TWI228839B - LED with screen metal conductive layer and method for producing the same - Google Patents
LED with screen metal conductive layer and method for producing the same Download PDFInfo
- Publication number
- TWI228839B TWI228839B TW092132077A TW92132077A TWI228839B TW I228839 B TWI228839 B TW I228839B TW 092132077 A TW092132077 A TW 092132077A TW 92132077 A TW92132077 A TW 92132077A TW I228839 B TWI228839 B TW I228839B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- conductive layer
- metal conductive
- light
- mesh
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 146
- 239000002184 metal Substances 0.000 title claims abstract description 146
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 31
- 239000000956 alloy Substances 0.000 claims abstract description 12
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 12
- 239000010410 layer Substances 0.000 claims description 287
- 239000004065 semiconductor Substances 0.000 claims description 48
- 239000000758 substrate Substances 0.000 claims description 18
- 239000010931 gold Substances 0.000 claims description 15
- 229910052709 silver Inorganic materials 0.000 claims description 12
- 229910044991 metal oxide Inorganic materials 0.000 claims description 10
- 150000004706 metal oxides Chemical class 0.000 claims description 10
- 239000006185 dispersion Substances 0.000 claims description 8
- 239000011241 protective layer Substances 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- -1 One of Nd 20 2 Inorganic materials 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052778 Plutonium Inorganic materials 0.000 claims 2
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 claims 2
- 239000002699 waste material Substances 0.000 claims 2
- 229910005855 NiOx Inorganic materials 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 229910001887 tin oxide Inorganic materials 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 5
- 238000002310 reflectometry Methods 0.000 abstract description 3
- 229910002601 GaN Inorganic materials 0.000 description 45
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical class [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 22
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 239000010409 thin film Substances 0.000 description 11
- 229920002120 photoresistant polymer Polymers 0.000 description 10
- 239000004332 silver Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000005566 electron beam evaporation Methods 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 150000004767 nitrides Chemical class 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 229910052594 sapphire Inorganic materials 0.000 description 5
- 239000010980 sapphire Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000009102 absorption Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000002926 oxygen Chemical class 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009103 reabsorption Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 229910018553 Ni—O Inorganic materials 0.000 description 1
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 150000002258 gallium Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- XIKYYQJBTPYKSG-UHFFFAOYSA-N nickel Chemical compound [Ni].[Ni] XIKYYQJBTPYKSG-UHFFFAOYSA-N 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/0004—Devices characterised by their operation
- H01L33/0008—Devices characterised by their operation having p-n or hi-lo junctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/14—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0016—Processes relating to electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0066—Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
Description
1228839 五、發明說明(1) 〜 、 【發明所屬之技術領域】 本餐明係有關於一種具有網狀金屬導電層之發光二極 體及其製作方法,其係揭示利用一低接觸阻抗導電層與一 網狀導電層組合之高均勻亮度發光二極體元件,使其具有 降低接觸電阻及增加橫向電流分散以達均勻發光之目的。 【先前技術】1228839 V. Description of the invention (1) ~ [Technical field to which the invention belongs] The present invention relates to a light-emitting diode with a mesh-shaped metal conductive layer and a method for manufacturing the same, which discloses the use of a low-contact resistance conductive layer The high-uniform brightness light-emitting diode element combined with a mesh-shaped conductive layer has the purpose of reducing contact resistance and increasing lateral current dispersion to achieve uniform light emission. [Prior art]
按,習知使用藍寶石基板所成長氮化鎵系列之發光二 極體如第一圖所示;其中,包含一氮化鎵緩衝層2,— f -型氮化鎵歐姆接觸層3,一氮化銦鎵之發光層4 : 一 Pi 氮化鋁鎵披覆層5及一 p_型氮化鎵歐姆接觸層6依序磊晶 長於一藍寶石基板丄上,最後於該p_型氮化鎵歐姆接觸層丨 f製作一卜型透光金屬導電層7,並製作一正電極襯墊^ A透光金屬導電層7之上及一負電極襯墊9於該型氮化 歐姆接觸層3之上。由於該多層氮化鎵磊晶結構之折射係 數(η = 2·4),藍寶石基板之折射係數(η=1·77)而封裝用^ 樹脂封蓋材料之折射係數(η=1·5)之分佈,使得發^層 發出之光只有接近2 5%能一次射出而不被介面所反射y 其餘75%之光均被該藍寶石基板及封裝用之樹脂封 所構成之光導結構所侷限並經由多次之介面反射而增加、 被重吸收之機率進而無法有效的被取出利用,故此種 一極體裝置結構其光線取出之機制受限於 ^ 之吸收及内部蠢晶結構之重吸收。 尤金屬導電層 再者,由於該P-型氮化鎵歐姆接觸層6之 低’其電阻係數一般介於i〜2 Ω cm且厚度約專在二相,5Press, it is known that the light emitting diode of the gallium nitride series grown using a sapphire substrate is shown in the first figure; it includes a gallium nitride buffer layer 2, an f-type gallium nitride ohmic contact layer 3, a nitrogen Indium gallium nitride light emitting layer 4: a Pi aluminum gallium nitride coating layer 5 and a p-type gallium nitride ohmic contact layer 6 are epitaxially grown on a sapphire substrate in order, and finally on the p-type gallium nitride Ohmic contact layer 丨 f to fabricate a light-transmitting metal conductive layer 7 and a positive electrode pad ^ A on top of the light-transmitting metal conductive layer 7 and a negative electrode pad 9 on the nitrided ohmic contact layer 3 on. Due to the refractive index of the multilayer gallium nitride epitaxial structure (η = 2 · 4) and the refractive index of the sapphire substrate (η = 1.77), the refractive index of the resin sealing material for packaging (η = 1 · 5) The distribution makes the light emitted by the emitting layer only close to 25% can be emitted at one time without being reflected by the interface. The remaining 75% of the light is limited by the light guide structure formed by the sapphire substrate and the resin seal used for packaging. The probability of re-absorption increases due to multiple interface reflections and cannot be taken out effectively, so the light extraction mechanism of such a polar device structure is limited by the absorption of ^ and the reabsorption of internal stupid crystal structures. Especially the metal conductive layer. Furthermore, due to the low ′ of the P-type gallium nitride ohmic contact layer 6, its resistivity is generally between i ~ 2 Ω cm and the thickness is about two phases.
第6頁 1228839 五、發明說明(2) // m左右’換吕之’電流容易被侷限在該p—型金屬電極8之 下而橫向分散距離約〜1 # m,所以,為了將電流有效地分 散’必須先將该透光金屬導電層7製作於該p-型氮化鎵歐 姆接觸層6之上且佈滿整個發光區域,而為了提升透光 性,此該透光金屬導電層7必須相當薄,一般由Ni/Au形成 該透光金屬導電層7其厚度約介於5〇〜5〇〇 A。。 根據習知對於N i / Au所形成之透光金屬導電層之研 究’為了降低發光二極體裝置之工作電塵,必須有效地降 低金屬導電層與P -型氮化鎵歐姆接觸層之接觸電阻Page 6 1228839 V. Description of the invention (2) // The current of “must change” around m is easily confined below the p-type metal electrode 8 and the lateral dispersion distance is about ~ 1 # m, so in order to make the current effective Ground dispersion 'must first make the light-transmitting metal conductive layer 7 on the p-type gallium nitride ohmic contact layer 6 and cover the entire light-emitting area. It must be quite thin. Generally, the light-transmitting metal conductive layer 7 is formed by Ni / Au, and the thickness is about 50-500A. . According to the research on the light-transmitting metal conductive layer formed by Ni / Au, in order to reduce the working dust of the light-emitting diode device, it is necessary to effectively reduce the contact between the metal conductive layer and the P-type gallium nitride ohmic contact layer resistance
(contact resistivity)至 1〇cm2,而為了 增加外部量子 效率,可見光波長介於4 0 〇nm〜7 0 〇nm時,此金屬導電層之 透光性必須高於80%為佳,於Appl ied Physic letters vo 1· 74 ( 1 9 9 9 )Ρ· 1 2 7 5論文所揭示將樣品置於含氧之環境中 退火(anneal)以利形成NiO半導體中間層進而有效地降低 接觸電阻並增加透光性。又根據s〇lid—state Electronic 47(2003)ρ· 174 1論文揭示為了有效地增加透光性,n i及a u 之厚度必須愈薄愈好,而為了有效地降低接觸電阻,^之 厚度必須愈厚愈好。再者根據研究發現,當以Ni〇/Au透光(contact resistivity) to 10 cm2, and in order to increase external quantum efficiency, when the wavelength of visible light is between 400 nm and 700 nm, the transmittance of the metal conductive layer must be higher than 80%. Physic letters vo 1.74 (1 9 9 9) P · 1 2 7 5 The paper reveals that the sample is annealed in an oxygen-containing environment to facilitate the formation of the NiO semiconductor intermediate layer, which can effectively reduce the contact resistance and increase the transmittance. Light. According to solid-state Electronic 47 (2003) ρ · 174 1 the paper reveals that in order to effectively increase the light transmittance, the thickness of ni and au must be as thin as possible, and in order to effectively reduce the contact resistance, the thickness of ^ must be more The thicker the better. Furthermore, according to the research, it is found that when the light is transmitted with Ni〇 / Au
金屬導電層所製作成之發光二極體於高溫環境操作下,Au 極易於N i 0層中擴散而造成a u層之橫向分佈極不均勻,亦 即破壞電流橫向分散之均勻性,並且伴隨著與p—型氮化鎵 歐姆接觸層形成Ga-Ni-Ο相之近絕緣中間層而破壞發光一 極體之特性,所以其熱穩定性不佳。 皮展毛先一 所以使用N i / A u當成透光金屬導電層之氮化鎵系列之Under the high-temperature environment, the light-emitting diode made of the metal conductive layer is very easy to diffuse in the Ni 0 layer and cause the lateral distribution of the au layer to be extremely uneven, that is, the uniformity of the lateral dispersion of the current is destroyed, and accompanied by It forms a Ga-Ni-O phase near insulating interlayer with the p-type gallium nitride ohmic contact layer and destroys the characteristics of the light-emitting monopolar body, so its thermal stability is not good. The fur is the first one, so Ni / Au is used as the light-transmitting metal conductive layer of the gallium nitride series.
1228839 五、發明說明(3) 發光二極體裝置在以上所述 處,有鑑於此,如何兼顧氮 低工作電壓、高外部量子效 極之製作方法有其必要性。 因此,如何針對上述問 屬導電層之發光二極體及其 熱穩定性不佳缺點,又可使 效率,長久以來一直是使用 茲者,而本發明人基於多年 研究、開發、及銷售實務經 個人之專業知識,經多方研 出一種具有網狀金屬導電層 良,可解決上述之問題。爰 【發明内容】 本發明之主要目的,在 層之發光二極體及其製作方 層與一網狀金屬導電層,將 導電層之上,該金屬導電層 觸電阻(contact resistiv 間,且,該網狀金屬導電層 光層所射出之可見光,除^ 分散於整個發光區域,以達 本發明之次要目的, 曰之發光二極體及其製作方 之限制下,恐仍有未盡理想之 化鎵系列之發光二極體裝置之 率及熱穩定性佳之P-型金屬電 題而提出一種新穎具有網狀金 製作方法,不僅可改善傳統之 其低工作電壓兼具高外部量子 者啟切盼望及本發明人念茲在 從事於發光二極體相關產品之 驗’乃思及改良之意念,窮其 究設計、專題探討,終於研究 之發光二極體及其製作方法改 是 於提供一種具有網狀金屬導電 法’其係揭示利用一金屬導電 該網狀金屬導電層置於該金屬 與P -型氮化鎵歐姆接觸層之接 ity)介於 iei〇-4〜1ε1〇-Ώ cm乏 具南反射率’其能全反射由發 之外,並有效地將電流橫向地 發光均勻之目的。 於提供一種具有網狀金屬導電 法’由發光層所射出之光射向 1228839 五、發明說明 p -型金屬 金屬導電 被吸收, 導電層射 部之量子 本發 層之發光 電層非常 射,故能 本發 層之發光 發光二極 均勻之機 為達 狀金屬導 P-型氮化 金降低其 於此低接 屬導電層 層之間之 低接觸電 【實施方 茲為 功效有更1228839 V. Description of the invention (3) The light-emitting diode device is at the place described above. In view of this, it is necessary to take into account the manufacturing method of nitrogen, low operating voltage, and high external quantum efficiency. Therefore, how to deal with the above-mentioned light-emitting diodes that are conductive layers and their shortcomings in thermal stability and efficiency can be used for a long time. The inventors have based on many years of research, development, and sales practices. Personal professional knowledge has been developed by many parties to have a mesh-like metal conductive layer, which can solve the above problems.发明 [Content of the invention] The main purpose of the present invention is to make a layer of light-emitting diodes, a square layer thereof, and a mesh metal conductive layer, and place the conductive layer on top of the conductive layer. The visible light emitted by the light-emitting layer of the mesh-shaped metal conductive layer is dispersed throughout the light-emitting area to achieve the secondary purpose of the present invention. It is still not ideal due to the limitations of the light-emitting diode and its producer. A novel P-type metal problem with high rate and thermal stability of light-emitting diode devices based on gallium series is proposed, which can not only improve the traditional low-voltage operation but also high external quantum. I am looking forward to the idea of the inventor who is engaged in the test of light-emitting diode-related products. I am thinking about and improving. I have exhausted the design and thematic discussions. Finally, the light-emitting diode and its manufacturing method have been changed. A method of conducting metal with a mesh shape is disclosed by using a metal to conduct the mesh metal conductive layer and placing the metal and the P-type gallium nitride ohmic contact layer between ei0-4 ~ 1ε1〇- South reflectance with lack cm 'which can be made than by the total reflection, and effectively emit light laterally uniform current purposes. In order to provide a network metal conductive method, the light emitted from the light-emitting layer is directed toward 1228839. V. Description of the invention The p-type metal metal is conductively absorbed, and the light-emitting electrical layer of the quantum intrinsic layer of the conductive layer is very radiant, so The machine that can make the light emitting layer of the light emitting layer uniform is the D-shaped metal conductive P-type gold nitride to reduce the low contact current between the low conductive layer and the conductive layer. [Embodiment is more effective
電極日守’ 9 0 %以上的光由非網g 爲ω山 二仏人 F、、周狀之低接觸電阻之 電層之部份光線並不 而被多次反射再次由非網狀 ^ 出,由於減少被吸收之機合, ^ 效率。 θ 故能有效地提高外 ⑷ 明之又一目的,在於提 二極體及其製作方法, 薄,其幾乎對發光層所 有效地降低工作電壓並 明之再一目的,在於提 二極體及其製作方法, 體於高溫環境下操作並 制,故能維持元件之特 上述所稱之各目的與優 電層之發光二極體^其 鎵歐姆接觸層上形成一 與Ρ-型氮化鎵歐姆接觸 觸電阻之金屬導電層上 並經由南溫合金降低其 接觸電阻,最後再同時 阻及增加橫向電流分散 式】 使 進一 供一種具有網狀金屬導電 由於低接觸電阻之金屬導 射出之光不吸收亦不反 提高外部量子效率。 供一種具有網狀金屬導電 根據本發明所提出製作之 無造成Au層之橫向分佈不 性’亦即其熱穩定性佳。 點本發明係為一種具有網 製作方法,其係揭示先於 金屬導電層並經由高溫合 層之間之接觸電阻,接著 製作一高反射率之網狀金 與低接觸電阻之金屬導電 製作正負電極襯墊,以降 之目的。 ==委員對本發日月之結構特徵及所達成之 乂目’、解與認識,謹佐以較佳之實施例及配 1228839 五、發明說明(5) 合詳細之說明,說明如後: 本發明係為解決習知技術之光線取出之機制受限於透 光金屬導電層之吸收及内部蠢晶結構之重吸收,且Au極易 於N i 0層中擴散而造成Au層之橫向分佈極不均勻,造成電 流橫向分散之均勻性不佳’並且伴隨著與P -型氮化鎵歐姆 接觸層形成G a - N i - 〇相之進絕緣中間層而破壞發光二極體 之特性,所以其熱穩定性不佳之各缺點,本發明揭示利用 一低接觸阻抗金屬導電層與一網狀金屬導電層以降低接觸 電阻及增加橫向電流分散。 首先,請參閱第二圖,其係為本發明之一較佳實施例 之具有網狀金屬導電層之發光二極體之製造流程圖;如圖 所示,本發明係為一種具有網狀金屬導電層之發光二極體 之製作方法,其主要步驟係包括: 步驟S1 0,提供一基板; 步驟S12,形成一半導體層在該基板上而成一發光元件, 其中該半導體層至少包含一發光層、一 P型半導 體接觸層及一 N型半導體接觸層,該發光層介於 該N型半導體接觸層與該P型半導體接觸層之 間; 步驟S1 4,形成一低接觸阻抗金屬導電層於該P型半導體接 觸層之上; 步驟S 1 6,形成一網狀金屬導電層於該低接觸阻抗金屬導 電層之上;以及 步驟S 1 8,形成一正電極襯墊於該p型半導體接觸層及一負More than 90% of the light from the electrode is not reflected by the non-mesh g. The part of the light in the electric layer with a low contact resistance around the grid is ω. ^ Efficiency due to reduced absorption mechanism. θ Therefore, another purpose of effectively improving the external brightness is to raise the diode and its manufacturing method. Thin, it can effectively reduce the working voltage of the light-emitting layer and another purpose is to raise the diode and its manufacturing. Method, the body is operated and manufactured under high temperature environment, so it can maintain the special purpose of the device and the light-emitting diode of the superior electric layer ^ its gallium ohmic contact layer to form an ohmic contact with P-type gallium nitride On the metal conductive layer of the contact resistance and reduce its contact resistance through the Nanwen alloy, and finally increase the lateral current dispersion at the same time] so that the light emitted by a metal guide with a mesh metal conductivity due to low contact resistance is not absorbed. Does not increase external quantum efficiency. To provide a conductive metal having a mesh shape, which is produced according to the present invention without causing the lateral distribution of the Au layer, that is, its thermal stability is good. The invention is a method for making a net, which reveals the contact resistance between the metal conductive layer and the high temperature lamination layer, and then makes a high reflectivity mesh gold and a metal contact with low contact resistance to make positive and negative electrodes. Padded for drop purpose. == Committee members' understanding of the structural features of the sun and the moon, and the goals they have achieved, understanding and understanding, I would like to provide a better embodiment and configuration 1228839 V. Description of the invention (5) A detailed description, as follows: The present invention The mechanism of light extraction to solve the conventional technology is limited by the absorption of the light-transmitting metal conductive layer and the reabsorption of the internal stupid crystal structure, and Au is very easy to diffuse in the N i 0 layer, causing the horizontal distribution of the Au layer to be extremely poor Uniformity, resulting in poor uniformity of current lateral dispersion 'and accompanying the formation of G a-Ni-〇 phase with the P-type gallium nitride ohmic contact layer into the insulating intermediate layer to destroy the characteristics of the light emitting diode, so its Various shortcomings of poor thermal stability. The present invention discloses the use of a low contact resistance metal conductive layer and a mesh metal conductive layer to reduce contact resistance and increase lateral current dispersion. First, please refer to the second figure, which is a flowchart of manufacturing a light emitting diode with a mesh metal conductive layer according to a preferred embodiment of the present invention. As shown in the figure, the present invention is a mesh metal The method for manufacturing a light-emitting diode of a conductive layer includes the following steps: Step S10, providing a substrate; Step S12, forming a semiconductor layer on the substrate to form a light-emitting element, wherein the semiconductor layer includes at least a light-emitting layer A P-type semiconductor contact layer and an N-type semiconductor contact layer, the light-emitting layer is interposed between the N-type semiconductor contact layer and the P-type semiconductor contact layer; step S14, forming a low contact resistance metal conductive layer on the On the P-type semiconductor contact layer; step S 1 6, forming a mesh metal conductive layer on the low contact resistance metal conductive layer; and step S 1 8, forming a positive electrode pad on the p-type semiconductor contact layer. And a negative
第10頁 1228839 .--.—--. '^ " 一 ^ ~ ~ 五、發明說明(6) 電極襯墊於該N型半導體接觸層之上。 請參閱第三圖,其係為本發明之一較佳實施例之具有 網狀金属導電層之發光二極體之不意圖;如圖所不’本發 明係為一種具有網狀金屬導電層之發光二極體,其主要結 構係包括一基板1 〇,該基板位於該發光二極體元件的底 端;一半導體層2 0,該半導體層2 0係接於該基板1 0上部, 具有一賭半導體層22、一發光層24及一 P型半導體層26, 其中,該發光層2 4介於該N型半導體層2 2與該P型半導體層 2 6之間;以及一低接觸阻抗金屬導電層3 0,位於該P型半 導體層2 6上端;以及一網狀金屬導電層4 0,該網狀金屬導 電層4 0覆蓋於該低接觸阻抗金屬導電層3 0之上部,其係可 提高該發光二極體元件的發光均勻度;一正電極襯墊5 0於 該_半導體接觸層2 6及一負電極襯墊6 0於該N型半導體接 觸層2 2之上。 其中該N型半導體層20可為N-GaN層,該P型半導體層 可為P-GaN層,該發光層可為inGaN/GaN多重量子井結構; 且該低接觸阻抗金屬導電層3 0係選自於單一金屬之P t、Page 10 1228839 .--.----. '^ &Quot; A ^ ~ ~ V. Description of the invention (6) The electrode pad is on the N-type semiconductor contact layer. Please refer to the third figure, which is a schematic diagram of a light-emitting diode having a meshed metal conductive layer according to a preferred embodiment of the present invention; as shown in the figure, the present invention is a light-emitting diode having a meshed metal conductive layer. The main structure of the light-emitting diode includes a substrate 10, which is located at the bottom end of the light-emitting diode element; a semiconductor layer 20, which is connected to the upper part of the substrate 10 and has a Bet semiconductor layer 22, a light-emitting layer 24, and a P-type semiconductor layer 26, wherein the light-emitting layer 24 is interposed between the N-type semiconductor layer 22 and the P-type semiconductor layer 26; and a low contact resistance metal The conductive layer 30 is located at the upper end of the P-type semiconductor layer 26; and a mesh metal conductive layer 40 covers the upper portion of the low contact resistance metal conductive layer 30, which may be The uniformity of light emission of the light-emitting diode element is improved; a positive electrode pad 50 is on the semiconductor contact layer 26 and a negative electrode pad 60 is on the N-type semiconductor contact layer 22. The N-type semiconductor layer 20 may be an N-GaN layer, the P-type semiconductor layer may be a P-GaN layer, the light-emitting layer may be an inGaN / GaN multiple quantum well structure, and the low contact resistance metal conductive layer 30 is P t,
Ir、Ru、Rh、Os、Hf、Co或其合金所組成之群組或選自於 TaN、TiN、NbN、ZrN、WN其中之一者,而該網狀金屬導電 層4 0係選自於Rh、Pd、Ag、Cr、A卜Au、Ti其中之一或其 組合金屬之其中之一者,其網狀之形狀如第四圖所示。 又,該低接觸阻抗金屬導電層3 0之接觸電阻係數 < 1 0 -Ώ cm2,而該網狀金屬導電層40覆蓋於該低接觸阻抗 金屬導電層3 0之面積介於5 %至1 〇 %之間,其中該網狀金屬The group consisting of Ir, Ru, Rh, Os, Hf, Co, or an alloy thereof is selected from one of TaN, TiN, NbN, ZrN, and WN, and the mesh metal conductive layer 40 is selected from The mesh shape of one of Rh, Pd, Ag, Cr, Ab, Au, and Ti or one of their combinations is shown in the fourth figure. In addition, the contact resistance coefficient of the low contact resistance metal conductive layer 30 is <10-Ώ cm2, and the meshed metal conductive layer 40 covers the area of the low contact resistance metal conductive layer 30 between 5% and 1 〇%, where the mesh metal
1228839 五、發明說明(7) 導電層4 0形成於該低接觸阻抗金屬導電層3 0之上並與該P 型半導體接觸層2 6形成歐姆接觸,該低接觸阻抗金屬導電 層之厚度介於5A°至1〇〇A°之間,該網狀金屬導電層之厚 度介於200A。至2000A°之間。 再者,該低接觸阻抗金屬導電層3 0與該網狀金屬導電 層40,兩者可進一步包含一金屬氧化層32、42,請參閱第 五A圖,該金屬氧化層32、42係選自於ru〇x、ιΓ〇χ、、 ZnO、SrCu2〇2、(LaSrO)CuS之其中之一者,或選自於 I η、Ζ η之其中之一者,且可進一步包含一保護層4 4完全浐 蓋於該低接觸阻抗金屬導電層30及該網狀金屬導電層 上,請參閱第五Β圖,於Ρ-型金屬電極之上之製程/完成 此製程後再製作正負電極之襯墊,該保護層係選自於 S i 〇 2、S i XN y、T i 0 2、A 1 0之其中之一者。 、 底下以一實際實施例做一說明。 【貫施例一】 本貫施例k供一基板’在基板表面上於低溫下蠢 成長一低溫緩衝層,在低溫緩衝層上於高溫下形成_高严 緩衝層,上述低溫、高溫緩衝層之材料係由氮化 :: 物所組成,通常為AlxGai_xN(0$g 1)。 ^糸化合 在基板上形成厚度約2 0 0〜3 0 0 A。之低溫緩衝層及厚 度約〇 · 7// m之高溫緩衝層之後,接續在高溫緩衝層之上石 晶形成一載子摻雜濃度約3〜5e+18cm-之N型氮化鎵(N ^ 區人姆接觸層’其成長厚度約2〜5// m,接著,形成_不含 子摻雜之氮化銦鎵(InGaN)所組成之發光層,當完成發各光1228839 V. Description of the invention (7) A conductive layer 40 is formed on the low contact resistance metal conductive layer 30 and forms an ohmic contact with the P-type semiconductor contact layer 26. The thickness of the low contact resistance metal conductive layer is between Between 5A ° and 100A °, the thickness of the mesh metal conductive layer is between 200A. To 2000A °. Furthermore, the low contact resistance metal conductive layer 30 and the mesh metal conductive layer 40 may further include a metal oxide layer 32, 42. Please refer to FIG. 5A, the metal oxide layers 32 and 42 are selected. From one of ru〇x, ιΓ〇χ, ZnO, SrCu202, (LaSrO) CuS, or one selected from I η, Z η, and may further include a protective layer 4 4 Completely cover the low contact resistance metal conductive layer 30 and the mesh metal conductive layer, please refer to the fifth figure B. Process on the P-type metal electrode / make the positive and negative electrode lining after completing this process The protective layer is selected from the group consisting of Si02, SiXNy, Ti0, and A10. A description will be given below with an actual embodiment. [Example 1] This example k provides a substrate to grow a low-temperature buffer layer on the substrate surface at a low temperature and form a high-temperature buffer layer on the low-temperature buffer layer at a high temperature. The above-mentioned low-temperature and high-temperature buffer layer The material is composed of nitride :: AlxGai_xN (0 $ g 1). ^ A compound is formed on the substrate to a thickness of about 200 to 300 A. After the low-temperature buffer layer and the high-temperature buffer layer with a thickness of about 0.7 // m, a stone crystal is formed on the high-temperature buffer layer to form a carrier doped N-type gallium nitride with a concentration of about 3 ~ 5e + 18cm- (N ^ Area contact contact layer 'has a growth thickness of about 2 ~ 5 // m, and then forms a light-emitting layer composed of indium-doped gallium nitride (InGaN) without sub-doping.
1228839 五、發明說明(8) 層之磊晶成長後成長一載子摻雜濃度約3eH7〜5e+17cm_之p型 氮化銘蘇(P-AlGaN)所組成之披覆層及一載子摻雜濃度約 3e+1Me+18cm-之P型氮化鎵(p —GaN)歐姆接觸層。當完成整 個發光元件之磊晶成長,接著以乾蝕刻法(Dry Etching) 將部份N - G a N歐姆接觸層表面、部份發光層、及部份 P-AlGaN彼覆層及P-GaN歐姆接觸層移除,露出n —GaN歐姆 接觸層表面。接著製作正負電極,其步驟如下: (1 )分別使用Β Ο E及(N H J $请洗p 一 g a N歐姆接觸層及N - G a N 歐姆接觸層表面各約1 〇分鐘。 (2)以電子束蒸鐘法(E-beam evaporation)在p-GaN歐姆接 觸層上形成一厚度約5〜1〇〇 A。之鉑(Platinum)金屬薄 膜層並使用快速對火爐(RTA)在含氧或氮之環境下溫度 5 0 0°C,合金30秒以降低與p —GaN歐姆接觸層之接觸電 阻。 (3 )於鉑(Platinum )金屬薄膜層之上,利用習知之光罩蝕 刻法製作出光阻區及網狀曝露區,接著以電子束蒸鍍 法(E-beam evaporation)形成一厚度約 500〜1000 A。 之銀(Silver)金屬導電層於此光阻區及網狀曝露區之 上,接著使用剝離法(1 i f t〇ff )移除光阻區,即於鉑 (?1&1:丨1111111)金屬薄膜層上形成網狀之銀(以1^^1〇金屬 導電層,接著使用快速對火爐(RTA)在溫度53(rc,合 金3 0秒。 (4)接著於P-GaN歐姆接觸層及n-GaN歐姆接觸層表面上形 成Ti/Al/Ti/Au之正電極襯墊及負電極襯墊(B〇nding1228839 V. Description of the invention (8) After the epitaxial growth of the layer, a coating layer and a carrier composed of p-type nitride Ming Su (P-AlGaN) with a carrier doping concentration of about 3eH7 ~ 5e + 17cm_ are grown. A p-type gallium nitride (p-GaN) ohmic contact layer with a doping concentration of about 3e + 1Me + 18cm-. After the epitaxial growth of the entire light-emitting device is completed, a portion of the surface of the N-G a N ohmic contact layer, a portion of the light-emitting layer, and a portion of the P-AlGaN cladding layer and P-GaN are dried by dry etching (Dry Etching). The ohmic contact layer is removed, exposing the surface of the n-GaN ohmic contact layer. Next, the positive and negative electrodes are fabricated, the steps are as follows: (1) Use 〇 〇E and (NHJ $ Please wash p a ga N ohm contact layer and N-G a N ohm contact layer surface each about 10 minutes. (2) to The electron beam evaporation method (E-beam evaporation) is used to form a platinum metal thin film layer on the p-GaN ohmic contact layer with a thickness of about 5 to 100 A. Using a rapid-fire stove (RTA) in an oxygen-containing or The temperature is 500 ° C under nitrogen environment, and the alloy is used for 30 seconds to reduce the contact resistance with the p-GaN ohmic contact layer. (3) On the platinum metal thin film layer, light is produced by the conventional photomask etching method Resist area and mesh exposure area, and then an electron beam evaporation method (E-beam evaporation) is used to form a thickness of about 500 to 1000 A. A silver metal conductive layer is formed on the photoresist area and the mesh exposure area. Then, the photoresist region is removed using a lift-off method (1 ift〇ff), that is, a silver network (with a 1 ^^ 1〇 metal conductive layer) is formed on a platinum (? 1 & 1: 丨 1111111) metal thin film layer, then Use a rapid pair furnace (RTA) at a temperature of 53 (rc, alloy 30 seconds. (4) followed by a P-GaN ohmic contact layer and an n-GaN ohmic connection Positive electrode pads and negative electrode pads (Bonding) of Ti / Al / Ti / Au are formed on the surface of the contact layer.
第13頁 1228839 五、發明說明(9) pad ) 0 【實施例二】 本實施例只揭示製作正負電極之步驟如下: (1) 分別使用BOE及(NH4)2S清洗P-GaN歐姆接觸層及N-GaN 歐姆接觸層表面各約1 0分鐘。 (2) 以電子束蒸鍍法(E-beam evaporation)在ρ-GaN歐姆接 觸層上形成一厚度約5〜100 A°之鎳(Nickel)金屬薄膜 層並使用快速對火爐(R T A )在含氧之環境下以溫度5 〇 〇 °C,合金3 0秒,此含氧環境易將鎳(N i c k e 1 )金屬薄膜 層轉換成non-stoichiometri c之p型N i 0 x半導體氧化 物,如此可有效地降低與p-GaN歐姆接觸層之接觸電 阻。 (3 )於鎳(N i eke 1 )金屬薄膜層之上,利用習知之光罩钱刻 法製作出光阻區及網狀曝露區,接著以電子束蒸艘法 (E-beam evaporation)形成一厚度約 5 0 0 〜1〇〇〇 A。之 銀(Si lver)金屬導電層於此光阻區及網狀曝露區之 上’接著使用剝離法(1 i f t 〇 f f )移除光阻區,即於鎳 (N 1 c k e 1 )金屬薄膜層上形成網狀之銀(s丨丨v e r )金屬導 電層,接著使用快速對火爐(RT A )在5 3忙下,合金3 〇 秒。 (4)接著於P-GaN歐姆接觸層及N — GaN歐姆接觸層表面上形 成Ti/Al/Ti/Au之正電極襯墊及負電極襯墊(B〇nding pad) ° 【貫施例三】Page 13 1228839 V. Description of the invention (9) pad) 0 [Embodiment 2] This embodiment only discloses the steps for making positive and negative electrodes as follows: (1) Use BOE and (NH4) 2S to clean the P-GaN ohmic contact layer and The surface of the N-GaN ohmic contact layer is about 10 minutes each. (2) An electron beam evaporation (E-beam evaporation) method is used to form a nickel (Nickel) metal thin film layer with a thickness of about 5 to 100 A ° on the ρ-GaN ohmic contact layer. In an oxygen environment at a temperature of 500 ° C and an alloy for 30 seconds, this oxygen-containing environment can easily convert a nickel (Nicke 1) metal thin film layer into a non-stoichiometri c p-type Ni i 0 x semiconductor oxide, so Can effectively reduce the contact resistance with the p-GaN ohmic contact layer. (3) On the nickel (Nieke 1) metal thin film layer, a photoresist region and a net-shaped exposed region are fabricated by a conventional photomask engraving method, and then an electron beam evaporation method (E-beam evaporation) method is used to form a The thickness is about 50,000 to 10,000 A. A silver (Si lver) metal conductive layer on the photoresistive region and the mesh-shaped exposed region ', and then the stripping method (1 ift ff) is used to remove the photoresistive region, that is, the nickel (N 1 cke 1) metal thin film layer A mesh-like silver (s 丨 丨 ver) metal conductive layer was formed on the top, and then a rapid pair furnace (RT A) was used under 53 busy, and the alloy was 30 seconds. (4) Next, a positive electrode pad and a negative electrode pad (Bonding pad) of Ti / Al / Ti / Au are formed on the surface of the P-GaN ohmic contact layer and the N-GaN ohmic contact layer. 】
1228839 五、發明說明(10) 本實施例只揭示製作正負電極之步驟如下: (1) 分別使用BOE及(NH4)2S潰洗P-GaN歐姆接觸層及N-GaN 歐姆接觸層表面各約1 0分鐘。 (2) 以電子束蒸鑛法(E-beam evaporation)在p-GaN歐姆接 觸層上形成一厚度約5〜100 A。之Ru(或Ir)金屬薄膜層 並使用快速對火爐(RT A )在含氧之環境下以溫度 5 0 0°C,合金3 0秒,此含氧環境易將Ru (或I r )金屬薄 膜層轉換成p型Ru〇2(或Ir02)半導體之氧化物,如此可 有效地降低與p - G a N歐姆接觸層之接觸電阻。 (3 )於Ru (或I r )金屬薄膜層之上,利用習知之光罩蝕刻法 製作出光阻區及網狀曝露區,接著以電子束蒸鍍法 (E-beam evaporation)形成一厚度約 5 0 0 〜1 0 0 0 A。之 銀(S i 1 v e r )金屬導電層於此光阻區及網狀曝露區之 上’接著使用剝離法(1 i f t 〇 f f )移除光阻區,即於 Ru(或Ir)金屬薄膜層上形成網狀之銀(Si丨ver )金屬導 電層’接著使用快速對火爐(RTA)在53(TC下,合金30 秒。 (4)接著於p —GaN歐姆接觸層及N-GaN歐姆接觸層表面上形 成1^/八1/1^/八11之正電極襯墊及負電極襯墊(^〇11(^1^ pad) 〇 【實施例四】 本貫施例只揭示製作正負電極之步驟如下: (1)分別使用B0E及(NHJA猜洗p-GaN歐姆接觸層及N-GaN 歐姆接觸層表面各約1 〇分鐘。1228839 V. Description of the invention (10) This embodiment only discloses the steps for making positive and negative electrodes as follows: (1) Use BOE and (NH4) 2S to rinse the P-GaN ohmic contact layer and the surface of the N-GaN ohmic contact layer by about 1 each. 0 minutes. (2) An electron beam evaporation method (E-beam evaporation) is used to form a thickness of about 5 to 100 A on the p-GaN ohmic contact layer. Ru (or Ir) metal thin film layer and use a rapid pairing furnace (RT A) in an oxygen-containing environment at a temperature of 50 ° C and an alloy for 30 seconds. This oxygen-containing environment easily converts Ru (or Ir) metal The thin film layer is converted into an oxide of p-type RuO2 (or Ir02) semiconductor, which can effectively reduce the contact resistance with the p-G a N ohmic contact layer. (3) On the Ru (or Ir) metal thin film layer, a photoresist region and a net-shaped exposed region are prepared by a conventional photomask etching method, and then a thickness of about 500 Å is formed by an electron beam evaporation method (E-beam evaporation). 5 0 0 to 1 0 0 0 A. Silver (S i 1 ver) metal conductive layer on the photoresistive area and the mesh-shaped exposed area ', and then the stripping method (1 ift 〇ff) is used to remove the photoresistive area, that is, the Ru (or Ir) metal thin film layer A mesh-shaped silver (Si 丨 ver) metal conductive layer was formed on the top of the substrate, and then a rapid pair furnace (RTA) was used at 53 (TC, alloy for 30 seconds.) (4) Next, the p-GaN ohmic contact layer and N-GaN ohmic contact were used. On the surface of the layer, a positive electrode pad and a negative electrode pad (^ 〇11 (^ 1 ^ pad)) of 1 ^ / eight 1/1 ^ / eight 11 are formed on the surface of the layer. [Example 4] This example only discloses the fabrication of positive and negative electrodes. The steps are as follows: (1) The surface of the p-GaN ohmic contact layer and the N-GaN ohmic contact layer are each washed with BOE and NHJA for about 10 minutes.
第15頁 1228839 五、發明說明(11) (2)以射頻磁式丨賤鍍法(RF magnetron sputtering)在 P-GaN歐姆接觸層上形成一厚度約5〜1〇〇 A。之 non-stoichiometric之p型NiO#導體氧化物,如此可 有效地降低與p - G a N歐姆接觸層之接觸電阻。 (3 )於p型N i 0 X半導體氧化物之上,利用習知之光罩蝕刻法 製作出光阻區及網狀曝露區,接著以電子束蒸鍍法 (E-beam evaporation)形成一厚度約 5 0 0 〜1 0 0 0 A。之 銀(S i 1 v e r )金屬導電層於此光阻區及網狀曝露區之 上,接著使用剝離法(1 i f t 〇 f f )移除光阻區,即於p型 N i 〇 X半導體氧化物上形成網狀之銀(S i 1 v e r )金屬導電 層,接著使用快速對火爐(RTA)在5 3 0°C下,合金30 秒。 (4)接著於P-GaN歐姆接觸層及N-GaN歐姆接觸層表面上形 成Ti/Al/Ti/Au之正電極襯墊及負電極襯墊(Bonding pad) ° 【實施例五】 本實施例只揭示製作正負電極之步驟如下: (1) 分別使用B0E及(NH4) 2S清洗P-GaN歐姆接觸層及N-GaN 歐姆接觸層表面各約1 0分鐘。 (2) 以射頻磁式濺鍍法(rf magnetron sputtering)在 p-GaN歐姆接觸層上形成一厚度約5〜100 A。之TiN金屬 氮化物,接著使用快速對火爐(RTA)在73 0°C下,合金 3 0秒以有效地降低與p —GaN歐姆接觸層之接觸電阻。 (3 )於T i N金屬氮化物之上,利用習知之光罩蝕刻法製作出Page 15 1228839 V. Description of the invention (11) (2) A RF magnetron sputtering method is used to form a thickness of about 5 to 100 A on the P-GaN ohmic contact layer. The non-stoichiometric p-type NiO # conductor oxide can effectively reduce the contact resistance with the p-G a N ohm contact layer. (3) On the p-type N i 0 X semiconductor oxide, a photoresist region and a net-shaped exposed region are prepared by a conventional photomask etching method, and then a thickness of about 500 Å is formed by an electron beam evaporation method (E-beam evaporation). 5 0 0 to 1 0 0 0 A. A silver (S i 1 ver) metal conductive layer is formed on the photoresist region and the net-shaped exposed region, and then the photoresist region is removed by a stripping method (1 ift 〇ff), that is, the p-type Ni OX semiconductor is oxidized. A mesh-like silver (S i 1 ver) metal conductive layer was formed on the object, and then the alloy was used for 30 seconds at 530 ° C using a rapid-pair furnace (RTA). (4) Next, a Ti / Al / Ti / Au positive electrode pad and a negative electrode pad (Bonding pad) are formed on the surface of the P-GaN ohmic contact layer and the N-GaN ohmic contact layer. [Example 5] This implementation The example only discloses the steps for making positive and negative electrodes as follows: (1) Use B0E and (NH4) 2S to clean the surface of the P-GaN ohmic contact layer and the surface of the N-GaN ohmic contact layer for about 10 minutes each. (2) A RF magnetron sputtering method is used to form a thickness of about 5 to 100 A on the p-GaN ohmic contact layer. TiN metal nitride, and then use a rapid pair furnace (RTA) at 73 0 ° C for 30 seconds to effectively reduce the contact resistance with the p-GaN ohmic contact layer. (3) It is fabricated on the T i N metal nitride by the conventional mask etching method
第16頁 1228839 五、發明說明(12) 光阻區及網狀曝露區,接著以電子束蒸鍍法(E — beam evaporation)形成一厚度約5 0 0〜1 0 0 0 A°之銀 (Silver)金屬導電層於此光阻區及網狀曝露區之上, 接著使用剝離法(1 i f t 〇 f f )移除光阻區,即於τ i N金屬 氮化物上形成網狀之銀(Si lver)金屬導電層,接著使 用快速對火爐(RTA)在5 3 0°C下,合金30秒。 (4)接著於P-GaN歐姆接觸層及N-GaN歐姆接觸層表面上形 成1^/八1/1^/八11之正電極襯墊及負電極襯墊“〇11心11§ pad) ° 本發明係揭示一種兼顧氮化鎵系列之發光二極體裝置 之低工作電壓、高外部量子效率及熱穩定性佳之p —型金屬 電極之製作方法’其中包含一金屬導電層, 屬導層 與P-型氮化鎵歐姆接觸層之接觸電阻(contact resistivity)介於 lel〇-Mel〇% cm 乏間,再者,包含一 網狀金屬導電^ ’此網狀金屬導電層具高反射率,其能全 發t層所射出之可見光,“有效地將電流橫向地分 散於整個發光區域。 、”不上所述,本發明係實為一具有新穎性、進步性及可 ϊ Π】ΐ接應符合我國專利法所規定之專利申請要件 錢出發明專利申請, 專 利,至感為禱。 J用丁 惟以上所述者, 非用來限定本發明實 圍所述之形狀、構造Page 16 1228839 V. Description of the invention (12) Photoresist area and net-shaped exposed area, and then electron beam evaporation (E-beam evaporation) is used to form a silver with a thickness of about 50 0 ~ 1 0 0 0 A ° ( Silver) metal conductive layer is on the photoresist region and the mesh-shaped exposed region, and then the stripped method (1 ift ffff) is used to remove the photoresist region, that is, a network-shaped silver (Si) is formed on the τ i N metal nitride. lver) metal conductive layer, and then use a rapid-pair furnace (RTA) at 530 ° C for 30 seconds. (4) Next, a positive electrode pad and a negative electrode pad of "11/11/8/1/1/1/8" are formed on the surface of the P-GaN ohmic contact layer and the N-GaN ohmic contact layer. "〇11 心 11§ pad) ° The invention discloses a method for manufacturing a p-type metal electrode that combines the low operating voltage, high external quantum efficiency, and good thermal stability of a gallium nitride series light-emitting diode device, which includes a metal conductive layer, which is a conductive layer The contact resistance with the P-type gallium nitride ohmic contact layer is between l10-Mel0% cm, and furthermore, it includes a mesh metal conductive ^ 'This mesh metal conductive layer has high reflectivity , Which can emit the visible light emitted by the t-layer, "effectively distribute the current laterally across the entire light-emitting area. "," As mentioned above, the present invention is truly novel, progressive, and acceptable. Ϊ́] The invention patent application, patent, which is in accordance with the patent application requirements stipulated by the Chinese Patent Law, is a prayer. J The above description by Ding Wei is not intended to limit the shapes and structures described in the present invention.
僅為本發明之一較佳實施例而已,並 施之範圍,舉凡依本發明申請專利範 、特徵及精神所為之均等變化與修It is only one of the preferred embodiments of the present invention, and the scope of implementation is equal to the changes and modifications of the patent application, features, and spirit of the present invention.
第17頁 1228839 五、發明說明(13) 飾,均應包括於本發明之申請專利範圍内。Page 17 1228839 V. Description of the invention (13) Decorations shall be included in the scope of patent application of the present invention.
第18頁 1228839 圖式簡單說明 第一圖:其係為習知技術之發光二極體之結構示意圖; 第二圖:其係為本發明之一較佳實施例之具有網狀金屬導 電層之發光二極體之製造流程圖; 第三圖:其係為本發明之一較佳實施例之網狀金屬導電層 之發光二極體之結構示意圖; 第四圖:其係為本發明之一較佳實施例之網狀金屬層之結 構不意圖, 第五A圖··其係為本發明之一較佳實施例之網狀金屬導電 層之發光二極體具有氧化層之結構示意圖;以 及 第五B圖:其係為本發明之一較佳實施例之網狀金屬導電 層之發光二極體具有保護層之結構示意圖。 【圖號簡單說明】 1 藍寶石基板 2 氮化鎵緩衝層 3 N -型氮化鎵歐姆緩衝層 4 氮化銦鎵之發光層 5 P -型氮化鋁鎵彼覆層 6 P -型氮化鎵歐姆接觸層 7 P-型透光金屬導電層 8 正電極襯墊 9 負電極襯墊 10基板 20半導體層Page 18 1228839 Brief description of the diagram The first diagram: it is a schematic diagram of the structure of a light-emitting diode of conventional technology; the second diagram: it is a preferred embodiment of the present invention with a mesh metal conductive layer The manufacturing flow chart of the light emitting diode; the third figure: it is a schematic diagram of the structure of the light emitting diode of the mesh metal conductive layer according to a preferred embodiment of the present invention; the fourth figure: it is one of the present invention The structure of the mesh metal layer of the preferred embodiment is not intended, and FIG. 5A is a schematic diagram of a structure in which the light emitting diode of the mesh metal conductive layer of one preferred embodiment of the present invention has an oxide layer; and FIG. 5B is a schematic structural diagram of a light-emitting diode with a protective layer of a mesh metal conductive layer according to a preferred embodiment of the present invention. [Simplified description of drawing number] 1 Sapphire substrate 2 GaN buffer layer 3 N-type gallium nitride ohmic buffer layer 4 Indium gallium nitride light emitting layer 5 P-type aluminum gallium nitride layer 6 P-type nitride Gallium ohmic contact layer 7 P-type transparent metal conductive layer 8 Positive electrode pad 9 Negative electrode pad 10 Substrate 20 Semiconductor layer
第19頁 1228839 圖式簡單說明 2 2 N型半導體層 2 4發光層 2 6 P型半導體層 3 0低接觸阻抗金屬導電層 3 2金屬氧化層 4 0網狀金屬導電層 4 2金屬氧化層 44保護層 5 0正電極襯塾Page 19 1228839 Schematic illustration 2 2 N-type semiconductor layer 2 4 Light-emitting layer 2 6 P-type semiconductor layer 3 0 Low contact resistance metal conductive layer 3 2 Metal oxide layer 4 0 Mesh metal conductive layer 4 2 Metal oxide layer 44 Protective layer 50 0 positive electrode liner
6 0負電極襯墊6 0 negative electrode pad
第20頁Page 20
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW092132077A TWI228839B (en) | 2003-11-14 | 2003-11-14 | LED with screen metal conductive layer and method for producing the same |
KR1020040021584A KR20050046517A (en) | 2003-11-14 | 2004-03-30 | Light emitting diode with mesh metal conductive layer and producing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW092132077A TWI228839B (en) | 2003-11-14 | 2003-11-14 | LED with screen metal conductive layer and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI228839B true TWI228839B (en) | 2005-03-01 |
TW200516787A TW200516787A (en) | 2005-05-16 |
Family
ID=36013553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092132077A TWI228839B (en) | 2003-11-14 | 2003-11-14 | LED with screen metal conductive layer and method for producing the same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20050046517A (en) |
TW (1) | TWI228839B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100878433B1 (en) * | 2005-05-18 | 2009-01-13 | 삼성전기주식회사 | Fablication methodes of ohmic contact layer and light emitting device adopting the layer |
-
2003
- 2003-11-14 TW TW092132077A patent/TWI228839B/en not_active IP Right Cessation
-
2004
- 2004-03-30 KR KR1020040021584A patent/KR20050046517A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
TW200516787A (en) | 2005-05-16 |
KR20050046517A (en) | 2005-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5128755B2 (en) | III-V group GaN compound semiconductor and p-type electrode applied thereto | |
TWI282635B (en) | GaN-based light-emitting diode and luminous device | |
US7319045B2 (en) | Gallium-nitride based light emitting diode structure and fabrication thereof | |
CN103560193B (en) | Light emitting diode chip with vertical of low cost and preparation method thereof | |
CN102047454A (en) | Light-emitting device and fabricating method thereof | |
TW200908369A (en) | Light-emitting diode and manufacturing method thereof | |
TW480753B (en) | Nitride based semiconductor light emitting element | |
TW201104913A (en) | Vertical light-emitting diode and manufacture method thereof | |
US20050142820A1 (en) | Method of manufacturing gallium nitride based semiconductor light emitting device | |
US7687908B2 (en) | Thin film electrode for high-quality GaN optical devices | |
KR20050123028A (en) | Light emitting diode with vertical structure and method manufacturing for the same | |
US7208752B2 (en) | Structure and manufacturing of gallium nitride light emitting diode | |
CN101859828A (en) | Manufacturing method of light-emitting diode (LED) | |
KR20120030430A (en) | Light emitting semiconductor device and method for manufacturing | |
KR101239852B1 (en) | GaN compound semiconductor light emitting element | |
TWI228839B (en) | LED with screen metal conductive layer and method for producing the same | |
TW200947746A (en) | Radiation emitting semiconductor device | |
KR101510382B1 (en) | fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods | |
KR101132885B1 (en) | Nitride light emitting diode and fabricating method thereof | |
TWI249255B (en) | Nitride light-emitting diode and mthod for manufacturing the same | |
CN212342653U (en) | Ultraviolet LED chip epitaxial structure and chip | |
WO2010087312A1 (en) | Thin film photoelectric conversion device and method for manufacturing same | |
KR100717258B1 (en) | Luminous element with high efficiency and method for manufacturing the same | |
TW200849652A (en) | Light-emitting device with improved electrode structures | |
CN111564544B (en) | Ultraviolet LED chip epitaxial structure, preparation method thereof and chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |