystal layer 5 made of a liquid crystal material having a positive dielectric anisotropy is sandwiched between the reflection electrode 6 and the transmission electrode 7 and the counter electrode 4.
  • a first optically anisotropic element 2 and a polarizing plate 1 are provided on a surface of the first substrate 3 opposite to the side on which the counter electrode 4 is formed, and a reflection electrode 6 and a transmission electrode 7 of a second substrate 8 are provided.
  • the second optically anisotropic element 9 and the polarizing plate 10 are provided on the side opposite to the surface on which is formed.
  • a backlight 11 is provided on the back side of the polarizing plate 10.
  • a 0.77- ⁇ m-thick liquid crystal film 13 with a fixed nematic hybrid orientation with an average tilt angle of 28 degrees in the film thickness direction was fabricated, and the TN type shown below was arranged in the arrangement shown in Fig. 5.
  • the TN type shown below was arranged in the arrangement shown in Fig. 5.
  • the liquid crystal cell 15 used was made of ZLI-1695 (manufactured by Merck) as the liquid crystal material.
  • the liquid crystal layer thickness was 3.5 ⁇ in the reflective electrode area 6 (reflective display section) and the transmissive electrode area 7 (transmissive In the display section, it was 4.0 ⁇ .
  • the liquid crystal layer has a pretilt angle of 2 degrees at both substrate interfaces, the twist angle of the liquid crystal cell is 70 degrees with a left-hand twist, and the And of the liquid crystal cell is about 230 nm in the reflective display section and about 262 nm in the transmissive display section. nm.
  • a polarizing plate 1 (about 180 ⁇ m thick; SQW-862 manufactured by Sumitomo Chemical Co., Ltd.) was placed on the viewer side (upper side of the figure) of the liquid crystal cell 15, and the polarizing plate 1 and the liquid crystal cell 15 were arranged.
  • the first optically anisotropic element 2 a uniaxially stretched polymer stretched film (product name Pure) manufactured by Teijin Limited that satisfies the formulas (I) and (II), which are the requirements of the present invention. Ace) 2 was placed. The And of the stretched polymer film 2 was approximately 120 nm.
  • a liquid crystal film 13 and a polymer stretched film 14 made of a uniaxially stretched polycarbonate film are arranged behind the liquid crystal cell 15 as viewed from an observer, and further polarized light is provided on the back side.
  • Plate 10 was placed.
  • the liquid crystal film 13 having the hybrid nematic alignment structure immobilized thereon had an And of 135 nm, and the polymer stretched film 14 had an And of 275 nm.
  • FIG. Fig. 7 shows the contrast ratio from all directions when the pack light is turned on (transmission mode) and the contrast ratio of the white display OV and the black display 6 V is the contrast ratio (white display) / (black display). The dagger is shown.
  • Fig. 8 shows the viewing angle characteristics of the transmissivity in the left and right directions when 6 gradations are displayed from 0V white display to 6V black display when the backlight is lit (transmission mode).
  • Fig. 9 shows the viewing angle characteristics of the transmissivity in the vertical direction when six gradations are displayed from the white display OV to the black display 6V when the pack light is turned on (transmission mode).
  • a liquid crystal film 13 having a thickness of 0.60 ⁇ with a fixed nematic hybrid orientation having an average tilt angle of 28 degrees in the film thickness direction was prepared, and the EC type shown below was arranged as shown in Fig. 5 Was manufactured.
  • the liquid crystal cell 16 used was ZLI-1695 (manufactured by Merck) as the liquid crystal material.
  • the liquid crystal layer thickness was 2.lm in the reflective electrode area 6 (reflective display area) and the transmissive electrode area 7 (transmissive display area). To 4.9 ⁇ .
  • the pretilt angle at both interfaces of the liquid crystal layer and the substrate was 2 degrees, and the ⁇ nd of the liquid crystal cell was about 138 nm in the reflective display section and about 321 nm in the transmissive display section.
  • the polarizing plate 1 (thickness: about 180 ⁇ m; SQW-862 manufactured by Sumitomo Chemical Co., Ltd.) is placed on the viewer side (upper side of the figure) of the liquid crystal cell 16, and the polarizing plate 1 is placed between the polarizing plate 1 and the liquid crystal cell 16
  • the first optically anisotropic element 2 a uniaxially stretched polymer stretched film (product name) made of polycarbonate manufactured by Teijin Limited which satisfies the formulas (I) and (II), which are the requirements of the present invention, is used. Pure Ace) 2 placed.
  • the And of the stretched polymer film 2 is approximately 1 15 nm, which is 7 mm.
  • ⁇ d of the liquid crystal film 13 in which the hybrid nematic alignment structure arranged as the second optically anisotropic element 9 was fixed was 105 nm
  • ⁇ d of the stretched polymer film 14 was 270 nm.
  • Fig. 11 shows the contrast ratio from all directions as the contrast ratio between the white display OV and black display 6V transmittance (white display) / (black display) when the knock light is turned on (transmission mode). Is shown.
  • Fig. 12 shows the viewing angle characteristics of the transmissivity in the left and right directions when 6 gradations are displayed from 0 V white display to 6 V black display when the backlight is lit (transmission mode).
  • Figure 13 shows the viewing angle characteristics of the transmittance in the vertical direction when the knock light is turned on (transmission mode) and when 6 gradations are displayed from white display OV to black display 6V.
  • Figures 11 to 13 show that the ECB type has excellent viewing angle characteristics, especially in the transmission mode, as does the TN type.
  • the ⁇ nd of the polycarbonate 14 was set to 260 nm, and the liquid crystal cell 1
  • the absorption axis of the polarizing plate 10 and the slow axis of the polymer stretched films 14 and 17 arranged on the back side of 5 were arranged under the conditions shown in FIG. A liquid crystal display device was manufactured.
  • Fig. 16 shows the contrast ratio from all directions when the backlight ratio (transmissive mode) is 0 V for white display and 6 V for black display as the contrast ratio (white display) / (black display). Is shown.
  • Figure 17 shows the viewing angle characteristics of the transmissivity in the left and right directions when displaying 6 gradations from white display OV to black display 6 V when the pack light is on (transmission mode).
  • Figure 18 shows the viewing angle characteristics of the transmittance in the vertical direction when six gradations are displayed from white display OV to black display 6 V when the pack light is turned on (transmission mode).
  • Example 1 and Comparative Example 1 are compared for viewing angle characteristics.
  • Example 1 As shown in the layout diagram of FIG. 14, polycarbonate 17 (And is approximately 110 nm) was used instead of liquid crystal film 13, and And of polycarbonate 14 was set to 270 nm.
  • Example 1 except that the absorption axis of the polarizing plate 10 and the slow axis of the stretched polymer films 14 and 17 arranged on the back side of the liquid crystal cell 16 were arranged under the conditions shown in Fig. 19. The same liquid crystal display element as in Example 2 was produced.
  • Figure 20 shows the contrast ratio between the white display 0 V and the black display 6 V (white display) / (black display) as the contrast ratio when the pack light is on (transmission mode). It shows the ratio.
  • Fig. 21 shows the viewing angle characteristics of the transmissivity in the left and right directions when 6 gradations are displayed from 0 V for white display to 6 V for black display when the backlight is turned on (transmission mode).
  • Fig. 22 shows the viewing angle characteristics of the transmittance in the vertical direction when six gradations are displayed from 0 V for white display to 6 V for black display when the backlight is lit (transmission mode).
  • Example 2 and Comparative Example 2 are compared for viewing angle characteristics.
  • FIG. 1 is a conceptual diagram for explaining a tilt angle and a twist angle of a liquid crystal molecule.
  • FIG. 2 is a conceptual diagram of an alignment structure of a liquid crystal film constituting a second optically anisotropic element.
  • FIG. 3 is a conceptual diagram illustrating a pretilt direction of a liquid crystal cell.
  • FIG. 4 is a cross-sectional view schematically showing a transflective liquid crystal display element of the present invention.
  • FIG. 5 is a cross-sectional view schematically illustrating the transflective liquid crystal display elements of Example 1 and Example 2.
  • FIG. 6 is a plan view showing the angle relationship among the absorption axis of the polarizing plate, the pretilt direction of the liquid crystal cell, the slow axis of the polymer stretched film, and the tilt direction of the liquid crystal film in Example 1.
  • FIG. 7 is a diagram showing a contrast ratio when the transflective liquid crystal display element in Example 1 is viewed from all directions.
  • FIG. 8 is a diagram illustrating viewing angle characteristics of transmissivity in the left and right directions when the transflective liquid crystal display element in Example 1 is displayed in 7 gradations from 0 V to 6 V.
  • FIG. 9 is a view showing the viewing angle characteristics of the transmittance in the vertical direction when the transflective liquid crystal display element in Example 1 is displayed in seven gradations from 0 V to 6 V.
  • FIG. 10 is a plan view showing an angle relationship among an absorption axis of a polarizing plate, a pretilt direction of a liquid crystal cell, a slow axis of a polymer stretched film, and a tilt direction of a liquid crystal film in Example 2.
  • FIG. 11 is a diagram showing a contrast ratio when the transflective liquid crystal display element in Example 2 is viewed from all directions.
  • FIG. 12 is a diagram showing viewing angle characteristics of transmissivity in the left and right directions when the transflective liquid crystal display element in Example 2 displays seven gradations from 0 V to 6 V.
  • FIG. 13 is a view showing the viewing angle characteristics of the transmittance in the vertical direction when the transflective liquid crystal display element in Example 2 displays seven gradations from 0 V to 6 V.
  • FIG. 14 is a cross-sectional view schematically illustrating the transflective liquid crystal display elements of Comparative Examples 1 and 2.
  • Fig. 15 shows the absorption axis of the polarizing plate, the pretilt direction of the liquid crystal cell, and the FIG. 3 is a plan view showing an angle relationship of a slow axis of the stretched polymer film.
  • FIG. 16 is a diagram showing a contrast ratio when the transflective liquid crystal display element in Comparative Example 1 is viewed from all directions.
  • FIG. 17 is a diagram showing the viewing angle characteristics of the transmissivity in the left and right directions when the transflective liquid crystal display element in Comparative Example 1 displays seven gradations from 0 V to 6 V.
  • FIG. 18 is a diagram showing the viewing angle characteristics of the transmittance in the vertical direction when the transflective liquid crystal display element in Comparative Example 1 displays seven gradations from 0 V to 6 V.
  • FIG. 19 is a plan view showing the angle relationship among the absorption axis of the polarizing plate, the pretilt direction of the liquid crystal cell, and the slow axis of the stretched polymer film in Comparative Example 2.
  • FIG. 20 is a diagram illustrating a contrast ratio when the transflective liquid crystal display element in Comparative Example 2 is viewed from all directions.
  • FIG. 21 is a diagram illustrating viewing angle characteristics of transmissivity in the left and right directions when the transflective liquid crystal display element in Comparative Example 2 displays seven gradations from 0 V to 6 V.
  • FIG. 22 is a diagram illustrating viewing angle characteristics of transmittance in the vertical direction when the transflective liquid crystal display element in Comparative Example 2 displays seven gradations from 0 V to 6 V.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

A semitransmissive reflective liquid crystal display element providing a bright display with high contrast in transmission mode, capable of being desiged thin and having a low view angle dependence. The semitransmissive reflective liquid crystal display element comprises a first substrate having a transparent electrode, a second substrate having a semitransmissive reflective electrode, a nematic liquid crystal layer sandwiched between the first and second substrates, a first optically anisotropic element and a sheet of polarizing plate placed on the first substrate, and a second optically anisotropic element and a sheet of polarizing plate placed on the second substrate, wherein the first optically anisotropic element comprises a phase difference film satisfying specified requirements and the second optically anisotropic element is formed of a liquid crystal polymer substance exhibiting optically positive uniaxiality.

Description

半透過反射型液晶表示素子  Transflective liquid crystal display device
[技術分野] [Technical field]
本発明は、 ワードプロセッサやパーソナルコンピュータなどの O A機器や、 電 子手帳、 携帯電話等の携帯情報機器、 あるいは、 液晶モニターを備えたカメラ一 体型 V T R等に用いられる反射型明と透過型とを兼ね備えた液晶表示素子に関する。  The present invention has a combination of a reflective light type and a transmissive type used in OA equipment such as a word processor and a personal computer, portable information equipment such as an electronic organizer and a mobile phone, or a camera-integrated VTR equipped with a liquid crystal monitor. Liquid crystal display device.
[背景技術] [Background technology]
近年、 液晶表示素子はその薄型軽量な特徴を大きく活かせる、 携帯型情報端末 書  In recent years, liquid crystal display devices can make full use of their thin and lightweight features.
機器のディスプレイとしての市場拡大の期待が高まっている。 携帯型電子機器は 通索バッテリー駆動であるがために消費電力を抑えることが重要な課題となって いる。 そのため、 携帯型用途の液晶表示素子等としては、 電力消費が大きいパッ クライトを使用しない、 若しくは、 常時使用しないで済み、 低消費電力化、 薄型 化、 軽量化が可能である反射型液晶表示素子が特に注目されている。 Expectations for market expansion as device displays are growing. Since portable electronic devices are battery-powered, reducing power consumption is an important issue. Therefore, as a liquid crystal display element for portable use, a reflective liquid crystal display element that consumes a large amount of power and does not need to be used, or does not need to be used at all times, can be reduced in power consumption, thinner, and lighter. Has received particular attention.
反射型液晶表示素子としては、 液晶セルを 1対の偏光板で挟み、 さらに外側に 反射板を配置した偏光板 2枚型の反射型液晶表示素子が、 白黒表示用として広く 使用されている。 さらに最近では、 液晶層を偏光板と反射板で挟んだ偏光板 1枚 型の反射型液晶表示素子が偏光板 2枚型よりも原理的に明るくカラー化も容易な ことから実用化されている。 偏光板 1枚型の反射型液晶表示素子では、 偏光板と 液晶セルの間に配置される位相差板には略円偏光板機能を持たせる為 1 Z 4波長 板を使用し、 更に液晶セル内の液晶層厚を略 1 / 4波長程度の厚さにさせること により、 ノーマリーホワイト型反射型液晶表示素子を実現している (例えば、 特 開平 6— 1 1 7 1 1号公報、 国際公開第 9 8 / 4 3 2 0号パンフレツト等参照) 。 位相差板に使用する 1 / 4波長板には、 良好な円偏光特性を与えるために、 5 5 0 n mの単色光での複屈折光の位相差が略 1 / 4波長である 1 / 4波長板と 5 5 0 n mの単色光での複屈折光の位相差が略 1 Z 2波長である 1 / 2波長板とか らなる少なくとも 2枚以上の位相差フィルムを使用することが提案されている(例 えば、 特開平 1 0— 6 8 8 1 6号公報参照。 ) 。 As a reflection type liquid crystal display device, a two-type reflection type liquid crystal display device in which a liquid crystal cell is sandwiched between a pair of polarization plates and a reflection plate is further disposed outside is widely used for monochrome display. More recently, reflective LCDs with a single polarizer, in which the liquid crystal layer is sandwiched between a polarizer and a reflector, have been put to practical use because they are in principle brighter and easier to color than two-polarizers. . Polarizing plate In a single-panel reflective liquid crystal display device, a 1Z 4 wavelength plate is used as a retardation plate between the polarizing plate and the liquid crystal cell to have a substantially circular polarizing plate function. By making the thickness of the liquid crystal layer in the inside approximately 1/4 wavelength, a normally white reflective liquid crystal display device has been realized (for example, see Japanese Patent Publication No. Publication No. 98/4320, refer to pamphlets etc.). The quarter-wave plate used for the phase difference plate has a phase difference of approximately 1/4 wavelength in birefringent light of 550 nm monochromatic light in order to give good circular polarization characteristics. It has been proposed to use at least two or more retardation films consisting of a wave plate and a half-wave plate whose phase difference between birefringent light of 550 nm monochromatic light is approximately 1 Z 2 wavelengths. Yes (example For example, see JP-A-10-68816. ).
しかしながら、 これら反射型液晶表示素子は、 通常外光を利用して表示を行う ため、 暗い環境下で用いる場合には表示が見えにくくなるという欠点を有する。 この問題を解決する技術として、偏光板 1枚型の反射型液晶表示素子においては、 反射板の代わりに入射光の一部を透過する性質を持つ半透過反射板を使用し、 か つバックライトを備えた半透過反射型液晶表示素子が提案されている (例えば、 特開平 1 0— 2 0 6 8 4 6号公報参照。 ) 。 この場合、 バックライト非点灯の状 態では外光を利用した反射型 (反射モード) として、 暗い環境ではパックライ ト を点灯させた透過型 (透過モード) として使用することができる。  However, since these reflective liquid crystal display elements usually perform display using external light, they have a drawback that the display becomes difficult to see when used in a dark environment. As a technology to solve this problem, in a reflective liquid crystal display device with a single polarizing plate, a semi-transmissive reflector that has the property of transmitting part of the incident light is used instead of a reflector, and a backlight is used. There has been proposed a transflective liquid crystal display device having the following (see, for example, Japanese Patent Application Laid-Open No. 10-246846). In this case, it can be used as a reflection type (reflection mode) using external light when the backlight is not lit, and as a transmission type (transmission mode) with a lit pack light in a dark environment.
この偏光板 1枚型の半透過反射型液晶表示素子では、 透過モードにおいては半 透過反射層を通して液晶セルに略円偏光を入射させる必要があることから、 1枚 または複数枚のポリカーポネートに代表される高分子延伸フィルムと偏光板から なる円偏光板を半透過反射層とパックライ トの間に配置させる必要がある。 しか しながら、 透過モードの液晶表示素子においては、 液晶分子の持つ屈折率異方性 のため斜めから見たときに表示色が変化するあるいは表示コントラストが低下す るという視野角の問題が本質的に避けられず、 高分子延伸フィルムを用いた円偏 光板では、 この視野角拡大は本質的に難しい。  In this transflective liquid crystal display device with one polarizing plate, in the transmissive mode, substantially circularly polarized light needs to be incident on the liquid crystal cell through the transflective layer. It is necessary to arrange a circularly polarizing plate comprising a typical stretched polymer film and a polarizing plate between the transflective layer and the pack light. However, in the transmissive mode liquid crystal display device, the viewing angle problem that the display color changes or the display contrast decreases when viewed obliquely due to the refractive index anisotropy of the liquid crystal molecules is essential. With a circular polarizer using a stretched polymer film, it is essentially difficult to increase the viewing angle.
また、 携帯型情報端末機器では、近年、 薄型化、 軽量化の要望が高まっており、 携帯型情報端末機器のディスプレイに使用される部材にも、 薄型化、 軽量化の要 求が強くなつてきているが、 高分子延伸フィルムでは製造面の問題で薄型化にも 限界がある。  In recent years, there has been an increasing demand for thinner and lighter portable information terminal devices, and there has been an increasing demand for thinner and lighter components used in displays of portable information terminal devices. However, in the case of stretched polymer films, there is a limit in thinning due to manufacturing problems.
本発明は、 透過モードにおける表示が明るく、 高コントラス トであり、 厚みを 薄く設計することが可能であり、 視野角依存性の少ない半透過反射型液晶表示素 子を提供することを目的とする。  An object of the present invention is to provide a transflective liquid crystal display element which has a bright display in a transmissive mode, has high contrast, can be designed to have a small thickness, and has a small viewing angle dependence. .
[発明の開示] [Disclosure of the Invention]
本発明の第 1は、 透明電極を有する第 1の基板と、 反射機能を有する領域と透 過機能を有する領域とが形成された半透過反射性電極を有する第 2の基板と、 該 第 1の基板と該第 2の基板間に狭持されたネマチック液晶層と、 該第 1の基板の 液晶層と接する面とは反対の面上に設置された第 1の光学異方素子と 1枚の偏光 板を具備し、 該第 2の基板の液晶層と接する面とは反対の面上に設置された第 2 の光学異方素子と 1枚の偏光板とを具備した半透過反射型液晶表示素子において、 前記第 1の光学異方素子が 1枚の高分子配向フィルムからなる位相差フィルム であって、 波長 (λ) 4 5 0 n m、 5 5 0 nm及び 6 5 0 nmにおけるリターデ ーション値を各々 R e (4 5 0) 、 R e (5 5 0) 及び R e (6 5 0 ) としたと き、 下記式 (I ) 及ぴ (Π) を満たす位相差フィルムからなり、 According to a first aspect of the present invention, there is provided a first substrate having a transparent electrode, a second substrate having a transflective electrode in which a region having a reflective function and a region having a transmissive function are formed, A nematic liquid crystal layer sandwiched between the first substrate and the second substrate; A first optical anisotropic element provided on a surface opposite to a surface in contact with the liquid crystal layer, and one polarizing plate; and a first optical anisotropic element provided on a surface of the second substrate opposite to the surface in contact with the liquid crystal layer. A transflective liquid crystal display device comprising a second optically anisotropic element and one polarizing plate provided, wherein the first optically anisotropic element is a retardation film comprising one polymer oriented film. And the retardation values at wavelengths (λ) of 450 nm, 550 nm and 650 nm are Re (450), Re (550) and Re (650), respectively. ), A retardation film satisfying the following formulas (I) and (),
R e (4 5 0) <R e (5 5 0) <R e (6 5 0) ( I )  R e (4 5 0) <R e (5 5 0) <R e (6 5 0) (I)
0. 2≤R e (λ) /λ≤ 0. 3 (Π)  0.2 ≤R e (λ) / λ≤ 0.3 (Π)
前記第 2の光学異方素子が少なくとも 1枚の光学的に正の一軸性を示す液晶性 高分子物質より実質的に形成され、 該液晶性高分子物質が液晶状態において形成 したネマチックハイブリッド配向を固定化した液晶フィルム (Α) を含むことを 特徴とする半透過反射型液晶表示素子に関する。  The second optically anisotropic element is substantially formed of at least one optically positive uniaxial liquid crystal polymer material, and the liquid crystal polymer material forms a nematic hybrid alignment formed in a liquid crystal state. The present invention relates to a transflective liquid crystal display device comprising a fixed liquid crystal film (Α).
また本発明の第 2は、 前記記載の半透過反射型液晶表示素子において、 前記第 2の光学異方素子が少なくとも 1枚の光学的に正の一軸性を示す液晶性高分子物 質より実質的に形成され、 該液晶性高分子物質が液晶状態において形成したネマ チックハイブリッド配向を固定化した液晶フィルム (Α) と、 少なくとも 1枚の 高分子延伸フィルムとから構成されることを特徴とする前記記載の半透過反射型 液晶表示素子に関する。  In a second aspect of the present invention, in the transflective liquid crystal display element described above, the second optically anisotropic element is substantially more than at least one optically positive uniaxial liquid crystalline polymer material. Characterized in that the liquid crystalline polymer material is composed of a liquid crystal film (Α) in which the nematic hybrid alignment formed in a liquid crystal state is fixed, and at least one stretched polymer film. The present invention relates to the transflective liquid crystal display device described above.
また本発明の第 3は、 前記記載の半透過反射型液晶表示素子において、 前記第 2の光学異方素子が少なくとも 1枚の光学的に正の一軸性を示す液晶性高分子物 質より実質的に形成され、 該液晶性高分子物質が液晶状態において形成したネマ チックハイブリッド配向を固定化した液晶フィルム (Α) と、 少なくとも 1枚の 光学的に正の一軸性を示す液晶性高分子物質より実質的に形成され、 該液晶性高 分子物質が液晶状態において形成したネマチック配向を固定化した液晶フィルム (Β) とから構成されることを特徴とする前記記載の半透過反射型液晶表示素子 に関する。  In a third aspect of the present invention, in the transflective liquid crystal display element described above, the second optically anisotropic element is substantially more than at least one optically positive uniaxial liquid crystalline polymer material. A liquid crystal film (Α) formed in a liquid crystal state, wherein the liquid crystal polymer substance is formed in a liquid crystal state, and at least one liquid crystal polymer substance having optically positive uniaxiality A transflective liquid crystal display element as described above, wherein the liquid crystal high molecular substance is formed substantially in a liquid crystal state, and the liquid crystal film is formed in a liquid crystal state and has a fixed nematic alignment. About.
また本発明の第 4は、 前記液晶フィルム (Α) 力 S、 液晶材料を液晶状態におい てネマチックハイプリッド配向させ、 その状態から冷却することによりネマチッ クハイブリッド配向をガラス固定化した液晶フィルムであることを特徴とする前 記記載の半透過反射型液晶表示素子に関する。 A fourth aspect of the present invention is that the liquid crystal film (Α) force S, the liquid crystal material is nematic hybrid aligned in a liquid crystal state, and is cooled from that state by nematic alignment. The present invention relates to the transflective liquid crystal display element described above, which is a liquid crystal film having a hybrid alignment fixed to glass.
また本発明の第 5は、 前記液晶フィルム (A) 力 液晶材料を液晶状態におい てネマチックハイブリッド配向させ、 架橋反応によりネマチックハイプリッド配 向を固定化した液晶フィルムであることを特徴とする前記記載の半透過反射型液 晶表示素子に関する。  A fifth aspect of the present invention is the liquid crystal film, wherein the liquid crystal film (A) is a liquid crystal film in which a liquid crystal material is nematic hybrid aligned in a liquid crystal state, and a nematic hybrid orientation is fixed by a crosslinking reaction. And a transflective liquid crystal display device.
また本発明の第 6は、 前記反射機能を有する領域と透過機能を有する領域の液 晶層厚が異な.り、 反射機能を有する領域の液晶層厚が透過機能を有する領域の液 晶層厚よりも薄いことを特徴とする前記記載の半透過反射型液晶表示素子に関す る。  In a sixth aspect of the present invention, the liquid crystal layer thickness of the region having the reflection function is different from the liquid crystal layer thickness of the region having the transmission function. The transflective liquid crystal display element described above, which is thinner than the above.
また本発明の第 7は、 E C B (Electrically Controlled Birefringence) 方式を 用いたことを特徴とする前記記載の半透過型液晶表示素子に関する。  A seventh aspect of the present invention relates to the above-mentioned transflective liquid crystal display device, characterized in that an ECB (Electrically Controlled Birefringence) system is used.
また本発明の第 8は、 T N (Twisted Nematic) 方式を用いたことを特徴とす る前記記載の半透過型液晶表示素子に関する。  An eighth aspect of the present invention relates to the above-mentioned transflective liquid crystal display device, characterized by using a TN (Twisted Nematic) system.
また本発明の第 9は、 H A N (Hybrid Aligned Nematic) 方式を用いたこと を特徴とする前記記載の半透過型液晶表示素子に関する。 . 以下、 本発明を詳細に説明する。  A ninth aspect of the present invention relates to the transflective liquid crystal display device described above, wherein a H ANG (Hybrid Aligned Nematic) system is used. Hereinafter, the present invention will be described in detail.
本発明の半透過反射型液晶表示素子は、 観察者側から見て、 偏光板、 第 1の光 学異方素子、 液晶セル、 第 2の光学異方素子、 偏光板、 バックライトから構成さ れ、 必要に応じて光拡散層、 光制御フィルム、 導光板、 プリズムシート等の部材 が更に追加することができる。 このタイプの液晶表示素子では、 後方にパックラ ィトを設置することで反射モードと透過モード両方の使用が可能となる。  The transflective liquid crystal display device of the present invention includes a polarizing plate, a first optically anisotropic device, a liquid crystal cell, a second optically anisotropic device, a polarizing plate, and a backlight, as viewed from the observer side. In addition, members such as a light diffusion layer, a light control film, a light guide plate, and a prism sheet can be further added as necessary. In this type of liquid crystal display device, both the reflection mode and the transmission mode can be used by installing a pack light at the rear.
次に本発明に使用される液晶セルについて説明する。  Next, the liquid crystal cell used in the present invention will be described.
本発明に使用される液晶セルは、 透明電極を有する第 1の基板と、 反射機能を 有する領域と透過機能を有する領域とが形成された半透過反射性電極を有する第 2の基板と、 該第 1の基板と該第 2の基板間に狭持されたネマチック液晶層とか ら構成される。  The liquid crystal cell used in the present invention includes: a first substrate having a transparent electrode; a second substrate having a transflective electrode in which a region having a reflective function and a region having a transmissive function are formed; It comprises a first substrate and a nematic liquid crystal layer sandwiched between the second substrates.
該液晶セルは反射機能を有する領域と透過機能を有する領域とが形成された半 透過反射層を含むが、 反射機能を有する镇域が反射表示を行なう反射表示部とな り、 透過機能を有する領域が透過表示を行なう透過表示部となる。 The liquid crystal cell has a half in which a region having a reflection function and a region having a transmission function are formed. Although the area including the transmissive / reflective layer is provided, the area having the reflective function is a reflective display section for performing the reflective display, and the area having the transmissive function is the transmissive display section for performing the transmissive display.
該液晶セルの反射表示部の液晶層厚は透過表示部よりも薄くした方が好ましい。 この理由を以下に説明する。  It is preferable that the thickness of the liquid crystal layer of the reflective display portion of the liquid crystal cell is smaller than that of the transmissive display portion. The reason will be described below.
まず、 液晶層厚を反射表示に適した層厚に設定した場合の透過表示部における 透過表示について説明する。 反射表示に適した液晶層の設定を行なった場合にお ける液晶層の電界等の外場による配向変化に伴う偏光状態の変化の量は、 観察者 側から液晶層を通って入射した光が反射層で反射され再び液晶層を通って観察者 側に出射することにより液晶層を往復して十分なコントラスト比が得られる程度 である。 しかしながら、 この設定においては、 透過表示部では、 液晶層を通過し た光の偏光状態の変化量が'不十分である。 このため、 反射表示に用いる液晶セル の観察者側に設置した偏光板に加え、 透過表示のみに使用する偏光板を観察者側 から見て液晶セルの背面に設置しても、透過表示部では十分な表示は得られない。 つまり、 液晶層の配向条件を反射表示部に適した液晶層の配向条件に設定した場 合、 透過表示部では、 明度が不足するか、 あるいは、 明度が十分にあっても、 暗 表示の透過率が低下せず、 表示に十分なコントラスト比が得られない。  First, the transmissive display in the transmissive display unit when the liquid crystal layer thickness is set to a layer thickness suitable for reflective display will be described. When a liquid crystal layer suitable for reflective display is set, the amount of change in the polarization state due to a change in the alignment due to an external field such as an electric field of the liquid crystal layer depends on the amount of light incident through the liquid crystal layer from the observer side. The light is reflected by the reflective layer and is emitted again to the viewer side through the liquid crystal layer, so that a sufficient contrast ratio can be obtained by reciprocating through the liquid crystal layer. However, in this setting, the amount of change in the polarization state of light passing through the liquid crystal layer is insufficient in the transmissive display section. For this reason, even if a polarizing plate used only for transmissive display is installed on the back side of the liquid crystal cell as viewed from the observer, in addition to the polarizing plate installed on the observer side of the liquid crystal cell used for reflective display, the transmissive display section Sufficient display cannot be obtained. In other words, when the alignment condition of the liquid crystal layer is set to the alignment condition of the liquid crystal layer suitable for the reflective display unit, the transmissive display unit lacks brightness or transmits the dark display even if the brightness is sufficient. The ratio does not decrease, and a sufficient contrast ratio for display cannot be obtained.
さらに詳細に説明すると、 反射表示を行なう場合、 液晶層を 1度だけ通過する 光に対して概ね 1 / 4波長の位相差が付与されるように、 印加される電圧によつ て上記液晶層内の液晶の配向状態が制御されている。 このように反射表示に適し た液晶層厚、 つまり 1 Z 4波長の位相変調を与える電圧変調を行なって透過表示 を行なうと、 透過表示部が暗表示のときの透過率を十分に低下させる場合には、 透過表示部が明表示の時には光の出射側の偏光板で約半分の光度の光が吸収され、 十分な明表示が得られない。 また、 透過表示部が明表示のときの明度を増すため に偏光板、 位相差補償板等の光学素子の配置を行なうと、 透過表示部が喑表示の ときの明度は、 明表示時の明度の約 1 Z 2の明度となり、 表示のコントラスト比 が不十分となる。  More specifically, when performing reflective display, the voltage applied to the liquid crystal layer is adjusted so that a phase difference of approximately 1/4 wavelength is imparted to light passing through the liquid crystal layer only once. The alignment state of the liquid crystal inside is controlled. As described above, when performing transmissive display by performing voltage modulation that provides a liquid crystal layer thickness suitable for reflective display, that is, phase modulation of 1 Z 4 wavelengths, the transmissive display section can sufficiently reduce the transmittance when dark display is performed. In this case, when the transmissive display section performs bright display, light of about half the luminous intensity is absorbed by the polarizing plate on the light emission side, and sufficient bright display cannot be obtained. Also, if optical elements such as a polarizing plate and a phase difference compensator are arranged to increase the brightness when the transmissive display unit is bright, the brightness when the transmissive display unit is 喑 display will be the brightness at the time of bright display. Of about 1 Z 2, resulting in an insufficient display contrast ratio.
逆に、 透過表示に適した条件に液晶層厚を設定するには、 液晶層を透過する光 に対して 1 Z 2波長の位相差が付与されるように上記液晶層に電圧変調する必要 がある。 したがって、 反射光と透過光とを共に高解像度かつ視認性に優れた表示 に利用するには、 反射表示部の液晶層厚は、 透過表示部の液晶層厚よりも小さく することが必要となる。 理想的には、 反射表示部の液晶層厚は、 透過表示部の液 晶層厚の約 1 2であることが好ましい。 Conversely, in order to set the thickness of the liquid crystal layer to a condition suitable for transmissive display, it is necessary to apply voltage modulation to the liquid crystal layer so that light transmitted through the liquid crystal layer is given a phase difference of 1 Z 2 wavelengths. is there. Therefore, both reflected light and transmitted light can be displayed with high resolution and excellent visibility. Therefore, it is necessary to make the liquid crystal layer thickness of the reflective display section smaller than the liquid crystal layer thickness of the transmissive display section. Ideally, the thickness of the liquid crystal layer in the reflective display section is preferably about 12 times the thickness of the liquid crystal layer in the transmissive display section.
前記液晶セルの方式としては、 T N (Twisted Nematic) 方式、 S T N (Supe r Twisted Nematic) 方式、 E C B (Electrically Controlled Birefringence) 方 式、 I P S (In-Plane Switching) 方式、 V A (Vertical Alignment) 方式、 O C B (Optically Compensated Birefringence) 方式、 H A N (Hybrid Aligned Nematic) 方式、 A S M (Axially Symmetric Aligned Microcell) 方式、 ノヽーフ トーングレイスケール方式、 ドメイン分割方式、 あるいは強誘電性液晶、 反強誘 電性液晶を利用した表示方式等の各種の方式が挙げられる。  As the liquid crystal cell system, TN (Twisted Nematic) system, STN (Super Twisted Nematic) system, ECB (Electrically Controlled Birefringence) system, IPS (In-Plane Switching) system, VA (Vertical Alignment) system, OCB (Optically Compensated Birefringence) method, HAN (Hybrid Aligned Nematic) method, ASM (Axially Symmetric Aligned Microcell) method, no-tone tone gray scale method, domain division method, or use ferroelectric liquid crystal, anti-ferroelectric liquid crystal Various methods, such as a display method described above, may be used.
T N方式の場合、 液晶層のツイスト方向は左ねじれであっても右ねじれであつ ても良い。 ツイス ト角度は 9 0度以下である方が望ましく、 7 0度以下である方 が更に望ましい。 9 0度より大きい場合、 液晶表示素子に不必要な色付きが生じ る恐れがある。  In the case of the TN mode, the twist direction of the liquid crystal layer may be left-handed or right-handed. The twist angle is preferably 90 degrees or less, and more preferably 70 degrees or less. If the angle is larger than 90 degrees, unnecessary coloring may occur on the liquid crystal display device.
また、 液晶セルの駆動方式も特に制限はなく、 S T N— L C D等に用いられる パッシブマトリクス方式、 並びに T F T (Thin Film Transistor)電極、 T F D (Th in Film Diode)電極等の能動電極を用いるアクティブマトリタス方式、 プラズマ ァドレス方式等のいずれの駆動方式であっても良い。  There is no particular limitation on the driving method of the liquid crystal cell. A passive matrix method used for STN-LCDs and the like, and an active matrix using an active electrode such as a TFT (Thin Film Transistor) electrode or a TFD (Thin Film Diode) electrode. And any driving method such as a plasma addressing method.
液晶セルを構成する透明基板としては、 液晶層を構成する液晶性を示す材料を 特定の配向方向に配向させるものであれば特に制限はない。 具体的には、 基板自 体が液晶を配向させる性質を有している透明基板、基板自体は配向能に欠けるが、 液晶を配向させる性質を有する配向膜等をこれに設けた透明基板等がいずれも使 用できる。 また、 液晶セルの電極は、 I T O等の公知のものが使用できる。 電極 は通常、 液晶層が接する透明基板の面上に設けることができ、 配向膜を有する基 板を使用する場合は、 基板と配向膜との間に設けることができる。  The transparent substrate constituting the liquid crystal cell is not particularly limited as long as the material exhibiting liquid crystallinity constituting the liquid crystal layer is oriented in a specific orientation. Specifically, a transparent substrate in which the substrate itself has a property of aligning liquid crystal, and a transparent substrate in which an alignment film or the like having a property of aligning liquid crystal is provided thereon, although the substrate itself lacks alignment ability. Either can be used. In addition, known electrodes such as ITO can be used for the electrodes of the liquid crystal cell. The electrode can be usually provided on the surface of the transparent substrate in contact with the liquid crystal layer. When a substrate having an alignment film is used, it can be provided between the substrate and the alignment film.
液晶層を形成する液晶性を示す材料としては、 特に制限されず、 各種の液晶セ ルを構成し得る通常の各種低分子液晶物質、 高分子液晶物質およびこれらの混合 物が挙げられる。 また、 これらに液晶性を損なわない範囲で色素やカイラル剤、 非液晶性物質等を添加することもできる。 半透過反射性電極に含まれる反射機能を有する領域 (以下、 反射層ということ がある) としては、 特に制限されず、 アルミニウム、 銀、 金、 クロム、 白金等の 金属やそれらを含む合金、 酸化マグネシウム等の酸化物、 誘電体の多層膜、 選択 反射を示す液晶、 又はこれらの組み合わせ等を例示することができる。 これら反 射層は平面であっても良く、 また曲面であっても良い。 さらに反射層は、 凹凸形 状など表面形状に加工を施して拡散反射性を持たせたもの、 液晶セルの観察者側 と反対側の該電極基板上の電極を兼備させたもの、 またそれらを組み合わせたも のであっても良い。 The material exhibiting liquid crystallinity for forming the liquid crystal layer is not particularly limited, and examples thereof include ordinary various low-molecular liquid crystal substances, high-molecular liquid crystal substances, and mixtures thereof that can form various liquid crystal cells. In addition, a dye, a chiral agent, a non-liquid crystalline substance, and the like can be added to these as long as the liquid crystallinity is not impaired. The region having a reflective function included in the semi-transmissive reflective electrode (hereinafter, also referred to as a reflective layer) is not particularly limited, and metals such as aluminum, silver, gold, chromium, and platinum, alloys containing them, and oxides An oxide such as magnesium, a dielectric multilayer film, a liquid crystal exhibiting selective reflection, a combination thereof, or the like can be given. These reflective layers may be flat or curved. In addition, the reflective layer is formed by processing the surface shape such as an uneven shape so as to have a diffuse reflection property, and also serving as an electrode on the electrode substrate on the side opposite to the viewer side of the liquid crystal cell. It may be a combination.
本発明に用いられる偏光板は、 本発明の目的が達成し得るものであれば特に制 限されず、 液晶表示素子に用いられる通常のものを適宜使用することができる。 具体的には、 ポリビニルアルコール (P VA) や部分ァセタール化 PVAのよう な P V A系ゃェチレン一酢酸ビニル共重合体の部分ケン化物等からなる親水性高 分子フィルムに、 ョゥ素および Zまたは 2色性色素を吸着して延伸した偏光フィ ルム、 P V Aの脱水処理物やポリ塩化ビニルの脱塩酸処理物のようなポリェン配 向フィルムなどからなる偏光フィルムを使用することができる。 また、 反射型の 偏光フィルムも使用することができる。  The polarizing plate used in the present invention is not particularly limited as long as the object of the present invention can be achieved, and a normal polarizing plate used in a liquid crystal display device can be appropriately used. More specifically, iodine and Z or 2 or 3 are added to a hydrophilic high molecular film composed of a partially saponified product of PVA-based ethylene monovinyl acetate copolymer such as polyvinyl alcohol (PVA) or partially acetalized PVA. A polarizing film made of a polarizing film stretched by adsorbing a chromatic dye or a polyene-oriented film such as a dehydrated PVA product or a dehydrochlorinated polyvinyl chloride product can be used. Further, a reflective polarizing film can also be used.
該偏光板は、 偏光フィルム単独で使用しても良いし、 強度向上、 耐湿性向上、 耐熱性の向上等の目的で偏光フィルムの片面または両面に透明保護層等を設けた ものであっても良い。 透明保護層としては、 ポリエステルやトリァセチルセル口 ース等の透明プラスチックフィルムを直接または接着層を介して積層したもの、 透明樹脂の塗布層、 ァクリル系やエポキシ系等の光硬化型樹脂層などが挙げられ る。 これら透明保護層を偏光フィルムの両面に被覆する場合、 両側に異なる保護 層を設けても良い。  The polarizing plate may be used alone as the polarizing film, or may be a polarizing film provided with a transparent protective layer or the like on one or both sides of the polarizing film for the purpose of improving strength, moisture resistance, heat resistance, etc. good. Examples of the transparent protective layer include those obtained by laminating a transparent plastic film such as polyester or triacetylcellulose directly or via an adhesive layer, a transparent resin coating layer, and a photocurable resin layer such as an acryl-based or epoxy-based resin. It is possible. When these transparent protective layers are coated on both sides of the polarizing film, different protective layers may be provided on both sides.
本発明に用いられる第 1の光学異方素子は、 波長 (え) 4 5 0 nm、 5 5 0 η m及び 6 5 0 nmにおけるリタ一デーシヨン値を各々 R e (4 5 0) 、 R e ( 5 5 0) 及ぴ R e (6 5 0) としたとき、 下記式 (I ) 及び式 ( Π ) を満たす 1枚 の高分子配向フィルムからなる位相差フィルムである。  The first optically anisotropic element used in the present invention has a retardation value at a wavelength of 450 nm, a wavelength of 550 nm, and a retardation value of 65 nm at Re (450) and Re, respectively. (550) and Re (650), a retardation film composed of one polymer oriented film satisfying the following formulas (I) and (Π).
R e (4 5 0) <R e (5 5 0) く R e (6 5 0) ( I )  R e (4 5 0) <R e (5 5 0) C R e (6 5 0) (I)
0. 2≤R e (λ) /λ≤ 0. 3 (Π) 上記式 (I ) を満たす、 すなわち、 リタ一デーシヨン値が短波長ほど小さい 1 枚の高分子配向フィルムからなる位相差フィルムは、 下記 (A) または (B) の 条件を満たす高分子配向フィルムによって得ることができる。 0.2 ≤R e (λ) / λ≤ 0.3 (Π) A retardation film that satisfies the above formula (I), that is, one polymer oriented film having a smaller retardation value as the wavelength becomes shorter, is determined by a polymer oriented film that satisfies the following condition (A) or (B). Obtainable.
(A) (1) 正の屈折率異方性を有する高分子化合物を形成するモノマー単位 (以 下、 第 1のモノマー単位という。 ) と負の屈折率異方性を有する高分子化合物を 形成するモノマー単位 (以下、 第 2のモノマー単位という。 ) とを含む高分子化 合物から構成されるフィルムであって、 (2) 該第 1のモノマー単位に基づく高 分子化合物の R e (4 5 0) /R e (5 5 0) は、 該第 2のモノマー単位に基づ く高分子化合物の R e (4 5 0) /R e (5 5 0) よりも小さく、 かつ (3) 正 の屈折率異方性を有する、 配向フィルム。  (A) (1) Forming a monomer unit that forms a polymer compound having a positive refractive index anisotropy (hereinafter referred to as a first monomer unit) and a polymer compound having a negative refractive index anisotropy (2) a high molecular compound based on the first monomer unit, R e (4 (50) / R e (550) is smaller than R e (450) / R e (550) of the polymer compound based on the second monomer unit, and (3) An oriented film having a positive refractive index anisotropy.
(B) (1) 正の屈折率異方性を有する高分子化合物を形成するモノマー単位 (以 下、 第 1のモノマー単位という。 ) と負の屈折率異方性を有する高分子化合物を 形成するモノマー単位 (以下、 第 2のモノマー単位という。 ) とを含む高分子化 合物から構成されるフィルムであって、 (2) 該第 1のモノマー単位に基づく高 分子化合物の R e (4 5 0) /R e (5 5 0) は、 該第 2のモノマー単位に基づ く高分子化合物の R e (4 5 0) /R e (5 5 0) よりも大きく、 かつ (3) 負 の屈折率異方性を有する、 配向フィルム。  (B) (1) Forming a monomer unit forming a polymer compound having a positive refractive index anisotropy (hereinafter referred to as a first monomer unit) and a polymer compound having a negative refractive index anisotropy (2) a high molecular compound based on the first monomer unit, R e (4 (50) / R e (550) is larger than R e (450) / R e (550) of the polymer compound based on the second monomer unit, and (3) An oriented film having negative refractive index anisotropy.
上記 (A) (B) の条件を満たす態様の例として、 下記条件 (C) (D) を満 たすものがある。  Examples of an embodiment that satisfies the above conditions (A) and (B) include those that satisfy the following conditions (C) and (D).
(C) (1 ) 正の屈折率異方性を有する高分子化合物と負の屈折率異方性を有す る高分子化合物とからなるブレンドポリマー及ぴ Z又は正の屈折率異方性を有す る高分子化合物を形成するモノマー単位と負の屈折率異方性を有する高分子化合 物を形成するモノマー単位とからなる共重合体から構成されるフィルムであって、 (C) (1) A blend polymer comprising a polymer compound having a positive refractive index anisotropy and a polymer compound having a negative refractive index anisotropy; A film comprising a copolymer comprising a monomer unit forming a polymer compound having the same and a monomer unit forming a polymer compound having a negative refractive index anisotropy,
(2) 該正の屈折率異方性を有する高分子化合物の R e (4 5 0) /R e (5 5 0) は該負の屈折率異方性を有する高分子化合物の R e (4 5 0) /R e (5 5 0) よりも小さく、 かつ (3) 正の屈折率異方性を有する、 配向フィルム。 (2) R e (450) / R e (550) of the polymer compound having the positive refractive index anisotropy is represented by R e ( (3) An oriented film having a refractive index anisotropy smaller than 450 / R e (550).
(D) ( 1) 正の屈折率異方性を有する高分子化合物と負の屈折率異方性を有す る高分子化合物とからなるブレンドポリマー及び Z又は正の屈折率異方性を有す る高分子化合物を形成するモノマー単位と負の屈折率異方性を有する高分子化合 物を形成するモノマー単位とからなる共重合体から構成されるフィルムであって、(D) (1) A blend polymer consisting of a polymer compound having a positive refractive index anisotropy and a polymer compound having a negative refractive index anisotropy and having a Z or a positive refractive index anisotropy. Monomer unit forming a high molecular compound and a polymer compound having a negative refractive index anisotropy A film comprising a copolymer comprising a monomer unit forming a product,
( 2 ) 該正の屈折率異方性を有する高分子化合物の R e ( 4 5 0 ) / R e ( 5 5 0 ) は該負の屈折率異方性を有する高分子化合物の R e ( 4 5 0 ) / R e ( 5 5 0 ) よりも大きく、 かつ (3 ) 負の屈折率異方性を有する、 配向フィルム。 (2) R e (450) / R e (550) of the polymer having the positive refractive index anisotropy is represented by R e ( (3) An oriented film having a refractive index anisotropy greater than 450) / Re (550).
ここで、 正又は負の屈折率異方性を有する高分子化合物とは、 正又は負の屈折 率異方性を有する配向フィルムを与える高分子化合物をいう。  Here, the polymer compound having a positive or negative refractive index anisotropy refers to a polymer compound which gives an oriented film having a positive or negative refractive index anisotropy.
本発明において第 1の光学異方素子に用いられる高分子配向フィルムは、 前述 したようにブレンドポリマーからなるものでも共重合体からなるものでもよい。 高分子配向フィルムを構成する高分子材料は、 上記の条件を満たすプレンドボ リマー又は共重合体であればよく、 耐熱性に優れ、 光学性能が良好で、 溶液製膜 ができる熱可塑性ポリマーである。 例えばポリアリレート系、 ポリエステル系、 ポリカーボネート系、 ポリオレフイン系、 ポリエーテル系、 ポリスルフィン系、 ポリスルホン系、 ポリエーテルスルホン系などの重合体から 1種類又は 2種類以 上を適宜選択することができる。 ただし、 配向フィルムの吸水率が 1重量%以下 でないと位相差フィルムとして実用する上で問題があるので、 フィルム材料はフ イルムの吸水率が 1重量%以下、 好ましくは 0 . 5重量%以下の条件を満たすよ うに選択することが重要である。  In the present invention, the polymer oriented film used for the first optically anisotropic element may be composed of a blend polymer or copolymer as described above. The polymer material constituting the polymer oriented film may be a blend polymer or a copolymer satisfying the above conditions, and is a thermoplastic polymer having excellent heat resistance, good optical performance, and capable of forming a solution. For example, one or more kinds of polymers such as polyarylate, polyester, polycarbonate, polyolefin, polyether, polysulfine, polysulfone, and polyethersulfone can be appropriately selected. However, if the water absorption of the oriented film is not 1% by weight or less, there is a problem in practical use as a retardation film. Therefore, the film material has a water absorption of 1% by weight or less, preferably 0.5% by weight or less. It is important to choose to meet the requirements.
ブレンドボリマーであれば、 光学的に透明である必要があることから相溶ブレ ンドまたは各々の高分子化合物の屈折率が略等しいことが好ましい。 ブレンドポ リマーの具体的な組み合わせとしては、 例えば負の光学異方性を有する高分子化 合物としてポリメチルメタクリレートと、 正の光学異方性を有する高分子化合物 としてポリ ビニリデンフロライ ド、 ポリエチレンオキサイ ド、 またはビ-リデン フロラィ ドートリフルォロエチレン共重合体の組み合わせ、 正の光学異方性を有 する高分子化合物としてポリフエ二レンォキサイドと、 負の光学異方性を有する 高分子化合物としてポリスチレン、 スチレン一ラウ口イルマレイミ ド共重合体、 スチレン一シクロへキシノレマレイミ ド共重合体、 またはスチレン一フエ二ノレマレ イミ ド共重合体の組み合わせ、 負の光学異方性を有するスチレン一マレイン酸無 水物共重合体と正の光学異方性を有するポリカーボネート、 また、 正の光学異方 性を有するァクリロニトリル一ブタジエン共重合体と負の光学異方性を有するァ タリロニトリルースチレン共重合体等を好適に挙げることができるが、 これらに 限定されるものではない。 特に透明性の観点から、 ポリスチレンと、 ポリ (2, 6—ジメチル一 1 , 4—フエ二レンオキサイ ド) 等のポリフエ二レンオキサイ ド との組み合わせが好ましい。 かかる組み合わせの場合、 該ポリスチレンの比率が 全体の 6 7重量%以上 7 5重量%以下を占めることが好ましい。 In the case of a blend polymer, since it is necessary to be optically transparent, it is preferable that the compatible blend or the refractive index of each polymer compound is substantially equal. Specific combinations of the blend polymers include, for example, polymethyl methacrylate as a polymer having negative optical anisotropy, and polyvinylidene fluoride and polyethylene oxalate as polymer having positive optical anisotropy. Or a combination of bilidene-fluoride-do-trifluoroethylene copolymer, polyphenylene oxide as a polymer compound having a positive optical anisotropy, and polystyrene as a polymer compound having a negative optical anisotropy Combination of styrene-laurate ilmaleimide copolymer, styrene-cyclohexinolemaleimide copolymer, or styrene-phenylenoleimide copolymer, styrene-maleic anhydride having negative optical anisotropy A polycarbonate having a positive optical anisotropy with the copolymer, Acrylonitrile-butadiene copolymer having a positive optical anisotropy and an optical anisotropic Preferable examples include, but are not limited to, a tarilonitrile styrene copolymer. In particular, from the viewpoint of transparency, a combination of polystyrene and a polyphenylene oxide such as poly (2,6-dimethyl-11,4-phenylene oxide) is preferable. In the case of such a combination, the ratio of the polystyrene preferably accounts for 67% by weight or more and 75% by weight or less of the whole.
また、 共重合体としては、 例えば、 ブタジエン一スチレン共重合体、 エチレン 一スチレン共重合体、 アクリロニトリル一ブタジエン共重合体、 アタリ口-トリ ルーブタジエン一スチレン共重合体、 ポリカーボネート共重合体、 ポリエステル 共重合体、 ポリエステルカーボネート共重合体、 ポリアリレート共重合体等を用 いることが出来る。 特に、 フルオレン骨格を有するセグメントは負の光学異方性 となり得るため、 フルオレン骨格を有するポリカーボネート共重合体、 ポリエス テル共重合体、 ポリエステルカーボネート共重合体、 ポリアリレート共重合体等 はより好ましく用いられる。  Examples of the copolymer include a butadiene-styrene copolymer, an ethylene-styrene copolymer, an acrylonitrile-butadiene copolymer, an Atari port-trilubutadiene-styrene copolymer, a polycarbonate copolymer, and a polyester copolymer. Polymers, polyester carbonate copolymers, polyarylate copolymers and the like can be used. In particular, since a segment having a fluorene skeleton can have negative optical anisotropy, a polycarbonate copolymer, a polyester copolymer, a polyester carbonate copolymer, a polyarylate copolymer, etc. having a fluorene skeleton are more preferably used. .
ビスフエノール類とホスゲンあるいは炭酸ジフヱニルなどの炭酸エステル形成 性化合物と反応させて製造されるポリカーボネート共重合体は透明性、 耐熱性、 生産性に優れており特に好ましく用いることが出来る。 ポリカーボネート共重合 体としては、フルオレン骨格を有する構造を含む共重合体であることが好ましい。 フルオレン骨格を有する成分は 1〜 9 9モル%含まれていることが好ましい。 本発明の配向フィルムの材料として好適なものは、 下記式 (1 ) で示される繰 り返し単位と、 下記式 (2 ) で示される繰り返し単位とから構成されるポリカー ポネートの配向フィルムからなり、 式 (1 ) で表わされる繰り返し単位は該ポリ カーボネート全体の 3 0〜9 0モル%を占め、 式 (2 ) で表わされる繰り返し単 位は全体の 7 0〜1 0モル%を占める材料である。  A polycarbonate copolymer produced by reacting a bisphenol with a phosgene or a carbonate-forming compound such as diphenyl carbonate is excellent in transparency, heat resistance and productivity, and can be particularly preferably used. The polycarbonate copolymer is preferably a copolymer containing a structure having a fluorene skeleton. The component having a fluorene skeleton is preferably contained at 1 to 99 mol%. A preferred material for the oriented film of the present invention is an oriented film of polycarbonate composed of a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2): The repeating unit represented by the formula (1) occupies 30 to 90 mol% of the entire polycarbonate, and the repeating unit represented by the formula (2) is a material occupying 70 to 10 mol% of the whole. .
Figure imgf000012_0001
Figure imgf000013_0001
上記式 (1) において、 1^〜1 8はそれぞれ独立に水素原子、 ハロゲン原子及 ぴ炭素数 1〜6の炭化水素基から選ばれる基を示し、 Xは式 (3) で示される基 ある。 また、 上記式 (2) において、 R9 〜!^ 6はそれぞれ独立に水素原子、 ノ、 ロゲン原子及ぴ炭素数 1〜22の炭化水素基から選ばれる基を示し、 Yは式 (4) で示される基から選ばれる基を示す。
Figure imgf000013_0002
Figure imgf000012_0001
Figure imgf000013_0001
In the above formula (1), 1 ^ to 18 each independently represent a group selected from a hydrogen atom, a halogen atom and a hydrocarbon group having 1 to 6 carbon atoms, and X is a group represented by the formula (3) . In addition, in the above formula (2), R 9 ~! ^ 6 independently represents a group selected from a hydrogen atom, a hydrogen atom, a halogen atom and a hydrocarbon group having 1 to 22 carbon atoms, and Y represents a group selected from the group represented by the formula (4).
Figure imgf000013_0002
Figure imgf000013_0003
上記式 (4) において、 R17〜R19、 1 21及び1 22はそれぞれ独立に水素原 子、 ハロゲン原子及び炭素数 1〜22の炭化水素基から選ばれる基を示し、 R20 及び R23はそれぞれ独立に炭素数 1〜20の炭化水素基から選ばれる基を示し、 では炭素数6〜1 0のァリール基である。
Figure imgf000013_0003
In the above formula (4), R 17 ~R 19 , 1 21 and 1 22 are each independently hydrogen atom, a halogen atom and a group selected from a hydrocarbon group having 1 to 22 carbon atoms, R 20 and R 23 Each independently represents a group selected from hydrocarbon groups having 1 to 20 carbon atoms; and represents an aryl group having 6 to 10 carbon atoms.
この材料は、 上記式 (1) で表わされるフルオレン骨格を有する繰り返し単位 と上記式(2) で表わされる繰り返し単位とからなるポリカーボネート共重合体、 および上記式 (1) で表わされるフルオレン骨格を有する繰り返し単位からなる ポリカーボネートと上記式 (2) で表わされる繰り返し単位からなるポリカーボ ネートとのブレンドポリマーである。 共重合体の場合.、 上記式 (1) および (2) で表わされる繰り返し単位はそれぞれ 2種類以上組み合わせてもよく、 組成物の 場合も、 上記繰り返し単位はそれぞれ 2種類以上組み合わせてもよい。 This material is a polycarbonate copolymer comprising a repeating unit having a fluorene skeleton represented by the above formula (1) and a repeating unit represented by the above formula (2), And a blend polymer of a polycarbonate comprising a repeating unit having a fluorene skeleton represented by the above formula (1) and a polycarbonate comprising a repeating unit represented by the above formula (2). In the case of a copolymer, two or more kinds of the repeating units represented by the above formulas (1) and (2) may be used in combination. In the case of a composition, two or more kinds of the above repeating units may be used in combination.
上記式 (1) において、 Ri Rsはそれぞれ独立に水素原子、 ハロゲン原子及 ぴ炭素数 1〜 6の炭化水素基から選ばれる。 かかる炭素数 1〜 6の炭化水素基と しては、 メチル基、 ェチル基、 イソプロピル基、 シクロへキシル基等のアルキル 基、 フエニル基等のァリール基が挙げられる。 この中で、 水素原子、 メチル基が 好ましい。  In the above formula (1), Ri Rs is independently selected from a hydrogen atom, a halogen atom and a hydrocarbon group having 1 to 6 carbon atoms. Examples of the hydrocarbon group having 1 to 6 carbon atoms include an alkyl group such as a methyl group, an ethyl group, an isopropyl group and a cyclohexyl group, and an aryl group such as a phenyl group. Of these, a hydrogen atom and a methyl group are preferred.
上記式 (2) において、 R9〜R16はそれぞれ独立に水素原子、 ハロゲン原子 及び炭素数 1〜 22の炭化水素基から選ばれる。 かかる炭素数 1〜 22の炭化水 素基としては、 メチル基、 ェチル基、 イソプロピル基、 シクロへキシル基等の炭 素数 1〜 9のアルキル基、 フエ二ル基、 ビフヱニル基、 ターフェ-ル基等のァリ ール基が挙げられる。 この中で、 水素原子、 メチル基が好ましい。 In the above formula (2), R 9 to R 16 are each independently selected from a hydrogen atom, a halogen atom and a hydrocarbon group having 1 to 22 carbon atoms. Examples of such a hydrocarbon group having 1 to 22 carbon atoms include an alkyl group having 1 to 9 carbon atoms such as a methyl group, an ethyl group, an isopropyl group and a cyclohexyl group, a phenyl group, a biphenyl group and a terphenyl group. And other aryl groups. Of these, a hydrogen atom and a methyl group are preferred.
上記式 (4) において、 R17〜R19、 1 21及び1 22はそれぞれ独立に水素原 子、 ハロゲン原子及び炭素数 1〜22の炭化水素基から選ばれる。 かかる炭素数 :!〜 22の炭化水素基としては、 メチル基、 ェチル基、 イソプロピル基、 シクロ へキシル基等の炭素数 1〜 9のアルキル基、 フエニル基、 ビフエ-ル基、 ターフ ェ-ル基等のァリール基が挙げられる。 この中で、 水素原子、 メチル基が好まし い。 R2。及ぴ R23はそれぞれ独立に炭素数 1〜20の炭化水素基から選ばれ、 ま た A rはフエニル基、 ナフチル基等の炭素数 6〜 1 0のァリール基である。 In the above formula (4), R 17 ~R 19 , 1 21 and 1 22 are each independently hydrogen atom, selected from a halogen atom and a hydrocarbon group having 1 to 22 carbon atoms. Such a hydrocarbon group having a carbon number of from 1 to 22 includes an alkyl group having 1 to 9 carbon atoms such as a methyl group, an ethyl group, an isopropyl group and a cyclohexyl group, a phenyl group, a biphenyl group and a terphenyl. And aryl groups such as a group. Of these, a hydrogen atom and a methyl group are preferred. R 2. R 23 is independently selected from a hydrocarbon group having 1 to 20 carbon atoms, and Ar is an aryl group having 6 to 10 carbon atoms such as a phenyl group and a naphthyl group.
上記式 (1) の含有率、 すなわち共重合体の場合共重合組成、 組成物の場合ブ レンド組成比は、 ポリカーボネート全体の 30〜90モル0 /0である。 かかる範囲 を外れた場合には、 測定波長 400〜700 nmにおいて位相差絶対値が短波長 ほど小さくなるということがない。 上記式 (1) の含有率は、 ポリカーボネート 全体の 35〜8 5モル0 /0が好ましく、 40〜80モル%がより好ましい。 ここで 上記モル比は共重合体、 ブレンドポリマーに関わらず、 配向フィルムを構成する ポリカーボネートのパルク全体で、 例えば核磁気共鳴 (NMR) 素子より求める ことができる。 The content of the above formula (1), that is, when copolymer composition of the copolymer, if blanking trend composition ratio of the composition is from 30 to 90 mole 0/0 of the total polycarbonate. Outside of this range, the absolute value of the phase difference does not decrease as the wavelength becomes shorter at the measurement wavelength of 400 to 700 nm. The content of the above formula (1) is preferably 35-8 5 mol 0/0 of the total polycarbonate, and more preferably 40 to 80 mol%. Here, the above molar ratio is determined by, for example, a nuclear magnetic resonance (NMR) element for the entire polycarbonate pulp constituting the oriented film regardless of the copolymer or the blended polymer. be able to.
この材 C C C——料におけるポリカーボネートとしては、 下記式 (5) で示される繰り返 し単位と、 下記式 (6) で示される繰り返し単位とから構成されるポリカーボネ 一ト共重合体及び またはポリカーボネート組成物 (プレンドポリマー) が好ま しい。  As the polycarbonate in the CCC material, a polycarbonate copolymer and / or a polycarbonate composition composed of a repeating unit represented by the following formula (5) and a repeating unit represented by the following formula (6): (Blended polymer) is preferred.
Figure imgf000015_0001
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0002
上記式 (5) において、 R24及び R25はそれぞれ独立に水素原子またはメチル 基から選ばれる基を示し、 上記式 (6) において、 1 26及び1 27はそれぞれ独立 に水素原子及ぴメチル基から選ばれる基を示し、 Zは式 (7) で示される基から 選ばれる基を示す。 In the above formula (5), R 24 and R 25 each independently represent a group selected from a hydrogen atom or a methyl group, in the above formula (6), 1 26 and 1 27 are each independently a hydrogen atom及Pi methyl And Z represents a group selected from groups represented by the formula (7).
Figure imgf000015_0003
Figure imgf000015_0003
さらに、 下記式 (8) 〜 (1 2) で示される繰り返し単位からなる共重合体に おいて、繰り返し単位(1 2) の割合が 40〜75モル0 /0であるもの、下記式(9) 及ぴ (1 2) で示される繰り返し単位からなる共重合体において (1 2) の割合 が 30〜70モル%であるもの、 下記式 (1 0) 及ぴ (1 2) で示される繰り返 し単位からなる共重合体において、 (1 2) の割合が 30〜70モル0 /0であるも の、 下記式 (8) 及び (1 1) で示される繰り返し単位からなる共重合体にぉレ、 て、 (1 1) の割合が 40〜 75モル0 /0であることがそれぞれより好ましい。 Furthermore, those Oite a copolymer comprising repeating units represented by the following formula (8) to (1 2), the proportion of the repeating unit (1 2) 40 to 75 mole 0/0, the following equation (9 ) And (12) a copolymer comprising the repeating unit represented by (12), wherein the proportion of (12) is 30 to 70 mol%, and a copolymer represented by the following formulas (10) and (12): in the copolymer consisting return Shi units, the ratio is also 30 to 70 mol 0/0 (1 2), a copolymer comprising repeating units represented by the following formula (8) and (1 1) Ore, Te, it is preferable to respectively a proportion from 40 to 75 mole 0/0 (1 1).
Figure imgf000016_0001
最も好ましい材料はビスフ: ノール A(B P A、 上記式 (8 ) に対応) とビスク レゾールフルオレン(B C F、 上記式 (1 2 ) に対応) を含む共重合体又は高分子 プレンドあるいはこれらの混合物であり、 これらの成分の配合比は B C Fの含有 率が 5 5〜7 5モル0 /0、 より好ましくは 5 5〜 7 0モル0 /。である。 これらの材料 において、 より理想に近い; Z 4板やえ / 2板を得ることができる。
Figure imgf000016_0001
The most preferred material is a copolymer or polymer blend containing bisphanol A (BPA, corresponding to the above formula (8)) and biscresol fluorene (BCF, corresponding to the above formula (12)), or a mixture thereof. , blending ratio of these components the content of BCF 5 5 to 7 5 mole 0/0, more preferably 5 5-7 0 mole 0 /. It is. For these materials, we can get closer to ideal; Z 4 board and 1/2 board.
上記した共重合体及ぴ Zまたはブレンドポリマーは公知の方法によって製造し 得る。ポリカーボネートはジヒ ドロキシ化合物とホスゲンとの重縮合による方法、 溶融重縮合法等が好適に用いられる。 ブレンドの場合は、 相溶性ブレンドが好ま しいが、 完全に相溶しなくても成分間の屈折率を合わせれば成分間の光散乱を抑 え、 透明性を向上させることが可能である。  The above-mentioned copolymer and Z or the blend polymer can be produced by a known method. As the polycarbonate, a method by polycondensation of a dihydroxy compound and phosgene, a melt polycondensation method and the like are suitably used. In the case of a blend, a compatible blend is preferred, but even if they are not completely compatible, light scattering between the components can be suppressed and transparency can be improved by adjusting the refractive index between the components.
本発明における高分子配向フィルムの材料高分子化合物の極限粘度は 0 . 3〜 2 . 0 d 1 Z gであることが好ましい。 これより低粘度では脆くなり機械的強度 が保てないといった問題があり、 これより高粘度では溶液粘度が上がりすぎるた め溶液製膜においてダイラインの発生等の問題や、 重合終了時の精製が困難にな るといった問題がある。 The limiting viscosity of the material polymer compound of the polymer oriented film in the present invention is 0.3 to 0.3. It is preferably 2.0 d 1 Z g. If the viscosity is lower than this, there is a problem that the material becomes brittle and the mechanical strength cannot be maintained.If the viscosity is higher than this, the solution viscosity becomes too high, which causes problems such as generation of die lines in solution film formation, and purification at the end of polymerization is difficult. There is a problem that it becomes.
本発明における高分子配向フィルムは透明であることが好ましく、 ヘイズ値は 3 %以下、 全光線透過率は 8 5 %以上であることが好ましい。 また、 前記高分子 配向フィルム材料のガラス転移点温度は 1 0 0 °C以上、 より好ましくは 1 2 0 °C 以上であることが好ましい。 さらに、 フエニルサリチル酸、 2—ヒ ドロキシベン ゾフヱノン、 トリフヱニルフォスフェート等の紫外線吸収剤や、 色味を変えるた めのブルーィング剤、 酸化防止剤等を添加してもよい。  The polymer oriented film in the invention is preferably transparent, has a haze value of 3% or less, and a total light transmittance of 85% or more. The glass transition temperature of the polymer oriented film material is preferably 100 ° C. or higher, more preferably 120 ° C. or higher. Further, ultraviolet absorbers such as phenylsalicylic acid, 2-hydroxybenzophenone, and triphenyl phosphate, a bluing agent for changing color, and an antioxidant may be added.
本発明における高分子配向フィルムは上記ポリカーボネートなどのフィルムを 延伸等により配向させたフィルムを用いるものである。 かかるフィルムの製造方 法としては、 公知の溶融押し出し法、 溶液キャス ト法等が用いられるが、 膜厚む ら、 外観等の観点から溶液キャスト法がより好ましく用いられる。 溶液キャスト 法における溶剤としては、 メチレンクロライド、 ジォキソラン等が好適が用いら れる。  As the polymer oriented film in the present invention, a film obtained by orienting a film of the above polycarbonate or the like by stretching or the like is used. As a method for producing such a film, a known melt extrusion method, a solution casting method, or the like is used, and a solution casting method is more preferably used from the viewpoint of film thickness unevenness, appearance, and the like. As the solvent in the solution casting method, methylene chloride, dioxolane or the like is preferably used.
また、 延伸方法も公知の延伸方法を使用し得るが、 好ましくは縦一軸延伸であ る。 フィルム中には延伸性を向上させる目的で、 公知の可塑剤であるジメチルフ タレート、 ジェチルフタレート、 ジブチルフタレート等のフタル酸エステル、 ト リブチルフォスフェート等のリン酸エステル、 脂肪族二塩基エステル、 グリセリ ン誘導体、 グリコール誘導体等を含有してもよい。 延伸時には、 先述のフィルム 製膜時に用いた有機溶剤をフィルム中に残留させて延伸しても良い。 この有機溶 剤の量としてはポリマー固形分対比 1〜2 0質量。 /0であることが好ましい。 In addition, a known stretching method can be used for the stretching method, but it is preferably longitudinal uniaxial stretching. In the film, for the purpose of improving stretchability, known plasticizers such as phthalate esters such as dimethyl phthalate, getyl phthalate and dibutyl phthalate, phosphate esters such as tributyl phosphate, and aliphatic dibasic esters, It may contain a glycerin derivative, a glycol derivative or the like. At the time of stretching, the organic solvent used at the time of film formation described above may be allowed to remain in the film for stretching. The amount of the organic solvent is 1 to 20 mass relative to the polymer solid content. / 0 is preferred.
また、 上記可塑剤や液晶等の添加剤は、 高分子配向フィルムの位相差波長分散 を変化させ得るが、 添加量は、 ポリマー固形分対比 1 0質量%以下が好ましく、 3質量%以下がより好ましい。  Further, the above-mentioned additives such as plasticizer and liquid crystal can change the wavelength dispersion of retardation of the polymer oriented film, but the amount of addition is preferably 10% by mass or less, more preferably 3% by mass or less based on the polymer solid content. preferable.
高分子配向フィルムの膜厚は特に限定されるものではないが、 1 i mから 4 0 0 mであることが好ましい。  The thickness of the polymer oriented film is not particularly limited, but is preferably from 1 im to 400 m.
高分子配向フィルムの位相差を短波長ほど小さくするためには、 特定の化学構 造を有することが必須条件であり、 位相差波長分散はかなりの部分がその化学構 造で決まるが、 延伸条件、 ブレンド状態等によっても変動することに留意される べきである。 In order to reduce the retardation of the polymer oriented film at shorter wavelengths, a specific chemical structure is required. It is an essential condition to have a structure, and it should be noted that the chromatic dispersion of the retardation depends to a large extent on its chemical structure, but it also varies depending on stretching conditions, blending conditions, and the like.
高分子配向フイルムは特に 1枚の配向フィルムをもつて波長依存性が少ない良 好な 4分の 1波長板 ( L Z 4板) を構成することができるものであるため、 下記 式 (Π ) を満たすものである。  Since a polymer oriented film can form a favorable quarter-wave plate (LZ 4 plate) having a small wavelength dependence particularly with one oriented film, the following formula (Π) is used. To satisfy.
0 . 2≤R e ( λ ) / λ≤ 0 . 3 ( Π )  0 .2≤R e (λ) / λ≤ 0.3 (Π)
本発明に用いられる第 2の光学異方素子は、 光学的に正の一軸性を示す液晶性 高分子物質、 具体的には光学的に正の一軸性を示す液晶性高分子化合物または少 なくとも 1種の該液晶性高分子化合物を含有する光学的に正の一軸性を示す液晶 性高分子組成物から成り、 該液晶性高分子化合物または該液晶性高分子組成物が 液晶状態において形成した平均チルト角が 5 ° 〜3 5 ° のネマチックハイブリツ ド配向構造を固定化した液晶フィルム (Α) を少なくとも含み、 可視光域で略 4 分の 1波長の位相差を有する素子である。  The second optically anisotropic element used in the present invention is an optically positive uniaxial liquid crystal polymer material, specifically, an optically positive uniaxial liquid crystal polymer compound or a small amount thereof. And a liquid crystal polymer composition having optically positive uniaxiality containing at least one liquid crystal polymer compound, wherein the liquid crystal polymer compound or the liquid crystal polymer composition is formed in a liquid crystal state. An element having at least a liquid crystal film (Α) having a fixed nematic hybrid alignment structure having an average tilt angle of 5 ° to 35 °, and having a phase difference of about a quarter wavelength in the visible light region.
ここで、 ネマチックハイブリッド配向とは、 液晶分子がネマチック配向してお り、 このときの液晶分子のダイレクターとフィルム平面のなす角がフィルム上面 と下面とで異なった配向形態を言う。 したがって、 上面界面近傍と下面界面近傍 とで該ダイレクターとフィルム平面との成す角度が異なっていることから、 該フ イルムの上面と下面との間では該角度が連続的に変化しているものといえる。 またネマチックハイプリッド配向状態を固定化したフィルムは、 液晶分子のダ ィレクターがフィルムの膜厚方向のすべての場所において異なる角度を向いてい る。 したがって当該フィルムは、 フィルムという構造体として見た場合、 もはや 光軸は存在しない。  Here, the nematic hybrid alignment refers to an alignment mode in which the liquid crystal molecules are in a nematic alignment, and the angle between the director of the liquid crystal molecules and the film plane is different between the upper surface and the lower surface of the film. Therefore, since the angle formed by the director and the film plane is different between the vicinity of the upper surface interface and the vicinity of the lower surface interface, the angle continuously changes between the upper surface and the lower surface of the film. It can be said that. In a film in which the nematic hybrid alignment state is fixed, directors of liquid crystal molecules are oriented at different angles everywhere in the film thickness direction. Thus, the film no longer has an optical axis when viewed as a film structure.
また本発明でいう平均チルト角とは、 液晶フィルムの膜厚方向における液晶分 子のダイレクターとフィルム平面との成す角度の平均値を意味するものである。 本発明に供される液晶フィルムは、 フィルムの一方の界面付近ではダイレクター とフィルム平面との成す角度が、 絶対値として通常 2 0 ° 〜9 0 ° 、 好ましくは 3 0 ° 〜7 0 ° の角度をなしており、 当該面の反対においては、 絶対値として通 常 0 ° 〜2 0 ° 、 好ましくは 0 ° 〜1 0 ° の角度を成しており、 その平均チルト 角は、 絶対値として通常 5 ° 〜4 5 ° 、 好ましくは 7 ° 〜4 0 ° 、 さらに好まし くは 1 0 ° 〜3 8 ° 、 最も好ましくは 1 5 ° 〜3 5 ° である。 平均チルト角が上 記範囲から外れた場合、 コントラス トの低下等の恐れがあり望ましくない。 なお 平均チルト角は、 クリスタルローテーション法を応用して求めることができる。 本発明に用いられる第 2の光学異方素子を構成する液晶フィルム (A) は、 光 学的に正の一軸性を示す液晶性高分子物質より実質的に形成され、 該液晶性高分 子物質が液晶状態において形成したネマチックハイプリッド配向状態を固定化し たものであれば、 その製造方法については特に制限はない。 例えば、 低分子液晶 を液晶状態においてネマチックハイプリッド配向に形成後、 光架橋や熱架橋によ つて固定化して得られる液晶フィルムや、 高分子液晶を液晶状態においてネマチ ックハイプリッド配向に形成後、 冷却することによって当該配向を固定化して得 られる液晶フィルムを用いることができる。なお本発明でいう液晶フィルムとは、 フィルム自体が液晶性を呈するか否かを問うものではなく、 低分子液晶、 高分子 液晶などの液晶物質をフィルム化することによって得られるものを意味する。 また液晶フィルム (A) 、 半透過反射型液晶表示素子に対してより好適な視 野角改良効果を発現するための該フィルムの膜厚は、 対象とする液晶表示素子の 方式や種々の光学パラメーターに依存するので一概には言えないが、 通常 0 . 2 μ m〜 1 0 ^ m、 好ましくは 0 . 3 μ π!〜 5 μ m、 特に好ましくは 0 . 5 m〜 2 i mの範囲である。 膜厚が 0 . 2 μ πι未満の時は、 十分な補償効果が得られな い恐れがある。 また膜厚が 1 0 mを越えるとディスプレーの表示が不必要に色 づく恐れがある。 Further, the average tilt angle in the present invention means the average value of the angle between the director of the liquid crystal molecule and the film plane in the thickness direction of the liquid crystal film. In the liquid crystal film used in the present invention, the angle formed between the director and the film plane near one interface of the film is usually 20 ° to 90 °, preferably 30 ° to 70 ° as an absolute value. At the opposite side of the surface, the angle is usually 0 ° to 20 °, preferably 0 ° to 10 ° as an absolute value, and its average tilt is The angle is usually between 5 ° and 45 ° in absolute value, preferably between 7 ° and 40 °, more preferably between 10 ° and 38 °, most preferably between 15 ° and 35 °. If the average tilt angle is out of the above range, the contrast may be lowered, which is not desirable. The average tilt angle can be obtained by applying the crystal rotation method. The liquid crystal film (A) constituting the second optically anisotropic element used in the present invention is substantially formed of a liquid crystalline polymer material having optically positive uniaxiality. There is no particular limitation on the method of producing the substance as long as the substance has a fixed nematic hybrid alignment state formed in a liquid crystal state. For example, a low-molecular liquid crystal is formed in a nematic hybrid orientation in a liquid crystal state, and then a liquid crystal film obtained by immobilization by photo-crosslinking or thermal cross-linking, or a polymer liquid crystal is formed in a nematic hybrid orientation in a liquid-crystal state, and then cooled. Thus, a liquid crystal film obtained by fixing the orientation can be used. The liquid crystal film in the present invention does not matter whether the film itself exhibits liquid crystallinity, but means a film obtained by forming a liquid crystal material such as a low-molecular liquid crystal or a high-molecular liquid crystal into a film. The film thickness of the liquid crystal film (A) for exhibiting a more favorable viewing angle improving effect on the transflective liquid crystal display element depends on the type of the target liquid crystal display element and various optical parameters. Although it cannot be said unconditionally because it depends, it is usually 0.2 μm to 10 ^ m, preferably 0.3 μπ! To 5 μm, particularly preferably 0.5 m to 2 im. When the film thickness is less than 0.2 μπι, a sufficient compensation effect may not be obtained. If the film thickness exceeds 10 m, the display may be unnecessarily colored.
次に、 図 1から図 3を用いて液晶フィルム (A) からなる光学異方素子の上下、 該光学異方素子のチルト方向および液晶セル層のプレチルト方向をそれぞれ以下 に定義する。  Next, the upper and lower sides of the optically anisotropic element made of the liquid crystal film (A), the tilt direction of the optically anisotropic element, and the pretilt direction of the liquid crystal cell layer are defined below with reference to FIGS.
まず図 1および図 2において、 液晶フィルム (A) からなる光学異方素子の上 下を、 該光学異方素子を構成する液晶フィルム (A) のフィルム界面近傍におけ る液晶分子ダイレクターとフィルム平面との成す角度によつてそれぞれ定義する と、 液晶分子のダイレクターとフィルム平面との成す角度が鋭角側で 2 0〜9 0 度の角度を成している面を b面とし、 該角度が鋭角側で 0〜 2 0度の角度を成し ている面を C面とする。 First, in FIGS. 1 and 2, the liquid crystal molecule director and the film near the film interface of the liquid crystal film (A) constituting the optically anisotropic element are positioned above and below the optically anisotropic element composed of the liquid crystal film (A). If the angle between the director of the liquid crystal molecules and the plane of the film forms an angle of 20 to 90 degrees on the acute angle side with respect to the angle between the plane and the plane, it is defined as the b-plane. Make an angle of 0 to 20 degrees on the acute angle side The surface that is facing is the C surface.
この光学異方素子の b面から液晶フィルム層を通して c面を見た場合、 液晶分 子ダイレクターとダイレクターの c面への投影成分が成す角度が鋭角となる方向 で、 かつ投影成分と平行な方向を光学異方素子のチルト方向と定義する。  When the c-plane is viewed from the b-plane of the optically anisotropic element through the liquid crystal film layer, the angle formed by the liquid crystal molecular director and the component projected onto the c-plane of the director becomes an acute angle and is parallel to the projected component. Is defined as the tilt direction of the optically anisotropic element.
次いで図 3において、 通常、 液晶セル層のセル界面では、 駆動用低分子液晶は セル界面に対して平行ではなくある角度もって傾いており一般にこの角度をプレ チルト角と言うが、 セル界面の液晶分子のダイレクターとダイレクターの界面へ の投影成分とがなす角度が鋭角である方向で、 かつダイレクターの投影成分と平 行な方向を液晶セル層のプレチルト方向と定義する。  Next, in FIG. 3, at the cell interface of the liquid crystal cell layer, the driving low-molecular liquid crystal is not parallel to the cell interface but is inclined at an angle, and this angle is generally called a pretilt angle. The direction in which the angle between the director of the molecule and the component projected onto the interface of the director is an acute angle, and the direction parallel to the projected component of the director is defined as the pretilt direction of the liquid crystal cell layer.
また、 第 2の光学異方素子は、 他の高分子延伸フィルムやまたはネマチック配 向を固定化した液晶フィルム (B ) と組み合わせても使用することができる。 高分子延伸フィルムとしては、 一軸性あるいは二軸性を示すような物質で、 例 えば、 ポリカーボネート (P C ) 、 ポリメタタリレート (P MMA) 、 ポリビニ ルアルコール (P V A) 、 日本合成ゴム (株) 製の A R T O N (商品名) フィル ムなどの延伸フィルムを使用することができる。 この場合も、 コス トアップの問 題を勘案すれば、 液晶フィルム 1枚と高分子延伸フィルム 1枚の組み合わせが実 用上好ましい。  Further, the second optically anisotropic element can be used in combination with another polymer stretched film or a liquid crystal film (B) in which the nematic orientation is fixed. As a polymer stretched film, a material exhibiting uniaxial or biaxial properties, for example, polycarbonate (PC), polymethacrylate (PMMA), polyvinyl alcohol (PVA), manufactured by Nippon Synthetic Rubber Co., Ltd. A stretched film such as ARTON (trade name) film can be used. Also in this case, in view of the problem of cost increase, the combination of one liquid crystal film and one stretched polymer film is practically preferable.
液晶フィルム (B ) は、 ネマチック配向状態が固定化されたものであれば、 如 何様な液晶から形成されたものであっても構わない。 例えば低分子液晶を液晶状 態においてネマチック配向に形成後、 光架橋や熱架橋によって固定化して得られ る液晶フィルムや、 高分子液晶を液晶状態においてネマチック配向に形成後、 冷 却することによって当該配向を固定化して得られる液晶フィルムを用いることが できる。 なお本発明でいう液晶フィルム (B ) とは、 液晶フィルム (A) と同様 にフィルム自体が液晶性を呈するか否かを問うものではなく、 低分子液晶、 高分 子液晶などの液晶物質をフィルム化することによって得られるものを意味する。 また第 2の光学異方素子に含まれる液晶フィルムとしては、 液晶フィルム単体 として使用することも可能であり、 支持基板として透明プラスチックフィルムを 設けて使用することも可能である。 液晶フィルム単体として使用する場合は、 該 偏光板を作製するときに用いるポリエステルやトリァセチルセルロース等の透明 プラスチックフィルムに液晶フィルムを積層した後、 偏光板と一体化することに より作製できる。 The liquid crystal film (B) may be formed of any liquid crystal as long as the nematic alignment state is fixed. For example, a liquid crystal film obtained by forming a low-molecular liquid crystal in a nematic orientation in a liquid crystal state and then immobilizing it by photocrosslinking or thermal crosslinking, or a polymer liquid crystal formed in a nematic orientation in a liquid crystal state and then cooled. A liquid crystal film obtained by fixing the orientation can be used. The liquid crystal film (B) referred to in the present invention does not ask whether the film itself exhibits liquid crystallinity as in the case of the liquid crystal film (A), but refers to a liquid crystal substance such as a low molecular liquid crystal or a high molecular liquid crystal. Means obtained by forming a film. Further, as the liquid crystal film included in the second optically anisotropic element, a liquid crystal film alone can be used, and a transparent plastic film can be provided as a support substrate and used. When used as a liquid crystal film alone, a transparent material such as polyester or triacetyl cellulose used for producing the polarizing plate may be used. It can be manufactured by laminating a liquid crystal film on a plastic film and then integrating it with a polarizing plate.
本発明の第 2の光学異方素子のリターデーション値 (複屈折 Δ nと膜厚 dとの 積) について説明する。  The retardation value (product of birefringence Δn and film thickness d) of the second optically anisotropic element of the present invention will be described.
液晶フィルム (A) の法線方向から見た場合の面内の見かけのリタ"デーショ ン値としては、 ネマチックハイブリッド配向したフィルムでは、 ダイレクターに 平行な方向の屈折率 (以下 n eと呼ぶ) と垂直な方向の屈折率 (以下 n oと呼ぶ) が異なっているおり、 n eから n oを引いた値を見かけ上の複屈折率とした場合、 見かけ上のリタ一デーシヨン値は見かけ上の複屈折率と絶対膜厚との積で与えら れるとする。 この見かけ上のリタ一デーシヨン値は、 エリプソメ トリー等の偏光 光学測定により容易に求めることができる。  The apparent in-plane retardation value when viewed from the normal direction of the liquid crystal film (A) is the refractive index in the direction parallel to the director (hereafter referred to as ne) in a nematic hybrid oriented film. The refractive index in the vertical direction (hereinafter referred to as no) is different, and when the value obtained by subtracting no from ne is the apparent birefringence, the apparent retardation value is the apparent birefringence. The apparent retardation value can be easily obtained by a polarization optical measurement such as ellipsometry.
前記第 2の光学異方素子が、 ネマチックハイプリッド配向を固定化した液晶フ イルム (A) のみから構成される場合と、 液晶フィルム (A) と高分子延伸フィ ルムまたはネマチック配向を固定化した液晶フィルム (B) とを組み合わせた場 合に分けて説明する。  The case where the second optically anisotropic element is composed of only the liquid crystal film (A) in which the nematic hybrid alignment is fixed, and the case where the liquid crystal film (A) and the polymer stretched film or the nematic alignment are fixed. The explanation will be made separately for the case where it is combined with the liquid crystal film (B).
ネマチックハイプリッド配向した液晶フィルム (A)のみから構成される場合、 液晶フィルム (A) の見かけ上のリタ一デーシヨン値は、 550 nmの単色光に 対して、 通常、 70 nm〜 1 80 nm、 好ましくは 90 nm〜 1 60 nm、 特に 好ましくは 1 20 nm〜l 50 nmの範囲にすることにより、 良好な円偏光特性 が得られる。 見かけのリターデ一.シヨン値が 70 nm未満、 あるいは 1 80 nm より大きい時は、 液晶表示素子に不必要な色付きが生じる恐れがある。  When the liquid crystal film (A) is composed of only the nematic hybrid oriented liquid crystal film (A), the apparent retardation value of the liquid crystal film (A) is usually 70 nm to 180 nm for a monochromatic light of 550 nm. Good circular polarization characteristics can be obtained by setting the range to preferably 90 nm to 160 nm, particularly preferably 120 nm to 150 nm. If the apparent retardation value is less than 70 nm or greater than 180 nm, unnecessary coloration may occur on the liquid crystal display device.
液晶フィルム (A) と高分子延伸フィルムまたは液晶フィルム (B) とを組み 合わせた場合は、 特開平 1 0— 0688 1 6号公報に記載のように、 5 50 nm の単色光での複屈折光の位相差が略 1Z4波長である 1Z4波長板と 5 50 nm の単色光での複屈折光の位相差が略 1 Z 2波長である 1 Z 2波長板とを、 それら の遅相軸が交差した状態で貼り合わせることにより、 良好な円偏光特性が得られ る。 1 Z4波長板のリタ一デーシヨン値は、 通常、 70 ηπ!〜 1 80 nm、 好ま しくは 90 nm〜 1 6 0 nm、 特に好ましくは 1 20 nm〜 1 50 nmの範囲で ある。 1 / 2波長板のリターデーション値は、 通常 1 80 ηπ!〜 320 nm、 好 ましくは 2 0 0 n m〜 3 0 0 n m、 特に好ましくは 2 2 0 n m〜 2 8 0 n mの範 囲である。 1ノ4波長板と 1 2波長板のリタ一デーシヨン範囲が上記から外れ た場合、 液晶表示素子に不必要な色付きが生じる恐れがある。 When the liquid crystal film (A) and the polymer stretched film or the liquid crystal film (B) are combined, as described in JP-A-10-0668816, birefringence with 550 nm monochromatic light is used. The 1Z4 wavelength plate whose light phase difference is approximately 1Z4 wavelength and the 1Z2 wavelength plate whose phase difference of birefringent light of 550 nm monochromatic light is approximately 1Z2 wavelength, and their slow axes are Good circular polarization characteristics can be obtained by laminating in a crossed state. 1 The retardation value of a Z4 wave plate is typically 70 ηπ! The range is from 180 nm to 180 nm, preferably from 90 nm to 160 nm, and particularly preferably from 120 nm to 150 nm. The retardation value of a half-wave plate is usually 1 80 ηπ! ~ 320 nm, good It is preferably in the range of 200 nm to 300 nm, particularly preferably in the range of 220 nm to 280 nm. If the retardation range of the 1/4 wavelength plate and the 1/2 wavelength plate deviates from the above range, unnecessary coloring may occur on the liquid crystal display device.
1 / 4波長板の遅相軸と 1 2波長板の遅相軸のなす角度は、 通常、 鋭角側で 4 0度〜 9 0度、 好ましくは 5 0度〜 8 0度、 特に好ましくは 5 5度〜 7 5度の 範囲である。  The angle between the slow axis of the 1/4 wavelength plate and the slow axis of the 12 wavelength plate is usually 40 to 90 degrees, preferably 50 to 80 degrees, particularly preferably 5 degrees on the acute angle side. The range is 5 degrees to 75 degrees.
ネマチックハイブリッド配向を固定化した液晶フィルム (A) は、 1 / 4波長 板に使用しても良いし、 1 Z 2波長板に使用してもよい。  The liquid crystal film (A) in which the nematic hybrid alignment is fixed may be used for a 1/4 wavelength plate or a 1Z 2 wavelength plate.
1 / 4波長板に液晶フィルム (A) を使用する場合は、 1 / 2波長板には高分 子延伸フィルムまたは液晶フィルム (B ) を使用し、 1ノ 2波長板に液晶フィル ム (A) を使用する場合は、 1 Z 4波長板に高分子延伸フィルムまたは液晶フィ ルム (B ) を使用すれば良い。  When using a liquid crystal film (A) for the 1/4 wavelength plate, use a polymer stretched film or liquid crystal film (B) for the 1/2 wavelength plate, and use a liquid crystal film (A) for the 1/4 wavelength plate. )), A stretched polymer film or liquid crystal film (B) may be used for the 1Z4 wavelength plate.
第 2の光学異方素子として、 液晶フィルム (A) 1枚のみを半透過反射型液晶 表示素子に用いる場合について説明する。 液晶フィルム (A) は液晶セルの第 2 の基板と偏光板との間に配置するのが好ましい。 ここで液晶フィルム (A) の配 置条件について図 6を用いて説明する。 ■  The case where only one liquid crystal film (A) is used for a transflective liquid crystal display device as the second optical anisotropic device will be described. The liquid crystal film (A) is preferably disposed between the second substrate of the liquid crystal cell and the polarizing plate. Here, the conditions for disposing the liquid crystal film (A) will be described with reference to FIG. ■
図 6の液晶セル 1 5における、 上側基板のプレチルト方向に重ね合わさる直線 および下側基板のプレチルト方向に重ね合わさる直線を、 それぞれ仮定する。 こ の 2つの直線を同一平面に投影し、 このとき直線が交差する点を中心として形成 される 4つの角度のうち、 鋭角側の 2つの角度が、 それぞれ左右対称の角度とな るような直線を引く。 この直線を、 本発明において 2等分線と定義する。 なお上 側基板のプレチルト方向に重ね合わさる直線と下側基板のプレチルト方向に重ね 合わさる直線とが重ね合わさる場合 (すなわち、 2つの直線が平行の場合) は、 その重ね合わさる直線が、 本発明で言う 2等分線となる。  In the liquid crystal cell 15 in FIG. 6, a straight line overlapping in the pretilt direction of the upper substrate and a straight line overlapping in the pretilt direction of the lower substrate are assumed. These two straight lines are projected on the same plane, and the two angles on the acute side of the four angles formed around the point where the straight lines intersect become straight symmetrical angles. pull. This straight line is defined as a bisector in the present invention. When a straight line overlapping in the pretilt direction of the upper substrate and a straight line overlapping in the pretilt direction of the lower substrate overlap (that is, when two straight lines are parallel), the overlapping straight line is referred to in the present invention. It becomes a bisector.
この 2等分線と液晶フィルム (A) のチルト方向を基準とする直線成分との成 す角度が、 通常、 絶対値として 0度〜 3 0度、 好ましくは 0度〜 2 0度、 さらに 好ましくは 0度〜 1 0度、 もっとも好ましくは概ね 0度となるように配置するこ とが望ましい。 両者のなす角度が 3 0度より大きい場合、 十分な視野角捕償効果 が得られない恐れがある。 次に、 第 2の光学異方素子として液晶フィルム (A) 1枚と高分子延伸フィル ム 1枚あるいは液晶フィルム (B ) 1枚を組み合わせて半透過反射型液晶表示素 子に用いる場合について説明する。 The angle formed by the bisector and the linear component based on the tilt direction of the liquid crystal film (A) is usually 0 to 30 degrees, preferably 0 to 20 degrees, and more preferably an absolute value. Is desirably arranged so as to be 0 to 10 degrees, most preferably approximately 0 degrees. If the angle between the two is greater than 30 degrees, sufficient viewing angle compensation may not be obtained. Next, the case where a liquid crystal film (A) and a polymer stretched film or a liquid crystal film (B) are combined as a second optically anisotropic element and used as a transflective liquid crystal display element will be described. I do.
液晶フィルム (A) の配置は上述の 1枚のみを使用する場合と同様の配置にす ることが好ましい。 すなわち、 液晶フィルム中の液晶性高分子のチルト方向と前 記 2等分線の方向とがおおむね一致することが好ましい。 チルト方向とプレチル ト方向のなす角度は 0度から 3 0度の範囲が好ましく、 より好ましくは 0度から 2 0度の範囲であり、 特に好ましくは 0度から 1 0度の範囲である。  It is preferable that the arrangement of the liquid crystal film (A) is the same as the above-described arrangement in which only one film is used. That is, it is preferable that the tilt direction of the liquid crystalline polymer in the liquid crystal film substantially coincides with the direction of the bisector. The angle between the tilt direction and the pretilt direction is preferably in the range of 0 to 30 degrees, more preferably in the range of 0 to 20 degrees, and particularly preferably in the range of 0 to 10 degrees.
本発明の半透過反射型液晶表示素子において、 光拡散層、 パックライ ト、 光制 御フィルム、 導光板、 プリズムシートとしては、 特に制限されず公知のものを使 用することができる。  In the transflective liquid crystal display device of the present invention, the light diffusion layer, the pack light, the light control film, the light guide plate, and the prism sheet are not particularly limited, and known materials can be used.
本発明の半透過反射型液晶表示素子は、 前記した構成部材以外にも他の構成部 材を付設することができる。 例えば、 カラーフィルターを本発明の液晶表示素子 に付設することにより、 色純度の高いマルチカラー又はフルカラー表示を行うこ とができるカラ一液晶表示素子を作製することができる。  In the transflective liquid crystal display element of the present invention, other constituent members can be additionally provided in addition to the constituent members described above. For example, by attaching a color filter to the liquid crystal display element of the present invention, a color liquid crystal display element capable of performing multicolor or full-color display with high color purity can be manufactured.
[産業上の利用可能性] [Industrial applicability]
本発明の半透過反射型液晶表示素子は、 透過モードにおける表示が明るく、 高 コントラストであり、 薄く設計することが可能であり、 視野角依存性が少ないと いう特徴を有する。  The transflective liquid crystal display element of the present invention is characterized in that the display in the transmission mode is bright, has high contrast, can be designed to be thin, and has little viewing angle dependence.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下、 本発明を実施例おょぴ比較例によりさらに詳細に説明するが、 本発明は これらに限定されるものではない。 なお、 本実施例におけるリタ一デーシヨン Δ n dは特に断りのない限り波長 5 5 0 n mにおける値とする。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Note that the retardation Δnd in this embodiment is a value at a wavelength of 550 nm unless otherwise specified.
(実施例 1 ) (Example 1)
本発明の半透過反射型液晶表示素子の概略については図 4を用いて、 実施例 1 の構成については図 5を用いて説明する。 第 2の基板 8に A 1等の反射率の高い材料で形成された反射電極 6と I TO等 の透過率の高い材料で形成された透明電極 7とが設けられ、 第 1の基板 3に対向 電極 4が設けられ、 反射電極 6及び透過電極 7と対向電極 4との間に正の誘電率 異方性を示す液晶材料からなる液晶層 5が挟持されている。 第 1の基板 3の対向 電極 4が形成された側の反対面に第 1の光学異方素子 2及び偏光板 1が設けられ ており、 第 2の基板 8の反射電極 6及ぴ透過電極 7が形成された面の反対側に第 '2の光学異方素子 9及ぴ偏光板 1 0が設けられている。 偏光板 10の背面側には バックライト 1 1が設けられている。 An outline of the transflective liquid crystal display device of the present invention will be described with reference to FIG. 4, and a configuration of the first embodiment will be described with reference to FIG. The second substrate 8 is provided with a reflective electrode 6 formed of a material having a high reflectance such as A1 and a transparent electrode 7 formed of a material having a high transmittance such as ITO. A counter electrode 4 is provided, and a liquid crystal layer 5 made of a liquid crystal material having a positive dielectric anisotropy is sandwiched between the reflection electrode 6 and the transmission electrode 7 and the counter electrode 4. A first optically anisotropic element 2 and a polarizing plate 1 are provided on a surface of the first substrate 3 opposite to the side on which the counter electrode 4 is formed, and a reflection electrode 6 and a transmission electrode 7 of a second substrate 8 are provided. The second optically anisotropic element 9 and the polarizing plate 10 are provided on the side opposite to the surface on which is formed. On the back side of the polarizing plate 10, a backlight 11 is provided.
膜厚方向の平均チルト角が 28度のネマチックハイブリッド配向が固定化され た膜厚 0. 77 μ mの液晶フィルム 1 3を作製し、 図 5に示したような配置で以 下に示す TN型の半透過反射型液晶表示素子を作製した。  A 0.77-μm-thick liquid crystal film 13 with a fixed nematic hybrid orientation with an average tilt angle of 28 degrees in the film thickness direction was fabricated, and the TN type shown below was arranged in the arrangement shown in Fig. 5. Was manufactured.
使用した液晶セル 1 5は、 液晶材料として Z L I— 1 6 95 (Me r c k社製) を用い、 液晶層厚は反射電極領域 6 (反射表示部) で 3. 5 μπι、 透過電極領域 7 (透過表示部) で 4. 0 μπιとした。 液晶層の基板両界面のプレチルト角は 2 度であり、 液晶セルのツイス ト角は左ねじれの 70度、 液晶セルの A n dは、 反 射表示部で略 230 nm、 透過表示部で略 262 nmであった。  The liquid crystal cell 15 used was made of ZLI-1695 (manufactured by Merck) as the liquid crystal material. The liquid crystal layer thickness was 3.5 μπι in the reflective electrode area 6 (reflective display section) and the transmissive electrode area 7 (transmissive In the display section, it was 4.0 μπι. The liquid crystal layer has a pretilt angle of 2 degrees at both substrate interfaces, the twist angle of the liquid crystal cell is 70 degrees with a left-hand twist, and the And of the liquid crystal cell is about 230 nm in the reflective display section and about 262 nm in the transmissive display section. nm.
液晶セル 1 5の観察者側 (図の上側) に偏光板 1 (厚み約 1 80 μ m;住友化 学工業 (株) 製 SQW— 86 2) を配置し、 偏光板 1と液晶セル 1 5との間に、 第 1の光学異方素子 2として、 本発明の要件である式 (I ) 及び式 (Π) を満た す帝人 (株) 製の一軸延伸した高分子延伸フィルム (製品名ピュアエース) 2を 配置した。 高分子延伸フィルム 2の An dは略 1 20 nmであった。  A polarizing plate 1 (about 180 μm thick; SQW-862 manufactured by Sumitomo Chemical Co., Ltd.) was placed on the viewer side (upper side of the figure) of the liquid crystal cell 15, and the polarizing plate 1 and the liquid crystal cell 15 were arranged. As the first optically anisotropic element 2, a uniaxially stretched polymer stretched film (product name Pure) manufactured by Teijin Limited that satisfies the formulas (I) and (II), which are the requirements of the present invention. Ace) 2 was placed. The And of the stretched polymer film 2 was approximately 120 nm.
また、 第 2の光学異方素子 9として、 観察者から見て液晶セル 1 5の後方に液 晶フィルム 1 3及び一軸延伸したポリカーボネートフイルムからなる高分子延伸 フィルム 14を配置し、 更に背面に偏光板 10を配置した。 ハイブリッドネマチ ック配向構造を固定化した液晶フィルム 1 3の An dは 1 35 nm、 高分子延伸 フィルム 14の An dは 275 nmであった。  Further, as the second optically anisotropic element 9, a liquid crystal film 13 and a polymer stretched film 14 made of a uniaxially stretched polycarbonate film are arranged behind the liquid crystal cell 15 as viewed from an observer, and further polarized light is provided on the back side. Plate 10 was placed. The liquid crystal film 13 having the hybrid nematic alignment structure immobilized thereon had an And of 135 nm, and the polymer stretched film 14 had an And of 275 nm.
偏光板 1及ぴ 1 0の吸収軸、 第 1の光学異方体 2及ぴ高分子延伸フィルム 1 4 の遅相軸、 液晶セル 1 5の両界面のプレチルト方向、 液晶フィルム 1 3のチルト 方向は図 6に記載した条件で配置した。 図 7は、 パックライ ト点灯時 (透過モード) での、 白表示 OV、 黒表示 6 Vの 透過率の比 (白表示) / (黒表示) をコントラスト比として、 全方位からのコン トラスト J:匕を示している。 Absorption axes of polarizing plates 1 and 10, first optical anisotropic body 2 and slow axis of stretched polymer film 14, pretilt direction at both interfaces of liquid crystal cell 15, tilt direction of liquid crystal film 13 Were arranged under the conditions described in FIG. Fig. 7 shows the contrast ratio from all directions when the pack light is turned on (transmission mode) and the contrast ratio of the white display OV and the black display 6 V is the contrast ratio (white display) / (black display). The dagger is shown.
図 8は、 パックライト点灯時 (透過モード) での、 白表示 0Vから黒表示 6V まで 6階調表示した時の左右方向での透過率の視野角特性を示している。  Fig. 8 shows the viewing angle characteristics of the transmissivity in the left and right directions when 6 gradations are displayed from 0V white display to 6V black display when the backlight is lit (transmission mode).
図 9は、 パックライト点灯時 (透過モード) での、 白表示 OVから黒表示 6V まで 6階調表示した時の上下方向での透過率の視野角特性を示している。  Fig. 9 shows the viewing angle characteristics of the transmissivity in the vertical direction when six gradations are displayed from the white display OV to the black display 6V when the pack light is turned on (transmission mode).
図 7〜 9から特に透過モードにおいて良好な視野角特性を持っていることが分 かった。  From Figs. 7 to 9, it was found that good viewing angle characteristics were obtained especially in the transmission mode.
(実施例 2 ) (Example 2)
膜厚方向の平均チルト角が 28度のネマチックハイプリッド配向が固定化され た膜厚 0. 60 μπιの液晶フィルム 13を作製し、 図 5に示したような配置で以 下に示す EC Β型の半透過反射型液晶表示素子を作製した。  A liquid crystal film 13 having a thickness of 0.60 μπι with a fixed nematic hybrid orientation having an average tilt angle of 28 degrees in the film thickness direction was prepared, and the EC type shown below was arranged as shown in Fig. 5 Was manufactured.
使用した液晶セル 16は、液晶材料として ZL I— 1695 (Me r c k社製) を用い、 液晶層厚は反射電極領域 6 (反射表示部) で 2. l m、 透過電極領域 7 (透過表示部) で 4. 9 μηιとした。 液晶層の基板両界面のプレチルト角は 2 度であり、 液晶セルの Δ n dは、 反射表示部で略 138 n m、 透過表示部で略 3 21 nmのホモジユアス酉 3向とした。  The liquid crystal cell 16 used was ZLI-1695 (manufactured by Merck) as the liquid crystal material. The liquid crystal layer thickness was 2.lm in the reflective electrode area 6 (reflective display area) and the transmissive electrode area 7 (transmissive display area). To 4.9 μηι. The pretilt angle at both interfaces of the liquid crystal layer and the substrate was 2 degrees, and the Δnd of the liquid crystal cell was about 138 nm in the reflective display section and about 321 nm in the transmissive display section.
液晶セル 16の観察者側 (図の上側) に偏光板 1 (厚み約 1 80 μ m;住友化 学工業 (株) 製SQW— 862) を配置し、 偏光板 1と液晶セル 16との間に、 第 1の光学異方素子 2として、 本発明の要件である式 (I ) 及ぴ式 (Π) を満た す帝人 (株)製のポリカーボネートからなる一軸延伸した高分子延伸フィルム (製 品名ピュアエース) 2を配置した。 高分子延伸フィルム 2の An dは略 1 15 n mでめつ 7こ。  The polarizing plate 1 (thickness: about 180 μm; SQW-862 manufactured by Sumitomo Chemical Co., Ltd.) is placed on the viewer side (upper side of the figure) of the liquid crystal cell 16, and the polarizing plate 1 is placed between the polarizing plate 1 and the liquid crystal cell 16 In addition, as the first optically anisotropic element 2, a uniaxially stretched polymer stretched film (product name) made of polycarbonate manufactured by Teijin Limited which satisfies the formulas (I) and (II), which are the requirements of the present invention, is used. Pure Ace) 2 placed. The And of the stretched polymer film 2 is approximately 1 15 nm, which is 7 mm.
また、 第 2の光学異方素子 9として配置したハイプリッドネマチック配向構造 を固定化した液晶フィルム 1 3の Δη dは 105 nm、 高分子延伸フィルム 14 の Δη dは 270 nmであった。  Further, Δη d of the liquid crystal film 13 in which the hybrid nematic alignment structure arranged as the second optically anisotropic element 9 was fixed was 105 nm, and Δη d of the stretched polymer film 14 was 270 nm.
偏光板 1及び 10の吸収軸、 第 1の光学異方体 2及ぴ高分子延伸フィルム 14 の遅相軸、 液晶セル 1 6の両界面のプレチルト方向、 液晶フィルム 1 3のチルト 方向は図 1 0に記載した条件で配置した。 Absorption axes of polarizing plates 1 and 10, first optically anisotropic body 2 and stretched polymer film 14 The slow axis, the pretilt direction at both interfaces of the liquid crystal cell 16 and the tilt direction of the liquid crystal film 13 were arranged under the conditions shown in FIG.
図 1 1は、 ノ ックライト点灯時 (透過モード) での、 白表示 OV、 黒表示 6V の透過率の比 (白表示) / (黒表示) をコントラスト比として、 全方位からのコ ントラスト比を示している。  Fig. 11 shows the contrast ratio from all directions as the contrast ratio between the white display OV and black display 6V transmittance (white display) / (black display) when the knock light is turned on (transmission mode). Is shown.
図 1 2は、 バックライ ト点灯時 (透過モード) での、 白表示 0Vから黒表示 6 Vまで 6階調表示した時の左右方向での透過率の視野角特性を示している。  Fig. 12 shows the viewing angle characteristics of the transmissivity in the left and right directions when 6 gradations are displayed from 0 V white display to 6 V black display when the backlight is lit (transmission mode).
図 1 3は、 ノ ックライト点灯時 (透過モード) での、 白表示 OVから黒表示 6 Vまで 6階調表示した時の上下方向での透過率の視野角特性を示している。  Figure 13 shows the viewing angle characteristics of the transmittance in the vertical direction when the knock light is turned on (transmission mode) and when 6 gradations are displayed from white display OV to black display 6V.
図 1 1〜1 3から、 ECB型でも TN型と同様、 特に透過モードにおいて良好 な視野角特性を持っていることが分かった。  Figures 11 to 13 show that the ECB type has excellent viewing angle characteristics, especially in the transmission mode, as does the TN type.
(比較例 1 ) (Comparative Example 1)
図 14の配置図に示したように、 液晶フィルム 1 3の代わりにポリカーボネー ト 1 7 (厶11 (1が略1 3011111) を用い、 ポリカーボネート 14の Δ n dを 26 0 nmとし、 液晶セル 1 5の背面側に配置した偏光板 1 0の吸収軸、 高分子延伸 フィルム 14及ぴ 1 7の遅相軸を図 1 5に記載した条件で配置にした以外は、 実 施例 1と同様の液晶表示素子を作製した。  As shown in the layout diagram of FIG. 14, instead of the liquid crystal film 13, polycarbonate 17 (m 11 (1 is approximately 13011111)) was used, the Δnd of the polycarbonate 14 was set to 260 nm, and the liquid crystal cell 1 The same as Example 1 except that the absorption axis of the polarizing plate 10 and the slow axis of the polymer stretched films 14 and 17 arranged on the back side of 5 were arranged under the conditions shown in FIG. A liquid crystal display device was manufactured.
図 1 6は、 バックライト点灯時 (透過モード) での、 白表示 0V、 黒表示 6V の透過率の比 (白表示) / (黒表示) をコントラス ト比として、 全方位からのコ ントラスト比を示している。  Fig. 16 shows the contrast ratio from all directions when the backlight ratio (transmissive mode) is 0 V for white display and 6 V for black display as the contrast ratio (white display) / (black display). Is shown.
図 1 7は、 パックライト点灯時 (透過モード) での、 白表示 OVから黒表示 6 Vまで 6階調表示した時の左右方向での透過率の視野角特性を示している。  Figure 17 shows the viewing angle characteristics of the transmissivity in the left and right directions when displaying 6 gradations from white display OV to black display 6 V when the pack light is on (transmission mode).
図 1 8は、 パックライト点灯時 (透過モード) での、 白表示 OVから黒表示 6 Vまで 6階調表示した時の上下方向での透過率の視野角特性を示している。  Figure 18 shows the viewing angle characteristics of the transmittance in the vertical direction when six gradations are displayed from white display OV to black display 6 V when the pack light is turned on (transmission mode).
視野角特性について、 実施例 1と比較例 1を比較する。  Example 1 and Comparative Example 1 are compared for viewing angle characteristics.
全方位の等コントラスト曲線を図 7と図 1 6で比較すると、 ハイプリッドネマ チック構造を持つ液晶フィルム 1 3を用いることにより、 広い視野角特性が得ら れていることが分かる。 また、 透過モードでの欠点となる左右、 上下方向の階調特性を図 8、 9と図 1 7 , 1 8で比較すると、 ハイプリッドネマチック構造を持つ液晶フィルムを用い ることにより、 反転特性が大幅に改善されていることが分かる。 Comparing the omnidirectional isocontrast curves between FIG. 7 and FIG. 16, it can be seen that a wide viewing angle characteristic is obtained by using the liquid crystal film 13 having a hybrid nematic structure. Comparing the horizontal and vertical gradation characteristics, which are disadvantages in the transmissive mode, between Figs. 8 and 9 and Figs. 17 and 18, the inversion characteristics are improved by using a liquid crystal film with a hybrid nematic structure. It can be seen that it has been greatly improved.
(比較例 2 ) (Comparative Example 2)
図 1 4の配置図に示したように、 液晶フィルム 1 3の代わりにポリカーボネー ト 1 7 ( A n dが略 1 1 0 n m) を用い、 ポリカーボネート 1 4の A n dを 2 7 0 n mとし、 液晶セル 1 6の背面側に配置した偏光板 1 0の吸収軸、 高分子延伸 フィルム 1 4及ぴ 1 7の遅相軸を図 1 9に記載した条件で配置にした以外は、 実 施例 2と同様の液晶表示素子を作製した。  As shown in the layout diagram of FIG. 14, polycarbonate 17 (And is approximately 110 nm) was used instead of liquid crystal film 13, and And of polycarbonate 14 was set to 270 nm. Example 1 except that the absorption axis of the polarizing plate 10 and the slow axis of the stretched polymer films 14 and 17 arranged on the back side of the liquid crystal cell 16 were arranged under the conditions shown in Fig. 19. The same liquid crystal display element as in Example 2 was produced.
図 2 0は、 パックライト点灯時 (透過モード) での、 白表示 0 V、 黒表示 6 V の透過率の比 (白表示) / (黒表示) をコントラスト比として、 全方位からのコ ントラス ト比を示している。  Figure 20 shows the contrast ratio between the white display 0 V and the black display 6 V (white display) / (black display) as the contrast ratio when the pack light is on (transmission mode). It shows the ratio.
図 2 1は、 バックライト点灯時 (透過モード) での、 白表示 0 Vから黒表示 6 Vまで 6階調表示した時の左右方向での透過率の視野角特性を示している。  Fig. 21 shows the viewing angle characteristics of the transmissivity in the left and right directions when 6 gradations are displayed from 0 V for white display to 6 V for black display when the backlight is turned on (transmission mode).
図 2 2は、 パックライト点灯時 (透過モード) での、 白表示 0 Vから黒表示 6 Vまで 6階調表示した時の上下方向での透過率の視野角特性を示している。  Fig. 22 shows the viewing angle characteristics of the transmittance in the vertical direction when six gradations are displayed from 0 V for white display to 6 V for black display when the backlight is lit (transmission mode).
視野角特性について、 実施例 2と比較例 2を比較する。  Example 2 and Comparative Example 2 are compared for viewing angle characteristics.
全方位の等コントラスト曲線を図 1 1と図 2 0で比較すると、 ハイプリッドネ マチック構造を持つ液晶フィルム 1 3を用いることにより、 広い視野角特性が得 られていることが分かる。  Comparing the omnidirectional isocontrast curves between FIG. 11 and FIG. 20, it can be seen that a wide viewing angle characteristic is obtained by using the liquid crystal film 13 having a hybrid nematic structure.
また、 透過モードでの欠点となる左右、 上下方向の階調特性を図 1 2、 1 3と 図 2 1、 2 2で比較すると、 ハイブリッドネマチック構造を持つ液晶フィルムを 用いることにより、 反転特性が大幅に改善されていることが分かる。  Comparing the horizontal and vertical gradation characteristics, which are disadvantages in the transmission mode, between Figs. 12 and 13 and Figs. 21 and 22, the reversal characteristics are improved by using a liquid crystal film with a hybrid nematic structure. It can be seen that it has been greatly improved.
本実施例では、 カラーフィルターの無い形態で実験を行ったが、 液晶セル中に カラーフィルターを設ければ、 良好なマルチカラー、 またはフルカラー表示がで きることは言うまでもない。 [図面の簡単な説明] In this embodiment, the experiment was performed without a color filter. However, if a color filter is provided in the liquid crystal cell, it goes without saying that a good multi-color or full-color display can be achieved. [Brief description of drawings]
図 1は、 液晶分子のチルト角及ぴッイスト角を説明するための概念図である。 図 2は、 第 2の光学異方素子を構成する液晶性フィルムの配向構造の概念図で ある。  FIG. 1 is a conceptual diagram for explaining a tilt angle and a twist angle of a liquid crystal molecule. FIG. 2 is a conceptual diagram of an alignment structure of a liquid crystal film constituting a second optically anisotropic element.
図 3は、 液晶セルのプレチルト方向を説明する概念図である。  FIG. 3 is a conceptual diagram illustrating a pretilt direction of a liquid crystal cell.
図 4は、 本発明の半透過反射型液晶表示素子を模式的に表した断面図である。 図 5は、 実施例 1及び実施例 2の半透過反射型液晶表示素子を模式的に表した 断面図である。  FIG. 4 is a cross-sectional view schematically showing a transflective liquid crystal display element of the present invention. FIG. 5 is a cross-sectional view schematically illustrating the transflective liquid crystal display elements of Example 1 and Example 2.
図 6は、 実施例 1における偏光板の吸収軸、 液晶セルのプレチルト方向、 高分 子延伸フィルムの遅相軸およぴ液晶フィルムのチルト方向の角度関係を示した平 面図である。  FIG. 6 is a plan view showing the angle relationship among the absorption axis of the polarizing plate, the pretilt direction of the liquid crystal cell, the slow axis of the polymer stretched film, and the tilt direction of the liquid crystal film in Example 1.
図 7は、 実施例 1における半透過反射型液晶表示素子を全方位から見た時のコ ントラスト比を示す図である。  FIG. 7 is a diagram showing a contrast ratio when the transflective liquid crystal display element in Example 1 is viewed from all directions.
図 8は、 実施例 1における半透過反射型液晶表示素子を 0 Vから 6 Vまで 7階 調表示した時の左右方位の透過率の視野角特性を示す図である。  FIG. 8 is a diagram illustrating viewing angle characteristics of transmissivity in the left and right directions when the transflective liquid crystal display element in Example 1 is displayed in 7 gradations from 0 V to 6 V.
図 9は、 実施例 1における半透過反射型液晶表示素子を 0 Vから 6 Vまで 7階 調表示した時の上下方位の透過率の視野角特性を示す図である。  FIG. 9 is a view showing the viewing angle characteristics of the transmittance in the vertical direction when the transflective liquid crystal display element in Example 1 is displayed in seven gradations from 0 V to 6 V.
図 1 0は、 実施例 2における偏光板の吸収軸、 液晶セルのプレチルト方向、 高 分子延伸フィルムの遅相軸および液晶フィルムのチルト方向の角度関係を示した 平面図である。  FIG. 10 is a plan view showing an angle relationship among an absorption axis of a polarizing plate, a pretilt direction of a liquid crystal cell, a slow axis of a polymer stretched film, and a tilt direction of a liquid crystal film in Example 2.
図 1 1は、 実施例 2における半透過反射型液晶表示素子を全方位から見た時の コントラスト比を示す図である。  FIG. 11 is a diagram showing a contrast ratio when the transflective liquid crystal display element in Example 2 is viewed from all directions.
図 1 2は、 実施例 2における半透過反射型液晶表示素子を 0 Vから 6 Vまで 7 階調表示した時の左右方位の透過率の視野角特性を示す図である。  FIG. 12 is a diagram showing viewing angle characteristics of transmissivity in the left and right directions when the transflective liquid crystal display element in Example 2 displays seven gradations from 0 V to 6 V.
図 1 3は、 実施例 2における半透過反射型液晶表示素子を 0 Vから 6 Vまで 7 階調表示した時の上下方位の透過率の視野角特性を示す図である。  FIG. 13 is a view showing the viewing angle characteristics of the transmittance in the vertical direction when the transflective liquid crystal display element in Example 2 displays seven gradations from 0 V to 6 V.
図 1 4は、 比較例 1及び比較例 2の半透過反射型液晶表示素子を模式的に表し た断面図である。  FIG. 14 is a cross-sectional view schematically illustrating the transflective liquid crystal display elements of Comparative Examples 1 and 2.
図 1 5は、 比較例 1における偏光板の吸収軸、 液晶セルのプレチルト方向及び 高分子延伸フィルムの遅相軸の角度関係を示した平面図である。 Fig. 15 shows the absorption axis of the polarizing plate, the pretilt direction of the liquid crystal cell, and the FIG. 3 is a plan view showing an angle relationship of a slow axis of the stretched polymer film.
図 1 6は、 比較例 1における半透過反射型液晶表示素子を全方位から見た時の コントラスト比を示す図である。  FIG. 16 is a diagram showing a contrast ratio when the transflective liquid crystal display element in Comparative Example 1 is viewed from all directions.
図 1 7は、 比較例 1における半透過反射型液晶表示素子を 0 Vから 6 Vまで 7 階調表示した時の左右方位の透過率の視野角特性を示す図である。  FIG. 17 is a diagram showing the viewing angle characteristics of the transmissivity in the left and right directions when the transflective liquid crystal display element in Comparative Example 1 displays seven gradations from 0 V to 6 V.
図 1 8は、 比較例 1における半透過反射型液晶表示素子を 0 Vから 6 Vまで 7 階調表示した時の上下方位の透過率の視野角特性を示す図である。  FIG. 18 is a diagram showing the viewing angle characteristics of the transmittance in the vertical direction when the transflective liquid crystal display element in Comparative Example 1 displays seven gradations from 0 V to 6 V.
図 1 9は、 比較例 2における偏光板の吸収軸、 液晶セルのプレチルト方向及ぴ 高分子延伸フィルムの遅相軸の角度関係を示した平面図である。  FIG. 19 is a plan view showing the angle relationship among the absorption axis of the polarizing plate, the pretilt direction of the liquid crystal cell, and the slow axis of the stretched polymer film in Comparative Example 2.
図 2 0は、 比較例 2における半透過反射型液晶表示素子を全方位から見た時の コントラスト比を示す図である。  FIG. 20 is a diagram illustrating a contrast ratio when the transflective liquid crystal display element in Comparative Example 2 is viewed from all directions.
図 2 1は、 比較例 2における半透過反射型液晶表示素子を 0 Vから 6 Vまで 7 階調表示した時の左右方位の透過率の視野角特性を示す図である。  FIG. 21 is a diagram illustrating viewing angle characteristics of transmissivity in the left and right directions when the transflective liquid crystal display element in Comparative Example 2 displays seven gradations from 0 V to 6 V.
図 2 2は、 比較例 2における半透過反射型液晶表示素子を 0 Vから 6 Vまで 7 階調表示した時の上下方位の透過率の視野角特性を示す図である。  FIG. 22 is a diagram illustrating viewing angle characteristics of transmittance in the vertical direction when the transflective liquid crystal display element in Comparative Example 2 displays seven gradations from 0 V to 6 V.

Claims

1. 透明電極を有する第 1の基板と、 反射機能を有する領域と透過機能 を有する領域とが形成された半透過反射性電極を有する第 2の基板と、 該第 1の 基板と該第 2の基板間に狭持されたネマチック液晶層と、 該第 1の基板の液晶層 と接する面とは反対の面上に設置された第 1の光学異方素子と 1枚の偏光板を具 備し、 該第 2の基板の液晶層と接する面とは反対の面上に設置された第 2の光学 請 1. a first substrate having a transparent electrode, a second substrate having a transflective electrode in which a region having a reflection function and a region having a transmission function are formed, the first substrate and the second substrate A nematic liquid crystal layer sandwiched between the substrates, a first optically anisotropic element provided on a surface of the first substrate opposite to a surface in contact with the liquid crystal layer, and one polarizing plate. And a second optical contractor provided on a surface of the second substrate opposite to a surface in contact with the liquid crystal layer.
異方素子と 1枚の偏光板とを具備した半透過反射型液晶表示素子であって、 第 1の光学異方素子が 1枚の高分子配向フィルムからなる位相差フィルムであ の A transflective liquid crystal display device comprising an anisotropic element and one polarizing plate, wherein the first optical anisotropic element is a retardation film composed of one polymer oriented film.
つて、 波長 (λ) 4 5 0 n m、 5 5 0 nm及ぴ 6 5 0 nmにおけるリターデーシ ヨン値を各々 R e (4 50) 、 R e (5 5 0) 及び R e (6 5 0) としたとき、 下記式 (I ) 及ぴ (Π) を満たす位相差フィルム囲からなり、 Then, the retardation values at wavelengths (λ) of 450 nm, 550 nm and 650 nm are represented by Re (450), Re (550) and Re (650), respectively. Then, a phase difference film satisfies the following formulas (I) and (Π),
R e (4 5 0) <R e (5 5 0) ぐ R e (6 5 0) ( I )  R e (4 5 0) <R e (5 5 0) R R e (6 5 0) (I)
0. 2≤R e (λ) /l≤ 0. 3 (Π)  0.2≤R e (λ) / l≤ 0.3 (Π)
前記第 2の光学異方素子が少なくとも 1枚の光学的に正の一軸性を示す液晶性 高分子物質より実質的に形成され、 該液晶性高分子物質が液晶状態において形成 したネマチックハイブリッド配向を固定化した液晶フィルム (A) を含むことを 特徴とする半透過反射型液晶表示素子。  The second optically anisotropic element is substantially formed of at least one optically positive uniaxial liquid crystal polymer material, and the liquid crystal polymer material forms a nematic hybrid alignment formed in a liquid crystal state. A transflective liquid crystal display device comprising a fixed liquid crystal film (A).
2. 請求項 1記載の半透過反射型液晶表示素子において、 前記第 2の光 学異方素子が少なくとも 1枚の光学的に正の一軸性を示す液晶性高分子物質より 実質的に形成され、 該液晶性高分子物質が液晶状態において形成したネマチック ハイプリッド配向を固定化した液晶フィルム (A) と、 少なくとも 1枚の高分子 延伸フィルムとから構成されることを特徴とする請求の範囲第 1項に記載の半透 過反射型液晶表示素子。 2. The transflective liquid crystal display element according to claim 1, wherein the second optically anisotropic element is substantially formed of at least one optically positive uniaxial liquid crystal polymer. The liquid crystal polymer material comprising a liquid crystal film (A) in which a nematic hybrid alignment formed in a liquid crystal state is fixed, and at least one stretched polymer film. 13. The transflective liquid crystal display device according to item 13.
3. 請求項 1記載の半透過反射型液晶表示素子において、 前記第 2の光 学異方素子が少なくとも 1枚の光学的に正の一軸性を示す液晶性高分子物質より 実質的に形成され、 該液晶性高分子物質が液晶状態において形成したネマチック ハイブリッド配向を固定化した液晶フィルム (A) と、 少なくとも 1枚の光学的 に正の一軸性を示す液晶性高分子物質より実質的に形成され、 該液晶性高分子物 質が液晶状態において形成したネマチ ク配向を固定化した液晶フィルム (B ) とから構成されることを特徴とする請求の範囲第 1項に記載の半透過反射型液晶 表示素子。 3. The transflective liquid crystal display element according to claim 1, wherein the second optically anisotropic element is substantially formed of at least one optically positive uniaxial liquid crystalline polymer. Nematic formed by the liquid crystalline polymer substance in a liquid crystal state A liquid crystal film (A) in which the hybrid alignment is fixed, and at least one optically positive uniaxial liquid crystalline polymer material, which is substantially formed of a liquid crystalline polymer, wherein the liquid crystalline polymer is formed in a liquid crystal state. 2. The transflective liquid crystal display device according to claim 1, comprising a liquid crystal film (B) having a fixed nematic alignment.
4 . 前記液晶フィルム (A) 力 液晶材料を液晶状態においてネマチッ クハイプリッド配向させ、 その状態から冷却することによりネマチックハイプリ ッド配向をガラス固定化した液晶フィルムであることを特徴とする請求の範囲第 1項〜第 3項のいずれかの項に記載の半透過反射型液晶表示素子。 4. The liquid crystal film (A) is a liquid crystal film in which a liquid crystal material is aligned in a nematic hybrid orientation in a liquid crystal state, and is cooled from that state to fix the nematic hybrid orientation in glass. Item 4. The transflective liquid crystal display device according to any one of items 1 to 3.
5 . 前記液晶フィルム (A) 力 液晶材料を液晶状態においてネマチッ クハイプリッド配向させ、 架橋反応によりネマチックハイプリッド配向を固定化 した液晶フィルムであることを特徴とする請求の範囲第 1項〜第 3項のいずれか の項に記載の半透過反射型液晶表示素子。 5. The liquid crystal film according to claim 1, wherein the liquid crystal film (A) is a liquid crystal film in which a liquid crystal material is aligned in a nematic hybrid orientation in a liquid crystal state and the nematic hybrid orientation is fixed by a crosslinking reaction. The transflective liquid crystal display device according to any one of the above items.
6 . 反射機能を有する領域と透過機能を有する領域の液晶層厚が異なり、 前記反射機能を有する領域の液晶層厚が前記透過機能を有する領域の液晶層厚よ りも薄いことを特徴とする請求の範囲第 1項に記載の半透過反射型液晶表示素子。 6. The liquid crystal layer thickness of the region having the reflection function and the liquid crystal layer thickness of the region having the transmission function are different, and the liquid crystal layer thickness of the region having the reflection function is smaller than the liquid crystal layer thickness of the region having the transmission function. The transflective liquid crystal display device according to claim 1.
7 . E C B (Electrically Controlled Birefringence) 方式を用いたこと を特徴とする請求の範囲第 1項に記載の半透過型液晶表示素子。 7. The transflective liquid crystal display device according to claim 1, wherein an ECB (Electrically Controlled Birefringence) system is used.
8 . T N (Twisted Nematic) 方式を用いたことを特徴とする請求の範 囲第 1項に記載の半透過型液晶表示素子。 8. The transflective liquid crystal display device according to claim 1, wherein a TN (Twisted Nematic) system is used.
9 . H A N (Hybrid Aligned Nematic) 方式を用いたことを特徴とす る請求の範囲第 1項に記載の半透過型液晶表示素子。 9. The transflective liquid crystal display device according to claim 1, wherein a H AIN (Hybrid Aligned Nematic) system is used.
PCT/JP2003/008990 2002-09-30 2003-07-15 Semitransmissive reflective liquid crystal display element WO2004031846A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003252650A AU2003252650A1 (en) 2002-09-30 2003-07-15 Semitransmissive reflective liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002285458A JP2004125830A (en) 2002-09-30 2002-09-30 Transflective liquid crystal display element
JP2002-285458 2002-09-30

Publications (1)

Publication Number Publication Date
WO2004031846A1 true WO2004031846A1 (en) 2004-04-15

Family

ID=32063559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008990 WO2004031846A1 (en) 2002-09-30 2003-07-15 Semitransmissive reflective liquid crystal display element

Country Status (4)

Country Link
JP (1) JP2004125830A (en)
AU (1) AU2003252650A1 (en)
TW (1) TWI238913B (en)
WO (1) WO2004031846A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018552B2 (en) 2007-06-13 2011-09-13 Nippon Oil Corporation Transmissive liquid crystal display device
US8045131B2 (en) 2006-11-17 2011-10-25 Nippon Oil Corporation Transmissive liquid crystal display device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006146012A (en) * 2004-11-24 2006-06-08 Mitsubishi Electric Corp Liquid crystal display panel
WO2006063663A1 (en) * 2004-12-18 2006-06-22 Merck Patent Gmbh Transflective liquid crystal display
JP2007072213A (en) * 2005-09-07 2007-03-22 Nippon Oil Corp Viewing angle compensation plate for homeotropically oriented liquid crystal display device and homeotropically oriented liquid crystal display device using same
JP2007219260A (en) * 2006-02-17 2007-08-30 Nippon Oil Corp Optical laminate, elliptically polarizing plate and liquid crystal display device
JP2007241071A (en) * 2006-03-10 2007-09-20 Fujifilm Corp Transflective liquid crystal display device
JP4899153B2 (en) * 2006-09-05 2012-03-21 Nltテクノロジー株式会社 Liquid crystal display
JP5072520B2 (en) 2006-12-19 2012-11-14 株式会社ジャパンディスプレイセントラル Liquid crystal display
JP5363022B2 (en) * 2007-04-11 2013-12-11 富士フイルム株式会社 Optically anisotropic film and liquid crystal display device
JP5072481B2 (en) * 2007-08-10 2012-11-14 株式会社ジャパンディスプレイセントラル Liquid crystal display
JP5072480B2 (en) * 2007-08-10 2012-11-14 株式会社ジャパンディスプレイセントラル Liquid crystal display
JP5484075B2 (en) 2008-12-09 2014-05-07 積水化学工業株式会社 Phase difference element
TWI420196B (en) 2008-12-11 2013-12-21 Au Optronics Corp Liquid crystal display device
WO2010074048A1 (en) 2008-12-22 2010-07-01 積水化学工業株式会社 Laminate for laminated glass
WO2013146633A1 (en) * 2012-03-30 2013-10-03 日本ゼオン株式会社 Phase difference film laminated body, method for manufacturing same, and liquid crystal display device
JP5387725B2 (en) * 2012-05-18 2014-01-15 三菱化学株式会社 Retardation film
CN102914906B (en) * 2012-10-19 2015-02-25 京东方科技集团股份有限公司 Liquid crystal display panel and display device
JP2016110152A (en) 2014-12-08 2016-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. Reflection-proof film and organic light emission device comprising the same
KR101623086B1 (en) * 2014-12-08 2016-05-20 삼성전자 주식회사 Antireflection film and organic light emitting device provided with the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332933A (en) * 1997-05-30 1998-12-18 Nippon Oil Co Ltd Optical anisotropic element
JP2001042320A (en) * 1999-07-30 2001-02-16 Seiko Epson Corp Liquid crystal device and electronic appliance using the same
JP2001337222A (en) * 2000-05-25 2001-12-07 Fuji Photo Film Co Ltd Optical retardation plate
US6341002B1 (en) * 1998-10-15 2002-01-22 Sharp Kabushiki Kaisha Liquid crystal display device
JP2002031717A (en) * 2000-07-14 2002-01-31 Nippon Mitsubishi Oil Corp Circularly polarizing plate and liquid crystal display device
JP2002196114A (en) * 2000-12-26 2002-07-10 Sumitomo Chem Co Ltd Forward scattering sheet, laminated sheet containing the same and liquid crystal display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332933A (en) * 1997-05-30 1998-12-18 Nippon Oil Co Ltd Optical anisotropic element
US6341002B1 (en) * 1998-10-15 2002-01-22 Sharp Kabushiki Kaisha Liquid crystal display device
JP2001042320A (en) * 1999-07-30 2001-02-16 Seiko Epson Corp Liquid crystal device and electronic appliance using the same
JP2001337222A (en) * 2000-05-25 2001-12-07 Fuji Photo Film Co Ltd Optical retardation plate
JP2002031717A (en) * 2000-07-14 2002-01-31 Nippon Mitsubishi Oil Corp Circularly polarizing plate and liquid crystal display device
JP2002196114A (en) * 2000-12-26 2002-07-10 Sumitomo Chem Co Ltd Forward scattering sheet, laminated sheet containing the same and liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8045131B2 (en) 2006-11-17 2011-10-25 Nippon Oil Corporation Transmissive liquid crystal display device
US8018552B2 (en) 2007-06-13 2011-09-13 Nippon Oil Corporation Transmissive liquid crystal display device

Also Published As

Publication number Publication date
TWI238913B (en) 2005-09-01
TW200405095A (en) 2004-04-01
AU2003252650A1 (en) 2004-04-23
JP2004125830A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
KR100849300B1 (en) Circular polarization plate and liquid crystal display device
KR100744909B1 (en) Circular polarization plate and liquid crystal display
US8154694B2 (en) Laminated optical film, and liquid crystal panel and liquid crystal display apparatus using the laminated optical film
US8223304B2 (en) Liquid crystal display device
KR100947417B1 (en) Circular polarizing plate and liquid crystal display device
TWI396009B (en) Transmissive liquid crystal display device
TWI406043B (en) Liquid crystal display device
WO2004031846A1 (en) Semitransmissive reflective liquid crystal display element
KR100833767B1 (en) Translucent reflective liquid crystal display
JPWO2003032060A1 (en) Liquid crystal display element and use of retardation film used therefor
WO2008059722A1 (en) Transmissive liquid crystal display device
WO2007135797A1 (en) Transmission liquid crystal display device
JP2001194668A (en) Polycarbonate laminated optical retardation film
JP2003215341A (en) Circularly polarizing plate and liquid crystal display
JP4166791B2 (en) Liquid crystal display
WO2008062624A1 (en) Multilayer optical film, liquid crystal panel employing multilayer optical film and liquid crystal display
JP2005164957A (en) Circularly polarizing plate and liquid crystal display element
WO2007094102A1 (en) Optical laminated body, elliptically polarizing plate and liquid crystal display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase