TWI224428B - Loop filter capacitor leakage current control - Google Patents
Loop filter capacitor leakage current control Download PDFInfo
- Publication number
- TWI224428B TWI224428B TW092109682A TW92109682A TWI224428B TW I224428 B TWI224428 B TW I224428B TW 092109682 A TW092109682 A TW 092109682A TW 92109682 A TW92109682 A TW 92109682A TW I224428 B TWI224428 B TW I224428B
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit
- leakage current
- signal
- control
- capacitor
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 80
- 238000012360 testing method Methods 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims description 11
- 230000009471 action Effects 0.000 claims description 9
- 230000004044 response Effects 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 238000005513 bias potential Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 13
- 230000008859 change Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 11
- 230000007704 transition Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 241000282376 Panthera tigris Species 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 240000001592 Amaranthus caudatus Species 0.000 description 1
- 235000009328 Amaranthus caudatus Nutrition 0.000 description 1
- 206010011469 Crying Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 244000062793 Sorghum vulgare Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 235000019713 millet Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/081—Details of the phase-locked loop provided with an additional controlled phase shifter
- H03L7/0812—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/089—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
- H03L7/0891—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/089—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
- H03L7/0891—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
- H03L7/0893—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump the up-down pulses controlling at least two source current generators or at least two sink current generators connected to different points in the loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/16—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
- H03L7/18—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
Description
玖、發明說明: 【發明所屬之技術領域】 本發明係有關於# $ 、 Ί万、鎖疋迴路電路,並且尤其是有關於用 以控制鎖定迴路電路中 吟τ之迴路濾波器之電容器的漏電流之 方法及裝置。 【先前技術】 如在第1圖中所示,除了其它的組件以外,典型的電 腦糸統⑽具有微處理器(12)、_或多種型式的記憶體(14) 一 /、有特疋功Α的積體電路(16卜以及週邊電腦資源(未顯 :出)例如,監視器、鍵盤、軟體程式、等等。這些組件 係、、、工由例如疋導線、匯流排、等等的通訊路徑。9)彼此連 通以達成該電腦系統(10)的各種工作。 為了適當地達成此種工作,該電腦系統(1〇)係依據护 間為基礎來協調其各種動作。為該…晶體振盈器J 係產生系統時脈信號(在該項技術中已知被稱做為“參考昉 脈亚且在$ 1目中被顯示& SYS-Clk)給電腦系統( 各種部件。^,現代的微處理器與其它的積體電路血别 都能夠運作在遠高於該系統時脈信號的頻率下,因此石、 電腦系統(10)中牽涉到微處理器(12)與其它的 確保 、τ〈重力作台匕 夠使用到適當且精確的時間參考變成是重要的。 b 在電腦系統(10)中被使用來確保在該系統時脈俨n 及微處理器時脈信號(亦即,“晶片時脈信號Z號= chip_clk)之間適當的時間參考之一個組件θ — s、疋 相位鎖疋迴路(p L L) (2 0)的時脈產生器類型。p l q 2 : ζ, ο 種控制振盪器以使得該 # %炎门— 辰盈、准持一個相對於該系統時脈 t谠為固疋的相位之電 七斗/ °月苓考弟1圖,PLL(2〇)呈 有该糸統時脈信號作A並於 ,、 , 料為其輸人(n統時脈信號是其參抑 唬)亚且輸出一個晶片時脈 「WT1D Otp、 4杜弟1圖中被顯示為 -)給微處理器(12)。該系統時脈信號以及晶片時 脈信號具有—種由PLL(2G)所控制之衫的相位與頻率之 關係。此種介於系統時脈信號以及晶片時脈信號的相位與 頻车之間的關係確保在微處理器〇2)中之各種組件能夠使 用-種受控制且可靠的時間參考。然而,當此種關係不被 PLL(2〇)維持時’在該電腦系統⑽中之動作將變為不確定 的。 第2圖係顯示典型的PLL⑽)之方塊圖。該PLL(200) 係包含一個PLL核心(250)、緩衝器(212、214、216、218) 、以及在回授迴路路徑上的回授迴路㈣(221)。該緩衝器 (212、2 14)係增加輸㈣脈㈣(215)的驅動強度以提供微 處理器(在第i圖中的12)之其它的電路一個晶片時脈信號 (217)。該緩衝器(216、218)係緩衝該晶片時脈信號(217)至 微處理器(在第1圖中的12)之另外的電路。由緩衝器(212 、214、216、2 18)所產生的時間延遲係反應在被供應至 PLL核心(250)的回授信號(221)中。 該PLL核心(250)係被設計來輸出晶片時脈信號(2 17) ,該晶片時脈信號(217)是系統時脈信號(2〇1)的一個倍數。 當PLL在‘‘鎖定”中,晶片時脈信號(217)以及系統時脈信號 (201)係維持一特定的相位關係。為了容許有不同的乘法比 1224428说明, Description of the invention: [Technical field to which the invention belongs] The present invention relates to # $, Ί 万, lock loop circuits, and in particular, to the leakage of capacitors used to control loop filters in locked loop circuits. Method and device for electric current. [Prior art] As shown in Figure 1, among other components, a typical computer system has a microprocessor (12), multiple types of memory (14), and / or special functions. A's integrated circuit (16b and peripheral computer resources (not shown: output), such as monitors, keyboards, software programs, etc .. These components are, for example, communication such as wire, bus, etc. Path. 9) communicate with each other to accomplish various tasks of the computer system (10). In order to achieve this kind of work properly, the computer system (10) coordinates its various actions on the basis of the nursery. Generate the system clock signal for this ... crystal oscillator J series (known in the art as "Reference 昉 昉 Asian and shown in $ 1 heading & SYS-Clk) to a computer system (various Components. ^ Modern microprocessors and other integrated circuits can operate at frequencies much higher than the clock signal of the system. Therefore, microprocessors (12) are involved in computer systems (10). As with other guarantees, τ <gravity becomes important to use an appropriate and accurate time reference. B is used in the computer system (10) to ensure that the system clock 俨 n and the microprocessor clock One component θ — s, the phase-locked loop (p LL) (2 0) clock generator type between signals (ie, "chip clock signal Z number = chip_clk) at an appropriate time reference. Plq 2 : ζ, ο Kinds of oscillators to control the #% 炎 门 — Chen Ying, quasi holding a phase of the electric Qidou / ° Yingling test brother 1 relative to the system clock t 谠, PLL ( 2〇) The clock signal of this system is A and the input is expected to be (, the clock signal of the n system is its parameter suppression) A chip clock "WT1D Otp, 4 Dudi 1 is shown as-) in the chip is output to the microprocessor (12). The system clock signal and the chip clock signal are controlled by the PLL (2G) The relationship between the phase and frequency of the shirt. This relationship between the phase of the system clock signal and the clock signal of the chip and the frequency car ensures that the various components in the microprocessor 02) can be used-a controlled and Reliable time reference. However, when this relationship is not maintained by the PLL (20), the actions in the computer system will become uncertain. Figure 2 shows a block diagram of a typical PLL.) The The PLL (200) system includes a PLL core (250), a buffer (212, 214, 216, 218), and a feedback loop (221) on the feedback loop path. The buffer (212, 2 14) It is to increase the driving strength of the input pulse (215) to provide a chip clock signal (217) for the other circuits of the microprocessor (12 in the i). The buffers (216, 218) buffer the The chip clock signal (217) is another circuit to the microprocessor (12 in Fig. 1). By the buffer (212 , 214, 216, 2 18) The time delay generated is reflected in the feedback signal (221) supplied to the PLL core (250). The PLL core (250) is designed to output the chip clock signal (2 17), the chip clock signal (217) is a multiple of the system clock signal (201). When the PLL is in "lock", the chip clock signal (217) and the system clock signal (201) are Maintain a specific phase relationship. To allow for different multiplication ratios, 1224428
迴路信號(221)係使用一個除以B的電路(224)。 一個相位-頻率檢測器(202)係對齊時脈 及%Γ脈B仏號(22 3)的轉變邊緣與頻率。言》 為(202)係调整其輸出頻率,以便於將時脈 卜脈A信號(221)以 。該相位-頻率檢測 脈A信號(221)以 及時脈B ^號(223)之間任何的相位以及頻率之差異降至零 。該相位-頻率檢測器(202)係產生控制充電泵(2〇4、' 234): 信號。該相位-頻率檢測器(202)係利用控制信號up(2〇3)與 DOWN(205)來控制該充電泵(2〇4、234),以增加或是減少 充電泵的輸出。充電泵(204)係將電荷加入或是移出一個電 容器C1(206),其係改變在偏壓產生器(2〇8)的輸入處之電 位。6亥%谷斋(2〇6)係連接在電源Vdd以及控制電壓 VCTRL(207)之間。該充電泵(234)係將電荷加入或是移出一 個偏壓產生器(208)的偏壓電壓VBP(209)。 該偏壓產生器(208)係響應於該控制電壓(2〇7)以產生偏 壓電壓VBP(209)以及Vbn(211)。該PLL核心(25〇)可以藉由 加入該充電泵(234)至偏壓產生器(208)的偏壓電壓Vbp(2〇9) 而自偏壓。一個第二充電泵(234)的加入係容許一個與該電 容器(206)串聯的電阻器被移除。壓控振盪器(21〇)係產生一 個輸出#號(2 13)為具有一相關於該偏壓電壓vBp(2〇9)以及 1224428 vbn(21 1)的頻率。 ‘‘除法,,電路(220、222、224)係決定藉由該PLL核心 (250)所棱供的倍頻因數。“除法,,電路(22〇、222、224)的加 入係使得該PLL核心(250)能夠倍增系統時脈信號(2〇1)。 當晶片時脈信號(2 17)必須具有高於系統時脈信號(2〇1)的頻 率時,倍增系統時脈信號(2〇1)是有用的。The loop signal (221) uses a circuit (224) divided by B. A phase-frequency detector (202) aligns the transition edges and frequencies of the clock and% Γ pulse B 仏 (22 3). The word "(202)" adjusts its output frequency so that the clock and pulse A signals (221) are given by. The phase-frequency detection pulse A signal (221) is reduced to zero with any phase and frequency difference between the clock B ^ (223). The phase-frequency detector (202) generates a signal for controlling the charge pump (204, '234) :. The phase-frequency detector (202) uses the control signals up (203) and DOWN (205) to control the charge pump (204, 234) to increase or decrease the output of the charge pump. The charge pump (204) adds or removes charge from a capacitor C1 (206), which changes the potential at the input of the bias generator (208). The 60% Guzhai (206) is connected between the power source Vdd and the control voltage VCTRL (207). The charge pump (234) adds or removes charge to or from a bias voltage VBP (209) of a bias generator (208). The bias generator (208) is responsive to the control voltage (207) to generate bias voltages VBP (209) and Vbn (211). The PLL core (25) can be self-biased by adding a bias voltage Vbp (209) of the charge pump (234) to the bias generator (208). The addition of a second charge pump (234) allows a resistor in series with the capacitor (206) to be removed. The voltage-controlled oscillator (21〇) generates an output # (2 13) with a frequency related to the bias voltage vBp (209) and 1224428 vbn (21 1). ‘Divide, the circuit (220, 222, 224) determines the multiplication factor provided by the PLL core (250). "Division, the addition of the circuit (22, 222, 224) enables the PLL core (250) to multiply the system clock signal (201). When the chip clock signal (2 17) must be higher than the system It is useful to multiply the system clock signal (201) at the frequency of the pulse signal (201).
例如,在正常的動作期間,變數A與c都可以分別在 除=A的電路(220)以及除以c的電路(222)中被設定為工 夂數B可以在除以b的電路(224)中被設定為工〇。該相 位-頻率檢測器(202)係對齊時脈A信號(221)以及時脈B信 號(223)的轉、交邊緣與頻率。該相位-頻率檢測器(搬)係調 整PLL核心(250)的輸出時脈信號(215)之頻率,以便於將 時脈A信號口川以及時脈B信號(223)之間任何的相位以 及頻率之差異降至零。因為時脈B信號(223)具有一個將其 輸入頻率降低]〇倍之除以B的電路(224),因此該相位·頻 率檢測器(202)係調整該壓控振盪器(21〇)的輸出信號(2ι3) 至们南方、日$脈A ^號(22 1) 1 0倍的頻率。於是,晶片時 脈信號(217)在頻率上是高於系統時脈信號⑽)1()倍。T 。微處理器的功率消耗係至關重要的。降低晶片時脈信 號(21 7)的頻率係減少在該微處理器(在第丨圖中的I])中^ 其它的電路之開關速率。當微處理器中沒有任何活動一段 長期的時間時’可以進入一個低功率的模式。較慢的心 速率典型地係降低微處理器(在第i圖中白勺12)的功率消耗 1224428 在晶片時脈信號(217)的頻率上的變化係藉由改變在除 法電路(220、222、224)中的比率所完成。例如,在降低= 率之動作期間,變數A可以在該除以a的電路(㈣中被 設定為16;該變數B可以在該除以B的電路(224)中^ 定為並且該變數c可以在該除以c的電路(222)中被: 定為32。在此例中,晶片時脈信號(217)的頻率 二 脈信號⑽扉倍。同時,相較於以上未降低功率的例子守 ,该相位-頻率檢測器(202)更新的頻率係減少Μ倍。 微處理器(在第丨圖中所示的丨 : ΡΤ Τ )之適畜的動作係依賴 (2〇咐糸㈣脈信號(加)與晶片時脈”⑺狀間維 寺個固定的相位以及頻率的關係。 由於現代的電腦頻率持續增加,快速地在晶 間傳送資料之需求也拎Λ , 面之 up 為了正確地接收資料,通常係 料何時應該藉由接收哭、力抖。柄脈信號係決定該資 積田接收益电路加以取樣或是問鎖。 。/:=號可以在該資料是有效的期間之開始時轉變 然而,该接收器電路 知文 有效的期間之中間“計f信號是在該資料是 能在從其傳送點開::,:。同時,該時脈信號的傳送可 個延遲鎖… 時降低品質。在兩種情形中,- 個延遲鎖疋迴路(或是‘ 時脈信號-個固定的相個相對於原始的 第3圖係顯示 :、化脈“虎。 八。K # _ ~ 典坦的電腦系統組件(100)之一個部 刀…見的資料(1Μ)係從 ), 叩34)(也被稱為“接收器 Aon)傳达至笔路 ) 為了助於該傳送的資科 ,回復,一個時脈信號(116)也和該資料(114)一起被傳送。 忒些電路也可以具有一條路徑來從電路B(1 34)傳送資料以 及頜外的時脈(未顯示出)至電路A(i 12)。該時脈信號 〇1 6)可以在資料傳送的開始從一個狀態轉變成另一個狀態 兒路B(134)係需要一個在時間上位於有效的資料之開始 後某& k間的時脈信號。再者,該時脈信號⑴6)在傳送的 』間可能已經降低品質。DLL係具有功能來再生該時脈信 5虎(1 16)至一個有效的狀態並且產生該時脈信號(1 16)之一個 相私後的版本以供其它的電路使用。例如,該接收器電路 = 34)可以使用該時脈信號(116)之相移後的版本作為接收器 =路之取樣h唬。該接收器電路的取樣信號係決定接收器 電路的輸入應該在何時被取樣。DLL的效能是重要的,因 而DLL必須在CPU或是一般來說的積體電路之上維持適 當的時間參考。 第4圖係顯示典型的DLL(3〇〇)之方塊圖。時脈信號 (3〇1)係輸入到DLL(300)以產生一個定相的(亦即,延遲的^ 幸刖出。日守脈信號(301)係輪入到一條壓控延遲線(3丨〇)以及— 個相位檢測器(3〇2)。該相位檢測器(3〇2)係量測在時脈信號 (301)以及壓控延遲線(31〇)的輸出信號一〇ut(3i7)之間的^ 相位差是否具有所要的延遲量。該相位檢測器(3〇2)係產生 控制充電泵(304)的信號。該相位檢測器(3〇2)係利用上與下 #唬,U(303)與D(305)來控制該充電泵(3〇句以增加或是減 少其輸出電流。為了確保該充電泵(3〇4)維持某個標稱 (nominal)電流輸出,充電泵(3〇4)是内部偏壓的。充電泵 12 1224428 (304)的内部偏壓係依據偏壓信號vBp(3〇9)與vBN(311)而定 ’該等偏壓信號係從偏壓產生器(3〇8)(以下所論述者)所產 生。該上與下信號(303、305)係相對於藉由偏壓信號〇9 、31 1)所設定的標稱電流來調整充電泵(3〇4)的電流輸出。 5亥充電系(304)係將電荷加入或是移出一個電容器 <^(3 06),其於是改變在偏壓產生器(3〇8)的輸入處之電位。 该電容器(306)係連接在電源V〇D以及控制信號Vctrj3〇7) 之間。該偏壓產生器(308)係響應於該控制信號(3〇7)來產生 忒偏壓化唬(3〇9、311),其於是控制壓控延遲線(3 1〇)的延 遲並且維持一個從該充電泵(3〇4)輸出的標稱電流。 在第4圖中,該壓控延遲線1〇)可以利用電流匱乏的 (starved) το件來做成。此表示延遲是藉由改變用於充電與 放電電谷之可用的電流量來加以控制。一條壓控延遲線的 知· f生之線丨生係决疋DLL(300)能夠運作的頻率之穩定範圍。 該壓控延遲線(31〇)的輸出信號(317)係代表時脈信號(3〇1) 之一個相位延遲的複製,其係接著被其它的電路所使用。 仍然請參考帛4圖,在DLL(3〇〇)中藉由該輸出信號 (3 17)所產生的負回授係調整通過該壓控延遲線(3 1〇)的延遲 。相位檢測器(302)係積分在時脈信號(3〇1)以及輸出信號 (317)之間產生的相位誤差。該壓控延遲線⑽)係延遲輸出 信號㈣一段固定的時間^,使得在時脈信號⑽)以及輸 出信號(3 17)之間所要的延遲係被維持住。 於是,接收器電路(在第3圖中的134)之適當的動作係 依據該DLL(300)在時脈信號⑽)以及輸出信號㈠⑺之間 13 維持一個固定的相位延遲而定。 【發明内容】 根據本發明的一或多個眚 雷牧/ 夕個男轭例之一項特點,一種積體 路係包括··( 1) 一個鎖定迴路雷 电路’其係包括用於檢測在 10弟一時脈信號以及一個 梦番 1固乐一Η脈信號之間的相位差之 衣置、用於依據該相位差來產生一 個彳少水座生個控制信號之裝置、一 衣據该控制信號來儲存一電 兮k & 电何之電谷态、以及用於依據 W亡制信號來產生該第二時脈 ^ ^ 了狐乜琥之衷置,以及(2)一個漏 包 '桃控制電路,其係運作地連接 ^ 、、六咖& 逆接至3電谷态,其中該漏電 机工制電路係被配置以調整該所儲存的電荷。 根據本發明的一或多個實施例之一項特點,一種用於 ^ 丁一個鎖定迴路電路的動作之方法係包括:比較在—個 時脈信號以及一個第二時脈信號之間的相位差;依據 /比k來產生一個控制信號;依據該控制信號,利用一個 連:至该控制信號的電容器來儲存電# ;控制該電容器的 漏電流;並且依據該控制信號來產生該第二時脈信號。 本發明其它的特點及優點從以下的說明以及所附的申 請專利範圍將會是顯而易見的。 【實施方式】 隨著被用來實施像是PLL/DLL之積體電路組件的元件 特徵(例如電晶體特徵)持續地變小,其可能具有更大的漏 電流(亦即,較大的閘極隧穿電流)。這是因為當電晶體特 欲被 < 冲的越小’電晶體的氧化物層(位在該電晶體的閘極 與半‘體基板之間)之厚度係被減少。當氧化物層被減少到 14 1224428 幾埃(angstrom)時,電晶體的閘極端子開始漏電荷到該電 晶體之其它的端子。在迴路濾波器之電容器的情形中,該 電容器從電容的角度來看典型所要的是大的電容,並且能 夠用一個電晶體來加以做成’而此種在電晶體尺寸特徵上 的減少以及伴隨的漏電流之增加可能會不利地影響到 PLL/DLL的性能。在某些情形中,特定的漏電流量通過迴 路濾波器之電容器時甚至可能會造成PLL/DLL故障。於是 ’對於一種能夠防護免於或是補償該迴路渡波器之電容器、 的漏電流之PLL/DLL設計存在著需求。 第5圖係顯示根據本發明的一個實施例之範例的鎖定 迴路電路。熟習此項技術者將會瞭解到儘管在第5圖中之 特定類型的鎖定迴路電路是一種PLL(470),本發明的原理 係可類似地應用至DLL。在第5圖中,該PLL(470)係利用 一個檢測在輸入時脈信號elk—in(474)以及回授時脈信號 fbk一clk(476)之間的相位差之相位頻率檢測器(472)。依據 藉由該相位頻率檢測器(472)所檢測出的相位差,該相位頻 率檢測器(472)係在UP(478)與DOWN(480)信號上輸出脈衝 至一個充電泵(482)。該充電泵(482)係依據在UP(478)與 DOWN(480)信號上的脈衝來產生一個電壓控制信號 Vctrl(484)。 為了 fe疋性,该PLL(47〇)係利用一個藉由迴路濾波器 之電容器(486)以及迴路濾波器之電阻器(487)所構成的迴路 渡波器,其係運作地連接至該電壓控制信號(484)。該迴路 濾波器之電容器(486)係依據該電壓控制信號(484)來儲存/ 1224428 消散電荷。熟習此項技術者將會暸解到該迴路濾波器之電 容器(486)可以利用一個金屬氧化半導體場效電晶體 (MOSFET)的閘極電容來加以做成。該1^(478)與 DOWN(480)信號在每個時脈週期只被提供脈衝〆次’因而 該電壓控制信號(484)可能會因為迴路濾波器之電容器(486) 的漏電流而無法被維持。為了防護免於與較小的電晶體特 徵有關之增加的漏電流,一個漏電流控制電路(488)係被設 置在該迴路濾波器之電容器(486)以及電位Vdd(49〇)之間。 熟習此項技術者將會注意到在一或多個其它的實施例中’ 該漏電流控制電路(488)可以連接到一個電位Vss ’或是接 地(如在第7圖中所示),而非該電位Vdd(490)。 如在第5圖中所示,該漏電流控制電路(488)係運作地 連接至UP(478)與DOWN(480)信號,使得該漏電流控制電 路(488)能夠(1)容許迴路濾波器之電容器(486)在充電泵 (482)是‘開’時漏電流(該充電泵(482)被說成‘開’是在充電泵 (482)主動地提供或是汲取電流往返於該電壓控制信號(484) 時)、以及(2)當該充電泵(482)是‘關,時,限制迴路濾波器 之電容器(486)的漏電流。熟習此項技術者將會瞭解到不論 何時該UP(478)與DOWN(480)信號中的一個或是兩個信號 被提供脈衝時,該充電粟(482)係在該脈衝的期間打開。 漏電流控制電路之更詳細的說明係在以下參考第6與7圖 被提供。 請參考第5圖,該電壓控制信號(484)係作為一個輸入 至偏壓產生器(492),該偏壓產生器(492)係產生至少一個偏 16 1224428 壓信號(494)至壓控振盪器(Vc〇)(496)。該壓控振盪器(496) , 係依據來自偏壓產生器(492)之至少一個偏壓信號(494)以產 生一個輸出時脈信號clk_out(498)。除了作為PLL(470)的 一個輸出之外,該輸出時脈信號(498)係透過時脈分布網路 (400)以及回授除法器(402)而被回授到相位頻率檢測器 (472)的一個輸入。熟習此項技術者將會注意到在一或多個 其它的實施例中,該PLL(470)可以不用該偏壓產生器(492) ,而藉由運作地連接該壓控振盪器(496)與電壓控制信號 (484)來加以做成。 _ 第6圖係顯示在第5圖中所顯示之根據本發明的一個 實施例之漏電流控制電路(488)的一種做法。在第6圖中, 該漏電流控制電路(488)係包含一個p通道電晶體開關(500) . 以及 NOR閘電路(508),其係響應於該 UP(478)與 DOWN(480)信號(如在第5圖中所示為來自相位頻率檢測 器(472))。更特定地說,該p通道電晶體開關(500)具有一 個第一端子(502)運作地連接至電位vdd(490)、以及一個第 二端子(504)運作地連接至迴路濾波器之電容器(486)。該p _ 通道電晶體開關(500)的閘極端子(506)係運作地連接至 N0R閘電路(508)的輸出。當UP(478)與DOWN(480)信號 中的一個或是兩個信號是‘高,時,該N〇r閘電路(508)係輸 出‘低’,並且當該UP(478)與DOWN(480)信號兩個都是‘低 ’時’其係輸出‘高,。於是,當UP(478)與DOWN(480)信號 中的一個或是兩個信號是‘高,時,(亦即,該充電泵(在第5 · 圖中的(482))是‘開,),該n〇R閘電路(508)係輸出‘低,至p 17 1224428 通迢電晶體開關(500),其於是使得p通道電晶體開關(5〇〇) 切換至(導通’並且容許迴路濾波器之電容器(486)漏電流。 相反地,當UP(478)與DOWN(480)信號兩個都是‘低,時(亦 即,該充電泵(在第5圖中的(482))是‘關,),N〇R閘電路 (5〇8)係輸出‘高’至p通道電晶體開關(5〇〇),其於是使得p 通迢電晶體開關(5〇〇)切換至‘關斷,並且限制迴路濾波器之 電容器(486)的漏電流。 由於此種配置,迴路濾波器之電容器(486)的漏電流係 叉到控制,因為它無法變成大於p通道電晶體開關(5〇〇)之 源極至汲極的電流。再者,因為該充電.泵(在第5圖中的 (482))在大部分的時間都是‘關,,因此迴路濾波器之電容器 (486)的漏電流之累積的縮減係有助於增進電壓控制信號 (484)的完整性,於是其帶來可靠且穩定的pLL動作。 第7圖係顯示根據本發明的另一實施例之漏電流控制 电路(514)。在第7圖中,一個PLL迴路濾波器之電容器 (5 10)係參考到電位Vss或是接地(5 12),而非電位vdd(在 罘5與6圖中的(490))。在此實施例中,該漏電流控制電 路(5 1 4)係包§ 一個n通道電晶體開關(5 1 6)、一個〇R閘電 路(524),其係響應於該up(478)與DOWN(480)信號(來自 如在第5圖中所示的相位頻率檢測器(472》。更特定地說 ,该η通迢電晶體開關(516)具有一個第一端子(52〇)運作地 連接至該接地電位(512)以及一個第二端子(518)運作地連接 至4迴路濾波為之電容器(5丨〇)。該η通道電晶體開關(5丨6) 的閘極知子(522)係運作地連接至該〇尺閘電路(524)的輸出 18 1224428 。當該UP(478)與DOWN(480)信號中的一個或是兩個信號 是‘高’時,該OR閘電路(524)係輸出‘高,,並且當該 UP(478)與DOWN(480)信號兩個都是‘低,時,其係輸出‘低, 。於是,當該UP(478)與D〇WN(480)信號中的一個或是兩 個信號是‘高’時,(亦即,該充電泵(在第5圖中的(482))是‘ 開’)’該OR閘電路(524)係輸出‘高,至該n通道電晶體開 關(5 1 6),於是其使得η通道電晶體開關1 6)切換至‘導通, ’並且容許該迴路濾波器之電容器(5丨〇)漏電流。相反地, 當该UP(478)與D〇WN(480)信號兩個都是‘低,時(亦即,該 充電泵(在第5圖中的(482》是‘關,),該〇R閘電路(52句係 輸出‘低’至該η通道電晶體開關(516),其於是使得n通道 電晶體開關(516)切換至‘關斷,並且限制該迴路濾波器之電 容器(5 1 6)的漏電流。 由於此種配置’迴路濾、.波器之電容器(則)的漏電流係 受到控制,因為它無法變成大於該n通道電晶For example, during normal operation, the variables A and c can be respectively set as the working number B in the circuit (220) of division = A and the circuit (222) divided by c (224 in the circuit divided by b) (224 ) Is set to 0. The phase-frequency detector (202) is aligned with the rotation, crossing edges and frequencies of the clock A signal (221) and the clock B signal (223). The phase-frequency detector (moving) adjusts the frequency of the output clock signal (215) of the PLL core (250), so that any phase between the clock A signal and the clock B signal (223) and The frequency difference drops to zero. Since the clock B signal (223) has a circuit (224) that reduces its input frequency by 0 times, it is divided by B, so the phase and frequency detector (202) adjusts the voltage-controlled oscillator (21〇). The output signal (2ι3) has a frequency of 10 times that of the south and the Japanese pulse A ^ (22 1). Therefore, the chip clock signal (217) is 1 () times higher than the system clock signal ⑽) in frequency. T. The power consumption of the microprocessor is critical. Reducing the frequency of the chip's clock signal (21 7) reduces the switching rate of the other circuits in the microprocessor (I] in the figure). When there is no activity in the microprocessor for a long period of time ', a low power mode can be entered. The slower heart rate typically reduces the power consumption of the microprocessor (12 in Figure i) 1224428. The change in the frequency of the chip clock signal (217) is by changing the frequency in the division circuit (220, 222 , 224). For example, during the action of reducing = rate, the variable A may be set to 16 in the circuit divided by a (㈣; the variable B may be set to ^ in the circuit divided by B (224) and the variable c In the circuit (222) divided by c, it can be: set to 32. In this example, the frequency of the chip clock signal (217) is doubled. At the same time, compared with the above example without reducing power In addition, the frequency updated by the phase-frequency detector (202) is reduced by a factor of M. The appropriate action of the microprocessor (shown in Figure 丨: PT Τ) is dependent on the pulse (20). The relationship between the signal (plus) and the clock of the chip "Waist-shaped Temple" has a fixed phase and frequency relationship. As the frequency of modern computers continues to increase, the need to quickly transfer data between crystals is also ΛΛ. Receiving data, usually when the material should be crying or shaking by receiving. The stalk signal determines whether the asset field receiving circuit is sampled or locked. The /: = sign can be at the beginning of the period when the data is valid. Transition, however, the receiver circuit is in the middle of the valid period "The f signal is when the data can be opened from its transmission point ::,:. At the same time, the transmission of the clock signal can be delayed by a delay lock ... In both cases, a delay lock loop (Or 'Clock signal-a fixed phase relative to the original Figure 3 shows :, the pulse "Tiger. Eight. K # _ ~ a part of Dian Tan's computer system components (100) ... see The information (1M) is from), 叩 34) (also known as "receiver Aon" is transmitted to the pen) In order to assist the transmission of resources, a clock signal (116) is also associated with the information (114) Teleported together. Some circuits may also have a path to transfer data from circuit B (1 34) and the extra-maxillary clock (not shown) to circuit A (i 12). The clock signal 〇1 6) can be changed from one state to another at the beginning of data transmission. Route B (134) requires a clock signal between some & k after the start of valid data in time. . Moreover, the clock signal ⑴6) may have degraded quality during transmission. The DLL has a function to regenerate the clock signal 5 (16) to a valid state and generate a private version of the clock signal (116) for use by other circuits. For example, the receiver circuit = 34) can use the phase-shifted version of the clock signal (116) as the receiver = the sample of the channel. The sampling signal of the receiver circuit determines when the input of the receiver circuit should be sampled. The performance of the DLL is important, so the DLL must maintain an appropriate time reference on the CPU or the integrated circuit in general. Figure 4 is a block diagram showing a typical DLL (300). The clock signal (301) is input to the DLL (300) to produce a phased (ie, delayed ^). The clock signal (301) is turned into a voltage-controlled delay line (3丨 〇) and a phase detector (302). The phase detector (302) measures the output signal of the clock signal (301) and the voltage-controlled delay line (31〇)-0ut ( Whether the phase difference between 3i7) has the desired delay amount. The phase detector (30) generates a signal to control the charge pump (304). The phase detector (30) uses the upper and lower # Fool, U (303) and D (305) to control the charge pump (30 sentences to increase or decrease its output current. To ensure that the charge pump (304) maintains a nominal current output, The charge pump (304) is internally biased. The internal bias of the charge pump 12 1224428 (304) is based on the bias signals vBp (309) and vBN (311). Generated by the bias generator (308) (discussed below). The up and down signals (303, 305) are adjusted relative to the nominal current set by the bias signals (09, 31 1). Charge pump (304) Current output. The charging system (304) adds or removes charge from a capacitor < ^ (3 06), which then changes the potential at the input of the bias generator (308). The capacitor (306 ) Is connected between the power supply VOD and the control signal Vctrj307). The bias generator (308) generates a bias bias (309, 311) in response to the control signal (307), and then controls and maintains the delay of the voltage-controlled delay line (310). A nominal current output from the charge pump (304). In Figure 4, the voltage-controlled delay line 10) can be made using a starved το current-deficient component. This means that the delay is controlled by changing the amount of current available for charging and discharging valleys. The knowledge of a voltage-controlled delay line depends on the stable range of frequencies that the DLL (300) can operate. The output signal (317) of the voltage-controlled delay line (31) represents a phase-delayed replica of the clock signal (301), which is then used by other circuits. Please still refer to Figure 4 to adjust the delay through the voltage-controlled delay line (31) in the DLL (300) through the negative feedback generated by the output signal (3 17). The phase detector (302) integrates a phase error generated between the clock signal (301) and the output signal (317). The voltage-controlled delay line ⑽) delays the output signal ㈣ for a fixed time ^, so that the required delay between the clock signal ⑽) and the output signal (3 17) is maintained. Therefore, the proper operation of the receiver circuit (134 in Figure 3) is determined by maintaining a fixed phase delay between the DLL (300) in the clock signal ⑽) and the output signal 13. [Summary of the Invention] According to one feature of one or more examples of the yak thunder / yoke of the present invention, an integrated circuit system includes ... (1) a locked loop mine circuit 'which includes a circuit for detecting The device for the phase difference between the 10th clock signal and a dream fan 1 Gule-1 pulse signal, a device for generating a control signal for the little water seat according to the phase difference, and the control according to the control Signal to store a power k & power and power valley state, and used to generate the second clock based on the W signal ^ ^ the intention of the foxtail, and (2) a missing packet The control circuit is operatively connected to the three electric valley states, and the leakage electric machine circuit is configured to adjust the stored electric charge. According to a feature of one or more embodiments of the present invention, a method for the action of a locked loop circuit includes: comparing a phase difference between a clock signal and a second clock signal ; Generate a control signal according to / ratio k; According to the control signal, use a capacitor connected to the control signal to store electricity #; control the capacitor's leakage current; and generate the second clock according to the control signal signal. Other features and advantages of the present invention will be apparent from the following description and the scope of the appended claims. [Embodiment] As the component features (such as transistor characteristics) used to implement integrated circuit components like PLL / DLL continue to become smaller, they may have larger leakage currents (ie, larger gates) Pole tunneling current). This is because the thickness of the oxide layer of the transistor (located between the gate of the transistor and the semi-body substrate) is reduced when the transistor is specifically < rushed. When the oxide layer is reduced to 14 1224428 angstroms, the gate terminal of the transistor begins to leak charge to the other terminals of the transistor. In the case of a capacitor of a loop filter, the capacitor typically requires a large capacitance from the perspective of capacitance, and can be made with a transistor ', and this reduction in the size characteristics of the transistor and the accompanying The increase in the leakage current may adversely affect the performance of the PLL / DLL. In some cases, a certain amount of leakage current may even cause the PLL / DLL to fail when passing through the capacitor of the loop filter. Therefore, there is a need for a PLL / DLL design that can protect against or compensate for the leakage current of the capacitor and the leakage of the loop wave transformer. Fig. 5 shows an example of a lock loop circuit according to an embodiment of the present invention. Those skilled in the art will appreciate that although the particular type of lock loop circuit in Figure 5 is a PLL (470), the principles of the present invention can be similarly applied to DLLs. In Figure 5, the PLL (470) uses a phase frequency detector (472) that detects the phase difference between the input clock signal elk-in (474) and the feedback clock signal fbk-clk (476). . Based on the phase difference detected by the phase frequency detector (472), the phase frequency detector (472) outputs pulses to a charge pump (482) on the UP (478) and DOWN (480) signals. The charge pump (482) generates a voltage control signal Vctrl (484) based on the pulses on the UP (478) and DOWN (480) signals. For the sake of convenience, the PLL (47〇) uses a loop filter composed of a loop filter capacitor (486) and a loop filter resistor (487), which is operatively connected to the voltage control. Signal (484). The capacitor (486) of the loop filter is based on the voltage control signal (484) to store / 1224428 to dissipate the charge. Those skilled in the art will understand that the capacitor (486) of the loop filter can be made using the gate capacitance of a metal oxide semiconductor field effect transistor (MOSFET). The 1 ^ (478) and DOWN (480) signals are only provided for one pulse per clock cycle. Therefore, the voltage control signal (484) may not be detected due to the leakage current of the capacitor (486) of the loop filter. maintain. To protect against the increased leakage current associated with the characteristics of the smaller transistor, a leakage current control circuit (488) is placed between the capacitor (486) of the loop filter and the potential Vdd (49). Those skilled in the art will notice that in one or more other embodiments, 'the leakage current control circuit (488) may be connected to a potential Vss' or ground (as shown in FIG. 7), and This potential is not Vdd (490). As shown in Figure 5, the leakage current control circuit (488) is operatively connected to the UP (478) and DOWN (480) signals, so that the leakage current control circuit (488) can (1) allow a loop filter The capacitor (486) leaks current when the charge pump (482) is 'on' (the charge pump (482) is said to be 'on' when the charge pump (482) actively provides or draws current to and from the voltage control Signal (484)), and (2) when the charge pump (482) is 'off', the leakage current of the capacitor (486) of the loop filter is limited. Those skilled in the art will understand that whenever one or both of the UP (478) and DOWN (480) signals are pulsed, the charging millet (482) is turned on during the pulse. A more detailed description of the leakage current control circuit is provided below with reference to FIGS. 6 and 7. Please refer to FIG. 5, the voltage control signal (484) is used as an input to the bias generator (492), and the bias generator (492) generates at least one bias 16 1224428 voltage signal (494) to the voltage controlled oscillation (Vco) (496). The voltage controlled oscillator (496) is based on at least one bias signal (494) from the bias generator (492) to generate an output clock signal clk_out (498). In addition to being an output of the PLL (470), the output clock signal (498) is fed back to the phase frequency detector (472) through the clock distribution network (400) and the feedback divider (402). An input. Those skilled in the art will note that in one or more other embodiments, the PLL (470) may not use the bias generator (492), but may be operatively connected to the voltage controlled oscillator (496). And voltage control signal (484). Fig. 6 shows a method of the leakage current control circuit (488) shown in Fig. 5 according to an embodiment of the present invention. In Figure 6, the leakage current control circuit (488) includes a p-channel transistor switch (500). And a NOR gate circuit (508), which is responsive to the UP (478) and DOWN (480) signals ( As shown in Figure 5, from the phase frequency detector (472)). More specifically, the p-channel transistor switch (500) has a first terminal (502) operatively connected to a potential vdd (490), and a second terminal (504) operatively connected to a capacitor of a loop filter ( 486). The gate terminal (506) of the p_ channel transistor switch (500) is operatively connected to the output of the NOR gate circuit (508). When one or both of the UP (478) and DOWN (480) signals are 'high', the No. gate circuit (508) outputs 'low', and when the UP (478) and DOWN (480) 480) When both signals are 'low', their output is high. Therefore, when one or both of the UP (478) and DOWN (480) signals are 'high', (that is, the charge pump ((482) in Fig. 5 ·) is 'on', ), The NO gate circuit (508) outputs 'low' to p 17 1224428 through the transistor switch (500), which then causes the p-channel transistor switch (500) to switch to 'on' and allows the circuit Filter capacitor (486) leakage current. Conversely, when both UP (478) and DOWN (480) signals are 'low' (ie, the charge pump ((482) in Figure 5)) Yes (off), the NO gate circuit (508) outputs' high 'to the p-channel transistor switch (500), which then causes the p-pass transistor switch (500) to switch to' Turn off and limit the leakage current of the capacitor (486) of the loop filter. Due to this configuration, the leakage current of the capacitor (486) of the loop filter is forked because it cannot become larger than the p-channel transistor switch (5 〇〇) source-to-drain current. Furthermore, because of the charge. The pump ((482) in Figure 5) is 'off' most of the time, so The cumulative reduction of the leakage current of the capacitor (486) of the circuit filter is helpful to improve the integrity of the voltage control signal (484), so that it brings a reliable and stable pLL operation. The leakage current control circuit (514) of another embodiment. In Figure 7, the capacitor (5 10) of a PLL loop filter is referenced to the potential Vss or ground (5 12), instead of the potential vdd (at 罘(490) in Figures 5 and 6. In this embodiment, the leakage current control circuit (5 1 4) includes § an n-channel transistor switch (5 1 6), an OR gate circuit (524) , Which is in response to the up (478) and DOWN (480) signals (from the phase frequency detector (472) as shown in FIG. 5). More specifically, the n-pass transistor switch (516) It has a first terminal (52) operatively connected to the ground potential (512) and a second terminal (518) operatively connected to a 4-loop filter capacitor (5 丨 〇). The n-channel transistor switch ( 5 丨 6) is connected operatively to the output of the 0-foot gate circuit (524) 18 1224428. When the UP ( 478) and one or both of the DOWN (480) signals are 'high', the OR gate circuit (524) outputs 'high', and when the UP (478) and DOWN (480) signals are both Both are 'low, when its output' is low. Therefore, when one or both of the UP (478) and DOWN (480) signals are 'high', (ie, the charging The pump ((482) in Figure 5 is' on ')' The OR gate circuit (524) outputs' high 'to the n-channel transistor switch (5 1 6), so it makes the n-channel transistor Switch 1 6) is switched to 'on,' and allows the capacitor (5 丨) leakage current of the loop filter. Conversely, when both the UP (478) and DOWN (480) signals are 'low' (that is, the charge pump ((482 "in Fig. 5 is 'off')), the The R-gate circuit (52 sentences outputs 'low' to the n-channel transistor switch (516), which then causes the n-channel transistor switch (516) to switch to 'off' and limits the capacitor of the loop filter (5 1 6) Leakage current. Due to this configuration, the leakage current of the capacitor (then) of the loop filter and the wave filter is controlled because it cannot become larger than the n-channel transistor.
以做成。 ^於該η通道電晶體開關(5 1 6) 因為該充電泵(在第5圖中的 關’’迴路濾波器之電容器 >係有助於增進電壓控制信號 丁靠且穩定的PLL動作。 洋到在其它的實施例中,在漏 (488)以及在第7圖中的(514)) η通道電晶體之外的元件來加To make. ^ The n-channel transistor switch (5 1 6) is because the charge pump (the capacitor of the "loop filter in Figure 5") helps to improve the reliable and stable PLL operation of the voltage control signal. In other embodiments, components other than the drain (488) and (514) in FIG. 7) n-channel transistor are added.
以上參考第 19 1224428 至7圖之論述係可類似地應用至DLL。 本發明的實施例也有關一種用於鎖定迴路带 ^ 後的調整之調整與校正系統。請參㈣2圖二之製造 電容器(206)¾漏,其於是改變了電容器(2〇6)之二7 了能從 電位。於是’壓控振盪器(21G)的頻率可能會漂移。斤儲存的 用於如在第4圖中所示的dll。 夕此也適 本發明的調整系、統倍、&含組合邏輯,該、组合邏輯係 用-個補冑此種漏電流的調整電路來控制—心属電流"; 電路。因此,相對於在第2圖中顯示的PLl, ^ . ^ ^ (206) 的漏笔^可以被補償,因而電容器(206)維持固定的電位。 此對於DLL也是可行的。 第8圖係顯示相位-頻率檢測器(6〇〇)的方塊圖。該相 位-頻率檢測器(600)係代表在第2圖中顯示的相位-頻^檢 測為(202)。熟習此項技術者將會瞭解到該相位-頻率檢測 器(600)係類似於在第4圖中顯示之DLL的相位檢測器。 在第8圖中,該相位-頻率檢測器(6〇〇)係積分產生在時脈 A信號(221)以及時脈B信號(223)之間的相位誤差。該時 脈A信號(221)係提供時脈給一個正反器(6〇6),並且該時 脈B信號(223)係提供時脈給一個正反器(6〇8)。 § h脈A #號(22 1)從低狀態轉變至高狀態時,正反器 (606)係將藉由正反器(6〇6)的輸入上之電源vDD(651)所產 生的鬲狀態轉移至該UP信號(2〇3)。當時脈B信號(223)從 低狀恶轉變至咼狀怨時’正反器(Mg)係將藉由該正反器 (608)的輸入上之電源Vdd(651)所產生的高狀態轉移至該 20 1224428 DOWN信號(205)。當該UP與DOWN信號(203、205)兩個 都在高狀態時,該AND閘(603)係在信號線(607)上輸出高 狀態。在信號線(607)上的高狀態係重置兩個正反器(606)與 正反器(608)。當正反器(606)以及正反器(608)分別被重置 時,該UP與DOWN信號(203、205)係轉變至低狀態。 第9圖係顯示充電泵(700)的方塊圖。該充電泵(700)係 代表在第2圖中顯示的充電泵(204、234)。熟習此項技術 者將會瞭解到該充電泵(700)係類似於在第4圖中顯示的 DLL之充電泵。在第9圖中,該充電泵(700)具有兩個電流 源(702、708)。該電流源(702)係連接在電源VDD(701)以及 信號線(703)之間。電流源(708)係連接在電源Vss(707)以及 信號線(705)之間。 在第9圖中,來自在第8圖中所示的相位-頻率檢測器 (600)之UP與DOWN信號(203、205)係決定開關(704、 706)是否分別為閉合的。當該UP信號(203)是在高狀態時 ,開關(704)係被閉合。該開關(704)係連接在信號(703)以 及控制電壓(207)之間。當閉合時,開關(704)係容許利用該 控制電壓(207),藉由電流源(702)所產生之電流來將電荷加 入該電容器(例如,在第2圖中顯示的206)。 當該DOWN信號(205)是在高狀態時,該開關(706)係 被閉合。該開關(706)係連接在信號(705)以及控制電壓 (207)之間。當閉合時,開關(706)係容許利用該控制電壓 (207),藉由該電流源(708)所產生之電流來將電荷從該電容 器(例如,在第2圖中顯示的206)中移除。 21 1224428 存在一小段期間為該UP與DOWN信號(203、205)兩 者都是在高狀態。在第8圖中,當UP與DOWN信號(203 、205)兩者都轉變至高狀態時,該AND閘(603)係藉由在 信號線(607)上產生高狀態來重置正反器(606、608)。該 AND閘(603)以及正反器(606、608)需要一段有限的時間來 響應此種在狀態上的改變。在第9圖中,當該UP與 DOWN信號(203、205)信號兩個都是高時,開關(704、 706)兩者係被閉合。在此段期間,一個標稱量的電荷係被 加到該電容器(例如,在第2圖中顯示的206)。藉由電流 源(702)所產生之部分或是全部的電流係透過電流源(708)被 轉移至Vss電源(707)。 第10圖係顯示在第8圖中所示的相位-頻率檢測器 (600)之時序圖(800)。該時序圖(800)係顯示兩個時脈週期 。第一時脈週期係顯示時脈B信號(223)落後時脈A信號 (221)(亦即,它們有相位差)。第二週期係顯示時脈B信號 (223)適當地與時脈A信號(221)對齊。 在第一週期中,當時脈A信號(22 1)從低狀態轉變至高 狀態時,該UP信號(203)係從低狀態轉變至高狀態。當時 脈B信號(223)從低狀態轉變至高狀態時,該DOWN信號 (205)係從低狀態轉變至高狀態。因為UP與DOWN信號 (203、205)兩者都在高狀態,因此AND閘(在第8圖中顯 示的603)係重置兩個正反器(在第8圖中顯示的606、608) 。當該等正反器(在第8圖中顯示的606、608)分別被重置 時,該UP與DOWN信號(203、205)係輸出低狀態。 22 1224428 在該第-週期中,該UP信號(2〇3)在高狀態的期間要 比DOWN信號(205)為長。於是,該電流源(在第9圖中顯 示的702)係將電荷加入到該電容器(例如,在第2圖中顯 示的206)。若該D0WN信號(2〇5)在高狀態的期間要 信號(203)為長,則該電流源(在第9圖中顯示的㈣將會 從該電容器(在第2圖中顯示的2〇6)移去電荷。藉由該帝 容器(例如,在第2圖中顯示的2〇6)所維持的電位上之變 化係影響到該壓控振盪器(例如,在帛2圖中顯示的2⑼ 的頻率。 | 在第1 0圖中,在該第二週期中,時脈Α信號(22丨)以 及時脈B信號(223)都同時從低狀態轉變至高狀態。換言之 ,化脈A信號(2〇1)以及時脈B信號(223)是同相的。於是 . up與D0WN信號(2〇3、2〇5)都同時從低狀態轉變至高 ' 此外 σ玄荨正反态(在第8圖中顯示的606、608)同 二被重置。因為該AND閘(在第8圖中顯示的6〇卩以及該 等正反裔(在第8圖中顯示的6〇6、6〇8)需要一段有限的時 間(亦即,tMIN)來響應在狀態上的變化,因此up與d〇wn # 號(203、205)都具有一段為高的有限的時間。一標稱的 电何里係被加到該電容器(例如,在第2圖中顯示的206) 以維持在該控制電壓(在第2圖中顯示的2〇7)上目前的電 位。The discussion above with reference to Figures 19 1224428 to 7 is similarly applicable to DLLs. The embodiment of the present invention also relates to an adjustment and correction system for adjustment after locking the loop band. Please refer to Figure 2 for the manufacture of capacitor (206) and drain, which then changes the capacitor (206) 2 to 7 to be able to withstand the potential. So the frequency of the 'voltage controlled oscillator (21G) may drift. Stored for the dll as shown in Figure 4. It is also suitable here for the adjustment system, system multiplication, and combination logic of the present invention. The combination logic is controlled by an adjustment circuit that compensates for such a leakage current—the cardiac current ”circuit. Therefore, with respect to PL1 shown in FIG. 2, the missing pen ^ of ^. ^ ^ (206) can be compensated, and thus the capacitor (206) maintains a fixed potential. This is also possible for DLLs. Figure 8 is a block diagram showing a phase-frequency detector (600). The phase-frequency detector (600) represents the phase-frequency detector shown in Fig. 2 as (202). Those skilled in the art will understand that the phase-frequency detector (600) is a phase detector similar to the DLL shown in Figure 4. In Fig. 8, the phase-frequency detector (600) is integrated to generate a phase error between the clock A signal (221) and the clock B signal (223). The clock A signal (221) provides a clock to a flip-flop (606), and the clock B signal (223) provides a clock to a flip-flop (608). § When the h pulse A # (22 1) changes from low to high state, the flip-flop (606) is the 鬲 state generated by the power supply vDD (651) on the input of the flip-flop (606). The transition is made to this UP signal (203). When the clock B signal (223) changes from low-level evil to high-level resentment, the flip-flop (Mg) is a high state transition generated by the power source Vdd (651) on the input of the flip-flop (608) To the 20 1224428 DOWN signal (205). When both the UP and DOWN signals (203, 205) are in the high state, the AND gate (603) outputs a high state on the signal line (607). A high state on the signal line (607) resets the two flip-flops (606) and the flip-flops (608). When the flip-flop (606) and the flip-flop (608) are reset respectively, the UP and DOWN signals (203, 205) transition to the low state. Figure 9 is a block diagram showing the charge pump (700). The charge pump (700) represents the charge pumps (204, 234) shown in Fig. 2. Those skilled in the art will understand that the charge pump (700) is similar to the DLL charge pump shown in Figure 4. In Figure 9, the charge pump (700) has two current sources (702, 708). The current source (702) is connected between a power source VDD (701) and a signal line (703). The current source (708) is connected between the power source Vss (707) and the signal line (705). In Figure 9, the UP and DOWN signals (203, 205) from the phase-frequency detector (600) shown in Figure 8 determine whether the switches (704, 706) are closed, respectively. When the UP signal (203) is in the high state, the switch (704) is closed. The switch (704) is connected between the signal (703) and the control voltage (207). When closed, the switch (704) allows the control voltage (207) to use the current generated by the current source (702) to add charge to the capacitor (e.g., 206 shown in Figure 2). When the DOWN signal (205) is in the high state, the switch (706) is closed. The switch (706) is connected between a signal (705) and a control voltage (207). When closed, the switch (706) allows the control voltage (207) to be used to move the charge from the capacitor (e.g., 206 shown in Figure 2) by the current generated by the current source (708). except. 21 1224428 There is a short period of time when both the UP and DOWN signals (203, 205) are in the high state. In Figure 8, when both the UP and DOWN signals (203, 205) transition to the high state, the AND gate (603) resets the flip-flop by generating a high state on the signal line (607) ( 606, 608). The AND gate (603) and the flip-flops (606, 608) require a limited time to respond to such a change in state. In Figure 9, when both the UP and DOWN signals (203, 205) are high, the switches (704, 706) are both closed. During this period, a nominal charge is added to the capacitor (for example, 206 shown in Figure 2). Part or all of the current generated by the current source (702) is transferred to the Vss power source (707) through the current source (708). Fig. 10 is a timing chart (800) showing the phase-frequency detector (600) shown in Fig. 8. The timing chart (800) shows two clock cycles. The first clock cycle shows that the clock B signal (223) lags behind the clock A signal (221) (i.e., they have a phase difference). The second cycle shows that the clock B signal (223) is properly aligned with the clock A signal (221). In the first cycle, when the clock A signal (22 1) changes from a low state to a high state, the UP signal (203) changes from a low state to a high state. When the clock B signal (223) changes from a low state to a high state, the DOWN signal (205) changes from a low state to a high state. Because both the UP and DOWN signals (203, 205) are high, the AND gate (603 shown in Figure 8) resets the two flip-flops (606, 608 shown in Figure 8). . When the flip-flops (606, 608 shown in Fig. 8) are reset respectively, the UP and DOWN signals (203, 205) output a low state. 22 1224428 In the first period, the period of the UP signal (203) in the high state is longer than that of the DOWN signal (205). Thus, the current source (702 shown in Fig. 9) adds a charge to the capacitor (for example, 206 shown in Fig. 2). If the D0WN signal (205) requires the signal (203) to be long during the high state, the current source ((shown in Figure 9 will be removed from the capacitor (2 shown in Figure 2). 6) Remove the charge. The change in potential maintained by the emperor container (for example, 206 shown in Figure 2) affects the voltage-controlled oscillator (for example, shown in Figure 2). The frequency of 2⑼. | In Fig. 10, in the second period, the clock A signal (22 丨) and the clock B signal (223) both transition from the low state to the high state. In other words, the pulse A signal (201) and the clock B signal (223) are in phase. Therefore, both the up and D0WN signals (203, 205) transition from the low state to the high at the same time. The 606 and 608 shown in Fig. 8 are reset as the same because the AND gate (60 ° shown in Fig. 8 and the pros and cons (60 ° and 6 ° shown in Fig. 8) are reset. 8) It takes a limited time (ie, tMIN) to respond to changes in state, so both up and down # # (203, 205) have a limited time that is high. A nominal It is added to the capacitor in the system (e.g., display 206 in FIG. 2) to maintain the voltage on the control current potential (2〇7 shown in FIG. 2).
在第10圖中,該充電泵(在第9圖中顯示的700)可以 文又或疋維持在該電容器(例如,在第2圖中顯示的2〇6) 的兒荷之期間係被指出。當時脈A信號(22 1)以及時脈B 23 1224428 “虎(223)對齊時’該充電泵(在f 9圖中顯示的7〇〇)是作 用的期間相較於該充電泵是未作用的期間係相當的小(亦即 丄W。在該充電泵(在g 9圖中顯示的7〇〇)是未作用 。即’虽開關(704、706)都是開路時)的期間,在該電容 =二!2圖中顯示的2,上的電位可能會由於被用; :二…例如,在第2圖中顯示的2〇6)的元件之固 百的漏電流而〉、# # 而“。再者,在功率降低模式的期間,該充 (704、706、去^中顯示的7〇〇)是未作用的(亦即,當開關 )L路時)的期間係被增長。如同 ,在功率降低模式中,在該充電 )作用的間隔期間相較 Q中』不的 权万、止㊉的動作係被增長1 ό倍。在 该功率降低模式的期間, 20 在Μ電谷-(例如,在第2圖中的 )上的电位可能會漂移一較大的旦 _ 移並且儲存肝旦… 里。一種用以補償該漂 兩仔補^里的裝置是所需的。 半導體電容器业刖县益士、垂 極在-起以^ / 個電晶體的源極與汲 之以產生该電容器的一個端 器。該電容&s / 成之平行板電容 構成。透=之另一個端子係藉由該電晶體的間極連線所 流係造成原先儲在^千 仏漏电流的路徑。漏電 PLL的鎖: 上的電位改變。在-個像是 ^的鎖定迴路電路中, 的206Η丰右a 士入 σσ (列如,在第2圖中顯示 維持藉由該塵控振盪器(例如,在第2圖 中顯示的210)所產生的頻率量。 在弟2圖 在第2圖中,在該充電泵(2〇4)更 带—。 所储存之電荷(亦即,所儲存之 的二电谷裔(206)上 < )的相當長之間隔期間 24 1224428 可能在PLL(200)所期望的頻率量上產生漂移。儘管設計者 可以想要一個積體電路對於該電容器(206)的漏電流具有一 個特定的值,但是這些參數實際的值通常是等到該積體電 路已經被製造後(亦即,在製造後的階段中)才知道。 例如’設計者可能想要P L L (2 0 0)的頻率漂移是在一個 特定的範圍之中。電容器(2 〇 6)的漏電流可能會因為在製造 過程中的許多因素而非故意地受到影響。因為在沒有相當 多的時間以及金錢的花費下,漏電流無法於製造後的階段 中被重新設計,因此這些製造因素可能會使得PLL(200)具 有一個不同於PLL(200)原先設計的範圍之頻率漂移範圍。 因此,該PLL(200)可能會具有差的效能。於是,對於一種 有助於增進製造後的控制在PLL(200)的電容器(206)中的漏 電流之技術及設計存在著需求。 第1 1圖係顯示根據本發明的一個實施例之可調整的鎖 定迴路電路之一個範例。熟習此項技術者將會瞭解到儘管 第11圖是顯示作為PLL(900)之一種特定的鎖定迴路電路 ,但是本發明的原理可類似地應用至DLL。該可調整的 PLL(900)之相位-頻率檢測器(202)、電容器(206)、偏壓產 生器(208)以及壓控振盪器(2 10)係類似於上述參考第2圖之 對應的組件地運作。 在第1 1圖中,一個漏電流控制電路(904)係連接在控 制電壓(207)以及電源Vss之間。由於該電容器(206)係漏電 流,因此在控制電壓(207)上的電位有著漂移至電源VDD的 趨勢。該漏電流控制電路(904)係被配置以將控制電壓(207) 25 1224428 上的電位拉向電源Vss。例如,一個n通道電晶體係被用 作為該漏電流控制電路(904)。 在此領域中具有一般知識者將會瞭解到在其它的實施 例中,該電容器(206)可以連接在控制電壓(2〇7)以及電源 Vss之間。在此例中,該漏電流控制電路(9⑽)係連接在控 制包壓(207)以及電源VDD之間。在此種配置中的漏電流控 制電路(904)可以是一個p通道電晶體。 在第11圖中,一個調整電路(954)係被用來調整該漏 電流控制電路(904)以補償電容器(206)的漏電流。一個偏壓 笔位VBIAS(961)係被用來控制被加入以補償該漏電流的補 償1。該偏壓電位(961)可以被調整以增加、減少、關斷或 是維持藉由該漏電流控制電路(904)所產生之漏電流的補償 量(亦即,漏電流補償)。 在第11圖中,一個組合邏輯電路(952)係利用多個調 整信號N(953)來控制該調整電路(954)。該多個調整信號 N(953)的值係藉由該組合邏輯電路(952)加以決定。該組合 邏輯電路(952)可以透過一個介面(未顯示出),利用M條通 訊線(95 1)來通訊。在此領域中具有一般知識者將會瞭解到 該介面以及]V[條通訊線(951)可以具有廣泛種類的形式。 該通訊可以藉由一工業標準加以定義。 邊組合邏輯電路(952)係響應於該Μ條通訊線(951)上 的扣旎值來產生該多個調整信號ν(953)。該組合邏輯電路 (9 5 2)可具有2Μ種輸入組合。例如,μ可以等於4並且ν 可以等於6。於是,對於該6個調整信號Ν(953)的值存在 26 1^24428 1 6種組合。 …熟習此項技術者將會瞭解到該可調整的pll(9㈣可以 疋類比、數位、或是兩種類型的組合之電路。 第u圖係顯示根據本發明的_個實_之另—範㈣ 鎖定迴路電路。熟習此項技術者將會瞭解到儘管第12圖 係顯示作…(删)之一種特定的鎖定迴路電路,本發 明的原理可類似地應…LL。該可調整的pll(i〇〇〇)之 相位-頻率檢測器(202)、電容器⑽)、偏屡產生器(2〇8)、 |控振in (2H))、漏電流控制電路(9G4)以及調整電路 (954)係類似於上述參考第u圖之對應的組件地運作。 在第12圖中’-個組合邏輯電路(1〇52)係利用多個調 整信號N(953)來控制該調整電路(954)。該多個調整信號 N(953)的值係藉由該組合邏輯電路(1()62)加以決^。來自 該相位-頻率檢測器(2〇2)的up與d〇wn信號(2〇3、2〇5)係 控制該組合邏輯電路(1〇62)。 。亥、、且曰迷輯黾路(1〇62)係響應於該up與down信號 (203、205)來產生該多個調整信號N(953)。在一或多個實 施例中’該組合邏輯電路(1〇62)可以利用一狀態機以產生 ^多個調整信f#u N(953)。在其它的實施例中,該組合邏輯 电路(1 062)可以疋一個具有類比至數位轉換器的類比電路 以產生該多個調整信號N(953)。在其它的實施例中,該組 合邏輯電路(1062)以及調整電路(954)可加以結合來執行一 個功能類似於該充電泵(2〇4),其中此額外的充電泵係控制 该漏電流控制電路(904)。 27 熱白此項技術者將會瞭解到該可調整的PLL(1000)可 以是類比、數位或是兩種類型的組合之電路。 · 弟1 3图係㉝示根據本發明的一個實施例之可程式化電 机源(1 1 00)。忒可程式化電流源可以代表在第丨1與12圖 中顯示的調整電路(954)。該可程式化電流源(11〇〇)係包含 刀別連接至多個電流源(U22、"24、1126)的多個p通道 電晶體(1102、11〇6、111〇),其係彼此並列地配置。該些 包流源(1 122、1 124、1126)係分別連接至電源Vdd以及p 通道電晶體(1102、1106、1110)。該些p通道電晶體(11〇2 φ 、1106、mo)具有一個共同的節點,偏壓電位Vbm(961) 係在该節點上被供應至漏電流控制電路(在第Η圖以及第 12圖中顯示的904)。該可程式化電流源(1100)也包含分別 — 連接至多個電流源(Π 2 8、1 1 3 0、1 1 32)的多個η通道電晶 體(1 1 04、Π 08、111 2),其係彼此並列地配置。該些電流 源電流源(1 128、1 130、1132)係分別連接至電源vss以及η 通道電晶體(1 104、1 108、1 1 12)。該些η通道電晶體(1 1〇4 、1 108、1 1 12)係連接至偏壓電位vBIAS(961)。 _ 母個電晶體都具有一個對應的個別控制信號,該控制 信號“導通’’或是“關斷,個別的p通道電晶體(1 1〇2、;! 1〇6、 1110)以及個別的n通道電晶體U 104、1 108、1 1 12)。該些 ρ通道電晶體(1 102、1 106、1 1 10)具有分別連接至其閘極 的控制信號 ΕΝ—Ρ〇(1101)、ΕΝ_Ρ,(1105)以及 ΕΝ—Ρν(1109) 。該些η通道電晶體(1 ΐ〇4、1108、1 112)具有分別連接至 , 其閘極的控制信號 ΕΝ—Ν〇(1103)、ΕΝ_Ν】(11〇7)以及 28 1224428 en—Nn(1 1 1 1)。在任何的EN—PX控制信號(丨1〇1、丨1〇5、 1 1 09)上的‘‘低’’電位係“導通’’個別的p通道電晶體(11 〇2、 1 1 06、1 1 1 〇) ’其中“X”係代表任何的下標〇到N。在任何 的EN—N^s制信號(1103、1107、1111)上的“高,,電位係“導 通”個別的η通道電晶體(1104、1108、1112),其中“x,,係 代表任何的下標〇到N。 一個“導通”的p通道電晶體(11 〇2、11〇6、mo)係朝 向電源VDD地改變該偏壓電位(961)。在該偏壓電位(961)上 的變化是因為藉由一或多個該電流源(1 122、1 124、1 126) _ 所提供的電流流到該偏壓電位(96 1)之上所造成的。一個‘‘ 導通”的η通道電晶體(11〇4、1108、1112)係朝向電源vIn Fig. 10, the charge pump (700 shown in Fig. 9) can be maintained in the capacitor (for example, 206 shown in Fig. 2) during the period of the charge. . The clock A signal (22 1) and clock B 23 1224428 "When the tiger (223) is aligned 'the charging pump (70% shown in the f 9 graph) is active compared to the charging pump being inactive The period of time is quite small (that is, 丄 W.) In this charge pump (700 shown in Figure 9) is inactive. That is, 'Although the switches (704, 706) are open, the period is The capacitance = two! The potential of 2, shown in the figure 2 may be due to being used;: two ... For example, the leakage current of the components shown in Figure 2 is 20%, and ## and". In addition, during the period of the power reduction mode, the period in which the charge (704, 706, 7000 shown in ^) is inactive (that is, when the L channel is switched) is increased. As in, in the power reduction mode, during the interval of the charging) action, the actions of Quan Wan and Zhi Wu in Q are increased by 1 times. During this power reduction mode, the potential at 20 μM valley (for example, in FIG. 2) may drift a large amount and store the liver. A device is needed to compensate for this drift. The semiconductor capacitor industry in Yixian County, the vertical electrode is from the source of ^ / transistor and draw it to produce a terminal of the capacitor. This capacitor is made up of a parallel plate capacitor. The other terminal of the transmission line is the path of the leakage current originally stored in the transistor by the interpolar connection of the transistor. Leakage PLL lock: The potential on the change. In a locked-loop circuit like ^, 206 Η 右 a a a σσ (Columns such as shown in Figure 2 maintained by the dust control oscillator (for example, 210 shown in Figure 2) The amount of frequency generated. In the second figure, in the second figure, the charge pump (204) is more belted. The stored electric charge (that is, the stored two electric valley (206)) <) A relatively long interval period 24 1224428 may produce a drift in the frequency amount expected by the PLL (200). Although the designer may want a integrated circuit to have a specific value for the leakage current of the capacitor (206), But the actual values of these parameters are usually not known until the integrated circuit has been manufactured (that is, in the post-manufacturing stage). For example, 'the designer may want the frequency drift of the PLL (2 0 0) to be within a Within a specific range. The leakage current of the capacitor (206) may be affected unintentionally because of many factors in the manufacturing process. Because the leakage current cannot be manufactured without considerable time and money Was redesigned in later stages, so These manufacturing factors may cause the PLL (200) to have a frequency drift range that is different from the originally designed range of the PLL (200). Therefore, the PLL (200) may have poor performance. Therefore, for a type that helps to improve manufacturing There is a need for a subsequent technique and design for controlling the leakage current in the capacitor (206) of the PLL (200). Figure 11 shows an example of an adjustable lock loop circuit according to an embodiment of the present invention. Familiarity Those skilled in the art will understand that although Figure 11 shows a specific lock loop circuit as a PLL (900), the principles of the present invention can be similarly applied to a DLL. The phase of the adjustable PLL (900) is- The frequency detector (202), the capacitor (206), the bias generator (208), and the voltage-controlled oscillator (2 10) operate similarly to the corresponding components described above with reference to Fig. 2. In Fig. 11, A leakage current control circuit (904) is connected between the control voltage (207) and the power supply Vss. Since the capacitor (206) is a leakage current, the potential on the control voltage (207) tends to drift to the power supply VDD. The leakage The flow control circuit (904) is configured to pull the potential on the control voltage (207) 25 1224428 to the power source Vss. For example, an n-channel transistor system is used as the leakage current control circuit (904). In this field Those with ordinary knowledge will understand that in other embodiments, the capacitor (206) can be connected between the control voltage (207) and the power supply Vss. In this example, the leakage current control circuit (9⑽) is Connected between the control package voltage (207) and the power supply VDD. The leakage current control circuit (904) in this configuration can be a p-channel transistor. In Fig. 11, an adjustment circuit (954) is used to adjust the leakage current control circuit (904) to compensate the leakage current of the capacitor (206). A bias pen position VBIAS (961) is used to control the compensation1 which is added to compensate for this leakage current. The bias potential (961) can be adjusted to increase, decrease, turn off, or maintain a compensation amount (i.e., leakage current compensation) of the leakage current generated by the leakage current control circuit (904). In Fig. 11, a combinational logic circuit (952) uses a plurality of adjustment signals N (953) to control the adjustment circuit (954). The values of the plurality of adjustment signals N (953) are determined by the combinational logic circuit (952). The combinational logic circuit (952) can communicate through an interface (not shown) using M communication lines (95 1). Those having ordinary knowledge in this field will understand that this interface and communication lines (951) can have a wide variety of forms. The communication can be defined by an industry standard. The edge combination logic circuit (952) generates the plurality of adjustment signals v (953) in response to the deduction value on the M communication lines (951). The combinational logic circuit (9 5 2) can have 2M input combinations. For example, μ may be equal to 4 and ν may be equal to 6. Therefore, there are 6 combinations of 26 1 ^ 24428 1 for the values of the six adjustment signals N (953). … Those skilled in the art will understand that the adjustable pll (9㈣ can be analog, digital, or a combination of the two types of circuits. Figure u shows the _ 个 实 _Other-fans according to the invention ㈣ Locked loop circuit. Those skilled in the art will understand that although Figure 12 shows a specific locked loop circuit as ... (deleted), the principle of the present invention can be similarly applied to ... LL. The adjustable pll ( i〇〇〇) phase-frequency detector (202), capacitor ⑽), bias generator (208), | vibration control in (2H)), leakage current control circuit (9G4) and adjustment circuit (954 ) Operates similarly to the corresponding components of the above-referenced figure u. In Fig. 12, a combination logic circuit (1052) uses a plurality of adjustment signals N (953) to control the adjustment circuit (954). The values of the plurality of adjustment signals N (953) are determined by the combinational logic circuit (1 () 62). The up and down signals (203, 205) from the phase-frequency detector (202) control the combinational logic circuit (1062). . The first and second signals (1062) are generated in response to the up and down signals (203, 205) to generate the plurality of adjustment signals N (953). In one or more embodiments, the combinational logic circuit (1062) may utilize a state machine to generate multiple adjustment signals f # u N (953). In other embodiments, the combinational logic circuit (1062) may include an analog circuit having an analog-to-digital converter to generate the plurality of adjustment signals N (953). In other embodiments, the combinational logic circuit (1062) and the adjustment circuit (954) can be combined to perform a function similar to the charge pump (204), wherein the additional charge pump controls the leakage current control Circuit (904). 27 Hot white technicians will understand that the adjustable PLL (1000) can be analog, digital or a combination of two types of circuits. · Figure 13 shows a programmable motor source (1 1 00) according to an embodiment of the present invention.程式 The programmable current source can represent the adjustment circuit (954) shown in Figures 1 and 12. The programmable current source (110) includes a plurality of p-channel transistors (1102, 1106, 111) connected to a plurality of current sources (U22, " 24, 1126), which are connected to each other. Arranged side by side. These packet current sources (1 122, 1 124, 1126) are connected to the power supply Vdd and p-channel transistors (1102, 1106, 1110), respectively. These p-channel transistors (1102 φ, 1106, mo) have a common node, and the bias potential Vbm (961) is supplied to the leakage current control circuit (in the second figure and the twelfth figure). 904). The programmable current source (1100) also contains a plurality of n-channel transistors (1 1 04, Π 08, 111 2) connected to multiple current sources (Π 2 8, 1, 1 3 0, 1 1 32), respectively. , Which are arranged side by side with each other. These current source current sources (1 128, 1 130, 1132) are connected to the power source vss and the η-channel transistors (1 104, 1 108, 1 1 12), respectively. The n-channel transistors (1104, 1108, 112) are connected to a bias potential vBIAS (961). _ Each of the transistors has a corresponding individual control signal, the control signal is “on” or “off”, the individual p-channel transistors (1 102;! 106, 1110) and individual n-channel transistors U 104, 1 108, 1 1 12). The p-channel transistors (1 102, 1 106, 1 1 10) have control signals ENE-PO (1101), ENE_P, (1105), and ENE-Pν (1109) connected to their gates, respectively. The n-channel transistors (1ΐ04, 1108, 1 112) have control signals EN-NO (1103), EN_N] (1107), and 28 1224428 en-Nn ( 1 1 1 1). The `` low '' potential on any EN-PX control signal (丨 101, 丨 105, 1 1 09) is to “turn on” the individual p-channel transistor (11 02, 1 1 06 , 1 1 1 〇) 'Where "X" represents any subscript 0 to N. "High" on any EN-N ^ s signal (1103, 1107, 1111), the potential is "on" individually Η-channel transistors (1104, 1108, 1112), where "x," represents any subscript 0 to N. A "conducting" p-channel transistor (1102, 1106, mo) is oriented The power supply VDD ground changes the bias potential (961). The change in the bias potential (961) is due to one or more of the current sources (1 122, 1 124, 1 126) _ provided Caused by the current flowing above the bias potential (96 1). A "conducting" n-channel transistor (1104, 1108, 1112) is oriented toward the power source v
〇 S 地改變該偏壓電位(961)。在該偏壓電位(961)上的變化是因 - 為藉由一或多個該電流源(1128、1130、1132)所提供的電 流流出該偏壓電位VBIAS(961)所造成的。藉由選擇哪個ρ 通道電晶體(1102、1106、1110)以及/或是^通道電晶體 (1104、1108、1112)“導通”,在該偏壓電位vBIAS(661)上之 一個所選的變化可以被達成。 籲 在此領域中具有一般知識者將會瞭解到該些電流源 (1122、1124、1126、1128、1130、1132)可以利用運作在 飽和區域中的電晶體來加以設計。再者,ρ通道電晶體 (1 102、1 106、1 1 10)以及 η 通道電晶體(1 104、1 1()8、1 1 12) 係運作為開關以連接電流源(丨丨22、1124、1126、Π 28、 1130、1132)至偏壓電位 vbias(961)。 ‘ 在此領域中具有一般知識者將會瞭解到p通道電晶體 29 1224428 (1 102、1 106、1 1 l〇)以及 η 通道電晶體(1 104、1 108、1 112) 可以個別或是整組地“導通”。每個電流源(1 1 22、1 124、 1 126、1 128、1 130、1 132)可以提供一固定的電流量;儘管 ,藉由每個電流源(1122、1124、1 126、1 128、1 130、 1 132)所提供的電流可能不同於其它的電流源u 122、1 124 、1126、1128、1130、1132)。該些電流源(1122、1124、 I 126、1 128、1 130、1 132)可以被設計為當電流源(1 122、 1124、1126、1128、1130、1132)是連接至偏壓電位 vbias(901)或是從偏壓電位vB1AS(961)斷開時,提供一個線 性、指數或是其它的函數。 該些p通道電晶體(1102、1106、1110)以及^通道電 晶體(1104、11〇8、1112)可以被用來加入一固定的電流量 至該偏壓電位VBIAS(961)之上的電流、或是從該偏壓電位 乂8^5(961)之上的電流減去一固定的電流量。該些卩通道電 曰曰體(1 102、11〇6、1 110)以及n通道電晶體(1 1〇4、】】〇8、 II 12)係控制可程式化電流源(11〇〇)的動作。該可程式化電 机源係包含複數個電流源,其中每個電流源係運作地連接 至-個開關。該開關係控制來自該電流源的電流流動。 在第1 1圖中’該組合邏輯電路(952)係產生一個二進 “ k制子元組,其係決定在該調整電路(954)中哪些η通道 電晶體(在第η圖中顯示的11〇4、11〇8、1112)以及ρ通 道電晶體(在第13圖中顯示的1102、11〇6、πι〇)是“導通,, H那些是“關斷” ° I據藉由該組合邏輯電路(952)所收到 之Μ條通訊線(951)的信號值,代表ΕΝ—ΝΧ信號(在第13 30 圖中的1103、1107、1111)以及ΕΝ一Px信號(在第13圖中 的11〇1、1105、1109)的多個調整信號n(953)可以“導通” 或是“關斷”在該調整電路(954)中的p通道電晶體(在第13 圖中顯示的1 104、1108、1 112)以及η通道電晶體(在第13 圖中顯示的1104、1108、1112)。該調整電路(954)的偏壓 電位vbias(961)係調整該漏電流控制電路(9〇4)以補償電容 器(206)的漏電流。 在第12圖中,該組合邏輯電路(1052)係產生一個二進 位控制字元組,其係決定在該調整電路(954)中哪些η通道 電晶體(在第13圖中顯示的1104、11〇8、Ul2)以及ρ通 道電晶體(在第13圖中顯示的1 1〇2、1 1〇6、u 1〇)是“導通” 並且哪些是“關斷,,。代表EN_NX信號(在第13圖中的11〇3 1107、1111)以及EN_PX #號(在第13圖中的11 〇1、 11〇5、1109)的多個調整信號N(653)可以“導通,,或是“關斷” 在該調整電路(954)中的p通道電晶體(在第13圖中顯示的 1102、U06、111〇)以及η通道電晶體(在第13圖中顯示的 in u〇8、1112)。該調整電路(954)的偏壓電位 VBIAS(961)係調整該漏電流控制電路(9〇4)以補償該電容器 (206)的漏電流。 谷 該可調整的PLL(在第11圖中的9〇〇以及在第12圖中 的700)在製造後可能會呈現不想要的操作特性,而該些不 想要的操作特性可能未能從模擬中明 一 —卜 d ♦、、、貝侍知。在一或多個 貫施例中,因為該調整電路(在第丨丨圖 口 M及弟12圖中顯示 的954)可以修改可調整的pLL(在第 、乐11圖中的900以及在 31 f/2圖中的700)之操作特性,所以該可調整的PLL(在第 圖▲中的900以及在第12圖中的可加以調整。 热習此項技術者將會瞭解到先前參考第8至"圖之論 迷的原理係可類似地應用至DLL。 、第14圖係顯示根據本發明的另—實施例之範例的鎖定 沿路電路。熟習此項技術者將會瞭解到儘管第Μ圖係顯 不-個料PLL(1200)之特定的鎖定迴路電路,本發明的 可類似地應該可調整的pll(i2〇〇)之相 位-頻率檢測器(2〇2)、電容器(206)、偏壓產生器(2〇8)以及 昼控振盛器㈣)係類似於上述參考第2圖之對應的組件地 運作。 在第14圖中’―個漏電流控制電路(12G4)係連接在控 制佗唬(207)以及迅源Vss之間。由於該電容器(2〇幻漏電流 ’在控制信號(207)上的電位有一種趨勢漂移朝向電源I 。該漏電流控制電路(12G4)係被配置以將控制信號(2〇7)上 的電位拉向電源Vss。例如,在第14圖中,一個η通道電 晶體係被用作為該漏電流控制電路(丨2〇4)。 在此領域中具有一般知識者將會瞭解到在其它的實施 例中’該電容器(2〇6)可以連接在控制信號(2G7)以及電源 vss之間。在此例中,該漏電流控制電路(12〇4)係連接在杵 制信號(207)以及電源VDD之間。在此種配置中的漏電流控 制電路(1204)可以是一個p通道電晶體。 在第14圖中,—個調整電路(1254)係被用來調整該漏 電流控制電路(1204)以補償電容器(2〇6)的漏電流。一個偏 32 1224428 C电位VBIAS(1261)係被用來控制被施加以補償該漏電流的 補償量。該偏壓電位(1261)可以被調整來增加、減少、關 斷或是維持藉由該漏電流控制電路(丨2〇4)所產生之漏電流 的補彳貝;!:(亦即,漏電流補償)。該調整電路(丨254)可以類似 於在弟13圖中所述以及所示的調整電路。 在第14圖中,一個測試處理器單元(1252)係利用多個 調整信號N(1253)來控制該調整電路〇254)。該多個調整信 號N(1253)的值是藉由測試處理器單元(1252)加以決定。該 測試處理器單元(1252)係從決定調整電路(1254)的設定之暫 存器來產生該多個調整信號N(1253)或是二進位控制字元 組。該測試處理器單元(1252)可以透過一個主機介面改變 其暫存器的内容。 在本發明的一或多個實施例中,該測試處理器單元 (1252)可以響應於指令。該些指令可以由測試處理器單元 (1 252)加以解譯,並且可以導致儲存在測試處理器單元 025 2)中的暫存器内容之改變。暫存器内容的改變可以導 致該多個調整信號N(1253)的改變。 該測試處理器單元(1252)可以透過一個主機介面,利 Μ备、通汛線(丨25丨)來通訊。在此領域中具有一般知識者 將會瞭解到該主機介面以及Μ條通訊線(1251)可以具有廣 〆乏種類的形式。在-或多個實施例中,該主機介面可以運 作地連接至一個別的電腦系統。再者,在一或多個實施例 中5亥主機介面可以藉由一工業標準加以定義。 士上所述’该主機介面可以被用來運作地連接至一個 33 1224428 別的電腦系統。例如,—個測試器(未顯示出)可以盘 試處理器單元(1252)通訊。在某些實施例中,該測試器(未 ’”、頁不出)可以指不測試處理器單元(1252)來調整該調整電路 (=4)以修改可調整的pLL(12⑼)之漏電流的補償。在某些 貝施例中’該測試器(未顯示出)可以量測該可調整的 PLLG200)之—個操作特性或是積體電路的—個代表性的操 作特性,該可調整的ΡΙΧ(12(^係㈣該操㈣Μ㈣ 該調整的補償。可以做成各種不同的調整以便於確認出產 生可调整的pLL(l200)之所要的操作特性之調整設定。 例如’該測試器(未顯示出)可以被用來調整可調整的 PLL(12GG)直到在壓控振盪器(21())中的延遲漂移被最小化 為止。該測試器(未顯示出)也可以被用來調整該可調整的 PLLO200)直到可調整的pll〇2⑽)之操作特性到達一 要的效能程度為止。此種操作特性可以包含延遲漂移、最 大的#作頻率、最小的操作頻率、鎖定時間、等等。 在此領域中具有一般知識者將會瞭解 (綱可7接至該漏電流控制電路(㈣)的偏厂堅電位 …)疋㉟整電路G254)仍然可以被“關斷,,。換言之, …周正$路(1254)可以被控制而對可調整的孔叩·)不具 有影響。該測試處理器單元(1252)係運作地控制該調整電 :(1254)。調整電路(1254)的偏壓電位。加)係調整該漏電 流控制電路(1204)。 、β 白此員技術者將會瞭解到該可調整的PLL(1200)可 以疋颂比、數位或是兩種類型的組合之電路。 34 1224428 熟習此項技術者將會瞭解到先前參考第14圖之論述的 原理係可類似地應用至DLL。 本發明的優點可以包含以下的一或多個優點。在一或 多個實施例中,因為一個PLL/DLL迴路濾波器之電容器的 漏電流可以受到控制,因此可有助於PLL/DLL之更穩定且 可靠的動作。於是,PLL/DLL的相移可能不會漂移、或是 可能不會像未使用一個開關來電阻性地隔離該迴路濾波器 之電容器的PLL/DLL設計漂移的一樣多。 在一或多個實施例中,由於一個與PLL/DLL迴路濾波 器之電容器串聯設置的開關係有助於控制該PLL/DLL迴路 濾波器之電容器的漏電流,因此由該PLL/DLL迴路濾波器 之電容器所佔的晶片面積可以被縮小,因為該PLL/DLL迴 路濾波器之電容器並不需要是大的來維持電壓控制信號上 的電位。The bias potential is changed by 0 S (961). The change in the bias potential (961) is caused by-the current provided by one or more of the current sources (1128, 1130, 1132) flowing out of the bias potential VBIAS (961). By selecting which ρ-channel transistor (1102, 1106, 1110) and / or ^ -channel transistor (1104, 1108, 1112) "conduct", one selected at the bias potential vBIAS (661) Change can be achieved. The person with general knowledge in this field will understand that these current sources (1122, 1124, 1126, 1128, 1130, 1132) can be designed with transistors operating in the saturation region. Furthermore, the ρ-channel transistor (1 102, 1 106, 1 1 10) and the η-channel transistor (1 104, 1 1 () 8, 1 1 12) are operated as switches to connect a current source (丨 丨 22, 1124, 1126, Π 28, 1130, 1132) to the bias potential vbias (961). '' Those with general knowledge in this field will understand that p-channel transistors 29 1224428 (1 102, 1 106, 1 1 l10) and n-channel transistors (1 104, 1 108, 1 112) can be individual or The entire group is “on”. Each current source (1 1 22, 1 124, 1 126, 1 128, 1 130, 1 132) can provide a fixed amount of current; although, with each current source (1122, 1124, 1 126, 1 128) , 1 130, 1 132) may provide different currents than other current sources u 122, 1 124, 1126, 1128, 1130, 1132). These current sources (1122, 1124, I 126, 1 128, 1 130, 1 132) can be designed when the current source (1 122, 1124, 1126, 1128, 1130, 1132) is connected to the bias potential vbias (901) provides a linear, exponential, or other function when disconnected from the bias potential vB1AS (961). The p-channel transistors (1102, 1106, 1110) and ^ -channel transistors (1104, 1108, 1112) can be used to add a fixed amount of current to the bias potential VBIAS (961). Current, or subtract a fixed amount of current from the current above the bias potential 乂 8 ^ 5 (961). The electric channels (1 102, 1106, 1 110) and the n-channel transistors (1 104, 11), 8 and II 12) are programmable current sources (11〇〇). Actions. The programmable motor source includes a plurality of current sources, each of which is operatively connected to a switch. The open relationship controls the flow of current from the current source. In Fig. 11 'the combinational logic circuit (952) generates a binary "k-sub-tuple", which determines which n-channel transistors in the adjustment circuit (954) (shown in n 1104, 1108, 1112) and p-channel transistors (1102, 1106, πm0 shown in Fig. 13) are "on," and those are "off". According to this The signal value of the M communication lines (951) received by the combinational logic circuit (952) represents the EN-NX signal (1103, 1107, and 1111 in Fig. 13 30) and the EN-Px signal (in Fig. 13 (101, 1105, 1109) can be “on” or “off” the p-channel transistor (shown in FIG. 13) of the adjustment circuit (954). 1 104, 1108, 1 112) and n-channel transistors (1104, 1108, 1112 shown in Figure 13). The bias potential vbias (961) of the adjustment circuit (954) adjusts the leakage current control circuit (904) to compensate the leakage current of the capacitor (206). In FIG. 12, the combinational logic circuit (1052) generates a binary control word group, which determines which n-channel transistors (1104, 11 shown in FIG. 13) in the adjustment circuit (954). 〇8, Ul2) and ρ-channel transistors (1 102, 1 106, u 1〇 shown in Figure 13) are "on" and which are "off," which represent the EN_NX signal (in The multiple adjustment signals N (653) of 1103, 1071, and 1111 in FIG. 13 and EN_PX # (11101, 1105, and 1109 in FIG. 13) may be “on, or“ “OFF” The p-channel transistor (1102, U06, 111) shown in FIG. 13 and the n-channel transistor (in u〇8, 1112 shown in FIG. 13) in the adjustment circuit (954). ). The bias potential VBIAS (961) of the adjustment circuit (954) adjusts the leakage current control circuit (904) to compensate the leakage current of the capacitor (206). The adjustable PLL (900 in Figure 11 and 700 in Figure 12) may exhibit unwanted operating characteristics after manufacturing, and these unwanted operating characteristics may not Zhongming Yi-Bu d ♦ ,,, Shi Bei. In one or more embodiments, the adjustment circuit (954 shown in Figure M and Figure 12) can modify the adjustable pLL (900 in Figure 11 and Figure 31). f / 2 (700 in the figure), so the adjustable PLL (900 in figure ▲ and the figure in Figure 12 can be adjusted. Those skilled in the art will understand the previous reference The principle of the fans of Figures 8 through 8 can be similarly applied to DLLs. Figure 14 shows a locking circuit along an example of another embodiment of the present invention. Those skilled in the art will understand that although The M diagram shows a specific locked loop circuit of the individual PLL (1200). The phase-frequency detector (202), the capacitor (206) of the pll (i200), which should be similarly adjustable in the present invention, ), The bias generator (208) and the day-controlled vibrator (i) operate similar to the corresponding components of the above-mentioned reference to FIG. 2. In Fig. 14, a leakage current control circuit (12G4) is connected between the control block (207) and Xunyuan Vss. Since the potential of the capacitor (20 magic leakage current 'on the control signal (207) has a tendency to drift toward the power source I. The leakage current control circuit (12G4) is configured to set the potential on the control signal (207) Pull to the power supply Vss. For example, in Figure 14, an n-channel transistor system is used as the leakage current control circuit (2204). Those with ordinary knowledge in this field will understand that in other implementations In the example, 'the capacitor (206) can be connected between the control signal (2G7) and the power supply vs. In this example, the leakage current control circuit (1204) is connected to the pestle signal (207) and the power supply. Between VDD. The leakage current control circuit (1204) in this configuration can be a p-channel transistor. In Figure 14, an adjustment circuit (1254) is used to adjust the leakage current control circuit (1204). ) To compensate the leakage current of the capacitor (206). A bias voltage of 321224428 C VBIAS (1261) is used to control the amount of compensation applied to compensate for the leakage current. The bias potential (1261) can be adjusted To increase, decrease, shut down or maintain Compensation for leakage current generated by the current control circuit (丨 204);! (Ie, leakage current compensation). The adjustment circuit (丨 254) can be similar to that described and shown in Figure 13 In FIG. 14, a test processor unit (1252) uses a plurality of adjustment signals N (1253) to control the adjustment circuit (254). The values of the plurality of adjustment signals N (1253) are determined by the test processor unit (1252). The test processor unit (1252) generates the plurality of adjustment signals N (1253) or binary control characters from a register that determines the settings of the adjustment circuit (1254). The test processor unit (1252) can change the contents of its registers through a host interface. In one or more embodiments of the invention, the test processor unit (1252) may be responsive to instructions. These instructions can be interpreted by the test processor unit (1 252) and can cause changes in the contents of the registers stored in the test processor unit 025 2). A change in the register contents may cause a change in the plurality of adjustment signals N (1253). The test processor unit (1252) can communicate through a host interface and a flash line (丨 25 丨). Those with ordinary knowledge in this field will understand that the host interface and the M communication lines (1251) can have a wide variety of forms. In one or more embodiments, the host interface may be operatively connected to another computer system. Furthermore, the host interface may be defined by an industry standard in one or more embodiments. The host interface described above can be used to operationally connect to a 33 1224428 other computer system. For example, a tester (not shown) can test the processor unit (1252) for communication. In some embodiments, the tester (not '", page not shown) may refer to the test unit (1252) without testing to adjust the adjustment circuit (= 4) to modify the leakage current of the adjustable pLL (12⑼) In some examples, the tester (not shown) can measure one of the operating characteristics of the adjustable PLLG200 or a representative operating characteristic of an integrated circuit. The adjustable The PIX (12 (^ is the compensation of the operation and the adjustment. Various adjustments can be made in order to confirm the adjustment setting of the desired operating characteristics of the adjustable pLL (l200). For example, 'The tester ( (Not shown) can be used to adjust the adjustable PLL (12GG) until the delay drift in the voltage controlled oscillator (21 ()) is minimized. The tester (not shown) can also be used to adjust The adjustable PLLO200) until the adjustable pll02⑽) operating characteristics reach a desired degree of performance. Such operating characteristics can include delay drift, maximum operating frequency, minimum operating frequency, lock time, etc. Has general knowledge in this field It will be appreciated by (Class 7 may be connected to the bias potential of the plant Kennedy leakage current control circuit (iv) the ...) Cloth ㉟ entire circuit G254) can still be "off ,,. In other words,… Zhou Zheng's $ Road (1254) can be controlled without affecting the adjustable holes ()). The test processor unit (1252) operatively controls the adjustment circuit: (1254). Adjust the bias potential of the circuit (1254). (Add) is to adjust the leakage current control circuit (1204). The technical staff will know that the adjustable PLL (1200) can be a circuit with a ratio, a digital or a combination of the two types. 34 1224428 Those skilled in the art will understand that the principles previously discussed with reference to Figure 14 can be similarly applied to DLLs. Advantages of the present invention may include one or more of the following advantages. In one or more embodiments, since the leakage current of the capacitor of a PLL / DLL loop filter can be controlled, it can contribute to more stable and reliable operation of the PLL / DLL. Thus, the phase shift of the PLL / DLL may not drift, or it may not drift as much as the PLL / DLL design of a capacitor that does not use a switch to resistively isolate the loop filter. In one or more embodiments, since an open relationship provided in series with the capacitor of the PLL / DLL loop filter is helpful to control the leakage current of the capacitor of the PLL / DLL loop filter, the PLL / DLL loop is filtered. The chip area occupied by the capacitor of the device can be reduced because the capacitor of the PLL / DLL loop filter does not need to be large to maintain the potential on the voltage control signal.
該可調整的PLL/DLL在製造後可能會呈現不想要的操 作特性,而該些不想要的操作特性可能未能從模擬中明顯 得知。在一或多個實施例中,因為該調整電路可以修改可 調整的PLL/DLL之操作特性,因此該可調整的PLL/DLL 可加以調整。 在一或多個實施例中,因為該可調整的PLL/DLL可以 用一個用於補償該電容器的漏電流之裝置來加以製造,因 此較少的反覆設計以及在該可調整的PLL/DLL操作特性上 較高的可信度可被提供。 在一或多個實施例中,因為一個調整電路可以修改該 35 1224428 了。周正的PLL/DLL之操作特性,目& ㈣犯在操作情形的期間之響應的㈣可被進/周1的 在一或多個實施例中,有限數量之可調整的: 可能需要被測試以判斷出一個 1山扪T以被用於未來之非可哨身文 的PLL/DLL之所要的調整。 非了凋正 在一或多個實施例中,在可程 ^ ιν θ T式化電抓源中之電流源 了以具有一個固定的電流供應。固泣 it ^ ^ 0'爪/原可能是較容 易,又e十並且維持在固定的電流供 〜 4 了私式化電流源可 以利用開關的數位控制來從電流 咕級你彡日加電流、減少電流 及/或是改變電流方向。 % 在一或多個實施例中’因為該調整電路可以修改可調 整的PLL/DLL之择作特料,ll 知作特性因此该可調整的PLL/DLL在 操作情形的期間之響應的調查可被進行。實際的結果有助 於決定用於該可調整的PLL/DLL中之電路元件之適當的值 並且有助於減少昂貴的重複設計。 在一或多個實施例中,一個測試器以及測試處理器單 π可以通Λ使知效能特性可被分析以及/或是可以對該可調 整的PLL/DLL做調整。 儘官本發明已經相關於有限數量的實施例來加以描述 ,但是熟習此項技術者在有此揭露内容之助益下,將會體 涊到可思及其它不脫離如在此所揭露之本發明的範疇之實 施例。於是,本發明的範疇應該僅受限於所附的申請專利 範圍。 【圖式簡單說明】 36 1224428 (一)圖式部分 第1圖係顯示典型的電腦系統組件。 弟2圖係顯示習知技術的相位鎖定迴 吩之方塊圖。 第3圖係顯示典型的電腦系統組件。 第4圖係顯示習知技術的延遲鎖定迴 吩 < 方塊圖。 第5圖係顯示根據本發明的一個實施例之電路。 第6圖係顯示在第5圖中所示之奸姑| 口 T所不之根據本發明的一個每 施例之電路的一部分。 只 第7圖係顯示根據本發明的一個實施例之電路的—呷 第8圖係顯示相位_頻率檢測器之概要圖。 第9圖係顯示充電泵之概要圖。 第1 〇圖係顯示在第8圖中所_ - 4 / 之時序圖。 3中所颂不的相位-頻率檢測器 弟11圖係顯不一個呈有奸姑士 a /、有根據本發明的一個實施例之可 凋正2漏電流控制電路之電路的方塊圖。 弟12圖係#員不一個呈有;(p诚4·八 ^ ^ ΛΛ ώ 有根據本發明的一個實施例之可 调正的漏電流控制電路之電路的方塊圖。 :13圖係顯示根據本發明的—個實施例The adjustable PLL / DLL may exhibit unwanted operating characteristics after manufacturing, and the unwanted operating characteristics may not be apparent from simulation. In one or more embodiments, because the adjustment circuit can modify the operating characteristics of the adjustable PLL / DLL, the adjustable PLL / DLL can be adjusted. In one or more embodiments, because the adjustable PLL / DLL can be manufactured with a device for compensating for the leakage current of the capacitor, there is less iterative design and operation at the adjustable PLL / DLL Higher credibility in characteristics can be provided. In one or more embodiments, the 35 1224428 can be modified because of an adjustment circuit. The operational characteristics of Zhou Zheng's PLL / DLL, and the response of the offender during the operating situation can be entered / in one or more embodiments of Week 1, a limited number of adjustable: may need to be tested In order to determine the necessary adjustments for a 1-bit T to be used for future non-decent PLL / DLL. Instead, in one or more embodiments, the current source in the programmable electric source can be provided with a fixed current supply. It may be easier to fix it ^ ^ 0 'claws / original, and e ten and maintain a fixed current supply ~ 4 The privateized current source can use the digital control of the switch to increase the current from the current level, Reduce the current and / or change the direction of the current. % In one or more embodiments, 'because the adjustment circuit can modify the choice of adjustable PLL / DLL as a special feature, it is known as a characteristic, so the investigation of the response of the adjustable PLL / DLL during the operating situation may be Was carried out. The actual results help determine the appropriate values for the circuit components in the adjustable PLL / DLL and help reduce costly repetitive designs. In one or more embodiments, a tester and test processor unit π can be used to make known performance characteristics can be analyzed and / or the adjustable PLL / DLL can be adjusted. The present invention has been described in relation to a limited number of embodiments, but those skilled in the art, with the help of this disclosure, will realize the imagination and others without departing from the principles disclosed herein. Examples of the scope of the invention. Therefore, the scope of the present invention should be limited only by the scope of the attached patent application. [Schematic description] 36 1224428 (I) Schematic part The first figure shows typical computer system components. Brother 2 is a block diagram showing the phase-locked loop back of conventional techniques. Figure 3 shows typical computer system components. Fig. 4 is a block diagram showing the delay lock of the conventional technique. Fig. 5 shows a circuit according to an embodiment of the present invention. Fig. 6 shows a portion of the circuit according to the present invention shown in Fig. 5 as shown in Fig. 5; Fig. 7 is a diagram showing a circuit according to an embodiment of the present invention-Fig. 8 is a schematic diagram showing a phase-frequency detector. Figure 9 is a schematic diagram showing a charge pump. Figure 10 is a timing diagram showing _-4 / shown in Figure 8. The phase-frequency detector described in 3 is a block diagram showing a circuit having a gangster a /, and a leakage current control circuit according to an embodiment of the present invention.弟 12 图 系 # A member is not present; (p since 4 · 八 ^^ ΛΛ ώ There is a block diagram of a circuit of an adjustable positive leakage current control circuit according to an embodiment of the present invention.: 13 Figure shows the An embodiment of the present invention
/及源的概要圖。 I 苐Κ圖係顯示一個且右纟/ And source schematic. I 苐 Κ picture shows one and right
調整的漏電#制發明的—個實施例之V 工制電路之電路的方塊圖。 (一)件代表符號 電腦系統 37 10 1224428 12 14 16 18 19 20 100 112 114 116 134 200 201 202 204 206 207 208 209 210 211 212 、 214 、 216 、 218 213 215 微處理器 記憶體 積體電路 晶體振盪器 通訊路徑 相位鎖定迴路(PLL) 電腦系統組件 電路A 資料Adjusted Leakage # Block Invention of a V-shaped circuit of an embodiment of the invention. (1) Computer system for representative symbols 37 10 1224428 12 14 16 18 19 20 100 112 114 116 134 200 201 202 204 206 207 208 209 210 211 212, 214, 216, 218 213 215 Microprocessor memory volume circuit crystal oscillation Communication Circuit Phase Locked Loop (PLL) Computer System Component Circuit A Information
時脈信號 電路B 相位鎖定迴路(PLL) 系統時脈信號 相位-頻率檢測 充電泵 電容器 控制電壓 偏壓產生器 偏壓電壓 壓控振盪器 偏壓電壓 緩衝器 輸出信號 輸出時脈信號 38 1224428 217 晶片時脈信號 220 除以A的電路 221 時脈A信號 222 除以C的電路 223 時脈B信號 224 除以B的電路 234 充電泵 250 PLL核心 300 DLL 301 時脈信號 302 相位檢測器 304 充電泵 306 電容器 307 控制信號 308 偏壓產生器 309 偏壓信號 310 壓控延遲線 311 偏壓信號 317 輸出信號 402 回授除法器 470 PLL 472 相位頻率檢測器 474 輸入時脈信號 476 回授時脈信號 39 1224428 482 充電泵 484 電壓控制信號 486 迴路濾波器之電容器 487 迴路濾波器之電阻器 488 漏電流控制電路 492 偏壓產生器 494 偏壓信號 496 壓控振盪器 498 輸出時脈信號 500 p通道電晶體開關 502 第一端子 504 第二端子 506 閘極端子 508 NOR閘電路 510 PLL迴路濾波器之電容器 514 漏電流控制電路 516 η通道電晶體開關 518 第二端子 520 第一端子 522 閘極端子 524 OR閘電路 600 相位-頻率檢測器 606 、 608 正反器 607 信號線 1224428 700 充電泵 702 電流源 703 信號線 704 開關 705 信號線 706 開關 708 電流源 900 PLL 904 漏電流控制電路 951 通訊線 952 組合邏輯電路 953 調整信號 954 調整電路 961 偏壓電位 1000 PLL 1052 組合邏輯電路 1100 可程式化電流源 1101、 1103、 1105、 1107 、 1109 、 1111 控制信號 1102、 1106、 1110 P通道電晶體 1104、 1108、 1112 η通道電晶體 1122、 1124、 1126、 1128、 1130、 1132 電流源 1200 PLL 1204 漏電流控制電路 1251 通訊線Clock signal circuit B Phase lock loop (PLL) System clock signal phase-frequency detection charge pump capacitor control voltage bias generator bias voltage voltage controlled oscillator bias voltage buffer output signal output clock signal 38 1224428 217 chip Clock signal 220 divided by A circuit 221 Clock A signal 222 divided by C circuit 223 Clock B signal 224 divided by B circuit 234 Charge pump 250 PLL core 300 DLL 301 Clock signal 302 Phase detector 304 Charge pump 306 Capacitor 307 Control signal 308 Bias generator 309 Bias signal 310 Voltage controlled delay line 311 Bias signal 317 Output signal 402 Feedback divider 470 PLL 472 Phase frequency detector 474 Input clock signal 476 Feedback clock signal 39 1224428 482 Charge pump 484 Voltage control signal 486 Capacitor of the loop filter 487 Resistor of the loop filter 488 Leakage current control circuit 492 Bias generator 494 Bias signal 496 Voltage controlled oscillator 498 Output clock signal 500 p channel transistor switch 502 First terminal 504 Second terminal 506 Gate terminal 508 NOR Gate circuit 510 Capacitor of PLL loop filter 514 Leakage current control circuit 516 η channel transistor switch 518 Second terminal 520 First terminal 522 Gate terminal 524 OR Gate circuit 600 Phase-frequency detector 606, 608 Flip-flop 607 Signal Line 1224428 700 charge pump 702 current source 703 signal line 704 switch 705 signal line 706 switch 708 current source 900 PLL 904 leakage current control circuit 951 communication line 952 combination logic circuit 953 adjustment signal 954 adjustment circuit 961 bias potential 1000 PLL 1052 combination Logic circuit 1100 programmable current sources 1101, 1103, 1105, 1107, 1109, 1111 control signals 1102, 1106, 1110 P-channel transistors 1104, 1108, 1112 n-channel transistors 1122, 1124, 1126, 1128, 1130, 1132 Current source 1200 PLL 1204 Leakage current control circuit 1251 Communication line
41 1224428 1252 測試處理器單元 1253 調整信號 1254 調整電路 1261 偏壓電位41 1224428 1252 Test processor unit 1253 Adjustment signal 1254 Adjustment circuit 1261 Bias potential
4242
Claims (1)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/199,421 US6570422B1 (en) | 2002-07-19 | 2002-07-19 | Phase locked loop design with switch for loop filter capacitance leakage current control |
US10/199,422 US6597219B1 (en) | 2002-07-19 | 2002-07-19 | Delay locked loop design with switch for loop filter capacitance leakage current control |
US10/230,862 US6570421B1 (en) | 2002-08-29 | 2002-08-29 | Programmable leakage current offset for phase locked loop |
US10/230,596 US6570423B1 (en) | 2002-08-29 | 2002-08-29 | Programmable current source adjustment of leakage current for phase locked loop |
US10/230,649 US6570420B1 (en) | 2002-08-29 | 2002-08-29 | Programmable current source adjustment of leakage current for delay locked loop |
US10/230,726 US6573770B1 (en) | 2002-08-29 | 2002-08-29 | Programmable leakage current offset for delay locked loop |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200402193A TW200402193A (en) | 2004-02-01 |
TWI224428B true TWI224428B (en) | 2004-11-21 |
Family
ID=30773782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092109682A TWI224428B (en) | 2002-07-19 | 2003-04-25 | Loop filter capacitor leakage current control |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI224428B (en) |
WO (1) | WO2004010583A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106130545B (en) * | 2016-06-17 | 2019-02-22 | 中国电子科技集团公司第五十八研究所 | A kind of automatic biasing PLL ruggedized construction of Anti-single particle radiation |
CN111200412B (en) * | 2018-11-16 | 2023-08-25 | 广州安凯微电子股份有限公司 | Low-pass filter capacitance compensation circuit and method based on ring oscillator |
CN112087228B (en) * | 2019-06-13 | 2024-05-03 | 无锡有容微电子有限公司 | Phase-locked loop circuit |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4745371A (en) * | 1985-08-02 | 1988-05-17 | Libera Developments Limited | Phase-locked digital synthesizer |
US5369376A (en) * | 1991-11-29 | 1994-11-29 | Standard Microsystems, Inc. | Programmable phase locked loop circuit and method of programming same |
US5740213A (en) * | 1994-06-03 | 1998-04-14 | Dreyer; Stephen F. | Differential charge pump based phase locked loop or delay locked loop |
JP3827403B2 (en) * | 1997-05-20 | 2006-09-27 | 富士通株式会社 | Current switch circuit and PLL circuit using the same |
JP3250540B2 (en) * | 1999-03-15 | 2002-01-28 | 日本電気株式会社 | PLL circuit |
-
2003
- 2003-04-25 TW TW092109682A patent/TWI224428B/en not_active IP Right Cessation
- 2003-04-28 WO PCT/US2003/013108 patent/WO2004010583A1/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
TW200402193A (en) | 2004-02-01 |
WO2004010583A1 (en) | 2004-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7129800B2 (en) | Compensation technique to mitigate aging effects in integrated circuit components | |
US6646483B2 (en) | Output buffer circuit for reducing variation of slew rate due to variation of PVT and load capacitance of output terminal, and semiconductor device including the same | |
JP4917546B2 (en) | Phase-locked loop circuit using a charge pump with a current mirror circuit | |
US6711229B1 (en) | Method of synchronizing phase-locked loop, phase-locked loop and semiconductor provided with same | |
US20070076832A1 (en) | Semiconductor integrated circuit and correcting method of the same | |
JP4482524B2 (en) | PLL circuit with leakage current compensation circuit | |
TWI469524B (en) | Method and apparatus for generating an output clock with low clock jitter | |
US6812758B2 (en) | Negative bias temperature instability correction technique for delay locked loop and phase locked loop bias generators | |
US20050093634A1 (en) | Clock generator and related biasing circuit | |
TWI224428B (en) | Loop filter capacitor leakage current control | |
EP1764670B1 (en) | Clock distribution circuit | |
US20120098580A1 (en) | Timing adjusting circuit | |
US6597219B1 (en) | Delay locked loop design with switch for loop filter capacitance leakage current control | |
JP2012034212A (en) | Phase-locked loop circuit | |
US20090289674A1 (en) | Phase-locked loop | |
TW200820625A (en) | Phase-locked loop filter capacitance with a drag current | |
US7777541B1 (en) | Charge pump circuit and method for phase locked loop | |
US6812755B2 (en) | Variation reduction technique for charge pump transistor aging | |
JP5799828B2 (en) | Phase lock loop circuit | |
US6570422B1 (en) | Phase locked loop design with switch for loop filter capacitance leakage current control | |
US6784752B2 (en) | Post-silicon phase offset control of phase locked loop input receiver | |
EP1538754A1 (en) | Frequency and phase correction in a phase-locked loop | |
US7242255B1 (en) | Method and apparatus for minimizing phase error and jitter in a phase-locked loop | |
JP2006270225A (en) | Clock generator | |
JP2008109452A (en) | Pll circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |