TW200849652A - Light-emitting device with improved electrode structures - Google Patents

Light-emitting device with improved electrode structures Download PDF

Info

Publication number
TW200849652A
TW200849652A TW96120951A TW96120951A TW200849652A TW 200849652 A TW200849652 A TW 200849652A TW 96120951 A TW96120951 A TW 96120951A TW 96120951 A TW96120951 A TW 96120951A TW 200849652 A TW200849652 A TW 200849652A
Authority
TW
Taiwan
Prior art keywords
electrode pattern
light
conductive
electrode
layer
Prior art date
Application number
TW96120951A
Other languages
Chinese (zh)
Other versions
TWI375334B (en
Inventor
William Wilson So
Frank Shum
Siu Huen Leung
Heng Liu
Original Assignee
Bridgelux Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgelux Inc filed Critical Bridgelux Inc
Priority to TW96120951A priority Critical patent/TWI375334B/en
Publication of TW200849652A publication Critical patent/TW200849652A/en
Application granted granted Critical
Publication of TWI375334B publication Critical patent/TWI375334B/en

Links

Abstract

This invention provides a light-emitting device with improved electrode structures, including an electrode pattern of first conductivity type and an electrode pattern of second conductivity type. The electrode pattern of first conductivity type includes at least one first sub-electrode pattern. The at least one first sub-electrode pattern extends from an enclosing portion relative to a portion of the electrode pattern of second conductivity type toward an enclosed position relative to another portion of the electrode pattern of second conductivity type. The distance between the electrode pattern of first conductivity type and the electrode pattern of second conductivity type is kept substantially uniform.

Description

200849652 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種發光元件;特別是有關於一種具改 良式電極結構之發光元件’藉其改良式電極結構可提升電 流分佈(current spreading)特性,以增加該發光元件之發光 效率及發光亮度。 【先前技術】 發光二極體係現今重要的固態發光元件之一,其係將 電流轉換為光。發光二極體主要包含一發光層介於一 P型 半導體層與一 N型半導體層之間。驅動電流係施予在分別 電氣連接於該P型半導體層與該N型半導體層的一 P型電 氣接觸與一 N型電氣接觸,藉以使得該p型半導體層與該 N型半導體層分別射出電洞及電子至該發光層,而電洞與電 子在該發光層結合後放光從該發光層四面八方發出,並經 該發光二極體表面離開。增加發光二極體尺寸大小及其發 光面積係提南該發光二極體發光效率及發光亮度的作法。 但疋以傳統氮化物發光二極體而言,由於考慮電流無法從 電氣接觸有效地勻均分佈至該發光層,使得該&化物發光 二極體大小的製作受到限制。例如,P型氣 低的導:性’,使得施予在p型將 僅θ刀佈至位於該Ρ型電氣接觸下方該 層的有限面積内,而電流不合側6八φ,虱化物牛 半導體層,並且該發UT二1向门分佈至整個ρ型氮化物 電氣接觸周圍元件材質提早劣二*:匕^5局!發熱’ 層雖然具有較佳的導電性,但A對於二,氮化物半 型電氣接觸均勻分佈電流至該的增加,從 會逐漸降低。因此,傳統氣化物發 5 200849652200849652 IX. Description of the Invention: Technical Field The present invention relates to a light-emitting element; in particular, to a light-emitting element having an improved electrode structure, which can improve current spreading characteristics by using the improved electrode structure In order to increase the luminous efficiency and the luminance of the light-emitting element. [Prior Art] One of the important solid-state light-emitting elements of the light-emitting diode system, which converts current into light. The light emitting diode mainly comprises a light emitting layer between a P-type semiconductor layer and an N-type semiconductor layer. Driving current is applied to a P-type electrical contact electrically connected to the P-type semiconductor layer and the N-type semiconductor layer, respectively, and an N-type electrical contact, whereby the p-type semiconductor layer and the N-type semiconductor layer respectively emit electricity The holes and electrons are emitted to the light-emitting layer, and the holes and electrons are combined in the light-emitting layer, and light is emitted from the light-emitting layer in all directions and exits through the surface of the light-emitting diode. Increasing the size of the light-emitting diode and the light-emitting area thereof are the methods for improving the luminous efficiency and the light-emitting brightness of the light-emitting diode. However, in the case of a conventional nitride light-emitting diode, the production of the size of the & light-emitting diode is limited since it is considered that the current cannot be uniformly and evenly distributed from the electrical contact to the light-emitting layer. For example, the low conductivity of the P-type gas is such that the p-type will only have a θ knife cloth to a limited area of the layer below the Ρ-type electrical contact, while the current does not meet the side of the VIII φ, 虱 牛 牛 semiconductor Layer, and the hair UT two 1-way door distribution to the entire p-type nitride electrical contact around the material material prematurely inferior *: 匕 ^ 5 inning! Although the heat-generating layer has a better conductivity, the A, the nitride-type half-type electrical contact uniformly distributes the current to this increase, and gradually decreases. Therefore, the traditional gasification 5 200849652

受限於該p型氮化物半導體層與該N 電流侧向分佈特性的影響。 ; ‘體層的 據此,如何改善傳統發光二極體元 泣 能力:以提高傳統發光二極體元件的' 度,係為現今發光二極體產業的一重要^題=…X光亮 【發明内容】 本發明之目的係提供一種具改良式 件’藉該改良式電極結構之設計可提高該發; 半型半導體層之電流分佈特性:以增加該4 疋件的輸出功率及光通量,進而提高其發光強度。X先 具改良式電極結構之發光元件,係包括 一具弟一導電性電極圖案於一具第_導電性 = 一具第二導電性電極圖案於一具第二導電性半導體^及 曝露面積上。該具第一導電性電極圖案包含至二一=: 次電極圖案,該具第二導電性電極圖案包含至少一個 ^電極圖案。該至少-第—次電極圖案係為從相對於 第二次電極圖案之一部份呈封閉形狀部份延二 次,極圖案之另-部份包圍而呈被封閉形狀部份, 具第一導電性電極圖案每一部份與該具第二導電性電極^ 案對應部份之間的距離大致上相同,進而促淮哕 _ 電性半導趙層與該具第二導電性半導趙層^ 口 性。再者,本發明該具第一導電性電極圖案及該具第二導 電性電極圖案之次電極圖案設計可在幾何形狀上不具有^ 何尖銳曲度(sharp curvature),因此可避免發光元件在電極 的尖銳曲度部份附近產生高電場點(high field point),進一 步可提高本發明發光元件的發光均勻度。 6 200849652 本發明改良式電極結構的設計係適合於一般 的發光元件製作或較大發光元件的製作。 、'、 在本發明-具體實施射,該發光元件係包括一 =電性半導體層、—具第二導電性半導體層、—發光層 係於該具第-導電性半導體層及·第二導電性 ^ 層之間、一基底係位於該具第二導電性 -具第-導電性電極圖案係形成於該半 f ㈡二具第二導電性電極圖案係形成於該具第二 部份曝露面積上。該具第-導電性電極 圖案包含至少一個第一次電極圖案’ 2包含至少一個第二次電極圖案。該具第4以 a:案之至該第-次電極圖案係為從相對於—該第二 圖案之—部份呈封閉形狀部份延伸至被該第二次ΐ 極圖案之另—部份包圍而呈被封閉形狀部份,並且該^ :導電性電_縣—雜與該具第二導雜電極圖案^ 應部份之間的距離大致上相同。 〃子 除了提升發光件電流分佈特性外,本發明為增加發 雷二進—步在另—具體實施例中提供—種具改良式 ΐίΐ構之發光7^件’其包括:―具第—導電性半導體層; 、發光層形成於該具第一導電性半導體層下方;一且 性:導體層形成於該發光層下方;-基底,係;立於: ::導電性半導體層下方;一具第一導電性電極圖案, 胃具第―導電性半導體層上方並與其電性接觸, =具導電性電極圖案包含至少—個第—次電極圖案; 二具第二導電性電極圖案,係形成於該具第—導電性半導 :層上方,該具第二導電性電極圖案包含至少一個第二次 電極圖案’該具第二導電性電極圖案具有複數個通孔分佈 7 200849652 於其下方朝下延伸至該具第二導電性 第-導電性電極圖案之至少—該第―欠二安^、中該具 對於-該第二次電極圖案之一部份二係為從相 被該第二次電極圖案之另—部份包 f精延伸至 份;及複數個具第二導電性接觸形成於該等 -該具第二導電性接觸僅電性連接該 案與該具第二導電性半導體層。 極圖 f ^此-具體實施财,該發光元件财對應該等通孔 的部伤該具第-導電性半導體層與部份該發光層被钱刻至 該具第二導電性半導體層,故可使該發光元件的發光面積 進一步增加,而進一步提高發光強度。 、 【實施方式】 本發明具改良式電極結構之發光元件藉由以下具體 實施例配合所附圖式將予以詳細說明如下。 第一圖及第二圖係本發明具改良式電極結構之發光 元件之一第一具體實施例的立體示意圖及平視示意圖。在 【 第一具體實施例中,本發明具改良式電極結構之發光元件 10係包括一 P型半導體層101、一 N型半導體層102、一 發光層103、一基底104、一 P型電極圖案105及一 N型 電極圖案106。該發光層103係介於該P型半導體層1〇1 及該N型半導體層102之間,而該基底104係位於該N型 半導體層102下方。該P型電極圖案105係形成於該P型 半導體層101上方,該P型電極圖案105包含一扭曲S型 電極圖案105a與一扭曲倒置S型電極圖案105b,而一對 指狀電極1050、1052係分別從該S型電極圖案l〇5a與該 倒置S型電極圖案l〇5b的一端沿著該P型半導體層101 200849652 周緣朝向該N型電極圖案106延伸。該S型電極圖案1〇5a 與該倒置S型電極圖案105b呈對映關係且彼此電性連 接。該N型電極圖案1〇6係形成於該N型半導體層1〇2 之部份曝露面積上,而該N型電極圖案106係與該p型電 極圖案105呈匹配關係,以使該p型電極圖案105每一部 份與該N型電極圖案106對應部份之間的距離大致上相 同。一對第一接觸墊107係分別形成於該S型電極圖案 105a與該倒置S型電極圖案l〇5b靠近該發光元件1〇周緣 的一部份,該對第一接觸墊107係用以使該P型電極圖案 105與外界產生電氣接觸。一對第二接觸墊108係分別形 成於該N型電極圖案106靠近該發光元件1〇周緣的一部 份,該對第二接觸墊108係用以使該N型電極圖案1〇6與 外界產生電氣接觸。該對第一接觸墊107及該對第二接觸 塾108的位置以離發光區域愈遠為佳。換言之,該對第一 接觸墊107及第二接觸墊108較佳形成於靠近該發光元件 晶粒邊緣的對應電極外緣部份,以利於後續的打線製程 (wire bonding process),進而防止銲接至前述第一接觸塾 107及第二接觸墊108的銲線阻擋到該發光元件晶粒頂面 的出射光。在考慮該P型半導體層101 —般具有較高電阻 率的情況下,本發明可在該P型半導體層101上方先形成 一透光的電流分佈層(current spreading layer)(未示出),而 藉該電流分佈層使該P型電極圖案105的電流能更均勻地 分佈於該P型半導體層101。該電流分佈層可是一氮化鈦 (TiN)層或一透光的金屬氧化物層,例如氧化錮錫(IndiumIt is limited by the influence of the p-type nitride semiconductor layer and the lateral distribution characteristics of the N current. According to this, how to improve the traditional light-emitting diode element crying ability: to improve the 'degree of traditional light-emitting diode components', is an important issue in the current light-emitting diode industry ^...X Guangliang [Invention content The object of the present invention is to provide an improved device which can improve the hair by the design of the improved electrode structure; the current distribution characteristic of the semiconductor layer: to increase the output power and luminous flux of the 4 element, thereby improving light intensity. X. A light-emitting element having an improved electrode structure, comprising a dipole-conductive electrode pattern on a first conductivity = a second conductivity electrode pattern on a second conductivity semiconductor and an exposed area . The first conductive electrode pattern includes a second electrode pattern, and the second conductive electrode pattern includes at least one ^ electrode pattern. The at least-first-order electrode pattern is partially extended from a portion of the second electrode pattern in a closed shape, and the other portion of the pole pattern is surrounded by the closed shape portion. The distance between each portion of the conductive electrode pattern and the corresponding portion of the second conductive electrode is substantially the same, thereby promoting the Huai 哕 _ electrically semi-conductive layer and the second conductive semi-conductive Layer ^ mouth. Furthermore, the second conductive electrode pattern of the present invention and the secondary electrode pattern design having the second conductive electrode pattern can have no sharp curvature in geometric shape, thereby preventing the light-emitting element from being A high field point is generated in the vicinity of the sharp curvature portion of the electrode, which further improves the uniformity of light emission of the light-emitting element of the present invention. 6 200849652 The design of the improved electrode structure of the present invention is suitable for the fabrication of general light-emitting elements or the fabrication of larger light-emitting elements. In the present invention, the light-emitting element includes an electrical semiconductor layer, a second conductive semiconductor layer, a light-emitting layer, and a second conductive layer. Between the layers, a substrate is located in the second conductive-first conductive substrate pattern formed on the half f (two) two second conductive electrode patterns are formed in the second portion of the exposed area on. The first conductive electrode pattern comprising at least one first secondary electrode pattern '2 comprises at least one second secondary electrode pattern. The fourth to a: the first-order electrode pattern extends from a portion having a closed shape with respect to the portion of the second pattern to a portion of the second-stage dipole pattern Surrounded to be a closed shape portion, and the distance between the conductive electric and the second conductive electrode pattern portion is substantially the same. In addition to improving the current distribution characteristics of the illuminating device, the present invention provides an improved illuminating device for increasing the number of lightning strikes in another embodiment. a semiconductor layer; the light-emitting layer is formed under the first conductive semiconductor layer; a property: a conductor layer is formed under the light-emitting layer; - a substrate, a system; standing under: :: under the conductive semiconductor layer; a first conductive electrode pattern, above and electrically contacting the first conductive semiconductor layer, wherein the conductive electrode pattern includes at least one first-order electrode pattern; and two second conductive electrode patterns are formed on The first conductive electrode pattern includes at least one second secondary electrode pattern, and the second conductive electrode pattern has a plurality of via distributions 7 200849652 Extending to at least the second conductive first-conducting electrode pattern--the first-----the second pair of the second-order electrode pattern is the second phase of the second-order electrode pattern Electrode pattern Another - Part package f extends to fine parts; and having a plurality of second conductive contacts are formed such - with the second conductive contact electrically connected to only the case with the second conductive semiconductor layer. The pole figure f ^ this - specific implementation, the light-emitting element is equal to the portion of the through hole, the first conductive semiconductor layer and a portion of the light-emitting layer are engraved to the second conductive semiconductor layer, The light-emitting area of the light-emitting element can be further increased to further increase the light-emitting intensity. [Embodiment] The light-emitting element of the present invention having an improved electrode structure will be described in detail below by way of the following specific embodiments in conjunction with the drawings. The first and second figures are schematic perspective and plan views of a first embodiment of a light-emitting element having an improved electrode structure of the present invention. In the first embodiment, the light-emitting element 10 having the improved electrode structure of the present invention comprises a P-type semiconductor layer 101, an N-type semiconductor layer 102, a light-emitting layer 103, a substrate 104, and a P-type electrode pattern. 105 and an N-type electrode pattern 106. The light-emitting layer 103 is interposed between the P-type semiconductor layer 1〇1 and the N-type semiconductor layer 102, and the substrate 104 is located under the N-type semiconductor layer 102. The P-type electrode pattern 105 is formed over the P-type semiconductor layer 101. The P-type electrode pattern 105 includes a twisted S-type electrode pattern 105a and a twisted inverted S-type electrode pattern 105b, and a pair of finger electrodes 1050 and 1052. The N-type electrode pattern 106 extends from one end of the S-type electrode pattern 100a and the inverted S-type electrode pattern 100b along the periphery of the P-type semiconductor layer 101200849652. The S-type electrode patterns 1〇5a are in an opposite relationship with the inverted S-type electrode patterns 105b and are electrically connected to each other. The N-type electrode pattern 1〇6 is formed on a portion of the exposed area of the N-type semiconductor layer 1〇2, and the N-type electrode pattern 106 is matched with the p-type electrode pattern 105 so that the p-type The distance between each portion of the electrode pattern 105 and the corresponding portion of the N-type electrode pattern 106 is substantially the same. A pair of first contact pads 107 are respectively formed on the S-type electrode pattern 105a and the inverted S-type electrode pattern 105b close to a portion of the periphery of the light-emitting element 1 , and the pair of first contact pads 107 are used to make The P-type electrode pattern 105 is in electrical contact with the outside. A pair of second contact pads 108 are respectively formed on a portion of the N-type electrode pattern 106 near the periphery of the light-emitting element 1 , and the pair of second contact pads 108 are used to make the N-type electrode pattern 1〇6 and the outside Produce electrical contact. Preferably, the position of the pair of first contact pads 107 and the pair of second contact pads 108 is further from the light emitting region. In other words, the pair of first contact pads 107 and the second contact pads 108 are preferably formed on the outer edge portion of the corresponding electrode near the edge of the light-emitting element die to facilitate the subsequent wire bonding process, thereby preventing soldering to The bonding wires of the first contact pads 107 and the second contact pads 108 block the outgoing light of the top surface of the light-emitting element die. In consideration of the fact that the P-type semiconductor layer 101 generally has a relatively high resistivity, the present invention may first form a light-transmitting current spreading layer (not shown) over the P-type semiconductor layer 101. The current distribution layer causes the current of the P-type electrode pattern 105 to be more uniformly distributed to the P-type semiconductor layer 101. The current distribution layer can be a titanium nitride (TiN) layer or a light transmissive metal oxide layer, such as yttrium tin oxide (Indium).

Tin Oxides (IT0))層、鉻鈦氧化物(Chromiuln Titanium Oxide,CTO)、二氧化錫:銻(Sn02:Sb)、三氧化二鎵:錫 (Ga2〇3:Sn)、氧化鎳(NiO)、氧化銦:鋅(in2〇3:zn)、氧化銀 9 200849652 銦··鍚(AgIn02:Sn)、氧化銅銘(CuA102)、鑭銅氧硫 (LaCuOS)、氧化銅鎵(CuGa02)、氧化锶銅(SrCu202)、氧化 锰(MnO)、氧化銅(CuO)、氧化錫(SnO)或氮化鎵(GaN)。 本發明發光元件可選自下列任一者:發光二極體、發 光異質接面(light emitting heterojunctions)、發光量子井結構 及其它發光固態元件。本發明發光元件係可採用任何適當 的材料系統,包括例如II-VI材料系統及III-V材料系統, 如第III族氮化物(Ill-nitride)系統、第III族磷化物 ( (III_phosphide)系統及第III族砷化物(in-arsenide)系統。該 P型電極圖案105及該N型電極圖案1〇6以具有低電阻率 及低光吸收度的材質為佳。例如就第III族氮化物系統的發 光元件而言,該P型電極圖案105的材質可以是銀、銘: 金、铑或鉑,而該N型電極圖案1〇6的材質可以是鋁或銀。 就弟III族填化物糸統的發光元件而言,該p型電極圖案1 的材質可以是金/辞合金、金/鈹合金、銘、翻、把、錢或銀, 而該N型電極圖案106的材質可以是金/鎊合金、金/錫合 金、金/鍺合金、銀、銘、麵、姥或把。 ( 再者,本發明中可以蝕刻方式在該基底104周緣適當 位置形成複數個位置對齊標記(alignment key) 1 〇9,係做為 該發光元件10進行圖案辨識(pattern recognition)的參考二 置。例如,在該發光元件10後段封裝製程中前述位置對赢 標§己109較佳形成於該發光元件1〇的高光反射區域,以 對第一接觸墊107及第二接觸墊108建立一參考位置,以 利於該發光元件晶粒焊接及打線製程的進行。換句話 本發明利用前述位置對齊標記109做為參考位置,可在兮 發光70件10上進行快速且精準的圖案辦識,以加速後^ 及晶粒焊接及打線的封裝製程,進而提高該發光元件10 = 200849652Tin Oxides (IT0) layer, Chromiuln Titanium Oxide (CTO), tin dioxide: antimony (Sn02:Sb), gallium trioxide: tin (Ga2〇3:Sn), nickel oxide (NiO) Indium oxide: zinc (in2〇3:zn), silver oxide 9 200849652 Indium··(AgIn02:Sn), copper oxide (CuA102), beryllium oxysulfide (LaCuOS), copper gallium oxide (CuGa02), oxidation Beryllium copper (SrCu202), manganese oxide (MnO), copper oxide (CuO), tin oxide (SnO) or gallium nitride (GaN). The illuminating elements of the present invention can be selected from any of the following: light emitting diodes, light emitting heterojunctions, luminescent quantum well structures, and other luminescent solid state components. The light-emitting elements of the present invention may be any suitable material system including, for example, II-VI material systems and III-V material systems, such as Group I nitride systems, Group III phosphide systems. And a Group III in-arsenide system. The P-type electrode pattern 105 and the N-type electrode pattern 1〇6 are preferably made of a material having low electrical resistivity and low light absorption. For example, a Group III nitride For the light-emitting element of the system, the material of the P-type electrode pattern 105 may be silver, gold, germanium or platinum, and the material of the N-type electrode pattern 1〇6 may be aluminum or silver. For the light-emitting element of the Si system, the material of the p-type electrode pattern 1 may be gold/art alloy, gold/antimony alloy, inscription, flip, handle, money or silver, and the material of the N-type electrode pattern 106 may be gold. / pound alloy, gold / tin alloy, gold / tantalum alloy, silver, inscription, face, tantalum or handle. (In addition, in the present invention, a plurality of position alignment marks can be formed at appropriate positions on the periphery of the substrate 104 by etching. 1 〇9, for pattern recognition of the light-emitting element 10 (patte For example, in the post-packaging process of the light-emitting element 10, the aforementioned position-to-winning mark 109 is preferably formed in the high-light reflection area of the light-emitting element 1〇 to the first contact pad 107 and the The two contact pads 108 establish a reference position to facilitate the soldering and die-bonding process of the light-emitting element. In other words, the present invention utilizes the aforementioned position alignment mark 109 as a reference position, which can be performed quickly on the x-ray 70 Accurate patterning to accelerate the soldering and wire bonding process, and then improve the light-emitting component 10 = 200849652

產率。就該發光元件l〇而言,該p型半導體層101及該N 型半導體層102的相對位置可以互換,而該p型電極圖案 105及該N型電極圖案106之導電性亦隨之互換。另一方 面,該P型電極圖案105及該N型電極圖案1〇6的形狀亦 可互換。 第三圖及第四圖係本發明具改良式電極結構之發光 元件之一第一具體實施例的立體示意圖及平視示意圖。在 第二具體實施例中,本發明具改良式電極結構之發光元件 (' 30係包括一 P型半導體層301、一發光層302、一 N型半 導體層303、一基底3〇4、一 P型電極圖案3〇5及一 N型 電極圖案306。該發光層302係介於該p型半導體層3〇1 ,該N型半導體層303之間,而該基底304係位於該n型 半導體層303下方。該P型電極圖案3〇5係形成於該p型 半導體層301上方,該P型電極圖案3〇5包含彼此電性連 接的一對弧狀電極305a及305b及由該對弧狀電極3〇5a 及305b中間朝發光面延伸之一倒置γ型分支電極3〇允, ,並且該倒置Y型分支電極305c之二分支係具有弧度。該n (型電極圖案306係形成於該N型半導體層3〇3之部份曝露 面積上。該N型電極圖案306形狀與該p型電極圖案3〇5 形狀王匹配關係,以縮短該p型電極圖案3〇5與該N型電 極圖案306之間的距離,並使該p型電極圖案3〇5每一部 份與型電極圖案306對應部份之間的距離大致上二 同。1第一接觸墊307係形成於該對弧狀電極3〇5a及3〇5b 中間#近該發光元件30的周緣,係用以使該p型電極圖 案305與外界產生電氣接觸。一第二接觸墊3〇8係形成於 該N型電極圖案306的一對稱位置並且靠近該發光元件刈 的周緣,係用以使該N型電極圖案3〇6肖外界產生電氣接 11 200849652 觸°該第二接觸墊307及該第二接觸墊308的位置以距發 光區域愈遠為佳。換言之,該對第一接觸墊307及第二接 觸藝308較佳形成於靠近該發光元件晶粒邊緣的對應電極 #伤’以利於後續的打線製程(wire bonding process),進而 防止鲜接至前述第一接觸墊307及第二接觸墊308的銲線 阻擋到該發光元件晶粒頂面的出射光。相同於前述第一具 體貫施例’可加入一透光電流分佈層(未示出)於該p型半 導體層301上,藉以促進該p型電極圖案3〇5電流的側向 ( 分佈能力’進而提升該P型半導體層3〇1的電流分佈均勻 性。 在第二具體實施例中,本發明可以蝕刻方式在該基底 304的一角洛刀別形成一位置對背標記(alignment key) 309,以做為該發光元件3〇進行圖案辨識(pattern recognition)的參考位置。就該發光元件3〇而言,該p型 半導體層301及該N型半導體層303的相對位置可以互 換’而該P型電極圖案305及該N型電極圖案306之導電 性亦隨之互換。該P型電極圖案305及該N型電極圖案3〇6 % 的形狀亦可互換。 第二具體λ施例與第一具體實施例之發光元件結構最 大不同處係在於兩者的Ρ型電極圖案與電極圖案具有 不同的形狀設計,因而所搭配與外界產生電氣接觸的ς觸 墊位置及數量隨之做調整,並且供圖案辨識作用的位置對 齊標記在基底上2置亦做調整。第二具體實施例的該發 光元件3〇的各層^質係與第-具體實施例的該發光元件 10相同,在此不再重述。 本發明具電極結構之發光元件係藉p型電極圖 案與N型電極圖α別具有複數個曲線形分支電極並且使 12 200849652 一者的形狀互相匹配的設計概念,提供該發光元件以下的 優點:⑴使P財導體層及N料導闕具有更佳的電流 侧向分佈能力,以提高該兩層的電流分佈均勻性,以增進 該發光層的發光效率及發光亮度;;(2)使p型電極圖^與 N型電極®案兩相的距離大致上保持—致,以增加發光 層的電流密度均勻性,以提高該發光層的發光均勻度;及 (3)避免因電極具有尖銳曲度(sharp curves)所產生的高電場 作用。 C 另一方面’本發明以下其它具體實施例除了可提高發 光元件的電流分佈特性外,同時可增加發光層面積。 第五圖及第六圖係本發明具改良式電極結構之發光元 件的第三具體實施例的立體示意圖及平視示意圖。在第三 具體實施例中,本發明具改良式電極結構之發光元件50 包括一第一絕緣層501、一 P型半導體層502、一發光層 503、一 N型半導體層504、一基底505、一 P型電極圖案 506、一 N型電極圖案507、一第二絕緣層508及複數個N 型接觸509。該P型半導體層502係形成於該第一絕緣層 ^ 501下方,該發光層503形成於該P型半導體層502下方, 而該N型半導體層504形成於該發光層503下方,該基底 505位於該N型半導體層504下方。該P型電極圖案506 係形成於該第一絕緣層501中並與該P型半導體層502電 性接觸,該P型電極圖案506包含一扭曲S型電極圖案5〇6a 與一扭曲倒置S型電極圖案506b,其中該S型電極圖案 506a與該倒置S型電極圖案506b呈對映關係且彼此電性 連接,而一對指狀電極5060、5062係分別從該S塑電極 圖案506a與該倒置S型電極圖案506b的一端沿著該第一 絕緣層501周緣朝向該N型電極圖案507延伸。該N塑電 13 200849652 通孔5070的截面形狀除了圓形之外,仍可以是楕圓形、正 極圖案507係形成於該第一絕緣層5〇1上方,該N型電極 圖案507係與該P型電極圖案506呈匹配關係,以縮二該 P型電極圖案506與該N型電極圖案507之間的距離,並 使該P型電極圖案506每一部份與該N型電極圖案5〇7對 應部份之間的距離大致上相同,而該N型電極圖牵507且 有,個通孔沿著其圖案形狀分 該第一絕緣層501向下延伸至該N型半導體層5〇4。前述 方形或矩形。該第二絕緣層508係形成於每一該通孔5〇7〇 之内周壁,並且該第二絕緣層508係可選自下列任一介電 材質:二氧化矽、玻璃(glass)及旋轉塗佈玻璃(Spin 〇n Glass)。該等N型接觸509形成於該等通孔5〇7〇中,以電 性連接該N型電極圖案507與該N型半導 該第-絕緣層训形成於該P型半導體+層%=^^ ^可以形成於每-該通孔麵的内周壁,亦即該第二絕緣 層508係與該第一絕緣層5〇1為同一層。 另-方面,該第-絕緣層5〇1及第二絕緣層遞也可 ^是空氣’在此情況下,該P型電極圖案鄕係直接 於該P型半導體層5G2上,而該N 該等N型接觸509與該N型半導體二H茶斯係错由 玉干♦體層5〇4電性接觸,並且 Ϊ俨戶50;丨藉由空乳做為絕緣材質而與該Ρ型半 == 該等Ν型接觸509周緣藉亦由空氣 做電性隔離。 該Ρ型電極圖案506包含—對第一接觸塾51〇分別連 ,該巧電極圖案5〇6a與該倒置s型電極圖案·並且 ,近該第-絕緣層斯的周緣,以提供該p型電極圖案篇 /、外界的電氣接觸。該對第—接觸墊51()的位置以距發光 200849652 區域愈遠並為高光反射區為佳。該N型電極圖案5〇7包人 一對第二接觸墊512係靠近該第一絕緣層5〇1的二角落= 以提供該N型電極圖案507與外界的電氣接觸。同樣地, 忒對第一接觸墊510及第二接觸墊512較佳形成於靠近該 發光元件晶粒邊緣的對應電極外緣部份,以利於後續的打 線製程(wire bonding process),進而防止銲接至前述第一接 觸墊510及第二接觸墊512的銲線阻擋到該發光元件晶粒 頂面的出射光。相同於前述具體實施例,可加入一透光電 流分佈層(未示出)於該P型半導體層502上,使該p型電 極圖案506與該透光電流分佈層電氣接觸,藉以促進該p 型電極圖案506電流的側向分佈能力,進而提升該p型半 導體層502的電流分佈均勻性。 在第三具體實施例中,本發明可以蝕刻方式在該基底 505的二角落分別形成一位置對齊標記(aiignrnent key) 513,係做為該發光元件50進行圖案辨識(pattern recognition)的參考位置。就該發光元件50而言,該p型 半導體層502及該N型半導體層504的相對位置可以互 換,而該P型電極圖案506及該N型電極圖案507之導電 性亦隨之互換。該P型電極圖案506及該N型電極圖案507 的形狀亦可互換。 參第二圖及第六圖,第三具體實施例的發光元件50 與第一具體實施例的發光元件10不同處係在於第三具體 實施例的發光元件50的該P型電極圖案506形成在該第 一絕緣層501中,而該N型電極圖案507形成在該第一絕 緣層501上方,該第一絕緣層501對應該P型電極圖案506 的部份係經蝕刻至該P型半導體層502,以使該P型電極 圖案506電氣接觸該P型半導體層502。該第一絕緣層 15 200849652 501、該P型半導體層502及該發光層503僅有對應該N 型電極圖案507的該荨通孔5070的部份被姓刻移除至兮ν 型半導體層504,並藉由前述N型接觸509形成於該等通 孔5070中’以電氣連接該N型電極圖案507與該n型半 導體層504。至於在弟一具體實施例中,該發光元件的 該P型電極圖案105及該N型電極圖案1〇6分別形成在該 P型半導體層101上及被曝露的部份該N型半導體層ι〇2 上。也就是說,該P型半導體層101及該發光層103θ對應 Ρ 該Ν型電極圖案106及該等第二接觸墊108的部份係被^ 刻移除至該Ν型半導體層1〇2,以使該ν型電極圖案1〇6 及該等第二接觸墊108電氣接觸該Ν型半導體層1〇2。所 以第三具體實施例的發光元件30相較於第一具體實施例 的發光元件10,其發光面積會相對地增加,而更進一步提 高該發光元件30的發光效率及發光強度。 乂Yield. With respect to the light-emitting element 10, the relative positions of the p-type semiconductor layer 101 and the N-type semiconductor layer 102 can be interchanged, and the conductivity of the p-type electrode pattern 105 and the N-type electrode pattern 106 are also interchanged. On the other hand, the shapes of the P-type electrode pattern 105 and the N-type electrode pattern 1〇6 are also interchangeable. The third and fourth figures are schematic perspective views and a plan view of a first embodiment of a light-emitting element having an improved electrode structure of the present invention. In a second embodiment, the present invention has a light-emitting element having an improved electrode structure ('30 includes a P-type semiconductor layer 301, a light-emitting layer 302, an N-type semiconductor layer 303, a substrate 3〇4, a P The electrode pattern 3〇5 and an N-type electrode pattern 306. The light-emitting layer 302 is interposed between the p-type semiconductor layer 3〇1, the N-type semiconductor layer 303, and the substrate 304 is located in the n-type semiconductor layer. The P-type electrode pattern 3〇5 is formed over the p-type semiconductor layer 301, and the P-type electrode pattern 3〇5 includes a pair of arc electrodes 305a and 305b electrically connected to each other and the pair of arcs The γ-type branch electrode 3 is inverted by one of the electrodes 3〇5a and 305b extending toward the light-emitting surface, and the two branches of the inverted Y-type branch electrode 305c have an arc. The n (type electrode pattern 306 is formed in the N) a portion of the exposed area of the semiconductor layer 3〇3. The shape of the N-type electrode pattern 306 is matched with the shape of the p-type electrode pattern 3〇5 to shorten the p-type electrode pattern 3〇5 and the N-type electrode pattern. The distance between 306, and each part of the p-type electrode pattern 3〇5 and the electrode pattern The distance between the corresponding portions of 306 is substantially the same. 1 The first contact pad 307 is formed in the middle of the pair of arc electrodes 3〇5a and 3〇5b. The periphery of the light-emitting element 30 is used to make the p The electrode pattern 305 is in electrical contact with the outside. A second contact pad 3 〇 8 is formed at a symmetrical position of the N-type electrode pattern 306 and adjacent to the periphery of the illuminating element , for the N-type electrode pattern 3 The second contact pad 307 and the second contact pad 308 are located farther from the light-emitting area. In other words, the pair of first contact pads 307 and the second contact art 308 are preferred. Preferably, the corresponding electrode #injured near the edge of the light-emitting element die is facilitated to facilitate a subsequent wire bonding process, thereby preventing wire bonding to the first contact pad 307 and the second contact pad 308. An outgoing light to the top surface of the light-emitting element die. A light-transmitting current distribution layer (not shown) may be added to the p-type semiconductor layer 301 in the same manner as the first specific embodiment, thereby promoting the p-type electrode. Pattern 3〇5 current lateral (distributed energy) The force 'further increases the current distribution uniformity of the P-type semiconductor layer 3 〇 1. In the second embodiment, the present invention can form a position-to-back alignment key at a corner of the substrate 304 in an etching manner. 309, as a reference position for pattern recognition of the light-emitting element 3, the relative positions of the p-type semiconductor layer 301 and the N-type semiconductor layer 303 may be interchanged with respect to the light-emitting element 3' The conductivity of the P-type electrode pattern 305 and the N-type electrode pattern 306 is also interchanged. The shape of the P-type electrode pattern 305 and the N-type electrode pattern 3〇6 % may also be interchanged. The second specific λ embodiment differs greatly from the illuminating element structure of the first embodiment in that the Ρ-type electrode pattern and the electrode pattern of the two have different shape designs, so that the ς-pad position of the electrical contact with the outside is matched. The quantity is adjusted accordingly, and the position alignment mark for pattern recognition is also adjusted on the substrate. The layers of the light-emitting element 3 of the second embodiment are the same as those of the light-emitting element 10 of the first embodiment, and will not be repeated here. The light-emitting element having the electrode structure of the present invention provides the following advantages of the light-emitting element by a design concept in which the p-type electrode pattern and the N-type electrode pattern α have a plurality of curved branch electrodes and the shapes of 12 200849652 are matched with each other: (1) The P-conductor layer and the N-material guide have better current lateral distribution capability to improve the current distribution uniformity of the two layers to improve the luminous efficiency and the luminance of the luminescent layer; (2) making p The distance between the two electrodes of the electrode pattern and the N-type electrode is substantially maintained to increase the uniformity of current density of the luminescent layer to improve the uniformity of luminescence of the luminescent layer; and (3) to avoid sharp curves due to the electrode The high electric field produced by the sharp curves. C On the other hand, other embodiments of the present invention, in addition to improving the current distribution characteristics of the light-emitting element, can simultaneously increase the area of the light-emitting layer. Fig. 5 and Fig. 6 are a perspective view and a plan view showing a third embodiment of the illuminating element with the improved electrode structure of the present invention. In a third embodiment, the light-emitting device 50 having the improved electrode structure includes a first insulating layer 501, a P-type semiconductor layer 502, a light-emitting layer 503, an N-type semiconductor layer 504, and a substrate 505. A P-type electrode pattern 506, an N-type electrode pattern 507, a second insulating layer 508, and a plurality of N-type contacts 509. The P-type semiconductor layer 502 is formed under the first insulating layer 501. The luminescent layer 503 is formed under the P-type semiconductor layer 502, and the N-type semiconductor layer 504 is formed under the luminescent layer 503. The substrate 505 is formed. Located below the N-type semiconductor layer 504. The P-type electrode pattern 506 is formed in the first insulating layer 501 and is in electrical contact with the P-type semiconductor layer 502. The P-type electrode pattern 506 includes a twisted S-type electrode pattern 5〇6a and a twisted inverted S-type. The electrode pattern 506b, wherein the S-type electrode pattern 506a is in an opposite relationship with the inverted S-type electrode pattern 506b and electrically connected to each other, and the pair of finger electrodes 5060, 5062 are respectively inverted from the S-shaped electrode pattern 506a One end of the S-type electrode pattern 506b extends toward the N-type electrode pattern 507 along the circumference of the first insulating layer 501. The cross-sectional shape of the N-plastic 13 200849652 through-hole 5070 may be a circular shape, and a positive pattern 507 is formed over the first insulating layer 5〇1, and the N-type electrode pattern 507 is The P-type electrode pattern 506 has a matching relationship to narrow the distance between the P-type electrode pattern 506 and the N-type electrode pattern 507, and each part of the P-type electrode pattern 506 and the N-type electrode pattern 5 The distance between the corresponding portions is substantially the same, and the N-type electrode pattern 507 has a via hole extending along the pattern shape of the first insulating layer 501 to the N-type semiconductor layer 5〇4. . The aforementioned square or rectangular. The second insulating layer 508 is formed on the inner peripheral wall of each of the through holes 5〇7〇, and the second insulating layer 508 is selected from any of the following dielectric materials: cerium oxide, glass, and rotation. Coated glass (Spin 〇n Glass). The N-type contacts 509 are formed in the through holes 5〇7〇 to electrically connect the N-type electrode patterns 507 and the N-type semiconductors. The first insulating layer is formed on the P-type semiconductor+layer%= ^^^ may be formed on the inner peripheral wall of each of the via faces, that is, the second insulating layer 508 is in the same layer as the first insulating layer 5〇1. On the other hand, the first insulating layer 5〇1 and the second insulating layer may also be air'. In this case, the P-type electrode pattern is directly on the P-type semiconductor layer 5G2, and the N The N-type contact 509 and the N-type semiconductor two H-Case are electrically contacted by the jade dry body layer 5〇4, and the Seto 50; 丨 by the empty milk as the insulating material and the Ρ type half = = These Ν-type contacts 509 are also electrically isolated by air. The Ρ-type electrode pattern 506 includes — respectively connected to the first contact 塾 51 , , the fine electrode pattern 5 〇 6 a and the inverted s-type electrode pattern and close to the periphery of the first insulating layer to provide the p-type Electrode pattern article /, external electrical contact. The position of the pair of contact pads 51() is preferably farther from the region of the illumination 200849652 and is a highlight reflection region. The N-type electrode pattern 5〇7 is wrapped in a pair of second contact pads 512 adjacent to the two corners of the first insulating layer 5〇1 to provide electrical contact between the N-type electrode pattern 507 and the outside. Similarly, the first contact pad 510 and the second contact pad 512 are preferably formed on the outer edge portion of the corresponding electrode near the edge of the light-emitting element die to facilitate a subsequent wire bonding process, thereby preventing soldering. The bonding wires to the first contact pad 510 and the second contact pad 512 block the outgoing light of the top surface of the light-emitting element die. Similar to the foregoing specific embodiment, a light-transmitting current distribution layer (not shown) may be added on the P-type semiconductor layer 502 to electrically contact the p-type electrode pattern 506 with the light-transmitting current distribution layer, thereby promoting the p. The lateral distribution capability of the current pattern 506 current increases the current distribution uniformity of the p-type semiconductor layer 502. In a third embodiment, the present invention can form an aiignrnent key 513 at two corners of the substrate 505 in an etching manner as a reference position for pattern recognition of the light-emitting element 50. With respect to the light-emitting element 50, the relative positions of the p-type semiconductor layer 502 and the N-type semiconductor layer 504 can be interchanged, and the conductivity of the P-type electrode pattern 506 and the N-type electrode pattern 507 are also interchanged. The shapes of the P-type electrode pattern 506 and the N-type electrode pattern 507 may also be interchanged. Referring to the second and sixth figures, the light-emitting element 50 of the third embodiment is different from the light-emitting element 10 of the first embodiment in that the P-type electrode pattern 506 of the light-emitting element 50 of the third embodiment is formed at In the first insulating layer 501, the N-type electrode pattern 507 is formed over the first insulating layer 501, and the portion of the first insulating layer 501 corresponding to the P-type electrode pattern 506 is etched to the P-type semiconductor layer. 502, the P-type electrode pattern 506 is electrically contacted to the P-type semiconductor layer 502. The first insulating layer 15 200849652 501, the P-type semiconductor layer 502 and the light-emitting layer 503 are only partially removed from the through-hole 5070 of the N-type electrode pattern 507 to the 兮ν-type semiconductor layer 504. And forming the N-type electrode pattern 507 and the n-type semiconductor layer 504 by the N-type contact 509 formed in the via holes 5070. In a specific embodiment, the P-type electrode pattern 105 and the N-type electrode pattern 1〇6 of the light-emitting element are respectively formed on the P-type semiconductor layer 101 and the exposed portion of the N-type semiconductor layer ι 〇 2 on. That is, the P-type semiconductor layer 101 and the light-emitting layer 103θ correspond to the Ν-type electrode pattern 106 and portions of the second contact pads 108 are removed to the Ν-type semiconductor layer 〇2, The ν-type electrode pattern 1〇6 and the second contact pads 108 are electrically contacted to the Ν-type semiconductor layer 1〇2. Therefore, the light-emitting element 30 of the third embodiment has a relatively larger light-emitting area than the light-emitting element 10 of the first embodiment, and the light-emitting efficiency and the light-emitting intensity of the light-emitting element 30 are further improved.乂

第七圖及第八圖係本發明具改良式電極結構之發光元 件的=四具體實施例的立體示意圖及平視示意圖。在第四 具體實,例中,本發明具改良式電極結構之發光元件7〇 包括一第一絕緣層701、一 p型半導體層7〇2、一笋光層 703、一 N型半導體層7〇4、一基底7〇5、一 p型電^圖^ 706、一 N型電極圖案7〇7、一第二絕緣層7〇8及複數個N 型接觸。射型半導體層術係形成於該第—絕緣層 701下方,該發光層703形成於該P型半導體層7〇2下方曰, 7而導體層7〇4形成於該發光層7〇3下方,該基底 係w:;-型半導體層7。4下方。該P型電極圖案706 —絕緣層701中並且與該P型半導體層702 2就是說,該第一絕緣層701對應該p型電極 • /、 的。卩份係經蝕刻移除至該p型半導體層702,以 16 200849652 使該p型電極圖案寫電氣接觸該p型半導體芦 p/nm〇6包含彼此電性連接之一對弧狀電極‘ 之-倒ί弧f電極7嶋及鳩中間朝發光面延伸 一 ϋ ΐ刀支電極706C,而該倒置Υ型分支電極706c ,一分支係呈弧狀。該N型電極圖案707係形成於該第一 f 絕緣層701上方,前型電極圖案術係與該P型電極圖 ,706呈匹配關係,以縮短該p型電極圖案7〇6與該n型 包極圖案707之間的距離,並使該P型電極圖案706每一 部份與該N型電極圖案7〇7對應部份之間的距離大致上相 同。該N型電極圖案7〇7具有複數個通孔7070沿其圖案 幵y狀刀佈於其下方並且從該第一絕緣層1向下延伸至該 N型半導體層704。前述通孔7070的截面形狀除了圓形之 外,仍可以是楕圓形、正方形或矩形。該第二絕緣層7〇8 係形成於每一該通孔7070之内周壁,並且該第二絕緣層 708可以是選自下列任一介電材質:二氧化矽、玻璃(yass) 及旋轉塗佈玻璃(Spin on Glass)。而該等N型接觸709係 形成於該等通孔7070中,以電性連接該n型電極圖案707 與該N型半導體層704。此外,該第一絕緣層701形成於 該P型半導體層702上方的同時也可以形成於每一該通孔 7070的内周壁,亦即該第二絕緣層708係與該第一絕緣層 701為同一層。另一方面,該第一絕緣層7〇1及第二絕緣 層708也可以是空氣,在此情況下,該p型電極圖案7〇6 係直接形成於該P型半導體層702上,而該N型電極圖案 707係藉由該等N型接觸709與該N型半導體層704電性 接觸,並且該N型電極圖案707藉由空氣做為絕緣材質而 與該P型半導體層702電性隔離,該等N型接觸709周緣 藉亦由空氣做電性隔離。一第一接觸墊71〇係形成於該對 17 200849652 弧狀電極706a及706b中間靠近該發光元件70的周緣,係 用以使該P型電極圖案706與外界產生電氣接觸。一第二 接觸墊712係形成於該N型電極圖案707的一對稱位置並 且靠近該發光元件70的周緣,係用以使該N型電極圖案 707與外界產生電氣接觸。該第一接觸墊71〇及該第二接 觸墊712的位置以距發光區域愈遠並位於高反光區域為 佳。換言之,該對第一接觸墊710及第二接觸墊712較佳 开>成於罪近該發光元件晶粒邊緣的對應電極部份,以利於 後續的打線製程(wire bonding process),進而防止銲接至前 述第一接觸墊710及第二接觸墊712的銲線阻擋到該發光 元件晶粒頂面的出射光。相同於前述第二具體實施例,可 加入一透光電流分佈層(未示出)於該P型半導體層7〇2 上,使該P型電極圖案706電氣接觸該透光電流分佈層, 藉以促進該P型電極圖案706電流的側向分佈能力,進而 提升該P型半導體層702的電流分佈均勻性。 在第四具體實施例中,本發明可以蝕刻方式在該基底 705的二角落分別形成一位置對齊標記(alignment key) 713,係做為該發光元件70進行圖案辨識(pattern recognition)的參考位置。就該發光元件7〇而言,該p型 半導體層702及該N型半導體層704的相對位置可以互 換,而該P型電極圖案706及該N型電極圖案707之導電 性亦隨之互換。該P型電極圖案706及該N型電極圖案707 的形狀亦可互換。 參第四圖及第八圖,第四具體實施例的發光元件70 與第二具體實施例的發光元件30不同處係在於第四具體 實施例的發光元件70的該P型電極圖案706形成在該第 一絕緣層701中,而該N型電極圖案707形成在該第一絕 18 2008496527 and 8 are schematic perspective and plan views of a fourth embodiment of a light-emitting element of the present invention having an improved electrode structure. In a fourth embodiment, the light-emitting element 7 of the present invention having a modified electrode structure includes a first insulating layer 701, a p-type semiconductor layer 〇2, a bamboo-light layer 703, and an N-type semiconductor layer 7. 〇4, a substrate 7〇5, a p-type electrode ^ 706, an N-type electrode pattern 7〇7, a second insulating layer 7〇8 and a plurality of N-type contacts. An imaging semiconductor layer is formed under the first insulating layer 701. The light emitting layer 703 is formed under the P-type semiconductor layer 7〇2, and a conductive layer 7〇4 is formed under the light-emitting layer 7〇3. The substrate is under the w:;-type semiconductor layer 7.4. The P-type electrode pattern 706 is in the insulating layer 701 and is opposite to the P-type semiconductor layer 702 2, and the first insulating layer 701 corresponds to the p-type electrode. The portion is etched and removed to the p-type semiconductor layer 702, and the p-type electrode pattern is electrically connected to the p-type semiconductor rep/nm 〇6 by 16 200849652, and the pair of arc electrodes are electrically connected to each other. - The ί arc arc electrode 7 嶋 and the middle of the crucible extend toward the light-emitting surface by a ΐ blade branch electrode 706C, and the inverted Υ-type branch electrode 706c, a branch is arc-shaped. The N-type electrode pattern 707 is formed over the first f-insulating layer 701, and the front-type electrode pattern is matched with the P-type electrode pattern 706 to shorten the p-type electrode pattern 7〇6 and the n-type. The distance between the pole patterns 707 is such that the distance between each portion of the P-type electrode pattern 706 and the corresponding portion of the N-type electrode pattern 7〇7 is substantially the same. The N-type electrode pattern 7〇7 has a plurality of via holes 7070 along which a 幵y-shaped blade is disposed and extends downward from the first insulating layer 1 to the N-type semiconductor layer 704. The cross-sectional shape of the aforementioned through hole 7070 may be a circular shape, a square shape or a rectangular shape in addition to a circular shape. The second insulating layer 7〇8 is formed on the inner peripheral wall of each of the through holes 7070, and the second insulating layer 708 may be selected from any of the following dielectric materials: cerium oxide, yass, and spin coating. Spin on Glass. The N-type contacts 709 are formed in the vias 7070 to electrically connect the n-type electrode patterns 707 and the N-type semiconductor layers 704. In addition, the first insulating layer 701 may be formed on the inner peripheral wall of each of the through holes 7070, that is, the second insulating layer 708 and the first insulating layer 701 are formed on the P-type semiconductor layer 702. The same layer. On the other hand, the first insulating layer 7〇1 and the second insulating layer 708 may also be air. In this case, the p-type electrode pattern 7〇6 is directly formed on the P-type semiconductor layer 702, and the The N-type electrode pattern 707 is electrically connected to the N-type semiconductor layer 704 by the N-type contacts 709, and the N-type electrode pattern 707 is electrically isolated from the P-type semiconductor layer 702 by using air as an insulating material. The N-type contacts 709 are also electrically isolated by the air. A first contact pad 71 is formed between the pair of 17 200849652 arc electrodes 706a and 706b adjacent to the periphery of the light emitting element 70 for electrically contacting the P-type electrode pattern 706 with the outside. A second contact pad 712 is formed at a symmetrical position of the N-type electrode pattern 707 and adjacent to the periphery of the light-emitting element 70 for electrically contacting the N-type electrode pattern 707 with the outside. The position of the first contact pad 71 and the second contact pad 712 is preferably farther from the light-emitting area and located in the high-reflection area. In other words, the pair of first contact pads 710 and the second contact pads 712 are preferably opened to the corresponding electrode portions of the edge of the light-emitting element die to facilitate subsequent wire bonding processes, thereby preventing The bonding wires soldered to the first contact pad 710 and the second contact pad 712 block the outgoing light of the top surface of the light-emitting element die. Similar to the foregoing second embodiment, a light-transmitting current distribution layer (not shown) may be added on the P-type semiconductor layer 7〇2 to electrically contact the P-type electrode pattern 706 with the light-transmitting current distribution layer. The lateral distribution capability of the current of the P-type electrode pattern 706 is promoted, thereby improving the uniformity of current distribution of the P-type semiconductor layer 702. In the fourth embodiment, the present invention can form a position alignment mark 713 at two corners of the substrate 705 in an etching manner as a reference position for pattern recognition of the light-emitting element 70. With respect to the light-emitting element 7A, the relative positions of the p-type semiconductor layer 702 and the N-type semiconductor layer 704 can be interchanged, and the conductivity of the P-type electrode pattern 706 and the N-type electrode pattern 707 are also interchanged. The shapes of the P-type electrode patterns 706 and the N-type electrode patterns 707 may also be interchanged. Referring to the fourth and eighth figures, the light-emitting element 70 of the fourth embodiment is different from the light-emitting element 30 of the second embodiment in that the P-type electrode pattern 706 of the light-emitting element 70 of the fourth embodiment is formed at In the first insulating layer 701, the N-type electrode pattern 707 is formed on the first anode 18 200849652

緣,701上方,該第一絕緣層701對應該P型電極圖案706 卩份係經蝕刻至該P型半導體層702,以使該P型電極 7"案706電氣接觸該P型半導體層702。該第一絕緣層 該P型半導體層702及該發光層7〇3僅有對應該N 型電極圖案7〇7的該等通孔7070的部份被蝕刻移除至該Ν 型半導體層704,並藉由前述Ν型接觸709形成於該等通 孔7070中,以電氣連接該Ν型電極圖案707與該Ν型半 ,體層704。至於在第二具體實施例中,該發光元件3〇的 咳1>型電極圖案305及該Ν型電極圖案306分別形成在該 Ρ型半導體層301上及被曝露的部份該Ν型半導體層303 上。也就是說,該Ρ型半導體層301及該發光層302對應 讀Ν型電極圖案306及該第二接觸墊308的部份係被蝕刻 移除至該Ν型半導體層303,以使該Ν型電極圖案306及 讀第二接觸墊308電氣接觸該Ν型半導體層303。所以第 四具體實施例的發光元件70相較於第二具體實施例的發 光元件30,其發光面積會相對地增加,而更進一步提高發 光元件70的發光效率及發光強度。 第九圖係第四具體實施例的一個變化例的平視示意 圖’其中該等通孔7070沿著該Ν型電極圖案707輪廓走 向的洞徑大小係隨著遠離前述第二接觸墊712而逐漸加 大,以利於電流更均勻分佈在該Ν型半導體層704上。同 樣地,第三具體實施例的發光元件50的該等通孔5070沿 著該Ν型電極圖案507輪廓走向的洞徑大小可隨著遠離前 迷第二接觸蟄512而逐漸加大,以利於電流更均勻分佈在 誘Ν型半導體層504上。 第十圖及第十一圖係本發明具改良式電極結構之發 光元件的第五具體實施例的立體示意圖及平視示意圖。在 19 200849652 第五具體實施例中,本發明具改良式電極結構之發光元件 80係包括一 P型半導體層8〇1、一 N型半導體層、一 發光層802、一基底804、一 p型電極圖案8〇5及一 n型 電極圖案806。該發光層8〇2係介於該p型半導體層8〇1 及該N型半導體層803之間,而該基底8〇4係位於該n型 半導體層803下方。該p型電極圖案8〇5係形成於該p型 半導體層801上方,該p型電極圖案8〇5包含一扭曲£型 電極圖案805a及一 L型分支電極8〇51從該E型電極圖案 805a的一端向下延伸及一扭曲倒置E型電極圖案8〇5b與 一 L型分支電極8052從該扭曲倒置E型電極圖案8〇% ^ 一端向下延伸。該E型電極圖案8〇5a及該扭曲倒置E型 電極圖案805b彼此呈對映關係且彼此電性連接。該N型 電極圖案806係形成於該N型半導體層8〇3之部份曝露面 積上,而該N型電極圖案806係與該p型電極圖案805呈 匹配關係,以使該P型電極圖案8〇5每一部份與該N型電 極圖案806對應部份之間的距離大致上相同。一對第一接 觸墊807係分別形成於該E型電極圖案805a與該扭曲倒 置E型電極圖案805b靠近該發光元件8〇周緣的一部份, 該對第一接觸墊807係用以使該p型電極圖案8〇5與外界 產生電氣接觸。一對第二接觸墊8〇8係分別形成於該N型 電極圖案806靠近該發光元件8〇周緣的一部份,該對第二 接觸塾808係用以使該n型電極圖案806與外界產生電氣 接觸。該對第一接觸墊807及該對第二接觸墊808的位置 以離發光區域愈遠為佳。換言之,該對第一接觸墊8〇7及 第^接觸塾808較佳形成於靠近該發光元件晶粒邊緣的對 應電極部伤’以利於後續的打線製程(wire b〇nciing process)’進而防止銲接至前述第一接觸墊8〇7及第二接觸 20 200849652 墊808的銲線阻播到該發光元件晶粒頂面的出射光。在考 慮該P型半導體層801 —般具有較高電阻率的情況下,本 發明可在該P型半導體層801上方先形成一透光的電流分 佈層(current spreading layer)(未示出),而藉該電流分佈層 使該P型電極圖案805的電流能更均勻地分佈於該P型半 導體層801。該電流分佈層可是一氮化鈦(TiN)層或一透光 的金屬乳化物層’例如氧化姻锡(Indium Tin Oxides (ITO)) 層、鉻鈦氧化物(Chromium Titanium Oxide,CTO)、二氧化 錫:録(Sn02:Sb)、三氧化二鎵:錫(Ga203:Sn)、氧化鎳(NiO)、 氧化銦:辞(Ιη203:Ζη)、氧化銀銦:錫(AgIn02:Sn)、氧化銅 鋁(CuAl〇2)、鑭銅氧硫(LaCuOS)、氧化銅鎵(CuGa02)、氧 化锶銅(SrCuW2)、氧化錳(MnO)、氧化銅(CuO)、氧化錫 (SnO)或氮化鎵(GaN)。 就該發光元件80而言,該P型半導體層8〇1及該n 型半導體層803的相對位置可以互換,而該p型電極圖案 805及該N型電極圖案806之導電性亦隨之互換。該p型 電極圖案805及該N型電極圖案806的形狀亦可互換。 第十二圖及第十三圖係本發明具改良式電極結構之發 光元件的第六具體實施例的立體示意圖及平視示意圖。在 第六具體實施例中,本發明具改良式電極結構之發光元件 90包括一第一絕緣層901、一 P型半導體層902、一發光 層903、一 N型半導體層904、一基底905、一 P型電極圖 案906、一 N型電極圖案907、一第二絕緣層909及複數 個N型接觸910。該P型半導體層902係形成於該第一絕 緣層901下方,該發光層903形成於該p型半導體層902 下方,而該N型半導體層904形成於該發光層903下方, 該基底905位於該N型半導體層904下方。該p型電極圖 21 200849652 案906係形成於該第一絕緣層9〇1中並與該p型半導體層 9〇2電性接觸,該p型電極圖案9%包含一扭曲e型電極 圖案=06a及一 L型分支電極9〇61從該E型電極圖案9〇6a 的编向下延伸及一扭曲倒置E型電極圖案9〇6b與一 L· 型刀支包極9062從該扭曲倒置E型電極圖案9〇仙的一端 向下延伸。,前述扭曲E型電極圖案9〇以及L型分支電極 9061係與前述扭曲倒置E型電極圖案9〇处及l型分支電 極9062呈對映關係且彼此電性連接。該N型電極圖案 f ,形成於該第一絕緣層901上方而與該P型電極圖案9〇6 呈匹配關係,以使該P型電極圖案9〇6每一部份與該N型 電極圖案907對應部份之間的距離大致上相同。該^^型電 極圖案907具有複數個通孔908沿著其圖案形狀分佈於其 下方並且從該第一絕緣層9〇1向下延伸至該N型半導體層 904。前述通孔908的截面形狀除了圓形之外,仍可以是楕 圓形、正方形或矩形。該第二絕緣層9〇9係形成於每一該 通孔908之内周壁,其可以是選自下列任一介電材質:二 氧化矽、玻璃(glass)及旋轉塗佈玻璃(Spin on Glass)。該等 i N型接觸910形成於該等通孔908中,以電性連接該N型 電極圖案907與該N型半導體層904。此外,該第一絕緣 層901形成於該p型半導體層902上方的同時也可以形成 於母一該通孔908的内周壁,亦即該第二絕緣層909係與 該第一絕緣層901為同一層。另一方面,該第一絕緣層9〇1 及弟一絕緣層908也可以是空氣,在此情況下,該p型電 極圖案906係直接形成於該p型半導體層902上,而該N 型電極圖案907係藉由該等N型接觸909與該N型半導體 層904電性接觸,並且等該n型電極圖案907藉由空氣做 為絕緣材質而與該P型半導體層902電性隔離,該等N型 22 200849652 接觸909周緣亦藉由空氣做電性隔離。 該P型電極圖案906包含一對第一接觸墊911分別連 接前述扭曲E型電極圖案906a及L型分支電極9061與前 述扭曲倒置E型電極圖案906b與L型分支電極9062,並 且前述第一接觸墊911靠近該第一絕緣層901的周緣,以 提供該P型電極圖案906與外界的電氣接觸。該對第_接 觸墊911的位置以距發光區域愈遠並為高光反射區為佳。 該N型電極圖案907包含一對第二接觸墊912係靠近該第 f 一絕緣層901的周緣,以提供該N型電極圖案907與外界 的電氣接觸。同樣地,該對第一接觸墊911及第二接觸塾 912較佳形成於靠近該發光元件晶粒邊緣的對應電極部 份’以利於後續的打線製程(wire bonding process),進而防 止銲接至前述第一接觸墊911及第二接觸墊912的銲線阻 擔到該發光元件晶粒頂面的出射光。相同於前述具體實施 例,可加入一透光電流分佈層(未示出)於該P型半導體層 902上,使該P型電極圖案906與該透光電流分佈層電氣 接觸,藉以促進該P型電極圖案906電流的側向分佈能 ί 力,進而提升該Ρ型半導體層902的電流分佈均勻性。 另外,該等通孔908沿著該Ν型電極圖案907輪廓走 向的洞徑大小亦可隨著遠離前述第二接觸墊912而逐漸加 大,以利於電流更均勻分佈在該Ν型半導體層904上。 參弟十圖及苐十二圖’第六具體實施例的發光元件9〇 與第五具體實施例的發光元件80不同處係在於第六具體 實施例的發光元件90的該ρ型電極圖案906形成在該第 一絕緣層901中,而該Ν型電極圖案907形成在該第一絕 緣層901上方,該第一絕緣層9〇1對應該Ρ型電極圖案906 的部份係經蝕刻至該Ρ型半導體層902,以使該Ρ型電極 23 200849652 圖案906電氣接觸該P型半導體層902。該第一絕緣層 901、該P型半導體層902及該發光層903僅有對應該^ 型電極圖案907的該等通孔908的部份被钱刻移除至該n 型半導體層904,並藉由前述n型接觸910形成於該等通 孔908中,以電氣連接該N型電極圖案907與該N型半導 體層904。 再者,本發明前述第三、四及第六具體實施例亦可有 如下變化例(未示出),即除了前述N型電極圖案下方分佈 有複數個通孔外,以形成該等接觸外,同樣地對應的 P型電極圖案可形成於該第一絕緣層上方,並且複數個通 孔分佈於該P型電極圖案下方而延伸至前述p型半導體 層,其内周壁形成有絕緣層,及形成P型接觸於該等通孔 中,以與該P型半導體層產生電性導通。前述P型電極圖 案對應的該等通孔截面形狀設計可與該N型電極圖案對應 的該等通孔一樣。如此一來,可更進一步增加本發明發光 兀件發光面積。另外,本發明前述各層絕緣層可以是選自 下列任一介電材質··二氧化矽、玻璃(glass)及旋轉塗佈玻 璃(Spin on Glass) 〇 / 、另一方面,本發明可在前述每一發光元件之基底下方 形成一反射器結構。該反射器結構可以是一金屬層,例如 ,晶銀或健合金,可以是—透光介電層與—金屬層組成 一,層結構’例如二氧化矽層/鋁金屬層之疊層結構,而該 化矽層的厚度可以從2500埃至7500埃。該透光介電 二:Ϊΐ餘切姆絲朗折射餘,使料前述發 生=π 底的發射光可在該基底與該透光介電層的介面產 光^雷^,而被導引朝向該發光元件表面發射。至於該透 ;l g下方之該金屬層仍可將穿透該透光介電層的部份 24 200849652 ^射光反射回去。前述反射器結構亦可以是透光介電層/ 布拉格反射器/金屬層之疊層結構,其中該透光介電層的曰 射係數小於該發光元件之折射係數,而該金屬層可 布拉格反射ϋ可以是由複數層透光介電層組 ^ ’該専,介電層兩兩之間的折射係數呈高低週期性變 ’亚且母-該透光介電層的厚度應為該發光元件發光波 一(1/4λ)。前述透光介電層/布拉格反射器/金 聶"/t構是二氧切/布拉格反射⑸金屬層的 $ 中二氧化矽的厚度可以從2500埃至75〇〇埃。 四圖及第十五Α至十五c圖說明本發明發光元 件加入反射器的變化例。 跑十四圖’本發明係在前述發光元件1G的該基底 π ^成—反射11 11〇°該反射$ 110的變化例如第十 至十五C圖所示’可以是-金屬層ln、一透光介電 111之疊層結構或—透光介電層112/一布 拉格反射态113/—金屬芦n 器H3係由-透光介電;i之豐層該布拉格反射 堆疊組成。九^層收及-透光介電層⑽交互 以上所述僅為本發明 定本發明之申請專利範圍 精神下所完成之等效改變 專利範圍内。 之具體實施例而已,並非用以限 ;凡其它未脫離本發明所揭示之 或修飾,均應包含在下述之申請 25 200849652 【圖式簡單說明】 第一圖係本發明具改良式電極結構之發光元件的第 一具體實施例的立體示意圖; 第二圖係本發明具改良式電極結構之發光元件的第 一具體實施例的平視示意圖; 第三圖係本發明具改良式電極結構之發光元件的第 二具體實施例的立體示意圖; 第四圖係本發明具改良式電極結構之發光元件的第 f 二具體實施例的平視示意圖; 第五圖係本發明具改良式電極結構之發光元件的第 三具體實施例的立體示意圖; 第六圖係本發明具改良式電極結構之發光元件的第 三具體實施例的平視示意圖; 第七圖係本發明具改良式電極結構之發光元件的第 四具體實施例的立體示意圖; 第八圖係本發明具改良式電極結構之發光元件的第 四具體實施例的平視示意圖; 1 第九圖係本發明具改良式電極結構之發光元件第四具 體實施例的一變化例的平視示意圖; 第十圖係本發明具改良式電極結構之發光元件的第 五具體實施例的立體示意圖; 第十一圖係本發明具改良式電極結構之發光元件的 第五具體實施例的平視示意圖; 第十二圖係本發明具改良式電極結構之發光元件的第 六具體實施例的立體示意圖; 第十三圖係本發明具改良式電極結構之發光元件的第 六具體實施例的平視示意圖; 26 200849652 第十四圖係本發明具改良式電極結構之發光元件的第 一具體實施例的一變化例的立體示意圖;及 第十五A圖至第十五C圖係本發明反射器結構的各種 變化例。 【主要元件符號對照說明】 10、30、50、70、80、90-…發光元件 101、 3(Π、502、702、801…-P 型半導體層 102、 303、504、704、803…-Ν 型半導體層 103、 302、503、703、802-…發光層 104、 304、505、705、804·…基底 105、 305、506、706、805…-Ρ 型電極圖案 106、 306、507、707、806-…Ν 型電極圖案 105a、506b-…扭曲S型電極圖案 105b、506b-…扭曲倒置S型電極圖案 1050、1052、5060、5062-…指狀電極 107、 307、510、710-…第一接觸墊 108、 308、512、712-…第二接觸墊 109、 309、513、713-…位置對齊標記 11〇一„反射器 111—--金屬層 112——透光介電層 113——布拉格反射器 113a,113b-…透光介電層 305a、305b、706a、706b-…弧狀電極 305c、706c_…倒置Y型分支電極 5〇1、701…-第一絕緣層 508、 708·…第二絕緣層 509、 709-…Ν型接觸 27 200849652 5070、7070…·通孔 805a——扭曲E型電極圖案 805b…-扭曲倒置E型電極圖案 8051、8052…-L型分支電極 807— —苐一接觸塾 901-- —第一絕緣層 903- 一發光層 905— 基底 907— —N型電極圖案 808-…第二接觸墊 9〇2…-P型半導體層 904-…N型半導體層 9〇6…-P型電極圖案 908—通孔 909—第二絕緣層 910—N型接觸 906a-…扭曲E型電極圖案 906b…-扭曲倒置E型電極圖案 911 —第一接觸塾 912—弟二接觸塾 9061、9062…-L型分支電極Above the edge 701, the first insulating layer 701 is etched to the P-type semiconductor layer 702 corresponding to the P-type electrode pattern 706 so that the P-type electrode 7" 706 electrically contacts the P-type semiconductor layer 702. The first insulating layer, the P-type semiconductor layer 702 and the light-emitting layer 7〇3, are only partially etched and removed to the Ν-type semiconductor layer 704 corresponding to the through-holes 7070 of the N-type electrode patterns 7〇7, And forming the 电极-type electrode pattern 707 and the 半-type half body layer 704 by the Ν-type contact 709 formed in the through-hole 7070. In the second embodiment, the cough 1 type electrode pattern 305 of the light-emitting element 3 and the 电极-type electrode pattern 306 are respectively formed on the Ρ-type semiconductor layer 301 and the exposed portion of the Ν-type semiconductor layer. 303. That is, the germanium-type semiconductor layer 301 and the portion of the light-emitting layer 302 corresponding to the read-type electrode pattern 306 and the second contact pad 308 are etched and removed to the germanium-type semiconductor layer 303, so that the germanium type The electrode pattern 306 and the read second contact pad 308 electrically contact the germanium-type semiconductor layer 303. Therefore, the light-emitting element 70 of the fourth embodiment has a relatively larger light-emitting area than the light-emitting element 30 of the second embodiment, and the light-emitting efficiency and the light-emitting intensity of the light-emitting element 70 are further improved. The ninth drawing is a schematic plan view of a variation of the fourth embodiment, wherein the size of the diameter of the through holes 7070 along the contour of the meandering electrode pattern 707 gradually decreases away from the second contact pad 712. The increase is made to facilitate a more even distribution of current on the germanium-type semiconductor layer 704. Similarly, the size of the hole diameter of the through holes 5070 of the light-emitting element 50 of the third embodiment along the contour of the 电极-shaped electrode pattern 507 may gradually increase as the distance from the front contact 512 is gradually increased. The current is more evenly distributed over the induced semiconductor layer 504. The tenth and eleventh drawings are a perspective view and a plan view of a fifth embodiment of the light-emitting device of the present invention having an improved electrode structure. In a fifth embodiment of the present invention, the light-emitting element 80 of the improved electrode structure of the present invention comprises a P-type semiconductor layer 〇1, an N-type semiconductor layer, a light-emitting layer 802, a substrate 804, and a p-type. The electrode pattern 8〇5 and an n-type electrode pattern 806. The light-emitting layer 8〇2 is interposed between the p-type semiconductor layer 8〇1 and the N-type semiconductor layer 803, and the substrate 8〇4 is located under the n-type semiconductor layer 803. The p-type electrode pattern 8〇5 is formed over the p-type semiconductor layer 801, and the p-type electrode pattern 8〇5 includes a twist-type electrode pattern 805a and an L-type branch electrode 8〇51 from the E-type electrode pattern. One end of the 805a extends downward and a twisted inverted E-shaped electrode pattern 8〇5b and an L-shaped branch electrode 8052 extend downward from one end of the twisted inverted E-type electrode pattern 8〇%^. The E-type electrode pattern 8〇5a and the twisted inverted E-type electrode pattern 805b are in an opposing relationship with each other and electrically connected to each other. The N-type electrode pattern 806 is formed on a portion of the exposed area of the N-type semiconductor layer 8〇3, and the N-type electrode pattern 806 is matched with the p-type electrode pattern 805 to make the P-type electrode pattern. The distance between each portion of 8〇5 and the corresponding portion of the N-type electrode pattern 806 is substantially the same. A pair of first contact pads 807 are respectively formed on the E-type electrode pattern 805a and the twisted inverted E-type electrode pattern 805b are adjacent to a portion of the periphery of the light-emitting element 8, and the pair of first contact pads 807 are used to make the The p-type electrode pattern 8〇5 makes electrical contact with the outside. A pair of second contact pads 8 〇 8 are respectively formed on a portion of the N-type electrode pattern 806 near the periphery of the light-emitting element 8 , and the pair of second contacts 808 are used to make the n-type electrode pattern 806 and the outside Produce electrical contact. The position of the pair of first contact pads 807 and the pair of second contact pads 808 is preferably as far as possible from the light-emitting area. In other words, the pair of first contact pads 8〇7 and the second contact pads 808 are preferably formed on the corresponding electrode portions near the edge of the light-emitting element die to facilitate the subsequent wire b〇nciing process to prevent The bonding wires soldered to the first contact pad 8〇7 and the second contact 20 200849652 pad 808 block the outgoing light to the top surface of the light-emitting element die. In consideration of the fact that the P-type semiconductor layer 801 generally has a relatively high resistivity, the present invention may first form a light-transmitting current spreading layer (not shown) over the P-type semiconductor layer 801. The current distribution layer allows the current of the P-type electrode pattern 805 to be more uniformly distributed in the P-type semiconductor layer 801. The current distribution layer may be a titanium nitride (TiN) layer or a light transmissive metal emulsion layer such as an Indium Tin Oxides (ITO) layer, Chromium Titanium Oxide (CTO), Tin oxide: recorded (Sn02:Sb), digallium trioxide: tin (Ga203:Sn), nickel oxide (NiO), indium oxide: Ι (Ιη203: Ζη), silver indium oxide: tin (AgIn02:Sn), oxidation CuAl〇2, LaCuOS, CuGa02, SrCuW2, MnO, CuO, SnO or Nitrid Gallium (GaN). For the light-emitting element 80, the relative positions of the P-type semiconductor layer 8〇1 and the n-type semiconductor layer 803 are interchangeable, and the conductivity of the p-type electrode pattern 805 and the N-type electrode pattern 806 are also interchanged. . The shapes of the p-type electrode pattern 805 and the N-type electrode pattern 806 may also be interchanged. Fig. 12 and Fig. 13 are a perspective view and a plan view showing a sixth embodiment of the light-emitting element of the present invention having an improved electrode structure. In a sixth embodiment, the light-emitting device 90 having the improved electrode structure comprises a first insulating layer 901, a P-type semiconductor layer 902, a light-emitting layer 903, an N-type semiconductor layer 904, a substrate 905, A P-type electrode pattern 906, an N-type electrode pattern 907, a second insulating layer 909, and a plurality of N-type contacts 910. The P-type semiconductor layer 902 is formed under the first insulating layer 901, the light-emitting layer 903 is formed under the p-type semiconductor layer 902, and the N-type semiconductor layer 904 is formed under the light-emitting layer 903. Below the N-type semiconductor layer 904. The p-type electrode pattern 21 200849652 is formed in the first insulating layer 9〇1 and is in electrical contact with the p-type semiconductor layer 9〇2, and the p-type electrode pattern 9% includes a twisted e-type electrode pattern= 06a and an L-type branch electrode 9〇61 extend downward from the E-type electrode pattern 9〇6a and a twisted inverted E-type electrode pattern 9〇6b and an L·-type knife-wrapper 9062 from the twisted inverted E One end of the electrode pattern 9 is extended downward. The twisted E-type electrode pattern 9A and the L-type branch electrode 9061 are in an opposite relationship with the twisted inverted E-type electrode pattern 9'' and the l-type branching electrode 9062, and are electrically connected to each other. The N-type electrode pattern f is formed over the first insulating layer 901 to match the P-type electrode pattern 9〇6 such that each portion of the P-type electrode pattern 9〇6 and the N-type electrode pattern The distance between the corresponding parts of 907 is substantially the same. The ^-type electrode pattern 907 has a plurality of via holes 908 distributed therebelow along the pattern shape thereof and extending downward from the first insulating layer 910 to the N-type semiconductor layer 904. The cross-sectional shape of the aforementioned through hole 908 may be circular, square or rectangular in addition to a circular shape. The second insulating layer 9〇9 is formed on the inner peripheral wall of each of the through holes 908, and may be selected from any of the following dielectric materials: cerium oxide, glass, and spin-on glass. ). The n-type contacts 910 are formed in the vias 908 to electrically connect the N-type electrode patterns 907 and the N-type semiconductor layers 904. In addition, the first insulating layer 901 may be formed on the inner peripheral wall of the via hole 908 while the first insulating layer 901 is formed over the p-type semiconductor layer 902, that is, the second insulating layer 909 and the first insulating layer 901 are The same layer. On the other hand, the first insulating layer 9〇1 and the first insulating layer 908 may also be air. In this case, the p-type electrode pattern 906 is directly formed on the p-type semiconductor layer 902, and the N-type The electrode pattern 907 is electrically connected to the N-type semiconductor layer 904 by the N-type contacts 909, and the n-type electrode pattern 907 is electrically isolated from the P-type semiconductor layer 902 by using air as an insulating material. These N-type 22 200849652 contact 909 circumferences are also electrically isolated by air. The P-type electrode pattern 906 includes a pair of first contact pads 911 respectively connecting the twisted E-type electrode pattern 906a and the L-type branch electrode 9061 with the twisted inverted E-type electrode pattern 906b and the L-type branch electrode 9062, and the first contact The pad 911 is adjacent to the periphery of the first insulating layer 901 to provide electrical contact of the P-type electrode pattern 906 with the outside. Preferably, the position of the pair of contact pads 911 is farther from the light-emitting area and is a highlight reflecting area. The N-type electrode pattern 907 includes a pair of second contact pads 912 adjacent to the periphery of the f-first insulating layer 901 to provide electrical contact of the N-type electrode pattern 907 with the outside. Similarly, the pair of first contact pads 911 and the second contact pads 912 are preferably formed adjacent to the corresponding electrode portions of the edge of the light-emitting element die to facilitate a subsequent wire bonding process, thereby preventing soldering to the foregoing. The bonding wires of the first contact pad 911 and the second contact pad 912 resist the outgoing light on the top surface of the light-emitting element die. Similar to the foregoing specific embodiment, a light-transmitting current distribution layer (not shown) may be added on the P-type semiconductor layer 902 to electrically contact the P-type electrode pattern 906 with the light-transmitting current distribution layer, thereby promoting the P. The lateral distribution of the current of the pattern electrode pattern 906 can increase the current distribution uniformity of the germanium-type semiconductor layer 902. In addition, the size of the hole diameter of the through holes 908 along the outline of the 电极-shaped electrode pattern 907 may also gradually increase away from the second contact pad 912 to facilitate more uniform distribution of current in the 半导体-type semiconductor layer 904. on. The illuminating element 9A of the sixth embodiment is different from the illuminating element 80 of the fifth embodiment in the p-type electrode pattern 906 of the illuminating element 90 of the sixth embodiment. Formed in the first insulating layer 901, and the Ν-type electrode pattern 907 is formed over the first insulating layer 901, and the portion of the first insulating layer 910 corresponding to the 电极-type electrode pattern 906 is etched to the The 半导体-type semiconductor layer 902 is such that the Ρ-type electrode 23 200849652 pattern 906 is in electrical contact with the P-type semiconductor layer 902. The first insulating layer 901, the P-type semiconductor layer 902, and the light-emitting layer 903 are only partially removed to the n-type semiconductor layer 904, and the portions of the via holes 908 corresponding to the electrode patterns 907 are removed. The n-type contact 910 is formed in the via holes 908 to electrically connect the N-type electrode pattern 907 and the N-type semiconductor layer 904. Furthermore, the third, fourth, and sixth embodiments of the present invention may also have the following modifications (not shown), except that a plurality of through holes are distributed under the N-type electrode pattern to form the contacts. Similarly, a corresponding P-type electrode pattern may be formed over the first insulating layer, and a plurality of via holes are distributed under the P-type electrode pattern to extend to the p-type semiconductor layer, and an inner insulating wall is formed on an inner peripheral wall thereof, and P-type contacts are formed in the via holes to electrically conduct with the P-type semiconductor layer. The cross-sectional shape of the through holes corresponding to the P-type electrode pattern may be the same as the corresponding via holes corresponding to the N-type electrode pattern. In this way, the light-emitting area of the light-emitting element of the present invention can be further increased. In addition, the insulating layer of each layer of the present invention may be selected from any of the following dielectric materials: cerium oxide, glass, and spin on glass. On the other hand, the present invention may be as described above. A reflector structure is formed under the substrate of each of the light-emitting elements. The reflector structure may be a metal layer, for example, a silver or a hard alloy, and may be a laminated structure of a transparent dielectric layer and a metal layer, and a layer structure such as a ruthenium dioxide layer/aluminum metal layer. The thickness of the ruthenium layer can range from 2,500 angstroms to 7,500 angstroms. The light-transmissive dielectric 2: the remaining gamma sinus refraction, so that the emitted light having the π bottom is generated at the interface between the substrate and the transparent dielectric layer, and is guided toward The surface of the light emitting element is emitted. As for the metal layer under the GaN, the portion of the metal layer that penetrates the transparent dielectric layer can still be reflected back. The reflector structure may also be a laminated structure of a light-transmitting dielectric layer/Brag reflector/metal layer, wherein the light-transmitting dielectric layer has a diffraction coefficient smaller than a refractive index of the light-emitting element, and the metal layer may be Bragg-reflected The ϋ may be composed of a plurality of transparent dielectric layers. The 折射, the refractive index between the two layers of the dielectric layer is high and low periodically, and the thickness of the transparent dielectric layer should be the illuminating element. The illuminating wave is one (1/4λ). The light-transmitting dielectric layer/Bragd reflector/Gold Nie"/t structure is a dioxometer/Braph reflection (5) metal layer of ruthenium dioxide having a thickness of from 2,500 angstroms to 75 angstroms. The four figures and fifteenth to fifteenth c diagrams illustrate variations of the illuminating element of the present invention incorporated into the reflector. Run the fourteenth image of the present invention in the substrate π ^ - reflection 11 11 〇 ° of the aforementioned light-emitting element 1G, the change of the reflection $ 110, for example, as shown in the tenth to fifteenth C-th, can be - metal layer ln, a The laminated structure of the transparent dielectric 111 or the transparent dielectric layer 112/a Bragg reflection state 113/-the metal reed device H3 is composed of a light transmissive dielectric; the abundance layer of the i is composed of the Bragg reflection stack.九 层 层 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The specific embodiments are not intended to be limiting; any other embodiments that are not disclosed or modified from the present invention are included in the following application 25 200849652 [Simplified description of the drawings] The first figure is an improved electrode structure of the present invention. A schematic view of a first embodiment of a light-emitting element; a second schematic view of a first embodiment of a light-emitting element of the present invention having an improved electrode structure; and a third view showing the illumination of the improved electrode structure of the present invention A schematic view of a second embodiment of a second embodiment of the present invention; a fourth schematic view of a f-second embodiment of a light-emitting device of the present invention having an improved electrode structure; and a fifth diagram showing the illumination of the improved electrode structure of the present invention. 3 is a schematic perspective view of a third embodiment of a light-emitting element having an improved electrode structure of the present invention; and a seventh embodiment of the light-emitting element of the present invention having an improved electrode structure A perspective view of a fourth embodiment of the present invention; an eighth embodiment is a fourth embodiment of the light-emitting element of the present invention having an improved electrode structure FIG. 9 is a schematic plan view showing a modification of the fourth embodiment of the light-emitting element of the present invention having an improved electrode structure; and the tenth embodiment is a light-emitting element of the present invention having an improved electrode structure. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 11 is a schematic plan view showing a fifth embodiment of a light-emitting element having an improved electrode structure according to the present invention; and a twelfth aspect of the present invention for a light-emitting element having an improved electrode structure. FIG. 13 is a schematic plan view showing a sixth embodiment of the light-emitting element of the present invention having an improved electrode structure; 26 200849652 FIG. 14 is a schematic view of the present invention having an improved electrode structure. A perspective view of a variation of the first embodiment of the light-emitting element; and fifteenth to fifteenth C drawings are various variations of the reflector structure of the present invention. [Main component symbol comparison description] 10, 30, 50, 70, 80, 90-... Light-emitting elements 101, 3 (Π, 502, 702, 801...-P type semiconductor layers 102, 303, 504, 704, 803...- Ν-type semiconductor layers 103, 302, 503, 703, 802-... luminescent layer 104, 304, 505, 705, 804... substrate 105, 305, 506, 706, 805...-Ρ-type electrode patterns 106, 306, 507, 707, 806-... Ν type electrode patterns 105a, 506b-... twist S-type electrode patterns 105b, 506b-... twist inverted S-type electrode patterns 1050, 1052, 5060, 5062-... finger electrodes 107, 307, 510, 710- ...first contact pads 108, 308, 512, 712 - ... second contact pads 109, 309, 513, 713 - ... position alignment marks 11 „ a reflector 111 - metal layer 112 - transparent dielectric layer 113 - Bragg reflectors 113a, 113b - ... light-transmissive dielectric layers 305a, 305b, 706a, 706b - ... arc electrodes 305c, 706c_... inverted Y-type branch electrodes 5 〇 1, 701 ... - first insulating layer 508, 708·...second insulating layer 509, 709-...Ν contact 27 200849652 5070, 7070...·through hole 805a——twisted E-type electrode pattern 805b...-distortion inversion E-type electrode pattern 8051, 8052...-L-type branch electrode 807---one contact 塾901---first insulating layer 903--light-emitting layer 905-substrate 907--N-type electrode pattern 808-...second contact pad 9〇2...-P-type semiconductor layer 904-...N-type semiconductor layer 9〇6...-P-type electrode pattern 908-via 909-second insulating layer 910-N-type contact 906a-...twisted E-type electrode pattern 906b... - twisted inverted E-type electrode pattern 911 - first contact 塾 912 - brother two contacts 塾 9061, 9062 ... - L type branch electrode

2828

Claims (1)

200849652 十、申請專利範圍: 1. 一種具改良式電極結構之發光元件,其包括: 一具第一導電性半導體層; 一具第二導電性半導體層; 一發光層係介於該具第一導電性半導體層及該具第 二導電性半導體層之間; 一基底,係位於該具第二導電性半導體層下方; 一具第一導電性電極圖案,係形成於該具第一導電性 半導體層上方,該具第一導電性電極圖案包含至少一個第 ^一次電極圖案,及 一具第二導電性電極圖案,係形成於該具第二導電性 半導體層之部份曝露面積上,該具第二導電性電極圖案包 含至少一個第二次電極圖案; 其中,該具第一導電性電極圖案之至少一該第一次電 極圖案係為從相對於一該第二次電極圖案之一部份呈封閉 形狀部份延伸至被該第二次電極圖案之另一部份包圍而呈 被封閉形狀部份。 2. 如申請專利範圍第1項所述之具改良式電極結構之 發光元件,其中該具第一導電性電極圖案與該具第二導 電性電極圖案呈匹配關係。 3. 如申請專利範圍第1項所述之具改良式電極結構之 發光元件,其中該具第一導電性電極圖案包含兩個呈鏡像 關係之第一次電極圖案,及該具第二導電性電極圖案包含 兩個呈鏡像關係之第二次電極圖案。 29 200849652 發光元件,所述之具改良式電極結構之 第二導電性電_案對應部㈣每-部份與該具 切之間的距離大致上一致。 」如申清專利範圍第1項 發光元件,其中該第一述之具改良式電極結構之 近該發光元件周緣,及該第2案具有—第-接觸墊係靠 墊係靠近該發光元件周緣。〜〜電極随具有—第二接觸 發光6元:申述之具改良式電極結構之 電極圖案與—扭曲;到置電極圖案包含-扭曲S型 案與該倒置Sl!f 圖案,其中該電極圖 奶圖案讀映關係且彼此電性連接。 發光元件申之具改良式電極結構之 極係分別從^^ 、電〖生電極圖案包含一對指狀電 沿著該具極圖案與該倒置S型電極圖案的-端 極圖案延伸。、電性半導體層周緣朝向該具第二導電性電 發光元:申2利範圍第1項所述之具改良式電極結構之 性電極圖案舆該該具第-導電 發光ϋ申ίί利範11第1項所述之具改良式電極結構之 周緣之部份複數個位置對齊標記形成於該基底 30 200849652 i〇.如申請專利範圍第i項所述 t發該具第—導電性電/圖 連接之-對弧狀電極及由該對弧狀電極,門此電性 之一倒置Y型分支電極。 中間朝發光面延伸 10項所述之具改Μ電極結構 導電性電極圖案之該倒置丫型200849652 X. Patent application scope: 1. A light-emitting element with an improved electrode structure, comprising: a first conductive semiconductor layer; a second conductive semiconductor layer; Between the conductive semiconductor layer and the second conductive semiconductor layer; a substrate under the second conductive semiconductor layer; a first conductive electrode pattern formed on the first conductive semiconductor Above the layer, the first conductive electrode pattern includes at least one first electrode pattern, and a second conductive electrode pattern is formed on a portion of the exposed area of the second conductive semiconductor layer. The second conductive electrode pattern includes at least one second sub-electrode pattern; wherein the at least one first sub-electrode pattern having the first conductive electrode pattern is from a portion opposite to a second sub-electrode pattern The portion having the closed shape extends to be surrounded by the other portion of the second electrode pattern to form a closed shape portion. 2. The light-emitting element of the improved electrode structure according to claim 1, wherein the first conductive electrode pattern has a matching relationship with the second conductive electrode pattern. 3. The light-emitting element of the improved electrode structure according to claim 1, wherein the first conductive electrode pattern comprises two first electrode patterns in a mirror image relationship, and the second conductivity The electrode pattern comprises two second electrode patterns in a mirror image relationship. 29 200849652 A light-emitting element, wherein the second conductive electric_corresponding portion (4) of the improved electrode structure substantially coincides with a distance between each portion and the cut. In the light-emitting element of claim 1, wherein the first embodiment has an improved electrode structure adjacent to the periphery of the light-emitting element, and the second case has a first-contact pad-based pad adjacent to the periphery of the light-emitting element. ~~electrode with -second contact illumination 6 yuan: the electrode pattern and the distortion of the modified electrode structure are claimed; the electrode pattern includes a twisted S type case and the inverted S1!f pattern, wherein the electrode pattern milk The patterns are read and electrically connected to each other. The light-emitting element has a modified electrode structure, wherein the electrode pattern comprises a pair of finger electrodes extending along the electrode pattern and the end pattern of the inverted S-type electrode pattern. The periphery of the electrically conductive semiconductor layer faces the second electroconductive electroluminescent element: the electrode pattern with the improved electrode structure described in the first item of claim 2, which has the first conductive light emitting lamp A plurality of position alignment marks of the periphery of the modified electrode structure of the above-mentioned item are formed on the substrate 30 200849652 i. as described in claim i, the first conductive current/graph connection The inverted-Y-branch electrode is inverted on the arc-shaped electrode and by the pair of arc-shaped electrodes. The middle of the light-emitting surface extends 10 of the modified electrode structure, the inverted electrode type of the conductive electrode pattern 11·如申請專利範圍第 之發光元件,其中該具第一 電極之二分支係具有弧度。 12·如申請專利範圍第i項所述之具改良式電極結構 之發光元件,其中該第一導電性電極圖案係包含一扭曲E 型電極圖案及一 L型分支電極從該e型電極圖案的一端向 下延伸及一扭曲倒置E型電極圖案與一 L型分支電極從該 扭曲倒置E型電極圖案的一端向下延伸。 13·—種具改良式電極結構之發光元件,其包括: 一具第一導電性半導體層; 一發光層形成於該具第一導電性半導體層下方; 一具第二導電性半導體層形成於該發光層下方; 一基底,係位於該具第二導電性半導體層下方; 一具第一導電性電極圖案,係形成於該具第一導電性 半導體層上方並與其電性接觸,該具第一導電性電極圖案 包含至少一個第一次電極圖案; 一具第二導電性電極圖案,係形成於該具第一導電性 半導體層上方,該具第二導電性電極圖案包含至少一個第 二次電極圖案,該具第二導電性電極圖案具有複數個通孔 31 200849652 具第二導電性半_’其中 從相對於案至卜該第—次電極圖案係為 伸至被該第人电極圖案之一部份呈封閉形狀部份延 部份;及一人電極®案之另—部份包圍而呈被封閉形狀 該具mi第二導電性接觸形成於該等通孔中,且每-與該具第二連接該具第二導電性電極圖案 之發光元件,1 13項所述之具改良式電極結構 電性電極圖^匹^關t導電性電極圖案與該具第二導 之發光u科之具改u電極結構 係的兩個第—次雷^ ¥ A性電極圖案包含呈鏡像關 含兩個呈鏡像關及料第二導電性電極圖案包 兄1冢關係的弟二次電極圖案。 之發範圍第13項所述之具改良式電極結構 具第二導電性電極圖案每一部份與該 罨生電極圖案對應部份之間的距離大致上一致。 利範圍第13項所述之具改良式電極結構 具ί-導ΐ性第一導電性電極圖案係直接接觸該 •如申明專觀圍第13項所述之具改良式電極結構 32 200849652 之發光元件,其中該第一導電性電極圖案包含一扭曲s型 電極圖案與一扭曲倒置S型電極圖案,該S型電極圖案與 該倒置S型電極圖案呈對映關係且彼此電性連接。 19.如申請專利範圍第13項所述之具改良式電極結構 之發光元件,其中該具第一導電性電極圖案包含至少一個 第一接觸墊連接該第一次電極圖案,及該具第二導電性電 極圖案包含至少一第二接觸墊連接該第二次電極圖案,其 中該第一接觸墊及該第二接觸墊係靠近該發光元件之周 緣0 20.如申請專利範圍第19項所述之具改良式電極結構 之發光元件,其中該等通孔沿著該具第二導電性電極圖案 分佈的通孔開口大小係隨著愈遠離該第二接觸墊而逐漸加 大0 21.如申請專利範圍第18項所述之具改良式電極結構 之發光元件,其中該具第一導電性電極圖案包含一對指狀 電極係分別從該S型電極圖案與該倒置S型電極圖案的一 端沿著該具第一導電性半導體層周緣朝向該具第二導電性 電極圖案延伸。 22·如申請專利範圍第13項所述之具改良式電極結構 之發光元件,其中更包含一電流分佈層形成於該具第一導 電性電極圖案與該具第一導電性半導體層之間,並且該具 第一導電性電極圖案與該電流分佈層電性接觸。 33 .200849652 之發H申4if範,13項所述之具改良式電極結構 底周緣之部份曝後數個位置對齊標記形成於該基 之發之具改良式電極結構 連接之一掛 W /、 电眭電極圖案包含彼此電性 之一倒置γ型分Hi由該對弧狀電極中間朝發光面延伸 之發光元:;專二= 觸塾係形成於該對弧狀電極中】二包含-第-接 圖案包含-第二接觸墊位於該二導電性電極 對稱位置。 /、弟—v龟性電極圖案之一 如申請專利範圍第25項所述之具 、發光7〇件,其中該等通孔沿著該具 良式電極結構 ”的通孔開σ大小係隨著愈遠離^電極圖案 大。 锋鵠墊而逐漸加 2入如申請專利範圍第24項所述之1 ’其,該具第-導電性電極圖案Ιί電極結構 電和之一分支係具有孤度。 v、<該倒置γ型 28·如申請專利範圍第13項所述之具 么兀件,其中該具第-導電性電極圖案電極結構 电極圖案及- L型分支電極從該£型=、匕含-扭曲 α下延伸及一扭曲倒置E型電極圖案與兔蛋圖案的一端 裂分支電極從 34 200849652 該扭曲倒置E型電極圖案的一端向下延伸。 29.如申請專利範圍第28項所述之具改良式電極結構 之發光元件,其中該具第一導電性電極圖案包含至少一第 一接觸墊及該具第二導電性電極圖案包含至少一第二接觸 墊,其中該第一接觸墊及該第二接觸墊係靠近該發光元件 之周緣。 . 30.如申請專利範圍第29項所述之具改良式電極結構 之發光元件,其中該等通孔沿著該具第二導電性電極圖案 分佈的通孔開口大小係隨著愈遠離該第二接觸塾而逐漸加 大0 31. 如申請專利範圍第13項所述之具改良式電極結構 之發光元件,其中更包含一絕緣層形成於該具第一導電性 電極圖案與該具第一導電性半導體層之間,並且該具第一 導電性電極圖案下方具有複數個具第一導電性接觸貫穿該 絕緣層直至該具第一導電性半導體層。 32. 如申請專利範圍第31項所述之具改良式電極結構 之發光元件,其中該絕緣層係選自下列任一材質:二氧化 矽、玻璃及旋轉塗佈玻璃(Spin On Glass,SOG)。 33. 如申請專利範圍第1項所述之具改良式電極結構 之發光元件,其中更包含一反射器形成於該基底下方。 34·如申請專利範圍第33項所述之具改良式電極結構 35 200849652 屬層 之發光元件,其中該反射器包含一金 之蘇Γ ·如4申料利範圍第3 4項所述之具改良式電極結構 x 70牛,其中該金屬層包含鋁、銀或銀鋁合金。11. The illuminating element of claim 1, wherein the two branches of the first electrode have a curvature. 12. The light-emitting element of the improved electrode structure according to claim i, wherein the first conductive electrode pattern comprises a twisted E-type electrode pattern and an L-type branch electrode from the e-type electrode pattern One end extending downwardly and a twisted inverted E-type electrode pattern and an L-shaped branch electrode extend downward from one end of the twisted inverted E-type electrode pattern. 13. A light-emitting element having an improved electrode structure, comprising: a first conductive semiconductor layer; a light-emitting layer formed under the first conductive semiconductor layer; and a second conductive semiconductor layer formed on a light-emitting layer underneath; a substrate disposed under the second conductive semiconductor layer; a first conductive electrode pattern formed over the first conductive semiconductor layer and in electrical contact therewith a conductive electrode pattern includes at least one first electrode pattern; a second conductive electrode pattern is formed on the first conductive semiconductor layer, and the second conductive electrode pattern includes at least one second time An electrode pattern having a plurality of through holes 31 200849652 having a second conductivity half _ ′ from which the second-order electrode pattern is extended to be the first electrode pattern One of the portions is in the shape of a closed portion; and the other portion of the one-person electrode® is partially enclosed and has a closed shape. The second conductive contact with the mi is formed in the through hole. And each of the light-emitting elements having the second conductive electrode pattern is connected to the second electrode, and the improved electrode structure electrical electrode pattern of the item 13 is matched with the conductive electrode pattern The light guide of the two guides is changed to the second electrode of the u-electrode structure. The A-electrode pattern contains two mirror images and two second conductive electrode patterns. Second electrode pattern. The improved electrode structure according to item 13 of the invention has substantially the same distance between each portion of the second conductive electrode pattern and the corresponding portion of the twin electrode pattern. The improved electrode structure described in item 13 of the benefit range has a first conductive electrode pattern which is in direct contact with the improved electrode structure 32 as described in claim 13 of the present invention. And an element, wherein the first conductive electrode pattern comprises a twisted s-type electrode pattern and a twisted inverted S-type electrode pattern, wherein the S-type electrode pattern is in an opposite relationship with the inverted S-type electrode pattern and electrically connected to each other. 19. The light-emitting element of the improved electrode structure of claim 13, wherein the first conductive electrode pattern comprises at least one first contact pad connecting the first electrode pattern, and the second electrode pattern The conductive electrode pattern includes at least one second contact pad connected to the second sub-electrode pattern, wherein the first contact pad and the second contact pad are adjacent to a periphery of the illuminating element 0. 20 as described in claim 19 The light-emitting element of the improved electrode structure, wherein the size of the through-hole opening of the through-hole along the second conductive electrode pattern is gradually increased as the distance from the second contact pad is increased. The light-emitting element of the improved electrode structure according to Item 18, wherein the first conductive electrode pattern comprises a pair of finger electrodes respectively from the S-type electrode pattern and one end of the inverted S-type electrode pattern The periphery of the first conductive semiconductor layer extends toward the second conductive electrode pattern. The light-emitting element of the improved electrode structure of claim 13, further comprising a current distribution layer formed between the first conductive electrode pattern and the first conductive semiconductor layer; And the first conductive electrode pattern is in electrical contact with the current distribution layer. 33.200849652, issued by H. 4if Fan, part of the improved electrode structure at the bottom of the periphery of the modified electrode structure, a plurality of position alignment marks formed on the base of the improved electrode structure connection W / The electro-deuterium electrode pattern includes one of the electrically-inverted gamma-type points Hi from the pair of arc-shaped electrodes extending toward the light-emitting surface: a special two-touch system formed in the pair of arc-shaped electrodes. The first contact pattern includes a second contact pad located at a symmetrical position of the two conductive electrodes. One of the turtle-shaped electrode patterns is one of the items described in claim 25, and the light-emitting 7-piece member, wherein the through-holes along the through-hole opening σ of the good electrode structure are The farther away from the ^ electrode pattern is larger. The front pad is gradually added 2 into the 1' of the patent application scope, which has the first conductive electrode pattern and the electrode structure and one branch have a degree of separation. The inverted gamma type 28 is the same as described in claim 13, wherein the first conductive electrode pattern electrode structure electrode pattern and the -L type branch electrode are from the type =, 匕-distorted α-lower extension and a twisted inverted E-electrode pattern and a rabbit egg pattern of one end splitting branch electrode from 34 200849652 The twisted inverted E-shaped electrode pattern extends downwardly at one end. 29. As claimed in claim 28 The illuminating device of the improved electrode structure, wherein the first conductive electrode pattern comprises at least one first contact pad and the second conductive electrode pattern comprises at least one second contact pad, wherein the first Contact pad and the second contact pad The illuminating element having the improved electrode structure according to claim 29, wherein the through holes are open through the through hole opening having the second conductive electrode pattern The illuminating element having the improved electrode structure as described in claim 13 further includes an insulating layer formed on the first conductive layer. The electrode pattern is disposed between the first conductive semiconductor layer and the first conductive electrode pattern has a plurality of first conductive contacts extending through the insulating layer until the first conductive semiconductor layer. A light-emitting element having an improved electrode structure as described in claim 31, wherein the insulating layer is selected from the group consisting of cerium oxide, glass, and spin-on glass (SOG). A light-emitting element having an improved electrode structure according to claim 1, wherein a reflector is further formed under the substrate. 34. As described in claim 33 Improved electrode structure 35 200849652 Light-emitting element of the genus layer, wherein the reflector comprises a gold sulphide. The improved electrode structure x 70 ox, as described in the fourth claim 4, wherein the metal layer Contains aluminum, silver or silver aluminum alloy. 之恭Γ·如中請專利範圍第33項所述之具改良式電極結構 人^ 9元件,其中該反射益為一疊層結構,係包含一透光 "氣層及一金屬層,該透光介電層係形成於該基底下方。 么一 ^7·如申請專利範圍第36所述之具改良式電極結構之 I光元件’其中該反射器包含一二氧化矽層及一鋁金屬層。 一 38·如申睛專利範圍第33所述之具改良式電極結構之 發光元件,其中該反射器為一疊層結構,係包含一二氧化 矽層、一布拉格反射器及一金屬層。 39·如申請專利範圍第13項所述之具改良式電極結構 之發光元件,其中更包含一反射器係形成於該基底下方。 40·請專利範圍第39所述之具改良式電極結構之發光 元件,其中該反射器包含一金屬層。 41·如申請專利範圍第4〇項所述之具改良式電極結構 之發光元件,其中該金屬層包含鋁、銀或銀鋁合金。 42·如申請專利範圍第39所述之具改良式電極結構之 發光元件,其中該反射器為一疊層結構,係包含一透光介 36 200849652 電層及一金屬層,該透光介電層係形成於該基底下方。 43. 如申請專利範圍第42項所述之具改良式電極結構 之發光元件,其中該反射器包含一二氧化矽層及一鋁金屬 層。 44. 如申請專利範圍第39項所述之具改良式電極結構 之發光元件,其中該反射器為一疊層結構,係包含一二氧 化石夕層、一布拉格反射器及一金屬層。 45. 如申請專利範圍第13項所述之具改良式電極結構 之發光元件,其中該等通孔之截面形狀係選自下列任一 者··圓形、楕圓形、正方形及矩形。 46. 如申請專利範圍第31項所述之具改良式電極結構 之發光元件,其中該等具第一導電性接觸截面形狀係選自 下列任一者:圓形、楕圓形、正方形及矩形。 ( 47.如申請專利範圍第13項所述之具改良式電極結構 之發光元件,其中更包含一絕緣層形成於該具第二導電性 電極圖案與該具第一導電性半導體層之間及每一該通孔的 内周壁。 48.如申請專利範圍第47項所述之具改良式電極結構 之發光元件,其中該絕緣層係選自下列任一材質:空氣、 二氧化矽、玻璃及旋轉塗佈玻璃(Spin-On_Glass,SOG)。 37In accordance with the scope of claim 33, the improved electrode structure of the human element 9 wherein the reflection benefit is a laminated structure comprising a light transmissive layer and a metal layer. A light transmissive dielectric layer is formed under the substrate. The optical element of the improved electrode structure as described in claim 36, wherein the reflector comprises a ruthenium dioxide layer and an aluminum metal layer. A light-emitting element having an improved electrode structure according to claim 33, wherein the reflector is a laminated structure comprising a ruthenium dioxide layer, a Bragg reflector, and a metal layer. 39. A light-emitting element having an improved electrode structure according to claim 13 further comprising a reflector formed below the substrate. 40. The illuminating element of the improved electrode structure of claim 39, wherein the reflector comprises a metal layer. 41. A light-emitting element having an improved electrode structure as described in claim 4, wherein the metal layer comprises aluminum, silver or a silver-aluminum alloy. 42. The light-emitting device of the improved electrode structure according to claim 39, wherein the reflector is a laminated structure comprising a light-transmissive layer 36 200849652 electrical layer and a metal layer, the transparent dielectric A layer is formed below the substrate. 43. A light-emitting element having an improved electrode structure according to claim 42 wherein the reflector comprises a ruthenium dioxide layer and an aluminum metal layer. 44. A light-emitting element having an improved electrode structure according to claim 39, wherein the reflector is a laminated structure comprising a silica layer, a Bragg reflector and a metal layer. The light-emitting element of the improved electrode structure according to claim 13, wherein the cross-sectional shape of the through holes is selected from the group consisting of a circle, a circle, a square, and a rectangle. The light-emitting element of the improved electrode structure of claim 31, wherein the first conductive contact cross-sectional shape is selected from the group consisting of: a circle, a circle, a square, and a rectangle . The light-emitting device of the improved electrode structure of claim 13, further comprising an insulating layer formed between the second conductive electrode pattern and the first conductive semiconductor layer; The illuminating element of the improved electrode structure according to claim 47, wherein the insulating layer is selected from the following materials: air, cerium oxide, glass and Spin-coated glass (Spin-On_Glass, SOG). 37
TW96120951A 2007-06-11 2007-06-11 Light-emitting device with improved electrode structures TWI375334B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96120951A TWI375334B (en) 2007-06-11 2007-06-11 Light-emitting device with improved electrode structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96120951A TWI375334B (en) 2007-06-11 2007-06-11 Light-emitting device with improved electrode structures

Publications (2)

Publication Number Publication Date
TW200849652A true TW200849652A (en) 2008-12-16
TWI375334B TWI375334B (en) 2012-10-21

Family

ID=44824204

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96120951A TWI375334B (en) 2007-06-11 2007-06-11 Light-emitting device with improved electrode structures

Country Status (1)

Country Link
TW (1) TWI375334B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832310A (en) * 2011-06-13 2012-12-19 新世纪光电股份有限公司 Light emitting diode structure
US8637891B2 (en) 2008-09-09 2014-01-28 Toshiba Techno Center Inc. Light-emitting device with improved electrode structures
US8779457B2 (en) 2009-04-09 2014-07-15 Huga Optotech Inc. Electrode structure and light-emitting device using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637891B2 (en) 2008-09-09 2014-01-28 Toshiba Techno Center Inc. Light-emitting device with improved electrode structures
US9324915B2 (en) 2008-09-09 2016-04-26 Kabushiki Kaisha Toshiba Light-emitting device with improved electrode structures
US8779457B2 (en) 2009-04-09 2014-07-15 Huga Optotech Inc. Electrode structure and light-emitting device using the same
TWI470824B (en) * 2009-04-09 2015-01-21 Huga Optotech Inc Electrode structure and light-emitting device using the same
US9281459B2 (en) 2009-04-09 2016-03-08 Huga Optotech, Inc. Light-emitting device
CN102832310A (en) * 2011-06-13 2012-12-19 新世纪光电股份有限公司 Light emitting diode structure
CN102832310B (en) * 2011-06-13 2015-11-25 新世纪光电股份有限公司 Light emitting diode structure
CN105390581A (en) * 2011-06-13 2016-03-09 新世纪光电股份有限公司 Light emitting diode structure

Also Published As

Publication number Publication date
TWI375334B (en) 2012-10-21

Similar Documents

Publication Publication Date Title
US11721791B2 (en) Light-emitting device with semiconductor stack and reflective layer on semiconductor stack
CN104471727B (en) Light emitting semiconductor device
KR100694784B1 (en) Flip-chip electrode light-emitting element formed by multilayer coatings
CN104733599B (en) Semiconductor light-emitting elements
US20070102711A1 (en) Led having a reflector layer of improved contact ohmicity and method of fabrication
JP2014131074A (en) Low optical loss electrode structure for led
TW200926461A (en) Improved LED structure
TW201013973A (en) Light emitting diode, and package structure and manufacturing method therefor
TWI636582B (en) Light emitting device
CN108140700A (en) Luminescent device
TW201724559A (en) Light-emitting device
TWI538184B (en) Light-emitting diode array
KR101890691B1 (en) Semiconductor light emitting element
CN113809210A (en) Light emitting diode chip, light emitting device and display device
US20130328077A1 (en) Light-emitting element
JP2002246648A (en) Wavelength conversion type semiconductor device
TW200849652A (en) Light-emitting device with improved electrode structures
US20180301596A1 (en) Semiconductor light emitting diode
TW201027792A (en) Light-emitting diode with high light-emitting efficiency
JP2009238931A (en) Semiconductor light-emitting element and manufacturing method therefor, and luminaire using the element
TW201442275A (en) Light emitting device
TWI660522B (en) Optoelectronic device
TW201727937A (en) Light-emitting diode device
CN114141924B (en) Light emitting diode and preparation method thereof
US20240088335A1 (en) Light-emitting device and light-emitting element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees