TWI222175B - Method for fabricating MOS transistor having gate side-wall spacer thereon - Google Patents

Method for fabricating MOS transistor having gate side-wall spacer thereon Download PDF

Info

Publication number
TWI222175B
TWI222175B TW92118680A TW92118680A TWI222175B TW I222175 B TWI222175 B TW I222175B TW 92118680 A TW92118680 A TW 92118680A TW 92118680 A TW92118680 A TW 92118680A TW I222175 B TWI222175 B TW I222175B
Authority
TW
Taiwan
Prior art keywords
month
gate
item
scope
patent application
Prior art date
Application number
TW92118680A
Other languages
Chinese (zh)
Other versions
TW200503171A (en
Inventor
Yen-Ming Chen
Lin-Jun Wu
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW92118680A priority Critical patent/TWI222175B/en
Application granted granted Critical
Publication of TWI222175B publication Critical patent/TWI222175B/en
Publication of TW200503171A publication Critical patent/TW200503171A/en

Links

Abstract

A method for fabricating a MOS transistor having gate side-wall spacer thereon. The method includes the steps of providing a semiconductor substrate with a gate structure thereon. Thereafter, a lightly ion implantation is carried out using the gate structure as a mask to form lightly doped drain (LDD) regions in the substrate. Subsequently, a first oxide layer is conformally formed on the semiconductor substrate and gate structure using a batch-type furnace. Then, a blanket nitride layer and a second oxide layer are sequentially formed on the first oxide layer using a single wafer tool. A composite spacer is formed by anisotropically etching the second oxide, the nitride and the first oxide layers. Finally, heavy ion implantation is carried out using the gate structure and the composite spacer as a mask to form source/drain regions in the substrate.

Description

12221751222175

發明所屬之技術領域 閘,間隙壁之金氧半元件及其製 一早晶圓處理腔體形成具閘極間 本發明有關於一種具 造方法’特別有關於利用 隙壁之金氧半元件的方法 先前技術 隨著半導體積體電路的 critical dimension)已由〇 於〇· 13 //m。傳統上〇· 25 /zm 積厚度高達2500 A的一層氮 間隙壁。然而,沈積如此厚 對於0· 18 /zm或0· 13 μπι元件 來形成間隙壁的方法,會對 於〇·18 /zm 或0.13 元件, (composite spacer)製法, 的絕緣層。 縮小化,元件的最小線寬(CD; .25 /zm縮小至〇· Μ ,甚至 元件之間隙壁的作法,是僅沈 化矽,然後進行乾蝕刻而形成 的氮化矽需很高的溫度,若是 也採用這種高溫沈積厚氮化矽 元件造成損傷。因此,目前對 一般都採用複合式間隙壁 使用車父低的溫度沈積多層較薄FIELD OF THE INVENTION The present invention relates to a fabrication method, and more particularly to a method for utilizing metal-oxide half-elements with a gap wall. With the critical dimension of the semiconductor integrated circuit, the prior art has been changed from 0 to 0.13m. Traditionally, a layer of nitrogen barrier with a thickness of 0.25 / zm up to 2500 A. However, depositing such a thick insulating layer for a 0. 18 / zm or 0. 13 μm element to form a spacer would be a 0. 18 / zm or 0.13 element, a composite spacer method. Reduced, the minimum line width of the component (CD; .25 / zm reduced to 0 · M, even the method of the spacer wall of the component, only the silicon nitride is deposited, and then dry etching to form silicon nitride requires a high temperature If this kind of high-temperature deposition of thick silicon nitride elements is also used to cause damage. Therefore, at present, composite spacers are generally used.

快速熱程序(Rapid Thermal Processing,簡稱 RTP)在未來半導體製程的重要性已是無庸置疑的。這項技 術的大量引進始源於單晶圓處理(singl e waferThe importance of Rapid Thermal Processing (RTP) in future semiconductor processes is beyond doubt. The massive introduction of this technology originated from single wafer processing (singl e wafer

processing)以及機台群(cluster tool)觀念的興起p同 時,多項研究顯示在大面積、高密度的晶圓積體電路製程 上(over 20 0 mm),RTP對溫度的掌控,將是實現這些製程 的關鍵。此外,由0 · 2 5 // m縮小至0 . 1 3 // m之製程步驟相對 由240增加至360。因此,製程時間(cycle time)便成為提At the same time, the rise of the concept of processing tools and cluster tools. At the same time, a number of studies have shown that in the large-area, high-density wafer integrated circuit manufacturing process (over 20 0 mm), the temperature control of RTP will achieve these. The key to the process. In addition, the manufacturing steps reduced from 0 · 2 5 // m to 0.1 3 // m have been increased from 240 to 360. Therefore, cycle time becomes an improvement.

0503-9847TWf(Nl) ; TSMC2002-1183;jamngwo.ptd 第6頁 1222175 五、發明說明(2) κιη主要因素。熱製程所需時間已佔總生產所需 晶2 /担-於此’如何降低熱製程時間便成為現代 曰曰囡代工廠提升尚運作效能的關鍵議題。 前述提及RTP係源於單晶圓處理(single wafer p=essing)以及機台群(cluster㈤)觀念。傳統或大 ^ ^目前使用的製程均採批次處理(batch pr〇cessing)的 亦即單-機台通常僅能處理單—製冑,為達效率及 耘彈性化的需求,一般均對一批晶圓同時處理。處理完 < ^取出晶圓運送至下一機台。對2〇〇〜3〇〇道手續的製程 而口必需有相當好潔淨環境(cl ean room)以保證在運送 的過程中達零污染。其次,批次處理其靈活程度低,尤其 在大面積(300 mm)晶圓及彈性生產的趨勢下,對產能將 極負,影響。對於大面積的晶圓處理,以傳統批次式 的同溫爐官(hot-wall furnace)在製程效率以及成本 上’可能將不如單晶圓式的RTp機台。 由傳統之批次處理(batch processing)轉換成單晶圓 處,(single wafer processing)的確能降低製程時間, 且單晶圓處理也較適用於處理複雜的製程。然而實際上利 用單日日圓處理(single wafer pr〇cessing)製作具閘極間 隙壁之金氧半元件時,卻發生基底電流(s u b s t r a七e current)及基體效應(body effect)過大的結果,導致可 靠度及製程良率的下降。 第1A及1B圖顯示傳統上複合式間隙壁的製造方法。首 先,請參閱第1A圖,一半導體基底1〇,例如矽基底,其上0503-9847TWf (Nl); TSMC2002-1183; jamngwo.ptd page 6 1222175 V. Description of the invention (2) The main factors of κιη. The time required for the thermal process has already accounted for the total production time. Crystal 2 / load-Here's how to reduce the time of the thermal process has become a key issue in improving the operational efficiency of modern production plants. The aforementioned RTP originates from the concept of single wafer processing (single wafer p = essing) and cluster (cluster). Traditional or large ^ ^ The processes currently used are batch processing (batch prOcessing), that is, the single-machine can usually only process the single-system, in order to achieve the requirements of efficiency and flexibility, generally Batch wafers are processed simultaneously. After processing < ^ Remove wafer and transport to next machine. For the 200 ~ 300 procedures, there must be a clean room (clean room) to ensure zero pollution during the transportation. Secondly, batch processing has a low degree of flexibility, especially under the trend of large-area (300 mm) wafers and flexible production, which will have extremely negative impact on production capacity. For large-area wafer processing, traditional batch-type hot-wall furnaces may not be as efficient as single-wafer RTp machines in terms of process efficiency and cost. From traditional batch processing to single wafer processing, single wafer processing can indeed reduce the process time, and single wafer processing is also more suitable for handling complex processes. However, when a single-day yen process (single wafer pr0cessing) is used to fabricate a metal-oxide half-element with a gate gap, the results of excessive base current and body effect occur, leading to Decrease in reliability and process yield. Figures 1A and 1B show a conventional method for manufacturing a composite partition wall. First, please refer to FIG. 1A, a semiconductor substrate 10, such as a silicon substrate, on which

1222175 五、發明說明(3) ---- 具有一閘極結構50,包括閘極氧化層52以及閘極導電層 54 ,如複晶矽層。首先,以閘極結構5〇為罩幕,利用低能, 量離子植入法將離子植入於半導體基底1〇内,以形成一輕 摻雜汲極(LDD)區域12。接著,在半導體基底1〇上依序順 應性地形成一第一氧化層22、一氮化層24、和一第二氧化 層26,用以覆蓋半導體基底1〇以及閘極結構5〇的上方及側 壁〇 接著,請參閱第1B圖,以非等向性蝕刻,例如反應性 離子蝕刻,依序除去第一氧化層22、氮化層24、和第二氧 化層26 ’而在閘極結構5〇之側壁上形成殘留的閘極間隙 - 壁,而構成複合式間隙壁2〇。最後,以閘極結構5〇及複合_ 式間隙壁20為罩幕,植入高劑量離子(HDD)進入該半導體 基底10内,以形成一源極/汲極區域14,完成具閘極間隙 壁之金氧半元件的製作。 第2圖顯示傳統上複合式間隙壁的製程流程圖。習知 之複合式間隙壁係以採批次爐管處理,一般均對一批晶圓 同時處理。 美國專利第645 1 704號有揭示一種複合式間隙壁的製 造方法’並降低摻雜離子的橫向擴散。此外,美國專利第 625 51 52號亦揭示一種具複合式間隙壁之金氧半元件的製 造方法,以增加源極/汲極之延伸接面,降低熱載子效 應0 發明内容1222175 V. Description of the invention (3) ---- It has a gate structure 50, including a gate oxide layer 52 and a gate conductive layer 54, such as a polycrystalline silicon layer. First, the gate structure 50 is used as a mask, and ions are implanted into the semiconductor substrate 10 using a low-energy, mass ion implantation method to form a lightly doped drain (LDD) region 12. Next, a first oxide layer 22, a nitride layer 24, and a second oxide layer 26 are sequentially and compliantly formed on the semiconductor substrate 10 to cover the semiconductor substrate 10 and the gate structure 50. And sidewalls. Next, referring to FIG. 1B, the gate structure is sequentially removed by anisotropic etching, such as reactive ion etching, in order to remove the first oxide layer 22, the nitride layer 24, and the second oxide layer 26 '. A residual gate gap-wall is formed on the side wall of 50 and a composite gap wall 20 is formed. Finally, using the gate structure 50 and the compound gap wall 20 as a mask, high-dose ions (HDD) are implanted into the semiconductor substrate 10 to form a source / drain region 14 to complete the gate gap. Fabrication of Metal Oxygen Half Element. FIG. 2 shows a process flow chart of a conventional composite partition wall. The conventional composite partition wall is processed by batch furnace tubes, and generally a batch of wafers are processed simultaneously. U.S. Patent No. 6,451,704 discloses a method for manufacturing a composite spacer ' and reduces the lateral diffusion of doped ions. In addition, U.S. Patent No. 625 51 52 also discloses a method for manufacturing a metal-oxygen half element with a composite spacer wall to increase the source / drain extension interface and reduce the effect of hot carriers. 0 Summary of the Invention

1222175 五、發明說明(4) 有鑑於此,本發明的 之金氧半元件及其製造方 成具閘極間隙壁之金氧半 根據上述目的,本發 半元件的製造方法,包括 其上具有一閘極結構;以 入该半導體基底内,以形 次爐管於該半導體基底上 結構的上方及側壁;利用 層上形成一第二間隙壁; 及該第一間隙壁,以形成 構及該閘極隙壁為罩幕, 以形成一源極/;及極區域C 根據上述目的,本發 氧半元件的製造方法,包 底,其上具有一閘極結構 子進入該半導體基底内, 一批次爐管熱處理該半導 在該半導體基底上形成一 及側壁;以及以該閘極結 子進入該半導體基底内, 根據上述目的,本發 氧半元件,包括:一半導 極氧化層及閘極導電層, 目的在於提供一 法,係利用一單 70件,可得到電 明提供一種具閘 丁列步驟··提供 該閘極結構為罩 成一輕摻雜汲極 形成一第一間隙 一單晶圓處理腔 以非等向性>1 虫刻 一閘極間隙壁; 植入離子進入該 種具閘極間隙壁 晶圓處理腔體形 性穩定的元件。 極間隙壁之金氧 一半導體基底, 入離子進 幕,植 區域;利用一批 壁,以覆蓋閘極 體於該第一氧化 該第二 以及以 半導體 間隙壁以 該閘極結 基底内, 明另提供 括下列步 ,以該問 以形成一 體基底; 間隙壁, 構及該閘 以形成一 一種具閘極間隙 驟:提供一半導 極結構為罩幕, 輕摻雜汲極區域 利用一單晶圓處 以覆蓋閘極結構 極隙壁為罩幕, 源極/沒極區域( 明又提供 體基底 位於該半導體基底上;一 一種具閘極間隙 一閘極結構,包 壁之金 體基 植入離 :利用 理腔體 的上方 植入離 \ 壁之金 含一閘 輕掺雜 Φ1222175 V. Description of the invention (4) In view of this, the metal-oxygen half element of the present invention and its manufacture are metal-oxygen half with a gate gap. According to the above purpose, the method for manufacturing the half-element of the present invention includes A gate structure; entering the semiconductor substrate, forming a furnace tube on the semiconductor substrate above and on the side wall; using a layer to form a second gap wall; and the first gap wall to form a structure and the The gate gap wall is used as a cover to form a source electrode; and the electrode region C. According to the above purpose, the method for manufacturing an oxygen generating half-element includes a bottom, which has a gate structure entering the semiconductor substrate. Batch furnace tubes heat-treat the semiconductors to form a side wall on the semiconductor substrate; and enter the semiconductor substrate with the gate junction. According to the above purpose, the oxygen-generating half-element includes: a half-conductor oxide layer and a gate electrode The purpose of the conductive layer is to provide a method that uses a single piece of 70 pieces to obtain electricity. Provide a step with gates. Provide the gate structure to form a lightly doped drain to form a first gap. A single wafer processing chamber with anisotropy > 1 worm engraving a gate gap wall; implanted ions enter this kind of element with a gate gap wall wafer processing chamber with stable shape. The metal oxide-semiconductor substrate of the electrode gap wall enters the ions into the curtain and implants the area; a batch of walls is used to cover the gate body in the first oxidation the second and the semiconductor gap wall in the gate junction substrate. In addition, the following steps are provided to form an integrated substrate with the spacer; a spacer wall, and the gate to form a gate gap step: providing a half-conductor structure as a mask, a lightly doped drain region using a single The wafer is covered with a gate structure electrode gap wall as a cover, and a source / inverter region (where the body substrate is provided on the semiconductor substrate); Ion: Use the upper part of the cavity to implant the gold from the wall containing a lightly doped Φ

12221751222175

汲極區域,位於該蘭权从城 厶彳„皓辟/ 3極μ構兩側之該半導體基底内;一複 ;二:;、土:立於該閘極結構側壁上;以及-源極/汲極 :》人:ί複合式間隙壁兩側之該半導體基底内;其中 用單晶圓處理腔體製程形&,以降低 ^ 〇 y effect,Gamma)及基底電流(substrate - current,Isub)。 以下配合圖式以及較佳實施例,以更詳細地說明本發 明0 實施方式 貫施例一 || 第3A及3B圖顯示根據本發明之一較佳實施方式之具 極間$壁之金氧半元件的製造方法。首先,請參閱第3 A 圖,提供一具有閘極結構15〇之半導體基底1〇〇,如矽基 底。於上述閘極結構150,包括閘極介電層152,例如氧化 矽層,和閘極導電層154 ,例如為複晶矽層。半導體基底 100表面内具有淺溝槽隔離區(未圖示)以隔離各元件。其 次,以低能量離子植入法植入離子於半導體基底丨〇〇内, 以形成輕摻雜沒極(LDD)區域11 2。形成輕摻雜沒極ldd 區域400是以砷或磷離子形成NLDD或以銦或硼離子形成 f PLDD。佈植能量為丨至10 keV,佈植濃度為1E12至1£14 atoms/cm2,佈植深度為2〇〇至80 0 A。 接著’在該半導體基底1 〇 〇上依序順應性形成一第一 · 間隙壁(例如氧化矽)122、一第二間隙壁(例如氮化石夕)124 ·The drain region is located in the semiconductor substrate on both sides of the Lanquan / Hole / 3-pole μ structure; multiple; two:;, soil: standing on the side wall of the gate structure; and-the source / Drain: "Person: In the semiconductor substrate on both sides of the composite gap wall; in which a single wafer is used to process the cavity shape & to reduce the ^ 〇y effect (Gamma) and the substrate current (substrate-current, Isub). The following is a detailed description of the first embodiment of the present invention in conjunction with the drawings and preferred embodiments. Example 1 || Figures 3A and 3B show a polar wall with a pole according to a preferred embodiment of the present invention. Firstly, please refer to FIG. 3A to provide a semiconductor substrate 100 having a gate structure 150, such as a silicon substrate. The above gate structure 150 includes a gate dielectric layer. 152, such as a silicon oxide layer, and gate conductive layer 154, such as a polycrystalline silicon layer. The surface of the semiconductor substrate 100 has a shallow trench isolation region (not shown) to isolate components. Second, low-energy ion implantation Implantation of ions into semiconductor substrates to form lightly doped Impedance (LDD) region 11 2. The formation of a lightly doped ldd region 400 forms NLDD with arsenic or phosphorus ions or f PLDD with indium or boron ions. The implantation energy ranges from 10 to 10 keV and the implantation concentration is 1E12 to 1 £ 14 atoms / cm2, and the implantation depth is 2000 to 80 A. Then, a first barrier wall (eg, silicon oxide) is formed on the semiconductor substrate 100 in order to conform 122, a Second partition wall (for example, nitrided stone) 124 ·

12221751222175

以及一第二間隙壁(例如氧化石夕)1 2 6 ,以覆蓋半導體美底 100及閘極結構2〇〇的上方及側壁。其中第一間隙壁i22為 ’ 利用批次爐管以化學氣相沉積(CVD)法所沉積之 一 TE0S-Si02 ,厚度100人至200 a,例如15〇α。上述批次爐 管製程溫度係600 °C-700 °C,時間4至5小時。第二間隙壁 124為利用單晶圓處理腔體以化學氣相沉積(CVD)法所沉&積 之氮化矽,厚度200 A至400 A,例如300 A。上述單晶圓 處理腔體製程溫度係700。〇800 °C,時間2至3分鐘。^三 間隙壁126為利用單晶圓處理腔體以化學氣相沉積(CVD) 法所沉積之SiH4-Si02,厚度8 00 A至1 200 A,例如1000 A。上述單晶圓處理腔體製程溫度係7〇〇 〇c_8〇〇 〇c,時間5 _ 至6分鐘。 · «月參考第3 B圖’以非等向性餘刻,如反應性離子餘刻 法或電漿蝕刻法,蝕刻該第一間隙壁丨22、第二間隙壁丨24 及第二間隙壁1 2 6 ’以形成一複合式間隙壁1 2 〇,露出閘極 結構1 5 0頂部表面及側壁。 再植入高劑量離子(HDD)進入該半導體基底内,以形 成一源極/汲極區域114。形成源極/汲極區域114是以砷或 磷離子形成NMOS或以銦或硼離子形成pm〇S。佈植能量為5 至60 keV ’佈植濃度為1E15至5E15 atoms/cm2。於形成源 4 極/汲極區域410之後進行一退火製程,其溫度為6〇〇至8〇〇 °C,時間為20至40秒,壓力為1〇·6 Torr。 第4圖係顯示根據本發明之實施例一的流程圖。本發 ♦ 明之實施例一係先利用批次爐管以化學氣相沉積(CVD)And a second partition wall (eg, oxidized stone) 1 2 6 to cover the top and side walls of the semiconductor substrate 100 and the gate structure 2000. The first partition wall i22 is a TE0S-Si02 deposited by a chemical vapor deposition (CVD) method using a batch of furnace tubes, and has a thickness of 100 to 200 a, for example, 15α. The batch temperature of the above batch furnaces is 600 ° C-700 ° C, and the time is 4 to 5 hours. The second spacer wall 124 is a silicon nitride deposited by a chemical vapor deposition (CVD) method using a single wafer processing chamber, and has a thickness of 200 A to 400 A, for example, 300 A. The single-wafer processing chamber has a process temperature of 700 ° C. 〇800 ° C, 2 to 3 minutes. ^ Three The spacer 126 is SiH4-Si02 deposited by a chemical vapor deposition (CVD) method using a single wafer processing chamber and has a thickness of 800 A to 1 200 A, for example, 1000 A. The temperature of the single-wafer processing chamber is 70 ° c_80 ° c, and the time is 5 ° to 6 minutes. · «Monthly reference 3B 'to etch the first spacer 丨 22, the second spacer 丨 24, and the second spacer with an anisotropic etch, such as reactive ion etch or plasma etching. 12 6 ′ to form a composite spacer wall 120, exposing the top surface and sidewalls of the gate structure 150. High-dose ions (HDD) are re-implanted into the semiconductor substrate to form a source / drain region 114. The source / drain region 114 is formed to form NMOS with arsenic or phosphorus ions or pMOS with indium or boron ions. The implantation energy is 5 to 60 keV, and the implantation concentration is 1E15 to 5E15 atoms / cm2. After the source / drain region 410 is formed, an annealing process is performed. The temperature is 600 to 800 ° C, the time is 20 to 40 seconds, and the pressure is 10.6 Torr. FIG. 4 is a flowchart showing a first embodiment of the present invention. The present invention ♦ The first embodiment of the present invention is to first use batch furnace tubes for chemical vapor deposition (CVD).

0503-9847TWf(Nl) · TSMC2002-1183;jamngwo.ptd 第 11 頁 12221750503-9847TWf (Nl) TSMC2002-1183; jamngwo.ptd page 11 1222175

法形成第一間隙壁(例如氧化矽)1 2 2,再利用單晶圓處理 腔體以化學氣相沉積(CVD)法形成第二間隙壁(例如氮化 石夕)1 2 4以及第三間隙壁(例如氧化石夕)1 2 6,因而可同時兼 顧提升製程效率以及降低成本,又可避免基底電流 (substrate current,Isub)及基體效應(body effect , Gamma)過大的結果’以提升可靠度及製程良率。 根據本發明之較佳實施方式,傳統爐管由於熱質量 (thermal mass)較大,雖然較能維持均溫,在升溫的暫 態過程中其速度較慢,對高品質氧化物的生長需快速升溫 的情況下,很容易造成不均勻的結果,甚至造成晶圓 曲變形。單晶圓式㈣因為熱質量(thermal 圓小的,扭 升溫快速’且在暫態上對均溫的敏感度較低。因此已使用 在生長非常溥(<1〇〇Α)的閘極氧化物,甚至是多層製程 如reoxidized oxynitridfe (0N0)。這兩種方式的差異在 於批次式爐管的退火時間遠較單晶圓式RTp的時間長(批次 式爐管以小時計算,而單晶圓式RTp以秒計算),結果證明 熱預算(thermal budget)較小之單晶圓式RTp其差排 (dislocation)或氧化層堆疊誤差(〇xidati〇n stacking f a u 11)均較少。Method to form a first gap wall (such as silicon oxide) 1 2 2 and then use a single wafer processing chamber to form a second gap wall (such as nitride nitride) 1 2 4 and a third gap by a chemical vapor deposition (CVD) method Wall (such as oxidized stone) 1 2 6 so that both process efficiency and cost can be improved while avoiding excessive substrate current (Isub) and body effect (Gamma) results to improve reliability And process yield. According to a preferred embodiment of the present invention, due to the large thermal mass of the traditional furnace tube, although it can maintain a uniform temperature, its speed is slower during the transient process of temperature rise, and the growth of high-quality oxides needs to be fast. In the case of temperature rise, it is easy to cause uneven results and even warp the wafer. Single-wafer wafers have been used because of their thermal mass (small thermal circle, rapid torsional temperature rise), and low sensitivity to average temperature in the transient state. Therefore, gates with very high growth (< 100A) have been used. Oxides, even multi-layer processes such as reoxidized oxynitridfe (0N0). The difference between the two methods is that the annealing time of the batch furnace tube is much longer than that of the single wafer RTp (batch furnace tube is calculated in hours, while The single-wafer RTp is calculated in seconds. The results show that the single-wafer RTp with a smaller thermal budget has fewer dislocations or oxide stacking errors (〇xidati〇n stacking fau 11).

實施例二 第5圖係顯示根據本發明之實施例二的流程圖。本發 明之實施例二主要係先利用一批次爐管製程對半導體基底 100進行退火熱處理。接著,在該半導體基賴G上形成三Embodiment 2 FIG. 5 is a flowchart showing Embodiment 2 of the present invention. The second embodiment of the present invention mainly uses a batch of furnace control processes to perform annealing heat treatment on the semiconductor substrate 100 first. Next, three semiconductors are formed on the semiconductor substrate G.

12221751222175

間隙壁1 2 Ο,包括_势 ^ , 匕括第一氧化矽122 /氮化矽124/第二氧化 :126堆疊結構,卩覆蓋閘極結構的上方及側壁。其步驟 為依序順應性形成_惫麻 . a n 0 p 战虱化矽層122、一氮化矽層124以及一 石曰 ’以覆蓋半導體基底100及閘極結構2 00的上 ^ f °其中氧切層122為制單晶圓處理腔體以化 學乳相沉積(CVD)法所沉積之SiH4-Si02,厚度1〇〇入至20〇 A 1列如1 5 〇 A。上述單晶圓處理腔體製程溫度係7 〇 〇 〇c 800 C ’%·間2至3分鐘。氮化石夕層! 24為利用單晶圓處理The partition wall 1 2 0 includes a potential ^, a stack structure of the first silicon oxide 122 / silicon nitride 124 / second oxide: 126, and the upper and side walls of the gate structure are covered. The steps are sequential compliance formation _ exhaustion. An 0 p lice-resistant silicon layer 122, a silicon nitride layer 124, and a stone said to cover the semiconductor substrate 100 and the gate structure 200 ^ f ° where oxygen The slicing layer 122 is SiH4-Si02 deposited by a chemical emulsion deposition (CVD) method in a single wafer processing chamber, with a thickness of 100 to 200 A, and a column such as 150 A. The single-wafer processing chamber has a process temperature of 7000c 800 C '% · for 2 to 3 minutes. Nitrile stone layer! 24 for single wafer processing

腔體以化學氣相沉積(CVD)法所沉積之氮化石夕,厚度2〇〇入 至400 A,例如300 A。上述單晶圓處理腔體製程溫度係 700。(: - 80(TC,時間2至3分鐘。氧化石夕層126為利用單晶圓 處理腔體以化學氣相沉積(CVD)法所沉積之SiH^s 厚度800 A至1 20 0 A ’例如1 000 a。±述單晶圓處理腔體 製程溫度係7 0 0 °C - 8 0 〇。〇,時間5至6分鐘。 接著,以非等向性蝕刻,如反應性離子蝕刻法或電漿 蝕刻法,蝕刻該氧化矽層丨22、氮化矽層丨24及氧化矽層 126,以形成一複合式間隙壁12〇,露出閘極結構15〇頂部 表面及側壁。The nitride is deposited by a chemical vapor deposition (CVD) method in the cavity and has a thickness of 200 to 400 A, for example, 300 A. The single-wafer processing chamber has a process temperature of 700 ° C. (: -80 (TC, time 2 to 3 minutes. The oxide oxide layer 126 is a SiH ^ s deposited by a chemical vapor deposition (CVD) method using a single wafer processing chamber with a thickness of 800 A to 1 20 0 A ' For example, 1 000 a. The process temperature of the single-wafer processing chamber is 700 ° C-800 ° C, and the time is 5 to 6 minutes. Next, anisotropic etching, such as reactive ion etching or The plasma etching method etches the silicon oxide layer 22, the silicon nitride layer 24, and the silicon oxide layer 126 to form a composite spacer wall 120, exposing the top surface and side walls of the gate structure 150.

、再植入高劑量離子(HDD)進入該半導體基底内,以形 成一源極/汲極區域114。形成源極/汲極區域丨14是以砷或 磷離子形成NMOS或以銦或硼離子形成PM〇s。佈植能量為5 至60 keV,佈植濃度為1E15至5E15 atoms/cm2。於形成源 严/汲極區域410之後進行一退火製程,其溫度為6〇〇至8〇〇 °C,時間為20至40秒,壓力為i〇-6 T〇rr。A high-dose ion (HDD) is re-implanted into the semiconductor substrate to form a source / drain region 114. Forming the source / drain region 14 forms NMOS with arsenic or phosphorus ions or PMOS with indium or boron ions. The implantation energy is 5 to 60 keV, and the implantation concentration is 1E15 to 5E15 atoms / cm2. After forming the source / drain region 410, an annealing process is performed, the temperature of which is from 600 to 800 ° C, the time is from 20 to 40 seconds, and the pressure is from i0 to 6 Torr.

1222175 五、發明說明(9) 第6圖係顯示根據習知技術及本發明實施例之基體效 ΐ利0用:1 / Gamma)的結果。其中批次爐管〇N〇係顯 ^利^ %知利用批次爐管以化學氣相沉積(cvD)法所沉 積之氧化-I化-氧化(0N0)結構,根據本發明之實施 7次爐管0+單晶圓處理N0)以及實施例二(批次爐管退火+ 早阳圓處理0N0)皆能有效降低基體效應(b〇dy以卜以, Gamma)的結果〇 第7圖係顯示根據習知技術及本發明實施例之基底電 一substrate current,Isub)的結果。其中批次爐管〇N〇係 j不利用習知利用批次爐管以化學氣相沉積(CVD)法所 沉積之氧化-氮化-氧化(0N0)結構,根據本發明之實施例 一(^次爐管0+單晶圓處理N0)以及實施例二(批次爐管退 火+單晶圓處理0N0)皆能有效降低基底電流(substrate current,Isub)的結果。 如第3B圖所示,一種具閘極間隙壁12〇之金氧半元 件,包括一半導體基底1 〇〇,一閘極結構15〇,位於上述半 導體基底1〇〇上。一輕摻雜汲極(LDD)區域112,位於該閘 極結構1 5 0兩側之该半導體基底内。一複合式間隙壁1 2 〇, 位於閘極結構150側壁上;以及一源極/汲極區域114,位 於複合式間隙壁1 2 0兩側之半導體基底丨〇〇内。其中複合式 間隙壁120係以枚葉式熱處理形成,以降低基體效應(b〇dy effect,Gamma)及基底電流(substrate current,Lb)。 本案特徵及效果1222175 V. Description of the invention (9) Figure 6 shows the results of the matrix effect according to the conventional technology and the embodiment of the present invention (utility: 1 / Gamma). Among them, the batch furnace tube 〇N〇 is significant. It is known that the oxidation-Iization-oxidation (0N0) structure deposited by the chemical vapor deposition (cvD) method using the batch furnace tube is implemented 7 times according to the present invention. Furnace tube 0 + single wafer processing N0) and the second embodiment (batch furnace tube annealing + early sun round processing 0N0) can effectively reduce the matrix effect (b〇dy to Gamma). Figure 7 Shows the results of a substrate current (substrate current, Isub) according to conventional techniques and embodiments of the present invention. The batch furnace tube 0N0 does not use the conventional oxidation-nitridation-oxide (0N0) structure deposited by a chemical vapor deposition (CVD) method using a batch furnace tube. ^ The furnace tube 0 + single wafer processing N0) and the second embodiment (batch furnace annealing + single wafer processing 0N0) can effectively reduce the substrate current (Isub) results. As shown in FIG. 3B, a metal-oxide semiconductor device having a gate spacer 120 includes a semiconductor substrate 100 and a gate structure 150, which are located on the semiconductor substrate 100. A lightly doped drain (LDD) region 112 is located in the semiconductor substrate on both sides of the gate structure 150. A composite spacer wall 120 is located on the side wall of the gate structure 150; and a source / drain region 114 is located in the semiconductor substrate 100 on both sides of the composite spacer wall 120. Wherein, the composite spacer wall 120 is formed by heat treatment to reduce the matrix effect (Gamma) and substrate current (Lb). Features and effects of the case

0503-9847TWf(Nl) ; TSMC2002.1183;jamngwo.ptd 第14頁 1222175 五、發明說明(ίο) 本發明之 本發明利 率以及降低製 的製程,改善 還有,藉 (body effect Isub),故能大 雖然本發 限定本發明, 神和範圍内, 當視後附之申 特徵與效果在於: 用單晶圓處理腔體製程,有效地提升製程效 程時間,且單晶圓處理也較適用於處理複雜 習知方法之製程良率。 由本發明之實施方式,得以降低基體效應 ’ Gamma)及基底電流(substrate current, 幅地提升可靠度及製程良率。 :ί:ί佳實施例揭露如上’然其並非用以 =技藝者不脫離本發明之精 與潤飾,因此本發明之保護範圍 〇月專利範圍所界定者為準。0503-9847TWf (Nl); TSMC2002.1183; jamngwo.ptd Page 14 1222175 V. Description of the invention (ίο) The invention's interest rate of the invention and the process of reducing the production process can also be improved by using the body effect Isub. Although the present invention limits the present invention, within the scope of Shenhe, the characteristics and effects of the application are as follows: The processing of the cavity system with a single wafer effectively improves the process duration, and the single wafer processing is also more suitable for Process yields to handle complex conventional methods. According to the embodiment of the present invention, it is possible to reduce the matrix effect 'Gamma' and the substrate current (substrate current) to improve the reliability and process yield.:: The best embodiment is disclosed above, but it is not used = the artist does not leave The essence and finish of the present invention, therefore, the scope of protection of the present invention is defined by the scope of the patent in January.

1222175 圖式簡單說明 第1A及1B圖顯不傳統上複合式間隙壁的製造方法; 第2圖顯示傳統上複合式間隙壁的製程流程圖; 第3A及3B圖顯示根據本發明之一較佳實施方式之具間 極間隙壁之金氧半元件的製造方法; 八 第4圖係顯示根據本發明之實施例一的製程流程圖; 第5圖係顯示根據本發明之實施例二的製程流程圖; 第6圖係顯示根據習知技術及本發明實施例之基體效 應(body effect,Gamma)的結果;以及 第7圖係顯示根據習知技術及本發明實施例之基底電 流(substrate current,Isub)的結果。 符號說明 習知部分 10〜半導體基底; 1 4〜源極/汲極區域; 22〜第一氧化層; 26〜第二氧化層; 5 2〜閘極氧化層; 本案部分 100〜半導體基底; 114〜源極/汲極區域; 122〜第一氧化層; 126〜第二氧化層; 1 5 2〜閘極氧化層; 12〜輕摻雜汲極(LDD)區域; 2 〇〜複合式間隙壁; 2 4〜氮化層.; 5 〇〜閘極結構; 54〜閘極導電層。 112〜輕摻雜汲極(1^0)區域; 120〜複合式間隙壁; 1 2 4〜氮化層; 1 5 0〜閘極結構; 154〜閘極導電層。1222175 The diagram briefly illustrates that FIGS. 1A and 1B show the traditional manufacturing method of the composite partition wall; FIG. 2 shows the process flow chart of the traditional composite partition wall; and FIGS. 3A and 3B show a preferred method according to the present invention. Method for manufacturing metal-oxygen half element with interlayer gap according to an embodiment; FIG. 4 is a flowchart showing a process according to the first embodiment of the present invention; FIG. 5 is a flowchart showing a process according to the second embodiment of the present invention Figure 6 shows the results of the body effect (Gamma) according to the conventional technology and the embodiment of the present invention; and Figure 7 shows the substrate current (substrate current, according to the conventional technology and the embodiment of the present invention) Isub). Explanation of symbols: conventional part 10 ~ semiconductor substrate; 14 ~ source / drain region; 22 ~ first oxide layer; 26 ~ second oxide layer; 5 2 ~ gate oxide layer; part 100 ~ semiconductor substrate in this case; 114 ~ Source / drain region; 122 ~ first oxide layer; 126 ~ second oxide layer; 15 2 ~ gate oxide layer; 12 ~ lightly doped drain (LDD) region; 2 ~ composite gap 2 4 ~ nitride layer; 5 0 ~ gate structure; 54 ~ gate conductive layer. 112 ~ lightly doped drain (1 ^ 0) region; 120 ~ composite spacer; 1 2 4 ~ nitride layer; 150 ~ gate structure; 154 ~ gate conductive layer.

Claims (1)

1222175 MM 92118680 六、申請專利範圍 下列步驟 插 Μ 種具閘極間隙壁之金氧半元件的製造方^ 曰 修正 包括 提供一半導體基底,其上具有一閘極結構; 以該閘極結構為罩幕,植入離子進入該半導體笑 内’以形成一輕摻雜汲極區域; ^ 利用一批次爐管於該半導體基底上形成一第一間隙 壁’以覆蓋閘極結構的上方及側壁; 利用一單晶圓處理腔體於該第一氧化層上形成一 間隙壁;. % ^ 以非等向性蝕刻該第二間隙壁以及該第一間隙壁,以 形成一閘極間隙壁;以及 、, 以該閘極結構及該閘極隙壁為罩幕,植入離子進入該 半導體基底内,以形成一源極/汲極區域。 ^ 2·如申請專利範圍第1項所述之具閘極間隙壁之金氧 半7〇件的製造方法,其中該單晶圓處理腔體係一快速升溫 熱處理(RTA)爐。 3 ·如申請專利範圍第1項所述之具閘極間隙壁之金氧 半元件的製造方法,其中該第一間隙壁係以化學氣相沉積 (CVD)法所沈積之TE〇S-Si〇2。 4·如申請專利範圍第1項所述之具閘極間隙壁之金氧 半元件的製造方法,其中該第一間隙壁之厚度為丨〇 〇 A至 20 0 A 〇 5·如申請專利範圍第1項所述之具閘極間隙壁之金氧 半元件的製造方法,其中該第二間隙壁係以化學氣相沉積1222175 MM 92118680 6. Scope of patent application The following steps insert the M type of metal-oxide half-elements with gate spacers ^ The amendment includes providing a semiconductor substrate with a gate structure thereon; and using the gate structure as a cover Screen, implanted ions enter the semiconductor cavity to form a lightly doped drain region; ^ forming a first gap wall on the semiconductor substrate with a batch of furnace tubes to cover the upper and side walls of the gate structure; Forming a gap wall on the first oxide layer by using a single wafer processing chamber;% ^ anisotropically etching the second gap wall and the first gap wall to form a gate gap wall; and Using the gate structure and the gate gap wall as a mask, implanted ions enter the semiconductor substrate to form a source / drain region. ^ 2. The manufacturing method of the metal-oxygen half 70 with gate gap wall as described in item 1 of the scope of patent application, wherein the single-wafer processing chamber system is a rapid temperature heat treatment (RTA) furnace. 3. The method for manufacturing a metal-oxygen half element with a gate spacer according to item 1 of the scope of the patent application, wherein the first spacer is TEOS-Si deposited by a chemical vapor deposition (CVD) method. 〇2. 4. The method for manufacturing a metal-oxygen half element with a gate partition wall as described in item 1 of the scope of patent application, wherein the thickness of the first partition wall is from 〇〇〇 to 20 0 A 〇5. The method for manufacturing a metal-oxygen half element with a gate spacer according to item 1, wherein the second spacer is formed by chemical vapor deposition 0503-9847TWFl(Nl).ptc 1222175 —篆號_手 月一日 修正 _ 六、申請專利範圍 (CVD)法所沈積之氮化矽。 、一 6 ·如申請專利範圍第1項所述之具閘極間隙壁之金氧 半70件的製造方法,其中該第二間隙壁之厚度為200 A至 400 A 〇 7·如申請專利範圍第1項所述之具閘極間隙壁之金氧 半兀件的製造方法,其中該第二間隙壁更包括一第三間隙 壁。 、,-8·如申請專利範圍第7項所述之具閘極間隙壁之金氧 半70件的製造方法,其中該第三間隙壁係以化學氣相沉積 (CVD)法所沈積之SiH4-Si02。 、>_ 9·如申請專利範圍第7項所述之具閘極間隙壁之金氧 半兀件的製造方法,其中該第三間隙壁之厚度為800 A至 1 200 A 〇 一 —1 〇·如申請專利範圍第1項所述之具閘極間隙壁之金氧 半元件的製造方法,其中該非等向性蝕刻係使用乾蝕刻法 或反應性離子蝕刻法。 11 · 一種具閘極間隙壁之金氧半元件的製造方法, 括下列步驟: 底 間隙0503-9847TWFl (Nl) .ptc 1222175— 篆 号 _ 手 Month 1st Amendment _ 6. Silicon nitride deposited by patent application (CVD) method. 1. 6 · The manufacturing method of 70 metal-oxygen halves with gate spacers as described in item 1 of the scope of patent application, wherein the thickness of the second spacer is 200 A to 400 A 〇7. The method for manufacturing a metal-oxide-semiconductor element with a gate spacer according to item 1, wherein the second spacer further includes a third spacer. , -8 · The manufacturing method of 70 metal-oxygen halves with gate spacers as described in item 7 of the scope of the patent application, wherein the third spacer is SiH4 deposited by chemical vapor deposition (CVD) method -Si02. ≫ _ 9 · The method for manufacturing a metal-oxygen half element with a gate gap wall as described in item 7 of the scope of patent application, wherein the thickness of the third gap wall is 800 A to 1 200 A. 1-1 〇. The method for manufacturing a metal-oxygen half element with a gate spacer according to item 1 of the scope of the patent application, wherein the anisotropic etching is a dry etching method or a reactive ion etching method. 11 · A method for manufacturing metal-oxygen half element with gate gap wall, including the following steps: bottom gap 提供一半導體基底,其上具有一閘極結構; 以該閘極結構為罩幕,植入離子進入該半導體基 内’以形成一輕摻雜汲極區域; 利用一批次爐管熱處理該半導體基底; 利用一單晶圓處理腔體在該半導體基底上形成一 壁,以覆蓋閘極結構的上方及側壁;以及Provide a semiconductor substrate with a gate structure thereon; use the gate structure as a mask to implant ions into the semiconductor substrate to form a lightly doped drain region; use a batch of furnace tubes to heat treat the semiconductor A substrate; forming a wall on the semiconductor substrate using a single wafer processing cavity to cover the upper and side walls of the gate structure; and 1222175 -------—1號 92118680 _年月曰_修正_ 六、申請專利範圍 、、以該閘極結構及該閘極隙壁為罩幕,植入離子進入該 半導體基底内,以形成一源極/汲極區域。 一、1 2 ·如申請專利範圍第1 1項所述之具閘極間隙壁之金 氧半元件的製造方法,其中該單晶圓處理腔體係一快速升 溫熱處理(RTA)爐。 、1 3·如申請專利範圍第1 1項所述之具閘極間隙壁之金 氧半元件的製造方法,其中該批次爐管熱處理係以6 〇 〇 〇c 至800 退火處理。 4 ·如申請專利範圍第11項所述之具閘極間隙壁之金 氧半元件的製造方法,其中該間隙壁包括一第一氧化矽/ 氮化矽/第二氧化矽堆疊結構。 _ U •如申請專利範圍第1 4項所述之具閘極間隙壁之金 氧半元件的製造方法,其中該第一氧化矽為以化學氣相沉 積(CVD)法所沈積之SiHrSi02。 一、> \6·如申請專利範圍第1 4項所述之具閘極間隙壁之金 氧半元件的製造方法,其中該第一氧化矽之厚度為100A 至20 0 A 〇 ^ ·如申請專利範圍第1 4項所述之具閘極間隙壁之金 社半疋件的製造方法,其中該第二氧化矽為以化學氣相沉 積(CVD)法所沈積之SiH4-Si02。 18·如申請專利範圍第丨4項所述之具閘極間隙壁之金 至it0^1的製造方法,其中該第二氧化矽之厚度為80〇 A 19·如申請專利範圍第14項所述之具閘極間隙壁之金1222175 -------— No. 1 92118680 _ year, month, month, month, month, month, month, month, month, month, month, month, month, month, month, month, month, month, month, month, month, month, month, month, month, month, month, month, week, month, month, month, month, month, month, month, month, month To form a source / drain region. 1. 12 · The method for manufacturing a metal-oxide-semiconductor device with a gate gap wall as described in item 11 of the scope of patent application, wherein the single-wafer processing chamber system is a rapid temperature rise heat treatment (RTA) furnace. 1, 3 · The method for manufacturing a metal-oxygen half element with a gate gap wall as described in item 11 of the scope of patent application, wherein the batch of furnace tubes is heat-treated at 600-800 ° C. 4. The method for manufacturing a metal-oxide-semiconductor device with a gate spacer according to item 11 of the scope of patent application, wherein the spacer comprises a first silicon oxide / silicon nitride / second silicon oxide stacked structure. _ U • The method for manufacturing a metal-oxide-semiconductor device with a gate spacer as described in item 14 of the scope of patent application, wherein the first silicon oxide is SiHrSi02 deposited by a chemical vapor deposition (CVD) method. I. > \ 6 · The method for manufacturing a metal-oxygen half element with a gate spacer as described in item 14 of the scope of patent application, wherein the thickness of the first silicon oxide is 100A to 20 0 A 〇 ^ The method for manufacturing a metallurgical half-piece with a gate spacer according to item 14 of the scope of the patent application, wherein the second silicon oxide is SiH4-Si02 deposited by a chemical vapor deposition (CVD) method. 18. The manufacturing method of gold with gate spacers to it0 ^ 1 as described in item 4 of the patent application scope, wherein the thickness of the second silicon oxide is 80 Å 19. Gold with gate gap 〇503.9847TWFl(Nl).ptc 第19頁 1222175〇503.9847TWFl (Nl) .ptc Page 19 1222175 氧半元件的製造方法,其中該氮化矽為以化學氣相沉積 (CVD)法所形成。 一、2 0 ·如申請專利範圍第1 4項所述之具閘極間隙壁之金 氧半元件的製造方法,其中該氮化層之厚度為2〇〇A至4〇〇 A 〇 2 1 · —種具閘極間隙壁之金氧半元件,包括: 一半導體基底; 一閘極結構,包含一閘極氧化層及閘極導電層,位於 該半導體基底上; 一輕掺雜没極區域,位於該閘極結構兩側之該半導體 基底内; 一複合式間隙壁,位於該閘極結構侧壁上;以及 一源極/汲極區域,位於該複合式間隙壁兩側之該半 導體基底内。 2 2 ·如申請專利範圍第2 1項所述之具閘極間隙壁之金 氧半元件’其申該複合式間隙壁係由一第一氧化矽/氮化 石夕/第二氧化矽堆疊結構所構成。 2 3 ·如申請專利範圍第2 2項所述之具閘極間隙壁之金 氧半元件,其中該第一氧化層為以化學氣相沉積(CVD)法 所沈積之SiH4-Si〇2。 2 4 ·如申請專利範圍第2 2項戶斤述之具閘極間隙壁之金 氧半元件,其中該第一氧化層之厚度為100A至200A。 2 5 ·如申請專利範圍第2 2項所述之具閘極間隙壁之金 氧半元件,其中該第二氧化層為以化學氣相沉積(CVD)法A method for manufacturing an oxygen half element, wherein the silicon nitride is formed by a chemical vapor deposition (CVD) method. 1. 20 · The method for manufacturing a metal-oxygen half element with a gate spacer as described in item 14 of the scope of patent application, wherein the thickness of the nitrided layer is 2000A to 400A 〇 2 1 -A kind of metal-oxide half-element with a gate gap, including: a semiconductor substrate; a gate structure including a gate oxide layer and a gate conductive layer on the semiconductor substrate; a lightly doped region Inside the semiconductor substrate on both sides of the gate structure; a composite spacer on the side wall of the gate structure; and a source / drain region on the semiconductor substrate on both sides of the composite spacer Inside. 2 2 The metal-oxygen half element with a gate gap wall as described in item 21 of the scope of the patent application, which claims that the composite gap wall consists of a first silicon oxide / nitride stone / second silicon oxide stacked structure Made up. 2 3 · The metal-oxide-semiconductor device with a gate spacer as described in item 22 of the scope of the patent application, wherein the first oxide layer is SiH4-SiO2 deposited by a chemical vapor deposition (CVD) method. 24. The metal-oxide-semiconductor element with a gate spacer as described in item 22 of the scope of the patent application, wherein the thickness of the first oxide layer is 100A to 200A. 2 5 · The metal-oxide-semiconductor device with a gate spacer as described in item 22 of the patent application scope, wherein the second oxide layer is formed by a chemical vapor deposition (CVD) method. 0503-9847TWFl(Nl).ptc 第20頁 12221750503-9847TWFl (Nl) .ptc Page 20 1222175 i號 92118ftftn 申請專利範圍 所沈積之SiH4-Si〇2。 26·如申請專利範圍第22項 丨4 <閘極間隙壁’其中 a第一虱化層之厚度為800人至12〇〇入。 Si jfe: - · 申咐專利範圍第2 2項所述之具閘極間隙壁之金 70 ^ 其中該氮化層為以化學氣相沉積(CVD)法所形 成。 2 8 ·如申請專利範圍第2 2項所述之閘極間隙壁,其中 該氮化層之厚度為200 A至400 A。 八No. 92118ftftn patent application scope deposited SiH4-Si02. 26. If the scope of application for patent No. 22 丨 4 < Gate barrier wall ' wherein a thickness of the first lice formation layer is 800 to 1200. Si jfe:-· Claimed gold with gate spacers as described in item 22 of the patent scope 70 ^ where the nitrided layer is formed by chemical vapor deposition (CVD) method. 2 8 · The gate spacer according to item 22 of the patent application scope, wherein the thickness of the nitride layer is 200 A to 400 A. Eight 第21頁 0503-9847TWFl(Nl).ptcPage 21 0503-9847TWFl (Nl) .ptc
TW92118680A 2003-07-09 2003-07-09 Method for fabricating MOS transistor having gate side-wall spacer thereon TWI222175B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92118680A TWI222175B (en) 2003-07-09 2003-07-09 Method for fabricating MOS transistor having gate side-wall spacer thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92118680A TWI222175B (en) 2003-07-09 2003-07-09 Method for fabricating MOS transistor having gate side-wall spacer thereon

Publications (2)

Publication Number Publication Date
TWI222175B true TWI222175B (en) 2004-10-11
TW200503171A TW200503171A (en) 2005-01-16

Family

ID=34432985

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92118680A TWI222175B (en) 2003-07-09 2003-07-09 Method for fabricating MOS transistor having gate side-wall spacer thereon

Country Status (1)

Country Link
TW (1) TWI222175B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644130B2 (en) 2012-10-25 2020-05-05 Taiwan Semiconductor Manufacturing Company, Ltd. Metal-oxide-semiconductor field-effect transistor with spacer over gate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644130B2 (en) 2012-10-25 2020-05-05 Taiwan Semiconductor Manufacturing Company, Ltd. Metal-oxide-semiconductor field-effect transistor with spacer over gate

Also Published As

Publication number Publication date
TW200503171A (en) 2005-01-16

Similar Documents

Publication Publication Date Title
US6811448B1 (en) Pre-cleaning for silicidation in an SMOS process
CN100524630C (en) Gate electrode dopant activation method for semiconductor manufacturing
JP4633310B2 (en) Method for forming germanium-doped polysilicon gate of MOS transistor and method for forming CMOS transistor using the same
CN102263033A (en) Method of manufacturing semiconductor device
JP2012164869A (en) Semiconductor device and manufacturing method of the same
CN101593701B (en) Stress NMOS device and manufacturing method of stress CMOS
JP2004119980A (en) Sidewall forming method using alkylsilane precursol for manufacturing mos transistor
CN105047539B (en) The method for improving SiC MOSFET channel mobilities
CN101339904B (en) Method of manufacturing semiconductor device
CN103021849A (en) N-channel metal oxide semiconductor (NMOS) component manufacturing method using stress memorization technology
JP4898066B2 (en) Manufacturing method of flash memory cell
CN102543716B (en) The forming method of blocking layer of metal silicide
JP2007123662A (en) Semiconductor device and manufacturing method thereof
TWI222175B (en) Method for fabricating MOS transistor having gate side-wall spacer thereon
CN102054697A (en) Manufacturing method for device layer of semiconductor device
CN105161526B (en) The method for improving vertical conductive structure SiC MOSFET channel mobilities
JPS60113472A (en) Manufacture of semiconductor device
JPS62242367A (en) Formation of side surface mask layer of gate electrode of mos transistor
CN105097937B (en) A kind of transverse conductance structure SIC MOSFET power devices
KR100806797B1 (en) Manufacturing metfod of semiconductor device
CN111952317B (en) Three-dimensional memory and preparation method thereof
JPH0689904A (en) Manufacture of insulated gate type field-effect semiconductor device
KR20080110119A (en) Semi-conductor device, and method thereof
TW442868B (en) Manufacturing method of gate oxide layer
KR20060037776A (en) Method for fabricating semiconductor device with gate spacer by ald

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees