WO2008062624A1 - Multilayer optical film, liquid crystal panel employing multilayer optical film and liquid crystal display - Google Patents

Multilayer optical film, liquid crystal panel employing multilayer optical film and liquid crystal display Download PDF

Info

Publication number
WO2008062624A1
WO2008062624A1 PCT/JP2007/070585 JP2007070585W WO2008062624A1 WO 2008062624 A1 WO2008062624 A1 WO 2008062624A1 JP 2007070585 W JP2007070585 W JP 2007070585W WO 2008062624 A1 WO2008062624 A1 WO 2008062624A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
optical compensation
compensation layer
film
laminated
Prior art date
Application number
PCT/JP2007/070585
Other languages
French (fr)
Japanese (ja)
Inventor
Masato Bitou
Shunsuke Shutou
Misaki Sabae
Ikuo Kawamoto
Hironori Motomura
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007033031A external-priority patent/JP4998941B2/en
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US12/513,389 priority Critical patent/US20100045910A1/en
Priority to CN2007800429890A priority patent/CN101657754B/en
Publication of WO2008062624A1 publication Critical patent/WO2008062624A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/04Number of plates greater than or equal to 4
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/13Positive birefingence

Definitions

  • the present invention relates to a laminated optical film, a liquid crystal panel using the laminated optical film, and a liquid crystal display device. More specifically, the present invention relates to a laminated optical film having a polarizer and at least three optical compensation layers, a liquid crystal panel using the laminated optical film, and a liquid crystal display device.
  • various optical films in which a polarizing film and an optical compensation layer are combined are used for liquid crystal display devices in order to perform optical compensation.
  • a circularly polarizing plate which is a kind of the optical film, can usually be produced by combining a polarizing film and a ⁇ / 4 plate.
  • the ⁇ / 4 plate exhibits a characteristic that the phase difference value increases as the wavelength becomes shorter, that is, a so-called “positive wavelength dispersion characteristic”, and has a large wavelength dispersion characteristic. Is common. For this reason, there is a problem that the desired optical characteristics (for example, a function as a ⁇ / 4 plate) cannot be exhibited over a wide wavelength range.
  • a ⁇ / 4 plate having positive wavelength dispersion characteristics for example, by combining a retardation plate whose retardation value increases as it becomes longer wavelength side, or a ⁇ / 2 plate, A method of correcting the wavelength dispersion characteristics of the above-mentioned / 4 plate is adopted (for example, see Patent Document 1).
  • Patent Document 1 A method of correcting the wavelength dispersion characteristics of the above-mentioned / 4 plate is adopted (for example, see Patent Document 1).
  • these technologies do not improve the screen contrast and reduce the color shift, and the shift is insufficient.
  • Patent Document 1 Japanese Patent No. 3174367
  • the present invention has been made to solve the above-described conventional problems.
  • the object of the present invention is to provide a laminated optical film, a liquid crystal panel, and a liquid crystal display device having excellent screen contrast and small color shift. Is to provide.
  • the absorption axis of the polarizer and the slow axis of the first optical compensation layer are orthogonal to each other.
  • the laminated optical film of the present invention is a first in which the polarizer and the refractive index ellipsoid have a relationship of nx>ny> nz and have an in-plane retardation Re force S80 to 300 nm.
  • the third is 200nm
  • the optical compensation layer is provided at least in this order, and the absorption axis of the polarizer and the slow axis of the first optical compensation layer are orthogonal to each other.
  • a compensation layer is further provided.
  • a liquid crystal panel is provided.
  • This liquid crystal panel includes a liquid crystal cell and the laminated optical film.
  • the laminated optical film is disposed on the backlight side.
  • the liquid crystal cell is in a VA mode.
  • a liquid crystal display device is provided. This liquid crystal display device The liquid crystal panel is included.
  • the first optical compensation layer, the second optical compensation layer, and the third optical compensation layer having the above optical characteristics are arranged at a predetermined angle. Can improve screen contrast and reduce color shift.
  • FIG. L (a) is a schematic cross-sectional view of a laminated optical film according to one embodiment of the present invention.
  • (b) is a schematic cross-sectional view of a laminated optical film according to another preferred embodiment of the present invention.
  • FIG. 2 (a) is a schematic cross-sectional view of a liquid crystal panel according to one embodiment of the present invention, and (b) is a schematic cross-sectional view of a liquid crystal panel according to another preferred embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view illustrating the alignment state of liquid crystal molecules in a liquid crystal layer when the liquid crystal display device of the present invention employs a VA mode liquid crystal cell.
  • FIG. 4 is a result of computer simulation on the viewing angle dependence of the contrast of the liquid crystal panel of Example 1 of the present invention.
  • FIG. 5 is a contrast contour map showing the viewing angle dependence of contrast of the liquid crystal panel of Example 1 of the present invention.
  • FIG. 6 shows the result of computer simulation on the viewing angle dependence of the contrast of the liquid crystal panel of Example 2 of the present invention.
  • FIG. 7 is a contrast contour map showing the viewing angle dependence of the contrast of the liquid crystal panel of Example 2 of the present invention.
  • FIG. 8 is a result of computer simulation on the viewing angle dependence of the contrast of the liquid crystal panel of Example 3 of the present invention.
  • FIG. 9 is a contrast contour map showing the viewing angle dependence of the contrast of the liquid crystal panel of Example 3 of the present invention.
  • FIG. 10 shows the result of a computer simulation on the viewing angle dependence of the contrast of the liquid crystal panel of Comparative Example 1.
  • FIG. 11 Contrast contour lines showing the viewing angle dependence of the contrast of the liquid crystal panel of Comparative Example 1
  • FIG. 12 shows the result of a computer simulation on the viewing angle dependence of the contrast of the liquid crystal panel of Comparative Example 2.
  • FIG. 14 shows the result of a computer simulation on the viewing angle dependence of the contrast of the liquid crystal panel of Comparative Example 3.
  • Nx is the refractive index in the direction where the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the refractive index in the direction perpendicular to the slow axis in the plane, “nz "Is the refractive index in the thickness direction.
  • Re (550) refers to the in-plane retardation of a layer (film) at a wavelength of 550 nm.
  • the subscript “1” attached to the terms and symbols described in this specification represents the first optical compensation layer, the subscript “2” represents the second optical compensation layer, and the subscript. “3” in the figure represents the third optical compensation layer, and the subscript “4” represents the fourth optical compensation layer.
  • Re represents the in-plane retardation of the first optical compensation layer.
  • Thickness direction retardation is the thickness direction retardation value of a layer (film) at 23 ° C, unless otherwise specified, at a wavelength of 590 nm.
  • Rth (550) when indicated, it means a retardation in a thickness direction of a layer (film) at a wavelength of 550 nm.
  • the thickness direction retardation of the first optical compensation layer is denoted by Rth.
  • Nz Rth / Re.
  • the ⁇ / 2 plate is an electro-optic birefringent plate that serves to rotate the polarization plane of the light beam, and generates a half-wavelength optical path difference between linearly polarized light that vibrates in directions perpendicular to each other. It has a function. That is, it works so that the phase between the ordinary ray component and the extraordinary ray component is shifted by a half cycle.
  • the ⁇ / 4 plate is an electro-optic birefringent plate that serves to rotate the polarization plane of the light beam, and generates a 1/4 wavelength optical path difference between linearly polarized light that vibrates in directions perpendicular to each other. It has a function. In other words, it works so that the phase between the ordinary ray component and the extraordinary ray component is shifted by a quarter of a cycle, and converts circularly polarized light into plane polarized light or plane polarized light into circularly polarized light).
  • FIG. 1 (a) is a schematic sectional view of a laminated optical film according to a preferred embodiment of the present invention.
  • the laminated optical film 10 includes a polarizer 11, a first optical compensation layer 12, a second optical compensation layer 13, and a third optical compensation layer 14 in this order.
  • FIG. 1 (b) is a schematic cross-sectional view of a laminated optical film according to another preferred embodiment of the present invention.
  • the laminated optical film 10 ′ includes a polarizer 11, a first optical compensation layer 12, a second optical compensation layer 13, and a third optical compensation layer 14 in this order.
  • the laminated optical film 10 ′ further includes a fourth optical compensation layer 15. In the illustrated example, the fourth optical compensation layer 15 is disposed on the opposite side of the third optical compensation layer 14 from the second optical compensation layer 13.
  • a first protective layer is provided between the polarizer 11 and the first optical compensation layer 12 as necessary, and the first protective layer of the polarizer 11 is provided.
  • a second protective layer is provided on the opposite side of the optical compensation layer 12. If the first protective layer is not provided, the first optical compensation layer 12 can also function as a protective layer for the polarizer 11. When the first optical compensation layer functions as a protective layer, it can contribute to thinning of the laminated optical film (liquid crystal panel). Moreover, the laminated optical film of the present invention may further include any appropriate optical compensation layer as necessary.
  • the first optical compensation layer 12 has a slow axis, and is laminated so that the slow axis is perpendicular to the absorption axis of the polarizer 11.
  • the term “orthogonal” includes a case where it is substantially orthogonal.
  • substantially orthogonal includes the case of 90 ° ⁇ 3.0 °, preferably 90 ° ⁇ 1.0 °, more preferably 90 ° ⁇ 0.5 °.
  • the slow axis of the third optical compensation layer 14 is laminated so as to define any appropriate angle with respect to the absorption axis of the polarizer 11.
  • the angle is preferably 30 to 60 °, more preferably 35 to 55 °, particularly preferably 40 to 50 °, and most preferably 43 to 47 °.
  • the total thickness of the laminated optical film of the present invention is preferably 250 to 410 111, more preferably (255 to 405 mm 111, particularly preferably (260 to 400 mm). The details of each layer constituting the optical film will be described.
  • the in-plane retardation Re of the first optical compensation layer is 80 to 300 nm, preferably 80 to 200 nm, more preferably 100 to; 180 nm, and particularly preferably 120 to 160 nm.
  • the first optical compensation layer can compensate the optical axis of the polarizer.
  • the screen contrast when viewed from an oblique direction can be improved.
  • the ability to arrange the slow axis of the first optical compensation layer to be orthogonal to the absorption axis of the polarizer is one of the features of the present invention.
  • any appropriate material can be adopted as long as the above characteristics are obtained.
  • a liquid crystal material nematic liquid crystal
  • the difference between nx and ny of the obtained optical compensation layer can be made much larger than that of a non-liquid crystal material.
  • the thickness of the optical compensation layer for obtaining a desired in-plane retardation can be remarkably reduced, and the resulting laminated optical film and liquid crystal panel can be made thinner.
  • liquid crystal material for example, a liquid crystal polymer or a liquid crystal monomer can be used.
  • the liquid crystal material may exhibit liquid crystallinity either lyotropic or thermotropic.
  • the alignment state of the liquid crystal is preferably homogeneous alignment.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • the liquid crystal material is a liquid crystal monomer
  • a polymerizable monomer and / or a crosslinkable monomer is preferable. This is because the alignment state of the liquid crystalline monomer can be fixed by polymerizing or bridging the liquid crystalline monomer. After aligning the liquid crystal monomers, for example, if the liquid crystal monomers are polymerized or cross-linked, the alignment state can be fixed accordingly.
  • a polymer is formed by polymerization, and a force that forms a three-dimensional network structure by crosslinking, these are non-liquid crystalline.
  • the first optical compensation layer for example, transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to the liquid crystal compound does not occur.
  • the first optical compensation layer is an optical compensation layer with extremely high stability that is not affected by temperature changes.
  • Specific examples of the method for forming the liquid crystal monomer and the first optical compensation layer include monomers and methods described in JP 2006-178389 A.
  • the thickness of the first optical compensation layer may be set so as to obtain desired optical characteristics.
  • the thickness is preferably from 0.5 to; ⁇ , more preferably from 0.5 to 8 ⁇ 111, particularly preferably from 0.5 to 5 ⁇ m. is there.
  • the thickness is preferably 5 to 70 111, more preferably 10 to 65 111, and particularly preferably 15 to 5. 60 ⁇ m.
  • any appropriate polymer can be adopted as the resin for forming the polymer film.
  • resins constituting a positive birefringent film such as norbornene-based resin, polycarbonate-based resin, cellulose-based resin, polybutyl alcohol-based resin, and polysulfone-based resin. Of these, norbornene resins and polycarbonate resins are preferable.
  • the norbornene-based resin is a resin that is polymerized using a norbornene-based monomer as a polymerization unit.
  • the norbornene-based monomer include norbornene and alkyl and / or alkylidene substituted products thereof, such as 5-methyl-2-norbornene, 5-dimethyl-2-norbornene, 5-ethyl-2-norbornene, and 5-butyl-2. —Norbornene, 5-ethylidene-2-norbornene, etc. Polarity of these halogens, etc.
  • an aromatic polycarbonate is preferably used as the polycarbonate resin.
  • the aromatic polycarbonate can be typically obtained by a reaction between a carbonate precursor and an aromatic divalent phenol compound.
  • carbonate precursors include phosgene, bischloroformate of divalent phenols, diphenyl carbonate, di-p-trinole carbonate, pheninole p-trinole carbonate, di-p-chlorophenyl carbonate, dinaphthyl. And carbonate.
  • phosgene and diphenyl carbonate are preferable.
  • aromatic divalent phenolic compounds include 2, 2 bis (4-hydroxyphenol) propane, 2,2 bis (4-hydroxy3,5-dimethylphenol) propane, bis (4-hydroxyphenol). ) Methane, 1,1-bis (4-hydroxyphenenole) ethane, 2,2bis (4-hydroxyphenenole) butane, 2,2bis (4-hydroxy3,5 dimethylphenole) butane, 2,2bis (4-hydroxy 3,5-dipropylphenol) propane, 1,1 bis (4-hydroxyphenyl) cyclohexane, 1,1 bis (4-hydroxyphenyl) 3, 3,5-trimethylcyclohexane, etc. Cited The These may be used alone or in combination of two or more.
  • 2,2-bis (4-hydroxyphenyl) propane, 1,1 bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -1,3,3 5-Trimethylcyclohexane is used.
  • 2,2bis (4-hydroxyphenyl) propane and 1,1bis (4-hydroxyphenyl) 3,3,5-trimethylcyclohexane are used.
  • the first optical compensation layer 12 has a refractive index ellipsoid of nx> ny> nz.
  • the in-plane retardation Re of the first optical compensation layer is 80 to 300 nm, preferably 80 to 200 nm, more preferably 80 to; 160 nm, and particularly preferably 100 to 140 nm.
  • the first optical compensation layer can compensate the optical axis of the polarizer. As described above, by arranging the first optical compensation layer so that the slow axis thereof is orthogonal to the absorption axis of the polarizer, the screen contrast when viewed from an oblique direction can be improved.
  • the slow axis of the first optical compensation layer is orthogonal to the absorption axis of the polarizer.
  • the Nz coefficient (Rth / Re) is preferably 1 ⁇ ⁇ 2, more preferably 1 ⁇ ⁇ 1.5.
  • the first optical compensation layer exhibiting a refractive index ellipsoid of nx>ny> nz can be formed of any appropriate material.
  • Specific examples include stretched films of polymer films.
  • the resin forming the high molecular film is preferably a norbornene resin or a polycarbonate resin. Details of these resins are as described above in Section A-2-1.
  • Arbitrary appropriate methods can be employ
  • the stretching method include lateral uniaxial stretching, fixed-end biaxial stretching, and sequential biaxial stretching.
  • the fixed-end biaxial stretching there is a method in which a polymer film is stretched in the short direction (lateral direction) while running in the longitudinal direction.
  • This method can be apparently lateral uniaxial stretching.
  • the stretching temperature is preferably 135 to 165 ° C, more preferably 140 to 160 ° C.
  • the draw ratio is preferably 1.2 to 3.2 times, more preferably 1.3 to 3.1 times.
  • the thickness is typically 20 to 80 111, preferably 25 to 75 111, and more preferably 30 to 60 111.
  • Another specific example of the material for forming the first optical compensation layer exhibiting the refractive index ellipsoid of nx>ny> nz is a non-liquid crystalline material.
  • a non-liquid crystalline polymer is preferable. Specific materials such as polyamides, polyimides, polyesteroles, polyetherolketones, polyamideimides, polyesterimides, etc. These polymers can be used alone or in combination. Alternatively, it may be used as a mixture of two or more, and among these, polyimide is particularly preferred because of its high transparency, high orientation, and high stretchability.
  • the first optical compensation layer can be typically formed by applying a solution of the non-liquid crystal polymer to a base film and removing the solvent.
  • a process for example, a stretching process
  • optical biaxiality nx> ny> nz
  • a difference in refractive index nx> ny
  • the polyimide and the method for forming the first optical compensation layer include a polymer and an optical compensation film manufacturing method described in JP-A-2004-46065.
  • the thickness is typically 0 • ;! to 10 ⁇ m, more preferably 0.1 to 8 ⁇ 111, and particularly preferably 0.1 to 5 ⁇ m.
  • the retardation Rth in the thickness direction of the second optical compensation layer is preferably from 50 to 300 nm, more preferably
  • the second optical compensation layer may be formed of any appropriate material.
  • the film is made of a film containing a liquid crystal material fixed in a homeotropic orientation.
  • the liquid crystal material (liquid crystal compound) that can be homeopic pick-aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the method for forming the liquid crystal compound and the optical compensation layer include the liquid crystal compounds described in JP-A-2002-333642 [0020] to [0042] and the method for forming the film.
  • the thickness is preferably 0.5, more preferably (0.5 to 8 mm 111, particularly preferably (0.5 to 5 mm).
  • the in-plane retardation Re of the third optical compensation layer is 80 to 200 nm, preferably 100 to 200.
  • the third optical compensation layer can convert, for example, linearly polarized light having a specific wavelength into circularly polarized light or circularly polarized light into linearly polarized light as a ⁇ / 4 plate.
  • the third optical compensation layer may be formed of any appropriate material. Specific examples thereof include the liquid crystal materials described in the above item 2-1-1. When formed of the liquid crystal material, the thickness is typically 0.5 to 10 mm, preferably 0.5 to 8 mm, and more preferably 0.5 to 5111. Another specific example is a stretched polymer film described in the above section A-2-1. In the case of the stretched film, the thickness is typically 5 to 70 111, preferably 10 to 65 mm 111, more preferably 15 to 60 mm 111.
  • the laminated optical film of the present invention may further include a fourth optical compensation layer.
  • the fourth optical compensation layer By providing the fourth optical compensation layer, the screen contrast can be further improved and the color shift can be further reduced.
  • Thickness direction retardation Rth of optical compensation layer 4 depends on the configuration of the applied liquid crystal panel
  • the thickness direction retardation Rth is preferably 50 to 600 nm, more preferably 100-540nm, especially preferred
  • the thickness direction retardation Rth is preferably 25 to 300 nm, more preferably 50 to
  • stomachs particularly preferably 75 to 250 stomachs.
  • the fourth optical compensation layer may be formed of any appropriate material as long as the above characteristics are obtained.
  • cholesteric alignment solidification Layer refers to a layer in which the constituent molecules of the layer have a helical structure, the helical axis is aligned substantially perpendicular to the plane direction, and the alignment state is fixed. Therefore, the “cholesteric alignment solidified layer” includes not only the case where the liquid crystal compound exhibits a cholesteric liquid crystal phase but also the case where the non-liquid crystal compound has a pseudo structure like a cholesteric liquid crystal phase.
  • a “cholesteric alignment solidified layer” can be twisted with a chiral agent in a state where the liquid crystal material exhibits a liquid crystal phase to be aligned in a cholesteric structure (helical structure), and then subjected to polymerization treatment or crosslinking treatment in that state.
  • a cholesteric structure helical structure
  • it can be formed by fixing the alignment (cholesteric structure) of the liquid crystal material.
  • cholesteric alignment fixed layer examples include a cholesteric layer described in JP-A-2003-287623.
  • the thickness of the fourth optical compensation layer can be set to any appropriate value as long as the desired optical characteristics are obtained.
  • the fourth optical compensation layer is a cholesteric alignment solidified layer, it is preferably 0.5 to 10 mm, more preferably 0.5 to 8 mm 111, particularly preferably 0.5 to 5 ⁇ m. hole.
  • Non-liquid crystalline material is a non-liquid crystalline material.
  • non-liquid crystalline polymers are particularly preferred.
  • the non-liquid crystal material for example, polymers such as polyamide, polyimide, polyester, polyetherketone, polyamideimide, and polyesterimide are preferable because they are excellent in heat resistance, chemical resistance, transparency, and high rigidity.
  • any one of these polymers may be used alone, or for example, as a mixture of two or more kinds having different functional groups, such as a mixture of polyaryletherketone and polyamide. Good.
  • polyimide is particularly preferred because of its high transparency, high orientation, and high ductility!
  • Specific examples of the polyimide and the method for forming the fourth optical compensation layer include a polymer and a method for producing an optical compensation film described in JP-A-2004-46065.
  • the thickness of the fourth optical compensation layer may be any suitable thickness as long as the desired optical characteristics are obtained. It can be set to a negative value.
  • the fourth optical compensation layer is formed of a non-liquid crystalline material, it is preferably 0.5 to 10 ⁇ m, more preferably 0.5 to 8 111, and particularly preferably 0.5 to 5 ⁇ m. It is.
  • Still another specific example of the material forming the fourth optical compensation layer includes a high molecular weight film formed of a cellulose resin such as triacetyl cellulose (TAC), a norbornene resin, or the like.
  • a commercially available film can be used as it is.
  • a commercially available film subjected to secondary processing such as stretching and / or shrinking can be used.
  • Commercially available films include, for example, Fuji Photo Film Co., Ltd.
  • the norbornene-based monomer constituting the norbornene-based resin is as described above in Section A-2-1, and can satisfy the above optical characteristics.
  • Examples of the stretching method for this purpose include biaxial stretching (longitudinal and transverse equal magnification stretching).
  • the thickness of the fourth optical compensation layer can be set to any appropriate value as long as the desired optical characteristics are obtained.
  • the fourth optical compensation layer is a polymer film formed of a cellulose-based resin, a norbornene-based resin, or the like, preferably 45 to; 105 111, more preferably 50 to 95 am, particularly preferably 55 to 90 ⁇ m. m.
  • Still another specific example of the fourth optical compensation layer includes a laminate having the cholesteric alignment fixed layer and a plastic film layer.
  • the resin that forms the plastic film layer include cellulose resins and norbornene resins. These resins are as described above in this section.
  • any appropriate method may be adopted as a method of laminating the cholesteric alignment solidified layer and the plastic film layer. Specifically, a method of transferring the cholesteric alignment fixed layer to the plastic layer, a method of pasting a cholesteric alignment fixed layer and a plastic film layer formed on the base material in advance through an adhesive layer, etc. It is done.
  • the thickness of the adhesive layer is preferably 1 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m.
  • Polarizer Any appropriate polarizer may be adopted as the polarizer 11 depending on the purpose.
  • a hydrophilic polymer film such as a polybulal alcohol film, a partially formalized polybulal alcohol film, or an ethylene / acetic acid copolymer copolymer partially saponified film is used for two colors such as iodine or a dichroic dye.
  • Polyethylene-based oriented films such as those uniaxially stretched by adsorbing active substances, polyvinyl alcohol dehydrated products and polychlorinated butyl dehydrochlorinated products.
  • a uniaxially stretched polarizer obtained by adsorbing a dichroic substance such as iodine on a polybulualcohol-based film is particularly preferred because of its high polarization dichroic ratio.
  • the thickness of these polarizers is not particularly limited, but is generally about !!-80 m.
  • a polarizer uniaxially stretched by adsorbing iodine to a polybulualcohol-based film is, for example, dyed by immersing polybulualcohol in an aqueous solution of iodine and stretched 3 to 7 times the original length. It is possible to produce with S. If necessary, it may contain boric acid, zinc sulfate, zinc chloride or the like, or may be immersed in an aqueous solution of potassium iodide or the like. Furthermore, if necessary, the polybulal alcohol film may be immersed in water and washed before dyeing.
  • the stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be performed after being stretched and then dyed with iodine. Stretching in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • the first protective layer and the second protective layer are formed of any appropriate film that can be used as a protective film for a polarizing plate.
  • the material that is the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester resins, polybutyl alcohol resins, polycarbonate resins, polyamide resins, polyimide resins, polyetherolsulfone resins, and polysulfone resins.
  • TAC triacetyl cellulose
  • polyester resins such as triacetyl cellulose (TAC)
  • polybutyl alcohol resins such as polybutyl alcohol resins, polycarbonate resins, polyamide resins, polyimide resins, polyetherolsulfone resins, and polysulfone resins.
  • thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone Examples thereof include fats and ultraviolet spring curable resins.
  • a glassy polymer such as a siloxane polymer is also included.
  • polymer films described in JP-A-2001-343529 can also be used.
  • the composition can be used, for example, a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer.
  • the polymer film can be, for example, an extruded product of the resin composition.
  • the (meth) acrylic resin has a Tg (glass transition temperature) of preferably 115 ° C or higher, more preferably 120 ° C or higher, still more preferably 125 ° C or higher, and particularly preferably 130 ° C. That is all. It is because it can be excellent in durability.
  • the upper limit of Tg of the (meth) acrylic resin is not particularly limited, but is preferably 170 ° C. or less from the viewpoint of moldability and the like.
  • any appropriate (meth) acrylic resin can be adopted as long as the effects of the present invention are not impaired.
  • poly (meth) acrylic acid ester such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester ( (Meth) acrylic acid copolymer, (meth) acrylic acid methyl styrene copolymer (MS resin, etc.), polymer having alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer) And methyl methacrylate- (meth) acrylic acid norbornyl copolymer).
  • poly (meth) acrylic acid C alkyl such as methyl poly (meth) acrylate is used. More preferably, methyl methacrylate is the main component (50-
  • (meth) acrylic resin examples include, for example, a ring structure in the molecule described in Ataripet VH and Ataripet VRL20A manufactured by Mitsubishi Rayon Co., Ltd., and JP-A-2004-70296.
  • the (meth) acrylic resin has high! /, Heat resistance, high! /, Transparency, high! /, And mechanical strength.
  • (meth) acrylic resins having a rataton ring structure are particularly preferred!
  • Examples of the (meth) acrylic resin having a laton ring structure include JP 2000-230016, JP 2001-151814, JP 2002-120326, and JP 2002-.
  • Examples thereof include (meth) acrylic resins having a rataton ring structure as described in JP-A-254544 and JP-A-2005-146084.
  • the (meth) acrylic resin having the latatotone ring structure preferably has a mass average molecular weight (sometimes referred to as a weight average molecular weight) force, preferably 1000-2000000, more preferably 5000-1
  • the (meth) acrylic resin having a latatotone ring structure has a Tg (glass transition temperature) of preferably 115 ° C or higher, more preferably 125 ° C or higher, still more preferably 130 ° C or higher, particularly 130 ° C or higher. Preferably it is 135 ° C, most preferably 140 ° C or higher. It is because it can be excellent in durability.
  • the upper limit of Tg of the (meth) acrylic resin having the above-mentioned rataton ring structure is not particularly limited! /, But is preferably 170 ° C. or less from the viewpoint of moldability and the like.
  • (meth) acrylic refers to acrylic and / or methacrylate.
  • the first protective layer and the second protective layer are preferably transparent and have no color.
  • the thickness direction retardation Rth of the second protective layer is preferably 90 nm to +90 nm, more preferably 80 nm to +80 nm, and particularly preferably 70 nm to +70 nm.
  • the thicknesses of the first protective layer and the second protective layer any appropriate thickness can be adopted as long as the preferable retardation Rth in the thickness direction can be obtained.
  • the thickness of the second protective layer is typically 5 mm or less, preferably 1 mm or less, more preferably 1-500, ⁇ , particularly preferably (5 to 150 ⁇ m).
  • a hard coat treatment, an antireflection treatment, a sticking prevention treatment, an antiglare treatment, or the like may be performed as necessary.
  • the thickness direction retardation (Rth) of the first protective layer provided between the polarizer and the optical compensation layer is preferably smaller than the preferable value.
  • Cellulose films generally used as protective films are, for example, triacetyl cellulose film. In the case of a film having a thickness of 80 m, the thickness direction retardation (Rth) is about 60 nm. Therefore, the cellulose-based film having a large thickness direction retardation (Rth) is subjected to an appropriate treatment for reducing the thickness direction retardation (Rth), thereby suitably obtaining the first protective layer. Touch with S.
  • any appropriate processing method can be adopted as the above-described processing for reducing the thickness direction retardation (Rth).
  • a base material such as polyethylene terephthalate, polypropylene, or stainless steel coated with a solvent such as cyclopentanone or methyl ethyl ketone is bonded to a general cellulose film and dried by heating (for example, about 80 to 150 ° C). 3 to about 10 minutes), and then the base film is peeled off; a solution obtained by dissolving norbornene resin, acrylic resin, etc. in a solvent such as cyclopentanone, methyl ethyl ketone, etc.
  • a method may be used in which a coated film is peeled off after being applied to a glass-based film and dried by heating (for example, 80 to approximately 150 ° C for 3 to 10 minutes).
  • the material constituting the cellulose film is preferably a fatty acid-substituted cellulose polymer such as diacetyl cellulose and triacetyl cellulose.
  • a fatty acid-substituted cellulose polymer such as diacetyl cellulose and triacetyl cellulose.
  • triacetyl cellulose has an acetic acid substitution degree of about 2.8, preferably an acetic acid substitution degree of 1.8 to 2.7, more preferably a propionic acid substitution degree of 0.;
  • the thickness direction retardation (Rth) can be controlled to be small.
  • the thickness direction retardation (Rth) can be controlled to be small.
  • the addition amount of the plasticizer is preferably 40 parts by weight or less, more preferably 1 to 20 parts by weight, still more preferably 1 to 15 parts by weight with respect to 100 parts by weight of the fatty acid-substituted cellulose polymer.
  • the processes for reducing the thickness direction retardation (Rth) may be combined as appropriate.
  • the thickness direction retardation Rth (550) of the first protective layer obtained by such treatment is preferably 20 nm to +20 nm, more preferably 10 nm to +10 nm, and particularly preferably ⁇ 61 111 to +61 111, most preferably from 3 nm to +3 nm.
  • the in-plane retardation Re (550) of the first protective layer is preferably Onm or more and 10 nm or less, more preferably Onm or more and 6 nm or less, and particularly preferably Onm or more and 3 nm or less.
  • the thickness of the first protective layer is preferably 20 to 200 ⁇ m, more preferably 30 to; 100 ⁇ m, and still more preferably 35 to 95 ⁇ m.
  • Arbitrary appropriate methods can be employ
  • a typical example of the pressure-sensitive adhesive layer is an acrylic pressure-sensitive adhesive layer.
  • the thickness of the acrylic pressure-sensitive adhesive layer is preferably;! -30 ⁇ m, more preferably 3-25 ⁇ m.
  • the first optical compensation layer 12 can function as a protective layer for the polarizer 11
  • the polarizer and the first optical compensation layer are laminated via any appropriate adhesive layer. Is done.
  • the first optical compensation layer showing the refractive index ellipsoid of nx> ny> nz is produced by fixed-end biaxial stretching, the slow axis can occur in the short direction.
  • the absorption axis direction of the polarizer can occur in the stretching direction (longitudinal direction).
  • the first optical compensation layer and the polarizer are roll-to-roll. It can be laminated continuously with rolls.
  • the adhesive used for laminating the polarizer and the first optical compensation layer include an adhesive containing polybulal alcohol resin, a crosslinking agent, and a metal compound colloid.
  • polybulal alcohol-based resin examples include polybulal alcohol resin and acetoacetyl group-containing polybulal alcohol resin.
  • it is a polybutyl alcohol resin containing a acetoacetyl group. This is because durability can be improved.
  • Examples of the polybula alcohol-based resin include a saponified product of polyacetate butyl, a derivative of the saponified product; a saponified product of a copolymer with a monomer copolymerizable with butyl acetate; Examples thereof include modified polybulal alcohols in which bull alcohol is acetalized, urethanized, etherified, grafted, or phosphorylated.
  • Examples of the monomer include unsaturated carboxylic acids such as (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, (meth) acrylic acid, and esters thereof; ⁇ -olefins such as ethylene and propylene; (Meth) aryl sulfonic acid (soda), sulfonic acid soda (monoalkyl malate), disulfonic acid soda alkyl malate, ⁇ -methylol acrylamide, acrylamide alkyl sulfonic acid alkali salt, ⁇ -bullpyrrolidone, ⁇ -bull pyrrolidone derivative Can be mentioned. this These resins can be used alone or in combination of two or more.
  • unsaturated carboxylic acids such as (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, (meth) acrylic acid, and esters thereof
  • ⁇ -olefins such as ethylene and propylene
  • the average degree of polymerization of the polybulal alcohol resin is preferably 10 from the viewpoint of adhesiveness.
  • the average saponification degree, from the viewpoint of adhesiveness preferably 85; 100 mole 0/0; 100 moles 0/0 degree, more preferably 90.
  • the above-mentioned acetoacetyl group-containing polybutyl alcohol resin is obtained, for example, by reacting a polybutyl alcohol resin with diketene by an arbitrary method.
  • a method in which diketene is added to a dispersion in which a polybulualcohol-based resin is dispersed in a solvent such as acetic acid A method of adding a diketene; a method of directly contacting a diketene gas or a liquid diketene with a polybutyl alcohol resin.
  • the degree of modification of the acetoacetyl group of the above-mentioned acetoacetyl group-containing polybutyl alcohol-based resin is typically 0.1 mol% or more, preferably about 0 ⁇ ;! to about 40 mol%, more preferably; -20%, particularly preferably 2-7 mol%. If the amount is less than 1 mol%, water resistance may be insufficient. If it exceeds 40 mol%, the effect of improving water resistance is small.
  • the degree of modification of the acetoacetyl group is a value measured by NMR.
  • any appropriate crosslinking agent may be employed as the crosslinking agent.
  • a compound having at least two functional groups having reactivity with the polyvinyl alcohol resin is preferable.
  • ethylenediamine, triethylenediamine, hexamethylenediamine and other alkylenediamines having two alkylene groups and two amino groups for example, ethylenediamine, triethylenediamine, hexamethylenediamine and other alkylenediamines having two alkylene groups and two amino groups; tolylene diisocyanate, hydrogenated tolylene diisocyanate, trimethylol Propanetolylene diisocyanate adduct, triphenylmethane triisocyanate, methylenebis (4 phenylmethane triisocyanate, isophorone diisocyanate and their isocyanates such as ketoxime block or phenol block; ethylene Glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin di
  • aminoformaldehyde resins are preferred for dialdehydes.
  • As the amino-formaldehyde resin a compound having a methylol group is preferred.
  • methylol melamine which is preferred as a compound having a methylol group, is particularly preferred.
  • the blending amount of the cross-linking agent may be appropriately set according to the type of the polybulualcohol-based resin. Typically, it is about 10 to 60 parts by weight, preferably 20 to 50 parts by weight, with respect to 100 parts by weight of the polybutyl alcohol resin. This is because the adhesiveness can be excellent.
  • reaction of a crosslinking agent advances in a short time, and there exists a tendency for an adhesive agent to gelatinize. As a result, the usable time (pot life) as an adhesive becomes extremely short, and industrial use may be difficult. Since the adhesive of this embodiment contains a metal compound colloid described later, it can be used with good stability S even when the amount of the crosslinking agent is large.
  • the metal compound colloid may be one in which metal compound fine particles are dispersed in a dispersion medium, and is electrostatically stabilized due to mutual repulsion of the same kind of charge of the fine particles, and has permanent stability. Can be a thing.
  • the average particle size of the fine particles forming the metal compound colloid can be any appropriate value as long as it does not adversely affect the optical properties such as polarization properties. It is preferably;! To 100 nm, more preferably;! To 50 nm. This is because the fine particles can be uniformly dispersed in the adhesive layer, ensuring adhesion and suppressing nicks. “Knick” refers to a local uneven defect generated at the interface between the polarizer and the protective layer.
  • metal compound any appropriate compound can be adopted as the metal compound.
  • metal oxides such as alumina, silica, zirconium, titania, etc .
  • metal salts such as aluminum silicate, calcium carbonate, magnesium silicate, zinc carbonate, barium carbonate, calcium phosphate; minerals such as celite, talc, clay, kaolin It is done. Alumina is preferred.
  • the metal compound colloid is typically present in the form of a colloidal solution dispersed in a dispersion medium. Examples of the dispersion medium include water and alcohols. The solid content concentration in the colloidal solution is typically about !! to 50% by weight.
  • the colloidal solution may contain acids such as nitric acid, hydrochloric acid, acetic acid as a stabilizer.
  • the compounding amount of the metal compound colloid (solid content) is preferably 200 parts by weight or less, more preferably 10 to 200 parts by weight, and still more preferably 100 parts by weight of polybulal alcohol resin. 20 to 175 parts by weight, most preferably 30 to 150 parts by weight. This is because the occurrence of nicks can be suppressed while ensuring adhesiveness.
  • the adhesive of this embodiment includes a coupling agent such as a silane coupling agent and a titanium coupling agent, various tackifiers, an ultraviolet absorber, an antioxidant, a heat stabilizer, and a hydrolysis stabilizer. Stabilizers and the like can be included.
  • the form of the adhesive of the present embodiment is preferably an aqueous solution (resin solution).
  • the resin concentration is preferably 0.5;! To 15% by weight, more preferably 0.5 to 10% by weight, from the viewpoint of coating property and storage stability.
  • the viscosity of the resin solution is preferably 1 to 50 mPa's.
  • the pH of the resin solution is preferably 2 to 6, more preferably 2.5 to 5, more preferably 3 to 5, and most preferably 3.5 to 4.5.
  • the surface charge of a metal compound colloid can be controlled by adjusting the pH.
  • the surface charge is preferably a positive charge. By having a positive charge, for example, generation of nicks can be suppressed.
  • any appropriate method can be adopted as a method for preparing the resin solution.
  • a method of blending a metal compound colloid with a polyvinyl alcohol resin and a crosslinking agent mixed in advance and adjusted to an appropriate concentration can be mentioned.
  • the cross-linking agent can be mixed in consideration of the time of use.
  • the concentration of the resin solution may be adjusted after preparing the resin solution.
  • FIG. 2 (a) is a schematic cross-sectional view of a liquid crystal panel according to one embodiment of the present invention.
  • the liquid crystal panel 100 includes: a liquid crystal cell 20; a laminated optical film 10 ′ of the present invention disposed on one side of the liquid crystal cell 20 (backlight side in the illustrated example); and the other side of the liquid crystal cell 20 (illustrated example) Then, a laminated film 30 arranged on the viewing side) is provided.
  • the laminated film 30 includes the polarizer 11 and the fifth optical compensation layer 16.
  • the laminated film 30 is provided with a first protective layer between the polarizer 11 and the fifth optical compensation layer 16 as necessary, and on the opposite side of the polarizer 11 from the fifth optical compensation layer 16. Two protective layers are provided. Although not shown, the laminated film 30 may further include any appropriate other optical compensation layer. As shown in the figure, the laminated optical film 10 ′ and the laminated film 30 are arranged so that the side on which the optical compensation layer is provided is the liquid crystal cell 20 side.
  • FIG. 2B is a schematic cross-sectional view of a liquid crystal panel according to another embodiment of the present invention.
  • the liquid crystal panel 100 ′ includes the liquid crystal cell 20; the laminated optical film 10 ′ of the present invention disposed on one side of the liquid crystal cell 20 (the backlight side in the illustrated example); and the other side of the liquid crystal cell 20 ( And a laminated film 30 ′ disposed on the viewing side in the illustrated example.
  • the laminated film 30 ′ includes the polarizer 11, the fifth optical compensation layer 16, and the fourth optical compensation layer 15.
  • a first protective layer is provided between the polarizer 11 and the fifth optical compensation layer 16 as necessary, and the opposite side of the polarizer 11 from the first optical compensation layer 12 is provided.
  • a second protective layer is provided on the substrate.
  • the laminated film 30 ′ may further include any appropriate other optical compensation layer. As illustrated, the laminated optical film 10 ′ and the laminated film 30 ′ are arranged so that the side on which the optical compensation layer is provided is the liquid crystal cell 20 side.
  • the laminated optical film 10 may be disposed instead of the laminated optical film 10 '. Further, unlike the illustrated example, the laminated optical film 10 ′ (10) may be arranged on the viewing side, and the laminated films 30 and 30 ′ may be arranged on the backlight side. Preferably, as shown in the drawing, the laminated optical film 10 ′ (10) is disposed on the backlight side.
  • the slow axis of the fifth optical compensation layer 16 constituting the laminated film 30, 30 ' may be any appropriate relative to the absorption axis of the polarizer 11 constituting the laminated film 30, 30'. They are stacked so as to define the angle.
  • the angle is preferably 30 to 60 °, more preferably 35 to 55 °, particularly preferably 40 to 50 °, and most preferably 43 to 47 °.
  • the absorption axes of the polarizers 11 and 11 arranged on both sides of the liquid crystal cell 20 of the liquid crystal panels 100 and 100 ′ are preferably arranged so as to be substantially orthogonal.
  • the liquid crystal cell 20 includes a pair of substrates 21 and 21 'and a liquid crystal layer 22 as a display medium sandwiched between the substrates 21 and 21'.
  • One substrate (color filter substrate) 21 is provided with a color filter and a black matrix (both not shown).
  • the other substrate (active matrix substrate) 21 ′ includes a switching element (typically TFT) (not shown) for controlling the electro-optical characteristics of the liquid crystal, and a scanning line (Fig.
  • a signal line (not shown) for supplying a source signal and a pixel electrode (not shown) are provided.
  • the color filter 1 may be provided on the active matrix substrate 21 ′ side.
  • a distance (cell gap) between the substrates 21 and 21 ′ is controlled by a spacer (not shown).
  • an alignment film (not shown) made of polyimide is provided on the side of the substrates 21, 21 ′ in contact with the liquid crystal layer 22.
  • FIG. 3 is a schematic cross-sectional view illustrating the alignment state of liquid crystal molecules in the VA mode.
  • Fig. 3 (a) when no voltage is applied, the liquid crystal molecules are aligned perpendicular to the substrates 21 and 21 '.
  • Such vertical alignment can be realized by arranging a nematic liquid crystal having negative dielectric anisotropy between substrates on which a vertical alignment film (not shown) is formed.
  • a vertical alignment film not shown
  • the liquid crystal molecules in this state are birefringent with respect to linearly polarized light that has passed through one polarizer 11 and entered the liquid crystal layer 22, and the polarization state of the incident light changes according to the inclination of the liquid crystal molecules. .
  • Light that passes through the liquid crystal layer when a predetermined maximum voltage is applied is, for example, linearly polarized light whose polarization orientation is rotated by 90 °, and therefore is transmitted through the other polarizer 11 to display a bright state. Is obtained. When no voltage is applied again, the display of the heel state can be restored by the orientation regulating force. Also change the applied voltage By controlling the tilt of the liquid crystal molecules and changing the transmitted light intensity from the other polarizer 11, gradation display is possible.
  • the same layer as the third optical compensation layer can be adopted.
  • the thickness direction retardation Rth of the fourth optical compensation layer is preferably Is 50
  • the thickness direction retardation Rth of each of the fourth optical compensation layers is preferably Is
  • the thickness direction retardation when arranged on one side is preferably 25 to 300 nm, more preferably 50 to 270 nm, and particularly preferably 75 to 250 nm.
  • Arbitrary appropriate methods can be employ
  • the measurement wavelength was 590 nm or 550 nm, and the measurement temperature was 23 ° C.
  • a white image and a black image were displayed on the liquid crystal display device, and measurement was performed using a product name “EZ Contrastl 60D” manufactured by ELDIM.
  • a polarizer was obtained by uniaxially stretching 6 times between rolls having different speed ratios in an aqueous solution containing boric acid.
  • a triacetylcellulose film (thickness 40 m, manufactured by Konica Minolta, trade name: KC4UYW) is used as a protective layer (first protective layer and second protective layer) on both sides of this polarizer.
  • the in-plane phase difference Re (550) of the protective layer is 0.9 nm
  • the thickness direction retardation Rth (550) is 1.2 nm. In this way, a polarizing plate was produced, where Re (550) is a value measured with light having a wavelength of 550 nm at 23 ° C.
  • the same film as the first optical compensation layer was used.
  • a nematic liquid crystalline compound represented by the following chemical formula (2) 10 parts by weight of a chiral agent represented by the following chemical formula (3), 5 parts by weight of a photopolymerization initiator (Irgacure 907: manufactured by Ciba Specialty One Chemicals)
  • a photopolymerization initiator Irgacure 907: manufactured by Ciba Specialty One Chemicals
  • 300 parts by weight of methyl ethyl ketone was mixed uniformly to prepare a liquid crystal coating solution.
  • this liquid crystal coating solution is coated on a substrate (biaxially stretched PET film), heat-treated at 80 ° C for 3 minutes, and then subjected to polymerization by irradiating with ultraviolet rays, and a fourth optical material is formed on the substrate.
  • a cholesteric alignment solidified layer serving as a compensation layer was formed.
  • the cholesteric alignment solidified layer has a thickness of 3 m and a thickness direction retardation Rth of 120 nm.
  • the in-plane retardation Re was substantially zero.
  • the same film as the first optical compensation layer was used.
  • a cholesteric alignment solidified layer as a fourth optical compensation layer was adhered to the fifth optical compensation layer with an isocyanate adhesive (thickness: 511 m), and the substrate (biaxially stretched PET film) was removed.
  • a laminate in which the cholesteric alignment solidified layer was transferred to the fifth optical compensation layer was obtained.
  • the polarizing plate obtained above was laminated via an acrylic pressure-sensitive adhesive (thickness 12 ⁇ 111).
  • the fifth optical compensation layer was laminated so that the slow axis was 45 ° clockwise with respect to the absorption axis of the polarizer of the polarizing plate. In this way, a laminated optical film A was obtained.
  • a liquid crystal solidified layer serving as a second optical compensation layer is adhered to the first optical compensation layer with an isocyanate adhesive (thickness 5 am), and the base material (norbornene resin film) is removed.
  • a laminate 1 was obtained in which the second optical compensation layer was transferred to the optical compensation layer.
  • a cholesteric alignment solidified layer as a fourth optical compensation layer is adhered to the third optical compensation layer with an isocyanate adhesive (thickness: 511 m), and the substrate (biaxially stretched PET film) is removed.
  • an isocyanate adhesive thickness: 511 m
  • the substrate biaxially stretched PET film
  • a laminate 2 in which the cholesteric alignment solidified layer was transferred to the third optical compensation layer was obtained.
  • the laminate 1 and the polarizing plate were laminated in this order via an acrylic pressure-sensitive adhesive (thickness: 12 ⁇ ). At this time, the laminated body 1 was laminated so that the first optical compensation layer was on the polarizing plate side.
  • the laminar axial forces of the first optical compensation layer and the third optical compensation layer were laminated so as to be 90 ° and 45 ° clockwise with respect to the absorption axis of the polarizer of the polarizing plate, respectively. In this way, a laminated optical film ⁇ was produced.
  • the liquid crystal cell was removed from the Sony PlayStation Portable (with VA mode liquid crystal cell), and the laminated film ⁇ was attached to the viewing side of the liquid crystal cell with an acrylic adhesive (thickness 20 ⁇ ).
  • the fourth optical compensation layer was attached so as to be on the liquid crystal cell side.
  • the laminated optical film ⁇ was attached to the backlight side of the liquid crystal cell via an acrylic adhesive (thickness 20 ⁇ ).
  • the fourth optical compensation layer is liquid crystal Affixed to the cell side.
  • the laminated film A was laminated such that the polarizer absorption axis and the laminated optical film B polarizer absorption axis were substantially perpendicular to each other. Thus, a liquid crystal panel was produced.
  • the laminated optical film was the same as the laminated optical film B except that the film shown below was used as the first optical compensation layer and that the Rth of the second optical compensation layer was ⁇ 140 nm.
  • Norbornene resin film long (manufactured by Zeon Corporation, trade name Zeonor, thickness 60 m, photoelastic coefficient 3. l X 10_ 12 m 2 / N) of the fixed end biaxially stretched 1.7 times at 0.99 ° C By doing so, a long film was produced.
  • the in-plane retardation Re of this film was 120 nm
  • the thickness direction retardation Rth was 156 nm
  • the Nz coefficient (Rth / Re) was 1.3.
  • the obtained film was punched out to a size corresponding to the liquid crystal cell to obtain a first optical compensation layer.
  • a liquid crystal panel was obtained in the same manner as in Example 1 except that the laminated optical film C was used instead of the laminated optical film B.
  • Polyacetyl alcohol resin containing acetoacetyl group (average polymerization degree: 1200, saponification degree: 98.5 mol%, acetoacetylation degree: 5 mol%) 100 parts by weight of methylolmelamine 50 parts by weight was dissolved in pure water under a temperature condition of 30 ° C. to obtain an aqueous solution adjusted to a solid content concentration of 3.7%.
  • An aqueous adhesive solution was prepared by adding 18 parts by weight of an aqueous colloidal alumina solution (average particle size 15 nm, solid content concentration 10%, positive charge) to 100 parts by weight of this aqueous solution.
  • the viscosity of the adhesive aqueous solution was 9.6 mPa's.
  • the pH of the aqueous adhesive solution was 4 to 4.5.
  • a polarizer was obtained by uniaxially stretching 6 times between rolls having different speed ratios in an aqueous solution containing boric acid.
  • a triacetyl cellulose film (trade name: KC4U YW) as a second protective layer was pasted on one side of this polarizer via a polybutyl alcohol adhesive (thickness 0 ⁇ 1 m).
  • the adhesive aqueous solution obtained above was applied to the other surface of the polarizer with a thickness of 0.1 m, and the first optical compensation layer obtained in Example 2 was attached. .
  • lamination was performed so that the slow axis of the first optical compensation layer was orthogonal to the absorption axis of the polarizer.
  • a laminate I was obtained.
  • Example 1 140 nm is bonded with an isocyanate adhesive (thickness 5 ⁇ m), the base material (norbornene resin film) is removed, and the second optical compensation layer is transferred to laminate I II was obtained.
  • the laminate 2 obtained in Example 1 was laminated on the second optical compensation layer side of the laminate II via an acrylic pressure-sensitive adhesive (thickness: 12 ⁇ ). At this time, lamination was performed such that the third optical compensation layer of the laminate 2 was on the laminate II side.
  • the third optical compensation layer is laminated so that the slow axis is 45 ° clockwise with respect to the absorption axis of the polarizer. In this way, a laminated optical film C ′ was produced.
  • a liquid crystal panel was obtained in the same manner as in Example 2 except that the laminated optical film C ′ was used instead of the laminated optical film C.
  • a laminated film D was produced in the same manner as the laminated optical film B except that the slow axis of the first optical compensation layer and the absorption axis of the polarizer of the polarizing plate were laminated in parallel (0 °). .
  • a liquid crystal panel was obtained in the same manner as in Example 1 except that the laminated film D was used instead of the laminated optical film B.
  • a laminated film E is produced in the same manner as the laminated optical film C, except that the slow axis of the first optical compensation layer and the absorption axis of the polarizer of the polarizing plate are parallel (0 °). .
  • a liquid crystal panel is obtained in the same manner as in Example 1 except that the laminated film E is used instead of the laminated optical film B.
  • Table 1 summarizes the overall configuration of the panels of Examples;! -3 and Comparative Examples 1-3. The angle (counterclockwise) when the absorption axis of the polarizer on the knock light side is 0 ° is also shown. [0122] [Table 1]
  • the liquid crystal panels of Examples 1 to 3 of the present invention were superior in contrast to the liquid crystal panels of Comparative Examples! To 3. Comparing Example 1 with Comparative Example 2, Examples 2 and 3 and Comparative Example 3, contrast is remarkably increased by making the slow axis of the first optical compensation layer and the absorption axis of the polarizer perpendicular to each other. It turns out that it is excellent. Further, it was confirmed that the liquid crystal panel of the example of the present invention had a smaller color shift than the liquid crystal panel of the comparative example. Industrial applicability
  • the laminated optical film, liquid crystal panel, and liquid crystal display device of the present invention can be suitably applied to mobile phones, liquid televisions, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

A multilayer optical film exhibiting excellent screen contrast while suppressing color shift. A liquid crystal panel and a liquid crystal display are also provided. The multilayer optical film comprises at least a polarizer, a first optical compensation layer where an index ellipsoid has a relation of nx>ny=nz and the in-plane retardation Re1 is 80-300 nm, a second optical compensation layer where an index ellipsoid has a relation of nz>nx=ny, and a third optical compensation layer where an index ellipsoid has a relation of nx>ny=nz and the in-plane retardation Re3 is 80-200 nm formed in this order, and the absorption axis of the polarizer intersects the slow axis of the first optical compensation layer perpendicularly.

Description

明 細 書  Specification
積層光学フィルム、積層光学フィルムを用いた液晶パネルおよび液晶表 示装置  LAMINATED OPTICAL FILM, LIQUID CRYSTAL PANEL AND LIQUID CRYSTAL DISPLAY DEVICE USING LAMINATED OPTICAL FILM
技術分野  Technical field
[0001] 本発明は、積層光学フィルム、積層光学フィルムを用いた液晶パネルおよび液晶 表示装置に関する。より詳細には、本発明は、偏光子と少なくとも 3つの光学補償層 を有する積層光学フィルム、当該積層光学フィルムを用いた液晶パネルおよび液晶 表示装置に関する。  The present invention relates to a laminated optical film, a liquid crystal panel using the laminated optical film, and a liquid crystal display device. More specifically, the present invention relates to a laminated optical film having a polarizer and at least three optical compensation layers, a liquid crystal panel using the laminated optical film, and a liquid crystal display device.
背景技術  Background art
[0002] 液晶表示装置には、一般に、光学的な補償を行うために、偏光フィルムと光学補償 層とを組み合わせた様々な光学フィルムが使用されている。  In general, various optical films in which a polarizing film and an optical compensation layer are combined are used for liquid crystal display devices in order to perform optical compensation.
[0003] 上記光学フィルムの一種である円偏光板は、通常、偏光フィルムと λ /4板とを組 み合わせることによって製造できる。し力、し、 λ /4板は、波長が短波長側になるに従 つて位相差値が大きくなる特性、いわゆる「正の波長分散特性」を示し、また、その波 長分散特性が大きいものが一般的である。このために、広い波長範囲にわたって、 所望の光学特性 (例えば、 λ /4板としての機能)を発揮できなレヽとレ、う問題がある。 このような問題を回避するために、近年、波長が長波長側になるに従って位相差値 が大きくなる波長分散特性、いわゆる「逆分散特性」を示す位相差板として、例えば、 変性セルロース系フィルムおよび変性ポリカーボネート系フィルムが提案されている。 し力、し、これらのフイノレムにはコストの面で問題がある。  [0003] A circularly polarizing plate, which is a kind of the optical film, can usually be produced by combining a polarizing film and a λ / 4 plate. The λ / 4 plate exhibits a characteristic that the phase difference value increases as the wavelength becomes shorter, that is, a so-called “positive wavelength dispersion characteristic”, and has a large wavelength dispersion characteristic. Is common. For this reason, there is a problem that the desired optical characteristics (for example, a function as a λ / 4 plate) cannot be exhibited over a wide wavelength range. In order to avoid such problems, in recent years, as a retardation plate exhibiting a wavelength dispersion characteristic in which a retardation value increases as the wavelength becomes longer, that is, a so-called “reverse dispersion characteristic”, for example, a modified cellulose film and Modified polycarbonate films have been proposed. However, these Finolems are problematic in terms of cost.
[0004] そこで、現在では、正の波長分散特性を有する λ /4板について、例えば、長波長 側になるに従って位相差値が大きくなる位相差板や、 λ /2板を組み合わせることに よって、上記え /4板の波長分散特性を補正する方法が採用されている(例えば、特 許文献 1参照)。しかし、これらの技術は、画面コントラストの向上およびカラーシフト の低減がレ、ずれも不十分である。  Therefore, at present, for a λ / 4 plate having positive wavelength dispersion characteristics, for example, by combining a retardation plate whose retardation value increases as it becomes longer wavelength side, or a λ / 2 plate, A method of correcting the wavelength dispersion characteristics of the above-mentioned / 4 plate is adopted (for example, see Patent Document 1). However, these technologies do not improve the screen contrast and reduce the color shift, and the shift is insufficient.
特許文献 1:特許第 3174367号  Patent Document 1: Japanese Patent No. 3174367
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0005] 本発明は上記従来の課題を解決するためになされたものであり、その目的とすると ころは、画面コントラストに優れ、カラーシフトが小さい、積層光学フィルム、液晶パネ ルおよび液晶表示装置を提供することである。 [0005] The present invention has been made to solve the above-described conventional problems. The object of the present invention is to provide a laminated optical film, a liquid crystal panel, and a liquid crystal display device having excellent screen contrast and small color shift. Is to provide.
課題を解決するための手段  Means for solving the problem
[0006] 本発明の積層光学フィルムは、偏光子と、屈折率楕円体力 ¾x〉ny=nzの関係を 示し、面内位相差 Reが 80〜300nmである第 1の光学補償層と、屈折率楕円体が n z >nx = ny(7)関係を示す第 2の光学補償層と、屈折率楕円体が nx〉 ny = nzの関 係を示し、面内位相差 Reが 80〜200nmである第 3の光学補償層とを少なくともこの The laminated optical film of the present invention has a relationship between a polarizer and a refractive index ellipsoidal force ¾x> ny = nz, an in-plane retardation Re of 80 to 300 nm, and a refractive index. The second optical compensation layer in which the ellipsoid shows a relationship of nz> nx = ny (7) and the refractive index ellipsoid shows the relationship of nx> ny = nz, and the in-plane retardation Re is 80 to 200 nm. 3 optical compensation layers and at least this
3  Three
順で備え、該偏光子の吸収軸と該第 1の光学補償層の遅相軸とが直交している。  In order, the absorption axis of the polarizer and the slow axis of the first optical compensation layer are orthogonal to each other.
[0007] 別の実施形態においては、本発明の積層光学フィルムは、偏光子と、屈折率楕円 体が nx〉ny〉nzの関係を示し、面内位相差 Re力 S80〜300nmである第 1の光学 補償層と、屈折率楕円体が nz〉nx=nyの関係を示す第 2の光学補償層と、屈折率 楕円体力 ¾ix〉nv=nzの関係を示し、面内位相差 Re力 S80〜200nmである第 3の [0007] In another embodiment, the laminated optical film of the present invention is a first in which the polarizer and the refractive index ellipsoid have a relationship of nx>ny> nz and have an in-plane retardation Re force S80 to 300 nm. The optical compensation layer, the second ellipsoid whose refractive index ellipsoid shows a relationship of nz> nx = ny, and the refractive index ellipsoidal force ¾ix> shows the relationship of nv = nz, and the in-plane retardation Re force S80 ~ The third is 200nm
3  Three
光学補償層とを少なくともこの順で備え、該偏光子の吸収軸と該第 1の光学補償層の 遅相軸とが直交している。  The optical compensation layer is provided at least in this order, and the absorption axis of the polarizer and the slow axis of the first optical compensation layer are orthogonal to each other.
[0008] 好ましい実施形態においては、上記第 3の光学補償層の上記第 2の光学補償層と は反対側に配置され、屈折率楕円体が nx = ny > nzの関係を示す第 4の光学補償 層をさらに備える。  In a preferred embodiment, the fourth optical element is disposed on the opposite side of the third optical compensation layer from the second optical compensation layer, and the refractive index ellipsoid shows a relationship of nx = ny> nz. A compensation layer is further provided.
[0009] 本発明の別の局面によれば、液晶パネルが提供される。この液晶パネルは、液晶 セルと、上記積層光学フィルムとを備える。  [0009] According to another aspect of the present invention, a liquid crystal panel is provided. This liquid crystal panel includes a liquid crystal cell and the laminated optical film.
[0010] 好ましい実施形態においては、上記積層光学フィルムがバックライト側に配置され ている。 In a preferred embodiment, the laminated optical film is disposed on the backlight side.
[0011] 好ましい実施形態においては、偏光子と、屈折率楕円体が nx〉ny=nzの関係を 示し、面内位相差 Re力 0〜200nmである第 5の光学補償層とを備える積層フィノレ  In a preferred embodiment, a laminated finole comprising a polarizer and a fifth optical compensation layer whose refractive index ellipsoid shows a relationship of nx> ny = nz and has an in-plane retardation Re force of 0 to 200 nm.
5  Five
ムが視認側に配置されてレ、る。  Is placed on the viewer side.
[0012] 好ましい実施形態においては、上記液晶セルが VAモードである。 In a preferred embodiment, the liquid crystal cell is in a VA mode.
[0013] 本発明の別の局面によれば、液晶表示装置が提供される。この液晶表示装置は、 上記液晶パネルを有する。 [0013] According to another aspect of the present invention, a liquid crystal display device is provided. This liquid crystal display device The liquid crystal panel is included.
発明の効果  The invention's effect
[0014] 以上のように、本発明によれば、上記の光学特性を有する第 1の光学補償層、第 2 の光学補償層および第 3の光学補償層を、所定の角度で配置させることにより、画面 コントラストを向上させ、かつ、カラーシフトを低減し得る。  [0014] As described above, according to the present invention, the first optical compensation layer, the second optical compensation layer, and the third optical compensation layer having the above optical characteristics are arranged at a predetermined angle. Can improve screen contrast and reduce color shift.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 l] (a)は、本発明の 1つの実施形態による積層光学フィルムの概略断面図であり、  [Fig. L] (a) is a schematic cross-sectional view of a laminated optical film according to one embodiment of the present invention,
(b)は、本発明の別の好ましい実施形態による積層光学フィルムの概略断面図であ  (b) is a schematic cross-sectional view of a laminated optical film according to another preferred embodiment of the present invention.
[図 2] (a)は、本発明の 1つの実施形態による液晶パネルの概略断面図であり、(b)は 、本発明の別の好ましい実施形態による液晶パネルの概略断面図である。 [FIG. 2] (a) is a schematic cross-sectional view of a liquid crystal panel according to one embodiment of the present invention, and (b) is a schematic cross-sectional view of a liquid crystal panel according to another preferred embodiment of the present invention.
[図 3]本発明の液晶表示装置が VAモードの液晶セルを採用する場合に、液晶層の 液晶分子の配向状態を説明する概略断面図である。  FIG. 3 is a schematic cross-sectional view illustrating the alignment state of liquid crystal molecules in a liquid crystal layer when the liquid crystal display device of the present invention employs a VA mode liquid crystal cell.
[図 4]本発明の実施例 1の液晶パネルのコントラストの視野角依存性についてのコン ピューターシミュレーションの結果である。  FIG. 4 is a result of computer simulation on the viewing angle dependence of the contrast of the liquid crystal panel of Example 1 of the present invention.
[図 5]本発明の実施例 1の液晶パネルのコントラストの視野角依存性を示すコントラス ト等高線図である。  FIG. 5 is a contrast contour map showing the viewing angle dependence of contrast of the liquid crystal panel of Example 1 of the present invention.
[図 6]本発明の実施例 2の液晶パネルのコントラストの視野角依存性についてのコン ピューターシミュレーションの結果である。  FIG. 6 shows the result of computer simulation on the viewing angle dependence of the contrast of the liquid crystal panel of Example 2 of the present invention.
[図 7]本発明の実施例 2の液晶パネルのコントラストの視野角依存性を示すコントラス ト等高線図である。  FIG. 7 is a contrast contour map showing the viewing angle dependence of the contrast of the liquid crystal panel of Example 2 of the present invention.
[図 8]本発明の実施例 3の液晶パネルのコントラストの視野角依存性についてのコン ピューターシミュレーションの結果である。  FIG. 8 is a result of computer simulation on the viewing angle dependence of the contrast of the liquid crystal panel of Example 3 of the present invention.
[図 9]本発明の実施例 3の液晶パネルのコントラストの視野角依存性を示すコントラス ト等高線図である。  FIG. 9 is a contrast contour map showing the viewing angle dependence of the contrast of the liquid crystal panel of Example 3 of the present invention.
[図 10]比較例 1の液晶パネルのコントラストの視野角依存性についてのコンピュータ 一シミュレーションの結果である。  FIG. 10 shows the result of a computer simulation on the viewing angle dependence of the contrast of the liquid crystal panel of Comparative Example 1.
[図 11]比較例 1の液晶パネルのコントラストの視野角依存性を示すコントラスト等高線 図である。 [FIG. 11] Contrast contour lines showing the viewing angle dependence of the contrast of the liquid crystal panel of Comparative Example 1 FIG.
[図 12]比較例 2の液晶パネルのコントラストの視野角依存性についてのコンピュータ 一シミュレーションの結果である。  FIG. 12 shows the result of a computer simulation on the viewing angle dependence of the contrast of the liquid crystal panel of Comparative Example 2.
園 13]比較例 2の液晶パネルのコントラストの視野角依存性を示すコントラスト等高線 図である。  13] A contrast contour map showing the viewing angle dependence of the contrast of the liquid crystal panel of Comparative Example 2.
[図 14]比較例 3の液晶パネルのコントラストの視野角依存性についてのコンピュータ 一シミュレーションの結果である。  FIG. 14 shows the result of a computer simulation on the viewing angle dependence of the contrast of the liquid crystal panel of Comparative Example 3.
符号の説明  Explanation of symbols
10 積層光学フィルム  10 Laminated optical film
10, 積層光学フィルム  10. Laminated optical film
11 偏光子  11 Polarizer
12 第 1の光学補償層  12 First optical compensation layer
13 第 2の光学補償層  13 Second optical compensation layer
14 第 3の光学補償層  14 Third optical compensation layer
15 第 4の光学補償層  15 Fourth optical compensation layer
20 液晶セノレ  20 LCD Senor
100 液晶パネル  100 LCD panel
100 ' 液晶パネル  100 'LCD panel
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の好ましい実施形態について説明する力 本発明はこれらの実施形 態には限定されない。  [0017] Hereinafter, the ability to describe preferred embodiments of the present invention The present invention is not limited to these embodiments.
[0018] (用語および記号の定義) [0018] (Definition of terms and symbols)
本明細書における用語および記号の定義は下記の通りである。  The definitions of terms and symbols in this specification are as follows.
(1) u折率 (nx、 ny、 nz)  (1) u folding rate (nx, ny, nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、 「ny」は面内で遅相軸と直交する方向の屈折率であり、「nz」は厚み方向の屈折率で ある。  “Nx” is the refractive index in the direction where the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the refractive index in the direction perpendicular to the slow axis in the plane, “nz "Is the refractive index in the thickness direction.
(2)面内位相差 (Re) 面内位相差 (Re)は、 23°C、特に明記しなければ波長 590nmにおける層(フィルム )の面内位相差値をいう。 Reは、層(フィルム)の厚みを d (nm)としたとき、 Re = (nx -ny) X dによって求められる。なお、本明細書において、 Re (550)と示したときは、 波長 550nmにおける層(フィルム)の面内位相差をいう。また、本明細書に記載され る用語や記号に付される添え字の「1」は第 1の光学補償層を表し、添え字の「2」は 第 2の光学補償層を表し、添え字の「3」は第 3の光学補償層を表し、添え字の「4」は 第 4の光学補償層を表す。例えば、第 1の光学補償層の面内位相差を Reと示す。(2) In-plane phase difference (Re) The in-plane retardation (Re) is the in-plane retardation value of a layer (film) at 23 ° C, unless otherwise specified, at a wavelength of 590 nm. Re is obtained by Re = (nx−ny) Xd, where d (nm) is the thickness of the layer (film). In this specification, Re (550) refers to the in-plane retardation of a layer (film) at a wavelength of 550 nm. In addition, the subscript “1” attached to the terms and symbols described in this specification represents the first optical compensation layer, the subscript “2” represents the second optical compensation layer, and the subscript. “3” in the figure represents the third optical compensation layer, and the subscript “4” represents the fourth optical compensation layer. For example, Re represents the in-plane retardation of the first optical compensation layer.
(3)厚み方向の位相差 (Rth) (3) Thickness direction retardation (Rth)
厚み方向の位相差 (Rth)は、 23°C、特に明記しなければ波長 590nmにおける層( フィルム)の厚み方向の位相差値をいう。 Rthは、層(フィルム)の厚みを d (nm)とした とき、 Rth= (nx— nz) X dによって求められる。なお、本明細書において、 Rth (550 )と示したときは、波長 550nmにおける層(フィルム)の厚み方向の位相差をいう。ま た、本明細書においては、例えば、第 1の光学補償層の厚み方向の位相差を Rthと 示す。  Thickness direction retardation (Rth) is the thickness direction retardation value of a layer (film) at 23 ° C, unless otherwise specified, at a wavelength of 590 nm. Rth is obtained by Rth = (nx−nz) Xd, where d (nm) is the thickness of the layer (film). In the present specification, when Rth (550) is indicated, it means a retardation in a thickness direction of a layer (film) at a wavelength of 550 nm. In the present specification, for example, the thickness direction retardation of the first optical compensation layer is denoted by Rth.
(4) Nz係数  (4) Nz coefficient
Nz係数は、 Nz = Rth/Reによって求められる。  The Nz coefficient is determined by Nz = Rth / Re.
(5) λ /2板  (5) λ / 2 plate
λ /2板とは、光ビームの偏光面を回転させる役目をする電子光学的な複屈折板 であり、互いに直角な方向に振動する直線偏光間に 1/2波長の光路差を生じさせ る機能を有するものをいう。すなわち、常光線成分と異常光線成分との間の位相が 2 分の 1サイクルずれるように作用するものをいう。  The λ / 2 plate is an electro-optic birefringent plate that serves to rotate the polarization plane of the light beam, and generates a half-wavelength optical path difference between linearly polarized light that vibrates in directions perpendicular to each other. It has a function. That is, it works so that the phase between the ordinary ray component and the extraordinary ray component is shifted by a half cycle.
(6) λ /4板  (6) λ / 4 plate
λ /4板とは、光ビームの偏光面を回転させる役目をする電子光学的な複屈折板 であり、互いに直角な方向に振動する直線偏光間に 1/4波長の光路差を生じさせ る機能を有するものをいう。すなわち、常光線成分と異常光線成分との間の位相が 4 分の 1サイクルずれるように作用し、円偏光を平面偏光にほたは、平面偏光を円偏 光に)変換するものをいう。  The λ / 4 plate is an electro-optic birefringent plate that serves to rotate the polarization plane of the light beam, and generates a 1/4 wavelength optical path difference between linearly polarized light that vibrates in directions perpendicular to each other. It has a function. In other words, it works so that the phase between the ordinary ray component and the extraordinary ray component is shifted by a quarter of a cycle, and converts circularly polarized light into plane polarized light or plane polarized light into circularly polarized light).
Α.積層光学フィルム A- l .積層光学フィルムの全体構成 積 層 .Laminated optical film A- l. Overall structure of laminated optical film
図 1 (a)は、本発明の好ましい実施形態による積層光学フィルムの概略断面図であ る。この積層光学フィルム 10は、偏光子 11と第 1の光学補償層 12と第 2の光学補償 層 13と第 3の光学補償層 14とをこの順で備える。図 1 (b)は、本発明の別の好ましい 実施形態による積層光学フィルムの概略断面図である。この積層光学フィルム 10 'は 、偏光子 11と第 1の光学補償層 12と第 2の光学補償層 13と第 3の光学補償層 14と をこの順で備える。積層光学フィルム 10 'は、第 4の光学補償層 15をさらに備える。 図示例では、第 4の光学補償層 15は、第 3の光学補償層 14の第 2の光学補償層 13 とは反対側に配置されている。図 1 (a)および (b)において図示しないが、必要に応じ て、偏光子 11と第 1の光学補償層 12との間に第 1の保護層が設けられ、偏光子 11 の第 1の光学補償層 12の反対側に第 2の保護層が設けられる。なお、第 1の保護層 を設けない場合、第 1の光学補償層 12は、偏光子 11の保護層としても機能し得る。 第 1の光学補償層が保護層として機能することで、積層光学フィルム(液晶パネル)の 薄型化に寄与し得る。また、本発明の積層光学フィルムは、必要に応じて、任意の適 切な光学補償層をさらに備え得る。  FIG. 1 (a) is a schematic sectional view of a laminated optical film according to a preferred embodiment of the present invention. The laminated optical film 10 includes a polarizer 11, a first optical compensation layer 12, a second optical compensation layer 13, and a third optical compensation layer 14 in this order. FIG. 1 (b) is a schematic cross-sectional view of a laminated optical film according to another preferred embodiment of the present invention. The laminated optical film 10 ′ includes a polarizer 11, a first optical compensation layer 12, a second optical compensation layer 13, and a third optical compensation layer 14 in this order. The laminated optical film 10 ′ further includes a fourth optical compensation layer 15. In the illustrated example, the fourth optical compensation layer 15 is disposed on the opposite side of the third optical compensation layer 14 from the second optical compensation layer 13. Although not shown in FIGS. 1 (a) and (b), a first protective layer is provided between the polarizer 11 and the first optical compensation layer 12 as necessary, and the first protective layer of the polarizer 11 is provided. A second protective layer is provided on the opposite side of the optical compensation layer 12. If the first protective layer is not provided, the first optical compensation layer 12 can also function as a protective layer for the polarizer 11. When the first optical compensation layer functions as a protective layer, it can contribute to thinning of the laminated optical film (liquid crystal panel). Moreover, the laminated optical film of the present invention may further include any appropriate optical compensation layer as necessary.
[0020] 上記第 1の光学補償層 12は、遅相軸を有し、その遅相軸が偏光子 11の吸収軸に 対して直交するように積層されている。本明細書において、「直交」とは、実質的に直 交する場合も包含する。ここで、「実質的に直交」とは、 90° ± 3. 0° である場合を 包含し、好ましくは 90° ± 1. 0° 、さらに好ましくは 90° ± 0. 5° である。上記第 3 の光学補償層 14は、 nX〉ny=nzの屈折率楕円体を有する。上記第 3の光学補償 層 14の遅相軸は、偏光子 11の吸収軸に対して、任意の適切な角度を規定するよう にして積層されている。好ましくは 30〜60° 、さらに好ましくは 35〜55° 、特に好ま しくは 40〜50° 、最も好ましくは 43〜47° である。 The first optical compensation layer 12 has a slow axis, and is laminated so that the slow axis is perpendicular to the absorption axis of the polarizer 11. In this specification, the term “orthogonal” includes a case where it is substantially orthogonal. Here, “substantially orthogonal” includes the case of 90 ° ± 3.0 °, preferably 90 ° ± 1.0 °, more preferably 90 ° ± 0.5 °. The third optical compensation layer 14 has a refractive index ellipsoid of n X > ny = nz . The slow axis of the third optical compensation layer 14 is laminated so as to define any appropriate angle with respect to the absorption axis of the polarizer 11. The angle is preferably 30 to 60 °, more preferably 35 to 55 °, particularly preferably 40 to 50 °, and most preferably 43 to 47 °.
[0021] 本発明の積層光学フィルムの全体厚みは、好ましくは250〜410 111、さらに好ま しく(ま255〜405〃111、特 ίこ好ましく (ま 260〜400〃 mである。以下、本発明の積層 光学フィルムを構成する各層の詳細について説明する。  [0021] The total thickness of the laminated optical film of the present invention is preferably 250 to 410 111, more preferably (255 to 405 mm 111, particularly preferably (260 to 400 mm). The details of each layer constituting the optical film will be described.
[0022] A— 2— 1 ·第 1の光学補償層(1)  [0022] A— 2-1 — First optical compensation layer (1)
1つの実施形態においては、上記第 1の光学補償層 12は、 nx〉ny=nzの屈折率 楕円体を有する。ここで、 「ny=nz」は、 nyと nzが厳密に等しい場合のみならず、 ny と nzが実質的に等しい場合も包含する。すなわち、 Nz係数 (Rth /Re )が、 0. 9を 超え 1. 1未満であることをいう。第 1の光学補償層の面内位相差 Reは、 80〜300n mであり、好ましくは 80〜200nm、さらに好ましくは 100〜; 180nm、特に好ましくは 1 20〜160nmである。第 1の光学補償層は、偏光子の光軸を補償し得る。上述のよう に、第 1の光学補償層を、その遅相軸を上記偏光子の吸収軸に対して直交するよう に配置することで、斜め方向から視認した際の画面コントラストが向上し得る。このよう に、偏光子の吸収軸に対して、第 1の光学補償層の遅相軸が直交するように配置す ること力 本発明の特徴の 1つである。 In one embodiment, the first optical compensation layer 12 has a refractive index of nx> ny = nz. It has an ellipsoid. Here, “ny = nz” includes not only the case where ny and nz are exactly equal, but also the case where ny and nz are substantially equal. That is, the Nz coefficient (Rth / Re) is more than 0.9 and less than 1.1. The in-plane retardation Re of the first optical compensation layer is 80 to 300 nm, preferably 80 to 200 nm, more preferably 100 to; 180 nm, and particularly preferably 120 to 160 nm. The first optical compensation layer can compensate the optical axis of the polarizer. As described above, by arranging the first optical compensation layer so that the slow axis thereof is perpendicular to the absorption axis of the polarizer, the screen contrast when viewed from an oblique direction can be improved. Thus, the ability to arrange the slow axis of the first optical compensation layer to be orthogonal to the absorption axis of the polarizer is one of the features of the present invention.
[0023] nx〉ny=nzの屈折率楕円体を示す第 1の光学補償層を形成する材料としては、 上記のような特性が得られる限りにおいて任意の適切な材料が採用され得る。液晶 材料が好ましぐ液晶相がネマチック相である液晶材料 (ネマチック液晶)がさらに好 ましい。液晶材料を用いることにより、得られる光学補償層の nxと nyとの差を非液晶 材料に比べて格段に大きくし得る。その結果、所望の面内位相差を得るための光学 補償層の厚みを格段に小さくし得、得られる積層光学フィルムおよび液晶パネルの 薄型化に寄与し得る。このような液晶材料としては、例えば、液晶ポリマーや液晶モノ マーが使用可能である。液晶材料の液晶性の発現機構は、リオトロピックでもサーモ トロピックでもどちらでもよい。液晶の配向状態は、好ましくはホモジニァス配向である 。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよぐ組み合わせて 用いてもよい。 As the material for forming the first optical compensation layer exhibiting the refractive index ellipsoid of nx> ny = nz, any appropriate material can be adopted as long as the above characteristics are obtained. A liquid crystal material (nematic liquid crystal) in which the liquid crystal phase preferred by the liquid crystal material is a nematic phase is even more preferred. By using a liquid crystal material, the difference between nx and ny of the obtained optical compensation layer can be made much larger than that of a non-liquid crystal material. As a result, the thickness of the optical compensation layer for obtaining a desired in-plane retardation can be remarkably reduced, and the resulting laminated optical film and liquid crystal panel can be made thinner. As such a liquid crystal material, for example, a liquid crystal polymer or a liquid crystal monomer can be used. The liquid crystal material may exhibit liquid crystallinity either lyotropic or thermotropic. The alignment state of the liquid crystal is preferably homogeneous alignment. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
[0024] 上記液晶材料が液晶性モノマーである場合、例えば、重合性モノマーおよび/ま たは架橋性モノマーであることが好ましい。これは、液晶性モノマーを重合または架 橋させることによって、液晶性モノマーの配向状態を固定できるためである。液晶性 モノマーを配向させた後に、例えば、液晶性モノマー同士を重合または架橋させれ ば、それによつて上記配向状態を固定することができる。ここで、重合によりポリマー が形成され、架橋により 3次元網目構造が形成されることとなる力、これらは非液晶性 である。したがって、形成された第 1の光学補償層は、例えば、液晶性化合物に特有 の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果 、第 1の光学補償層は、温度変化に影響されない、極めて安定性に優れた光学補償 層となる。 [0024] When the liquid crystal material is a liquid crystal monomer, for example, a polymerizable monomer and / or a crosslinkable monomer is preferable. This is because the alignment state of the liquid crystalline monomer can be fixed by polymerizing or bridging the liquid crystalline monomer. After aligning the liquid crystal monomers, for example, if the liquid crystal monomers are polymerized or cross-linked, the alignment state can be fixed accordingly. Here, a polymer is formed by polymerization, and a force that forms a three-dimensional network structure by crosslinking, these are non-liquid crystalline. Therefore, in the formed first optical compensation layer, for example, transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to the liquid crystal compound does not occur. as a result The first optical compensation layer is an optical compensation layer with extremely high stability that is not affected by temperature changes.
[0025] 上記液晶モノマーおよび当該第 1の光学補償層の形成方法の具体例としては、特 開 2006— 178389号公報に記載のモノマーおよび形成方法が挙げられる。  [0025] Specific examples of the method for forming the liquid crystal monomer and the first optical compensation layer include monomers and methods described in JP 2006-178389 A.
[0026] 上記第 1の光学補償層の厚みは、所望の光学特性が得られるように設定され得る。  [0026] The thickness of the first optical compensation layer may be set so as to obtain desired optical characteristics.
第 1の光学補償層が液晶材料で形成される場合、厚みは、好ましくは 0. 5〜; ίθ πι 、さらに好ましくは 0. 5〜8〃111、特に好ましくは0. 5〜5〃mである。  When the first optical compensation layer is formed of a liquid crystal material, the thickness is preferably from 0.5 to; ίθπι, more preferably from 0.5 to 8〃111, particularly preferably from 0.5 to 5〃m. is there.
[0027] nx〉ny=nzの屈折率楕円体を示す第 1の光学補償層は、高分子フィルムを延伸 処理することによつても形成され得る。具体的には、ポリマーの種類、延伸条件 (例え ば、延伸温度、延伸倍率、延伸方向)、延伸方法等を適切に選択することにより、上 記所望の光学特性 (例えば、屈折率楕円体、面内位相差、厚み方向の位相差)を有 する第 1の光学補償層が得られ得る。より具体的には、延伸温度は、好ましくは 110 〜; 170°C、さらに好ましくは 130〜; 150°Cである。延伸倍率は、好ましくは 1. 37- 1. 67倍、さらに好ましくは 1. 42〜; 1. 62倍である。延伸方法としては、例えば、横一軸 延伸が挙げられる。  [0027] The first optical compensation layer exhibiting a refractive index ellipsoid of nx> ny = nz can also be formed by stretching a polymer film. Specifically, by appropriately selecting the type of polymer, stretching conditions (for example, stretching temperature, stretching ratio, stretching direction), stretching method, and the like, the desired optical properties (for example, refractive index ellipsoid, A first optical compensation layer having an in-plane retardation and a retardation in the thickness direction can be obtained. More specifically, the stretching temperature is preferably 110 to 170 ° C, more preferably 130 to 150 ° C. The draw ratio is preferably 1.37 to 1.67 times, more preferably 1.42 to; Examples of the stretching method include lateral uniaxial stretching.
[0028] 上記第 1の光学補償層が高分子フィルムを延伸処理することによって形成される場 合、厚みは、好ましくは5〜70 111、さらに好ましくは10〜65 111、特に好ましくは 1 5〜60 μ mである。  [0028] When the first optical compensation layer is formed by stretching a polymer film, the thickness is preferably 5 to 70 111, more preferably 10 to 65 111, and particularly preferably 15 to 5. 60 μm.
[0029] 上記高分子フィルムを形成する樹脂としては、任意の適切なポリマーが採用され得 る。具体例としては、ノルボルネン系樹脂、ポリカーボネート系樹脂、セルロース系樹 脂、ポリビュルアルコール系樹脂、ポリスルホン系樹脂等の正の複屈折フィルムを構 成する樹脂が挙げられる。中でも、ノルボルネン系樹脂、ポリカーボネート系樹脂が 好ましい。  [0029] Any appropriate polymer can be adopted as the resin for forming the polymer film. Specific examples include resins constituting a positive birefringent film such as norbornene-based resin, polycarbonate-based resin, cellulose-based resin, polybutyl alcohol-based resin, and polysulfone-based resin. Of these, norbornene resins and polycarbonate resins are preferable.
[0030] 上記ノルボルネン系樹脂は、ノルボルネン系モノマーを重合単位として重合される 樹脂である。当該ノルボルネン系モノマーとしては、例えば、ノルボルネン、およびそ のアルキルおよび/またはアルキリデン置換体、例えば、 5—メチルー 2—ノルボル ネン、 5—ジメチルー 2—ノルボルネン、 5—ェチルー 2—ノルボルネン、 5—ブチルー 2—ノルボルネン、 5—ェチリデンー 2—ノルボルネン等、これらのハロゲン等の極性 基置換体;ジシクロペンタジェン、 2, 3 ジヒドロジシクロペンタジェン等;ジメタノオタ タヒドロナフタレン、そのアルキルおよび/またはアルキリデン置換体、およびハロゲ ン等の極性基置換体、例えば、 6—メチルー 1, 4:5, 8—ジメタノー 1, 4, 4a, 5, 6, 7, 8, 8a—才クタヒドロナフタレン、 6—ェチノレー 1, 4:5, 8—ジメタノー 1, 4, 4a, 5, 6, 7, 8, 8a—才クタヒドロナフタレン、 6—ェチリデンー 1, 4:5, 8—ジメタノー 1, 4, 4a, 5, 6, 7, 8, 8a 才クタヒドロナフタレン、 6 クロロー 1, 4:5, 8 ジメタノー 1, 4 , 4a, 5, 6, 7, 8, 8a—才クタヒドロナフタレン、 6—シァノー 1, 4:5, 8—ジメタノー 1 , 4, 4a, 5, 6, 7, 8, 8a—才クタヒドロナフタレン、 6—ピリジノレ一 1, 4:5, 8—ジメタ ノー 1, 4, 4a, 5, 6, 7, 8, 8a—才クタヒドロナフタレン、 6—メトキシカノレポニノレー 1, 4:5, 8—ジメタノー 1, 4, 4a, 5, 6, 7, 8, 8a—才クタヒドロナフタレン等;シクロペン タジェンの 3〜4量体、 列え ίί、 4, 9:5, 8—ジメタノ一 3a, 4, 4a, 5, 8, 8a, 9, 9a 一才クタヒドロ一 1H ベンゾインデン、 4, 11:5, 10:6, 9 トリメタノー 3a, 4, 4a, 5 , 5a, 6, 9, 9a, 10, 10a, 11, 11a ドデカヒドロ一 1H シクロペンタアントラセン 等が挙げられる。上記ノルボルネン系樹脂は、ノルボルネン系モノマーと他のモノマ 一との共重合体であってもよレ、。 [0030] The norbornene-based resin is a resin that is polymerized using a norbornene-based monomer as a polymerization unit. Examples of the norbornene-based monomer include norbornene and alkyl and / or alkylidene substituted products thereof, such as 5-methyl-2-norbornene, 5-dimethyl-2-norbornene, 5-ethyl-2-norbornene, and 5-butyl-2. —Norbornene, 5-ethylidene-2-norbornene, etc. Polarity of these halogens, etc. Group substituents; dicyclopentagen, 2, 3 dihydrodicyclopentagen, etc .; dimethanootatahydronaphthalene, alkyl and / or alkylidene substituents thereof, and polar group substituents such as halogen, such as 6-methyl-1, 4: 5, 8—Dimethanone 1, 4, 4a, 5, 6, 7, 8, 8a—Yet Kuta Hydronaphthalene, 6—Ethenole 1, 4: 5, 8—Dimethanone 1, 4, 4a, 5, 6, 7, 8, 8a--aged Kutahydronaphthalene, 6-ethylidene 1, 4: 5, 8--dimethanone 1, 4, 4a, 5, 6, 7, 8, 8a-aged Kutahydronaphthalene, 6-chloro-1,4: 5 , 8 Dimethanone 1,4,4a, 5,6,7,8 8a-year-old Kutahydronaphthalene, 6-cyanol 1, 4: 5,8-dimethanone 1,4,4a, 5, 6, 7, 8, 8a—Talented Kutahydronaphthalene, 6—Pyridinole 1, 4: 5, 8—Dimethane 1,4,4a, 5, 6, 7, 8, 8a—Talented Kutahydronaphthalene, 6—Methoxycanoleponinole 1 , 4: 5, 8— Metanol 1, 4, 4a, 5, 6, 7, 8, 8a—Tatar hydronaphthalene, etc .; 3- to 4-mer of cyclopentagen, ίί, 4, 9: 5, 8—Dimethano 3a, 4, 4a, 5, 8, 8a, 9, 9a 1 year old Kutahydro 1H benzoindene, 4, 11: 5, 10: 6, 9 Trimethanone 3a, 4, 4a, 5, 5a, 6, 9, 9a, 10, 10a 11, 11a Dodecahydro-1H cyclopentaanthracene and the like. The norbornene-based resin may be a copolymer of a norbornene-based monomer and another monomer.
上記ポリカーボネート系樹脂としては、好ましくは、芳香族ポリカーボネートが用いら れる。芳香族ポリカーボネートは、代表的には、カーボネート前駆物質と芳香族 2価 フエノール化合物との反応によって得ることができる。カーボネート前駆物質の具体 例としては、ホスゲン、 2価フエノール類のビスクロロホーメート、ジフエニルカーボネ ート、ジ p—トリノレカーボネート、フエニノレー p—トリノレカーボネート、ジ p クロロフ ェニルカーボネート、ジナフチルカーボネート等が挙げられる。これらの中でも、ホス ゲン、ジフエ二ルカーボネートが好ましい。芳香族 2価フエノール化合物の具体例とし ては、 2, 2 ビス(4ーヒドロキシフエ二ノレ)プロパン、 2, 2 ビス(4ーヒドロキシ 3, 5—ジメチルフエ二ノレ)プロパン、ビス(4—ヒドロキシフエ二ノレ)メタン、 1, 1—ビス(4— ヒドロキシフエ二ノレ)ェタン、 2, 2 ビス(4ーヒドロキシフエ二ノレ)ブタン、 2, 2 ビス(4 ーヒドロキシ 3, 5 ジメチルフエ二ノレ)ブタン、 2, 2 ビス(4ーヒドロキシ 3, 5— ジプロピルフエ二ノレ)プロパン、 1, 1 ビス(4ーヒドロキシフエ二ノレ)シクロへキサン、 1 , 1 ビス(4ーヒドロキシフエニル) 3, 3, 5—トリメチルシクロへキサン等が挙げられ る。これらは単独で、または 2種以上組み合わせて用いてもよい。好ましくは、 2, 2 - ビス(4ーヒドロキシフエニノレ)プロパン、 1 , 1 ビス(4ーヒドロキシフエニノレ)シクロへ キサン、 1 , 1—ビス(4—ヒドロキシフエ二ル)一 3, 3, 5—トリメチルシクロへキサンが 用いられる。特に、 2, 2 ビス(4ーヒドロキシフエニル)プロパンと 1 , 1 ビス(4ーヒド ロキシフエニル) 3, 3, 5—トリメチルシクロへキサンとを共に使用することが好まし い。 As the polycarbonate resin, an aromatic polycarbonate is preferably used. The aromatic polycarbonate can be typically obtained by a reaction between a carbonate precursor and an aromatic divalent phenol compound. Specific examples of carbonate precursors include phosgene, bischloroformate of divalent phenols, diphenyl carbonate, di-p-trinole carbonate, pheninole p-trinole carbonate, di-p-chlorophenyl carbonate, dinaphthyl. And carbonate. Among these, phosgene and diphenyl carbonate are preferable. Specific examples of aromatic divalent phenolic compounds include 2, 2 bis (4-hydroxyphenol) propane, 2,2 bis (4-hydroxy3,5-dimethylphenol) propane, bis (4-hydroxyphenol). ) Methane, 1,1-bis (4-hydroxyphenenole) ethane, 2,2bis (4-hydroxyphenenole) butane, 2,2bis (4-hydroxy3,5 dimethylphenole) butane, 2,2bis (4-hydroxy 3,5-dipropylphenol) propane, 1,1 bis (4-hydroxyphenyl) cyclohexane, 1,1 bis (4-hydroxyphenyl) 3, 3,5-trimethylcyclohexane, etc. Cited The These may be used alone or in combination of two or more. Preferably, 2,2-bis (4-hydroxyphenyl) propane, 1,1 bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -1,3,3 5-Trimethylcyclohexane is used. In particular, it is preferable to use 2,2bis (4-hydroxyphenyl) propane and 1,1bis (4-hydroxyphenyl) 3,3,5-trimethylcyclohexane together.
[0032] A— 2— 2·第 1の光学補償層(2)  [0032] A— 2— 2 · First optical compensation layer (2)
別の実施形態においては、上記第 1の光学補償層 12は、 nx〉ny〉nzの屈折率楕 円体を有する。第 1の光学補償層の面内位相差 Reは、 80〜300nmであり、好まし くは 80〜200nm、さらに好ましくは 80〜; 160nm、特に好ましくは 100〜; 140nmで ある。第 1の光学補償層は、偏光子の光軸を補償し得る。上述のように、第 1の光学 補償層を、その遅相軸を上記偏光子の吸収軸に対して直交するように配置すること で、斜め方向から視認した際の画面コントラストが向上し得る。このように、偏光子の 吸収軸に対して、第 1の光学補償層の遅相軸が直交するように配置することが、本発 明の特徴の 1つである。 Nz係数(Rth /Re )は、好ましくは 1 < Νζ < 2の関係を示し 、さらに好ましくは 1 < Νζ < 1. 5である。  In another embodiment, the first optical compensation layer 12 has a refractive index ellipsoid of nx> ny> nz. The in-plane retardation Re of the first optical compensation layer is 80 to 300 nm, preferably 80 to 200 nm, more preferably 80 to; 160 nm, and particularly preferably 100 to 140 nm. The first optical compensation layer can compensate the optical axis of the polarizer. As described above, by arranging the first optical compensation layer so that the slow axis thereof is orthogonal to the absorption axis of the polarizer, the screen contrast when viewed from an oblique direction can be improved. Thus, one of the features of the present invention is that the slow axis of the first optical compensation layer is orthogonal to the absorption axis of the polarizer. The Nz coefficient (Rth / Re) is preferably 1 <Νζ <2, more preferably 1 <Νζ <1.5.
[0033] nx〉ny〉nzの屈折率楕円体を示す第 1の光学補償層は、任意の適切な材料で形 成され得る。具体例としては、高分子フィルムの延伸フィルムが挙げられる。当該高 分子フィルムを形成する樹脂としては、好ましくは、ノルボルネン系樹脂、ポリカーボ ネート系樹脂である。これらの樹脂の詳細については、 A— 2—1項で上述したとおり である。延伸フィルムの作製方法としては、任意の適切な方法を採用し得る。延伸方 法としては、例えば、横一軸延伸、固定端二軸延伸、逐次二軸延伸が挙げられる。 固定端二軸延伸の具体例としては、高分子フィルムを長手方向に走行させながら、 短手方向(横方向)に延伸させる方法が挙げられる。この方法は、見かけ上は横一軸 延伸であり得る。延伸温度は、好ましくは 135〜; 165°C、さらに好ましくは 140〜; 160 °Cである。延伸倍率は、好ましくは 1. 2〜3. 2倍、さらに好ましくは 1. 3〜3. 1倍であ る。この場合、厚みは、代表的には20〜80 111、好ましくは25〜75 111、さらに好ま しくは 30〜60 111である。 [0034] nx〉ny〉nzの屈折率楕円体を示す第 1の光学補償層を形成する材料の別の具 体例としては、非液晶性材料が挙げられる。好ましくは、非液晶性ポリマーである。具 体白勺 ίこ (ま、ポリアミド、ポリイミド、ポリエステノレ、ポリエーテノレケトン、ポリアミドイミド、ポ リエステルイミド等のポリマーが好ましい。これらのポリマーは、いずれか一種類を単 独で使用してもよいし、 2種以上の混合物として使用してもよい。これらの中でも、高 透明性、高配向性、高延伸性であることから、ポリイミドが特に好ましい。 [0033] The first optical compensation layer exhibiting a refractive index ellipsoid of nx>ny> nz can be formed of any appropriate material. Specific examples include stretched films of polymer films. The resin forming the high molecular film is preferably a norbornene resin or a polycarbonate resin. Details of these resins are as described above in Section A-2-1. Arbitrary appropriate methods can be employ | adopted as a preparation method of a stretched film. Examples of the stretching method include lateral uniaxial stretching, fixed-end biaxial stretching, and sequential biaxial stretching. As a specific example of the fixed-end biaxial stretching, there is a method in which a polymer film is stretched in the short direction (lateral direction) while running in the longitudinal direction. This method can be apparently lateral uniaxial stretching. The stretching temperature is preferably 135 to 165 ° C, more preferably 140 to 160 ° C. The draw ratio is preferably 1.2 to 3.2 times, more preferably 1.3 to 3.1 times. In this case, the thickness is typically 20 to 80 111, preferably 25 to 75 111, and more preferably 30 to 60 111. [0034] Another specific example of the material for forming the first optical compensation layer exhibiting the refractive index ellipsoid of nx>ny> nz is a non-liquid crystalline material. A non-liquid crystalline polymer is preferable. Specific materials such as polyamides, polyimides, polyesteroles, polyetherolketones, polyamideimides, polyesterimides, etc. These polymers can be used alone or in combination. Alternatively, it may be used as a mixture of two or more, and among these, polyimide is particularly preferred because of its high transparency, high orientation, and high stretchability.
[0035] 上記第 1の光学補償層は、代表的には、基材フィルムに上記非液晶ポリマーの溶 液を塗工して、溶媒を除去することにより形成され得る。当該第 1の光学補償層の形 成方法において、好ましくは、光学的二軸性 (nx〉ny〉nz)を付与するための処理( 例えば、延伸処理)が行われる。このような処理を行うことにより、面内に屈折率の差( nx〉ny)を確実に付与し得る。なお、上記ポリイミドの具体例および当該第 1の光学 補償層の形成方法の具体例としては、特開 2004— 46065号公報に記載のポリマー および光学補償フィルムの製造方法が挙げられる。この場合、厚みは、代表的には 0 • ;!〜 10〃 m、さらに好ましくは 0. 1〜8〃111、特に好ましくは0. l〜5〃mである。  [0035] The first optical compensation layer can be typically formed by applying a solution of the non-liquid crystal polymer to a base film and removing the solvent. In the method for forming the first optical compensation layer, a process (for example, a stretching process) for imparting optical biaxiality (nx> ny> nz) is preferably performed. By performing such processing, a difference in refractive index (nx> ny) can be reliably imparted in the surface. Specific examples of the polyimide and the method for forming the first optical compensation layer include a polymer and an optical compensation film manufacturing method described in JP-A-2004-46065. In this case, the thickness is typically 0 • ;! to 10 〃m, more preferably 0.1 to 8 〃111, and particularly preferably 0.1 to 5 〃m.
[0036] A— 3.第 2の光学補償層  [0036] A— 3. Second optical compensation layer
上記第 2の光学補償層 13は、 nz〉nx = nyの屈折率楕円体を有する。第 2の光学 補償層の厚み方向の位相差 Rthは、好ましくは一 50〜一 300nm、さらに好ましくは  The second optical compensation layer 13 has a refractive index ellipsoid of nz> nx = ny. The retardation Rth in the thickness direction of the second optical compensation layer is preferably from 50 to 300 nm, more preferably
2  2
—70〜― 250腹、特に好ましくは— 90〜― 200腹、最も好ましくは— 100〜― 18 Onmである。ここで、 「nx = ny」は、 nxと nyカ厳密に等しい場合のみならず、 nxと ny が実質的に等しい場合も包含する。すなわち、 Re力 S I Onm未満であることをいう。  -70 to -250 belly, particularly preferably -90 to -200 belly, most preferably -100 to -18 Onm. Here, “nx = ny” includes not only the case where nx and ny are exactly equal, but also the case where nx and ny are substantially equal. That is, it is less than Re force S I Onm.
2  2
[0037] 上記第 2の光学補償層は、任意の適切な材料で形成され得る。好ましくは、ホメオト 口ピック配向に固定された液晶材料を含むフィルムからなる。ホメオト口ピック配向させ ることができる液晶材料 (液晶化合物)は、液晶モノマーであっても液晶ポリマーであ つてもよい。当該液晶化合物および当該光学補償層の形成方法の具体例としては、 特開 2002— 333642号公報の [0020]〜 [0042]に記載の液晶化合物および当該 フィルムの形成方法が挙げられる。この場合、厚みは、好ましくは 0. さら に好ましく (ま 0. 5〜8〃111、特に好ましく(ま0. 5〜5〃mである。  [0037] The second optical compensation layer may be formed of any appropriate material. Preferably, the film is made of a film containing a liquid crystal material fixed in a homeotropic orientation. The liquid crystal material (liquid crystal compound) that can be homeopic pick-aligned may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the method for forming the liquid crystal compound and the optical compensation layer include the liquid crystal compounds described in JP-A-2002-333642 [0020] to [0042] and the method for forming the film. In this case, the thickness is preferably 0.5, more preferably (0.5 to 8 mm 111, particularly preferably (0.5 to 5 mm).
[0038] A— 4.第 3の光学補償層 上記第 3の光学補償層は、 nx〉ny=nzの屈折率楕円体を有する。ここで、 「ny= nz」は、 nyと nzが厳密に等しい場合のみならず、 nyと nzが実質的に等しい場合も包 含する。すなわち、 Nz係数 (Rth /Re )が、 0. 9を超え 1 · 1未満であることをいう。 [0038] A— 4. Third optical compensation layer The third optical compensation layer has a refractive index ellipsoid of nx> ny = nz. Here, “ny = nz” includes not only the case where ny and nz are exactly equal, but also the case where ny and nz are substantially equal. That is, the Nz coefficient (Rth / Re) exceeds 0.9 and is less than 1 · 1.
3 3  3 3
第 3の光学補償層の面内位相差 Reは、 80〜200nmであり、好ましくは 100〜200  The in-plane retardation Re of the third optical compensation layer is 80 to 200 nm, preferably 100 to 200.
3  Three
nm、特に好ましくは 110〜150nmである。すなわち、 λ /4板として機能し得る。第 3の光学補償層は、 λ /4板として、例えば、ある特定の波長の直線偏光を円偏光に ほたは、円偏光を直線偏光に)変換し得る。  nm, particularly preferably 110 to 150 nm. That is, it can function as a λ / 4 plate. The third optical compensation layer can convert, for example, linearly polarized light having a specific wavelength into circularly polarized light or circularly polarized light into linearly polarized light as a λ / 4 plate.
[0039] 上記第 3の光学補償層は、任意の適切な材料で形成され得る。具体例としては、上 記 Α— 2— 1項で説明した液晶材料が挙げられる。当該液晶材料で形成される場合、 厚みは、代表的には 0. 5〜; 10〃 m、好ましくは 0. 5〜8〃m、さらに好ましくは 0. 5 〜5 111である。別の具体例としては、上記 A— 2— 1項で説明した高分子フィルムの 延伸フィルムである。当該延伸フィルムである場合、厚みは、代表的には 5〜70 111 、好ましくは10〜65〃111、さらに好ましくは 15〜60〃111である。  [0039] The third optical compensation layer may be formed of any appropriate material. Specific examples thereof include the liquid crystal materials described in the above item 2-1-1. When formed of the liquid crystal material, the thickness is typically 0.5 to 10 mm, preferably 0.5 to 8 mm, and more preferably 0.5 to 5111. Another specific example is a stretched polymer film described in the above section A-2-1. In the case of the stretched film, the thickness is typically 5 to 70 111, preferably 10 to 65 mm 111, more preferably 15 to 60 mm 111.
[0040] A— 5.第 4の光学補償層  [0040] A— 5. Fourth optical compensation layer
本発明の積層光学フィルムは、上述のとおり、第 4の光学補償層をさらに備え得る。 第 4の光学補償層を設けることにより、画面コントラストをさらに向上し得、カラーシフト をさらに低減し得る。上記第 4の光学補償層 15は、 nx = ny〉nzの屈折率楕円体を 有する。ここで、 「nx = ny」は、 nxと nyが厳密に等しい場合のみならず、 nxと nyが実 質的に等しい場合も包含する。すなわち、 Re力 Onm未満であることをいう。上記第  As described above, the laminated optical film of the present invention may further include a fourth optical compensation layer. By providing the fourth optical compensation layer, the screen contrast can be further improved and the color shift can be further reduced. The fourth optical compensation layer 15 has a refractive index ellipsoid of nx = ny> nz. Here, “nx = ny” includes not only the case where nx and ny are exactly equal, but also the case where nx and ny are substantially equal. That is, the Re force is less than Onm. Above
4  Four
4の光学補償層の厚み方向の位相差 Rthは、適用される液晶パネルの構成に応じ  Thickness direction retardation Rth of optical compensation layer 4 depends on the configuration of the applied liquid crystal panel
4  Four
て、任意の適切な値に設定され得る。詳細については、後述の B— 4項でも説明する 力 第 4の光学補償層が液晶セルの一方の側にのみ配置される場合、厚み方向の 位相差 Rthは、好ましくは 50〜600nm、さらに好ましくは 100〜540nm、特に好ま  And can be set to any suitable value. The details will be described in Section B-4 below. When the fourth optical compensation layer is disposed only on one side of the liquid crystal cell, the thickness direction retardation Rth is preferably 50 to 600 nm, more preferably 100-540nm, especially preferred
4  Four
しくは 150〜500nmである。一方、第 4の光学補償層が液晶セルの両側に配置され る場合、厚み方向の位相差 Rthは、好ましくは 25〜300nm、さらに好ましくは 50〜  It is 150 to 500 nm. On the other hand, when the fourth optical compensation layer is disposed on both sides of the liquid crystal cell, the thickness direction retardation Rth is preferably 25 to 300 nm, more preferably 50 to
4  Four
270腹、特に好ましくは 75〜250腹である。  270 stomachs, particularly preferably 75 to 250 stomachs.
[0041] 上記第 4の光学補償層は、上記のような特性が得られる限りにおいて任意の適切な 材料で形成され得る。第 4の光学補償層の具体例としては、コレステリック配向固化 層が挙げられる。「コレステリック配向固化層」とは、当該層の構成分子がらせん構造 をとり、そのらせん軸が面方向にほぼ垂直に配向し、その配向状態が固定されている 層をいう。したがって、「コレステリック配向固化層」は、液晶化合物がコレステリック液 晶相を呈している場合のみならず、非液晶化合物がコレステリック液晶相のような擬 似的構造を有する場合を包含する。例えば、「コレステリック配向固化層」は、液晶材 料が液晶相を示す状態でカイラル剤によってねじりを付与してコレステリック構造(ら せん構造)に配向させ、その状態で重合処理または架橋処理を施すことにより、当該 液晶材料の配向(コレステリック構造)を固定することにより形成され得る。 [0041] The fourth optical compensation layer may be formed of any appropriate material as long as the above characteristics are obtained. As a specific example of the fourth optical compensation layer, cholesteric alignment solidification Layer. The “cholesteric alignment solidified layer” refers to a layer in which the constituent molecules of the layer have a helical structure, the helical axis is aligned substantially perpendicular to the plane direction, and the alignment state is fixed. Therefore, the “cholesteric alignment solidified layer” includes not only the case where the liquid crystal compound exhibits a cholesteric liquid crystal phase but also the case where the non-liquid crystal compound has a pseudo structure like a cholesteric liquid crystal phase. For example, a “cholesteric alignment solidified layer” can be twisted with a chiral agent in a state where the liquid crystal material exhibits a liquid crystal phase to be aligned in a cholesteric structure (helical structure), and then subjected to polymerization treatment or crosslinking treatment in that state. Thus, it can be formed by fixing the alignment (cholesteric structure) of the liquid crystal material.
[0042] 上記コレステリック配向固化層の具体例としては、特開 2003— 287623号公報に 記載のコレステリック層が挙げられる。 [0042] Specific examples of the cholesteric alignment fixed layer include a cholesteric layer described in JP-A-2003-287623.
[0043] 上記第 4の光学補償層の厚みは、上記所望の光学特性が得られる限り、任意の適 切な値に設定され得る。上記第 4の光学補償層がコレステリック配向固化層である場 合、好ましくは 0· 5〜; 10〃 m、さらに好ましくは 0· 5〜8〃111、特に好ましくは0. 5〜 5 μ mであな。  [0043] The thickness of the fourth optical compensation layer can be set to any appropriate value as long as the desired optical characteristics are obtained. When the fourth optical compensation layer is a cholesteric alignment solidified layer, it is preferably 0.5 to 10 mm, more preferably 0.5 to 8 mm 111, particularly preferably 0.5 to 5 μm. hole.
[0044] 上記第 4の光学補償層を形成する材料の別の具体例としては、非液晶性材料が挙 げられる。特に好ましくは、非液晶性ポリマーである。このような非液晶性材料は、液 晶性材料とは異なり、基板の配向性に関係なぐそれ自身の性質により nx=ny〉nz という光学的一軸性を示す膜を形成し得る。非液晶性材料としては、例えば、耐熱性 、耐薬品性、透明性に優れ、剛性にも富むことから、ポリアミド、ポリイミド、ポリエステ ル、ポリエーテルケトン、ポリアミドイミド、ポリエステルイミド等のポリマーが好ましい。 これらのポリマーは、いずれか一種類を単独で使用してもよいし、例えば、ポリアリー ルエーテルケトンとポリアミドとの混合物のように、異なる官能基を持つ 2種以上の混 合物として使用してもよい。このようなポリマーの中でも、高透明性、高配向性、高延 伸性であることから、ポリイミドが特に好まし!/、。  [0044] Another specific example of the material forming the fourth optical compensation layer is a non-liquid crystalline material. Particularly preferred are non-liquid crystalline polymers. Such a non-liquid crystalline material, unlike a liquid crystalline material, can form a film exhibiting an optical uniaxial property of nx = ny> nz due to its own property that is not related to the orientation of the substrate. As the non-liquid crystal material, for example, polymers such as polyamide, polyimide, polyester, polyetherketone, polyamideimide, and polyesterimide are preferable because they are excellent in heat resistance, chemical resistance, transparency, and high rigidity. Any one of these polymers may be used alone, or for example, as a mixture of two or more kinds having different functional groups, such as a mixture of polyaryletherketone and polyamide. Good. Among these polymers, polyimide is particularly preferred because of its high transparency, high orientation, and high ductility!
[0045] 上記ポリイミドの具体例および当該第 4の光学補償層の形成方法の具体例としては 、特開 2004— 46065号公報に記載のポリマーおよび光学補償フィルムの製造方法 が挙げられる。 [0045] Specific examples of the polyimide and the method for forming the fourth optical compensation layer include a polymer and a method for producing an optical compensation film described in JP-A-2004-46065.
[0046] 上記第 4の光学補償層の厚みは、上記所望の光学特性が得られる限り、任意の適 切な値に設定され得る。上記第 4の光学補償層が非液晶性材料で形成される場合、 好ましくは 0. 5〜; 10〃 m、さらに好ましくは 0. 5〜8〃111、特に好ましくは0. 5〜5〃 mである。 [0046] The thickness of the fourth optical compensation layer may be any suitable thickness as long as the desired optical characteristics are obtained. It can be set to a negative value. When the fourth optical compensation layer is formed of a non-liquid crystalline material, it is preferably 0.5 to 10 μm, more preferably 0.5 to 8 111, and particularly preferably 0.5 to 5 μm. It is.
[0047] 上記第 4の光学補償層を形成する材料のさらに別の具体例としては、トリァセチル セルロース (TAC)等のセルロース系樹脂、ノルボルネン系樹脂等で形成された高分 子フィルムが挙げられる。当該第 4の光学補償層としては、市販のフィルムをそのまま 用い得る。さらに、市販のフィルムに延伸処理および/または収縮処理などの 2次的 加工を施したものを用い得る。市販のフィルムとしては、例えば、富士写真フィルム( 株)製 フジタックシリーズ(商品名; ZRF80S, TD80UF, TDY— 80UU、 コニカミ ノルタォプト(株)製 商品名「KC8UX2M」、 日本ゼオン(株)製 商品名「Zeonor」 、 JSR (株)製 商品名「Arton」等が挙げられる。ノルボルネン系樹脂を構成するノル ボルネン系モノマーついては A— 2— 1項で上述したとおりである。上記光学特性を 満足し得るための延伸方法としては、例えば、二軸延伸(縦横等倍率延伸)が挙げら れる。  [0047] Still another specific example of the material forming the fourth optical compensation layer includes a high molecular weight film formed of a cellulose resin such as triacetyl cellulose (TAC), a norbornene resin, or the like. As the fourth optical compensation layer, a commercially available film can be used as it is. Furthermore, a commercially available film subjected to secondary processing such as stretching and / or shrinking can be used. Commercially available films include, for example, Fuji Photo Film Co., Ltd. Fujitac series (trade name; ZRF80S, TD80UF, TDY—80UU, Konica Minoltaput Co., Ltd., trade name “KC8UX2M”, Nippon Zeon Co., Ltd., trade name “Zeonor”, trade name “Arton” manufactured by JSR Co., Ltd. The norbornene-based monomer constituting the norbornene-based resin is as described above in Section A-2-1, and can satisfy the above optical characteristics. Examples of the stretching method for this purpose include biaxial stretching (longitudinal and transverse equal magnification stretching).
[0048] 上記第 4の光学補償層の厚みは、上記所望の光学特性が得られる限り、任意の適 切な値に設定され得る。上記第 4の光学補償層がセルロース系樹脂、ノルボルネン 系樹脂等で形成された高分子フィルムである場合、好ましくは 45〜; 105 111、さらに 好ましくは 50〜95 a m、特に好ましくは 55〜90 μ mである。  [0048] The thickness of the fourth optical compensation layer can be set to any appropriate value as long as the desired optical characteristics are obtained. When the fourth optical compensation layer is a polymer film formed of a cellulose-based resin, a norbornene-based resin, or the like, preferably 45 to; 105 111, more preferably 50 to 95 am, particularly preferably 55 to 90 μm. m.
[0049] 上記第 4の光学補償層のさらに別の具体例としては、上記コレステリック配向固化 層とプラスチックフィルム層とを有する積層体が挙げられる。当該プラスチックフィルム 層を形成する樹脂としては、例えば、セルロース系樹脂、ノルボルネン系樹脂等が挙 げられる。これらの樹脂については、本項で上述したとおりである。  [0049] Still another specific example of the fourth optical compensation layer includes a laminate having the cholesteric alignment fixed layer and a plastic film layer. Examples of the resin that forms the plastic film layer include cellulose resins and norbornene resins. These resins are as described above in this section.
[0050] 上記コレステリック配向固化層と上記プラスチックフィルム層との積層方法は、任意 の適切な方法を採用し得る。具体的には、プラスチック層に上記コレステリック配向固 化層を転写する方法、予め基材に形成されたコレステリック配向固化層とプラスチッ クフィルム層とを接着剤層を介して貼り合わる方法等が挙げられる。当該接着剤層の 厚みは、好ましくは 1 μ m〜; 10 ^ m、さらに好ましくは 1 μ m〜5 μ mである。  [0050] Any appropriate method may be adopted as a method of laminating the cholesteric alignment solidified layer and the plastic film layer. Specifically, a method of transferring the cholesteric alignment fixed layer to the plastic layer, a method of pasting a cholesteric alignment fixed layer and a plastic film layer formed on the base material in advance through an adhesive layer, etc. It is done. The thickness of the adhesive layer is preferably 1 μm to 10 μm, more preferably 1 μm to 5 μm.
[0051] A— 6.偏光子 上記偏光子 11としては、 目的に応じて任意の適切な偏光子が採用され得る。例え ば、ポリビュルアルコール系フィルム、部分ホルマール化ポリビュルアルコール系フィ ルム、エチレン ·酢酸ビュル共重合体系部分ケン化フィルム等の親水性高分子フィル ムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニ ルアルコールの脱水処理物やポリ塩化ビュルの脱塩酸処理物等ポリェン系配向フィ ルム等が挙げられる。これらのなかでも、ポリビュルアルコール系フィルムにヨウ素な どの二色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く特に好まし い。これら偏光子の厚さは特に制限されないが、一般的に、;!〜 80 m程度である。 [0051] A— 6. Polarizer Any appropriate polarizer may be adopted as the polarizer 11 depending on the purpose. For example, a hydrophilic polymer film such as a polybulal alcohol film, a partially formalized polybulal alcohol film, or an ethylene / acetic acid copolymer copolymer partially saponified film is used for two colors such as iodine or a dichroic dye. Polyethylene-based oriented films such as those uniaxially stretched by adsorbing active substances, polyvinyl alcohol dehydrated products and polychlorinated butyl dehydrochlorinated products. Of these, a uniaxially stretched polarizer obtained by adsorbing a dichroic substance such as iodine on a polybulualcohol-based film is particularly preferred because of its high polarization dichroic ratio. The thickness of these polarizers is not particularly limited, but is generally about !!-80 m.
[0052] ポリビュルアルコール系フィルムにヨウ素を吸着させて一軸延伸した偏光子は、例 えば、ポリビュルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の 3〜7倍に延伸することで作製すること力 Sできる。必要に応じてホウ酸や硫酸亜鉛、塩 化亜鉛等を含んでいても良いし、ヨウ化カリウムなどの水溶液に浸漬することもできる 。さらに必要に応じて染色の前にポリビュルアルコール系フィルムを水に浸漬して水 洗しても良い。 [0052] A polarizer uniaxially stretched by adsorbing iodine to a polybulualcohol-based film is, for example, dyed by immersing polybulualcohol in an aqueous solution of iodine and stretched 3 to 7 times the original length. It is possible to produce with S. If necessary, it may contain boric acid, zinc sulfate, zinc chloride or the like, or may be immersed in an aqueous solution of potassium iodide or the like. Furthermore, if necessary, the polybulal alcohol film may be immersed in water and washed before dyeing.
[0053] ポリビュルアルコール系フィルムを水洗することでポリビュルアルコール系フィルム 表面の汚れやブロッキング防止剤を洗浄することができるだけでなぐポリビュルアル コール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。 延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸しても良いし、また延 伸してからヨウ素で染色しても良い。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中 であ延伸すること力 Sでさる。  [0053] By washing the polybulualcohol-based film with water, it is possible not only to clean the surface of the polybulualcoholic film and the anti-blocking agent. There is also an effect to prevent. The stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be performed after being stretched and then dyed with iodine. Stretching in an aqueous solution of boric acid or potassium iodide or in a water bath.
[0054] A— 7.保護層  [0054] A— 7. Protective layer
上記第 1の保護層および上記第 2の保護層は、偏光板の保護フィルムとして使用で きる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例 としては、トリァセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、 ポリビュルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテ ノレスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフイン系 、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル 系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹 脂または紫外泉硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリ マー等のガラス質系ポリマーも挙げられる。また、特開 2001— 343529号公報 (WO 01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、 例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換 または非置換のフエニル基ならびに二トリル基を有する熱可塑性樹脂を含有する樹 脂組成物が使用でき、例えば、イソブテンと N—メチルマレイミドからなる交互共重合 体と、アクリロニトリル 'スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポ リマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。 The first protective layer and the second protective layer are formed of any appropriate film that can be used as a protective film for a polarizing plate. Specific examples of the material that is the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester resins, polybutyl alcohol resins, polycarbonate resins, polyamide resins, polyimide resins, polyetherolsulfone resins, and polysulfone resins. , Polystyrene-based, polynorbornene-based, polyolefin-based, (meth) acrylic-based, and acetate-based transparent resins. Also, thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone Examples thereof include fats and ultraviolet spring curable resins. In addition, for example, a glassy polymer such as a siloxane polymer is also included. In addition, polymer films described in JP-A-2001-343529 (WO 01/37007) can also be used. As a material for this film, for example, a resin containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. The composition can be used, for example, a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film can be, for example, an extruded product of the resin composition.
[0055] 上記 (メタ)アクリル系樹脂としては、 Tg (ガラス転移温度)が、好ましくは 115°C以上 、より好ましくは 120°C以上、さらに好ましくは 125°C以上、特に好ましくは 130°C以 上である。耐久性に優れ得るからである。上記 (メタ)アクリル系樹脂の Tgの上限値は 特に限定されないが、成形性等の観点から、好ましくは 170°C以下である。  [0055] The (meth) acrylic resin has a Tg (glass transition temperature) of preferably 115 ° C or higher, more preferably 120 ° C or higher, still more preferably 125 ° C or higher, and particularly preferably 130 ° C. That is all. It is because it can be excellent in durability. The upper limit of Tg of the (meth) acrylic resin is not particularly limited, but is preferably 170 ° C. or less from the viewpoint of moldability and the like.
[0056] 上記 (メタ)アクリル系樹脂としては、本発明の効果を損なわない範囲内で、任意の 適切な(メタ)アクリル系樹脂を採用し得る。例えば、ポリメタクリル酸メチルなどのポリ( メタ)アクリル酸エステル、メタクリル酸メチルー(メタ)アクリル酸共重合体、メタクリル 酸メチルー(メタ)アクリル酸エステル共重合体、メタクリル酸メチルーアクリル酸エステ ルー(メタ)アクリル酸共重合体、(メタ)アクリル酸メチルースチレン共重合体(MS樹 脂など)、脂環族炭化水素基を有する重合体 (例えば、メタクリル酸メチルーメタクリル 酸シクロへキシル共重合体、メタクリル酸メチルー(メタ)アクリル酸ノルボル二ル共重 合体など)が挙げられる。好ましくは、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)ァク リル酸 C アルキルが挙げられる。より好ましくは、メタクリル酸メチルを主成分(50〜 [0056] As the (meth) acrylic resin, any appropriate (meth) acrylic resin can be adopted as long as the effects of the present invention are not impaired. For example, poly (meth) acrylic acid ester such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester ( (Meth) acrylic acid copolymer, (meth) acrylic acid methyl styrene copolymer (MS resin, etc.), polymer having alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer) And methyl methacrylate- (meth) acrylic acid norbornyl copolymer). Preferably, poly (meth) acrylic acid C alkyl such as methyl poly (meth) acrylate is used. More preferably, methyl methacrylate is the main component (50-
1 -6 1 -6
100重量%、好ましくは 70〜; 100重量%)とするメタクリル酸メチル系樹脂が挙げられ  100% by weight, preferably 70 to 100% by weight).
[0057] 上記 (メタ)アクリル系樹脂の具体例としては、例えば、三菱レイヨン社製のアタリぺ ット VHやアタリペット VRL20A、特開 2004— 70296号公報に記載の分子内に環構 造を有する (メタ)アクリル系樹脂、分子内架橋や分子内環化反応により得られる高 T g (メタ)アクリル系樹脂が挙げられる。 [0057] Specific examples of the (meth) acrylic resin include, for example, a ring structure in the molecule described in Ataripet VH and Ataripet VRL20A manufactured by Mitsubishi Rayon Co., Ltd., and JP-A-2004-70296. (Meth) acrylic resins having high T g (meth) acrylic resins obtained by intramolecular crosslinking or intramolecular cyclization reactions.
[0058] 上記 (メタ)アクリル系樹脂として、高!/、耐熱性、高!/、透明性、高!/、機械的強度を有 する点で、ラタトン環構造を有する(メタ)アクリル系樹脂が特に好まし!/、。 [0058] The (meth) acrylic resin has high! /, Heat resistance, high! /, Transparency, high! /, And mechanical strength. In view of this, (meth) acrylic resins having a rataton ring structure are particularly preferred!
[0059] 上記ラタトン環構造を有する (メタ)アクリル系樹脂としては、特開 2000— 230016 号公報、特開 2001— 151814号公報、特開 2002— 120326号公報、特開 2002—[0059] Examples of the (meth) acrylic resin having a laton ring structure include JP 2000-230016, JP 2001-151814, JP 2002-120326, and JP 2002-.
254544号公報、特開 2005— 146084号公報などに記載の、ラタトン環構造を有す る(メタ)アクリル系樹脂が挙げられる。 Examples thereof include (meth) acrylic resins having a rataton ring structure as described in JP-A-254544 and JP-A-2005-146084.
[0060] 上記ラタトン環構造を有する (メタ)アクリル系樹脂は、質量平均分子量 (重量平均 分子量と称することもある)力 好ましくは 1000〜2000000、より好ましくは 5000〜1[0060] The (meth) acrylic resin having the latatotone ring structure preferably has a mass average molecular weight (sometimes referred to as a weight average molecular weight) force, preferably 1000-2000000, more preferably 5000-1
000000、さら ίこ好まし < ίま 10000〜500000、特 ίこ好まし < ίま 50000〜500000で ある。 000000, more preferable <10000 or 500,000, more preferable <50000 to 500,000.
[0061] 上記ラタトン環構造を有する (メタ)アクリル系樹脂は、 Tg (ガラス転移温度)が、好ま しくは 115°C以上、より好ましくは 125°C以上、さらに好ましくは 130°C以上、特に好 ましくは 135°C、最も好ましくは 140°C以上である。耐久性に優れ得るからである。上 記ラタトン環構造を有する(メタ)アクリル系樹脂の Tgの上限値は特に限定されな!/、が 、成形性等の観点から、好ましくは 170°C以下である。  [0061] The (meth) acrylic resin having a latatotone ring structure has a Tg (glass transition temperature) of preferably 115 ° C or higher, more preferably 125 ° C or higher, still more preferably 130 ° C or higher, particularly 130 ° C or higher. Preferably it is 135 ° C, most preferably 140 ° C or higher. It is because it can be excellent in durability. The upper limit of Tg of the (meth) acrylic resin having the above-mentioned rataton ring structure is not particularly limited! /, But is preferably 170 ° C. or less from the viewpoint of moldability and the like.
[0062] なお、本明細書において「(メタ)アクリル系」とは、アクリル系および/またはメタタリ ル系をいう。  [0062] In this specification, "(meth) acrylic" refers to acrylic and / or methacrylate.
[0063] 上記第 1の保護層および上記第 2の保護層は、透明で、色付きが無いことが好まし い。第 2の保護層の厚み方向の位相差 Rthは、好ましくは 90nm〜 + 90nm、さら に好ましくは 80nm〜 + 80nm、特に好ましくは 70nm〜 + 70nmである。  [0063] The first protective layer and the second protective layer are preferably transparent and have no color. The thickness direction retardation Rth of the second protective layer is preferably 90 nm to +90 nm, more preferably 80 nm to +80 nm, and particularly preferably 70 nm to +70 nm.
[0064] 上記第 1の保護層および上記第 2の保護層の厚みは、上記の好ましい厚み方向の 位相差 Rthが得られ得る限りにおいて、任意の適切な厚みが採用され得る。第 2の保 護層の厚みは、代表的には 5mm以下であり、好ましくは lmm以下、さらに好ましくは 1— 500 , πι,特 ίこ好ましく (ま 5〜; 150〃 mである。  [0064] As the thicknesses of the first protective layer and the second protective layer, any appropriate thickness can be adopted as long as the preferable retardation Rth in the thickness direction can be obtained. The thickness of the second protective layer is typically 5 mm or less, preferably 1 mm or less, more preferably 1-500, πι, particularly preferably (5 to 150 μm).
[0065] 上記第 2の保護層の偏光子と反対側には、必要に応じて、ハードコート処理、反射 防止処理、ステイツキング防止処理、アンチグレア処理等が施され得る。  [0065] On the opposite side of the second protective layer from the polarizer, a hard coat treatment, an antireflection treatment, a sticking prevention treatment, an antiglare treatment, or the like may be performed as necessary.
[0066] 偏光子と光学補償層との間に設けられる上記第 1の保護層の厚み方向の位相差( Rth)は、上記好ましい値よりも、さらに小さいことが好ましい。一般的に保護フィルム として用いられているセルロース系フィルムは、例えば、トリァセチルセルロースフィル ムの場合、厚さ 80 mにおいて厚み方向の位相差(Rth)は 60nm程度である。そこ で、厚み方向の位相差(Rth)の大きいセルロース系フィルムについて、厚み方向の 位相差 (Rth)を小さくするための適当な処理を施すことにより、好適に第 1の保護層 を得ること力 Sでさる。 [0066] The thickness direction retardation (Rth) of the first protective layer provided between the polarizer and the optical compensation layer is preferably smaller than the preferable value. Cellulose films generally used as protective films are, for example, triacetyl cellulose film. In the case of a film having a thickness of 80 m, the thickness direction retardation (Rth) is about 60 nm. Therefore, the cellulose-based film having a large thickness direction retardation (Rth) is subjected to an appropriate treatment for reducing the thickness direction retardation (Rth), thereby suitably obtaining the first protective layer. Touch with S.
[0067] 厚み方向の位相差 (Rth)を小さくするための上記処理としては、任意の適切な処 理方法を採用できる。例えば、シクロペンタノン、メチルェチルケトン等の溶剤を塗布 したポリエチレンテレフタレート、ポリプロピレン、ステンレス等の基材を、一般的なセ ルロース系フィルムに貼り合わせ、加熱乾燥(例えば、 80〜150°C程度で 3〜; 10分 程度)した後、基材フィルムを剥離する方法;ノルボルネン系樹脂、アクリル系樹脂等 をシクロペンタノン、メチルェチルケトン等の溶剤に溶解した溶液を、一般的なセル口 ース系フィルムに塗布し、加熱乾燥 (例えば、 80〜; 150°C程度で 3〜; 10分程度)した 後、塗布フィルムを剥離する方法などが挙げられる。  [0067] Any appropriate processing method can be adopted as the above-described processing for reducing the thickness direction retardation (Rth). For example, a base material such as polyethylene terephthalate, polypropylene, or stainless steel coated with a solvent such as cyclopentanone or methyl ethyl ketone is bonded to a general cellulose film and dried by heating (for example, about 80 to 150 ° C). 3 to about 10 minutes), and then the base film is peeled off; a solution obtained by dissolving norbornene resin, acrylic resin, etc. in a solvent such as cyclopentanone, methyl ethyl ketone, etc. For example, a method may be used in which a coated film is peeled off after being applied to a glass-based film and dried by heating (for example, 80 to approximately 150 ° C for 3 to 10 minutes).
[0068] 上記セルロース系フィルムを構成する材料としては、好ましくは、ジァセチルセル口 ース、トリァセチルセルロース等の脂肪酸置換セルロース系ポリマーが挙げられる。 一般的に用いられているトリァセチルセルロースでは、酢酸置換度が 2. 8程度である 力 好ましくは酢酸置換度を 1. 8〜2. 7、より好ましくはプロピオン酸置換度を 0. ;!〜 1に制御することによって、厚み方向の位相差 (Rth)を小さく制御することができる。  [0068] The material constituting the cellulose film is preferably a fatty acid-substituted cellulose polymer such as diacetyl cellulose and triacetyl cellulose. Generally used triacetyl cellulose has an acetic acid substitution degree of about 2.8, preferably an acetic acid substitution degree of 1.8 to 2.7, more preferably a propionic acid substitution degree of 0.; By controlling to 1, the thickness direction retardation (Rth) can be controlled to be small.
[0069] 上記脂肪酸置換セルロース系ポリマーに、ジブチルフタレート、 p トルエンスルホ ンァニリド、タエン酸ァセチルトリェチル等の可塑剤を添加することにより、厚み方向 の位相差 (Rth)を小さく制御することができる。可塑剤の添加量は、脂肪酸置換セル ロース系ポリマー 100重量部に対して、好ましくは 40重量部以下、より好ましくは 1〜 20重量部、さらに好ましくは 1〜; 15重量部である。  [0069] By adding a plasticizer such as dibutyl phthalate, p-toluenesulfonic anilide, acetotiltyl taenoate to the fatty acid-substituted cellulose polymer, the thickness direction retardation (Rth) can be controlled to be small. . The addition amount of the plasticizer is preferably 40 parts by weight or less, more preferably 1 to 20 parts by weight, still more preferably 1 to 15 parts by weight with respect to 100 parts by weight of the fatty acid-substituted cellulose polymer.
[0070] 上記厚み方向の位相差 (Rth)を小さくする為の処理は、適宜組み合わせて用いて もよい。このような処理を施して得られる第 1の保護層の厚み方向の位相差 Rth (550 )は、好ましくは 20nm〜 + 20nm、さらに好ましくは 10nm〜 + 10nm、特に好 ましくはー61 111〜+ 61 111、最も好ましくは 3nm〜 + 3nmである。第 1の保護層の 面内位相差 Re (550)は、好ましくは Onm以上 10nm以下、さらに好ましくは Onm以 上 6nm以下、特に好ましくは Onm以上 3nm以下である。 [0071] 上記第 1の保護層の厚みは、好ましくは 20〜200 μ m、より好ましくは 30〜; 100 μ m、さらに好ましくは 35〜95 μ mである。 [0070] The processes for reducing the thickness direction retardation (Rth) may be combined as appropriate. The thickness direction retardation Rth (550) of the first protective layer obtained by such treatment is preferably 20 nm to +20 nm, more preferably 10 nm to +10 nm, and particularly preferably −61 111 to +61 111, most preferably from 3 nm to +3 nm. The in-plane retardation Re (550) of the first protective layer is preferably Onm or more and 10 nm or less, more preferably Onm or more and 6 nm or less, and particularly preferably Onm or more and 3 nm or less. [0071] The thickness of the first protective layer is preferably 20 to 200 μm, more preferably 30 to; 100 μm, and still more preferably 35 to 95 μm.
[0072] A— 8.積層方法  [0072] A— 8. Lamination method
上記各層(フィルム)の積層方法は、任意の適切な方法を採用し得る。具体的には 、任意の適切な粘着剤層または接着剤層を介して積層される。当該粘着剤層として は、代表的には、アクリル系粘着剤層が挙げられる。アクリル系粘着剤層の厚みは、 好ましくは;!〜 30 μ m、さらに好ましくは 3〜25 μ mである。  Arbitrary appropriate methods can be employ | adopted for the lamination | stacking method of said each layer (film). Specifically, it is laminated via any appropriate pressure-sensitive adhesive layer or adhesive layer. A typical example of the pressure-sensitive adhesive layer is an acrylic pressure-sensitive adhesive layer. The thickness of the acrylic pressure-sensitive adhesive layer is preferably;! -30 μm, more preferably 3-25 μm.
[0073] 上述のように、第 1の光学補償層 12が偏光子 11の保護層として機能し得る場合、 偏光子と第 1の光学補償層とは任意の適切な接着剤層を介して積層される。上述の ように、 nx〉ny〉nzの屈折率楕円体を示す第 1の光学補償層を固定端二軸延伸で 作製する場合、遅相軸が短手方向に生じ得る。一方、偏光子の吸収軸方向は延伸 方向(長手方向)に生じ得る。したがって、本発明のように、第 1の光学補償層の遅相 軸を偏光子の吸収軸に対して直交するように配置させる場合には、第 1の光学補償 層と偏光子とをロールツーロールで連続的に積層し得る。偏光子と第 1の光学補償 層との積層に用いられる接着剤としては、例えば、ポリビュルアルコール系樹脂、架 橋剤および金属化合物コロイドを含む接着剤が挙げられる。  [0073] As described above, when the first optical compensation layer 12 can function as a protective layer for the polarizer 11, the polarizer and the first optical compensation layer are laminated via any appropriate adhesive layer. Is done. As described above, when the first optical compensation layer showing the refractive index ellipsoid of nx> ny> nz is produced by fixed-end biaxial stretching, the slow axis can occur in the short direction. On the other hand, the absorption axis direction of the polarizer can occur in the stretching direction (longitudinal direction). Therefore, when the slow axis of the first optical compensation layer is arranged so as to be orthogonal to the absorption axis of the polarizer as in the present invention, the first optical compensation layer and the polarizer are roll-to-roll. It can be laminated continuously with rolls. Examples of the adhesive used for laminating the polarizer and the first optical compensation layer include an adhesive containing polybulal alcohol resin, a crosslinking agent, and a metal compound colloid.
[0074] 上記ポリビュルアルコール系樹脂としては、例えば、ポリビュルアルコール樹脂、ァ セトァセチル基含有ポリビュルアルコール樹脂が挙げられる。好ましくは、ァセトァセ チル基含有ポリビュルアルコール樹脂である。耐久性が向上し得るからである。  [0074] Examples of the polybulal alcohol-based resin include polybulal alcohol resin and acetoacetyl group-containing polybulal alcohol resin. Preferably, it is a polybutyl alcohol resin containing a acetoacetyl group. This is because durability can be improved.
[0075] 上記ポリビュルアルコール系樹脂としては、例えば、ポリ酢酸ビュルのケン化物、当 該ケン化物の誘導体;酢酸ビュルと共重合性を有する単量体との共重合体のケン化 物;ポリビュルアルコールをァセタール化、ウレタン化、エーテル化、グラフト化、リン 酸エステル化等した変性ポリビュルアルコールが挙げられる。前記単量体としては、 例えば、(無水)マレイン酸、フマール酸、クロトン酸、ィタコン酸、(メタ)アクリル酸等の 不飽和カルボン酸及びそのエステル類;エチレン、プロピレン等の α—ォレフイン; (メ タ)ァリルスルホン酸 (ソーダ)、スルホン酸ソーダ (モノアルキルマレート)、ジスルホン酸 ソーダアルキルマレート、 Ν-メチロールアクリルアミド、アクリルアミドアルキルスルホン 酸アルカリ塩、 Ν-ビュルピロリドン、 Ν-ビュルピロリドン誘導体等が挙げられる。これ らの樹脂は、単独でまたは二種以上を組み合わせて用いることができる。 [0075] Examples of the polybula alcohol-based resin include a saponified product of polyacetate butyl, a derivative of the saponified product; a saponified product of a copolymer with a monomer copolymerizable with butyl acetate; Examples thereof include modified polybulal alcohols in which bull alcohol is acetalized, urethanized, etherified, grafted, or phosphorylated. Examples of the monomer include unsaturated carboxylic acids such as (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, (meth) acrylic acid, and esters thereof; α-olefins such as ethylene and propylene; (Meth) aryl sulfonic acid (soda), sulfonic acid soda (monoalkyl malate), disulfonic acid soda alkyl malate, Ν-methylol acrylamide, acrylamide alkyl sulfonic acid alkali salt, Ν-bullpyrrolidone, Ν-bull pyrrolidone derivative Can be mentioned. this These resins can be used alone or in combination of two or more.
[0076] 上記ポリビュルアルコール系樹脂の平均重合度は、接着性の点から、好ましくは 10[0076] The average degree of polymerization of the polybulal alcohol resin is preferably 10 from the viewpoint of adhesiveness.
0〜5000程度、さらに好ましくは 1000〜4000である。平均ケン化度は、接着性の 点から、好ましくは 85〜; 100モル0 /0程度、さらに好ましくは 90〜; 100モル0 /0である。 It is about 0 to 5000, more preferably 1000 to 4000. The average saponification degree, from the viewpoint of adhesiveness, preferably 85; 100 mole 0/0; 100 moles 0/0 degree, more preferably 90.
[0077] 上記ァセトァセチル基含有ポリビュルアルコール系樹脂は、例えば、ポリビュルァ ルコール系樹脂とジケテンとを任意の方法で反応させることにより得られる。具体例と して、酢酸等の溶媒中にポリビュルアルコール系樹脂を分散させた分散体に、ジケ テンを添加する方法;ジメチルホルムアミドまたはジォキサン等の溶媒にポリビュルァ ルコール系樹脂を溶解させた溶液に、ジケテンを添加する方法;ポリビュルアルコー ル系樹脂にジケテンガスまたは液状ジケテンを直接接触させる方法が挙げられる。 [0077] The above-mentioned acetoacetyl group-containing polybutyl alcohol resin is obtained, for example, by reacting a polybutyl alcohol resin with diketene by an arbitrary method. As a specific example, a method in which diketene is added to a dispersion in which a polybulualcohol-based resin is dispersed in a solvent such as acetic acid; A method of adding a diketene; a method of directly contacting a diketene gas or a liquid diketene with a polybutyl alcohol resin.
[0078] 上記ァセトァセチル基含有ポリビュルアルコール系樹脂のァセトァセチル基変性度 は、代表的には 0· 1モル%以上であり、好ましくは 0· ;!〜 40モル%程度、さらに好ま しくは;!〜 20%、特に好ましくは 2〜7モル%である。 0. 1モル%未満では耐水性が 不充分となるおそれがある。 40モル%を超えると、耐水性向上効果が小さい。なお、 ァセトァセチル基変性度は NMRにより測定した値である。 [0078] The degree of modification of the acetoacetyl group of the above-mentioned acetoacetyl group-containing polybutyl alcohol-based resin is typically 0.1 mol% or more, preferably about 0 · ;! to about 40 mol%, more preferably; -20%, particularly preferably 2-7 mol%. If the amount is less than 1 mol%, water resistance may be insufficient. If it exceeds 40 mol%, the effect of improving water resistance is small. The degree of modification of the acetoacetyl group is a value measured by NMR.
[0079] 上記架橋剤としては、任意の適切な架橋剤を採用し得る。好ましくは、上記ポリビニ ルアルコール系樹脂と反応性を有する官能基を少なくとも 2つ有する化合物である。 例えば、エチレンジァミン、トリエチレンジァミン、へキサメチレンジァミン等のアルキレ ン基とアミノ基を 2個有するアルキレンジァミン類;トリレンジイソシァネート、水素化トリ レンジイソシァネート、トリメチロールプロパントリレンジイソシァネートァダクト、トリフエ ニルメタントリイソシァネート、メチレンビス (4 フエニルメタントリイソシァネート、イソホ ロンジイソシァネートおよびこれらのケトォキシムブロック物またはフエノールブロック 物等のイソシァネート類;エチレングリコールジグリシジルエーテル、ポリエチレングリ コールジグリシジルエーテル、グリセリンジまたはトリグリシジルエーテル、 1 , 6—へキ サンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、 ルデヒド、プロピオンアルデヒド、ブチルアルデヒド等のモノアルデヒド類;グリオキザー ノレ、マロンジアルデヒド、スクシンジアルデヒド、グルタルジアルデヒド、マレインジァノレ デヒド、フタルジアルデヒド等のジアルデヒド類;メチロール尿素、メチロールメラミン、 アルキル化メチロール尿素、アルキル化メチロール化メラミン、ァセトグアナミン、ベン ゾグアナミンとホルムアルデヒドとの縮合物等のアミノーホルムアルデヒド樹脂;ナトリウ ム、カリウム、マグネシウム、カルシウム、アルミニウム、鉄、ニッケル等の二価金属、ま たは三価金属の塩及びその酸化物が挙げられる。これらの中でもアミノーホルムアル デヒド樹脂ゃジアルデヒド類が好ましレ、。アミノーホルムアルデヒド樹脂としてはメチロ 一ル基を有する化合物が好ましぐジアルデヒド類としてはダリオキザールが好適で ある。中でもメチロール基を有する化合物が好ましぐメチロールメラミンが特に好適 である。 [0079] Any appropriate crosslinking agent may be employed as the crosslinking agent. A compound having at least two functional groups having reactivity with the polyvinyl alcohol resin is preferable. For example, ethylenediamine, triethylenediamine, hexamethylenediamine and other alkylenediamines having two alkylene groups and two amino groups; tolylene diisocyanate, hydrogenated tolylene diisocyanate, trimethylol Propanetolylene diisocyanate adduct, triphenylmethane triisocyanate, methylenebis (4 phenylmethane triisocyanate, isophorone diisocyanate and their isocyanates such as ketoxime block or phenol block; ethylene Glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin di or triglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, aldehyde , Monoaldehydes such as propionaldehyde, butyraldehyde; glyoxer nore, malondialdehyde, succindialdehyde, glutardialdehyde, maleinanol Dialdehydes such as dehydride and phthaldialdehyde; aminoformaldehyde resins such as methylolurea, methylolmelamine, alkylated methylolurea, alkylated methylolated melamine, acetoguanamine, and condensates of benzoguanamine and formaldehyde; sodium, potassium, Examples thereof include divalent metals such as magnesium, calcium, aluminum, iron and nickel, and salts of trivalent metals and oxides thereof. Of these, aminoformaldehyde resins are preferred for dialdehydes. As the amino-formaldehyde resin, a compound having a methylol group is preferred. Of these, methylol melamine, which is preferred as a compound having a methylol group, is particularly preferred.
[0080] 上記架橋剤の配合量は、上記ポリビュルアルコール系樹脂の種類等に応じて適宜 設定し得る。代表的には、ポリビュルアルコール系樹脂 100重量部に対して、 10〜6 0重量部程度、好ましくは 20〜50重量部である。接着性に優れ得るからである。なお 、架橋剤の配合量が多い場合、架橋剤の反応が短時間で進行し、接着剤がゲル化 する傾向がある。その結果、接着剤としての可使時間(ポットライフ)が極端に短くなり 、工業的な使用が困難になるおそれがある。本実施形態の接着剤は、後述の金属化 合物コロイドを含有するため、架橋剤の配合量が多い場合であっても、安定性よく用 いること力 Sでさる。  [0080] The blending amount of the cross-linking agent may be appropriately set according to the type of the polybulualcohol-based resin. Typically, it is about 10 to 60 parts by weight, preferably 20 to 50 parts by weight, with respect to 100 parts by weight of the polybutyl alcohol resin. This is because the adhesiveness can be excellent. In addition, when there are many compounding quantities of a crosslinking agent, reaction of a crosslinking agent advances in a short time, and there exists a tendency for an adhesive agent to gelatinize. As a result, the usable time (pot life) as an adhesive becomes extremely short, and industrial use may be difficult. Since the adhesive of this embodiment contains a metal compound colloid described later, it can be used with good stability S even when the amount of the crosslinking agent is large.
[0081] 上記金属化合物コロイドは、金属化合物微粒子が分散媒中に分散しているもので あり得、微粒子の同種電荷の相互反発に起因して静電的安定化し、永続的に安定 性を有するものであり得る。金属化合物コロイドを形成する微粒子の平均粒子径は、 偏光特性等の光学特性に悪影響を及ぼさない限り、任意の適切な値であり得る。好 ましくは;!〜 100nm、さらに好ましくは;!〜 50nmである。微粒子を接着剤層中に均 一に分散させ得、接着性を確保し、かつクニックを抑え得るからである。なお、「クニッ ク」とは、偏光子と保護層の界面で生じる局所的な凹凸欠陥のことをいう。  [0081] The metal compound colloid may be one in which metal compound fine particles are dispersed in a dispersion medium, and is electrostatically stabilized due to mutual repulsion of the same kind of charge of the fine particles, and has permanent stability. Can be a thing. The average particle size of the fine particles forming the metal compound colloid can be any appropriate value as long as it does not adversely affect the optical properties such as polarization properties. It is preferably;! To 100 nm, more preferably;! To 50 nm. This is because the fine particles can be uniformly dispersed in the adhesive layer, ensuring adhesion and suppressing nicks. “Knick” refers to a local uneven defect generated at the interface between the polarizer and the protective layer.
[0082] 上記金属化合物としては、任意の適切な化合物を採用し得る。例えば、アルミナ、 シリカ、ジルコユア、チタニア等の金属酸化物;ケィ酸アルミニウム、炭酸カルシウム、 ケィ酸マグネシウム、炭酸亜鉛、炭酸バリウム、リン酸カルシウム等の金属塩;セライト 、タルク、クレイ、カオリン等の鉱物が挙げられる。好ましくはアルミナである。 [0083] 上記金属化合物コロイドは、代表的には、分散媒に分散してコロイド溶液の状態で 存在している。分散媒としては、例えば、水、アルコール類が挙げられる。コロイド溶 液中の固形分濃度は、代表的には;!〜 50重量%程度である。コロイド溶液は、安定 剤として硝酸、塩酸、酢酸などの酸を含有し得る。 [0082] Any appropriate compound can be adopted as the metal compound. For example, metal oxides such as alumina, silica, zirconium, titania, etc .; metal salts such as aluminum silicate, calcium carbonate, magnesium silicate, zinc carbonate, barium carbonate, calcium phosphate; minerals such as celite, talc, clay, kaolin It is done. Alumina is preferred. [0083] The metal compound colloid is typically present in the form of a colloidal solution dispersed in a dispersion medium. Examples of the dispersion medium include water and alcohols. The solid content concentration in the colloidal solution is typically about !! to 50% by weight. The colloidal solution may contain acids such as nitric acid, hydrochloric acid, acetic acid as a stabilizer.
[0084] 上記金属化合物コロイド(固形分)配合量は、好ましくは、ポリビュルアルコール系 樹脂 100重量部に対して 200重量部以下であり、より好ましくは 10〜200重量部、さ らに好ましくは 20〜 175重量部、最も好ましくは 30〜 150重量部である。接着性を確 保しながら、クニックの発生を抑え得るからである。  [0084] The compounding amount of the metal compound colloid (solid content) is preferably 200 parts by weight or less, more preferably 10 to 200 parts by weight, and still more preferably 100 parts by weight of polybulal alcohol resin. 20 to 175 parts by weight, most preferably 30 to 150 parts by weight. This is because the occurrence of nicks can be suppressed while ensuring adhesiveness.
[0085] 本実施形態の接着剤は、シランカップリング剤、チタンカップリング剤などのカツプリ ング剤、各種粘着付与剤、紫外線吸収剤、酸化防止剤、耐熱安定剤、耐加水分解 安定剤などの安定剤等を含み得る。  [0085] The adhesive of this embodiment includes a coupling agent such as a silane coupling agent and a titanium coupling agent, various tackifiers, an ultraviolet absorber, an antioxidant, a heat stabilizer, and a hydrolysis stabilizer. Stabilizers and the like can be included.
[0086] 本実施形態の接着剤の形態は、好ましくは水溶液 (樹脂溶液)である。樹脂濃度は 、塗工性や放置安定性等の点から、好ましくは 0. ;!〜 15重量%、さらに好ましくは 0 . 5〜; 10重量%である。樹脂溶液の粘度は、好ましくは l〜50mPa ' sである。樹脂溶 液の pHは、好ましくは 2〜6、より好ましくは 2. 5〜5、さらに好ましくは 3〜5、最も好 ましくは 3. 5〜4. 5である。通常、金属化合物コロイドの表面電荷は、 pHを調整する ことにより制御し得る。当該表面電荷は、好ましくは正電荷である。正電荷を有するこ とにより、例えば、クニック発生を抑制し得る。  [0086] The form of the adhesive of the present embodiment is preferably an aqueous solution (resin solution). The resin concentration is preferably 0.5;! To 15% by weight, more preferably 0.5 to 10% by weight, from the viewpoint of coating property and storage stability. The viscosity of the resin solution is preferably 1 to 50 mPa's. The pH of the resin solution is preferably 2 to 6, more preferably 2.5 to 5, more preferably 3 to 5, and most preferably 3.5 to 4.5. Usually, the surface charge of a metal compound colloid can be controlled by adjusting the pH. The surface charge is preferably a positive charge. By having a positive charge, for example, generation of nicks can be suppressed.
[0087] 上記樹脂溶液の調製方法は、任意の適切な方法を採用し得る。例えば、ポリビニ ルアルコール系樹脂と架橋剤とを予め混合して適切な濃度に調整したものに、金属 化合物コロイドを配合する方法が挙げられる。また、ポリビュルアルコール系樹脂と金 属化合物コロイドを混合した後に、架橋剤を、使用時期等を考慮しながら混合するこ ともできる。なお、樹脂溶液の濃度は、樹脂溶液を調製した後に調整してもよい。  [0087] Any appropriate method can be adopted as a method for preparing the resin solution. For example, a method of blending a metal compound colloid with a polyvinyl alcohol resin and a crosslinking agent mixed in advance and adjusted to an appropriate concentration can be mentioned. In addition, after mixing the polybulualcohol-based resin and the metal compound colloid, the cross-linking agent can be mixed in consideration of the time of use. The concentration of the resin solution may be adjusted after preparing the resin solution.
[0088] B.液晶パネル [0088] B. Liquid crystal panel
B- 1.液晶パネルの全体構成  B- 1. Overall configuration of LCD panel
図 2 (a)は、本発明の 1つの実施形態による液晶パネルの概略断面図である。この 液晶パネル 100は、液晶セル 20と;液晶セル 20の一方の側(図示例ではバックライト 側)に配置された本発明の積層光学フィルム 10'と;液晶セル 20の他方の側(図示例 では視認側)に配置された積層フィルム 30とを備える。積層フィルム 30は、上記偏光 子 11と第 5の光学補償層 16とを備える。本実施形態では、第 5の光学補償層 16の 屈折率楕円体は nx〉ny=nzの関係を示し、面内位相差 Re力 S80〜200nmである FIG. 2 (a) is a schematic cross-sectional view of a liquid crystal panel according to one embodiment of the present invention. The liquid crystal panel 100 includes: a liquid crystal cell 20; a laminated optical film 10 ′ of the present invention disposed on one side of the liquid crystal cell 20 (backlight side in the illustrated example); and the other side of the liquid crystal cell 20 (illustrated example) Then, a laminated film 30 arranged on the viewing side) is provided. The laminated film 30 includes the polarizer 11 and the fifth optical compensation layer 16. In the present embodiment, the refractive index ellipsoid of the fifth optical compensation layer 16 shows a relationship of nx> ny = nz, and has an in-plane retardation Re force S80 to 200 nm.
5  Five
。積層フィルム 30は、必要に応じて、偏光子 11と第 5の光学補償層 16との間に第 1 の保護層が設けられ、偏光子 11の第 5の光学補償層 16の反対側に第 2の保護層が 設けられる。また、図示しないが、積層フィルム 30は、任意の適切な他の光学補償層 をさらに備え得る。図示するように、積層光学フィルム 10 'および積層フィルム 30は、 光学補償層が設けられている側が液晶セル 20側となるように配置されている。  . The laminated film 30 is provided with a first protective layer between the polarizer 11 and the fifth optical compensation layer 16 as necessary, and on the opposite side of the polarizer 11 from the fifth optical compensation layer 16. Two protective layers are provided. Although not shown, the laminated film 30 may further include any appropriate other optical compensation layer. As shown in the figure, the laminated optical film 10 ′ and the laminated film 30 are arranged so that the side on which the optical compensation layer is provided is the liquid crystal cell 20 side.
[0089] 図 2 (b)は、本発明の別の実施形態による液晶パネルの概略断面図である。この液 晶パネル 100 'は、液晶セル 20と;液晶セル 20の一方の側(図示例ではバックライト 側)に配置された本発明の積層光学フィルム 10 'と;液晶セル 20の他方の側(図示例 では視認側)に配置された積層フィルム 30 'とを備える。積層フィルム 30 'は、上記偏 光子 11と上記第 5の光学補償層 16と上記第 4の光学補償層 15とを備える。積層フィ ルム 30 'は、必要に応じて、偏光子 11と第 5の光学補償層 16との間に第 1の保護層 が設けられ、偏光子 11の第 1の光学補償層 12の反対側に第 2の保護層が設けられ る。また、図示しないが、積層フィルム 30 'は、任意の適切な他の光学補償層をさらに 備え得る。図示するように、積層光学フィルム 10 'および積層フィルム 30 'は、光学補 償層が設けられている側が液晶セル 20側となるように配置されている。  FIG. 2B is a schematic cross-sectional view of a liquid crystal panel according to another embodiment of the present invention. The liquid crystal panel 100 ′ includes the liquid crystal cell 20; the laminated optical film 10 ′ of the present invention disposed on one side of the liquid crystal cell 20 (the backlight side in the illustrated example); and the other side of the liquid crystal cell 20 ( And a laminated film 30 ′ disposed on the viewing side in the illustrated example. The laminated film 30 ′ includes the polarizer 11, the fifth optical compensation layer 16, and the fourth optical compensation layer 15. In the laminated film 30 ′, a first protective layer is provided between the polarizer 11 and the fifth optical compensation layer 16 as necessary, and the opposite side of the polarizer 11 from the first optical compensation layer 12 is provided. A second protective layer is provided on the substrate. Further, although not shown, the laminated film 30 ′ may further include any appropriate other optical compensation layer. As illustrated, the laminated optical film 10 ′ and the laminated film 30 ′ are arranged so that the side on which the optical compensation layer is provided is the liquid crystal cell 20 side.
[0090] なお、図示例とは異なり、積層光学フィルム 10 'のかわりに積層光学フィルム 10が 配置されていてもよい。また、図示例とは異なり、積層光学フィルム 10 ' (10)が視認 側に配置され、積層フィルム 30、 30 'がバックライト側に配置されていてもよい。好ま しくは図示例のとおり、積層光学フィルム 10 ' (10)がバックライト側に配置される。  [0090] Unlike the illustrated example, the laminated optical film 10 may be disposed instead of the laminated optical film 10 '. Further, unlike the illustrated example, the laminated optical film 10 ′ (10) may be arranged on the viewing side, and the laminated films 30 and 30 ′ may be arranged on the backlight side. Preferably, as shown in the drawing, the laminated optical film 10 ′ (10) is disposed on the backlight side.
[0091] 上記積層フィルム 30、 30 'を構成する第 5の光学補償層 16の遅相軸は、積層フィ ルム 30、 30 'を構成する偏光子 11の吸収軸に対して、任意の適切な角度を規定す るようにして積層されている。好ましくは 30〜60° 、さらに好ましくは 35〜55° 、特 に好ましくは 40〜50° 、最も好ましくは 43〜47° である。  [0091] The slow axis of the fifth optical compensation layer 16 constituting the laminated film 30, 30 'may be any appropriate relative to the absorption axis of the polarizer 11 constituting the laminated film 30, 30'. They are stacked so as to define the angle. The angle is preferably 30 to 60 °, more preferably 35 to 55 °, particularly preferably 40 to 50 °, and most preferably 43 to 47 °.
[0092] 上記液晶パネル 100、 100 'の液晶セル 20の両側に配置された偏光子 11、 11の 吸収軸は、好ましくは、実質的に直交するように配置されている。 [0093] B- 2.液晶セル The absorption axes of the polarizers 11 and 11 arranged on both sides of the liquid crystal cell 20 of the liquid crystal panels 100 and 100 ′ are preferably arranged so as to be substantially orthogonal. [0093] B-2. Liquid crystal cell
上記液晶セル 20は、一対の基板 21、 21 'と、基板 21、 21 '間に挟持された表示媒 体としての液晶層 22とを有する。一方の基板 (カラーフィルター基板) 21には、カラー フィルターおよびブラックマトリクス(いずれも図示せず)が設けられている。他方の基 板(アクティブマトリクス基板) 21 'には、液晶の電気光学特性を制御するスイッチング 素子(代表的には TFT) (図示せず)と、このスイッチング素子にゲート信号を与える 走査線(図示せず)およびソース信号を与える信号線(図示せず)と、画素電極(図示 せず)とが設けられている。なお、カラーフィルタ一は、アクティブマトリクス基板 21 '側 に設けてもよい。上記基板 21、 21 'の間隔(セルギャップ)は、スぺーサー(図示せず )によって制御されている。上記基板 21、 21 'の液晶層 22と接する側には、例えば、 ポリイミドからなる配向膜(図示せず)が設けられている。  The liquid crystal cell 20 includes a pair of substrates 21 and 21 'and a liquid crystal layer 22 as a display medium sandwiched between the substrates 21 and 21'. One substrate (color filter substrate) 21 is provided with a color filter and a black matrix (both not shown). The other substrate (active matrix substrate) 21 ′ includes a switching element (typically TFT) (not shown) for controlling the electro-optical characteristics of the liquid crystal, and a scanning line (Fig. A signal line (not shown) for supplying a source signal and a pixel electrode (not shown) are provided. The color filter 1 may be provided on the active matrix substrate 21 ′ side. A distance (cell gap) between the substrates 21 and 21 ′ is controlled by a spacer (not shown). For example, an alignment film (not shown) made of polyimide is provided on the side of the substrates 21, 21 ′ in contact with the liquid crystal layer 22.
[0094] 上記液晶セル 20の駆動モードとしては、任意の適切な駆動モードが採用され得る 。好ましくは、 VAモードである。図 3は、 VAモードにおける液晶分子の配向状態を 説明する概略断面図である。図 3 (a)に示すように、電圧無印加時には、液晶分子は 基板 21、 21 '面に垂直に配向する。このような垂直配向は、垂直配向膜(図示せず) を形成した基板間に負の誘電率異方性を有するネマチック液晶を配することにより実 現され得る。このような状態で一方の基板 21の面から光を入射させると、一方の偏光 子 11を通過して液晶層 22に入射した直線偏光の光は、垂直配向している液晶分子 の長軸の方向に沿って進む。液晶分子の長軸方向には複屈折が生じないため入射 光は偏光方位を変えずに進み、一方の偏光子 11と直交する偏光軸を有する他方の 偏光子 11で吸収される。これにより電圧無印加時において喑状態の表示が得られる (ノーマリブラックモード)。図 3 (b)に示すように、電極間に電圧が印加されると、液晶 分子の長軸が基板面に平行に配向する。この状態の液晶分子は、一方の偏光子 11 を通過して液晶層 22に入射した直線偏光の光に対して複屈折性を示し、入射光の 偏光状態は液晶分子の傾きに応じて変化する。所定の最大電圧印加時にお!/、て液 晶層を通過する光は、例えばその偏光方位が 90° 回転させられた直線偏光となる ので、他方の偏光子 11を透過して明状態の表示が得られる。再び電圧無印加状態 にすると配向規制力により喑状態の表示に戻すことができる。また、印加電圧を変化 させて液晶分子の傾きを制御して他方の偏光子 11からの透過光強度を変化させるこ とにより階調表示が可能となる。 As the drive mode of the liquid crystal cell 20, any appropriate drive mode can be adopted. The VA mode is preferable. FIG. 3 is a schematic cross-sectional view illustrating the alignment state of liquid crystal molecules in the VA mode. As shown in Fig. 3 (a), when no voltage is applied, the liquid crystal molecules are aligned perpendicular to the substrates 21 and 21 '. Such vertical alignment can be realized by arranging a nematic liquid crystal having negative dielectric anisotropy between substrates on which a vertical alignment film (not shown) is formed. When light is incident from the surface of one substrate 21 in such a state, the linearly polarized light that has passed through one polarizer 11 and entered the liquid crystal layer 22 has a long axis of vertically aligned liquid crystal molecules. Proceed along the direction. Since birefringence does not occur in the major axis direction of the liquid crystal molecules, the incident light travels without changing the polarization direction and is absorbed by the other polarizer 11 having a polarization axis perpendicular to one polarizer 11. As a result, a display of a heel state is obtained when no voltage is applied (normally black mode). As shown in Fig. 3 (b), when a voltage is applied between the electrodes, the long axes of the liquid crystal molecules are aligned parallel to the substrate surface. The liquid crystal molecules in this state are birefringent with respect to linearly polarized light that has passed through one polarizer 11 and entered the liquid crystal layer 22, and the polarization state of the incident light changes according to the inclination of the liquid crystal molecules. . Light that passes through the liquid crystal layer when a predetermined maximum voltage is applied is, for example, linearly polarized light whose polarization orientation is rotated by 90 °, and therefore is transmitted through the other polarizer 11 to display a bright state. Is obtained. When no voltage is applied again, the display of the heel state can be restored by the orientation regulating force. Also change the applied voltage By controlling the tilt of the liquid crystal molecules and changing the transmitted light intensity from the other polarizer 11, gradation display is possible.
[0095] B- 3.第 5の光学補償層  [0095] B-3. Fifth optical compensation layer
上記第 5の光学補償層 16は、好ましくは、屈折率楕円体が nx〉ny=nzの関係を 示し、面内位相差 Reが 80〜200nmである。すなわち、 λ /4板として機能し得る。  In the fifth optical compensation layer 16, preferably, the refractive index ellipsoid shows a relationship of nx> ny = nz, and the in-plane retardation Re is 80 to 200 nm. That is, it can function as a λ / 4 plate.
5  Five
第 5の光学補償層としては、上記第 3の光学補償層と同様のものを採用し得る。  As the fifth optical compensation layer, the same layer as the third optical compensation layer can be adopted.
[0096] Β-4.第 4の光学補償層の厚み方向の位相差について [0096] IV-4. Thickness direction retardation of fourth optical compensation layer
図 2 (a)に示すように、第 4の光学補償層 15が液晶セル 20の一方の側にのみ配置 されている場合、当該第 4の光学補償層の厚み方向の位相差 Rthは、好ましくは 50  As shown in FIG. 2 (a), when the fourth optical compensation layer 15 is disposed only on one side of the liquid crystal cell 20, the thickness direction retardation Rth of the fourth optical compensation layer is preferably Is 50
4  Four
〜600nm、さら ίこ好ましく ίま 100〜540nm、特 ίこ好ましく ίま 150〜500nmである。 一方、図 2 (b)に示すように、第 4の光学補償層 15が液晶セル 20の両側に配置され ている場合、それぞれの第 4の光学補償層の厚み方向の位相差 Rthは、好ましくは  It is ˜600 nm, more preferably ί 100 to 540 nm, and particularly preferably ί 150 to 500 nm. On the other hand, as shown in FIG. 2 (b), when the fourth optical compensation layer 15 is disposed on both sides of the liquid crystal cell 20, the thickness direction retardation Rth of each of the fourth optical compensation layers is preferably Is
4  Four
、一方に配置されている場合の厚み方向の位相差の略半分である。すなわち、好ま しくは 25〜300nm、さらに好ましくは 50〜270nm、特に好ましくは 75〜250nmで ある。  , Approximately half of the thickness direction retardation when arranged on one side. That is, it is preferably 25 to 300 nm, more preferably 50 to 270 nm, and particularly preferably 75 to 250 nm.
[0097] B— 5.積層方法  [0097] B— 5. Lamination method
上記各層(フィルム)の積層方法は、任意の適切な方法を採用し得る。具体的には 、任意の適切な粘着剤層または接着剤層を介して積層される。  Arbitrary appropriate methods can be employ | adopted for the lamination | stacking method of said each layer (film). Specifically, it is laminated via any appropriate pressure-sensitive adhesive layer or adhesive layer.
実施例  Example
[0098] 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によ つて限定されるものではな!/、。各特性の測定方法は以下の通りである。  [0098] The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples! /. The measuring method of each characteristic is as follows.
[0099] (1)位相差値の測定 [0099] (1) Measurement of phase difference value
王子計測製 KOBRA— WPRを用いて自動計測した。測定波長は 590nmもしくは 550nm、測定温度は 23°Cであった。  Automatic measurement using KOBRA-WPR made by Oji Scientific. The measurement wavelength was 590 nm or 550 nm, and the measurement temperature was 23 ° C.
(2)コントラストの測定 1  (2) Contrast measurement 1
実際に作製して測定した各光学補償層の光学特性パラメーターを用いて、各実施 例および比較例の液晶パネルにつ!/、てコンピューターシミュレーションを行った。シミ ユレーシヨンには、シンテック社製、液晶表示器用シミュレーター「LCD MASTER] を用いた。 Computer simulations were performed on the liquid crystal panels of the examples and comparative examples using the optical characteristic parameters of the optical compensation layers actually fabricated and measured. Simi Yurayon is a liquid crystal display simulator “LCD MASTER” made by Shintech. Was used.
(3)コントラストの測定 2  (3) Contrast measurement 2
液晶表示装置に白画像および黒画像を表示させ、 ELDIM社製 商品名 「EZ C ontrastl 60D」により測定した。  A white image and a black image were displayed on the liquid crystal display device, and measurement was performed using a product name “EZ Contrastl 60D” manufactured by ELDIM.
[0100] [実施例 1] [0100] [Example 1]
(偏光板の作製)  (Preparation of polarizing plate)
ポリビュルアルコールフィルムを、ヨウ素を含む水溶液中で染色した後、ホウ酸を含 む水溶液中で速比の異なるロール間にて 6倍に一軸延伸して偏光子を得た。この偏 光子の両面それぞれに、保護層(第 1の保護層および第 2の保護層)としてトリァセチ ルセルロースフィルム(厚み 40 m、コニカミノルタ社製、商品名: KC4UYW〕を、ポ リビュルアルコール系接着剤(厚み 0. 1 11 m)を介して貼り付けた。保護層の面内位 相差 Re (550)は 0. 9nmであり、厚み方向の位相差 Rth (550)は、 1. 2nmであった 。このようにして偏光板を作製した。なお、 Re (550)は、 23°Cにおける波長 550nm の光で測定したときの値を示す。  After dyeing the polybulualcohol film in an aqueous solution containing iodine, a polarizer was obtained by uniaxially stretching 6 times between rolls having different speed ratios in an aqueous solution containing boric acid. A triacetylcellulose film (thickness 40 m, manufactured by Konica Minolta, trade name: KC4UYW) is used as a protective layer (first protective layer and second protective layer) on both sides of this polarizer. Affixed via an adhesive (thickness: 0.11 11 m), the in-plane phase difference Re (550) of the protective layer is 0.9 nm, and the thickness direction retardation Rth (550) is 1.2 nm. In this way, a polarizing plate was produced, where Re (550) is a value measured with light having a wavelength of 550 nm at 23 ° C.
[0101] (第 1の光学補償層の作製)  [0101] (Preparation of the first optical compensation layer)
長尺のノルボルネン系樹脂フィルム(日本ゼオン社製、商品名 Zeonor、厚み 40 m、光弾性係数 3. 10 X 10— 12m2/N)を 140°Cで 1. 52倍に一軸延伸することによ つて、長尺のフィルムを作製した。このフィルムの厚みは 35 m、面内位相差 Reは 1 40nm、厚み方向の位相差 Rthは 140nmであった。得られたフィルムを後述の液晶 セルに対応するサイズに打ち抜いて第 1の光学補償層とした。 Long norbornene resin film (manufactured by Zeon Corporation, trade name Zeonor, thickness 40 m, photoelastic coefficient 3. 10 X 10- 12 m 2 / N) subjected to uniaxial stretching to 52 times 1. 140 ° C Thus, a long film was produced. This film had a thickness of 35 m, an in-plane retardation Re of 140 nm, and a thickness direction retardation Rth of 140 nm. The obtained film was punched into a size corresponding to a liquid crystal cell described later to obtain a first optical compensation layer.
[0102] (第 2の光学補償層の作製)  [0102] (Production of second optical compensation layer)
下記化学式(1) (式中の数字 65および 35はモノマーユニットのモル%を示し、便宜 的にブロックポリマー体で表して!/、る:重量平均分子量 5000)で示される側鎖型液晶 ポリマー 20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名 Palio colorLC242) 80重量部および光重合開始剤(チバスぺシャリティーケミカルズ社製 :商品名ィルガキュア 907) 5重量部をシクロペンタノン 200重量部に溶解して液晶塗 ェ液を調製した。そして、基材フィルム(ノルボルネン系樹脂フィルム:日本ゼオン社 製、商品名 Zeonor)に当該塗工液をバーコ一ターにより塗工した後、 80°Cで 4分間 加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層 を硬化させることにより、基材上に第 2の光学補償層となる液晶固化層を形成した。こ の層の面内位相差は実質的にゼロであり、厚み方向の位相差 Rthは 120nmであ Side-chain liquid crystal polymer represented by the following chemical formula (1) (numerals 65 and 35 in the formula indicate mol% of the monomer unit and are represented by a block polymer for convenience! /, Weight average molecular weight 5000) 20 80 parts by weight of a polymerizable liquid crystal (BASF: trade name Palio color LC242) and a photopolymerization initiator (Ciba Specialty Chemicals: trade name Irgacure 907) 5 parts by weight of cyclopentanone A liquid crystal coating solution was prepared by dissolving in 200 parts by weight. Then, after applying the coating solution on a base film (norbornene-based resin film: trade name Zeonor, manufactured by Nippon Zeon Co., Ltd.) with a bar coater, it is at 80 ° C for 4 minutes. The liquid crystal was aligned by heating and drying. By irradiating the liquid crystal layer with ultraviolet rays and curing the liquid crystal layer, a liquid crystal solidified layer serving as a second optical compensation layer was formed on the substrate. The in-plane retardation of this layer is substantially zero, and the thickness direction retardation Rth is 120 nm.
2  2
つた。  I got it.
[化 1]  [Chemical 1]
Figure imgf000029_0001
Figure imgf000029_0001
[0104] (第 3の光学補償層の作製) [0104] (Production of third optical compensation layer)
上記第 1の光学補償層と同様のフィルムを用いた。  The same film as the first optical compensation layer was used.
[0105] (第 4の光学補償層の作製)  [0105] (Fabrication of fourth optical compensation layer)
下記化学式 (2)に示されるネマチック液晶性化合物 90重量部、下記化学式 (3)に 示されるカイラル剤 10重量部、光重合開始剤 (ィルガキュア 907:チバスぺシャリティ 一ケミカルズ社製) 5重量部、およびメチルェチルケトン 300重量部を均一となるよう に混合し、液晶塗工液を調製した。次に、この液晶塗工液を基板(二軸延伸 PETフィ ルム)上にコーティングし、 80°Cで 3分間熱処理し、次いで紫外線を照射して重合処 理し、基板上に第 4の光学補償層となるコレステリック配向固化層を形成した。当該コ レステリック配向固化層の厚みは 3 m、厚み方向の位相差 Rthは 120nmであり、  90 parts by weight of a nematic liquid crystalline compound represented by the following chemical formula (2), 10 parts by weight of a chiral agent represented by the following chemical formula (3), 5 parts by weight of a photopolymerization initiator (Irgacure 907: manufactured by Ciba Specialty One Chemicals) Then, 300 parts by weight of methyl ethyl ketone was mixed uniformly to prepare a liquid crystal coating solution. Next, this liquid crystal coating solution is coated on a substrate (biaxially stretched PET film), heat-treated at 80 ° C for 3 minutes, and then subjected to polymerization by irradiating with ultraviolet rays, and a fourth optical material is formed on the substrate. A cholesteric alignment solidified layer serving as a compensation layer was formed. The cholesteric alignment solidified layer has a thickness of 3 m and a thickness direction retardation Rth of 120 nm.
4  Four
面内位相差 Reは実質的にゼロであった。  The in-plane retardation Re was substantially zero.
4  Four
[0106] [化 2]  [0106] [Chemical 2]
Figure imgf000029_0002
[0107] (第 5の光学補償層の作製)
Figure imgf000029_0002
[0107] (Fifth optical compensation layer fabrication)
上記第 1の光学補償層と同様のフィルムを用いた。  The same film as the first optical compensation layer was used.
[0108] (積層フィルム Aの作製) [0108] (Preparation of laminated film A)
上記第 5の光学補償層に、第 4の光学補償層となるコレステリック配向固化層をイソ シァネート系接着剤(厚み 511 m)で接着し、上記基板(二軸延伸 PETフィルム)を除 去して、第 5の光学補償層にコレステリック配向固化層が転写された積層体を得た。 この積層体の第 5の光学補償層側に、上記で得られた偏光板をアクリル系粘着剤( 厚み 12 ^ 111)を介して積層した。ここで、第 5の光学補償層の遅相軸が、偏光板の偏 光子の吸収軸に対して時計回りに 45° となるように積層した。このようにして積層光 学フィルム Aを得た。  A cholesteric alignment solidified layer as a fourth optical compensation layer was adhered to the fifth optical compensation layer with an isocyanate adhesive (thickness: 511 m), and the substrate (biaxially stretched PET film) was removed. A laminate in which the cholesteric alignment solidified layer was transferred to the fifth optical compensation layer was obtained. On the fifth optical compensation layer side of this laminate, the polarizing plate obtained above was laminated via an acrylic pressure-sensitive adhesive (thickness 12 ^ 111). Here, the fifth optical compensation layer was laminated so that the slow axis was 45 ° clockwise with respect to the absorption axis of the polarizer of the polarizing plate. In this way, a laminated optical film A was obtained.
[0109] (積層光学フィルム Bの作製) [0109] (Preparation of laminated optical film B)
上記第 1の光学補償層に、第 2の光学補償層となる液晶固化層をイソシァネート系 接着剤(厚み 5 a m)で接着し、上記基材(ノルボルネン系樹脂フィルム)を除去して、 第 1の光学補償層に第 2の光学補償層が転写された積層体 1を得た。  A liquid crystal solidified layer serving as a second optical compensation layer is adhered to the first optical compensation layer with an isocyanate adhesive (thickness 5 am), and the base material (norbornene resin film) is removed. A laminate 1 was obtained in which the second optical compensation layer was transferred to the optical compensation layer.
上記第 3の光学補償層に、第 4の光学補償層となるコレステリック配向固化層をイソ シァネート系接着剤(厚み 511 m)で接着し、上記基板(二軸延伸 PETフィルム)を除 去して、第 3の光学補償層にコレステリック配向固化層が転写された積層体 2を得た。 積層体 2の第 3の光学補償層側に、積層体 1および偏光板をこの順で、アクリル系 粘着剤 (厚み 12 πι)を介して積層した。このとき、積層体 1の第 1の光学補償層が偏 光板側となるように積層した。また、第 1の光学補償層および第 3の光学補償層の遅 相軸力、それぞれ、偏光板の偏光子の吸収軸に対して時計回りに 90° 、45° となる ように積層した。このようにして積層光学フィルム Βを作製した。  A cholesteric alignment solidified layer as a fourth optical compensation layer is adhered to the third optical compensation layer with an isocyanate adhesive (thickness: 511 m), and the substrate (biaxially stretched PET film) is removed. Thus, a laminate 2 in which the cholesteric alignment solidified layer was transferred to the third optical compensation layer was obtained. On the third optical compensation layer side of the laminate 2, the laminate 1 and the polarizing plate were laminated in this order via an acrylic pressure-sensitive adhesive (thickness: 12πι). At this time, the laminated body 1 was laminated so that the first optical compensation layer was on the polarizing plate side. The laminar axial forces of the first optical compensation layer and the third optical compensation layer were laminated so as to be 90 ° and 45 ° clockwise with respect to the absorption axis of the polarizer of the polarizing plate, respectively. In this way, a laminated optical film Β was produced.
[0110] (液晶パネルの作製) [0110] (Production of liquid crystal panel)
ソニー社製プレイステーションポータブル (VAモード液晶セル搭載)から液晶セル を取り外し、当該液晶セルの視認側に上記積層フィルム Αを、アクリル系粘着剤(厚 み 20 πι)を介して貼り付けた。このとき、第 4の光学補償層が液晶セル側になるよう に貼り付けた。また、液晶セルのバックライト側には、上記積層光学フィルム Βを、ァク リル系粘着剤 (厚み 20 ΐη)を介して貼り付けた。ことのき、第 4の光学補償層が液晶 セル側になるように貼り付けた。また、積層フィルム Aの偏光子の吸収軸と積層光学 フィルム Bの偏光子の吸収軸とが互いに実質的に直交するように積層した。このよう にして液晶パネルを作製した。 The liquid crystal cell was removed from the Sony PlayStation Portable (with VA mode liquid crystal cell), and the laminated film Α was attached to the viewing side of the liquid crystal cell with an acrylic adhesive (thickness 20 πι). At this time, the fourth optical compensation layer was attached so as to be on the liquid crystal cell side. Further, the laminated optical film Β was attached to the backlight side of the liquid crystal cell via an acrylic adhesive (thickness 20 ΐη). The fourth optical compensation layer is liquid crystal Affixed to the cell side. The laminated film A was laminated such that the polarizer absorption axis and the laminated optical film B polarizer absorption axis were substantially perpendicular to each other. Thus, a liquid crystal panel was produced.
このような液晶パネルを用いた液晶表示装置のコントラストの視野角依存性につい てコンピューターシミュレーションを行った。結果を図 4に示す。また、得られた液晶パ ネルを用いて作製した液晶表示装置のコントラストの視野角依存性を実測した。結果 を図 5に示す。  Computer simulations were conducted on the viewing angle dependence of contrast in liquid crystal display devices using such liquid crystal panels. The results are shown in Fig. 4. Also, the viewing angle dependence of contrast of a liquid crystal display device manufactured using the obtained liquid crystal panel was measured. The results are shown in Fig. 5.
[0111] [実施例 2] [0111] [Example 2]
(積層光学フィルム Cの作製)  (Preparation of laminated optical film C)
第 1の光学補償層として下記に示すフィルムを用いたこと、第 2の光学補償層の Rt hがー 140nmであったこと以外は積層光学フィルム Bと同様にして、積層光学フィル The laminated optical film was the same as the laminated optical film B except that the film shown below was used as the first optical compensation layer and that the Rth of the second optical compensation layer was −140 nm.
2 2
ム Cを作製した。  C was produced.
(第 1の光学補償層)  (First optical compensation layer)
長尺のノルボルネン系樹脂フィルム(日本ゼオン社製、商品名 Zeonor、厚み 60 m、光弾性係数 3. l X 10_12m2/N)を 150°Cで 1. 7倍に固定端二軸延伸すること によって、長尺状のフィルムを作製した。このフィルムの面内位相差 Reは 120nm、 厚み方向の位相差 Rthは 156nm、 Nz係数(Rth /Re )は 1. 3であった。得られた フィルムを上記液晶セルに対応するサイズに打ち抜いて第 1の光学補償層とした。 Norbornene resin film long (manufactured by Zeon Corporation, trade name Zeonor, thickness 60 m, photoelastic coefficient 3. l X 10_ 12 m 2 / N) of the fixed end biaxially stretched 1.7 times at 0.99 ° C By doing so, a long film was produced. The in-plane retardation Re of this film was 120 nm, the thickness direction retardation Rth was 156 nm, and the Nz coefficient (Rth / Re) was 1.3. The obtained film was punched out to a size corresponding to the liquid crystal cell to obtain a first optical compensation layer.
[0112] (液晶パネルの作製) [0112] (Production of liquid crystal panel)
積層光学フィルム Bのかわりに積層光学フィルム Cを用いたこと以外は実施例 1と同 様にして液晶パネルを得た。  A liquid crystal panel was obtained in the same manner as in Example 1 except that the laminated optical film C was used instead of the laminated optical film B.
このような液晶パネルを用いた液晶表示装置のコントラストの視野角依存性につい てコンピューターシミュレーションを行った。結果を図 6に示す。また、得られた液晶パ ネルを用いて作製した液晶表示装置のコントラストを測定した。結果を図 7に示す。  Computer simulations were conducted on the viewing angle dependence of contrast in liquid crystal display devices using such liquid crystal panels. The result is shown in FIG. In addition, the contrast of a liquid crystal display device manufactured using the obtained liquid crystal panel was measured. The results are shown in FIG.
[0113] [実施例 3] [0113] [Example 3]
(接着剤水溶液の調製)  (Preparation of aqueous adhesive solution)
ァセトァセチル基含有ポリビュルアルコール系樹脂(平均重合度: 1200、ケン化度 : 98. 5モル%,ァセトァセチル化度: 5モル%) 100重量部に対し、メチロールメラミン 50重量部を 30°Cの温度条件下で純水に溶解し、固形分濃度 3. 7%に調整した水 溶液を得た。この水溶液 100重量部に対し、アルミナコロイド水溶液(平均粒子径 15 nm、固形分濃度 10%、正電荷) 18重量部を加えて接着剤水溶液を調製した。接着 剤水溶液の粘度は 9. 6mPa ' sであった。接着剤水溶液の pHは、 4〜4. 5であった。 Polyacetyl alcohol resin containing acetoacetyl group (average polymerization degree: 1200, saponification degree: 98.5 mol%, acetoacetylation degree: 5 mol%) 100 parts by weight of methylolmelamine 50 parts by weight was dissolved in pure water under a temperature condition of 30 ° C. to obtain an aqueous solution adjusted to a solid content concentration of 3.7%. An aqueous adhesive solution was prepared by adding 18 parts by weight of an aqueous colloidal alumina solution (average particle size 15 nm, solid content concentration 10%, positive charge) to 100 parts by weight of this aqueous solution. The viscosity of the adhesive aqueous solution was 9.6 mPa's. The pH of the aqueous adhesive solution was 4 to 4.5.
[0114] (積層光学フィルム C'の作製) [0114] (Production of laminated optical film C ')
ポリビュルアルコールフィルムを、ヨウ素を含む水溶液中で染色した後、ホウ酸を含 む水溶液中で速比の異なるロール間にて 6倍に一軸延伸して偏光子を得た。この偏 光子の片面に、第 2の保護層としてトリァセチルセルロースフィルム(商品名: KC4U YW)を、ポリビュルアルコール系接着剤(厚み 0· 1 m)を介して貼り付けた。次に、 偏光子の他方の面に上記で得られた接着剤水溶液を厚み 0. l ^ mで塗工して、上 記実施例 2で得られた第 1の光学補償層を貼り付けた。このとき、第 1の光学補償層 の遅相軸が偏光子の吸収軸に対して直交するように積層した。このようにして積層体 Iを得た。  After dyeing the polybulualcohol film in an aqueous solution containing iodine, a polarizer was obtained by uniaxially stretching 6 times between rolls having different speed ratios in an aqueous solution containing boric acid. A triacetyl cellulose film (trade name: KC4U YW) as a second protective layer was pasted on one side of this polarizer via a polybutyl alcohol adhesive (thickness 0 · 1 m). Next, the adhesive aqueous solution obtained above was applied to the other surface of the polarizer with a thickness of 0.1 m, and the first optical compensation layer obtained in Example 2 was attached. . At this time, lamination was performed so that the slow axis of the first optical compensation layer was orthogonal to the absorption axis of the polarizer. Thus, a laminate I was obtained.
前記積層体 Iの第 1の光学補償層側に、第 2の光学補償層となる液晶固化層(Rth  On the side of the first optical compensation layer of the laminate I, a liquid crystal solidified layer (Rth
2 2
: 一 140nm)をイソシァネート系接着剤(厚み 5 μ m)で接着し、上記基材(ノルボルネ ン系樹脂フィルム)を除去して、積層体 Iに第 2の光学補償層が転写された積層体 IIを 得た。この積層体 IIの第 2の光学補償層側に、アクリル系粘着剤(厚み 12 πι)を介 して上記実施例 1で得られた積層体 2を積層した。このとき、積層体 2の第 3の光学補 償層が積層体 II側となるように積層した。また、第 3の光学補償層の遅相軸が偏光子 の吸収軸に対して時計回りに 45° となるように積層する。このようにして積層光学フィ ルム C'を作製した。 : 140 nm) is bonded with an isocyanate adhesive (thickness 5 μm), the base material (norbornene resin film) is removed, and the second optical compensation layer is transferred to laminate I II was obtained. The laminate 2 obtained in Example 1 was laminated on the second optical compensation layer side of the laminate II via an acrylic pressure-sensitive adhesive (thickness: 12πι). At this time, lamination was performed such that the third optical compensation layer of the laminate 2 was on the laminate II side. The third optical compensation layer is laminated so that the slow axis is 45 ° clockwise with respect to the absorption axis of the polarizer. In this way, a laminated optical film C ′ was produced.
[0115] (液晶パネルの作製)  [0115] (Production of liquid crystal panel)
積層光学フィルム Cのかわりに積層光学フィルム C'を用いたこと以外は実施例 2と 同様にして液晶パネルを得た。  A liquid crystal panel was obtained in the same manner as in Example 2 except that the laminated optical film C ′ was used instead of the laminated optical film C.
このような液晶パネルを用いた液晶表示装置のコントラストの視野角依存性につい てコンピューターシミュレーションを行った。結果を図 8に示す。また、得られた液晶パ ネルを用いて作製した液晶表示装置のコントラストを測定した。結果を図 9に示す。  Computer simulations were conducted on the viewing angle dependence of contrast in liquid crystal display devices using such liquid crystal panels. The results are shown in FIG. In addition, the contrast of a liquid crystal display device manufactured using the obtained liquid crystal panel was measured. The results are shown in FIG.
[0116] [比較例 1] 積層光学フィルム Bのかわりに積層フィルム Aを用いたこと以外は実施例 1と同様に して液晶パネノレを得た。 [0116] [Comparative Example 1] A liquid crystal panel was obtained in the same manner as in Example 1 except that the laminated film A was used instead of the laminated optical film B.
このような液晶パネルを用いた液晶表示装置のコントラストの視野角依存性につい てコンピューターシミュレーションを行った。結果を図 10に示す。また、得られた液晶 パネルを用いて作製した液晶表示装置のコントラストを測定した。結果を図 11に示す  Computer simulations were conducted on the viewing angle dependence of contrast in liquid crystal display devices using such liquid crystal panels. The result is shown in FIG. Moreover, the contrast of the liquid crystal display device produced using the obtained liquid crystal panel was measured. The result is shown in Fig. 11.
[0117] [比較例 2] [0117] [Comparative Example 2]
(積層フィルム Dの作製)  (Production of laminated film D)
第 1の光学補償層の遅相軸と偏光板の偏光子の吸収軸とが平行(0° )となるように 積層したこと以外は積層光学フィルム Bと同様にして、積層フィルム Dを作製した。  A laminated film D was produced in the same manner as the laminated optical film B except that the slow axis of the first optical compensation layer and the absorption axis of the polarizer of the polarizing plate were laminated in parallel (0 °). .
[0118] (液晶パネルの作製) [0118] (Production of liquid crystal panel)
積層光学フィルム Bのかわりに積層フィルム Dを用いたこと以外は実施例 1と同様に して液晶パネノレを得た。  A liquid crystal panel was obtained in the same manner as in Example 1 except that the laminated film D was used instead of the laminated optical film B.
このような液晶パネルを用いた液晶表示装置のコントラストの視野角依存性につい てコンピューターシミュレーションを行った。結果を図 12に示す。また、得られた液晶 パネルを用いて作製した液晶表示装置のコントラストを測定した。結果を図 13に示す  Computer simulations were conducted on the viewing angle dependence of contrast in liquid crystal display devices using such liquid crystal panels. The results are shown in FIG. Moreover, the contrast of the liquid crystal display device produced using the obtained liquid crystal panel was measured. The results are shown in Figure 13.
[0119] [比較例 3] [Comparative Example 3]
(積層フィルム Eの作製)  (Production of laminated film E)
第 1の光学補償層の遅相軸と偏光板の偏光子の吸収軸とが平行(0° )となるように 積層すること以外は積層光学フィルム Cと同様にして、積層フィルム Eを作製する。  A laminated film E is produced in the same manner as the laminated optical film C, except that the slow axis of the first optical compensation layer and the absorption axis of the polarizer of the polarizing plate are parallel (0 °). .
[0120] (液晶パネルの作製) [0120] (Production of liquid crystal panel)
積層光学フィルム Bのかわりに積層フィルム Eを用いること以外は実施例 1と同様に して液晶パネルを得る。  A liquid crystal panel is obtained in the same manner as in Example 1 except that the laminated film E is used instead of the laminated optical film B.
このような液晶パネルを用いた液晶表示装置のコントラストの視野角依存性につい てコンピューターシミュレーションを行った。結果を図 14に示す。  Computer simulations were conducted on the viewing angle dependence of contrast in liquid crystal display devices using such liquid crystal panels. The results are shown in FIG.
[0121] なお、実施例;!〜 3、比較例 1〜3のパネルの全体構成を表 1にまとめる。ノ ックライ ト側の偏光子の吸収軸を 0° としたときの角度(反時計回り)も示す。 [0122] [表 1] [0121] Table 1 summarizes the overall configuration of the panels of Examples;! -3 and Comparative Examples 1-3. The angle (counterclockwise) when the absorption axis of the polarizer on the knock light side is 0 ° is also shown. [0122] [Table 1]
Figure imgf000034_0001
Figure imgf000034_0001
[0123] 図 4〜; 14から明らかなように、本発明の実施例 1〜3の液晶パネルは、比較例;!〜 3 の液晶パネルに比べて、コントラストが優れていた。実施例 1と比較例 2、実施例 2、 3 と比較例 3とを比較すると、第 1の光学補償層の遅相軸と偏光子の吸収軸とを直交さ せることにより、コントラストが格段に優れることがわかる。また、本発明の実施例の液 晶パネルは比較例の液晶パネルに比べて、カラーシフトが小さいことが確認された。 産業上の利用可能性 本発明の積層光学フィルム、液晶パネルおよび液晶表示装置は、携帯電話、液 テレビ等に好適に適用され得る。 As is clear from FIGS. 4 to 14, the liquid crystal panels of Examples 1 to 3 of the present invention were superior in contrast to the liquid crystal panels of Comparative Examples! To 3. Comparing Example 1 with Comparative Example 2, Examples 2 and 3 and Comparative Example 3, contrast is remarkably increased by making the slow axis of the first optical compensation layer and the absorption axis of the polarizer perpendicular to each other. It turns out that it is excellent. Further, it was confirmed that the liquid crystal panel of the example of the present invention had a smaller color shift than the liquid crystal panel of the comparative example. Industrial applicability The laminated optical film, liquid crystal panel, and liquid crystal display device of the present invention can be suitably applied to mobile phones, liquid televisions, and the like.

Claims

請求の範囲 The scope of the claims
[1] 偏光子と、  [1] Polarizer,
屈折率楕円体力 x〉ny=nzの関係を示し、面内位相差 Re力 0〜300nmであ る第 1の光学補償層と、  A first optical compensation layer having a refractive index ellipsoidal force x> ny = nz and an in-plane retardation Re force of 0 to 300 nm;
屈折率楕円体が nz > nx = nyの関係を示す第 2の光学補償層と、  A second optical compensation layer whose refractive index ellipsoid shows a relationship of nz> nx = ny,
屈折率楕円体力 x〉ny=nzの関係を示し、面内位相差 Re力 0〜200nmであ  Refractive index ellipsoidal force x> ny = nz, with in-plane retardation Re force 0 to 200 nm
3  Three
る第 3の光学補償層とを少なくともこの順で備え、  And at least a third optical compensation layer in this order,
該偏光子の吸収軸と該第 1の光学補償層の遅相軸とが直交している、積層光学フ イノレム。  A laminated optical finem in which the absorption axis of the polarizer and the slow axis of the first optical compensation layer are orthogonal to each other.
[2] 偏光子と、 [2] Polarizer,
屈折率楕円体力 x〉ny〉nzの関係を示し、面内位相差 Re力 0〜300nmであ る第 1の光学補償層と、  A first optical compensation layer having a refractive index ellipsoidal force x> ny> nz and an in-plane retardation Re force of 0 to 300 nm;
屈折率楕円体が nz > nx = nyの関係を示す第 2の光学補償層と、  A second optical compensation layer whose refractive index ellipsoid shows a relationship of nz> nx = ny,
屈折率楕円体力 x〉ny=nzの関係を示し、面内位相差 Re力 0〜200nmであ  Refractive index ellipsoidal force x> ny = nz, with in-plane retardation Re force 0 to 200 nm
3  Three
る第 3の光学補償層とを少なくともこの順で備え、  And at least a third optical compensation layer in this order,
該偏光子の吸収軸と該第 1の光学補償層の遅相軸とが直交している、積層光学フ イノレム。  A laminated optical finem in which the absorption axis of the polarizer and the slow axis of the first optical compensation layer are orthogonal to each other.
[3] 前記第 3の光学補償層の前記第 2の光学補償層とは反対側に配置され、屈折率楕 円体が nx=ny〉nzの関係を示す第 4の光学補償層をさらに備える、請求項 1または 2に記載の積層光学フィルム。  [3] The fourth optical compensation layer is further provided on the opposite side of the third optical compensation layer from the second optical compensation layer, and the refractive index ellipsoid shows a relationship of nx = ny> nz. The laminated optical film according to claim 1 or 2.
[4] 液晶セルと、請求項 1〜3のいずれかに記載の積層光学フィルムとを備える、液晶 パネル。  [4] A liquid crystal panel comprising a liquid crystal cell and the laminated optical film according to any one of claims 1 to 3.
[5] 前記積層光学フィルムがバックライト側に配置されている、請求項 4に記載の液晶 パネル。  5. The liquid crystal panel according to claim 4, wherein the laminated optical film is disposed on the backlight side.
[6] 偏光子と、屈折率楕円体力 ¾x〉ny = nzの関係を示し、面内位相差 Re力 0〜20  [6] The relationship between the polarizer and refractive index ellipsoidal force ¾x> ny = nz, with in-plane phase difference Re force 0 to 20
5  Five
Onmである第 5の光学補償層とを備える積層フィルムが視認側に配置されている、請 求項 5に記載の液晶パネル。  6. The liquid crystal panel according to claim 5, wherein a laminated film including a fifth optical compensation layer which is Onm is disposed on the viewing side.
[7] 前記液晶セルが VAモードである、請求項 4〜6の!/、ずれかに記載の液晶パネル。 [8] 請求項 4〜7のいずれかに記載の液晶パネルを有する、液晶表示装置。 7. The liquid crystal panel according to any one of claims 4 to 6, wherein the liquid crystal cell is in a VA mode. [8] A liquid crystal display device comprising the liquid crystal panel according to any one of claims 4 to 7.
PCT/JP2007/070585 2006-11-20 2007-10-23 Multilayer optical film, liquid crystal panel employing multilayer optical film and liquid crystal display WO2008062624A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/513,389 US20100045910A1 (en) 2006-11-20 2007-10-23 Laminated optical film, and liquid crystal panel and liquid crystal display apparatus using the laminated optical film
CN2007800429890A CN101657754B (en) 2006-11-20 2007-10-23 Laminated optical film, and liquid crystal panel and liquid crystal display apparatus using the laminated optical film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-312575 2006-11-20
JP2006312575 2006-11-20
JP2007033031A JP4998941B2 (en) 2006-11-20 2007-02-14 Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film
JP2007-033031 2007-02-14

Publications (1)

Publication Number Publication Date
WO2008062624A1 true WO2008062624A1 (en) 2008-05-29

Family

ID=39429563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070585 WO2008062624A1 (en) 2006-11-20 2007-10-23 Multilayer optical film, liquid crystal panel employing multilayer optical film and liquid crystal display

Country Status (2)

Country Link
KR (1) KR20090073235A (en)
WO (1) WO2008062624A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101876721A (en) * 2009-04-07 2010-11-03 日东电工株式会社 Polaroid, liquid crystal panel and liquid crystal indicator
EP2290414A1 (en) * 2008-06-13 2011-03-02 JX Nippon Oil & Energy Corporation Elliptical light polarizing plate and vertically oriented liquid crystal display device using the same
CN102317821A (en) * 2009-02-13 2012-01-11 日东电工株式会社 Laminate optical body, optical film, liquid crystal display device using said optical film, and method for manufacturing laminate optical body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227520A (en) * 1999-02-08 2000-08-15 Nitto Denko Corp Phase difference plate, laminated polarizing plate and liquid crystal display device
JP2002055342A (en) * 2000-05-31 2002-02-20 Sharp Corp Liquid crystal display device
JP2006215221A (en) * 2005-02-03 2006-08-17 Nitto Denko Corp Polarizing element, liquid crystal panel, liquid crystal television, liquid crystal display device, and method for manufacturing polarizing element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227520A (en) * 1999-02-08 2000-08-15 Nitto Denko Corp Phase difference plate, laminated polarizing plate and liquid crystal display device
JP2002055342A (en) * 2000-05-31 2002-02-20 Sharp Corp Liquid crystal display device
JP2006215221A (en) * 2005-02-03 2006-08-17 Nitto Denko Corp Polarizing element, liquid crystal panel, liquid crystal television, liquid crystal display device, and method for manufacturing polarizing element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290414A1 (en) * 2008-06-13 2011-03-02 JX Nippon Oil & Energy Corporation Elliptical light polarizing plate and vertically oriented liquid crystal display device using the same
EP2290414A4 (en) * 2008-06-13 2014-07-02 Jx Nippon Oil & Energy Corp Elliptical light polarizing plate and vertically oriented liquid crystal display device using the same
CN102317821A (en) * 2009-02-13 2012-01-11 日东电工株式会社 Laminate optical body, optical film, liquid crystal display device using said optical film, and method for manufacturing laminate optical body
CN101876721A (en) * 2009-04-07 2010-11-03 日东电工株式会社 Polaroid, liquid crystal panel and liquid crystal indicator

Also Published As

Publication number Publication date
KR20090073235A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP4998941B2 (en) Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film
JP5069166B2 (en) Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film
JP5127046B2 (en) Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film
KR20100075446A (en) Elliptic polarization plate and liquid crystal display device
JP5068146B2 (en) Liquid crystal panel and liquid crystal display device
JP2009053614A (en) Layered optical film, liquid crystal panel using layered optical film and liquid crystal display device
JP4761394B2 (en) Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film
TWI708966B (en) Polarizing plate set and ips mode liquid crystal display device using the same
JP4911604B2 (en) Liquid crystal panel and liquid crystal display device
JP2018060152A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
JP4911777B2 (en) Liquid crystal panel and liquid crystal display device
WO2008062624A1 (en) Multilayer optical film, liquid crystal panel employing multilayer optical film and liquid crystal display
JP2009251326A (en) Liquid crystal panel and liquid crystal display
JP4761399B2 (en) Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film
JP2008139806A (en) Layered optical film, liquid crystal panel using layered optical film and liquid crystal display device
JP2018060150A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
JP2008191376A (en) Liquid crystal panel and liquid crystal display
JP4761395B2 (en) Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film
JP2008197352A (en) Liquid crystal panel and liquid crystal display device
JP4911603B2 (en) Liquid crystal panel and liquid crystal display device
JP4761398B2 (en) Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film
JP2018060149A (en) Set of polarizing plates and ips mode liquid crystal display using the same
JP6699514B2 (en) Set of polarizing plates for IPS mode and IPS mode liquid crystal display device using the same
JP6699513B2 (en) Polarizing plate set and IPS mode liquid crystal display device using the same
JP4761392B2 (en) Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780042989.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830319

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097010264

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12513389

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07830319

Country of ref document: EP

Kind code of ref document: A1